Merge tag 'amd-drm-next-5.18-2022-02-25' of https://gitlab.freedesktop.org/agd5f...
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
c4a77a6c
JA
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
83ba7b07 42struct wb_writeback_work {
c4a77a6c
JA
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
6e6938b6 46 unsigned int tagged_writepages:1;
52957fe1
HS
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
7747bd4b 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 51 unsigned int auto_free:1; /* free on completion */
0e175a18 52 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 53
8010c3b6 54 struct list_head list; /* pending work list */
cc395d7f 55 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
56};
57
a2f48706
TT
58/*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
7ccf19a8
NP
70static inline struct inode *wb_inode(struct list_head *head)
71{
c7f54084 72 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
73}
74
15eb77a0
WF
75/*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80#define CREATE_TRACE_POINTS
81#include <trace/events/writeback.h>
82
774016b2
SW
83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
d6c10f1f
TH
85static bool wb_io_lists_populated(struct bdi_writeback *wb)
86{
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
94 return true;
95 }
96}
97
98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99{
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 102 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 105 }
d6c10f1f
TH
106}
107
108/**
c7f54084 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
bbbc3c1c 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 113 *
c7f54084 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
c7f54084 118static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
119 struct bdi_writeback *wb,
120 struct list_head *head)
121{
122 assert_spin_locked(&wb->list_lock);
123
c7f54084 124 list_move(&inode->i_io_list, head);
d6c10f1f
TH
125
126 /* dirty_time doesn't count as dirty_io until expiration */
127 if (head != &wb->b_dirty_time)
128 return wb_io_lists_populated(wb);
129
130 wb_io_lists_depopulated(wb);
131 return false;
132}
133
f0054bb1 134static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 135{
f0054bb1
TH
136 spin_lock_bh(&wb->work_lock);
137 if (test_bit(WB_registered, &wb->state))
138 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
140}
141
4a3a485b
TE
142static void finish_writeback_work(struct bdi_writeback *wb,
143 struct wb_writeback_work *work)
144{
145 struct wb_completion *done = work->done;
146
147 if (work->auto_free)
148 kfree(work);
8e00c4e9
TH
149 if (done) {
150 wait_queue_head_t *waitq = done->waitq;
151
152 /* @done can't be accessed after the following dec */
153 if (atomic_dec_and_test(&done->cnt))
154 wake_up_all(waitq);
155 }
4a3a485b
TE
156}
157
f0054bb1
TH
158static void wb_queue_work(struct bdi_writeback *wb,
159 struct wb_writeback_work *work)
6585027a 160{
5634cc2a 161 trace_writeback_queue(wb, work);
6585027a 162
cc395d7f
TH
163 if (work->done)
164 atomic_inc(&work->done->cnt);
4a3a485b
TE
165
166 spin_lock_bh(&wb->work_lock);
167
168 if (test_bit(WB_registered, &wb->state)) {
169 list_add_tail(&work->list, &wb->work_list);
170 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171 } else
172 finish_writeback_work(wb, work);
173
f0054bb1 174 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
175}
176
cc395d7f
TH
177/**
178 * wb_wait_for_completion - wait for completion of bdi_writeback_works
cc395d7f
TH
179 * @done: target wb_completion
180 *
181 * Wait for one or more work items issued to @bdi with their ->done field
5b9cce4c
TH
182 * set to @done, which should have been initialized with
183 * DEFINE_WB_COMPLETION(). This function returns after all such work items
184 * are completed. Work items which are waited upon aren't freed
cc395d7f
TH
185 * automatically on completion.
186 */
5b9cce4c 187void wb_wait_for_completion(struct wb_completion *done)
cc395d7f
TH
188{
189 atomic_dec(&done->cnt); /* put down the initial count */
5b9cce4c 190 wait_event(*done->waitq, !atomic_read(&done->cnt));
cc395d7f
TH
191}
192
703c2708
TH
193#ifdef CONFIG_CGROUP_WRITEBACK
194
55a694df
TH
195/*
196 * Parameters for foreign inode detection, see wbc_detach_inode() to see
197 * how they're used.
198 *
199 * These paramters are inherently heuristical as the detection target
200 * itself is fuzzy. All we want to do is detaching an inode from the
201 * current owner if it's being written to by some other cgroups too much.
202 *
203 * The current cgroup writeback is built on the assumption that multiple
204 * cgroups writing to the same inode concurrently is very rare and a mode
205 * of operation which isn't well supported. As such, the goal is not
206 * taking too long when a different cgroup takes over an inode while
207 * avoiding too aggressive flip-flops from occasional foreign writes.
208 *
209 * We record, very roughly, 2s worth of IO time history and if more than
210 * half of that is foreign, trigger the switch. The recording is quantized
211 * to 16 slots. To avoid tiny writes from swinging the decision too much,
212 * writes smaller than 1/8 of avg size are ignored.
213 */
2a814908
TH
214#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
215#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 216#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
217#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
218
219#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
220#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221 /* each slot's duration is 2s / 16 */
222#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
223 /* if foreign slots >= 8, switch */
224#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225 /* one round can affect upto 5 slots */
6444f47e 226#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 227
c22d70a1
RG
228/*
229 * Maximum inodes per isw. A specific value has been chosen to make
230 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231 */
232#define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233 / sizeof(struct inode *))
234
a1a0e23e
TH
235static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236static struct workqueue_struct *isw_wq;
237
21c6321f
TH
238void __inode_attach_wb(struct inode *inode, struct page *page)
239{
240 struct backing_dev_info *bdi = inode_to_bdi(inode);
241 struct bdi_writeback *wb = NULL;
242
243 if (inode_cgwb_enabled(inode)) {
244 struct cgroup_subsys_state *memcg_css;
245
246 if (page) {
247 memcg_css = mem_cgroup_css_from_page(page);
248 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249 } else {
250 /* must pin memcg_css, see wb_get_create() */
251 memcg_css = task_get_css(current, memory_cgrp_id);
252 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253 css_put(memcg_css);
254 }
255 }
256
257 if (!wb)
258 wb = &bdi->wb;
259
260 /*
261 * There may be multiple instances of this function racing to
262 * update the same inode. Use cmpxchg() to tell the winner.
263 */
264 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265 wb_put(wb);
266}
9b0eb69b 267EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 268
f3b6a6df
RG
269/**
270 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271 * @inode: inode of interest with i_lock held
272 * @wb: target bdi_writeback
273 *
274 * Remove the inode from wb's io lists and if necessarily put onto b_attached
275 * list. Only inodes attached to cgwb's are kept on this list.
276 */
277static void inode_cgwb_move_to_attached(struct inode *inode,
278 struct bdi_writeback *wb)
279{
280 assert_spin_locked(&wb->list_lock);
281 assert_spin_locked(&inode->i_lock);
282
283 inode->i_state &= ~I_SYNC_QUEUED;
284 if (wb != &wb->bdi->wb)
285 list_move(&inode->i_io_list, &wb->b_attached);
286 else
287 list_del_init(&inode->i_io_list);
288 wb_io_lists_depopulated(wb);
289}
290
87e1d789
TH
291/**
292 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293 * @inode: inode of interest with i_lock held
294 *
295 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
296 * held on entry and is released on return. The returned wb is guaranteed
297 * to stay @inode's associated wb until its list_lock is released.
298 */
299static struct bdi_writeback *
300locked_inode_to_wb_and_lock_list(struct inode *inode)
301 __releases(&inode->i_lock)
302 __acquires(&wb->list_lock)
303{
304 while (true) {
305 struct bdi_writeback *wb = inode_to_wb(inode);
306
307 /*
308 * inode_to_wb() association is protected by both
309 * @inode->i_lock and @wb->list_lock but list_lock nests
310 * outside i_lock. Drop i_lock and verify that the
311 * association hasn't changed after acquiring list_lock.
312 */
313 wb_get(wb);
314 spin_unlock(&inode->i_lock);
315 spin_lock(&wb->list_lock);
87e1d789 316
aaa2cacf 317 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
318 if (likely(wb == inode->i_wb)) {
319 wb_put(wb); /* @inode already has ref */
320 return wb;
321 }
87e1d789
TH
322
323 spin_unlock(&wb->list_lock);
614a4e37 324 wb_put(wb);
87e1d789
TH
325 cpu_relax();
326 spin_lock(&inode->i_lock);
327 }
328}
329
330/**
331 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332 * @inode: inode of interest
333 *
334 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335 * on entry.
336 */
337static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338 __acquires(&wb->list_lock)
339{
340 spin_lock(&inode->i_lock);
341 return locked_inode_to_wb_and_lock_list(inode);
342}
343
682aa8e1 344struct inode_switch_wbs_context {
29264d92 345 struct rcu_work work;
f5fbe6b7
RG
346
347 /*
348 * Multiple inodes can be switched at once. The switching procedure
349 * consists of two parts, separated by a RCU grace period. To make
350 * sure that the second part is executed for each inode gone through
351 * the first part, all inode pointers are placed into a NULL-terminated
352 * array embedded into struct inode_switch_wbs_context. Otherwise
353 * an inode could be left in a non-consistent state.
354 */
355 struct bdi_writeback *new_wb;
356 struct inode *inodes[];
682aa8e1
TH
357};
358
7fc5854f
TH
359static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360{
361 down_write(&bdi->wb_switch_rwsem);
362}
363
364static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365{
366 up_write(&bdi->wb_switch_rwsem);
367}
368
f5fbe6b7
RG
369static bool inode_do_switch_wbs(struct inode *inode,
370 struct bdi_writeback *old_wb,
72d4512e 371 struct bdi_writeback *new_wb)
682aa8e1 372{
d10c8095 373 struct address_space *mapping = inode->i_mapping;
04edf02c 374 XA_STATE(xas, &mapping->i_pages, 0);
22b3c8d6 375 struct folio *folio;
d10c8095 376 bool switched = false;
682aa8e1 377
682aa8e1 378 spin_lock(&inode->i_lock);
b93b0163 379 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
380
381 /*
4ade5867
RG
382 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383 * path owns the inode and we shouldn't modify ->i_io_list.
d10c8095 384 */
4ade5867 385 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
d10c8095
TH
386 goto skip_switch;
387
3a8e9ac8
TH
388 trace_inode_switch_wbs(inode, old_wb, new_wb);
389
d10c8095
TH
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
22b3c8d6
MWO
392 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
393 * folios actually under writeback.
d10c8095 394 */
22b3c8d6
MWO
395 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 if (folio_test_dirty(folio)) {
397 long nr = folio_nr_pages(folio);
398 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
399 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
d10c8095
TH
400 }
401 }
402
04edf02c 403 xas_set(&xas, 0);
22b3c8d6
MWO
404 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 long nr = folio_nr_pages(folio);
406 WARN_ON_ONCE(!folio_test_writeback(folio));
407 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
408 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
d10c8095
TH
409 }
410
633a2abb
JK
411 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
412 atomic_dec(&old_wb->writeback_inodes);
413 atomic_inc(&new_wb->writeback_inodes);
414 }
415
d10c8095
TH
416 wb_get(new_wb);
417
418 /*
f3b6a6df
RG
419 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
420 * the specific list @inode was on is ignored and the @inode is put on
421 * ->b_dirty which is always correct including from ->b_dirty_time.
422 * The transfer preserves @inode->dirtied_when ordering. If the @inode
423 * was clean, it means it was on the b_attached list, so move it onto
424 * the b_attached list of @new_wb.
d10c8095 425 */
c7f54084 426 if (!list_empty(&inode->i_io_list)) {
d10c8095 427 inode->i_wb = new_wb;
f3b6a6df
RG
428
429 if (inode->i_state & I_DIRTY_ALL) {
430 struct inode *pos;
431
432 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433 if (time_after_eq(inode->dirtied_when,
434 pos->dirtied_when))
435 break;
436 inode_io_list_move_locked(inode, new_wb,
437 pos->i_io_list.prev);
438 } else {
439 inode_cgwb_move_to_attached(inode, new_wb);
440 }
d10c8095
TH
441 } else {
442 inode->i_wb = new_wb;
443 }
682aa8e1 444
d10c8095 445 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
446 inode->i_wb_frn_winner = 0;
447 inode->i_wb_frn_avg_time = 0;
448 inode->i_wb_frn_history = 0;
d10c8095
TH
449 switched = true;
450skip_switch:
682aa8e1
TH
451 /*
452 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
453 * ensures that the new wb is visible if they see !I_WB_SWITCH.
454 */
455 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
456
b93b0163 457 xa_unlock_irq(&mapping->i_pages);
682aa8e1 458 spin_unlock(&inode->i_lock);
7fc5854f 459
f5fbe6b7 460 return switched;
72d4512e 461}
d10c8095 462
72d4512e
RG
463static void inode_switch_wbs_work_fn(struct work_struct *work)
464{
465 struct inode_switch_wbs_context *isw =
466 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
f5fbe6b7
RG
467 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
468 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
469 struct bdi_writeback *new_wb = isw->new_wb;
470 unsigned long nr_switched = 0;
471 struct inode **inodep;
472
473 /*
474 * If @inode switches cgwb membership while sync_inodes_sb() is
475 * being issued, sync_inodes_sb() might miss it. Synchronize.
476 */
477 down_read(&bdi->wb_switch_rwsem);
478
479 /*
480 * By the time control reaches here, RCU grace period has passed
481 * since I_WB_SWITCH assertion and all wb stat update transactions
482 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
483 * synchronizing against the i_pages lock.
484 *
485 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
486 * gives us exclusion against all wb related operations on @inode
487 * including IO list manipulations and stat updates.
488 */
489 if (old_wb < new_wb) {
490 spin_lock(&old_wb->list_lock);
491 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
492 } else {
493 spin_lock(&new_wb->list_lock);
494 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
495 }
496
497 for (inodep = isw->inodes; *inodep; inodep++) {
498 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
499 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
500 nr_switched++;
501 }
502
503 spin_unlock(&new_wb->list_lock);
504 spin_unlock(&old_wb->list_lock);
505
506 up_read(&bdi->wb_switch_rwsem);
507
508 if (nr_switched) {
509 wb_wakeup(new_wb);
510 wb_put_many(old_wb, nr_switched);
511 }
a1a0e23e 512
f5fbe6b7
RG
513 for (inodep = isw->inodes; *inodep; inodep++)
514 iput(*inodep);
515 wb_put(new_wb);
72d4512e 516 kfree(isw);
a1a0e23e 517 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
518}
519
c22d70a1
RG
520static bool inode_prepare_wbs_switch(struct inode *inode,
521 struct bdi_writeback *new_wb)
522{
523 /*
524 * Paired with smp_mb() in cgroup_writeback_umount().
525 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
526 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
527 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
528 */
529 smp_mb();
530
593311e8
RG
531 if (IS_DAX(inode))
532 return false;
533
c22d70a1
RG
534 /* while holding I_WB_SWITCH, no one else can update the association */
535 spin_lock(&inode->i_lock);
536 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
537 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
538 inode_to_wb(inode) == new_wb) {
539 spin_unlock(&inode->i_lock);
540 return false;
541 }
542 inode->i_state |= I_WB_SWITCH;
543 __iget(inode);
544 spin_unlock(&inode->i_lock);
545
546 return true;
547}
548
682aa8e1
TH
549/**
550 * inode_switch_wbs - change the wb association of an inode
551 * @inode: target inode
552 * @new_wb_id: ID of the new wb
553 *
554 * Switch @inode's wb association to the wb identified by @new_wb_id. The
555 * switching is performed asynchronously and may fail silently.
556 */
557static void inode_switch_wbs(struct inode *inode, int new_wb_id)
558{
559 struct backing_dev_info *bdi = inode_to_bdi(inode);
560 struct cgroup_subsys_state *memcg_css;
561 struct inode_switch_wbs_context *isw;
562
563 /* noop if seems to be already in progress */
564 if (inode->i_state & I_WB_SWITCH)
565 return;
566
6444f47e
TH
567 /* avoid queueing a new switch if too many are already in flight */
568 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
569 return;
570
98b160c8 571 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
682aa8e1 572 if (!isw)
6444f47e 573 return;
682aa8e1 574
8826ee4f
RG
575 atomic_inc(&isw_nr_in_flight);
576
682aa8e1
TH
577 /* find and pin the new wb */
578 rcu_read_lock();
579 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
8b0ed844
MS
580 if (memcg_css && !css_tryget(memcg_css))
581 memcg_css = NULL;
682aa8e1 582 rcu_read_unlock();
8b0ed844
MS
583 if (!memcg_css)
584 goto out_free;
585
586 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
587 css_put(memcg_css);
682aa8e1
TH
588 if (!isw->new_wb)
589 goto out_free;
590
c22d70a1 591 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
a1a0e23e 592 goto out_free;
682aa8e1 593
f5fbe6b7 594 isw->inodes[0] = inode;
682aa8e1
TH
595
596 /*
597 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
598 * the RCU protected stat update paths to grab the i_page
599 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
600 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
601 */
29264d92
RG
602 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
603 queue_rcu_work(isw_wq, &isw->work);
6444f47e 604 return;
682aa8e1
TH
605
606out_free:
8826ee4f 607 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
608 if (isw->new_wb)
609 wb_put(isw->new_wb);
610 kfree(isw);
611}
612
c22d70a1
RG
613/**
614 * cleanup_offline_cgwb - detach associated inodes
615 * @wb: target wb
616 *
617 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
618 * to eventually release the dying @wb. Returns %true if not all inodes were
619 * switched and the function has to be restarted.
620 */
621bool cleanup_offline_cgwb(struct bdi_writeback *wb)
622{
623 struct cgroup_subsys_state *memcg_css;
624 struct inode_switch_wbs_context *isw;
625 struct inode *inode;
626 int nr;
627 bool restart = false;
628
98b160c8
LB
629 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
630 GFP_KERNEL);
c22d70a1
RG
631 if (!isw)
632 return restart;
633
634 atomic_inc(&isw_nr_in_flight);
635
636 for (memcg_css = wb->memcg_css->parent; memcg_css;
637 memcg_css = memcg_css->parent) {
638 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
639 if (isw->new_wb)
640 break;
641 }
642 if (unlikely(!isw->new_wb))
643 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
644
645 nr = 0;
646 spin_lock(&wb->list_lock);
647 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
648 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
649 continue;
650
651 isw->inodes[nr++] = inode;
652
653 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
654 restart = true;
655 break;
656 }
657 }
658 spin_unlock(&wb->list_lock);
659
660 /* no attached inodes? bail out */
661 if (nr == 0) {
662 atomic_dec(&isw_nr_in_flight);
663 wb_put(isw->new_wb);
664 kfree(isw);
665 return restart;
666 }
667
668 /*
669 * In addition to synchronizing among switchers, I_WB_SWITCH tells
670 * the RCU protected stat update paths to grab the i_page
671 * lock so that stat transfer can synchronize against them.
672 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
673 */
674 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
675 queue_rcu_work(isw_wq, &isw->work);
676
677 return restart;
678}
679
b16b1deb
TH
680/**
681 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
682 * @wbc: writeback_control of interest
683 * @inode: target inode
684 *
685 * @inode is locked and about to be written back under the control of @wbc.
686 * Record @inode's writeback context into @wbc and unlock the i_lock. On
687 * writeback completion, wbc_detach_inode() should be called. This is used
688 * to track the cgroup writeback context.
689 */
690void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
691 struct inode *inode)
692{
dd73e4b7
TH
693 if (!inode_cgwb_enabled(inode)) {
694 spin_unlock(&inode->i_lock);
695 return;
696 }
697
b16b1deb 698 wbc->wb = inode_to_wb(inode);
2a814908
TH
699 wbc->inode = inode;
700
701 wbc->wb_id = wbc->wb->memcg_css->id;
702 wbc->wb_lcand_id = inode->i_wb_frn_winner;
703 wbc->wb_tcand_id = 0;
704 wbc->wb_bytes = 0;
705 wbc->wb_lcand_bytes = 0;
706 wbc->wb_tcand_bytes = 0;
707
b16b1deb
TH
708 wb_get(wbc->wb);
709 spin_unlock(&inode->i_lock);
e8a7abf5
TH
710
711 /*
65de03e2
TH
712 * A dying wb indicates that either the blkcg associated with the
713 * memcg changed or the associated memcg is dying. In the first
714 * case, a replacement wb should already be available and we should
715 * refresh the wb immediately. In the second case, trying to
716 * refresh will keep failing.
e8a7abf5 717 */
65de03e2 718 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
e8a7abf5 719 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 720}
9b0eb69b 721EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
722
723/**
2a814908
TH
724 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
725 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
726 *
727 * To be called after a writeback attempt of an inode finishes and undoes
728 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
729 *
730 * As concurrent write sharing of an inode is expected to be very rare and
731 * memcg only tracks page ownership on first-use basis severely confining
732 * the usefulness of such sharing, cgroup writeback tracks ownership
733 * per-inode. While the support for concurrent write sharing of an inode
734 * is deemed unnecessary, an inode being written to by different cgroups at
735 * different points in time is a lot more common, and, more importantly,
736 * charging only by first-use can too readily lead to grossly incorrect
737 * behaviors (single foreign page can lead to gigabytes of writeback to be
738 * incorrectly attributed).
739 *
740 * To resolve this issue, cgroup writeback detects the majority dirtier of
741 * an inode and transfers the ownership to it. To avoid unnnecessary
742 * oscillation, the detection mechanism keeps track of history and gives
743 * out the switch verdict only if the foreign usage pattern is stable over
744 * a certain amount of time and/or writeback attempts.
745 *
746 * On each writeback attempt, @wbc tries to detect the majority writer
747 * using Boyer-Moore majority vote algorithm. In addition to the byte
748 * count from the majority voting, it also counts the bytes written for the
749 * current wb and the last round's winner wb (max of last round's current
750 * wb, the winner from two rounds ago, and the last round's majority
751 * candidate). Keeping track of the historical winner helps the algorithm
752 * to semi-reliably detect the most active writer even when it's not the
753 * absolute majority.
754 *
755 * Once the winner of the round is determined, whether the winner is
756 * foreign or not and how much IO time the round consumed is recorded in
757 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
758 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
759 */
760void wbc_detach_inode(struct writeback_control *wbc)
761{
2a814908
TH
762 struct bdi_writeback *wb = wbc->wb;
763 struct inode *inode = wbc->inode;
dd73e4b7
TH
764 unsigned long avg_time, max_bytes, max_time;
765 u16 history;
2a814908
TH
766 int max_id;
767
dd73e4b7
TH
768 if (!wb)
769 return;
770
771 history = inode->i_wb_frn_history;
772 avg_time = inode->i_wb_frn_avg_time;
773
2a814908
TH
774 /* pick the winner of this round */
775 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
776 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
777 max_id = wbc->wb_id;
778 max_bytes = wbc->wb_bytes;
779 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
780 max_id = wbc->wb_lcand_id;
781 max_bytes = wbc->wb_lcand_bytes;
782 } else {
783 max_id = wbc->wb_tcand_id;
784 max_bytes = wbc->wb_tcand_bytes;
785 }
786
787 /*
788 * Calculate the amount of IO time the winner consumed and fold it
789 * into the running average kept per inode. If the consumed IO
790 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
791 * deciding whether to switch or not. This is to prevent one-off
792 * small dirtiers from skewing the verdict.
793 */
794 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
795 wb->avg_write_bandwidth);
796 if (avg_time)
797 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
798 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
799 else
800 avg_time = max_time; /* immediate catch up on first run */
801
802 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
803 int slots;
804
805 /*
806 * The switch verdict is reached if foreign wb's consume
807 * more than a certain proportion of IO time in a
808 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
809 * history mask where each bit represents one sixteenth of
810 * the period. Determine the number of slots to shift into
811 * history from @max_time.
812 */
813 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
814 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
815 history <<= slots;
816 if (wbc->wb_id != max_id)
817 history |= (1U << slots) - 1;
818
3a8e9ac8
TH
819 if (history)
820 trace_inode_foreign_history(inode, wbc, history);
821
2a814908
TH
822 /*
823 * Switch if the current wb isn't the consistent winner.
824 * If there are multiple closely competing dirtiers, the
825 * inode may switch across them repeatedly over time, which
826 * is okay. The main goal is avoiding keeping an inode on
827 * the wrong wb for an extended period of time.
828 */
682aa8e1
TH
829 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
830 inode_switch_wbs(inode, max_id);
2a814908
TH
831 }
832
833 /*
834 * Multiple instances of this function may race to update the
835 * following fields but we don't mind occassional inaccuracies.
836 */
837 inode->i_wb_frn_winner = max_id;
838 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
839 inode->i_wb_frn_history = history;
840
b16b1deb
TH
841 wb_put(wbc->wb);
842 wbc->wb = NULL;
843}
9b0eb69b 844EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 845
2a814908 846/**
34e51a5e 847 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
848 * @wbc: writeback_control of the writeback in progress
849 * @page: page being written out
850 * @bytes: number of bytes being written out
851 *
852 * @bytes from @page are about to written out during the writeback
853 * controlled by @wbc. Keep the book for foreign inode detection. See
854 * wbc_detach_inode().
855 */
34e51a5e
TH
856void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
857 size_t bytes)
2a814908 858{
66311422 859 struct cgroup_subsys_state *css;
2a814908
TH
860 int id;
861
862 /*
863 * pageout() path doesn't attach @wbc to the inode being written
864 * out. This is intentional as we don't want the function to block
865 * behind a slow cgroup. Ultimately, we want pageout() to kick off
866 * regular writeback instead of writing things out itself.
867 */
27b36d8f 868 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
869 return;
870
66311422
TH
871 css = mem_cgroup_css_from_page(page);
872 /* dead cgroups shouldn't contribute to inode ownership arbitration */
873 if (!(css->flags & CSS_ONLINE))
874 return;
875
876 id = css->id;
2a814908
TH
877
878 if (id == wbc->wb_id) {
879 wbc->wb_bytes += bytes;
880 return;
881 }
882
883 if (id == wbc->wb_lcand_id)
884 wbc->wb_lcand_bytes += bytes;
885
886 /* Boyer-Moore majority vote algorithm */
887 if (!wbc->wb_tcand_bytes)
888 wbc->wb_tcand_id = id;
889 if (id == wbc->wb_tcand_id)
890 wbc->wb_tcand_bytes += bytes;
891 else
892 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
893}
34e51a5e 894EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 895
703c2708
TH
896/**
897 * inode_congested - test whether an inode is congested
60292bcc 898 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
899 * @cong_bits: mask of WB_[a]sync_congested bits to test
900 *
901 * Tests whether @inode is congested. @cong_bits is the mask of congestion
902 * bits to test and the return value is the mask of set bits.
903 *
904 * If cgroup writeback is enabled for @inode, the congestion state is
905 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
906 * associated with @inode is congested; otherwise, the root wb's congestion
907 * state is used.
60292bcc
TH
908 *
909 * @inode is allowed to be NULL as this function is often called on
910 * mapping->host which is NULL for the swapper space.
703c2708
TH
911 */
912int inode_congested(struct inode *inode, int cong_bits)
913{
5cb8b824
TH
914 /*
915 * Once set, ->i_wb never becomes NULL while the inode is alive.
916 * Start transaction iff ->i_wb is visible.
917 */
aaa2cacf 918 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 919 struct bdi_writeback *wb;
2e898e4c
GT
920 struct wb_lock_cookie lock_cookie = {};
921 bool congested;
5cb8b824 922
2e898e4c 923 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 924 congested = wb_congested(wb, cong_bits);
2e898e4c 925 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 926 return congested;
703c2708
TH
927 }
928
929 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
930}
931EXPORT_SYMBOL_GPL(inode_congested);
932
f2b65121
TH
933/**
934 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
935 * @wb: target bdi_writeback to split @nr_pages to
936 * @nr_pages: number of pages to write for the whole bdi
937 *
938 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
939 * relation to the total write bandwidth of all wb's w/ dirty inodes on
940 * @wb->bdi.
941 */
942static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
943{
944 unsigned long this_bw = wb->avg_write_bandwidth;
945 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
946
947 if (nr_pages == LONG_MAX)
948 return LONG_MAX;
949
950 /*
951 * This may be called on clean wb's and proportional distribution
952 * may not make sense, just use the original @nr_pages in those
953 * cases. In general, we wanna err on the side of writing more.
954 */
955 if (!tot_bw || this_bw >= tot_bw)
956 return nr_pages;
957 else
958 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
959}
960
db125360
TH
961/**
962 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
963 * @bdi: target backing_dev_info
964 * @base_work: wb_writeback_work to issue
965 * @skip_if_busy: skip wb's which already have writeback in progress
966 *
967 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
968 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
969 * distributed to the busy wbs according to each wb's proportion in the
970 * total active write bandwidth of @bdi.
971 */
972static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
973 struct wb_writeback_work *base_work,
974 bool skip_if_busy)
975{
b817525a 976 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
977 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
978 struct bdi_writeback, bdi_node);
db125360
TH
979
980 might_sleep();
db125360
TH
981restart:
982 rcu_read_lock();
b817525a 983 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
5b9cce4c 984 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
8a1270cd
TH
985 struct wb_writeback_work fallback_work;
986 struct wb_writeback_work *work;
987 long nr_pages;
988
b817525a
TH
989 if (last_wb) {
990 wb_put(last_wb);
991 last_wb = NULL;
992 }
993
006a0973
TH
994 /* SYNC_ALL writes out I_DIRTY_TIME too */
995 if (!wb_has_dirty_io(wb) &&
996 (base_work->sync_mode == WB_SYNC_NONE ||
997 list_empty(&wb->b_dirty_time)))
998 continue;
999 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
1000 continue;
1001
8a1270cd
TH
1002 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1003
1004 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1005 if (work) {
1006 *work = *base_work;
1007 work->nr_pages = nr_pages;
1008 work->auto_free = 1;
1009 wb_queue_work(wb, work);
1010 continue;
db125360 1011 }
8a1270cd
TH
1012
1013 /* alloc failed, execute synchronously using on-stack fallback */
1014 work = &fallback_work;
1015 *work = *base_work;
1016 work->nr_pages = nr_pages;
1017 work->auto_free = 0;
1018 work->done = &fallback_work_done;
1019
1020 wb_queue_work(wb, work);
1021
b817525a
TH
1022 /*
1023 * Pin @wb so that it stays on @bdi->wb_list. This allows
1024 * continuing iteration from @wb after dropping and
1025 * regrabbing rcu read lock.
1026 */
1027 wb_get(wb);
1028 last_wb = wb;
1029
8a1270cd 1030 rcu_read_unlock();
5b9cce4c 1031 wb_wait_for_completion(&fallback_work_done);
8a1270cd 1032 goto restart;
db125360
TH
1033 }
1034 rcu_read_unlock();
b817525a
TH
1035
1036 if (last_wb)
1037 wb_put(last_wb);
db125360
TH
1038}
1039
d62241c7
TH
1040/**
1041 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1042 * @bdi_id: target bdi id
1043 * @memcg_id: target memcg css id
d62241c7
TH
1044 * @reason: reason why some writeback work initiated
1045 * @done: target wb_completion
1046 *
1047 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1048 * with the specified parameters.
1049 */
7490a2d2 1050int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
d62241c7
TH
1051 enum wb_reason reason, struct wb_completion *done)
1052{
1053 struct backing_dev_info *bdi;
1054 struct cgroup_subsys_state *memcg_css;
1055 struct bdi_writeback *wb;
1056 struct wb_writeback_work *work;
7490a2d2 1057 unsigned long dirty;
d62241c7
TH
1058 int ret;
1059
1060 /* lookup bdi and memcg */
1061 bdi = bdi_get_by_id(bdi_id);
1062 if (!bdi)
1063 return -ENOENT;
1064
1065 rcu_read_lock();
1066 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1067 if (memcg_css && !css_tryget(memcg_css))
1068 memcg_css = NULL;
1069 rcu_read_unlock();
1070 if (!memcg_css) {
1071 ret = -ENOENT;
1072 goto out_bdi_put;
1073 }
1074
1075 /*
1076 * And find the associated wb. If the wb isn't there already
1077 * there's nothing to flush, don't create one.
1078 */
1079 wb = wb_get_lookup(bdi, memcg_css);
1080 if (!wb) {
1081 ret = -ENOENT;
1082 goto out_css_put;
1083 }
1084
1085 /*
7490a2d2 1086 * The caller is attempting to write out most of
d62241c7
TH
1087 * the currently dirty pages. Let's take the current dirty page
1088 * count and inflate it by 25% which should be large enough to
1089 * flush out most dirty pages while avoiding getting livelocked by
1090 * concurrent dirtiers.
7490a2d2
SB
1091 *
1092 * BTW the memcg stats are flushed periodically and this is best-effort
1093 * estimation, so some potential error is ok.
d62241c7 1094 */
7490a2d2
SB
1095 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1096 dirty = dirty * 10 / 8;
d62241c7
TH
1097
1098 /* issue the writeback work */
1099 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1100 if (work) {
7490a2d2 1101 work->nr_pages = dirty;
d62241c7
TH
1102 work->sync_mode = WB_SYNC_NONE;
1103 work->range_cyclic = 1;
1104 work->reason = reason;
1105 work->done = done;
1106 work->auto_free = 1;
1107 wb_queue_work(wb, work);
1108 ret = 0;
1109 } else {
1110 ret = -ENOMEM;
1111 }
1112
1113 wb_put(wb);
1114out_css_put:
1115 css_put(memcg_css);
1116out_bdi_put:
1117 bdi_put(bdi);
1118 return ret;
1119}
1120
a1a0e23e
TH
1121/**
1122 * cgroup_writeback_umount - flush inode wb switches for umount
1123 *
1124 * This function is called when a super_block is about to be destroyed and
1125 * flushes in-flight inode wb switches. An inode wb switch goes through
1126 * RCU and then workqueue, so the two need to be flushed in order to ensure
1127 * that all previously scheduled switches are finished. As wb switches are
1128 * rare occurrences and synchronize_rcu() can take a while, perform
1129 * flushing iff wb switches are in flight.
1130 */
1131void cgroup_writeback_umount(void)
1132{
592fa002
RG
1133 /*
1134 * SB_ACTIVE should be reliably cleared before checking
1135 * isw_nr_in_flight, see generic_shutdown_super().
1136 */
1137 smp_mb();
1138
a1a0e23e 1139 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
1140 /*
1141 * Use rcu_barrier() to wait for all pending callbacks to
1142 * ensure that all in-flight wb switches are in the workqueue.
1143 */
1144 rcu_barrier();
a1a0e23e
TH
1145 flush_workqueue(isw_wq);
1146 }
1147}
1148
1149static int __init cgroup_writeback_init(void)
1150{
1151 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1152 if (!isw_wq)
1153 return -ENOMEM;
1154 return 0;
1155}
1156fs_initcall(cgroup_writeback_init);
1157
f2b65121
TH
1158#else /* CONFIG_CGROUP_WRITEBACK */
1159
7fc5854f
TH
1160static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1161static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1162
f3b6a6df
RG
1163static void inode_cgwb_move_to_attached(struct inode *inode,
1164 struct bdi_writeback *wb)
1165{
1166 assert_spin_locked(&wb->list_lock);
1167 assert_spin_locked(&inode->i_lock);
1168
1169 inode->i_state &= ~I_SYNC_QUEUED;
1170 list_del_init(&inode->i_io_list);
1171 wb_io_lists_depopulated(wb);
1172}
1173
87e1d789
TH
1174static struct bdi_writeback *
1175locked_inode_to_wb_and_lock_list(struct inode *inode)
1176 __releases(&inode->i_lock)
1177 __acquires(&wb->list_lock)
1178{
1179 struct bdi_writeback *wb = inode_to_wb(inode);
1180
1181 spin_unlock(&inode->i_lock);
1182 spin_lock(&wb->list_lock);
1183 return wb;
1184}
1185
1186static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1187 __acquires(&wb->list_lock)
1188{
1189 struct bdi_writeback *wb = inode_to_wb(inode);
1190
1191 spin_lock(&wb->list_lock);
1192 return wb;
1193}
1194
f2b65121
TH
1195static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1196{
1197 return nr_pages;
1198}
1199
db125360
TH
1200static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1201 struct wb_writeback_work *base_work,
1202 bool skip_if_busy)
1203{
1204 might_sleep();
1205
006a0973 1206 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 1207 base_work->auto_free = 0;
db125360
TH
1208 wb_queue_work(&bdi->wb, base_work);
1209 }
1210}
1211
703c2708
TH
1212#endif /* CONFIG_CGROUP_WRITEBACK */
1213
e8e8a0c6
JA
1214/*
1215 * Add in the number of potentially dirty inodes, because each inode
1216 * write can dirty pagecache in the underlying blockdev.
1217 */
1218static unsigned long get_nr_dirty_pages(void)
1219{
1220 return global_node_page_state(NR_FILE_DIRTY) +
e8e8a0c6
JA
1221 get_nr_dirty_inodes();
1222}
1223
1224static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1225{
c00ddad3
TH
1226 if (!wb_has_dirty_io(wb))
1227 return;
1228
aac8d41c
JA
1229 /*
1230 * All callers of this function want to start writeback of all
1231 * dirty pages. Places like vmscan can call this at a very
1232 * high frequency, causing pointless allocations of tons of
1233 * work items and keeping the flusher threads busy retrieving
1234 * that work. Ensure that we only allow one of them pending and
85009b4f 1235 * inflight at the time.
aac8d41c 1236 */
85009b4f
JA
1237 if (test_bit(WB_start_all, &wb->state) ||
1238 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1239 return;
1240
85009b4f
JA
1241 wb->start_all_reason = reason;
1242 wb_wakeup(wb);
c5444198 1243}
d3ddec76 1244
c5444198 1245/**
9ecf4866
TH
1246 * wb_start_background_writeback - start background writeback
1247 * @wb: bdi_writback to write from
c5444198
CH
1248 *
1249 * Description:
6585027a 1250 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1251 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1252 * some IO is happening if we are over background dirty threshold.
1253 * Caller need not hold sb s_umount semaphore.
c5444198 1254 */
9ecf4866 1255void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1256{
6585027a
JK
1257 /*
1258 * We just wake up the flusher thread. It will perform background
1259 * writeback as soon as there is no other work to do.
1260 */
5634cc2a 1261 trace_writeback_wake_background(wb);
9ecf4866 1262 wb_wakeup(wb);
1da177e4
LT
1263}
1264
a66979ab
DC
1265/*
1266 * Remove the inode from the writeback list it is on.
1267 */
c7f54084 1268void inode_io_list_del(struct inode *inode)
a66979ab 1269{
87e1d789 1270 struct bdi_writeback *wb;
f758eeab 1271
87e1d789 1272 wb = inode_to_wb_and_lock_list(inode);
b35250c0 1273 spin_lock(&inode->i_lock);
f3b6a6df
RG
1274
1275 inode->i_state &= ~I_SYNC_QUEUED;
1276 list_del_init(&inode->i_io_list);
1277 wb_io_lists_depopulated(wb);
1278
b35250c0 1279 spin_unlock(&inode->i_lock);
52ebea74 1280 spin_unlock(&wb->list_lock);
a66979ab 1281}
4301efa4 1282EXPORT_SYMBOL(inode_io_list_del);
a66979ab 1283
6c60d2b5
DC
1284/*
1285 * mark an inode as under writeback on the sb
1286 */
1287void sb_mark_inode_writeback(struct inode *inode)
1288{
1289 struct super_block *sb = inode->i_sb;
1290 unsigned long flags;
1291
1292 if (list_empty(&inode->i_wb_list)) {
1293 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1294 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1295 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1296 trace_sb_mark_inode_writeback(inode);
1297 }
6c60d2b5
DC
1298 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1299 }
1300}
1301
1302/*
1303 * clear an inode as under writeback on the sb
1304 */
1305void sb_clear_inode_writeback(struct inode *inode)
1306{
1307 struct super_block *sb = inode->i_sb;
1308 unsigned long flags;
1309
1310 if (!list_empty(&inode->i_wb_list)) {
1311 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1312 if (!list_empty(&inode->i_wb_list)) {
1313 list_del_init(&inode->i_wb_list);
1314 trace_sb_clear_inode_writeback(inode);
1315 }
6c60d2b5
DC
1316 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1317 }
1318}
1319
6610a0bc
AM
1320/*
1321 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1322 * furthest end of its superblock's dirty-inode list.
1323 *
1324 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1325 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1326 * the case then the inode must have been redirtied while it was being written
1327 * out and we don't reset its dirtied_when.
1328 */
b35250c0 1329static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1330{
b35250c0
JK
1331 assert_spin_locked(&inode->i_lock);
1332
03ba3782 1333 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1334 struct inode *tail;
6610a0bc 1335
7ccf19a8 1336 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1337 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1338 inode->dirtied_when = jiffies;
1339 }
c7f54084 1340 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
5afced3b 1341 inode->i_state &= ~I_SYNC_QUEUED;
6610a0bc
AM
1342}
1343
b35250c0
JK
1344static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1345{
1346 spin_lock(&inode->i_lock);
1347 redirty_tail_locked(inode, wb);
1348 spin_unlock(&inode->i_lock);
1349}
1350
c986d1e2 1351/*
66f3b8e2 1352 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1353 */
f758eeab 1354static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1355{
c7f54084 1356 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1357}
1358
1c0eeaf5
JE
1359static void inode_sync_complete(struct inode *inode)
1360{
365b94ae 1361 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1362 /* If inode is clean an unused, put it into LRU now... */
1363 inode_add_lru(inode);
365b94ae 1364 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1365 smp_mb();
1366 wake_up_bit(&inode->i_state, __I_SYNC);
1367}
1368
d2caa3c5
JL
1369static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1370{
1371 bool ret = time_after(inode->dirtied_when, t);
1372#ifndef CONFIG_64BIT
1373 /*
1374 * For inodes being constantly redirtied, dirtied_when can get stuck.
1375 * It _appears_ to be in the future, but is actually in distant past.
1376 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1377 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1378 */
1379 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1380#endif
1381 return ret;
1382}
1383
0ae45f63
TT
1384#define EXPIRE_DIRTY_ATIME 0x0001
1385
2c136579 1386/*
f9cae926 1387 * Move expired (dirtied before dirtied_before) dirty inodes from
697e6fed 1388 * @delaying_queue to @dispatch_queue.
2c136579 1389 */
e84d0a4f 1390static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1391 struct list_head *dispatch_queue,
5fcd5750 1392 unsigned long dirtied_before)
2c136579 1393{
5c03449d
SL
1394 LIST_HEAD(tmp);
1395 struct list_head *pos, *node;
cf137307 1396 struct super_block *sb = NULL;
5c03449d 1397 struct inode *inode;
cf137307 1398 int do_sb_sort = 0;
e84d0a4f 1399 int moved = 0;
5c03449d 1400
2c136579 1401 while (!list_empty(delaying_queue)) {
7ccf19a8 1402 inode = wb_inode(delaying_queue->prev);
f9cae926 1403 if (inode_dirtied_after(inode, dirtied_before))
2c136579 1404 break;
c7f54084 1405 list_move(&inode->i_io_list, &tmp);
a8855990 1406 moved++;
5afced3b 1407 spin_lock(&inode->i_lock);
5afced3b
JK
1408 inode->i_state |= I_SYNC_QUEUED;
1409 spin_unlock(&inode->i_lock);
a8855990
JK
1410 if (sb_is_blkdev_sb(inode->i_sb))
1411 continue;
cf137307
JA
1412 if (sb && sb != inode->i_sb)
1413 do_sb_sort = 1;
1414 sb = inode->i_sb;
5c03449d
SL
1415 }
1416
cf137307
JA
1417 /* just one sb in list, splice to dispatch_queue and we're done */
1418 if (!do_sb_sort) {
1419 list_splice(&tmp, dispatch_queue);
e84d0a4f 1420 goto out;
cf137307
JA
1421 }
1422
5c03449d
SL
1423 /* Move inodes from one superblock together */
1424 while (!list_empty(&tmp)) {
7ccf19a8 1425 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1426 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1427 inode = wb_inode(pos);
5c03449d 1428 if (inode->i_sb == sb)
c7f54084 1429 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1430 }
2c136579 1431 }
e84d0a4f
WF
1432out:
1433 return moved;
2c136579
FW
1434}
1435
1436/*
1437 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1438 * Before
1439 * newly dirtied b_dirty b_io b_more_io
1440 * =============> gf edc BA
1441 * After
1442 * newly dirtied b_dirty b_io b_more_io
1443 * =============> g fBAedc
1444 * |
1445 * +--> dequeue for IO
2c136579 1446 */
f9cae926
JK
1447static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1448 unsigned long dirtied_before)
66f3b8e2 1449{
e84d0a4f 1450 int moved;
f9cae926 1451 unsigned long time_expire_jif = dirtied_before;
0ae45f63 1452
f758eeab 1453 assert_spin_locked(&wb->list_lock);
4ea879b9 1454 list_splice_init(&wb->b_more_io, &wb->b_io);
5fcd5750 1455 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
f9cae926
JK
1456 if (!work->for_sync)
1457 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
0ae45f63 1458 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
5fcd5750 1459 time_expire_jif);
d6c10f1f
TH
1460 if (moved)
1461 wb_io_lists_populated(wb);
f9cae926 1462 trace_writeback_queue_io(wb, work, dirtied_before, moved);
66f3b8e2
JA
1463}
1464
a9185b41 1465static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1466{
9fb0a7da
TH
1467 int ret;
1468
1469 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1470 trace_writeback_write_inode_start(inode, wbc);
1471 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1472 trace_writeback_write_inode(inode, wbc);
1473 return ret;
1474 }
03ba3782 1475 return 0;
08d8e974 1476}
08d8e974 1477
1da177e4 1478/*
169ebd90
JK
1479 * Wait for writeback on an inode to complete. Called with i_lock held.
1480 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1481 */
169ebd90
JK
1482static void __inode_wait_for_writeback(struct inode *inode)
1483 __releases(inode->i_lock)
1484 __acquires(inode->i_lock)
01c03194
CH
1485{
1486 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1487 wait_queue_head_t *wqh;
1488
1489 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1490 while (inode->i_state & I_SYNC) {
1491 spin_unlock(&inode->i_lock);
74316201
N
1492 __wait_on_bit(wqh, &wq, bit_wait,
1493 TASK_UNINTERRUPTIBLE);
250df6ed 1494 spin_lock(&inode->i_lock);
58a9d3d8 1495 }
01c03194
CH
1496}
1497
169ebd90
JK
1498/*
1499 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1500 */
1501void inode_wait_for_writeback(struct inode *inode)
1502{
1503 spin_lock(&inode->i_lock);
1504 __inode_wait_for_writeback(inode);
1505 spin_unlock(&inode->i_lock);
1506}
1507
1508/*
1509 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1510 * held and drops it. It is aimed for callers not holding any inode reference
1511 * so once i_lock is dropped, inode can go away.
1512 */
1513static void inode_sleep_on_writeback(struct inode *inode)
1514 __releases(inode->i_lock)
1515{
1516 DEFINE_WAIT(wait);
1517 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1518 int sleep;
1519
1520 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1521 sleep = inode->i_state & I_SYNC;
1522 spin_unlock(&inode->i_lock);
1523 if (sleep)
1524 schedule();
1525 finish_wait(wqh, &wait);
1526}
1527
ccb26b5a
JK
1528/*
1529 * Find proper writeback list for the inode depending on its current state and
1530 * possibly also change of its state while we were doing writeback. Here we
1531 * handle things such as livelock prevention or fairness of writeback among
1532 * inodes. This function can be called only by flusher thread - noone else
1533 * processes all inodes in writeback lists and requeueing inodes behind flusher
1534 * thread's back can have unexpected consequences.
1535 */
1536static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1537 struct writeback_control *wbc)
1538{
1539 if (inode->i_state & I_FREEING)
1540 return;
1541
1542 /*
1543 * Sync livelock prevention. Each inode is tagged and synced in one
1544 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1545 * the dirty time to prevent enqueue and sync it again.
1546 */
1547 if ((inode->i_state & I_DIRTY) &&
1548 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1549 inode->dirtied_when = jiffies;
1550
4f8ad655
JK
1551 if (wbc->pages_skipped) {
1552 /*
1553 * writeback is not making progress due to locked
1554 * buffers. Skip this inode for now.
1555 */
b35250c0 1556 redirty_tail_locked(inode, wb);
4f8ad655
JK
1557 return;
1558 }
1559
ccb26b5a
JK
1560 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1561 /*
1562 * We didn't write back all the pages. nfs_writepages()
1563 * sometimes bales out without doing anything.
1564 */
1565 if (wbc->nr_to_write <= 0) {
1566 /* Slice used up. Queue for next turn. */
1567 requeue_io(inode, wb);
1568 } else {
1569 /*
1570 * Writeback blocked by something other than
1571 * congestion. Delay the inode for some time to
1572 * avoid spinning on the CPU (100% iowait)
1573 * retrying writeback of the dirty page/inode
1574 * that cannot be performed immediately.
1575 */
b35250c0 1576 redirty_tail_locked(inode, wb);
ccb26b5a
JK
1577 }
1578 } else if (inode->i_state & I_DIRTY) {
1579 /*
1580 * Filesystems can dirty the inode during writeback operations,
1581 * such as delayed allocation during submission or metadata
1582 * updates after data IO completion.
1583 */
b35250c0 1584 redirty_tail_locked(inode, wb);
0ae45f63 1585 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1586 inode->dirtied_when = jiffies;
c7f54084 1587 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
5afced3b 1588 inode->i_state &= ~I_SYNC_QUEUED;
ccb26b5a
JK
1589 } else {
1590 /* The inode is clean. Remove from writeback lists. */
f3b6a6df 1591 inode_cgwb_move_to_attached(inode, wb);
ccb26b5a
JK
1592 }
1593}
1594
01c03194 1595/*
da0c4c60
EB
1596 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1597 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1598 *
1599 * This doesn't remove the inode from the writeback list it is on, except
1600 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1601 * expiration. The caller is otherwise responsible for writeback list handling.
1602 *
1603 * The caller is also responsible for setting the I_SYNC flag beforehand and
1604 * calling inode_sync_complete() to clear it afterwards.
1da177e4
LT
1605 */
1606static int
cd8ed2a4 1607__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1608{
1da177e4 1609 struct address_space *mapping = inode->i_mapping;
251d6a47 1610 long nr_to_write = wbc->nr_to_write;
01c03194 1611 unsigned dirty;
1da177e4
LT
1612 int ret;
1613
4f8ad655 1614 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1615
9fb0a7da
TH
1616 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1617
1da177e4
LT
1618 ret = do_writepages(mapping, wbc);
1619
26821ed4
CH
1620 /*
1621 * Make sure to wait on the data before writing out the metadata.
1622 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1623 * I/O completion. We don't do it for sync(2) writeback because it has a
1624 * separate, external IO completion path and ->sync_fs for guaranteeing
1625 * inode metadata is written back correctly.
26821ed4 1626 */
7747bd4b 1627 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1628 int err = filemap_fdatawait(mapping);
1da177e4
LT
1629 if (ret == 0)
1630 ret = err;
1631 }
1632
5547e8aa 1633 /*
1e249cb5
EB
1634 * If the inode has dirty timestamps and we need to write them, call
1635 * mark_inode_dirty_sync() to notify the filesystem about it and to
1636 * change I_DIRTY_TIME into I_DIRTY_SYNC.
5547e8aa 1637 */
5fcd5750 1638 if ((inode->i_state & I_DIRTY_TIME) &&
83dc881d 1639 (wbc->sync_mode == WB_SYNC_ALL ||
5fcd5750
JK
1640 time_after(jiffies, inode->dirtied_time_when +
1641 dirtytime_expire_interval * HZ))) {
5fcd5750 1642 trace_writeback_lazytime(inode);
1e249cb5 1643 mark_inode_dirty_sync(inode);
5fcd5750 1644 }
1e249cb5
EB
1645
1646 /*
da0c4c60
EB
1647 * Get and clear the dirty flags from i_state. This needs to be done
1648 * after calling writepages because some filesystems may redirty the
1649 * inode during writepages due to delalloc. It also needs to be done
1650 * after handling timestamp expiration, as that may dirty the inode too.
1e249cb5
EB
1651 */
1652 spin_lock(&inode->i_lock);
1653 dirty = inode->i_state & I_DIRTY;
0ae45f63 1654 inode->i_state &= ~dirty;
9c6ac78e
TH
1655
1656 /*
1657 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1658 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1659 * either they see the I_DIRTY bits cleared or we see the dirtied
1660 * inode.
1661 *
1662 * I_DIRTY_PAGES is always cleared together above even if @mapping
1663 * still has dirty pages. The flag is reinstated after smp_mb() if
1664 * necessary. This guarantees that either __mark_inode_dirty()
1665 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1666 */
1667 smp_mb();
1668
1669 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1670 inode->i_state |= I_DIRTY_PAGES;
08276bda
DH
1671 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1672 if (!(inode->i_state & I_DIRTY_PAGES)) {
1673 inode->i_state &= ~I_PINNING_FSCACHE_WB;
1674 wbc->unpinned_fscache_wb = true;
1675 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1676 }
1677 }
9c6ac78e 1678
250df6ed 1679 spin_unlock(&inode->i_lock);
9c6ac78e 1680
26821ed4 1681 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1682 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1683 int err = write_inode(inode, wbc);
1da177e4
LT
1684 if (ret == 0)
1685 ret = err;
1686 }
08276bda 1687 wbc->unpinned_fscache_wb = false;
4f8ad655
JK
1688 trace_writeback_single_inode(inode, wbc, nr_to_write);
1689 return ret;
1690}
1691
1692/*
da0c4c60
EB
1693 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1694 * the regular batched writeback done by the flusher threads in
1695 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1696 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
4f8ad655 1697 *
da0c4c60
EB
1698 * To prevent the inode from going away, either the caller must have a reference
1699 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
4f8ad655 1700 */
aaf25593
TH
1701static int writeback_single_inode(struct inode *inode,
1702 struct writeback_control *wbc)
4f8ad655 1703{
aaf25593 1704 struct bdi_writeback *wb;
4f8ad655
JK
1705 int ret = 0;
1706
1707 spin_lock(&inode->i_lock);
1708 if (!atomic_read(&inode->i_count))
1709 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1710 else
1711 WARN_ON(inode->i_state & I_WILL_FREE);
1712
1713 if (inode->i_state & I_SYNC) {
4f8ad655 1714 /*
da0c4c60
EB
1715 * Writeback is already running on the inode. For WB_SYNC_NONE,
1716 * that's enough and we can just return. For WB_SYNC_ALL, we
1717 * must wait for the existing writeback to complete, then do
1718 * writeback again if there's anything left.
4f8ad655 1719 */
da0c4c60
EB
1720 if (wbc->sync_mode != WB_SYNC_ALL)
1721 goto out;
169ebd90 1722 __inode_wait_for_writeback(inode);
4f8ad655
JK
1723 }
1724 WARN_ON(inode->i_state & I_SYNC);
1725 /*
da0c4c60
EB
1726 * If the inode is already fully clean, then there's nothing to do.
1727 *
1728 * For data-integrity syncs we also need to check whether any pages are
1729 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1730 * there are any such pages, we'll need to wait for them.
4f8ad655 1731 */
0ae45f63 1732 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1733 (wbc->sync_mode != WB_SYNC_ALL ||
1734 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1735 goto out;
1736 inode->i_state |= I_SYNC;
b16b1deb 1737 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1738
cd8ed2a4 1739 ret = __writeback_single_inode(inode, wbc);
1da177e4 1740
b16b1deb 1741 wbc_detach_inode(wbc);
aaf25593
TH
1742
1743 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1744 spin_lock(&inode->i_lock);
4f8ad655 1745 /*
da0c4c60
EB
1746 * If the inode is now fully clean, then it can be safely removed from
1747 * its writeback list (if any). Otherwise the flusher threads are
1748 * responsible for the writeback lists.
4f8ad655 1749 */
0ae45f63 1750 if (!(inode->i_state & I_DIRTY_ALL))
f3b6a6df 1751 inode_cgwb_move_to_attached(inode, wb);
4f8ad655 1752 spin_unlock(&wb->list_lock);
1c0eeaf5 1753 inode_sync_complete(inode);
4f8ad655
JK
1754out:
1755 spin_unlock(&inode->i_lock);
1da177e4
LT
1756 return ret;
1757}
1758
a88a341a 1759static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1760 struct wb_writeback_work *work)
d46db3d5
WF
1761{
1762 long pages;
1763
1764 /*
1765 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1766 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1767 * here avoids calling into writeback_inodes_wb() more than once.
1768 *
1769 * The intended call sequence for WB_SYNC_ALL writeback is:
1770 *
1771 * wb_writeback()
1772 * writeback_sb_inodes() <== called only once
1773 * write_cache_pages() <== called once for each inode
1774 * (quickly) tag currently dirty pages
1775 * (maybe slowly) sync all tagged pages
1776 */
1777 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1778 pages = LONG_MAX;
1a12d8bd 1779 else {
a88a341a 1780 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1781 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1782 pages = min(pages, work->nr_pages);
1783 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1784 MIN_WRITEBACK_PAGES);
1785 }
d46db3d5
WF
1786
1787 return pages;
1788}
1789
f11c9c5c
ES
1790/*
1791 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1792 *
d46db3d5 1793 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1794 *
1795 * NOTE! This is called with wb->list_lock held, and will
1796 * unlock and relock that for each inode it ends up doing
1797 * IO for.
f11c9c5c 1798 */
d46db3d5
WF
1799static long writeback_sb_inodes(struct super_block *sb,
1800 struct bdi_writeback *wb,
1801 struct wb_writeback_work *work)
1da177e4 1802{
d46db3d5
WF
1803 struct writeback_control wbc = {
1804 .sync_mode = work->sync_mode,
1805 .tagged_writepages = work->tagged_writepages,
1806 .for_kupdate = work->for_kupdate,
1807 .for_background = work->for_background,
7747bd4b 1808 .for_sync = work->for_sync,
d46db3d5
WF
1809 .range_cyclic = work->range_cyclic,
1810 .range_start = 0,
1811 .range_end = LLONG_MAX,
1812 };
1813 unsigned long start_time = jiffies;
1814 long write_chunk;
1815 long wrote = 0; /* count both pages and inodes */
1816
03ba3782 1817 while (!list_empty(&wb->b_io)) {
7ccf19a8 1818 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1819 struct bdi_writeback *tmp_wb;
edadfb10
CH
1820
1821 if (inode->i_sb != sb) {
d46db3d5 1822 if (work->sb) {
edadfb10
CH
1823 /*
1824 * We only want to write back data for this
1825 * superblock, move all inodes not belonging
1826 * to it back onto the dirty list.
1827 */
f758eeab 1828 redirty_tail(inode, wb);
edadfb10
CH
1829 continue;
1830 }
1831
1832 /*
1833 * The inode belongs to a different superblock.
1834 * Bounce back to the caller to unpin this and
1835 * pin the next superblock.
1836 */
d46db3d5 1837 break;
edadfb10
CH
1838 }
1839
9843b76a 1840 /*
331cbdee
WL
1841 * Don't bother with new inodes or inodes being freed, first
1842 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1843 * kind writeout is handled by the freer.
1844 */
250df6ed 1845 spin_lock(&inode->i_lock);
9843b76a 1846 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
b35250c0 1847 redirty_tail_locked(inode, wb);
250df6ed 1848 spin_unlock(&inode->i_lock);
7ef0d737
NP
1849 continue;
1850 }
cc1676d9
JK
1851 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1852 /*
1853 * If this inode is locked for writeback and we are not
1854 * doing writeback-for-data-integrity, move it to
1855 * b_more_io so that writeback can proceed with the
1856 * other inodes on s_io.
1857 *
1858 * We'll have another go at writing back this inode
1859 * when we completed a full scan of b_io.
1860 */
1861 spin_unlock(&inode->i_lock);
1862 requeue_io(inode, wb);
1863 trace_writeback_sb_inodes_requeue(inode);
1864 continue;
1865 }
f0d07b7f
JK
1866 spin_unlock(&wb->list_lock);
1867
4f8ad655
JK
1868 /*
1869 * We already requeued the inode if it had I_SYNC set and we
1870 * are doing WB_SYNC_NONE writeback. So this catches only the
1871 * WB_SYNC_ALL case.
1872 */
169ebd90
JK
1873 if (inode->i_state & I_SYNC) {
1874 /* Wait for I_SYNC. This function drops i_lock... */
1875 inode_sleep_on_writeback(inode);
1876 /* Inode may be gone, start again */
ead188f9 1877 spin_lock(&wb->list_lock);
169ebd90
JK
1878 continue;
1879 }
4f8ad655 1880 inode->i_state |= I_SYNC;
b16b1deb 1881 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1882
a88a341a 1883 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1884 wbc.nr_to_write = write_chunk;
1885 wbc.pages_skipped = 0;
250df6ed 1886
169ebd90
JK
1887 /*
1888 * We use I_SYNC to pin the inode in memory. While it is set
1889 * evict_inode() will wait so the inode cannot be freed.
1890 */
cd8ed2a4 1891 __writeback_single_inode(inode, &wbc);
250df6ed 1892
b16b1deb 1893 wbc_detach_inode(&wbc);
d46db3d5
WF
1894 work->nr_pages -= write_chunk - wbc.nr_to_write;
1895 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1896
1897 if (need_resched()) {
1898 /*
1899 * We're trying to balance between building up a nice
1900 * long list of IOs to improve our merge rate, and
1901 * getting those IOs out quickly for anyone throttling
1902 * in balance_dirty_pages(). cond_resched() doesn't
1903 * unplug, so get our IOs out the door before we
1904 * give up the CPU.
1905 */
008f75a2
CH
1906 if (current->plug)
1907 blk_flush_plug(current->plug, false);
590dca3a
CM
1908 cond_resched();
1909 }
1910
aaf25593
TH
1911 /*
1912 * Requeue @inode if still dirty. Be careful as @inode may
1913 * have been switched to another wb in the meantime.
1914 */
1915 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1916 spin_lock(&inode->i_lock);
0ae45f63 1917 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1918 wrote++;
aaf25593 1919 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1920 inode_sync_complete(inode);
0f1b1fd8 1921 spin_unlock(&inode->i_lock);
590dca3a 1922
aaf25593
TH
1923 if (unlikely(tmp_wb != wb)) {
1924 spin_unlock(&tmp_wb->list_lock);
1925 spin_lock(&wb->list_lock);
1926 }
1927
d46db3d5
WF
1928 /*
1929 * bail out to wb_writeback() often enough to check
1930 * background threshold and other termination conditions.
1931 */
1932 if (wrote) {
1933 if (time_is_before_jiffies(start_time + HZ / 10UL))
1934 break;
1935 if (work->nr_pages <= 0)
1936 break;
8bc3be27 1937 }
1da177e4 1938 }
d46db3d5 1939 return wrote;
f11c9c5c
ES
1940}
1941
d46db3d5
WF
1942static long __writeback_inodes_wb(struct bdi_writeback *wb,
1943 struct wb_writeback_work *work)
f11c9c5c 1944{
d46db3d5
WF
1945 unsigned long start_time = jiffies;
1946 long wrote = 0;
38f21977 1947
f11c9c5c 1948 while (!list_empty(&wb->b_io)) {
7ccf19a8 1949 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1950 struct super_block *sb = inode->i_sb;
9ecc2738 1951
eb6ef3df 1952 if (!trylock_super(sb)) {
0e995816 1953 /*
eb6ef3df 1954 * trylock_super() may fail consistently due to
0e995816
WF
1955 * s_umount being grabbed by someone else. Don't use
1956 * requeue_io() to avoid busy retrying the inode/sb.
1957 */
1958 redirty_tail(inode, wb);
edadfb10 1959 continue;
f11c9c5c 1960 }
d46db3d5 1961 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1962 up_read(&sb->s_umount);
f11c9c5c 1963
d46db3d5
WF
1964 /* refer to the same tests at the end of writeback_sb_inodes */
1965 if (wrote) {
1966 if (time_is_before_jiffies(start_time + HZ / 10UL))
1967 break;
1968 if (work->nr_pages <= 0)
1969 break;
1970 }
f11c9c5c 1971 }
66f3b8e2 1972 /* Leave any unwritten inodes on b_io */
d46db3d5 1973 return wrote;
66f3b8e2
JA
1974}
1975
7d9f073b 1976static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1977 enum wb_reason reason)
edadfb10 1978{
d46db3d5
WF
1979 struct wb_writeback_work work = {
1980 .nr_pages = nr_pages,
1981 .sync_mode = WB_SYNC_NONE,
1982 .range_cyclic = 1,
0e175a18 1983 .reason = reason,
d46db3d5 1984 };
505a666e 1985 struct blk_plug plug;
edadfb10 1986
505a666e 1987 blk_start_plug(&plug);
f758eeab 1988 spin_lock(&wb->list_lock);
424b351f 1989 if (list_empty(&wb->b_io))
f9cae926 1990 queue_io(wb, &work, jiffies);
d46db3d5 1991 __writeback_inodes_wb(wb, &work);
f758eeab 1992 spin_unlock(&wb->list_lock);
505a666e 1993 blk_finish_plug(&plug);
edadfb10 1994
d46db3d5
WF
1995 return nr_pages - work.nr_pages;
1996}
03ba3782 1997
03ba3782
JA
1998/*
1999 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 2000 *
03ba3782
JA
2001 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2002 * dirtying-time in the inode's address_space. So this periodic writeback code
2003 * just walks the superblock inode list, writing back any inodes which are
2004 * older than a specific point in time.
66f3b8e2 2005 *
03ba3782
JA
2006 * Try to run once per dirty_writeback_interval. But if a writeback event
2007 * takes longer than a dirty_writeback_interval interval, then leave a
2008 * one-second gap.
66f3b8e2 2009 *
f9cae926 2010 * dirtied_before takes precedence over nr_to_write. So we'll only write back
03ba3782 2011 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 2012 */
c4a77a6c 2013static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 2014 struct wb_writeback_work *work)
66f3b8e2 2015{
d46db3d5 2016 long nr_pages = work->nr_pages;
f9cae926 2017 unsigned long dirtied_before = jiffies;
a5989bdc 2018 struct inode *inode;
d46db3d5 2019 long progress;
505a666e 2020 struct blk_plug plug;
66f3b8e2 2021
505a666e 2022 blk_start_plug(&plug);
e8dfc305 2023 spin_lock(&wb->list_lock);
03ba3782
JA
2024 for (;;) {
2025 /*
d3ddec76 2026 * Stop writeback when nr_pages has been consumed
03ba3782 2027 */
83ba7b07 2028 if (work->nr_pages <= 0)
03ba3782 2029 break;
66f3b8e2 2030
aa373cf5
JK
2031 /*
2032 * Background writeout and kupdate-style writeback may
2033 * run forever. Stop them if there is other work to do
2034 * so that e.g. sync can proceed. They'll be restarted
2035 * after the other works are all done.
2036 */
2037 if ((work->for_background || work->for_kupdate) &&
f0054bb1 2038 !list_empty(&wb->work_list))
aa373cf5
JK
2039 break;
2040
38f21977 2041 /*
d3ddec76
WF
2042 * For background writeout, stop when we are below the
2043 * background dirty threshold
38f21977 2044 */
aa661bbe 2045 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 2046 break;
38f21977 2047
1bc36b64
JK
2048 /*
2049 * Kupdate and background works are special and we want to
2050 * include all inodes that need writing. Livelock avoidance is
2051 * handled by these works yielding to any other work so we are
2052 * safe.
2053 */
ba9aa839 2054 if (work->for_kupdate) {
f9cae926 2055 dirtied_before = jiffies -
ba9aa839 2056 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 2057 } else if (work->for_background)
f9cae926 2058 dirtied_before = jiffies;
028c2dd1 2059
5634cc2a 2060 trace_writeback_start(wb, work);
e8dfc305 2061 if (list_empty(&wb->b_io))
f9cae926 2062 queue_io(wb, work, dirtied_before);
83ba7b07 2063 if (work->sb)
d46db3d5 2064 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 2065 else
d46db3d5 2066 progress = __writeback_inodes_wb(wb, work);
5634cc2a 2067 trace_writeback_written(wb, work);
028c2dd1 2068
03ba3782 2069 /*
e6fb6da2
WF
2070 * Did we write something? Try for more
2071 *
2072 * Dirty inodes are moved to b_io for writeback in batches.
2073 * The completion of the current batch does not necessarily
2074 * mean the overall work is done. So we keep looping as long
2075 * as made some progress on cleaning pages or inodes.
03ba3782 2076 */
d46db3d5 2077 if (progress)
71fd05a8
JA
2078 continue;
2079 /*
e6fb6da2 2080 * No more inodes for IO, bail
71fd05a8 2081 */
b7a2441f 2082 if (list_empty(&wb->b_more_io))
03ba3782 2083 break;
71fd05a8
JA
2084 /*
2085 * Nothing written. Wait for some inode to
2086 * become available for writeback. Otherwise
2087 * we'll just busyloop.
2088 */
bace9248
TE
2089 trace_writeback_wait(wb, work);
2090 inode = wb_inode(wb->b_more_io.prev);
2091 spin_lock(&inode->i_lock);
2092 spin_unlock(&wb->list_lock);
2093 /* This function drops i_lock... */
2094 inode_sleep_on_writeback(inode);
2095 spin_lock(&wb->list_lock);
03ba3782 2096 }
e8dfc305 2097 spin_unlock(&wb->list_lock);
505a666e 2098 blk_finish_plug(&plug);
03ba3782 2099
d46db3d5 2100 return nr_pages - work->nr_pages;
03ba3782
JA
2101}
2102
2103/*
83ba7b07 2104 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 2105 */
f0054bb1 2106static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 2107{
83ba7b07 2108 struct wb_writeback_work *work = NULL;
03ba3782 2109
f0054bb1
TH
2110 spin_lock_bh(&wb->work_lock);
2111 if (!list_empty(&wb->work_list)) {
2112 work = list_entry(wb->work_list.next,
83ba7b07
CH
2113 struct wb_writeback_work, list);
2114 list_del_init(&work->list);
03ba3782 2115 }
f0054bb1 2116 spin_unlock_bh(&wb->work_lock);
83ba7b07 2117 return work;
03ba3782
JA
2118}
2119
6585027a
JK
2120static long wb_check_background_flush(struct bdi_writeback *wb)
2121{
aa661bbe 2122 if (wb_over_bg_thresh(wb)) {
6585027a
JK
2123
2124 struct wb_writeback_work work = {
2125 .nr_pages = LONG_MAX,
2126 .sync_mode = WB_SYNC_NONE,
2127 .for_background = 1,
2128 .range_cyclic = 1,
0e175a18 2129 .reason = WB_REASON_BACKGROUND,
6585027a
JK
2130 };
2131
2132 return wb_writeback(wb, &work);
2133 }
2134
2135 return 0;
2136}
2137
03ba3782
JA
2138static long wb_check_old_data_flush(struct bdi_writeback *wb)
2139{
2140 unsigned long expired;
2141 long nr_pages;
2142
69b62d01
JA
2143 /*
2144 * When set to zero, disable periodic writeback
2145 */
2146 if (!dirty_writeback_interval)
2147 return 0;
2148
03ba3782
JA
2149 expired = wb->last_old_flush +
2150 msecs_to_jiffies(dirty_writeback_interval * 10);
2151 if (time_before(jiffies, expired))
2152 return 0;
2153
2154 wb->last_old_flush = jiffies;
cdf01dd5 2155 nr_pages = get_nr_dirty_pages();
03ba3782 2156
c4a77a6c 2157 if (nr_pages) {
83ba7b07 2158 struct wb_writeback_work work = {
c4a77a6c
JA
2159 .nr_pages = nr_pages,
2160 .sync_mode = WB_SYNC_NONE,
2161 .for_kupdate = 1,
2162 .range_cyclic = 1,
0e175a18 2163 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
2164 };
2165
83ba7b07 2166 return wb_writeback(wb, &work);
c4a77a6c 2167 }
03ba3782
JA
2168
2169 return 0;
2170}
2171
85009b4f
JA
2172static long wb_check_start_all(struct bdi_writeback *wb)
2173{
2174 long nr_pages;
2175
2176 if (!test_bit(WB_start_all, &wb->state))
2177 return 0;
2178
2179 nr_pages = get_nr_dirty_pages();
2180 if (nr_pages) {
2181 struct wb_writeback_work work = {
2182 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2183 .sync_mode = WB_SYNC_NONE,
2184 .range_cyclic = 1,
2185 .reason = wb->start_all_reason,
2186 };
2187
2188 nr_pages = wb_writeback(wb, &work);
2189 }
2190
2191 clear_bit(WB_start_all, &wb->state);
2192 return nr_pages;
2193}
2194
2195
03ba3782
JA
2196/*
2197 * Retrieve work items and do the writeback they describe
2198 */
25d130ba 2199static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 2200{
83ba7b07 2201 struct wb_writeback_work *work;
c4a77a6c 2202 long wrote = 0;
03ba3782 2203
4452226e 2204 set_bit(WB_writeback_running, &wb->state);
f0054bb1 2205 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 2206 trace_writeback_exec(wb, work);
83ba7b07 2207 wrote += wb_writeback(wb, work);
4a3a485b 2208 finish_writeback_work(wb, work);
03ba3782
JA
2209 }
2210
85009b4f
JA
2211 /*
2212 * Check for a flush-everything request
2213 */
2214 wrote += wb_check_start_all(wb);
2215
03ba3782
JA
2216 /*
2217 * Check for periodic writeback, kupdated() style
2218 */
2219 wrote += wb_check_old_data_flush(wb);
6585027a 2220 wrote += wb_check_background_flush(wb);
4452226e 2221 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
2222
2223 return wrote;
2224}
2225
2226/*
2227 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 2228 * reschedules periodically and does kupdated style flushing.
03ba3782 2229 */
f0054bb1 2230void wb_workfn(struct work_struct *work)
03ba3782 2231{
839a8e86
TH
2232 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2233 struct bdi_writeback, dwork);
03ba3782
JA
2234 long pages_written;
2235
68f23b89 2236 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
766f9164 2237 current->flags |= PF_SWAPWRITE;
455b2864 2238
839a8e86 2239 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2240 !test_bit(WB_registered, &wb->state))) {
6467716a 2241 /*
f0054bb1 2242 * The normal path. Keep writing back @wb until its
839a8e86 2243 * work_list is empty. Note that this path is also taken
f0054bb1 2244 * if @wb is shutting down even when we're running off the
839a8e86 2245 * rescuer as work_list needs to be drained.
6467716a 2246 */
839a8e86 2247 do {
25d130ba 2248 pages_written = wb_do_writeback(wb);
839a8e86 2249 trace_writeback_pages_written(pages_written);
f0054bb1 2250 } while (!list_empty(&wb->work_list));
839a8e86
TH
2251 } else {
2252 /*
2253 * bdi_wq can't get enough workers and we're running off
2254 * the emergency worker. Don't hog it. Hopefully, 1024 is
2255 * enough for efficient IO.
2256 */
f0054bb1 2257 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2258 WB_REASON_FORKER_THREAD);
455b2864 2259 trace_writeback_pages_written(pages_written);
03ba3782
JA
2260 }
2261
f0054bb1 2262 if (!list_empty(&wb->work_list))
b8b78495 2263 wb_wakeup(wb);
6ca738d6 2264 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2265 wb_wakeup_delayed(wb);
455b2864 2266
839a8e86 2267 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2268}
2269
595043e5
JA
2270/*
2271 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2272 * write back the whole world.
2273 */
2274static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2275 enum wb_reason reason)
595043e5
JA
2276{
2277 struct bdi_writeback *wb;
2278
2279 if (!bdi_has_dirty_io(bdi))
2280 return;
2281
2282 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2283 wb_start_writeback(wb, reason);
595043e5
JA
2284}
2285
2286void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2287 enum wb_reason reason)
2288{
595043e5 2289 rcu_read_lock();
e8e8a0c6 2290 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2291 rcu_read_unlock();
2292}
2293
03ba3782 2294/*
9ba4b2df 2295 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2296 */
9ba4b2df 2297void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2298{
b8c2f347 2299 struct backing_dev_info *bdi;
03ba3782 2300
51350ea0
KK
2301 /*
2302 * If we are expecting writeback progress we must submit plugged IO.
2303 */
2304 if (blk_needs_flush_plug(current))
008f75a2 2305 blk_flush_plug(current->plug, true);
51350ea0 2306
b8c2f347 2307 rcu_read_lock();
595043e5 2308 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2309 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2310 rcu_read_unlock();
1da177e4
LT
2311}
2312
a2f48706
TT
2313/*
2314 * Wake up bdi's periodically to make sure dirtytime inodes gets
2315 * written back periodically. We deliberately do *not* check the
2316 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2317 * kernel to be constantly waking up once there are any dirtytime
2318 * inodes on the system. So instead we define a separate delayed work
2319 * function which gets called much more rarely. (By default, only
2320 * once every 12 hours.)
2321 *
2322 * If there is any other write activity going on in the file system,
2323 * this function won't be necessary. But if the only thing that has
2324 * happened on the file system is a dirtytime inode caused by an atime
2325 * update, we need this infrastructure below to make sure that inode
2326 * eventually gets pushed out to disk.
2327 */
2328static void wakeup_dirtytime_writeback(struct work_struct *w);
2329static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2330
2331static void wakeup_dirtytime_writeback(struct work_struct *w)
2332{
2333 struct backing_dev_info *bdi;
2334
2335 rcu_read_lock();
2336 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2337 struct bdi_writeback *wb;
001fe6f6 2338
b817525a 2339 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2340 if (!list_empty(&wb->b_dirty_time))
2341 wb_wakeup(wb);
a2f48706
TT
2342 }
2343 rcu_read_unlock();
2344 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2345}
2346
2347static int __init start_dirtytime_writeback(void)
2348{
2349 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2350 return 0;
2351}
2352__initcall(start_dirtytime_writeback);
2353
1efff914 2354int dirtytime_interval_handler(struct ctl_table *table, int write,
9ca48e20 2355 void *buffer, size_t *lenp, loff_t *ppos)
1efff914
TT
2356{
2357 int ret;
2358
2359 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2360 if (ret == 0 && write)
2361 mod_delayed_work(system_wq, &dirtytime_work, 0);
2362 return ret;
2363}
2364
03ba3782 2365/**
35d14f27 2366 * __mark_inode_dirty - internal function to mark an inode dirty
0117d427
MCC
2367 *
2368 * @inode: inode to mark
35d14f27
EB
2369 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2370 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2371 * with I_DIRTY_PAGES.
0117d427 2372 *
35d14f27
EB
2373 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2374 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
1da177e4 2375 *
35d14f27
EB
2376 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2377 * instead of calling this directly.
03ba3782 2378 *
35d14f27
EB
2379 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2380 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2381 * even if they are later hashed, as they will have been marked dirty already.
03ba3782 2382 *
35d14f27 2383 * In short, ensure you hash any inodes _before_ you start marking them dirty.
1da177e4 2384 *
03ba3782
JA
2385 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2386 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2387 * the kernel-internal blockdev inode represents the dirtying time of the
2388 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2389 * page->mapping->host, so the page-dirtying time is recorded in the internal
2390 * blockdev inode.
1da177e4 2391 */
03ba3782 2392void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2393{
03ba3782 2394 struct super_block *sb = inode->i_sb;
35d14f27 2395 int dirtytime = 0;
0ae45f63
TT
2396
2397 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2398
e2728c56 2399 if (flags & I_DIRTY_INODE) {
35d14f27
EB
2400 /*
2401 * Notify the filesystem about the inode being dirtied, so that
2402 * (if needed) it can update on-disk fields and journal the
2403 * inode. This is only needed when the inode itself is being
2404 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2405 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2406 */
9fb0a7da 2407 trace_writeback_dirty_inode_start(inode, flags);
03ba3782 2408 if (sb->s_op->dirty_inode)
a38ed483 2409 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
9fb0a7da 2410 trace_writeback_dirty_inode(inode, flags);
e2728c56 2411
35d14f27 2412 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
0ae45f63 2413 flags &= ~I_DIRTY_TIME;
35d14f27
EB
2414 } else {
2415 /*
2416 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2417 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2418 * in one call to __mark_inode_dirty().)
2419 */
2420 dirtytime = flags & I_DIRTY_TIME;
2421 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
e2728c56 2422 }
03ba3782
JA
2423
2424 /*
9c6ac78e
TH
2425 * Paired with smp_mb() in __writeback_single_inode() for the
2426 * following lockless i_state test. See there for details.
03ba3782
JA
2427 */
2428 smp_mb();
2429
0ae45f63
TT
2430 if (((inode->i_state & flags) == flags) ||
2431 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2432 return;
2433
250df6ed 2434 spin_lock(&inode->i_lock);
0ae45f63
TT
2435 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2436 goto out_unlock_inode;
03ba3782
JA
2437 if ((inode->i_state & flags) != flags) {
2438 const int was_dirty = inode->i_state & I_DIRTY;
2439
52ebea74
TH
2440 inode_attach_wb(inode, NULL);
2441
35d14f27 2442 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
0ae45f63
TT
2443 if (flags & I_DIRTY_INODE)
2444 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2445 inode->i_state |= flags;
2446
2447 /*
5afced3b
JK
2448 * If the inode is queued for writeback by flush worker, just
2449 * update its dirty state. Once the flush worker is done with
2450 * the inode it will place it on the appropriate superblock
2451 * list, based upon its state.
03ba3782 2452 */
5afced3b 2453 if (inode->i_state & I_SYNC_QUEUED)
250df6ed 2454 goto out_unlock_inode;
03ba3782
JA
2455
2456 /*
2457 * Only add valid (hashed) inodes to the superblock's
2458 * dirty list. Add blockdev inodes as well.
2459 */
2460 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2461 if (inode_unhashed(inode))
250df6ed 2462 goto out_unlock_inode;
03ba3782 2463 }
a4ffdde6 2464 if (inode->i_state & I_FREEING)
250df6ed 2465 goto out_unlock_inode;
03ba3782
JA
2466
2467 /*
2468 * If the inode was already on b_dirty/b_io/b_more_io, don't
2469 * reposition it (that would break b_dirty time-ordering).
2470 */
2471 if (!was_dirty) {
87e1d789 2472 struct bdi_writeback *wb;
d6c10f1f 2473 struct list_head *dirty_list;
a66979ab 2474 bool wakeup_bdi = false;
253c34e9 2475
87e1d789 2476 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2477
03ba3782 2478 inode->dirtied_when = jiffies;
a2f48706
TT
2479 if (dirtytime)
2480 inode->dirtied_time_when = jiffies;
d6c10f1f 2481
0e11f644 2482 if (inode->i_state & I_DIRTY)
0747259d 2483 dirty_list = &wb->b_dirty;
a2f48706 2484 else
0747259d 2485 dirty_list = &wb->b_dirty_time;
d6c10f1f 2486
c7f54084 2487 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2488 dirty_list);
2489
0747259d 2490 spin_unlock(&wb->list_lock);
0ae45f63 2491 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2492
d6c10f1f
TH
2493 /*
2494 * If this is the first dirty inode for this bdi,
2495 * we have to wake-up the corresponding bdi thread
2496 * to make sure background write-back happens
2497 * later.
2498 */
f56753ac
CH
2499 if (wakeup_bdi &&
2500 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
0747259d 2501 wb_wakeup_delayed(wb);
a66979ab 2502 return;
1da177e4 2503 }
1da177e4 2504 }
250df6ed
DC
2505out_unlock_inode:
2506 spin_unlock(&inode->i_lock);
03ba3782
JA
2507}
2508EXPORT_SYMBOL(__mark_inode_dirty);
2509
e97fedb9
DC
2510/*
2511 * The @s_sync_lock is used to serialise concurrent sync operations
2512 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2513 * Concurrent callers will block on the s_sync_lock rather than doing contending
2514 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2515 * has been issued up to the time this function is enter is guaranteed to be
2516 * completed by the time we have gained the lock and waited for all IO that is
2517 * in progress regardless of the order callers are granted the lock.
2518 */
b6e51316 2519static void wait_sb_inodes(struct super_block *sb)
03ba3782 2520{
6c60d2b5 2521 LIST_HEAD(sync_list);
03ba3782
JA
2522
2523 /*
2524 * We need to be protected against the filesystem going from
2525 * r/o to r/w or vice versa.
2526 */
b6e51316 2527 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2528
e97fedb9 2529 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2530
2531 /*
6c60d2b5
DC
2532 * Splice the writeback list onto a temporary list to avoid waiting on
2533 * inodes that have started writeback after this point.
2534 *
2535 * Use rcu_read_lock() to keep the inodes around until we have a
2536 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2537 * the local list because inodes can be dropped from either by writeback
2538 * completion.
2539 */
2540 rcu_read_lock();
2541 spin_lock_irq(&sb->s_inode_wblist_lock);
2542 list_splice_init(&sb->s_inodes_wb, &sync_list);
2543
2544 /*
2545 * Data integrity sync. Must wait for all pages under writeback, because
2546 * there may have been pages dirtied before our sync call, but which had
2547 * writeout started before we write it out. In which case, the inode
2548 * may not be on the dirty list, but we still have to wait for that
2549 * writeout.
03ba3782 2550 */
6c60d2b5
DC
2551 while (!list_empty(&sync_list)) {
2552 struct inode *inode = list_first_entry(&sync_list, struct inode,
2553 i_wb_list);
250df6ed 2554 struct address_space *mapping = inode->i_mapping;
03ba3782 2555
6c60d2b5
DC
2556 /*
2557 * Move each inode back to the wb list before we drop the lock
2558 * to preserve consistency between i_wb_list and the mapping
2559 * writeback tag. Writeback completion is responsible to remove
2560 * the inode from either list once the writeback tag is cleared.
2561 */
2562 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2563
2564 /*
2565 * The mapping can appear untagged while still on-list since we
2566 * do not have the mapping lock. Skip it here, wb completion
2567 * will remove it.
2568 */
2569 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2570 continue;
2571
2572 spin_unlock_irq(&sb->s_inode_wblist_lock);
2573
250df6ed 2574 spin_lock(&inode->i_lock);
6c60d2b5 2575 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2576 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2577
2578 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2579 continue;
250df6ed 2580 }
03ba3782 2581 __iget(inode);
250df6ed 2582 spin_unlock(&inode->i_lock);
6c60d2b5 2583 rcu_read_unlock();
03ba3782 2584
aa750fd7
JN
2585 /*
2586 * We keep the error status of individual mapping so that
2587 * applications can catch the writeback error using fsync(2).
2588 * See filemap_fdatawait_keep_errors() for details.
2589 */
2590 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2591
2592 cond_resched();
2593
6c60d2b5
DC
2594 iput(inode);
2595
2596 rcu_read_lock();
2597 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2598 }
6c60d2b5
DC
2599 spin_unlock_irq(&sb->s_inode_wblist_lock);
2600 rcu_read_unlock();
e97fedb9 2601 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2602}
2603
f30a7d0c
TH
2604static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2605 enum wb_reason reason, bool skip_if_busy)
1da177e4 2606{
5b9cce4c
TH
2607 struct backing_dev_info *bdi = sb->s_bdi;
2608 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2609 struct wb_writeback_work work = {
6e6938b6
WF
2610 .sb = sb,
2611 .sync_mode = WB_SYNC_NONE,
2612 .tagged_writepages = 1,
2613 .done = &done,
2614 .nr_pages = nr,
0e175a18 2615 .reason = reason,
3c4d7165 2616 };
d8a8559c 2617
e7972912 2618 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2619 return;
cf37e972 2620 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2621
db125360 2622 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
5b9cce4c 2623 wb_wait_for_completion(&done);
e913fc82 2624}
f30a7d0c
TH
2625
2626/**
2627 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2628 * @sb: the superblock
2629 * @nr: the number of pages to write
2630 * @reason: reason why some writeback work initiated
2631 *
2632 * Start writeback on some inodes on this super_block. No guarantees are made
2633 * on how many (if any) will be written, and this function does not wait
2634 * for IO completion of submitted IO.
2635 */
2636void writeback_inodes_sb_nr(struct super_block *sb,
2637 unsigned long nr,
2638 enum wb_reason reason)
2639{
2640 __writeback_inodes_sb_nr(sb, nr, reason, false);
2641}
3259f8be
CM
2642EXPORT_SYMBOL(writeback_inodes_sb_nr);
2643
2644/**
2645 * writeback_inodes_sb - writeback dirty inodes from given super_block
2646 * @sb: the superblock
786228ab 2647 * @reason: reason why some writeback work was initiated
3259f8be
CM
2648 *
2649 * Start writeback on some inodes on this super_block. No guarantees are made
2650 * on how many (if any) will be written, and this function does not wait
2651 * for IO completion of submitted IO.
2652 */
0e175a18 2653void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2654{
0e175a18 2655 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2656}
0e3c9a22 2657EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2658
17bd55d0 2659/**
8264c321 2660 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2661 * @sb: the superblock
8264c321 2662 * @reason: reason why some writeback work was initiated
17bd55d0 2663 *
8264c321 2664 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2665 */
8264c321 2666void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2667{
10ee27a0 2668 if (!down_read_trylock(&sb->s_umount))
8264c321 2669 return;
10ee27a0 2670
8264c321 2671 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2672 up_read(&sb->s_umount);
3259f8be 2673}
10ee27a0 2674EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2675
d8a8559c
JA
2676/**
2677 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2678 * @sb: the superblock
d8a8559c
JA
2679 *
2680 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2681 * super_block.
d8a8559c 2682 */
0dc83bd3 2683void sync_inodes_sb(struct super_block *sb)
d8a8559c 2684{
5b9cce4c
TH
2685 struct backing_dev_info *bdi = sb->s_bdi;
2686 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2687 struct wb_writeback_work work = {
3c4d7165
CH
2688 .sb = sb,
2689 .sync_mode = WB_SYNC_ALL,
2690 .nr_pages = LONG_MAX,
2691 .range_cyclic = 0,
83ba7b07 2692 .done = &done,
0e175a18 2693 .reason = WB_REASON_SYNC,
7747bd4b 2694 .for_sync = 1,
3c4d7165
CH
2695 };
2696
006a0973
TH
2697 /*
2698 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2699 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2700 * bdi_has_dirty() need to be written out too.
2701 */
2702 if (bdi == &noop_backing_dev_info)
6eedc701 2703 return;
cf37e972
CH
2704 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2705
7fc5854f
TH
2706 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2707 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2708 bdi_split_work_to_wbs(bdi, &work, false);
5b9cce4c 2709 wb_wait_for_completion(&done);
7fc5854f 2710 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2711
b6e51316 2712 wait_sb_inodes(sb);
1da177e4 2713}
d8a8559c 2714EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2715
1da177e4 2716/**
7f04c26d
AA
2717 * write_inode_now - write an inode to disk
2718 * @inode: inode to write to disk
2719 * @sync: whether the write should be synchronous or not
2720 *
2721 * This function commits an inode to disk immediately if it is dirty. This is
2722 * primarily needed by knfsd.
1da177e4 2723 *
7f04c26d 2724 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2725 */
1da177e4
LT
2726int write_inode_now(struct inode *inode, int sync)
2727{
1da177e4
LT
2728 struct writeback_control wbc = {
2729 .nr_to_write = LONG_MAX,
18914b18 2730 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2731 .range_start = 0,
2732 .range_end = LLONG_MAX,
1da177e4
LT
2733 };
2734
f56753ac 2735 if (!mapping_can_writeback(inode->i_mapping))
49364ce2 2736 wbc.nr_to_write = 0;
1da177e4
LT
2737
2738 might_sleep();
aaf25593 2739 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2740}
2741EXPORT_SYMBOL(write_inode_now);
2742
c3765016 2743/**
c691b9d9 2744 * sync_inode_metadata - write an inode to disk
c3765016
CH
2745 * @inode: the inode to sync
2746 * @wait: wait for I/O to complete.
2747 *
c691b9d9 2748 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2749 *
2750 * Note: only writes the actual inode, no associated data or other metadata.
2751 */
2752int sync_inode_metadata(struct inode *inode, int wait)
2753{
2754 struct writeback_control wbc = {
2755 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2756 .nr_to_write = 0, /* metadata-only */
2757 };
2758
5662c967 2759 return writeback_single_inode(inode, &wbc);
c3765016
CH
2760}
2761EXPORT_SYMBOL(sync_inode_metadata);