writeback: implement foreign cgroup inode detection
[linux-block.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
98754bf7
TH
56 unsigned int single_wait:1;
57 unsigned int single_done:1;
0e175a18 58 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 59
8010c3b6 60 struct list_head list; /* pending work list */
cc395d7f 61 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
62};
63
cc395d7f
TH
64/*
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
70 */
71#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
74 }
75
76
a2f48706
TT
77/*
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
86 */
87unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
7ccf19a8
NP
89static inline struct inode *wb_inode(struct list_head *head)
90{
91 return list_entry(head, struct inode, i_wb_list);
92}
93
15eb77a0
WF
94/*
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
98 */
99#define CREATE_TRACE_POINTS
100#include <trace/events/writeback.h>
101
774016b2
SW
102EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
d6c10f1f
TH
104static bool wb_io_lists_populated(struct bdi_writeback *wb)
105{
106 if (wb_has_dirty_io(wb)) {
107 return false;
108 } else {
109 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 110 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
111 atomic_long_add(wb->avg_write_bandwidth,
112 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
113 return true;
114 }
115}
116
117static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118{
119 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 120 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 121 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
122 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 124 }
d6c10f1f
TH
125}
126
127/**
128 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
132 *
133 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
136 */
137static bool inode_wb_list_move_locked(struct inode *inode,
138 struct bdi_writeback *wb,
139 struct list_head *head)
140{
141 assert_spin_locked(&wb->list_lock);
142
143 list_move(&inode->i_wb_list, head);
144
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head != &wb->b_dirty_time)
147 return wb_io_lists_populated(wb);
148
149 wb_io_lists_depopulated(wb);
150 return false;
151}
152
153/**
154 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
157 *
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
160 */
161static void inode_wb_list_del_locked(struct inode *inode,
162 struct bdi_writeback *wb)
163{
164 assert_spin_locked(&wb->list_lock);
165
166 list_del_init(&inode->i_wb_list);
167 wb_io_lists_depopulated(wb);
168}
169
f0054bb1 170static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 171{
f0054bb1
TH
172 spin_lock_bh(&wb->work_lock);
173 if (test_bit(WB_registered, &wb->state))
174 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
176}
177
f0054bb1
TH
178static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
6585027a 180{
f0054bb1 181 trace_writeback_queue(wb->bdi, work);
6585027a 182
f0054bb1 183 spin_lock_bh(&wb->work_lock);
98754bf7
TH
184 if (!test_bit(WB_registered, &wb->state)) {
185 if (work->single_wait)
186 work->single_done = 1;
5acda9d1 187 goto out_unlock;
98754bf7 188 }
cc395d7f
TH
189 if (work->done)
190 atomic_inc(&work->done->cnt);
f0054bb1
TH
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
5acda9d1 193out_unlock:
f0054bb1 194 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
195}
196
cc395d7f
TH
197/**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
201 *
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
207 */
208static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 struct wb_completion *done)
210{
211 atomic_dec(&done->cnt); /* put down the initial count */
212 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213}
214
703c2708
TH
215#ifdef CONFIG_CGROUP_WRITEBACK
216
2a814908
TH
217/* parameters for foreign inode detection, see wb_detach_inode() */
218#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
219#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
220#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
221#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
222
223#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
224#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225 /* each slot's duration is 2s / 16 */
226#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
227 /* if foreign slots >= 8, switch */
228#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229 /* one round can affect upto 5 slots */
230
21c6321f
TH
231void __inode_attach_wb(struct inode *inode, struct page *page)
232{
233 struct backing_dev_info *bdi = inode_to_bdi(inode);
234 struct bdi_writeback *wb = NULL;
235
236 if (inode_cgwb_enabled(inode)) {
237 struct cgroup_subsys_state *memcg_css;
238
239 if (page) {
240 memcg_css = mem_cgroup_css_from_page(page);
241 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242 } else {
243 /* must pin memcg_css, see wb_get_create() */
244 memcg_css = task_get_css(current, memory_cgrp_id);
245 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246 css_put(memcg_css);
247 }
248 }
249
250 if (!wb)
251 wb = &bdi->wb;
252
253 /*
254 * There may be multiple instances of this function racing to
255 * update the same inode. Use cmpxchg() to tell the winner.
256 */
257 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258 wb_put(wb);
259}
260
b16b1deb
TH
261/**
262 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
263 * @wbc: writeback_control of interest
264 * @inode: target inode
265 *
266 * @inode is locked and about to be written back under the control of @wbc.
267 * Record @inode's writeback context into @wbc and unlock the i_lock. On
268 * writeback completion, wbc_detach_inode() should be called. This is used
269 * to track the cgroup writeback context.
270 */
271void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
272 struct inode *inode)
273{
274 wbc->wb = inode_to_wb(inode);
2a814908
TH
275 wbc->inode = inode;
276
277 wbc->wb_id = wbc->wb->memcg_css->id;
278 wbc->wb_lcand_id = inode->i_wb_frn_winner;
279 wbc->wb_tcand_id = 0;
280 wbc->wb_bytes = 0;
281 wbc->wb_lcand_bytes = 0;
282 wbc->wb_tcand_bytes = 0;
283
b16b1deb
TH
284 wb_get(wbc->wb);
285 spin_unlock(&inode->i_lock);
286}
287
288/**
2a814908
TH
289 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
290 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
291 *
292 * To be called after a writeback attempt of an inode finishes and undoes
293 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
294 *
295 * As concurrent write sharing of an inode is expected to be very rare and
296 * memcg only tracks page ownership on first-use basis severely confining
297 * the usefulness of such sharing, cgroup writeback tracks ownership
298 * per-inode. While the support for concurrent write sharing of an inode
299 * is deemed unnecessary, an inode being written to by different cgroups at
300 * different points in time is a lot more common, and, more importantly,
301 * charging only by first-use can too readily lead to grossly incorrect
302 * behaviors (single foreign page can lead to gigabytes of writeback to be
303 * incorrectly attributed).
304 *
305 * To resolve this issue, cgroup writeback detects the majority dirtier of
306 * an inode and transfers the ownership to it. To avoid unnnecessary
307 * oscillation, the detection mechanism keeps track of history and gives
308 * out the switch verdict only if the foreign usage pattern is stable over
309 * a certain amount of time and/or writeback attempts.
310 *
311 * On each writeback attempt, @wbc tries to detect the majority writer
312 * using Boyer-Moore majority vote algorithm. In addition to the byte
313 * count from the majority voting, it also counts the bytes written for the
314 * current wb and the last round's winner wb (max of last round's current
315 * wb, the winner from two rounds ago, and the last round's majority
316 * candidate). Keeping track of the historical winner helps the algorithm
317 * to semi-reliably detect the most active writer even when it's not the
318 * absolute majority.
319 *
320 * Once the winner of the round is determined, whether the winner is
321 * foreign or not and how much IO time the round consumed is recorded in
322 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
323 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
324 */
325void wbc_detach_inode(struct writeback_control *wbc)
326{
2a814908
TH
327 struct bdi_writeback *wb = wbc->wb;
328 struct inode *inode = wbc->inode;
329 u16 history = inode->i_wb_frn_history;
330 unsigned long avg_time = inode->i_wb_frn_avg_time;
331 unsigned long max_bytes, max_time;
332 int max_id;
333
334 /* pick the winner of this round */
335 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
336 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
337 max_id = wbc->wb_id;
338 max_bytes = wbc->wb_bytes;
339 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
340 max_id = wbc->wb_lcand_id;
341 max_bytes = wbc->wb_lcand_bytes;
342 } else {
343 max_id = wbc->wb_tcand_id;
344 max_bytes = wbc->wb_tcand_bytes;
345 }
346
347 /*
348 * Calculate the amount of IO time the winner consumed and fold it
349 * into the running average kept per inode. If the consumed IO
350 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
351 * deciding whether to switch or not. This is to prevent one-off
352 * small dirtiers from skewing the verdict.
353 */
354 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
355 wb->avg_write_bandwidth);
356 if (avg_time)
357 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
358 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
359 else
360 avg_time = max_time; /* immediate catch up on first run */
361
362 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
363 int slots;
364
365 /*
366 * The switch verdict is reached if foreign wb's consume
367 * more than a certain proportion of IO time in a
368 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
369 * history mask where each bit represents one sixteenth of
370 * the period. Determine the number of slots to shift into
371 * history from @max_time.
372 */
373 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
374 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
375 history <<= slots;
376 if (wbc->wb_id != max_id)
377 history |= (1U << slots) - 1;
378
379 /*
380 * Switch if the current wb isn't the consistent winner.
381 * If there are multiple closely competing dirtiers, the
382 * inode may switch across them repeatedly over time, which
383 * is okay. The main goal is avoiding keeping an inode on
384 * the wrong wb for an extended period of time.
385 */
386 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) {
387 /* switch */
388 max_id = 0;
389 avg_time = 0;
390 history = 0;
391 }
392 }
393
394 /*
395 * Multiple instances of this function may race to update the
396 * following fields but we don't mind occassional inaccuracies.
397 */
398 inode->i_wb_frn_winner = max_id;
399 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
400 inode->i_wb_frn_history = history;
401
b16b1deb
TH
402 wb_put(wbc->wb);
403 wbc->wb = NULL;
404}
405
2a814908
TH
406/**
407 * wbc_account_io - account IO issued during writeback
408 * @wbc: writeback_control of the writeback in progress
409 * @page: page being written out
410 * @bytes: number of bytes being written out
411 *
412 * @bytes from @page are about to written out during the writeback
413 * controlled by @wbc. Keep the book for foreign inode detection. See
414 * wbc_detach_inode().
415 */
416void wbc_account_io(struct writeback_control *wbc, struct page *page,
417 size_t bytes)
418{
419 int id;
420
421 /*
422 * pageout() path doesn't attach @wbc to the inode being written
423 * out. This is intentional as we don't want the function to block
424 * behind a slow cgroup. Ultimately, we want pageout() to kick off
425 * regular writeback instead of writing things out itself.
426 */
427 if (!wbc->wb)
428 return;
429
430 rcu_read_lock();
431 id = mem_cgroup_css_from_page(page)->id;
432 rcu_read_unlock();
433
434 if (id == wbc->wb_id) {
435 wbc->wb_bytes += bytes;
436 return;
437 }
438
439 if (id == wbc->wb_lcand_id)
440 wbc->wb_lcand_bytes += bytes;
441
442 /* Boyer-Moore majority vote algorithm */
443 if (!wbc->wb_tcand_bytes)
444 wbc->wb_tcand_id = id;
445 if (id == wbc->wb_tcand_id)
446 wbc->wb_tcand_bytes += bytes;
447 else
448 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
449}
450
703c2708
TH
451/**
452 * inode_congested - test whether an inode is congested
453 * @inode: inode to test for congestion
454 * @cong_bits: mask of WB_[a]sync_congested bits to test
455 *
456 * Tests whether @inode is congested. @cong_bits is the mask of congestion
457 * bits to test and the return value is the mask of set bits.
458 *
459 * If cgroup writeback is enabled for @inode, the congestion state is
460 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
461 * associated with @inode is congested; otherwise, the root wb's congestion
462 * state is used.
463 */
464int inode_congested(struct inode *inode, int cong_bits)
465{
466 if (inode) {
467 struct bdi_writeback *wb = inode_to_wb(inode);
468 if (wb)
469 return wb_congested(wb, cong_bits);
470 }
471
472 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
473}
474EXPORT_SYMBOL_GPL(inode_congested);
475
98754bf7
TH
476/**
477 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
478 * @bdi: bdi the work item was issued to
479 * @work: work item to wait for
480 *
481 * Wait for the completion of @work which was issued to one of @bdi's
482 * bdi_writeback's. The caller must have set @work->single_wait before
483 * issuing it. This wait operates independently fo
484 * wb_wait_for_completion() and also disables automatic freeing of @work.
485 */
486static void wb_wait_for_single_work(struct backing_dev_info *bdi,
487 struct wb_writeback_work *work)
488{
489 if (WARN_ON_ONCE(!work->single_wait))
490 return;
491
492 wait_event(bdi->wb_waitq, work->single_done);
493
494 /*
495 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
496 * modifications to @work prior to assertion of ->single_done is
497 * visible to the caller once this function returns.
498 */
499 smp_rmb();
500}
501
f2b65121
TH
502/**
503 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
504 * @wb: target bdi_writeback to split @nr_pages to
505 * @nr_pages: number of pages to write for the whole bdi
506 *
507 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
508 * relation to the total write bandwidth of all wb's w/ dirty inodes on
509 * @wb->bdi.
510 */
511static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
512{
513 unsigned long this_bw = wb->avg_write_bandwidth;
514 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
515
516 if (nr_pages == LONG_MAX)
517 return LONG_MAX;
518
519 /*
520 * This may be called on clean wb's and proportional distribution
521 * may not make sense, just use the original @nr_pages in those
522 * cases. In general, we wanna err on the side of writing more.
523 */
524 if (!tot_bw || this_bw >= tot_bw)
525 return nr_pages;
526 else
527 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
528}
529
db125360
TH
530/**
531 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
532 * @wb: target bdi_writeback
533 * @base_work: source wb_writeback_work
534 *
535 * Try to make a clone of @base_work and issue it to @wb. If cloning
536 * succeeds, %true is returned; otherwise, @base_work is issued directly
537 * and %false is returned. In the latter case, the caller is required to
538 * wait for @base_work's completion using wb_wait_for_single_work().
539 *
540 * A clone is auto-freed on completion. @base_work never is.
541 */
542static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
543 struct wb_writeback_work *base_work)
544{
545 struct wb_writeback_work *work;
546
547 work = kmalloc(sizeof(*work), GFP_ATOMIC);
548 if (work) {
549 *work = *base_work;
550 work->auto_free = 1;
551 work->single_wait = 0;
552 } else {
553 work = base_work;
554 work->auto_free = 0;
555 work->single_wait = 1;
556 }
557 work->single_done = 0;
558 wb_queue_work(wb, work);
559 return work != base_work;
560}
561
562/**
563 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
564 * @bdi: target backing_dev_info
565 * @base_work: wb_writeback_work to issue
566 * @skip_if_busy: skip wb's which already have writeback in progress
567 *
568 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
569 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
570 * distributed to the busy wbs according to each wb's proportion in the
571 * total active write bandwidth of @bdi.
572 */
573static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
574 struct wb_writeback_work *base_work,
575 bool skip_if_busy)
576{
577 long nr_pages = base_work->nr_pages;
578 int next_blkcg_id = 0;
579 struct bdi_writeback *wb;
580 struct wb_iter iter;
581
582 might_sleep();
583
584 if (!bdi_has_dirty_io(bdi))
585 return;
586restart:
587 rcu_read_lock();
588 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
589 if (!wb_has_dirty_io(wb) ||
590 (skip_if_busy && writeback_in_progress(wb)))
591 continue;
592
593 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
594 if (!wb_clone_and_queue_work(wb, base_work)) {
595 next_blkcg_id = wb->blkcg_css->id + 1;
596 rcu_read_unlock();
597 wb_wait_for_single_work(bdi, base_work);
598 goto restart;
599 }
600 }
601 rcu_read_unlock();
602}
603
f2b65121
TH
604#else /* CONFIG_CGROUP_WRITEBACK */
605
606static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
607{
608 return nr_pages;
609}
610
db125360
TH
611static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
612 struct wb_writeback_work *base_work,
613 bool skip_if_busy)
614{
615 might_sleep();
616
617 if (bdi_has_dirty_io(bdi) &&
618 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
619 base_work->auto_free = 0;
620 base_work->single_wait = 0;
621 base_work->single_done = 0;
622 wb_queue_work(&bdi->wb, base_work);
623 }
624}
625
703c2708
TH
626#endif /* CONFIG_CGROUP_WRITEBACK */
627
c00ddad3
TH
628void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
629 bool range_cyclic, enum wb_reason reason)
b6e51316 630{
c00ddad3
TH
631 struct wb_writeback_work *work;
632
633 if (!wb_has_dirty_io(wb))
634 return;
635
636 /*
637 * This is WB_SYNC_NONE writeback, so if allocation fails just
638 * wakeup the thread for old dirty data writeback
639 */
640 work = kzalloc(sizeof(*work), GFP_ATOMIC);
641 if (!work) {
642 trace_writeback_nowork(wb->bdi);
643 wb_wakeup(wb);
644 return;
645 }
646
647 work->sync_mode = WB_SYNC_NONE;
648 work->nr_pages = nr_pages;
649 work->range_cyclic = range_cyclic;
650 work->reason = reason;
ac7b19a3 651 work->auto_free = 1;
c00ddad3
TH
652
653 wb_queue_work(wb, work);
c5444198 654}
d3ddec76 655
c5444198 656/**
9ecf4866
TH
657 * wb_start_background_writeback - start background writeback
658 * @wb: bdi_writback to write from
c5444198
CH
659 *
660 * Description:
6585027a 661 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 662 * this function returns, it is only guaranteed that for given wb
6585027a
JK
663 * some IO is happening if we are over background dirty threshold.
664 * Caller need not hold sb s_umount semaphore.
c5444198 665 */
9ecf4866 666void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 667{
6585027a
JK
668 /*
669 * We just wake up the flusher thread. It will perform background
670 * writeback as soon as there is no other work to do.
671 */
9ecf4866
TH
672 trace_writeback_wake_background(wb->bdi);
673 wb_wakeup(wb);
1da177e4
LT
674}
675
a66979ab
DC
676/*
677 * Remove the inode from the writeback list it is on.
678 */
679void inode_wb_list_del(struct inode *inode)
680{
52ebea74 681 struct bdi_writeback *wb = inode_to_wb(inode);
f758eeab 682
52ebea74 683 spin_lock(&wb->list_lock);
d6c10f1f 684 inode_wb_list_del_locked(inode, wb);
52ebea74 685 spin_unlock(&wb->list_lock);
a66979ab
DC
686}
687
6610a0bc
AM
688/*
689 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
690 * furthest end of its superblock's dirty-inode list.
691 *
692 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 693 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
694 * the case then the inode must have been redirtied while it was being written
695 * out and we don't reset its dirtied_when.
696 */
f758eeab 697static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 698{
03ba3782 699 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 700 struct inode *tail;
6610a0bc 701
7ccf19a8 702 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 703 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
704 inode->dirtied_when = jiffies;
705 }
d6c10f1f 706 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
707}
708
c986d1e2 709/*
66f3b8e2 710 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 711 */
f758eeab 712static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 713{
d6c10f1f 714 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
715}
716
1c0eeaf5
JE
717static void inode_sync_complete(struct inode *inode)
718{
365b94ae 719 inode->i_state &= ~I_SYNC;
4eff96dd
JK
720 /* If inode is clean an unused, put it into LRU now... */
721 inode_add_lru(inode);
365b94ae 722 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
723 smp_mb();
724 wake_up_bit(&inode->i_state, __I_SYNC);
725}
726
d2caa3c5
JL
727static bool inode_dirtied_after(struct inode *inode, unsigned long t)
728{
729 bool ret = time_after(inode->dirtied_when, t);
730#ifndef CONFIG_64BIT
731 /*
732 * For inodes being constantly redirtied, dirtied_when can get stuck.
733 * It _appears_ to be in the future, but is actually in distant past.
734 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 735 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
736 */
737 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
738#endif
739 return ret;
740}
741
0ae45f63
TT
742#define EXPIRE_DIRTY_ATIME 0x0001
743
2c136579 744/*
0e2f2b23 745 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 746 * @delaying_queue to @dispatch_queue.
2c136579 747 */
e84d0a4f 748static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 749 struct list_head *dispatch_queue,
0ae45f63 750 int flags,
ad4e38dd 751 struct wb_writeback_work *work)
2c136579 752{
0ae45f63
TT
753 unsigned long *older_than_this = NULL;
754 unsigned long expire_time;
5c03449d
SL
755 LIST_HEAD(tmp);
756 struct list_head *pos, *node;
cf137307 757 struct super_block *sb = NULL;
5c03449d 758 struct inode *inode;
cf137307 759 int do_sb_sort = 0;
e84d0a4f 760 int moved = 0;
5c03449d 761
0ae45f63
TT
762 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
763 older_than_this = work->older_than_this;
a2f48706
TT
764 else if (!work->for_sync) {
765 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
766 older_than_this = &expire_time;
767 }
2c136579 768 while (!list_empty(delaying_queue)) {
7ccf19a8 769 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
770 if (older_than_this &&
771 inode_dirtied_after(inode, *older_than_this))
2c136579 772 break;
a8855990
JK
773 list_move(&inode->i_wb_list, &tmp);
774 moved++;
0ae45f63
TT
775 if (flags & EXPIRE_DIRTY_ATIME)
776 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
777 if (sb_is_blkdev_sb(inode->i_sb))
778 continue;
cf137307
JA
779 if (sb && sb != inode->i_sb)
780 do_sb_sort = 1;
781 sb = inode->i_sb;
5c03449d
SL
782 }
783
cf137307
JA
784 /* just one sb in list, splice to dispatch_queue and we're done */
785 if (!do_sb_sort) {
786 list_splice(&tmp, dispatch_queue);
e84d0a4f 787 goto out;
cf137307
JA
788 }
789
5c03449d
SL
790 /* Move inodes from one superblock together */
791 while (!list_empty(&tmp)) {
7ccf19a8 792 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 793 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 794 inode = wb_inode(pos);
5c03449d 795 if (inode->i_sb == sb)
7ccf19a8 796 list_move(&inode->i_wb_list, dispatch_queue);
5c03449d 797 }
2c136579 798 }
e84d0a4f
WF
799out:
800 return moved;
2c136579
FW
801}
802
803/*
804 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
805 * Before
806 * newly dirtied b_dirty b_io b_more_io
807 * =============> gf edc BA
808 * After
809 * newly dirtied b_dirty b_io b_more_io
810 * =============> g fBAedc
811 * |
812 * +--> dequeue for IO
2c136579 813 */
ad4e38dd 814static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 815{
e84d0a4f 816 int moved;
0ae45f63 817
f758eeab 818 assert_spin_locked(&wb->list_lock);
4ea879b9 819 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
820 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
821 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
822 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
823 if (moved)
824 wb_io_lists_populated(wb);
ad4e38dd 825 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
826}
827
a9185b41 828static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 829{
9fb0a7da
TH
830 int ret;
831
832 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
833 trace_writeback_write_inode_start(inode, wbc);
834 ret = inode->i_sb->s_op->write_inode(inode, wbc);
835 trace_writeback_write_inode(inode, wbc);
836 return ret;
837 }
03ba3782 838 return 0;
08d8e974 839}
08d8e974 840
1da177e4 841/*
169ebd90
JK
842 * Wait for writeback on an inode to complete. Called with i_lock held.
843 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 844 */
169ebd90
JK
845static void __inode_wait_for_writeback(struct inode *inode)
846 __releases(inode->i_lock)
847 __acquires(inode->i_lock)
01c03194
CH
848{
849 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
850 wait_queue_head_t *wqh;
851
852 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
853 while (inode->i_state & I_SYNC) {
854 spin_unlock(&inode->i_lock);
74316201
N
855 __wait_on_bit(wqh, &wq, bit_wait,
856 TASK_UNINTERRUPTIBLE);
250df6ed 857 spin_lock(&inode->i_lock);
58a9d3d8 858 }
01c03194
CH
859}
860
169ebd90
JK
861/*
862 * Wait for writeback on an inode to complete. Caller must have inode pinned.
863 */
864void inode_wait_for_writeback(struct inode *inode)
865{
866 spin_lock(&inode->i_lock);
867 __inode_wait_for_writeback(inode);
868 spin_unlock(&inode->i_lock);
869}
870
871/*
872 * Sleep until I_SYNC is cleared. This function must be called with i_lock
873 * held and drops it. It is aimed for callers not holding any inode reference
874 * so once i_lock is dropped, inode can go away.
875 */
876static void inode_sleep_on_writeback(struct inode *inode)
877 __releases(inode->i_lock)
878{
879 DEFINE_WAIT(wait);
880 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
881 int sleep;
882
883 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
884 sleep = inode->i_state & I_SYNC;
885 spin_unlock(&inode->i_lock);
886 if (sleep)
887 schedule();
888 finish_wait(wqh, &wait);
889}
890
ccb26b5a
JK
891/*
892 * Find proper writeback list for the inode depending on its current state and
893 * possibly also change of its state while we were doing writeback. Here we
894 * handle things such as livelock prevention or fairness of writeback among
895 * inodes. This function can be called only by flusher thread - noone else
896 * processes all inodes in writeback lists and requeueing inodes behind flusher
897 * thread's back can have unexpected consequences.
898 */
899static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
900 struct writeback_control *wbc)
901{
902 if (inode->i_state & I_FREEING)
903 return;
904
905 /*
906 * Sync livelock prevention. Each inode is tagged and synced in one
907 * shot. If still dirty, it will be redirty_tail()'ed below. Update
908 * the dirty time to prevent enqueue and sync it again.
909 */
910 if ((inode->i_state & I_DIRTY) &&
911 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
912 inode->dirtied_when = jiffies;
913
4f8ad655
JK
914 if (wbc->pages_skipped) {
915 /*
916 * writeback is not making progress due to locked
917 * buffers. Skip this inode for now.
918 */
919 redirty_tail(inode, wb);
920 return;
921 }
922
ccb26b5a
JK
923 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
924 /*
925 * We didn't write back all the pages. nfs_writepages()
926 * sometimes bales out without doing anything.
927 */
928 if (wbc->nr_to_write <= 0) {
929 /* Slice used up. Queue for next turn. */
930 requeue_io(inode, wb);
931 } else {
932 /*
933 * Writeback blocked by something other than
934 * congestion. Delay the inode for some time to
935 * avoid spinning on the CPU (100% iowait)
936 * retrying writeback of the dirty page/inode
937 * that cannot be performed immediately.
938 */
939 redirty_tail(inode, wb);
940 }
941 } else if (inode->i_state & I_DIRTY) {
942 /*
943 * Filesystems can dirty the inode during writeback operations,
944 * such as delayed allocation during submission or metadata
945 * updates after data IO completion.
946 */
947 redirty_tail(inode, wb);
0ae45f63 948 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 949 inode->dirtied_when = jiffies;
d6c10f1f 950 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
951 } else {
952 /* The inode is clean. Remove from writeback lists. */
d6c10f1f 953 inode_wb_list_del_locked(inode, wb);
ccb26b5a
JK
954 }
955}
956
01c03194 957/*
4f8ad655
JK
958 * Write out an inode and its dirty pages. Do not update the writeback list
959 * linkage. That is left to the caller. The caller is also responsible for
960 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
961 */
962static int
cd8ed2a4 963__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 964{
1da177e4 965 struct address_space *mapping = inode->i_mapping;
251d6a47 966 long nr_to_write = wbc->nr_to_write;
01c03194 967 unsigned dirty;
1da177e4
LT
968 int ret;
969
4f8ad655 970 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 971
9fb0a7da
TH
972 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
973
1da177e4
LT
974 ret = do_writepages(mapping, wbc);
975
26821ed4
CH
976 /*
977 * Make sure to wait on the data before writing out the metadata.
978 * This is important for filesystems that modify metadata on data
7747bd4b
DC
979 * I/O completion. We don't do it for sync(2) writeback because it has a
980 * separate, external IO completion path and ->sync_fs for guaranteeing
981 * inode metadata is written back correctly.
26821ed4 982 */
7747bd4b 983 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 984 int err = filemap_fdatawait(mapping);
1da177e4
LT
985 if (ret == 0)
986 ret = err;
987 }
988
5547e8aa
DM
989 /*
990 * Some filesystems may redirty the inode during the writeback
991 * due to delalloc, clear dirty metadata flags right before
992 * write_inode()
993 */
250df6ed 994 spin_lock(&inode->i_lock);
9c6ac78e 995
5547e8aa 996 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
997 if (inode->i_state & I_DIRTY_TIME) {
998 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
999 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1000 unlikely(time_after(jiffies,
1001 (inode->dirtied_time_when +
1002 dirtytime_expire_interval * HZ)))) {
1003 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1004 trace_writeback_lazytime(inode);
1005 }
1006 } else
1007 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1008 inode->i_state &= ~dirty;
9c6ac78e
TH
1009
1010 /*
1011 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1012 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1013 * either they see the I_DIRTY bits cleared or we see the dirtied
1014 * inode.
1015 *
1016 * I_DIRTY_PAGES is always cleared together above even if @mapping
1017 * still has dirty pages. The flag is reinstated after smp_mb() if
1018 * necessary. This guarantees that either __mark_inode_dirty()
1019 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1020 */
1021 smp_mb();
1022
1023 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1024 inode->i_state |= I_DIRTY_PAGES;
1025
250df6ed 1026 spin_unlock(&inode->i_lock);
9c6ac78e 1027
0ae45f63
TT
1028 if (dirty & I_DIRTY_TIME)
1029 mark_inode_dirty_sync(inode);
26821ed4 1030 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1031 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1032 int err = write_inode(inode, wbc);
1da177e4
LT
1033 if (ret == 0)
1034 ret = err;
1035 }
4f8ad655
JK
1036 trace_writeback_single_inode(inode, wbc, nr_to_write);
1037 return ret;
1038}
1039
1040/*
1041 * Write out an inode's dirty pages. Either the caller has an active reference
1042 * on the inode or the inode has I_WILL_FREE set.
1043 *
1044 * This function is designed to be called for writing back one inode which
1045 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1046 * and does more profound writeback list handling in writeback_sb_inodes().
1047 */
1048static int
1049writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1050 struct writeback_control *wbc)
1051{
1052 int ret = 0;
1053
1054 spin_lock(&inode->i_lock);
1055 if (!atomic_read(&inode->i_count))
1056 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1057 else
1058 WARN_ON(inode->i_state & I_WILL_FREE);
1059
1060 if (inode->i_state & I_SYNC) {
1061 if (wbc->sync_mode != WB_SYNC_ALL)
1062 goto out;
1063 /*
169ebd90
JK
1064 * It's a data-integrity sync. We must wait. Since callers hold
1065 * inode reference or inode has I_WILL_FREE set, it cannot go
1066 * away under us.
4f8ad655 1067 */
169ebd90 1068 __inode_wait_for_writeback(inode);
4f8ad655
JK
1069 }
1070 WARN_ON(inode->i_state & I_SYNC);
1071 /*
f9b0e058
JK
1072 * Skip inode if it is clean and we have no outstanding writeback in
1073 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1074 * function since flusher thread may be doing for example sync in
1075 * parallel and if we move the inode, it could get skipped. So here we
1076 * make sure inode is on some writeback list and leave it there unless
1077 * we have completely cleaned the inode.
4f8ad655 1078 */
0ae45f63 1079 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1080 (wbc->sync_mode != WB_SYNC_ALL ||
1081 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1082 goto out;
1083 inode->i_state |= I_SYNC;
b16b1deb 1084 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1085
cd8ed2a4 1086 ret = __writeback_single_inode(inode, wbc);
1da177e4 1087
b16b1deb 1088 wbc_detach_inode(wbc);
f758eeab 1089 spin_lock(&wb->list_lock);
250df6ed 1090 spin_lock(&inode->i_lock);
4f8ad655
JK
1091 /*
1092 * If inode is clean, remove it from writeback lists. Otherwise don't
1093 * touch it. See comment above for explanation.
1094 */
0ae45f63 1095 if (!(inode->i_state & I_DIRTY_ALL))
d6c10f1f 1096 inode_wb_list_del_locked(inode, wb);
4f8ad655 1097 spin_unlock(&wb->list_lock);
1c0eeaf5 1098 inode_sync_complete(inode);
4f8ad655
JK
1099out:
1100 spin_unlock(&inode->i_lock);
1da177e4
LT
1101 return ret;
1102}
1103
a88a341a 1104static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1105 struct wb_writeback_work *work)
d46db3d5
WF
1106{
1107 long pages;
1108
1109 /*
1110 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1111 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1112 * here avoids calling into writeback_inodes_wb() more than once.
1113 *
1114 * The intended call sequence for WB_SYNC_ALL writeback is:
1115 *
1116 * wb_writeback()
1117 * writeback_sb_inodes() <== called only once
1118 * write_cache_pages() <== called once for each inode
1119 * (quickly) tag currently dirty pages
1120 * (maybe slowly) sync all tagged pages
1121 */
1122 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1123 pages = LONG_MAX;
1a12d8bd 1124 else {
a88a341a 1125 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1126 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1127 pages = min(pages, work->nr_pages);
1128 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1129 MIN_WRITEBACK_PAGES);
1130 }
d46db3d5
WF
1131
1132 return pages;
1133}
1134
f11c9c5c
ES
1135/*
1136 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1137 *
d46db3d5 1138 * Return the number of pages and/or inodes written.
f11c9c5c 1139 */
d46db3d5
WF
1140static long writeback_sb_inodes(struct super_block *sb,
1141 struct bdi_writeback *wb,
1142 struct wb_writeback_work *work)
1da177e4 1143{
d46db3d5
WF
1144 struct writeback_control wbc = {
1145 .sync_mode = work->sync_mode,
1146 .tagged_writepages = work->tagged_writepages,
1147 .for_kupdate = work->for_kupdate,
1148 .for_background = work->for_background,
7747bd4b 1149 .for_sync = work->for_sync,
d46db3d5
WF
1150 .range_cyclic = work->range_cyclic,
1151 .range_start = 0,
1152 .range_end = LLONG_MAX,
1153 };
1154 unsigned long start_time = jiffies;
1155 long write_chunk;
1156 long wrote = 0; /* count both pages and inodes */
1157
03ba3782 1158 while (!list_empty(&wb->b_io)) {
7ccf19a8 1159 struct inode *inode = wb_inode(wb->b_io.prev);
edadfb10
CH
1160
1161 if (inode->i_sb != sb) {
d46db3d5 1162 if (work->sb) {
edadfb10
CH
1163 /*
1164 * We only want to write back data for this
1165 * superblock, move all inodes not belonging
1166 * to it back onto the dirty list.
1167 */
f758eeab 1168 redirty_tail(inode, wb);
edadfb10
CH
1169 continue;
1170 }
1171
1172 /*
1173 * The inode belongs to a different superblock.
1174 * Bounce back to the caller to unpin this and
1175 * pin the next superblock.
1176 */
d46db3d5 1177 break;
edadfb10
CH
1178 }
1179
9843b76a 1180 /*
331cbdee
WL
1181 * Don't bother with new inodes or inodes being freed, first
1182 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1183 * kind writeout is handled by the freer.
1184 */
250df6ed 1185 spin_lock(&inode->i_lock);
9843b76a 1186 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1187 spin_unlock(&inode->i_lock);
fcc5c222 1188 redirty_tail(inode, wb);
7ef0d737
NP
1189 continue;
1190 }
cc1676d9
JK
1191 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1192 /*
1193 * If this inode is locked for writeback and we are not
1194 * doing writeback-for-data-integrity, move it to
1195 * b_more_io so that writeback can proceed with the
1196 * other inodes on s_io.
1197 *
1198 * We'll have another go at writing back this inode
1199 * when we completed a full scan of b_io.
1200 */
1201 spin_unlock(&inode->i_lock);
1202 requeue_io(inode, wb);
1203 trace_writeback_sb_inodes_requeue(inode);
1204 continue;
1205 }
f0d07b7f
JK
1206 spin_unlock(&wb->list_lock);
1207
4f8ad655
JK
1208 /*
1209 * We already requeued the inode if it had I_SYNC set and we
1210 * are doing WB_SYNC_NONE writeback. So this catches only the
1211 * WB_SYNC_ALL case.
1212 */
169ebd90
JK
1213 if (inode->i_state & I_SYNC) {
1214 /* Wait for I_SYNC. This function drops i_lock... */
1215 inode_sleep_on_writeback(inode);
1216 /* Inode may be gone, start again */
ead188f9 1217 spin_lock(&wb->list_lock);
169ebd90
JK
1218 continue;
1219 }
4f8ad655 1220 inode->i_state |= I_SYNC;
b16b1deb 1221 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1222
a88a341a 1223 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1224 wbc.nr_to_write = write_chunk;
1225 wbc.pages_skipped = 0;
250df6ed 1226
169ebd90
JK
1227 /*
1228 * We use I_SYNC to pin the inode in memory. While it is set
1229 * evict_inode() will wait so the inode cannot be freed.
1230 */
cd8ed2a4 1231 __writeback_single_inode(inode, &wbc);
250df6ed 1232
b16b1deb 1233 wbc_detach_inode(&wbc);
d46db3d5
WF
1234 work->nr_pages -= write_chunk - wbc.nr_to_write;
1235 wrote += write_chunk - wbc.nr_to_write;
4f8ad655
JK
1236 spin_lock(&wb->list_lock);
1237 spin_lock(&inode->i_lock);
0ae45f63 1238 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1239 wrote++;
4f8ad655
JK
1240 requeue_inode(inode, wb, &wbc);
1241 inode_sync_complete(inode);
0f1b1fd8 1242 spin_unlock(&inode->i_lock);
169ebd90 1243 cond_resched_lock(&wb->list_lock);
d46db3d5
WF
1244 /*
1245 * bail out to wb_writeback() often enough to check
1246 * background threshold and other termination conditions.
1247 */
1248 if (wrote) {
1249 if (time_is_before_jiffies(start_time + HZ / 10UL))
1250 break;
1251 if (work->nr_pages <= 0)
1252 break;
8bc3be27 1253 }
1da177e4 1254 }
d46db3d5 1255 return wrote;
f11c9c5c
ES
1256}
1257
d46db3d5
WF
1258static long __writeback_inodes_wb(struct bdi_writeback *wb,
1259 struct wb_writeback_work *work)
f11c9c5c 1260{
d46db3d5
WF
1261 unsigned long start_time = jiffies;
1262 long wrote = 0;
38f21977 1263
f11c9c5c 1264 while (!list_empty(&wb->b_io)) {
7ccf19a8 1265 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1266 struct super_block *sb = inode->i_sb;
9ecc2738 1267
eb6ef3df 1268 if (!trylock_super(sb)) {
0e995816 1269 /*
eb6ef3df 1270 * trylock_super() may fail consistently due to
0e995816
WF
1271 * s_umount being grabbed by someone else. Don't use
1272 * requeue_io() to avoid busy retrying the inode/sb.
1273 */
1274 redirty_tail(inode, wb);
edadfb10 1275 continue;
f11c9c5c 1276 }
d46db3d5 1277 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1278 up_read(&sb->s_umount);
f11c9c5c 1279
d46db3d5
WF
1280 /* refer to the same tests at the end of writeback_sb_inodes */
1281 if (wrote) {
1282 if (time_is_before_jiffies(start_time + HZ / 10UL))
1283 break;
1284 if (work->nr_pages <= 0)
1285 break;
1286 }
f11c9c5c 1287 }
66f3b8e2 1288 /* Leave any unwritten inodes on b_io */
d46db3d5 1289 return wrote;
66f3b8e2
JA
1290}
1291
7d9f073b 1292static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1293 enum wb_reason reason)
edadfb10 1294{
d46db3d5
WF
1295 struct wb_writeback_work work = {
1296 .nr_pages = nr_pages,
1297 .sync_mode = WB_SYNC_NONE,
1298 .range_cyclic = 1,
0e175a18 1299 .reason = reason,
d46db3d5 1300 };
edadfb10 1301
f758eeab 1302 spin_lock(&wb->list_lock);
424b351f 1303 if (list_empty(&wb->b_io))
ad4e38dd 1304 queue_io(wb, &work);
d46db3d5 1305 __writeback_inodes_wb(wb, &work);
f758eeab 1306 spin_unlock(&wb->list_lock);
edadfb10 1307
d46db3d5
WF
1308 return nr_pages - work.nr_pages;
1309}
03ba3782 1310
03ba3782
JA
1311/*
1312 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1313 *
03ba3782
JA
1314 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1315 * dirtying-time in the inode's address_space. So this periodic writeback code
1316 * just walks the superblock inode list, writing back any inodes which are
1317 * older than a specific point in time.
66f3b8e2 1318 *
03ba3782
JA
1319 * Try to run once per dirty_writeback_interval. But if a writeback event
1320 * takes longer than a dirty_writeback_interval interval, then leave a
1321 * one-second gap.
66f3b8e2 1322 *
03ba3782
JA
1323 * older_than_this takes precedence over nr_to_write. So we'll only write back
1324 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1325 */
c4a77a6c 1326static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1327 struct wb_writeback_work *work)
66f3b8e2 1328{
e98be2d5 1329 unsigned long wb_start = jiffies;
d46db3d5 1330 long nr_pages = work->nr_pages;
0dc83bd3 1331 unsigned long oldest_jif;
a5989bdc 1332 struct inode *inode;
d46db3d5 1333 long progress;
66f3b8e2 1334
0dc83bd3
JK
1335 oldest_jif = jiffies;
1336 work->older_than_this = &oldest_jif;
38f21977 1337
e8dfc305 1338 spin_lock(&wb->list_lock);
03ba3782
JA
1339 for (;;) {
1340 /*
d3ddec76 1341 * Stop writeback when nr_pages has been consumed
03ba3782 1342 */
83ba7b07 1343 if (work->nr_pages <= 0)
03ba3782 1344 break;
66f3b8e2 1345
aa373cf5
JK
1346 /*
1347 * Background writeout and kupdate-style writeback may
1348 * run forever. Stop them if there is other work to do
1349 * so that e.g. sync can proceed. They'll be restarted
1350 * after the other works are all done.
1351 */
1352 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1353 !list_empty(&wb->work_list))
aa373cf5
JK
1354 break;
1355
38f21977 1356 /*
d3ddec76
WF
1357 * For background writeout, stop when we are below the
1358 * background dirty threshold
38f21977 1359 */
aa661bbe 1360 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1361 break;
38f21977 1362
1bc36b64
JK
1363 /*
1364 * Kupdate and background works are special and we want to
1365 * include all inodes that need writing. Livelock avoidance is
1366 * handled by these works yielding to any other work so we are
1367 * safe.
1368 */
ba9aa839 1369 if (work->for_kupdate) {
0dc83bd3 1370 oldest_jif = jiffies -
ba9aa839 1371 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1372 } else if (work->for_background)
0dc83bd3 1373 oldest_jif = jiffies;
028c2dd1 1374
d46db3d5 1375 trace_writeback_start(wb->bdi, work);
e8dfc305 1376 if (list_empty(&wb->b_io))
ad4e38dd 1377 queue_io(wb, work);
83ba7b07 1378 if (work->sb)
d46db3d5 1379 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1380 else
d46db3d5
WF
1381 progress = __writeback_inodes_wb(wb, work);
1382 trace_writeback_written(wb->bdi, work);
028c2dd1 1383
e98be2d5 1384 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1385
1386 /*
e6fb6da2
WF
1387 * Did we write something? Try for more
1388 *
1389 * Dirty inodes are moved to b_io for writeback in batches.
1390 * The completion of the current batch does not necessarily
1391 * mean the overall work is done. So we keep looping as long
1392 * as made some progress on cleaning pages or inodes.
03ba3782 1393 */
d46db3d5 1394 if (progress)
71fd05a8
JA
1395 continue;
1396 /*
e6fb6da2 1397 * No more inodes for IO, bail
71fd05a8 1398 */
b7a2441f 1399 if (list_empty(&wb->b_more_io))
03ba3782 1400 break;
71fd05a8
JA
1401 /*
1402 * Nothing written. Wait for some inode to
1403 * become available for writeback. Otherwise
1404 * we'll just busyloop.
1405 */
71fd05a8 1406 if (!list_empty(&wb->b_more_io)) {
d46db3d5 1407 trace_writeback_wait(wb->bdi, work);
7ccf19a8 1408 inode = wb_inode(wb->b_more_io.prev);
250df6ed 1409 spin_lock(&inode->i_lock);
f0d07b7f 1410 spin_unlock(&wb->list_lock);
169ebd90
JK
1411 /* This function drops i_lock... */
1412 inode_sleep_on_writeback(inode);
f0d07b7f 1413 spin_lock(&wb->list_lock);
03ba3782
JA
1414 }
1415 }
e8dfc305 1416 spin_unlock(&wb->list_lock);
03ba3782 1417
d46db3d5 1418 return nr_pages - work->nr_pages;
03ba3782
JA
1419}
1420
1421/*
83ba7b07 1422 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1423 */
f0054bb1 1424static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1425{
83ba7b07 1426 struct wb_writeback_work *work = NULL;
03ba3782 1427
f0054bb1
TH
1428 spin_lock_bh(&wb->work_lock);
1429 if (!list_empty(&wb->work_list)) {
1430 work = list_entry(wb->work_list.next,
83ba7b07
CH
1431 struct wb_writeback_work, list);
1432 list_del_init(&work->list);
03ba3782 1433 }
f0054bb1 1434 spin_unlock_bh(&wb->work_lock);
83ba7b07 1435 return work;
03ba3782
JA
1436}
1437
cdf01dd5
LT
1438/*
1439 * Add in the number of potentially dirty inodes, because each inode
1440 * write can dirty pagecache in the underlying blockdev.
1441 */
1442static unsigned long get_nr_dirty_pages(void)
1443{
1444 return global_page_state(NR_FILE_DIRTY) +
1445 global_page_state(NR_UNSTABLE_NFS) +
1446 get_nr_dirty_inodes();
1447}
1448
6585027a
JK
1449static long wb_check_background_flush(struct bdi_writeback *wb)
1450{
aa661bbe 1451 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1452
1453 struct wb_writeback_work work = {
1454 .nr_pages = LONG_MAX,
1455 .sync_mode = WB_SYNC_NONE,
1456 .for_background = 1,
1457 .range_cyclic = 1,
0e175a18 1458 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1459 };
1460
1461 return wb_writeback(wb, &work);
1462 }
1463
1464 return 0;
1465}
1466
03ba3782
JA
1467static long wb_check_old_data_flush(struct bdi_writeback *wb)
1468{
1469 unsigned long expired;
1470 long nr_pages;
1471
69b62d01
JA
1472 /*
1473 * When set to zero, disable periodic writeback
1474 */
1475 if (!dirty_writeback_interval)
1476 return 0;
1477
03ba3782
JA
1478 expired = wb->last_old_flush +
1479 msecs_to_jiffies(dirty_writeback_interval * 10);
1480 if (time_before(jiffies, expired))
1481 return 0;
1482
1483 wb->last_old_flush = jiffies;
cdf01dd5 1484 nr_pages = get_nr_dirty_pages();
03ba3782 1485
c4a77a6c 1486 if (nr_pages) {
83ba7b07 1487 struct wb_writeback_work work = {
c4a77a6c
JA
1488 .nr_pages = nr_pages,
1489 .sync_mode = WB_SYNC_NONE,
1490 .for_kupdate = 1,
1491 .range_cyclic = 1,
0e175a18 1492 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1493 };
1494
83ba7b07 1495 return wb_writeback(wb, &work);
c4a77a6c 1496 }
03ba3782
JA
1497
1498 return 0;
1499}
1500
1501/*
1502 * Retrieve work items and do the writeback they describe
1503 */
25d130ba 1504static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1505{
83ba7b07 1506 struct wb_writeback_work *work;
c4a77a6c 1507 long wrote = 0;
03ba3782 1508
4452226e 1509 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1510 while ((work = get_next_work_item(wb)) != NULL) {
cc395d7f 1511 struct wb_completion *done = work->done;
98754bf7 1512 bool need_wake_up = false;
03ba3782 1513
f0054bb1 1514 trace_writeback_exec(wb->bdi, work);
455b2864 1515
83ba7b07 1516 wrote += wb_writeback(wb, work);
03ba3782 1517
98754bf7
TH
1518 if (work->single_wait) {
1519 WARN_ON_ONCE(work->auto_free);
1520 /* paired w/ rmb in wb_wait_for_single_work() */
1521 smp_wmb();
1522 work->single_done = 1;
1523 need_wake_up = true;
1524 } else if (work->auto_free) {
83ba7b07 1525 kfree(work);
98754bf7
TH
1526 }
1527
cc395d7f 1528 if (done && atomic_dec_and_test(&done->cnt))
98754bf7
TH
1529 need_wake_up = true;
1530
1531 if (need_wake_up)
cc395d7f 1532 wake_up_all(&wb->bdi->wb_waitq);
03ba3782
JA
1533 }
1534
1535 /*
1536 * Check for periodic writeback, kupdated() style
1537 */
1538 wrote += wb_check_old_data_flush(wb);
6585027a 1539 wrote += wb_check_background_flush(wb);
4452226e 1540 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1541
1542 return wrote;
1543}
1544
1545/*
1546 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1547 * reschedules periodically and does kupdated style flushing.
03ba3782 1548 */
f0054bb1 1549void wb_workfn(struct work_struct *work)
03ba3782 1550{
839a8e86
TH
1551 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1552 struct bdi_writeback, dwork);
03ba3782
JA
1553 long pages_written;
1554
f0054bb1 1555 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1556 current->flags |= PF_SWAPWRITE;
455b2864 1557
839a8e86 1558 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1559 !test_bit(WB_registered, &wb->state))) {
6467716a 1560 /*
f0054bb1 1561 * The normal path. Keep writing back @wb until its
839a8e86 1562 * work_list is empty. Note that this path is also taken
f0054bb1 1563 * if @wb is shutting down even when we're running off the
839a8e86 1564 * rescuer as work_list needs to be drained.
6467716a 1565 */
839a8e86 1566 do {
25d130ba 1567 pages_written = wb_do_writeback(wb);
839a8e86 1568 trace_writeback_pages_written(pages_written);
f0054bb1 1569 } while (!list_empty(&wb->work_list));
839a8e86
TH
1570 } else {
1571 /*
1572 * bdi_wq can't get enough workers and we're running off
1573 * the emergency worker. Don't hog it. Hopefully, 1024 is
1574 * enough for efficient IO.
1575 */
f0054bb1 1576 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1577 WB_REASON_FORKER_THREAD);
455b2864 1578 trace_writeback_pages_written(pages_written);
03ba3782
JA
1579 }
1580
f0054bb1 1581 if (!list_empty(&wb->work_list))
6ca738d6
DB
1582 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1583 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1584 wb_wakeup_delayed(wb);
455b2864 1585
839a8e86 1586 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1587}
1588
1589/*
b8c2f347
CH
1590 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1591 * the whole world.
03ba3782 1592 */
0e175a18 1593void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
03ba3782 1594{
b8c2f347 1595 struct backing_dev_info *bdi;
03ba3782 1596
47df3dde
JK
1597 if (!nr_pages)
1598 nr_pages = get_nr_dirty_pages();
03ba3782 1599
b8c2f347 1600 rcu_read_lock();
f2b65121
TH
1601 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1602 struct bdi_writeback *wb;
1603 struct wb_iter iter;
1604
1605 if (!bdi_has_dirty_io(bdi))
1606 continue;
1607
1608 bdi_for_each_wb(wb, bdi, &iter, 0)
1609 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1610 false, reason);
1611 }
cfc4ba53 1612 rcu_read_unlock();
1da177e4
LT
1613}
1614
a2f48706
TT
1615/*
1616 * Wake up bdi's periodically to make sure dirtytime inodes gets
1617 * written back periodically. We deliberately do *not* check the
1618 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1619 * kernel to be constantly waking up once there are any dirtytime
1620 * inodes on the system. So instead we define a separate delayed work
1621 * function which gets called much more rarely. (By default, only
1622 * once every 12 hours.)
1623 *
1624 * If there is any other write activity going on in the file system,
1625 * this function won't be necessary. But if the only thing that has
1626 * happened on the file system is a dirtytime inode caused by an atime
1627 * update, we need this infrastructure below to make sure that inode
1628 * eventually gets pushed out to disk.
1629 */
1630static void wakeup_dirtytime_writeback(struct work_struct *w);
1631static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1632
1633static void wakeup_dirtytime_writeback(struct work_struct *w)
1634{
1635 struct backing_dev_info *bdi;
1636
1637 rcu_read_lock();
1638 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6
TH
1639 struct bdi_writeback *wb;
1640 struct wb_iter iter;
1641
1642 bdi_for_each_wb(wb, bdi, &iter, 0)
1643 if (!list_empty(&bdi->wb.b_dirty_time))
1644 wb_wakeup(&bdi->wb);
a2f48706
TT
1645 }
1646 rcu_read_unlock();
1647 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1648}
1649
1650static int __init start_dirtytime_writeback(void)
1651{
1652 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1653 return 0;
1654}
1655__initcall(start_dirtytime_writeback);
1656
1efff914
TT
1657int dirtytime_interval_handler(struct ctl_table *table, int write,
1658 void __user *buffer, size_t *lenp, loff_t *ppos)
1659{
1660 int ret;
1661
1662 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1663 if (ret == 0 && write)
1664 mod_delayed_work(system_wq, &dirtytime_work, 0);
1665 return ret;
1666}
1667
03ba3782
JA
1668static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1669{
1670 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1671 struct dentry *dentry;
1672 const char *name = "?";
1673
1674 dentry = d_find_alias(inode);
1675 if (dentry) {
1676 spin_lock(&dentry->d_lock);
1677 name = (const char *) dentry->d_name.name;
1678 }
1679 printk(KERN_DEBUG
1680 "%s(%d): dirtied inode %lu (%s) on %s\n",
1681 current->comm, task_pid_nr(current), inode->i_ino,
1682 name, inode->i_sb->s_id);
1683 if (dentry) {
1684 spin_unlock(&dentry->d_lock);
1685 dput(dentry);
1686 }
1687 }
1688}
1689
1690/**
1691 * __mark_inode_dirty - internal function
1692 * @inode: inode to mark
1693 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1694 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1695 * mark_inode_dirty_sync.
1da177e4 1696 *
03ba3782
JA
1697 * Put the inode on the super block's dirty list.
1698 *
1699 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1700 * dirty list only if it is hashed or if it refers to a blockdev.
1701 * If it was not hashed, it will never be added to the dirty list
1702 * even if it is later hashed, as it will have been marked dirty already.
1703 *
1704 * In short, make sure you hash any inodes _before_ you start marking
1705 * them dirty.
1da177e4 1706 *
03ba3782
JA
1707 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1708 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1709 * the kernel-internal blockdev inode represents the dirtying time of the
1710 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1711 * page->mapping->host, so the page-dirtying time is recorded in the internal
1712 * blockdev inode.
1da177e4 1713 */
0ae45f63 1714#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 1715void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1716{
03ba3782 1717 struct super_block *sb = inode->i_sb;
0ae45f63
TT
1718 int dirtytime;
1719
1720 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 1721
03ba3782
JA
1722 /*
1723 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1724 * dirty the inode itself
1725 */
0ae45f63 1726 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
1727 trace_writeback_dirty_inode_start(inode, flags);
1728
03ba3782 1729 if (sb->s_op->dirty_inode)
aa385729 1730 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
1731
1732 trace_writeback_dirty_inode(inode, flags);
03ba3782 1733 }
0ae45f63
TT
1734 if (flags & I_DIRTY_INODE)
1735 flags &= ~I_DIRTY_TIME;
1736 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
1737
1738 /*
9c6ac78e
TH
1739 * Paired with smp_mb() in __writeback_single_inode() for the
1740 * following lockless i_state test. See there for details.
03ba3782
JA
1741 */
1742 smp_mb();
1743
0ae45f63
TT
1744 if (((inode->i_state & flags) == flags) ||
1745 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
1746 return;
1747
1748 if (unlikely(block_dump))
1749 block_dump___mark_inode_dirty(inode);
1750
250df6ed 1751 spin_lock(&inode->i_lock);
0ae45f63
TT
1752 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1753 goto out_unlock_inode;
03ba3782
JA
1754 if ((inode->i_state & flags) != flags) {
1755 const int was_dirty = inode->i_state & I_DIRTY;
1756
52ebea74
TH
1757 inode_attach_wb(inode, NULL);
1758
0ae45f63
TT
1759 if (flags & I_DIRTY_INODE)
1760 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
1761 inode->i_state |= flags;
1762
1763 /*
1764 * If the inode is being synced, just update its dirty state.
1765 * The unlocker will place the inode on the appropriate
1766 * superblock list, based upon its state.
1767 */
1768 if (inode->i_state & I_SYNC)
250df6ed 1769 goto out_unlock_inode;
03ba3782
JA
1770
1771 /*
1772 * Only add valid (hashed) inodes to the superblock's
1773 * dirty list. Add blockdev inodes as well.
1774 */
1775 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 1776 if (inode_unhashed(inode))
250df6ed 1777 goto out_unlock_inode;
03ba3782 1778 }
a4ffdde6 1779 if (inode->i_state & I_FREEING)
250df6ed 1780 goto out_unlock_inode;
03ba3782
JA
1781
1782 /*
1783 * If the inode was already on b_dirty/b_io/b_more_io, don't
1784 * reposition it (that would break b_dirty time-ordering).
1785 */
1786 if (!was_dirty) {
0747259d 1787 struct bdi_writeback *wb = inode_to_wb(inode);
d6c10f1f 1788 struct list_head *dirty_list;
a66979ab 1789 bool wakeup_bdi = false;
253c34e9 1790
146d7009 1791 spin_unlock(&inode->i_lock);
0747259d 1792 spin_lock(&wb->list_lock);
253c34e9 1793
0747259d
TH
1794 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
1795 !test_bit(WB_registered, &wb->state),
1796 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
1797
1798 inode->dirtied_when = jiffies;
a2f48706
TT
1799 if (dirtytime)
1800 inode->dirtied_time_when = jiffies;
d6c10f1f 1801
a2f48706 1802 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 1803 dirty_list = &wb->b_dirty;
a2f48706 1804 else
0747259d 1805 dirty_list = &wb->b_dirty_time;
d6c10f1f 1806
0747259d 1807 wakeup_bdi = inode_wb_list_move_locked(inode, wb,
d6c10f1f
TH
1808 dirty_list);
1809
0747259d 1810 spin_unlock(&wb->list_lock);
0ae45f63 1811 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 1812
d6c10f1f
TH
1813 /*
1814 * If this is the first dirty inode for this bdi,
1815 * we have to wake-up the corresponding bdi thread
1816 * to make sure background write-back happens
1817 * later.
1818 */
0747259d
TH
1819 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
1820 wb_wakeup_delayed(wb);
a66979ab 1821 return;
1da177e4 1822 }
1da177e4 1823 }
250df6ed
DC
1824out_unlock_inode:
1825 spin_unlock(&inode->i_lock);
253c34e9 1826
03ba3782
JA
1827}
1828EXPORT_SYMBOL(__mark_inode_dirty);
1829
b6e51316 1830static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
1831{
1832 struct inode *inode, *old_inode = NULL;
1833
1834 /*
1835 * We need to be protected against the filesystem going from
1836 * r/o to r/w or vice versa.
1837 */
b6e51316 1838 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 1839
55fa6091 1840 spin_lock(&inode_sb_list_lock);
03ba3782
JA
1841
1842 /*
1843 * Data integrity sync. Must wait for all pages under writeback,
1844 * because there may have been pages dirtied before our sync
1845 * call, but which had writeout started before we write it out.
1846 * In which case, the inode may not be on the dirty list, but
1847 * we still have to wait for that writeout.
1848 */
b6e51316 1849 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
250df6ed 1850 struct address_space *mapping = inode->i_mapping;
03ba3782 1851
250df6ed
DC
1852 spin_lock(&inode->i_lock);
1853 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1854 (mapping->nrpages == 0)) {
1855 spin_unlock(&inode->i_lock);
03ba3782 1856 continue;
250df6ed 1857 }
03ba3782 1858 __iget(inode);
250df6ed 1859 spin_unlock(&inode->i_lock);
55fa6091
DC
1860 spin_unlock(&inode_sb_list_lock);
1861
03ba3782 1862 /*
55fa6091
DC
1863 * We hold a reference to 'inode' so it couldn't have been
1864 * removed from s_inodes list while we dropped the
1865 * inode_sb_list_lock. We cannot iput the inode now as we can
1866 * be holding the last reference and we cannot iput it under
1867 * inode_sb_list_lock. So we keep the reference and iput it
1868 * later.
03ba3782
JA
1869 */
1870 iput(old_inode);
1871 old_inode = inode;
1872
1873 filemap_fdatawait(mapping);
1874
1875 cond_resched();
1876
55fa6091 1877 spin_lock(&inode_sb_list_lock);
03ba3782 1878 }
55fa6091 1879 spin_unlock(&inode_sb_list_lock);
03ba3782 1880 iput(old_inode);
1da177e4
LT
1881}
1882
f30a7d0c
TH
1883static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1884 enum wb_reason reason, bool skip_if_busy)
1da177e4 1885{
cc395d7f 1886 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 1887 struct wb_writeback_work work = {
6e6938b6
WF
1888 .sb = sb,
1889 .sync_mode = WB_SYNC_NONE,
1890 .tagged_writepages = 1,
1891 .done = &done,
1892 .nr_pages = nr,
0e175a18 1893 .reason = reason,
3c4d7165 1894 };
e7972912 1895 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 1896
e7972912 1897 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 1898 return;
cf37e972 1899 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 1900
db125360 1901 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 1902 wb_wait_for_completion(bdi, &done);
e913fc82 1903}
f30a7d0c
TH
1904
1905/**
1906 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1907 * @sb: the superblock
1908 * @nr: the number of pages to write
1909 * @reason: reason why some writeback work initiated
1910 *
1911 * Start writeback on some inodes on this super_block. No guarantees are made
1912 * on how many (if any) will be written, and this function does not wait
1913 * for IO completion of submitted IO.
1914 */
1915void writeback_inodes_sb_nr(struct super_block *sb,
1916 unsigned long nr,
1917 enum wb_reason reason)
1918{
1919 __writeback_inodes_sb_nr(sb, nr, reason, false);
1920}
3259f8be
CM
1921EXPORT_SYMBOL(writeback_inodes_sb_nr);
1922
1923/**
1924 * writeback_inodes_sb - writeback dirty inodes from given super_block
1925 * @sb: the superblock
786228ab 1926 * @reason: reason why some writeback work was initiated
3259f8be
CM
1927 *
1928 * Start writeback on some inodes on this super_block. No guarantees are made
1929 * on how many (if any) will be written, and this function does not wait
1930 * for IO completion of submitted IO.
1931 */
0e175a18 1932void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 1933{
0e175a18 1934 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 1935}
0e3c9a22 1936EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 1937
17bd55d0 1938/**
10ee27a0 1939 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 1940 * @sb: the superblock
10ee27a0
MX
1941 * @nr: the number of pages to write
1942 * @reason: the reason of writeback
17bd55d0 1943 *
10ee27a0 1944 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
1945 * Returns 1 if writeback was started, 0 if not.
1946 */
f30a7d0c
TH
1947bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1948 enum wb_reason reason)
17bd55d0 1949{
10ee27a0 1950 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 1951 return false;
10ee27a0 1952
f30a7d0c 1953 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 1954 up_read(&sb->s_umount);
f30a7d0c 1955 return true;
17bd55d0 1956}
10ee27a0 1957EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 1958
3259f8be 1959/**
10ee27a0 1960 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 1961 * @sb: the superblock
786228ab 1962 * @reason: reason why some writeback work was initiated
3259f8be 1963 *
10ee27a0 1964 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
1965 * Returns 1 if writeback was started, 0 if not.
1966 */
f30a7d0c 1967bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 1968{
10ee27a0 1969 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 1970}
10ee27a0 1971EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 1972
d8a8559c
JA
1973/**
1974 * sync_inodes_sb - sync sb inode pages
0dc83bd3 1975 * @sb: the superblock
d8a8559c
JA
1976 *
1977 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 1978 * super_block.
d8a8559c 1979 */
0dc83bd3 1980void sync_inodes_sb(struct super_block *sb)
d8a8559c 1981{
cc395d7f 1982 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 1983 struct wb_writeback_work work = {
3c4d7165
CH
1984 .sb = sb,
1985 .sync_mode = WB_SYNC_ALL,
1986 .nr_pages = LONG_MAX,
1987 .range_cyclic = 0,
83ba7b07 1988 .done = &done,
0e175a18 1989 .reason = WB_REASON_SYNC,
7747bd4b 1990 .for_sync = 1,
3c4d7165 1991 };
e7972912 1992 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 1993
6eedc701 1994 /* Nothing to do? */
e7972912 1995 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 1996 return;
cf37e972
CH
1997 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1998
db125360 1999 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2000 wb_wait_for_completion(bdi, &done);
83ba7b07 2001
b6e51316 2002 wait_sb_inodes(sb);
1da177e4 2003}
d8a8559c 2004EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2005
1da177e4 2006/**
7f04c26d
AA
2007 * write_inode_now - write an inode to disk
2008 * @inode: inode to write to disk
2009 * @sync: whether the write should be synchronous or not
2010 *
2011 * This function commits an inode to disk immediately if it is dirty. This is
2012 * primarily needed by knfsd.
1da177e4 2013 *
7f04c26d 2014 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2015 */
1da177e4
LT
2016int write_inode_now(struct inode *inode, int sync)
2017{
f758eeab 2018 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1da177e4
LT
2019 struct writeback_control wbc = {
2020 .nr_to_write = LONG_MAX,
18914b18 2021 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2022 .range_start = 0,
2023 .range_end = LLONG_MAX,
1da177e4
LT
2024 };
2025
2026 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2027 wbc.nr_to_write = 0;
1da177e4
LT
2028
2029 might_sleep();
4f8ad655 2030 return writeback_single_inode(inode, wb, &wbc);
1da177e4
LT
2031}
2032EXPORT_SYMBOL(write_inode_now);
2033
2034/**
2035 * sync_inode - write an inode and its pages to disk.
2036 * @inode: the inode to sync
2037 * @wbc: controls the writeback mode
2038 *
2039 * sync_inode() will write an inode and its pages to disk. It will also
2040 * correctly update the inode on its superblock's dirty inode lists and will
2041 * update inode->i_state.
2042 *
2043 * The caller must have a ref on the inode.
2044 */
2045int sync_inode(struct inode *inode, struct writeback_control *wbc)
2046{
4f8ad655 2047 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1da177e4
LT
2048}
2049EXPORT_SYMBOL(sync_inode);
c3765016
CH
2050
2051/**
c691b9d9 2052 * sync_inode_metadata - write an inode to disk
c3765016
CH
2053 * @inode: the inode to sync
2054 * @wait: wait for I/O to complete.
2055 *
c691b9d9 2056 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2057 *
2058 * Note: only writes the actual inode, no associated data or other metadata.
2059 */
2060int sync_inode_metadata(struct inode *inode, int wait)
2061{
2062 struct writeback_control wbc = {
2063 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2064 .nr_to_write = 0, /* metadata-only */
2065 };
2066
2067 return sync_inode(inode, &wbc);
2068}
2069EXPORT_SYMBOL(sync_inode_metadata);