writeback, cgroup: release dying cgwbs by switching attached inodes
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
c4a77a6c
JA
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
83ba7b07 42struct wb_writeback_work {
c4a77a6c
JA
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
6e6938b6 46 unsigned int tagged_writepages:1;
52957fe1
HS
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
7747bd4b 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 51 unsigned int auto_free:1; /* free on completion */
0e175a18 52 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 53
8010c3b6 54 struct list_head list; /* pending work list */
cc395d7f 55 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
56};
57
a2f48706
TT
58/*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
7ccf19a8
NP
70static inline struct inode *wb_inode(struct list_head *head)
71{
c7f54084 72 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
73}
74
15eb77a0
WF
75/*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80#define CREATE_TRACE_POINTS
81#include <trace/events/writeback.h>
82
774016b2
SW
83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
d6c10f1f
TH
85static bool wb_io_lists_populated(struct bdi_writeback *wb)
86{
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
94 return true;
95 }
96}
97
98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99{
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 102 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 105 }
d6c10f1f
TH
106}
107
108/**
c7f54084 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
bbbc3c1c 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 113 *
c7f54084 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
c7f54084 118static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
119 struct bdi_writeback *wb,
120 struct list_head *head)
121{
122 assert_spin_locked(&wb->list_lock);
123
c7f54084 124 list_move(&inode->i_io_list, head);
d6c10f1f
TH
125
126 /* dirty_time doesn't count as dirty_io until expiration */
127 if (head != &wb->b_dirty_time)
128 return wb_io_lists_populated(wb);
129
130 wb_io_lists_depopulated(wb);
131 return false;
132}
133
f0054bb1 134static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 135{
f0054bb1
TH
136 spin_lock_bh(&wb->work_lock);
137 if (test_bit(WB_registered, &wb->state))
138 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
140}
141
4a3a485b
TE
142static void finish_writeback_work(struct bdi_writeback *wb,
143 struct wb_writeback_work *work)
144{
145 struct wb_completion *done = work->done;
146
147 if (work->auto_free)
148 kfree(work);
8e00c4e9
TH
149 if (done) {
150 wait_queue_head_t *waitq = done->waitq;
151
152 /* @done can't be accessed after the following dec */
153 if (atomic_dec_and_test(&done->cnt))
154 wake_up_all(waitq);
155 }
4a3a485b
TE
156}
157
f0054bb1
TH
158static void wb_queue_work(struct bdi_writeback *wb,
159 struct wb_writeback_work *work)
6585027a 160{
5634cc2a 161 trace_writeback_queue(wb, work);
6585027a 162
cc395d7f
TH
163 if (work->done)
164 atomic_inc(&work->done->cnt);
4a3a485b
TE
165
166 spin_lock_bh(&wb->work_lock);
167
168 if (test_bit(WB_registered, &wb->state)) {
169 list_add_tail(&work->list, &wb->work_list);
170 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171 } else
172 finish_writeback_work(wb, work);
173
f0054bb1 174 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
175}
176
cc395d7f
TH
177/**
178 * wb_wait_for_completion - wait for completion of bdi_writeback_works
cc395d7f
TH
179 * @done: target wb_completion
180 *
181 * Wait for one or more work items issued to @bdi with their ->done field
5b9cce4c
TH
182 * set to @done, which should have been initialized with
183 * DEFINE_WB_COMPLETION(). This function returns after all such work items
184 * are completed. Work items which are waited upon aren't freed
cc395d7f
TH
185 * automatically on completion.
186 */
5b9cce4c 187void wb_wait_for_completion(struct wb_completion *done)
cc395d7f
TH
188{
189 atomic_dec(&done->cnt); /* put down the initial count */
5b9cce4c 190 wait_event(*done->waitq, !atomic_read(&done->cnt));
cc395d7f
TH
191}
192
703c2708
TH
193#ifdef CONFIG_CGROUP_WRITEBACK
194
55a694df
TH
195/*
196 * Parameters for foreign inode detection, see wbc_detach_inode() to see
197 * how they're used.
198 *
199 * These paramters are inherently heuristical as the detection target
200 * itself is fuzzy. All we want to do is detaching an inode from the
201 * current owner if it's being written to by some other cgroups too much.
202 *
203 * The current cgroup writeback is built on the assumption that multiple
204 * cgroups writing to the same inode concurrently is very rare and a mode
205 * of operation which isn't well supported. As such, the goal is not
206 * taking too long when a different cgroup takes over an inode while
207 * avoiding too aggressive flip-flops from occasional foreign writes.
208 *
209 * We record, very roughly, 2s worth of IO time history and if more than
210 * half of that is foreign, trigger the switch. The recording is quantized
211 * to 16 slots. To avoid tiny writes from swinging the decision too much,
212 * writes smaller than 1/8 of avg size are ignored.
213 */
2a814908
TH
214#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
215#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 216#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
217#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
218
219#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
220#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221 /* each slot's duration is 2s / 16 */
222#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
223 /* if foreign slots >= 8, switch */
224#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225 /* one round can affect upto 5 slots */
6444f47e 226#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 227
c22d70a1
RG
228/*
229 * Maximum inodes per isw. A specific value has been chosen to make
230 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231 */
232#define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233 / sizeof(struct inode *))
234
a1a0e23e
TH
235static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236static struct workqueue_struct *isw_wq;
237
21c6321f
TH
238void __inode_attach_wb(struct inode *inode, struct page *page)
239{
240 struct backing_dev_info *bdi = inode_to_bdi(inode);
241 struct bdi_writeback *wb = NULL;
242
243 if (inode_cgwb_enabled(inode)) {
244 struct cgroup_subsys_state *memcg_css;
245
246 if (page) {
247 memcg_css = mem_cgroup_css_from_page(page);
248 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249 } else {
250 /* must pin memcg_css, see wb_get_create() */
251 memcg_css = task_get_css(current, memory_cgrp_id);
252 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253 css_put(memcg_css);
254 }
255 }
256
257 if (!wb)
258 wb = &bdi->wb;
259
260 /*
261 * There may be multiple instances of this function racing to
262 * update the same inode. Use cmpxchg() to tell the winner.
263 */
264 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265 wb_put(wb);
266}
9b0eb69b 267EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 268
f3b6a6df
RG
269/**
270 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271 * @inode: inode of interest with i_lock held
272 * @wb: target bdi_writeback
273 *
274 * Remove the inode from wb's io lists and if necessarily put onto b_attached
275 * list. Only inodes attached to cgwb's are kept on this list.
276 */
277static void inode_cgwb_move_to_attached(struct inode *inode,
278 struct bdi_writeback *wb)
279{
280 assert_spin_locked(&wb->list_lock);
281 assert_spin_locked(&inode->i_lock);
282
283 inode->i_state &= ~I_SYNC_QUEUED;
284 if (wb != &wb->bdi->wb)
285 list_move(&inode->i_io_list, &wb->b_attached);
286 else
287 list_del_init(&inode->i_io_list);
288 wb_io_lists_depopulated(wb);
289}
290
87e1d789
TH
291/**
292 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293 * @inode: inode of interest with i_lock held
294 *
295 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
296 * held on entry and is released on return. The returned wb is guaranteed
297 * to stay @inode's associated wb until its list_lock is released.
298 */
299static struct bdi_writeback *
300locked_inode_to_wb_and_lock_list(struct inode *inode)
301 __releases(&inode->i_lock)
302 __acquires(&wb->list_lock)
303{
304 while (true) {
305 struct bdi_writeback *wb = inode_to_wb(inode);
306
307 /*
308 * inode_to_wb() association is protected by both
309 * @inode->i_lock and @wb->list_lock but list_lock nests
310 * outside i_lock. Drop i_lock and verify that the
311 * association hasn't changed after acquiring list_lock.
312 */
313 wb_get(wb);
314 spin_unlock(&inode->i_lock);
315 spin_lock(&wb->list_lock);
87e1d789 316
aaa2cacf 317 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
318 if (likely(wb == inode->i_wb)) {
319 wb_put(wb); /* @inode already has ref */
320 return wb;
321 }
87e1d789
TH
322
323 spin_unlock(&wb->list_lock);
614a4e37 324 wb_put(wb);
87e1d789
TH
325 cpu_relax();
326 spin_lock(&inode->i_lock);
327 }
328}
329
330/**
331 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332 * @inode: inode of interest
333 *
334 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335 * on entry.
336 */
337static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338 __acquires(&wb->list_lock)
339{
340 spin_lock(&inode->i_lock);
341 return locked_inode_to_wb_and_lock_list(inode);
342}
343
682aa8e1 344struct inode_switch_wbs_context {
29264d92 345 struct rcu_work work;
f5fbe6b7
RG
346
347 /*
348 * Multiple inodes can be switched at once. The switching procedure
349 * consists of two parts, separated by a RCU grace period. To make
350 * sure that the second part is executed for each inode gone through
351 * the first part, all inode pointers are placed into a NULL-terminated
352 * array embedded into struct inode_switch_wbs_context. Otherwise
353 * an inode could be left in a non-consistent state.
354 */
355 struct bdi_writeback *new_wb;
356 struct inode *inodes[];
682aa8e1
TH
357};
358
7fc5854f
TH
359static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360{
361 down_write(&bdi->wb_switch_rwsem);
362}
363
364static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365{
366 up_write(&bdi->wb_switch_rwsem);
367}
368
f5fbe6b7
RG
369static bool inode_do_switch_wbs(struct inode *inode,
370 struct bdi_writeback *old_wb,
72d4512e 371 struct bdi_writeback *new_wb)
682aa8e1 372{
d10c8095 373 struct address_space *mapping = inode->i_mapping;
04edf02c
MW
374 XA_STATE(xas, &mapping->i_pages, 0);
375 struct page *page;
d10c8095 376 bool switched = false;
682aa8e1 377
682aa8e1 378 spin_lock(&inode->i_lock);
b93b0163 379 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
380
381 /*
4ade5867
RG
382 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383 * path owns the inode and we shouldn't modify ->i_io_list.
d10c8095 384 */
4ade5867 385 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
d10c8095
TH
386 goto skip_switch;
387
3a8e9ac8
TH
388 trace_inode_switch_wbs(inode, old_wb, new_wb);
389
d10c8095
TH
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 393 * pages actually under writeback.
d10c8095 394 */
04edf02c
MW
395 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 if (PageDirty(page)) {
3e8f399d
NB
397 dec_wb_stat(old_wb, WB_RECLAIMABLE);
398 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
399 }
400 }
401
04edf02c
MW
402 xas_set(&xas, 0);
403 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404 WARN_ON_ONCE(!PageWriteback(page));
405 dec_wb_stat(old_wb, WB_WRITEBACK);
406 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
407 }
408
409 wb_get(new_wb);
410
411 /*
f3b6a6df
RG
412 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
413 * the specific list @inode was on is ignored and the @inode is put on
414 * ->b_dirty which is always correct including from ->b_dirty_time.
415 * The transfer preserves @inode->dirtied_when ordering. If the @inode
416 * was clean, it means it was on the b_attached list, so move it onto
417 * the b_attached list of @new_wb.
d10c8095 418 */
c7f54084 419 if (!list_empty(&inode->i_io_list)) {
d10c8095 420 inode->i_wb = new_wb;
f3b6a6df
RG
421
422 if (inode->i_state & I_DIRTY_ALL) {
423 struct inode *pos;
424
425 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
426 if (time_after_eq(inode->dirtied_when,
427 pos->dirtied_when))
428 break;
429 inode_io_list_move_locked(inode, new_wb,
430 pos->i_io_list.prev);
431 } else {
432 inode_cgwb_move_to_attached(inode, new_wb);
433 }
d10c8095
TH
434 } else {
435 inode->i_wb = new_wb;
436 }
682aa8e1 437
d10c8095 438 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
439 inode->i_wb_frn_winner = 0;
440 inode->i_wb_frn_avg_time = 0;
441 inode->i_wb_frn_history = 0;
d10c8095
TH
442 switched = true;
443skip_switch:
682aa8e1
TH
444 /*
445 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 */
448 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
b93b0163 450 xa_unlock_irq(&mapping->i_pages);
682aa8e1 451 spin_unlock(&inode->i_lock);
7fc5854f 452
f5fbe6b7 453 return switched;
72d4512e 454}
d10c8095 455
72d4512e
RG
456static void inode_switch_wbs_work_fn(struct work_struct *work)
457{
458 struct inode_switch_wbs_context *isw =
459 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
f5fbe6b7
RG
460 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
461 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
462 struct bdi_writeback *new_wb = isw->new_wb;
463 unsigned long nr_switched = 0;
464 struct inode **inodep;
465
466 /*
467 * If @inode switches cgwb membership while sync_inodes_sb() is
468 * being issued, sync_inodes_sb() might miss it. Synchronize.
469 */
470 down_read(&bdi->wb_switch_rwsem);
471
472 /*
473 * By the time control reaches here, RCU grace period has passed
474 * since I_WB_SWITCH assertion and all wb stat update transactions
475 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
476 * synchronizing against the i_pages lock.
477 *
478 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
479 * gives us exclusion against all wb related operations on @inode
480 * including IO list manipulations and stat updates.
481 */
482 if (old_wb < new_wb) {
483 spin_lock(&old_wb->list_lock);
484 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
485 } else {
486 spin_lock(&new_wb->list_lock);
487 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
488 }
489
490 for (inodep = isw->inodes; *inodep; inodep++) {
491 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
492 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
493 nr_switched++;
494 }
495
496 spin_unlock(&new_wb->list_lock);
497 spin_unlock(&old_wb->list_lock);
498
499 up_read(&bdi->wb_switch_rwsem);
500
501 if (nr_switched) {
502 wb_wakeup(new_wb);
503 wb_put_many(old_wb, nr_switched);
504 }
a1a0e23e 505
f5fbe6b7
RG
506 for (inodep = isw->inodes; *inodep; inodep++)
507 iput(*inodep);
508 wb_put(new_wb);
72d4512e 509 kfree(isw);
a1a0e23e 510 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
511}
512
c22d70a1
RG
513static bool inode_prepare_wbs_switch(struct inode *inode,
514 struct bdi_writeback *new_wb)
515{
516 /*
517 * Paired with smp_mb() in cgroup_writeback_umount().
518 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
519 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
520 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
521 */
522 smp_mb();
523
524 /* while holding I_WB_SWITCH, no one else can update the association */
525 spin_lock(&inode->i_lock);
526 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
527 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
528 inode_to_wb(inode) == new_wb) {
529 spin_unlock(&inode->i_lock);
530 return false;
531 }
532 inode->i_state |= I_WB_SWITCH;
533 __iget(inode);
534 spin_unlock(&inode->i_lock);
535
536 return true;
537}
538
682aa8e1
TH
539/**
540 * inode_switch_wbs - change the wb association of an inode
541 * @inode: target inode
542 * @new_wb_id: ID of the new wb
543 *
544 * Switch @inode's wb association to the wb identified by @new_wb_id. The
545 * switching is performed asynchronously and may fail silently.
546 */
547static void inode_switch_wbs(struct inode *inode, int new_wb_id)
548{
549 struct backing_dev_info *bdi = inode_to_bdi(inode);
550 struct cgroup_subsys_state *memcg_css;
551 struct inode_switch_wbs_context *isw;
552
553 /* noop if seems to be already in progress */
554 if (inode->i_state & I_WB_SWITCH)
555 return;
556
6444f47e
TH
557 /* avoid queueing a new switch if too many are already in flight */
558 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
559 return;
560
f5fbe6b7 561 isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
682aa8e1 562 if (!isw)
6444f47e 563 return;
682aa8e1 564
8826ee4f
RG
565 atomic_inc(&isw_nr_in_flight);
566
682aa8e1
TH
567 /* find and pin the new wb */
568 rcu_read_lock();
569 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
570 if (memcg_css)
571 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
572 rcu_read_unlock();
573 if (!isw->new_wb)
574 goto out_free;
575
c22d70a1 576 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
a1a0e23e 577 goto out_free;
682aa8e1 578
f5fbe6b7 579 isw->inodes[0] = inode;
682aa8e1
TH
580
581 /*
582 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
583 * the RCU protected stat update paths to grab the i_page
584 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
585 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
586 */
29264d92
RG
587 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
588 queue_rcu_work(isw_wq, &isw->work);
6444f47e 589 return;
682aa8e1
TH
590
591out_free:
8826ee4f 592 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
593 if (isw->new_wb)
594 wb_put(isw->new_wb);
595 kfree(isw);
596}
597
c22d70a1
RG
598/**
599 * cleanup_offline_cgwb - detach associated inodes
600 * @wb: target wb
601 *
602 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
603 * to eventually release the dying @wb. Returns %true if not all inodes were
604 * switched and the function has to be restarted.
605 */
606bool cleanup_offline_cgwb(struct bdi_writeback *wb)
607{
608 struct cgroup_subsys_state *memcg_css;
609 struct inode_switch_wbs_context *isw;
610 struct inode *inode;
611 int nr;
612 bool restart = false;
613
614 isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
615 sizeof(struct inode *), GFP_KERNEL);
616 if (!isw)
617 return restart;
618
619 atomic_inc(&isw_nr_in_flight);
620
621 for (memcg_css = wb->memcg_css->parent; memcg_css;
622 memcg_css = memcg_css->parent) {
623 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
624 if (isw->new_wb)
625 break;
626 }
627 if (unlikely(!isw->new_wb))
628 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
629
630 nr = 0;
631 spin_lock(&wb->list_lock);
632 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
633 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
634 continue;
635
636 isw->inodes[nr++] = inode;
637
638 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
639 restart = true;
640 break;
641 }
642 }
643 spin_unlock(&wb->list_lock);
644
645 /* no attached inodes? bail out */
646 if (nr == 0) {
647 atomic_dec(&isw_nr_in_flight);
648 wb_put(isw->new_wb);
649 kfree(isw);
650 return restart;
651 }
652
653 /*
654 * In addition to synchronizing among switchers, I_WB_SWITCH tells
655 * the RCU protected stat update paths to grab the i_page
656 * lock so that stat transfer can synchronize against them.
657 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
658 */
659 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
660 queue_rcu_work(isw_wq, &isw->work);
661
662 return restart;
663}
664
b16b1deb
TH
665/**
666 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
667 * @wbc: writeback_control of interest
668 * @inode: target inode
669 *
670 * @inode is locked and about to be written back under the control of @wbc.
671 * Record @inode's writeback context into @wbc and unlock the i_lock. On
672 * writeback completion, wbc_detach_inode() should be called. This is used
673 * to track the cgroup writeback context.
674 */
675void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
676 struct inode *inode)
677{
dd73e4b7
TH
678 if (!inode_cgwb_enabled(inode)) {
679 spin_unlock(&inode->i_lock);
680 return;
681 }
682
b16b1deb 683 wbc->wb = inode_to_wb(inode);
2a814908
TH
684 wbc->inode = inode;
685
686 wbc->wb_id = wbc->wb->memcg_css->id;
687 wbc->wb_lcand_id = inode->i_wb_frn_winner;
688 wbc->wb_tcand_id = 0;
689 wbc->wb_bytes = 0;
690 wbc->wb_lcand_bytes = 0;
691 wbc->wb_tcand_bytes = 0;
692
b16b1deb
TH
693 wb_get(wbc->wb);
694 spin_unlock(&inode->i_lock);
e8a7abf5
TH
695
696 /*
65de03e2
TH
697 * A dying wb indicates that either the blkcg associated with the
698 * memcg changed or the associated memcg is dying. In the first
699 * case, a replacement wb should already be available and we should
700 * refresh the wb immediately. In the second case, trying to
701 * refresh will keep failing.
e8a7abf5 702 */
65de03e2 703 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
e8a7abf5 704 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 705}
9b0eb69b 706EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
707
708/**
2a814908
TH
709 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
710 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
711 *
712 * To be called after a writeback attempt of an inode finishes and undoes
713 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
714 *
715 * As concurrent write sharing of an inode is expected to be very rare and
716 * memcg only tracks page ownership on first-use basis severely confining
717 * the usefulness of such sharing, cgroup writeback tracks ownership
718 * per-inode. While the support for concurrent write sharing of an inode
719 * is deemed unnecessary, an inode being written to by different cgroups at
720 * different points in time is a lot more common, and, more importantly,
721 * charging only by first-use can too readily lead to grossly incorrect
722 * behaviors (single foreign page can lead to gigabytes of writeback to be
723 * incorrectly attributed).
724 *
725 * To resolve this issue, cgroup writeback detects the majority dirtier of
726 * an inode and transfers the ownership to it. To avoid unnnecessary
727 * oscillation, the detection mechanism keeps track of history and gives
728 * out the switch verdict only if the foreign usage pattern is stable over
729 * a certain amount of time and/or writeback attempts.
730 *
731 * On each writeback attempt, @wbc tries to detect the majority writer
732 * using Boyer-Moore majority vote algorithm. In addition to the byte
733 * count from the majority voting, it also counts the bytes written for the
734 * current wb and the last round's winner wb (max of last round's current
735 * wb, the winner from two rounds ago, and the last round's majority
736 * candidate). Keeping track of the historical winner helps the algorithm
737 * to semi-reliably detect the most active writer even when it's not the
738 * absolute majority.
739 *
740 * Once the winner of the round is determined, whether the winner is
741 * foreign or not and how much IO time the round consumed is recorded in
742 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
743 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
744 */
745void wbc_detach_inode(struct writeback_control *wbc)
746{
2a814908
TH
747 struct bdi_writeback *wb = wbc->wb;
748 struct inode *inode = wbc->inode;
dd73e4b7
TH
749 unsigned long avg_time, max_bytes, max_time;
750 u16 history;
2a814908
TH
751 int max_id;
752
dd73e4b7
TH
753 if (!wb)
754 return;
755
756 history = inode->i_wb_frn_history;
757 avg_time = inode->i_wb_frn_avg_time;
758
2a814908
TH
759 /* pick the winner of this round */
760 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
761 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
762 max_id = wbc->wb_id;
763 max_bytes = wbc->wb_bytes;
764 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
765 max_id = wbc->wb_lcand_id;
766 max_bytes = wbc->wb_lcand_bytes;
767 } else {
768 max_id = wbc->wb_tcand_id;
769 max_bytes = wbc->wb_tcand_bytes;
770 }
771
772 /*
773 * Calculate the amount of IO time the winner consumed and fold it
774 * into the running average kept per inode. If the consumed IO
775 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
776 * deciding whether to switch or not. This is to prevent one-off
777 * small dirtiers from skewing the verdict.
778 */
779 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
780 wb->avg_write_bandwidth);
781 if (avg_time)
782 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
783 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
784 else
785 avg_time = max_time; /* immediate catch up on first run */
786
787 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
788 int slots;
789
790 /*
791 * The switch verdict is reached if foreign wb's consume
792 * more than a certain proportion of IO time in a
793 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
794 * history mask where each bit represents one sixteenth of
795 * the period. Determine the number of slots to shift into
796 * history from @max_time.
797 */
798 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
799 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
800 history <<= slots;
801 if (wbc->wb_id != max_id)
802 history |= (1U << slots) - 1;
803
3a8e9ac8
TH
804 if (history)
805 trace_inode_foreign_history(inode, wbc, history);
806
2a814908
TH
807 /*
808 * Switch if the current wb isn't the consistent winner.
809 * If there are multiple closely competing dirtiers, the
810 * inode may switch across them repeatedly over time, which
811 * is okay. The main goal is avoiding keeping an inode on
812 * the wrong wb for an extended period of time.
813 */
682aa8e1
TH
814 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
815 inode_switch_wbs(inode, max_id);
2a814908
TH
816 }
817
818 /*
819 * Multiple instances of this function may race to update the
820 * following fields but we don't mind occassional inaccuracies.
821 */
822 inode->i_wb_frn_winner = max_id;
823 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
824 inode->i_wb_frn_history = history;
825
b16b1deb
TH
826 wb_put(wbc->wb);
827 wbc->wb = NULL;
828}
9b0eb69b 829EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 830
2a814908 831/**
34e51a5e 832 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
833 * @wbc: writeback_control of the writeback in progress
834 * @page: page being written out
835 * @bytes: number of bytes being written out
836 *
837 * @bytes from @page are about to written out during the writeback
838 * controlled by @wbc. Keep the book for foreign inode detection. See
839 * wbc_detach_inode().
840 */
34e51a5e
TH
841void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
842 size_t bytes)
2a814908 843{
66311422 844 struct cgroup_subsys_state *css;
2a814908
TH
845 int id;
846
847 /*
848 * pageout() path doesn't attach @wbc to the inode being written
849 * out. This is intentional as we don't want the function to block
850 * behind a slow cgroup. Ultimately, we want pageout() to kick off
851 * regular writeback instead of writing things out itself.
852 */
27b36d8f 853 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
854 return;
855
66311422
TH
856 css = mem_cgroup_css_from_page(page);
857 /* dead cgroups shouldn't contribute to inode ownership arbitration */
858 if (!(css->flags & CSS_ONLINE))
859 return;
860
861 id = css->id;
2a814908
TH
862
863 if (id == wbc->wb_id) {
864 wbc->wb_bytes += bytes;
865 return;
866 }
867
868 if (id == wbc->wb_lcand_id)
869 wbc->wb_lcand_bytes += bytes;
870
871 /* Boyer-Moore majority vote algorithm */
872 if (!wbc->wb_tcand_bytes)
873 wbc->wb_tcand_id = id;
874 if (id == wbc->wb_tcand_id)
875 wbc->wb_tcand_bytes += bytes;
876 else
877 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
878}
34e51a5e 879EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 880
703c2708
TH
881/**
882 * inode_congested - test whether an inode is congested
60292bcc 883 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
884 * @cong_bits: mask of WB_[a]sync_congested bits to test
885 *
886 * Tests whether @inode is congested. @cong_bits is the mask of congestion
887 * bits to test and the return value is the mask of set bits.
888 *
889 * If cgroup writeback is enabled for @inode, the congestion state is
890 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
891 * associated with @inode is congested; otherwise, the root wb's congestion
892 * state is used.
60292bcc
TH
893 *
894 * @inode is allowed to be NULL as this function is often called on
895 * mapping->host which is NULL for the swapper space.
703c2708
TH
896 */
897int inode_congested(struct inode *inode, int cong_bits)
898{
5cb8b824
TH
899 /*
900 * Once set, ->i_wb never becomes NULL while the inode is alive.
901 * Start transaction iff ->i_wb is visible.
902 */
aaa2cacf 903 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 904 struct bdi_writeback *wb;
2e898e4c
GT
905 struct wb_lock_cookie lock_cookie = {};
906 bool congested;
5cb8b824 907
2e898e4c 908 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 909 congested = wb_congested(wb, cong_bits);
2e898e4c 910 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 911 return congested;
703c2708
TH
912 }
913
914 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
915}
916EXPORT_SYMBOL_GPL(inode_congested);
917
f2b65121
TH
918/**
919 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
920 * @wb: target bdi_writeback to split @nr_pages to
921 * @nr_pages: number of pages to write for the whole bdi
922 *
923 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
924 * relation to the total write bandwidth of all wb's w/ dirty inodes on
925 * @wb->bdi.
926 */
927static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
928{
929 unsigned long this_bw = wb->avg_write_bandwidth;
930 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
931
932 if (nr_pages == LONG_MAX)
933 return LONG_MAX;
934
935 /*
936 * This may be called on clean wb's and proportional distribution
937 * may not make sense, just use the original @nr_pages in those
938 * cases. In general, we wanna err on the side of writing more.
939 */
940 if (!tot_bw || this_bw >= tot_bw)
941 return nr_pages;
942 else
943 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
944}
945
db125360
TH
946/**
947 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
948 * @bdi: target backing_dev_info
949 * @base_work: wb_writeback_work to issue
950 * @skip_if_busy: skip wb's which already have writeback in progress
951 *
952 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
953 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
954 * distributed to the busy wbs according to each wb's proportion in the
955 * total active write bandwidth of @bdi.
956 */
957static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
958 struct wb_writeback_work *base_work,
959 bool skip_if_busy)
960{
b817525a 961 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
962 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
963 struct bdi_writeback, bdi_node);
db125360
TH
964
965 might_sleep();
db125360
TH
966restart:
967 rcu_read_lock();
b817525a 968 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
5b9cce4c 969 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
8a1270cd
TH
970 struct wb_writeback_work fallback_work;
971 struct wb_writeback_work *work;
972 long nr_pages;
973
b817525a
TH
974 if (last_wb) {
975 wb_put(last_wb);
976 last_wb = NULL;
977 }
978
006a0973
TH
979 /* SYNC_ALL writes out I_DIRTY_TIME too */
980 if (!wb_has_dirty_io(wb) &&
981 (base_work->sync_mode == WB_SYNC_NONE ||
982 list_empty(&wb->b_dirty_time)))
983 continue;
984 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
985 continue;
986
8a1270cd
TH
987 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
988
989 work = kmalloc(sizeof(*work), GFP_ATOMIC);
990 if (work) {
991 *work = *base_work;
992 work->nr_pages = nr_pages;
993 work->auto_free = 1;
994 wb_queue_work(wb, work);
995 continue;
db125360 996 }
8a1270cd
TH
997
998 /* alloc failed, execute synchronously using on-stack fallback */
999 work = &fallback_work;
1000 *work = *base_work;
1001 work->nr_pages = nr_pages;
1002 work->auto_free = 0;
1003 work->done = &fallback_work_done;
1004
1005 wb_queue_work(wb, work);
1006
b817525a
TH
1007 /*
1008 * Pin @wb so that it stays on @bdi->wb_list. This allows
1009 * continuing iteration from @wb after dropping and
1010 * regrabbing rcu read lock.
1011 */
1012 wb_get(wb);
1013 last_wb = wb;
1014
8a1270cd 1015 rcu_read_unlock();
5b9cce4c 1016 wb_wait_for_completion(&fallback_work_done);
8a1270cd 1017 goto restart;
db125360
TH
1018 }
1019 rcu_read_unlock();
b817525a
TH
1020
1021 if (last_wb)
1022 wb_put(last_wb);
db125360
TH
1023}
1024
d62241c7
TH
1025/**
1026 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1027 * @bdi_id: target bdi id
1028 * @memcg_id: target memcg css id
b46ec1da 1029 * @nr: number of pages to write, 0 for best-effort dirty flushing
d62241c7
TH
1030 * @reason: reason why some writeback work initiated
1031 * @done: target wb_completion
1032 *
1033 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1034 * with the specified parameters.
1035 */
1036int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
1037 enum wb_reason reason, struct wb_completion *done)
1038{
1039 struct backing_dev_info *bdi;
1040 struct cgroup_subsys_state *memcg_css;
1041 struct bdi_writeback *wb;
1042 struct wb_writeback_work *work;
1043 int ret;
1044
1045 /* lookup bdi and memcg */
1046 bdi = bdi_get_by_id(bdi_id);
1047 if (!bdi)
1048 return -ENOENT;
1049
1050 rcu_read_lock();
1051 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1052 if (memcg_css && !css_tryget(memcg_css))
1053 memcg_css = NULL;
1054 rcu_read_unlock();
1055 if (!memcg_css) {
1056 ret = -ENOENT;
1057 goto out_bdi_put;
1058 }
1059
1060 /*
1061 * And find the associated wb. If the wb isn't there already
1062 * there's nothing to flush, don't create one.
1063 */
1064 wb = wb_get_lookup(bdi, memcg_css);
1065 if (!wb) {
1066 ret = -ENOENT;
1067 goto out_css_put;
1068 }
1069
1070 /*
1071 * If @nr is zero, the caller is attempting to write out most of
1072 * the currently dirty pages. Let's take the current dirty page
1073 * count and inflate it by 25% which should be large enough to
1074 * flush out most dirty pages while avoiding getting livelocked by
1075 * concurrent dirtiers.
1076 */
1077 if (!nr) {
1078 unsigned long filepages, headroom, dirty, writeback;
1079
1080 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
1081 &writeback);
1082 nr = dirty * 10 / 8;
1083 }
1084
1085 /* issue the writeback work */
1086 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1087 if (work) {
1088 work->nr_pages = nr;
1089 work->sync_mode = WB_SYNC_NONE;
1090 work->range_cyclic = 1;
1091 work->reason = reason;
1092 work->done = done;
1093 work->auto_free = 1;
1094 wb_queue_work(wb, work);
1095 ret = 0;
1096 } else {
1097 ret = -ENOMEM;
1098 }
1099
1100 wb_put(wb);
1101out_css_put:
1102 css_put(memcg_css);
1103out_bdi_put:
1104 bdi_put(bdi);
1105 return ret;
1106}
1107
a1a0e23e
TH
1108/**
1109 * cgroup_writeback_umount - flush inode wb switches for umount
1110 *
1111 * This function is called when a super_block is about to be destroyed and
1112 * flushes in-flight inode wb switches. An inode wb switch goes through
1113 * RCU and then workqueue, so the two need to be flushed in order to ensure
1114 * that all previously scheduled switches are finished. As wb switches are
1115 * rare occurrences and synchronize_rcu() can take a while, perform
1116 * flushing iff wb switches are in flight.
1117 */
1118void cgroup_writeback_umount(void)
1119{
592fa002
RG
1120 /*
1121 * SB_ACTIVE should be reliably cleared before checking
1122 * isw_nr_in_flight, see generic_shutdown_super().
1123 */
1124 smp_mb();
1125
a1a0e23e 1126 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
1127 /*
1128 * Use rcu_barrier() to wait for all pending callbacks to
1129 * ensure that all in-flight wb switches are in the workqueue.
1130 */
1131 rcu_barrier();
a1a0e23e
TH
1132 flush_workqueue(isw_wq);
1133 }
1134}
1135
1136static int __init cgroup_writeback_init(void)
1137{
1138 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1139 if (!isw_wq)
1140 return -ENOMEM;
1141 return 0;
1142}
1143fs_initcall(cgroup_writeback_init);
1144
f2b65121
TH
1145#else /* CONFIG_CGROUP_WRITEBACK */
1146
7fc5854f
TH
1147static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1148static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1149
f3b6a6df
RG
1150static void inode_cgwb_move_to_attached(struct inode *inode,
1151 struct bdi_writeback *wb)
1152{
1153 assert_spin_locked(&wb->list_lock);
1154 assert_spin_locked(&inode->i_lock);
1155
1156 inode->i_state &= ~I_SYNC_QUEUED;
1157 list_del_init(&inode->i_io_list);
1158 wb_io_lists_depopulated(wb);
1159}
1160
87e1d789
TH
1161static struct bdi_writeback *
1162locked_inode_to_wb_and_lock_list(struct inode *inode)
1163 __releases(&inode->i_lock)
1164 __acquires(&wb->list_lock)
1165{
1166 struct bdi_writeback *wb = inode_to_wb(inode);
1167
1168 spin_unlock(&inode->i_lock);
1169 spin_lock(&wb->list_lock);
1170 return wb;
1171}
1172
1173static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1174 __acquires(&wb->list_lock)
1175{
1176 struct bdi_writeback *wb = inode_to_wb(inode);
1177
1178 spin_lock(&wb->list_lock);
1179 return wb;
1180}
1181
f2b65121
TH
1182static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1183{
1184 return nr_pages;
1185}
1186
db125360
TH
1187static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1188 struct wb_writeback_work *base_work,
1189 bool skip_if_busy)
1190{
1191 might_sleep();
1192
006a0973 1193 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 1194 base_work->auto_free = 0;
db125360
TH
1195 wb_queue_work(&bdi->wb, base_work);
1196 }
1197}
1198
703c2708
TH
1199#endif /* CONFIG_CGROUP_WRITEBACK */
1200
e8e8a0c6
JA
1201/*
1202 * Add in the number of potentially dirty inodes, because each inode
1203 * write can dirty pagecache in the underlying blockdev.
1204 */
1205static unsigned long get_nr_dirty_pages(void)
1206{
1207 return global_node_page_state(NR_FILE_DIRTY) +
e8e8a0c6
JA
1208 get_nr_dirty_inodes();
1209}
1210
1211static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1212{
c00ddad3
TH
1213 if (!wb_has_dirty_io(wb))
1214 return;
1215
aac8d41c
JA
1216 /*
1217 * All callers of this function want to start writeback of all
1218 * dirty pages. Places like vmscan can call this at a very
1219 * high frequency, causing pointless allocations of tons of
1220 * work items and keeping the flusher threads busy retrieving
1221 * that work. Ensure that we only allow one of them pending and
85009b4f 1222 * inflight at the time.
aac8d41c 1223 */
85009b4f
JA
1224 if (test_bit(WB_start_all, &wb->state) ||
1225 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1226 return;
1227
85009b4f
JA
1228 wb->start_all_reason = reason;
1229 wb_wakeup(wb);
c5444198 1230}
d3ddec76 1231
c5444198 1232/**
9ecf4866
TH
1233 * wb_start_background_writeback - start background writeback
1234 * @wb: bdi_writback to write from
c5444198
CH
1235 *
1236 * Description:
6585027a 1237 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1238 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1239 * some IO is happening if we are over background dirty threshold.
1240 * Caller need not hold sb s_umount semaphore.
c5444198 1241 */
9ecf4866 1242void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1243{
6585027a
JK
1244 /*
1245 * We just wake up the flusher thread. It will perform background
1246 * writeback as soon as there is no other work to do.
1247 */
5634cc2a 1248 trace_writeback_wake_background(wb);
9ecf4866 1249 wb_wakeup(wb);
1da177e4
LT
1250}
1251
a66979ab
DC
1252/*
1253 * Remove the inode from the writeback list it is on.
1254 */
c7f54084 1255void inode_io_list_del(struct inode *inode)
a66979ab 1256{
87e1d789 1257 struct bdi_writeback *wb;
f758eeab 1258
87e1d789 1259 wb = inode_to_wb_and_lock_list(inode);
b35250c0 1260 spin_lock(&inode->i_lock);
f3b6a6df
RG
1261
1262 inode->i_state &= ~I_SYNC_QUEUED;
1263 list_del_init(&inode->i_io_list);
1264 wb_io_lists_depopulated(wb);
1265
b35250c0 1266 spin_unlock(&inode->i_lock);
52ebea74 1267 spin_unlock(&wb->list_lock);
a66979ab 1268}
4301efa4 1269EXPORT_SYMBOL(inode_io_list_del);
a66979ab 1270
6c60d2b5
DC
1271/*
1272 * mark an inode as under writeback on the sb
1273 */
1274void sb_mark_inode_writeback(struct inode *inode)
1275{
1276 struct super_block *sb = inode->i_sb;
1277 unsigned long flags;
1278
1279 if (list_empty(&inode->i_wb_list)) {
1280 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1281 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1282 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1283 trace_sb_mark_inode_writeback(inode);
1284 }
6c60d2b5
DC
1285 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1286 }
1287}
1288
1289/*
1290 * clear an inode as under writeback on the sb
1291 */
1292void sb_clear_inode_writeback(struct inode *inode)
1293{
1294 struct super_block *sb = inode->i_sb;
1295 unsigned long flags;
1296
1297 if (!list_empty(&inode->i_wb_list)) {
1298 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1299 if (!list_empty(&inode->i_wb_list)) {
1300 list_del_init(&inode->i_wb_list);
1301 trace_sb_clear_inode_writeback(inode);
1302 }
6c60d2b5
DC
1303 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1304 }
1305}
1306
6610a0bc
AM
1307/*
1308 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1309 * furthest end of its superblock's dirty-inode list.
1310 *
1311 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1312 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1313 * the case then the inode must have been redirtied while it was being written
1314 * out and we don't reset its dirtied_when.
1315 */
b35250c0 1316static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1317{
b35250c0
JK
1318 assert_spin_locked(&inode->i_lock);
1319
03ba3782 1320 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1321 struct inode *tail;
6610a0bc 1322
7ccf19a8 1323 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1324 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1325 inode->dirtied_when = jiffies;
1326 }
c7f54084 1327 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
5afced3b 1328 inode->i_state &= ~I_SYNC_QUEUED;
6610a0bc
AM
1329}
1330
b35250c0
JK
1331static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1332{
1333 spin_lock(&inode->i_lock);
1334 redirty_tail_locked(inode, wb);
1335 spin_unlock(&inode->i_lock);
1336}
1337
c986d1e2 1338/*
66f3b8e2 1339 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1340 */
f758eeab 1341static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1342{
c7f54084 1343 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1344}
1345
1c0eeaf5
JE
1346static void inode_sync_complete(struct inode *inode)
1347{
365b94ae 1348 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1349 /* If inode is clean an unused, put it into LRU now... */
1350 inode_add_lru(inode);
365b94ae 1351 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1352 smp_mb();
1353 wake_up_bit(&inode->i_state, __I_SYNC);
1354}
1355
d2caa3c5
JL
1356static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1357{
1358 bool ret = time_after(inode->dirtied_when, t);
1359#ifndef CONFIG_64BIT
1360 /*
1361 * For inodes being constantly redirtied, dirtied_when can get stuck.
1362 * It _appears_ to be in the future, but is actually in distant past.
1363 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1364 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1365 */
1366 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1367#endif
1368 return ret;
1369}
1370
0ae45f63
TT
1371#define EXPIRE_DIRTY_ATIME 0x0001
1372
2c136579 1373/*
f9cae926 1374 * Move expired (dirtied before dirtied_before) dirty inodes from
697e6fed 1375 * @delaying_queue to @dispatch_queue.
2c136579 1376 */
e84d0a4f 1377static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1378 struct list_head *dispatch_queue,
5fcd5750 1379 unsigned long dirtied_before)
2c136579 1380{
5c03449d
SL
1381 LIST_HEAD(tmp);
1382 struct list_head *pos, *node;
cf137307 1383 struct super_block *sb = NULL;
5c03449d 1384 struct inode *inode;
cf137307 1385 int do_sb_sort = 0;
e84d0a4f 1386 int moved = 0;
5c03449d 1387
2c136579 1388 while (!list_empty(delaying_queue)) {
7ccf19a8 1389 inode = wb_inode(delaying_queue->prev);
f9cae926 1390 if (inode_dirtied_after(inode, dirtied_before))
2c136579 1391 break;
c7f54084 1392 list_move(&inode->i_io_list, &tmp);
a8855990 1393 moved++;
5afced3b 1394 spin_lock(&inode->i_lock);
5afced3b
JK
1395 inode->i_state |= I_SYNC_QUEUED;
1396 spin_unlock(&inode->i_lock);
a8855990
JK
1397 if (sb_is_blkdev_sb(inode->i_sb))
1398 continue;
cf137307
JA
1399 if (sb && sb != inode->i_sb)
1400 do_sb_sort = 1;
1401 sb = inode->i_sb;
5c03449d
SL
1402 }
1403
cf137307
JA
1404 /* just one sb in list, splice to dispatch_queue and we're done */
1405 if (!do_sb_sort) {
1406 list_splice(&tmp, dispatch_queue);
e84d0a4f 1407 goto out;
cf137307
JA
1408 }
1409
5c03449d
SL
1410 /* Move inodes from one superblock together */
1411 while (!list_empty(&tmp)) {
7ccf19a8 1412 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1413 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1414 inode = wb_inode(pos);
5c03449d 1415 if (inode->i_sb == sb)
c7f54084 1416 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1417 }
2c136579 1418 }
e84d0a4f
WF
1419out:
1420 return moved;
2c136579
FW
1421}
1422
1423/*
1424 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1425 * Before
1426 * newly dirtied b_dirty b_io b_more_io
1427 * =============> gf edc BA
1428 * After
1429 * newly dirtied b_dirty b_io b_more_io
1430 * =============> g fBAedc
1431 * |
1432 * +--> dequeue for IO
2c136579 1433 */
f9cae926
JK
1434static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1435 unsigned long dirtied_before)
66f3b8e2 1436{
e84d0a4f 1437 int moved;
f9cae926 1438 unsigned long time_expire_jif = dirtied_before;
0ae45f63 1439
f758eeab 1440 assert_spin_locked(&wb->list_lock);
4ea879b9 1441 list_splice_init(&wb->b_more_io, &wb->b_io);
5fcd5750 1442 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
f9cae926
JK
1443 if (!work->for_sync)
1444 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
0ae45f63 1445 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
5fcd5750 1446 time_expire_jif);
d6c10f1f
TH
1447 if (moved)
1448 wb_io_lists_populated(wb);
f9cae926 1449 trace_writeback_queue_io(wb, work, dirtied_before, moved);
66f3b8e2
JA
1450}
1451
a9185b41 1452static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1453{
9fb0a7da
TH
1454 int ret;
1455
1456 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1457 trace_writeback_write_inode_start(inode, wbc);
1458 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1459 trace_writeback_write_inode(inode, wbc);
1460 return ret;
1461 }
03ba3782 1462 return 0;
08d8e974 1463}
08d8e974 1464
1da177e4 1465/*
169ebd90
JK
1466 * Wait for writeback on an inode to complete. Called with i_lock held.
1467 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1468 */
169ebd90
JK
1469static void __inode_wait_for_writeback(struct inode *inode)
1470 __releases(inode->i_lock)
1471 __acquires(inode->i_lock)
01c03194
CH
1472{
1473 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1474 wait_queue_head_t *wqh;
1475
1476 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1477 while (inode->i_state & I_SYNC) {
1478 spin_unlock(&inode->i_lock);
74316201
N
1479 __wait_on_bit(wqh, &wq, bit_wait,
1480 TASK_UNINTERRUPTIBLE);
250df6ed 1481 spin_lock(&inode->i_lock);
58a9d3d8 1482 }
01c03194
CH
1483}
1484
169ebd90
JK
1485/*
1486 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1487 */
1488void inode_wait_for_writeback(struct inode *inode)
1489{
1490 spin_lock(&inode->i_lock);
1491 __inode_wait_for_writeback(inode);
1492 spin_unlock(&inode->i_lock);
1493}
1494
1495/*
1496 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1497 * held and drops it. It is aimed for callers not holding any inode reference
1498 * so once i_lock is dropped, inode can go away.
1499 */
1500static void inode_sleep_on_writeback(struct inode *inode)
1501 __releases(inode->i_lock)
1502{
1503 DEFINE_WAIT(wait);
1504 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1505 int sleep;
1506
1507 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1508 sleep = inode->i_state & I_SYNC;
1509 spin_unlock(&inode->i_lock);
1510 if (sleep)
1511 schedule();
1512 finish_wait(wqh, &wait);
1513}
1514
ccb26b5a
JK
1515/*
1516 * Find proper writeback list for the inode depending on its current state and
1517 * possibly also change of its state while we were doing writeback. Here we
1518 * handle things such as livelock prevention or fairness of writeback among
1519 * inodes. This function can be called only by flusher thread - noone else
1520 * processes all inodes in writeback lists and requeueing inodes behind flusher
1521 * thread's back can have unexpected consequences.
1522 */
1523static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1524 struct writeback_control *wbc)
1525{
1526 if (inode->i_state & I_FREEING)
1527 return;
1528
1529 /*
1530 * Sync livelock prevention. Each inode is tagged and synced in one
1531 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1532 * the dirty time to prevent enqueue and sync it again.
1533 */
1534 if ((inode->i_state & I_DIRTY) &&
1535 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1536 inode->dirtied_when = jiffies;
1537
4f8ad655
JK
1538 if (wbc->pages_skipped) {
1539 /*
1540 * writeback is not making progress due to locked
1541 * buffers. Skip this inode for now.
1542 */
b35250c0 1543 redirty_tail_locked(inode, wb);
4f8ad655
JK
1544 return;
1545 }
1546
ccb26b5a
JK
1547 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1548 /*
1549 * We didn't write back all the pages. nfs_writepages()
1550 * sometimes bales out without doing anything.
1551 */
1552 if (wbc->nr_to_write <= 0) {
1553 /* Slice used up. Queue for next turn. */
1554 requeue_io(inode, wb);
1555 } else {
1556 /*
1557 * Writeback blocked by something other than
1558 * congestion. Delay the inode for some time to
1559 * avoid spinning on the CPU (100% iowait)
1560 * retrying writeback of the dirty page/inode
1561 * that cannot be performed immediately.
1562 */
b35250c0 1563 redirty_tail_locked(inode, wb);
ccb26b5a
JK
1564 }
1565 } else if (inode->i_state & I_DIRTY) {
1566 /*
1567 * Filesystems can dirty the inode during writeback operations,
1568 * such as delayed allocation during submission or metadata
1569 * updates after data IO completion.
1570 */
b35250c0 1571 redirty_tail_locked(inode, wb);
0ae45f63 1572 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1573 inode->dirtied_when = jiffies;
c7f54084 1574 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
5afced3b 1575 inode->i_state &= ~I_SYNC_QUEUED;
ccb26b5a
JK
1576 } else {
1577 /* The inode is clean. Remove from writeback lists. */
f3b6a6df 1578 inode_cgwb_move_to_attached(inode, wb);
ccb26b5a
JK
1579 }
1580}
1581
01c03194 1582/*
da0c4c60
EB
1583 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1584 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1585 *
1586 * This doesn't remove the inode from the writeback list it is on, except
1587 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1588 * expiration. The caller is otherwise responsible for writeback list handling.
1589 *
1590 * The caller is also responsible for setting the I_SYNC flag beforehand and
1591 * calling inode_sync_complete() to clear it afterwards.
1da177e4
LT
1592 */
1593static int
cd8ed2a4 1594__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1595{
1da177e4 1596 struct address_space *mapping = inode->i_mapping;
251d6a47 1597 long nr_to_write = wbc->nr_to_write;
01c03194 1598 unsigned dirty;
1da177e4
LT
1599 int ret;
1600
4f8ad655 1601 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1602
9fb0a7da
TH
1603 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1604
1da177e4
LT
1605 ret = do_writepages(mapping, wbc);
1606
26821ed4
CH
1607 /*
1608 * Make sure to wait on the data before writing out the metadata.
1609 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1610 * I/O completion. We don't do it for sync(2) writeback because it has a
1611 * separate, external IO completion path and ->sync_fs for guaranteeing
1612 * inode metadata is written back correctly.
26821ed4 1613 */
7747bd4b 1614 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1615 int err = filemap_fdatawait(mapping);
1da177e4
LT
1616 if (ret == 0)
1617 ret = err;
1618 }
1619
5547e8aa 1620 /*
1e249cb5
EB
1621 * If the inode has dirty timestamps and we need to write them, call
1622 * mark_inode_dirty_sync() to notify the filesystem about it and to
1623 * change I_DIRTY_TIME into I_DIRTY_SYNC.
5547e8aa 1624 */
5fcd5750 1625 if ((inode->i_state & I_DIRTY_TIME) &&
83dc881d 1626 (wbc->sync_mode == WB_SYNC_ALL ||
5fcd5750
JK
1627 time_after(jiffies, inode->dirtied_time_when +
1628 dirtytime_expire_interval * HZ))) {
5fcd5750 1629 trace_writeback_lazytime(inode);
1e249cb5 1630 mark_inode_dirty_sync(inode);
5fcd5750 1631 }
1e249cb5
EB
1632
1633 /*
da0c4c60
EB
1634 * Get and clear the dirty flags from i_state. This needs to be done
1635 * after calling writepages because some filesystems may redirty the
1636 * inode during writepages due to delalloc. It also needs to be done
1637 * after handling timestamp expiration, as that may dirty the inode too.
1e249cb5
EB
1638 */
1639 spin_lock(&inode->i_lock);
1640 dirty = inode->i_state & I_DIRTY;
0ae45f63 1641 inode->i_state &= ~dirty;
9c6ac78e
TH
1642
1643 /*
1644 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1645 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1646 * either they see the I_DIRTY bits cleared or we see the dirtied
1647 * inode.
1648 *
1649 * I_DIRTY_PAGES is always cleared together above even if @mapping
1650 * still has dirty pages. The flag is reinstated after smp_mb() if
1651 * necessary. This guarantees that either __mark_inode_dirty()
1652 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1653 */
1654 smp_mb();
1655
1656 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1657 inode->i_state |= I_DIRTY_PAGES;
1658
250df6ed 1659 spin_unlock(&inode->i_lock);
9c6ac78e 1660
26821ed4 1661 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1662 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1663 int err = write_inode(inode, wbc);
1da177e4
LT
1664 if (ret == 0)
1665 ret = err;
1666 }
4f8ad655
JK
1667 trace_writeback_single_inode(inode, wbc, nr_to_write);
1668 return ret;
1669}
1670
1671/*
da0c4c60
EB
1672 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1673 * the regular batched writeback done by the flusher threads in
1674 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1675 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
4f8ad655 1676 *
da0c4c60
EB
1677 * To prevent the inode from going away, either the caller must have a reference
1678 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
4f8ad655 1679 */
aaf25593
TH
1680static int writeback_single_inode(struct inode *inode,
1681 struct writeback_control *wbc)
4f8ad655 1682{
aaf25593 1683 struct bdi_writeback *wb;
4f8ad655
JK
1684 int ret = 0;
1685
1686 spin_lock(&inode->i_lock);
1687 if (!atomic_read(&inode->i_count))
1688 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1689 else
1690 WARN_ON(inode->i_state & I_WILL_FREE);
1691
1692 if (inode->i_state & I_SYNC) {
4f8ad655 1693 /*
da0c4c60
EB
1694 * Writeback is already running on the inode. For WB_SYNC_NONE,
1695 * that's enough and we can just return. For WB_SYNC_ALL, we
1696 * must wait for the existing writeback to complete, then do
1697 * writeback again if there's anything left.
4f8ad655 1698 */
da0c4c60
EB
1699 if (wbc->sync_mode != WB_SYNC_ALL)
1700 goto out;
169ebd90 1701 __inode_wait_for_writeback(inode);
4f8ad655
JK
1702 }
1703 WARN_ON(inode->i_state & I_SYNC);
1704 /*
da0c4c60
EB
1705 * If the inode is already fully clean, then there's nothing to do.
1706 *
1707 * For data-integrity syncs we also need to check whether any pages are
1708 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1709 * there are any such pages, we'll need to wait for them.
4f8ad655 1710 */
0ae45f63 1711 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1712 (wbc->sync_mode != WB_SYNC_ALL ||
1713 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1714 goto out;
1715 inode->i_state |= I_SYNC;
b16b1deb 1716 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1717
cd8ed2a4 1718 ret = __writeback_single_inode(inode, wbc);
1da177e4 1719
b16b1deb 1720 wbc_detach_inode(wbc);
aaf25593
TH
1721
1722 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1723 spin_lock(&inode->i_lock);
4f8ad655 1724 /*
da0c4c60
EB
1725 * If the inode is now fully clean, then it can be safely removed from
1726 * its writeback list (if any). Otherwise the flusher threads are
1727 * responsible for the writeback lists.
4f8ad655 1728 */
0ae45f63 1729 if (!(inode->i_state & I_DIRTY_ALL))
f3b6a6df 1730 inode_cgwb_move_to_attached(inode, wb);
4f8ad655 1731 spin_unlock(&wb->list_lock);
1c0eeaf5 1732 inode_sync_complete(inode);
4f8ad655
JK
1733out:
1734 spin_unlock(&inode->i_lock);
1da177e4
LT
1735 return ret;
1736}
1737
a88a341a 1738static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1739 struct wb_writeback_work *work)
d46db3d5
WF
1740{
1741 long pages;
1742
1743 /*
1744 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1745 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1746 * here avoids calling into writeback_inodes_wb() more than once.
1747 *
1748 * The intended call sequence for WB_SYNC_ALL writeback is:
1749 *
1750 * wb_writeback()
1751 * writeback_sb_inodes() <== called only once
1752 * write_cache_pages() <== called once for each inode
1753 * (quickly) tag currently dirty pages
1754 * (maybe slowly) sync all tagged pages
1755 */
1756 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1757 pages = LONG_MAX;
1a12d8bd 1758 else {
a88a341a 1759 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1760 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1761 pages = min(pages, work->nr_pages);
1762 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1763 MIN_WRITEBACK_PAGES);
1764 }
d46db3d5
WF
1765
1766 return pages;
1767}
1768
f11c9c5c
ES
1769/*
1770 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1771 *
d46db3d5 1772 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1773 *
1774 * NOTE! This is called with wb->list_lock held, and will
1775 * unlock and relock that for each inode it ends up doing
1776 * IO for.
f11c9c5c 1777 */
d46db3d5
WF
1778static long writeback_sb_inodes(struct super_block *sb,
1779 struct bdi_writeback *wb,
1780 struct wb_writeback_work *work)
1da177e4 1781{
d46db3d5
WF
1782 struct writeback_control wbc = {
1783 .sync_mode = work->sync_mode,
1784 .tagged_writepages = work->tagged_writepages,
1785 .for_kupdate = work->for_kupdate,
1786 .for_background = work->for_background,
7747bd4b 1787 .for_sync = work->for_sync,
d46db3d5
WF
1788 .range_cyclic = work->range_cyclic,
1789 .range_start = 0,
1790 .range_end = LLONG_MAX,
1791 };
1792 unsigned long start_time = jiffies;
1793 long write_chunk;
1794 long wrote = 0; /* count both pages and inodes */
1795
03ba3782 1796 while (!list_empty(&wb->b_io)) {
7ccf19a8 1797 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1798 struct bdi_writeback *tmp_wb;
edadfb10
CH
1799
1800 if (inode->i_sb != sb) {
d46db3d5 1801 if (work->sb) {
edadfb10
CH
1802 /*
1803 * We only want to write back data for this
1804 * superblock, move all inodes not belonging
1805 * to it back onto the dirty list.
1806 */
f758eeab 1807 redirty_tail(inode, wb);
edadfb10
CH
1808 continue;
1809 }
1810
1811 /*
1812 * The inode belongs to a different superblock.
1813 * Bounce back to the caller to unpin this and
1814 * pin the next superblock.
1815 */
d46db3d5 1816 break;
edadfb10
CH
1817 }
1818
9843b76a 1819 /*
331cbdee
WL
1820 * Don't bother with new inodes or inodes being freed, first
1821 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1822 * kind writeout is handled by the freer.
1823 */
250df6ed 1824 spin_lock(&inode->i_lock);
9843b76a 1825 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
b35250c0 1826 redirty_tail_locked(inode, wb);
250df6ed 1827 spin_unlock(&inode->i_lock);
7ef0d737
NP
1828 continue;
1829 }
cc1676d9
JK
1830 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1831 /*
1832 * If this inode is locked for writeback and we are not
1833 * doing writeback-for-data-integrity, move it to
1834 * b_more_io so that writeback can proceed with the
1835 * other inodes on s_io.
1836 *
1837 * We'll have another go at writing back this inode
1838 * when we completed a full scan of b_io.
1839 */
1840 spin_unlock(&inode->i_lock);
1841 requeue_io(inode, wb);
1842 trace_writeback_sb_inodes_requeue(inode);
1843 continue;
1844 }
f0d07b7f
JK
1845 spin_unlock(&wb->list_lock);
1846
4f8ad655
JK
1847 /*
1848 * We already requeued the inode if it had I_SYNC set and we
1849 * are doing WB_SYNC_NONE writeback. So this catches only the
1850 * WB_SYNC_ALL case.
1851 */
169ebd90
JK
1852 if (inode->i_state & I_SYNC) {
1853 /* Wait for I_SYNC. This function drops i_lock... */
1854 inode_sleep_on_writeback(inode);
1855 /* Inode may be gone, start again */
ead188f9 1856 spin_lock(&wb->list_lock);
169ebd90
JK
1857 continue;
1858 }
4f8ad655 1859 inode->i_state |= I_SYNC;
b16b1deb 1860 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1861
a88a341a 1862 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1863 wbc.nr_to_write = write_chunk;
1864 wbc.pages_skipped = 0;
250df6ed 1865
169ebd90
JK
1866 /*
1867 * We use I_SYNC to pin the inode in memory. While it is set
1868 * evict_inode() will wait so the inode cannot be freed.
1869 */
cd8ed2a4 1870 __writeback_single_inode(inode, &wbc);
250df6ed 1871
b16b1deb 1872 wbc_detach_inode(&wbc);
d46db3d5
WF
1873 work->nr_pages -= write_chunk - wbc.nr_to_write;
1874 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1875
1876 if (need_resched()) {
1877 /*
1878 * We're trying to balance between building up a nice
1879 * long list of IOs to improve our merge rate, and
1880 * getting those IOs out quickly for anyone throttling
1881 * in balance_dirty_pages(). cond_resched() doesn't
1882 * unplug, so get our IOs out the door before we
1883 * give up the CPU.
1884 */
1885 blk_flush_plug(current);
1886 cond_resched();
1887 }
1888
aaf25593
TH
1889 /*
1890 * Requeue @inode if still dirty. Be careful as @inode may
1891 * have been switched to another wb in the meantime.
1892 */
1893 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1894 spin_lock(&inode->i_lock);
0ae45f63 1895 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1896 wrote++;
aaf25593 1897 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1898 inode_sync_complete(inode);
0f1b1fd8 1899 spin_unlock(&inode->i_lock);
590dca3a 1900
aaf25593
TH
1901 if (unlikely(tmp_wb != wb)) {
1902 spin_unlock(&tmp_wb->list_lock);
1903 spin_lock(&wb->list_lock);
1904 }
1905
d46db3d5
WF
1906 /*
1907 * bail out to wb_writeback() often enough to check
1908 * background threshold and other termination conditions.
1909 */
1910 if (wrote) {
1911 if (time_is_before_jiffies(start_time + HZ / 10UL))
1912 break;
1913 if (work->nr_pages <= 0)
1914 break;
8bc3be27 1915 }
1da177e4 1916 }
d46db3d5 1917 return wrote;
f11c9c5c
ES
1918}
1919
d46db3d5
WF
1920static long __writeback_inodes_wb(struct bdi_writeback *wb,
1921 struct wb_writeback_work *work)
f11c9c5c 1922{
d46db3d5
WF
1923 unsigned long start_time = jiffies;
1924 long wrote = 0;
38f21977 1925
f11c9c5c 1926 while (!list_empty(&wb->b_io)) {
7ccf19a8 1927 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1928 struct super_block *sb = inode->i_sb;
9ecc2738 1929
eb6ef3df 1930 if (!trylock_super(sb)) {
0e995816 1931 /*
eb6ef3df 1932 * trylock_super() may fail consistently due to
0e995816
WF
1933 * s_umount being grabbed by someone else. Don't use
1934 * requeue_io() to avoid busy retrying the inode/sb.
1935 */
1936 redirty_tail(inode, wb);
edadfb10 1937 continue;
f11c9c5c 1938 }
d46db3d5 1939 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1940 up_read(&sb->s_umount);
f11c9c5c 1941
d46db3d5
WF
1942 /* refer to the same tests at the end of writeback_sb_inodes */
1943 if (wrote) {
1944 if (time_is_before_jiffies(start_time + HZ / 10UL))
1945 break;
1946 if (work->nr_pages <= 0)
1947 break;
1948 }
f11c9c5c 1949 }
66f3b8e2 1950 /* Leave any unwritten inodes on b_io */
d46db3d5 1951 return wrote;
66f3b8e2
JA
1952}
1953
7d9f073b 1954static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1955 enum wb_reason reason)
edadfb10 1956{
d46db3d5
WF
1957 struct wb_writeback_work work = {
1958 .nr_pages = nr_pages,
1959 .sync_mode = WB_SYNC_NONE,
1960 .range_cyclic = 1,
0e175a18 1961 .reason = reason,
d46db3d5 1962 };
505a666e 1963 struct blk_plug plug;
edadfb10 1964
505a666e 1965 blk_start_plug(&plug);
f758eeab 1966 spin_lock(&wb->list_lock);
424b351f 1967 if (list_empty(&wb->b_io))
f9cae926 1968 queue_io(wb, &work, jiffies);
d46db3d5 1969 __writeback_inodes_wb(wb, &work);
f758eeab 1970 spin_unlock(&wb->list_lock);
505a666e 1971 blk_finish_plug(&plug);
edadfb10 1972
d46db3d5
WF
1973 return nr_pages - work.nr_pages;
1974}
03ba3782 1975
03ba3782
JA
1976/*
1977 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1978 *
03ba3782
JA
1979 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1980 * dirtying-time in the inode's address_space. So this periodic writeback code
1981 * just walks the superblock inode list, writing back any inodes which are
1982 * older than a specific point in time.
66f3b8e2 1983 *
03ba3782
JA
1984 * Try to run once per dirty_writeback_interval. But if a writeback event
1985 * takes longer than a dirty_writeback_interval interval, then leave a
1986 * one-second gap.
66f3b8e2 1987 *
f9cae926 1988 * dirtied_before takes precedence over nr_to_write. So we'll only write back
03ba3782 1989 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1990 */
c4a77a6c 1991static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1992 struct wb_writeback_work *work)
66f3b8e2 1993{
e98be2d5 1994 unsigned long wb_start = jiffies;
d46db3d5 1995 long nr_pages = work->nr_pages;
f9cae926 1996 unsigned long dirtied_before = jiffies;
a5989bdc 1997 struct inode *inode;
d46db3d5 1998 long progress;
505a666e 1999 struct blk_plug plug;
66f3b8e2 2000
505a666e 2001 blk_start_plug(&plug);
e8dfc305 2002 spin_lock(&wb->list_lock);
03ba3782
JA
2003 for (;;) {
2004 /*
d3ddec76 2005 * Stop writeback when nr_pages has been consumed
03ba3782 2006 */
83ba7b07 2007 if (work->nr_pages <= 0)
03ba3782 2008 break;
66f3b8e2 2009
aa373cf5
JK
2010 /*
2011 * Background writeout and kupdate-style writeback may
2012 * run forever. Stop them if there is other work to do
2013 * so that e.g. sync can proceed. They'll be restarted
2014 * after the other works are all done.
2015 */
2016 if ((work->for_background || work->for_kupdate) &&
f0054bb1 2017 !list_empty(&wb->work_list))
aa373cf5
JK
2018 break;
2019
38f21977 2020 /*
d3ddec76
WF
2021 * For background writeout, stop when we are below the
2022 * background dirty threshold
38f21977 2023 */
aa661bbe 2024 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 2025 break;
38f21977 2026
1bc36b64
JK
2027 /*
2028 * Kupdate and background works are special and we want to
2029 * include all inodes that need writing. Livelock avoidance is
2030 * handled by these works yielding to any other work so we are
2031 * safe.
2032 */
ba9aa839 2033 if (work->for_kupdate) {
f9cae926 2034 dirtied_before = jiffies -
ba9aa839 2035 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 2036 } else if (work->for_background)
f9cae926 2037 dirtied_before = jiffies;
028c2dd1 2038
5634cc2a 2039 trace_writeback_start(wb, work);
e8dfc305 2040 if (list_empty(&wb->b_io))
f9cae926 2041 queue_io(wb, work, dirtied_before);
83ba7b07 2042 if (work->sb)
d46db3d5 2043 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 2044 else
d46db3d5 2045 progress = __writeback_inodes_wb(wb, work);
5634cc2a 2046 trace_writeback_written(wb, work);
028c2dd1 2047
e98be2d5 2048 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
2049
2050 /*
e6fb6da2
WF
2051 * Did we write something? Try for more
2052 *
2053 * Dirty inodes are moved to b_io for writeback in batches.
2054 * The completion of the current batch does not necessarily
2055 * mean the overall work is done. So we keep looping as long
2056 * as made some progress on cleaning pages or inodes.
03ba3782 2057 */
d46db3d5 2058 if (progress)
71fd05a8
JA
2059 continue;
2060 /*
e6fb6da2 2061 * No more inodes for IO, bail
71fd05a8 2062 */
b7a2441f 2063 if (list_empty(&wb->b_more_io))
03ba3782 2064 break;
71fd05a8
JA
2065 /*
2066 * Nothing written. Wait for some inode to
2067 * become available for writeback. Otherwise
2068 * we'll just busyloop.
2069 */
bace9248
TE
2070 trace_writeback_wait(wb, work);
2071 inode = wb_inode(wb->b_more_io.prev);
2072 spin_lock(&inode->i_lock);
2073 spin_unlock(&wb->list_lock);
2074 /* This function drops i_lock... */
2075 inode_sleep_on_writeback(inode);
2076 spin_lock(&wb->list_lock);
03ba3782 2077 }
e8dfc305 2078 spin_unlock(&wb->list_lock);
505a666e 2079 blk_finish_plug(&plug);
03ba3782 2080
d46db3d5 2081 return nr_pages - work->nr_pages;
03ba3782
JA
2082}
2083
2084/*
83ba7b07 2085 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 2086 */
f0054bb1 2087static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 2088{
83ba7b07 2089 struct wb_writeback_work *work = NULL;
03ba3782 2090
f0054bb1
TH
2091 spin_lock_bh(&wb->work_lock);
2092 if (!list_empty(&wb->work_list)) {
2093 work = list_entry(wb->work_list.next,
83ba7b07
CH
2094 struct wb_writeback_work, list);
2095 list_del_init(&work->list);
03ba3782 2096 }
f0054bb1 2097 spin_unlock_bh(&wb->work_lock);
83ba7b07 2098 return work;
03ba3782
JA
2099}
2100
6585027a
JK
2101static long wb_check_background_flush(struct bdi_writeback *wb)
2102{
aa661bbe 2103 if (wb_over_bg_thresh(wb)) {
6585027a
JK
2104
2105 struct wb_writeback_work work = {
2106 .nr_pages = LONG_MAX,
2107 .sync_mode = WB_SYNC_NONE,
2108 .for_background = 1,
2109 .range_cyclic = 1,
0e175a18 2110 .reason = WB_REASON_BACKGROUND,
6585027a
JK
2111 };
2112
2113 return wb_writeback(wb, &work);
2114 }
2115
2116 return 0;
2117}
2118
03ba3782
JA
2119static long wb_check_old_data_flush(struct bdi_writeback *wb)
2120{
2121 unsigned long expired;
2122 long nr_pages;
2123
69b62d01
JA
2124 /*
2125 * When set to zero, disable periodic writeback
2126 */
2127 if (!dirty_writeback_interval)
2128 return 0;
2129
03ba3782
JA
2130 expired = wb->last_old_flush +
2131 msecs_to_jiffies(dirty_writeback_interval * 10);
2132 if (time_before(jiffies, expired))
2133 return 0;
2134
2135 wb->last_old_flush = jiffies;
cdf01dd5 2136 nr_pages = get_nr_dirty_pages();
03ba3782 2137
c4a77a6c 2138 if (nr_pages) {
83ba7b07 2139 struct wb_writeback_work work = {
c4a77a6c
JA
2140 .nr_pages = nr_pages,
2141 .sync_mode = WB_SYNC_NONE,
2142 .for_kupdate = 1,
2143 .range_cyclic = 1,
0e175a18 2144 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
2145 };
2146
83ba7b07 2147 return wb_writeback(wb, &work);
c4a77a6c 2148 }
03ba3782
JA
2149
2150 return 0;
2151}
2152
85009b4f
JA
2153static long wb_check_start_all(struct bdi_writeback *wb)
2154{
2155 long nr_pages;
2156
2157 if (!test_bit(WB_start_all, &wb->state))
2158 return 0;
2159
2160 nr_pages = get_nr_dirty_pages();
2161 if (nr_pages) {
2162 struct wb_writeback_work work = {
2163 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2164 .sync_mode = WB_SYNC_NONE,
2165 .range_cyclic = 1,
2166 .reason = wb->start_all_reason,
2167 };
2168
2169 nr_pages = wb_writeback(wb, &work);
2170 }
2171
2172 clear_bit(WB_start_all, &wb->state);
2173 return nr_pages;
2174}
2175
2176
03ba3782
JA
2177/*
2178 * Retrieve work items and do the writeback they describe
2179 */
25d130ba 2180static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 2181{
83ba7b07 2182 struct wb_writeback_work *work;
c4a77a6c 2183 long wrote = 0;
03ba3782 2184
4452226e 2185 set_bit(WB_writeback_running, &wb->state);
f0054bb1 2186 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 2187 trace_writeback_exec(wb, work);
83ba7b07 2188 wrote += wb_writeback(wb, work);
4a3a485b 2189 finish_writeback_work(wb, work);
03ba3782
JA
2190 }
2191
85009b4f
JA
2192 /*
2193 * Check for a flush-everything request
2194 */
2195 wrote += wb_check_start_all(wb);
2196
03ba3782
JA
2197 /*
2198 * Check for periodic writeback, kupdated() style
2199 */
2200 wrote += wb_check_old_data_flush(wb);
6585027a 2201 wrote += wb_check_background_flush(wb);
4452226e 2202 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
2203
2204 return wrote;
2205}
2206
2207/*
2208 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 2209 * reschedules periodically and does kupdated style flushing.
03ba3782 2210 */
f0054bb1 2211void wb_workfn(struct work_struct *work)
03ba3782 2212{
839a8e86
TH
2213 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2214 struct bdi_writeback, dwork);
03ba3782
JA
2215 long pages_written;
2216
68f23b89 2217 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
766f9164 2218 current->flags |= PF_SWAPWRITE;
455b2864 2219
839a8e86 2220 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2221 !test_bit(WB_registered, &wb->state))) {
6467716a 2222 /*
f0054bb1 2223 * The normal path. Keep writing back @wb until its
839a8e86 2224 * work_list is empty. Note that this path is also taken
f0054bb1 2225 * if @wb is shutting down even when we're running off the
839a8e86 2226 * rescuer as work_list needs to be drained.
6467716a 2227 */
839a8e86 2228 do {
25d130ba 2229 pages_written = wb_do_writeback(wb);
839a8e86 2230 trace_writeback_pages_written(pages_written);
f0054bb1 2231 } while (!list_empty(&wb->work_list));
839a8e86
TH
2232 } else {
2233 /*
2234 * bdi_wq can't get enough workers and we're running off
2235 * the emergency worker. Don't hog it. Hopefully, 1024 is
2236 * enough for efficient IO.
2237 */
f0054bb1 2238 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2239 WB_REASON_FORKER_THREAD);
455b2864 2240 trace_writeback_pages_written(pages_written);
03ba3782
JA
2241 }
2242
f0054bb1 2243 if (!list_empty(&wb->work_list))
b8b78495 2244 wb_wakeup(wb);
6ca738d6 2245 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2246 wb_wakeup_delayed(wb);
455b2864 2247
839a8e86 2248 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2249}
2250
595043e5
JA
2251/*
2252 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2253 * write back the whole world.
2254 */
2255static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2256 enum wb_reason reason)
595043e5
JA
2257{
2258 struct bdi_writeback *wb;
2259
2260 if (!bdi_has_dirty_io(bdi))
2261 return;
2262
2263 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2264 wb_start_writeback(wb, reason);
595043e5
JA
2265}
2266
2267void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2268 enum wb_reason reason)
2269{
595043e5 2270 rcu_read_lock();
e8e8a0c6 2271 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2272 rcu_read_unlock();
2273}
2274
03ba3782 2275/*
9ba4b2df 2276 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2277 */
9ba4b2df 2278void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2279{
b8c2f347 2280 struct backing_dev_info *bdi;
03ba3782 2281
51350ea0
KK
2282 /*
2283 * If we are expecting writeback progress we must submit plugged IO.
2284 */
2285 if (blk_needs_flush_plug(current))
2286 blk_schedule_flush_plug(current);
2287
b8c2f347 2288 rcu_read_lock();
595043e5 2289 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2290 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2291 rcu_read_unlock();
1da177e4
LT
2292}
2293
a2f48706
TT
2294/*
2295 * Wake up bdi's periodically to make sure dirtytime inodes gets
2296 * written back periodically. We deliberately do *not* check the
2297 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2298 * kernel to be constantly waking up once there are any dirtytime
2299 * inodes on the system. So instead we define a separate delayed work
2300 * function which gets called much more rarely. (By default, only
2301 * once every 12 hours.)
2302 *
2303 * If there is any other write activity going on in the file system,
2304 * this function won't be necessary. But if the only thing that has
2305 * happened on the file system is a dirtytime inode caused by an atime
2306 * update, we need this infrastructure below to make sure that inode
2307 * eventually gets pushed out to disk.
2308 */
2309static void wakeup_dirtytime_writeback(struct work_struct *w);
2310static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2311
2312static void wakeup_dirtytime_writeback(struct work_struct *w)
2313{
2314 struct backing_dev_info *bdi;
2315
2316 rcu_read_lock();
2317 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2318 struct bdi_writeback *wb;
001fe6f6 2319
b817525a 2320 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2321 if (!list_empty(&wb->b_dirty_time))
2322 wb_wakeup(wb);
a2f48706
TT
2323 }
2324 rcu_read_unlock();
2325 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2326}
2327
2328static int __init start_dirtytime_writeback(void)
2329{
2330 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2331 return 0;
2332}
2333__initcall(start_dirtytime_writeback);
2334
1efff914 2335int dirtytime_interval_handler(struct ctl_table *table, int write,
9ca48e20 2336 void *buffer, size_t *lenp, loff_t *ppos)
1efff914
TT
2337{
2338 int ret;
2339
2340 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2341 if (ret == 0 && write)
2342 mod_delayed_work(system_wq, &dirtytime_work, 0);
2343 return ret;
2344}
2345
03ba3782
JA
2346static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2347{
2348 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2349 struct dentry *dentry;
2350 const char *name = "?";
2351
2352 dentry = d_find_alias(inode);
2353 if (dentry) {
2354 spin_lock(&dentry->d_lock);
2355 name = (const char *) dentry->d_name.name;
2356 }
2357 printk(KERN_DEBUG
2358 "%s(%d): dirtied inode %lu (%s) on %s\n",
2359 current->comm, task_pid_nr(current), inode->i_ino,
2360 name, inode->i_sb->s_id);
2361 if (dentry) {
2362 spin_unlock(&dentry->d_lock);
2363 dput(dentry);
2364 }
2365 }
2366}
2367
2368/**
35d14f27 2369 * __mark_inode_dirty - internal function to mark an inode dirty
0117d427
MCC
2370 *
2371 * @inode: inode to mark
35d14f27
EB
2372 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2373 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2374 * with I_DIRTY_PAGES.
0117d427 2375 *
35d14f27
EB
2376 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2377 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
1da177e4 2378 *
35d14f27
EB
2379 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2380 * instead of calling this directly.
03ba3782 2381 *
35d14f27
EB
2382 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2383 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2384 * even if they are later hashed, as they will have been marked dirty already.
03ba3782 2385 *
35d14f27 2386 * In short, ensure you hash any inodes _before_ you start marking them dirty.
1da177e4 2387 *
03ba3782
JA
2388 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2389 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2390 * the kernel-internal blockdev inode represents the dirtying time of the
2391 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2392 * page->mapping->host, so the page-dirtying time is recorded in the internal
2393 * blockdev inode.
1da177e4 2394 */
03ba3782 2395void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2396{
03ba3782 2397 struct super_block *sb = inode->i_sb;
35d14f27 2398 int dirtytime = 0;
0ae45f63
TT
2399
2400 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2401
e2728c56 2402 if (flags & I_DIRTY_INODE) {
35d14f27
EB
2403 /*
2404 * Notify the filesystem about the inode being dirtied, so that
2405 * (if needed) it can update on-disk fields and journal the
2406 * inode. This is only needed when the inode itself is being
2407 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2408 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2409 */
9fb0a7da 2410 trace_writeback_dirty_inode_start(inode, flags);
03ba3782 2411 if (sb->s_op->dirty_inode)
a38ed483 2412 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
9fb0a7da 2413 trace_writeback_dirty_inode(inode, flags);
e2728c56 2414
35d14f27 2415 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
0ae45f63 2416 flags &= ~I_DIRTY_TIME;
35d14f27
EB
2417 } else {
2418 /*
2419 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2420 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2421 * in one call to __mark_inode_dirty().)
2422 */
2423 dirtytime = flags & I_DIRTY_TIME;
2424 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
e2728c56 2425 }
03ba3782
JA
2426
2427 /*
9c6ac78e
TH
2428 * Paired with smp_mb() in __writeback_single_inode() for the
2429 * following lockless i_state test. See there for details.
03ba3782
JA
2430 */
2431 smp_mb();
2432
0ae45f63
TT
2433 if (((inode->i_state & flags) == flags) ||
2434 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2435 return;
2436
2437 if (unlikely(block_dump))
2438 block_dump___mark_inode_dirty(inode);
2439
250df6ed 2440 spin_lock(&inode->i_lock);
0ae45f63
TT
2441 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2442 goto out_unlock_inode;
03ba3782
JA
2443 if ((inode->i_state & flags) != flags) {
2444 const int was_dirty = inode->i_state & I_DIRTY;
2445
52ebea74
TH
2446 inode_attach_wb(inode, NULL);
2447
35d14f27 2448 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
0ae45f63
TT
2449 if (flags & I_DIRTY_INODE)
2450 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2451 inode->i_state |= flags;
2452
2453 /*
5afced3b
JK
2454 * If the inode is queued for writeback by flush worker, just
2455 * update its dirty state. Once the flush worker is done with
2456 * the inode it will place it on the appropriate superblock
2457 * list, based upon its state.
03ba3782 2458 */
5afced3b 2459 if (inode->i_state & I_SYNC_QUEUED)
250df6ed 2460 goto out_unlock_inode;
03ba3782
JA
2461
2462 /*
2463 * Only add valid (hashed) inodes to the superblock's
2464 * dirty list. Add blockdev inodes as well.
2465 */
2466 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2467 if (inode_unhashed(inode))
250df6ed 2468 goto out_unlock_inode;
03ba3782 2469 }
a4ffdde6 2470 if (inode->i_state & I_FREEING)
250df6ed 2471 goto out_unlock_inode;
03ba3782
JA
2472
2473 /*
2474 * If the inode was already on b_dirty/b_io/b_more_io, don't
2475 * reposition it (that would break b_dirty time-ordering).
2476 */
2477 if (!was_dirty) {
87e1d789 2478 struct bdi_writeback *wb;
d6c10f1f 2479 struct list_head *dirty_list;
a66979ab 2480 bool wakeup_bdi = false;
253c34e9 2481
87e1d789 2482 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2483
03ba3782 2484 inode->dirtied_when = jiffies;
a2f48706
TT
2485 if (dirtytime)
2486 inode->dirtied_time_when = jiffies;
d6c10f1f 2487
0e11f644 2488 if (inode->i_state & I_DIRTY)
0747259d 2489 dirty_list = &wb->b_dirty;
a2f48706 2490 else
0747259d 2491 dirty_list = &wb->b_dirty_time;
d6c10f1f 2492
c7f54084 2493 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2494 dirty_list);
2495
0747259d 2496 spin_unlock(&wb->list_lock);
0ae45f63 2497 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2498
d6c10f1f
TH
2499 /*
2500 * If this is the first dirty inode for this bdi,
2501 * we have to wake-up the corresponding bdi thread
2502 * to make sure background write-back happens
2503 * later.
2504 */
f56753ac
CH
2505 if (wakeup_bdi &&
2506 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
0747259d 2507 wb_wakeup_delayed(wb);
a66979ab 2508 return;
1da177e4 2509 }
1da177e4 2510 }
250df6ed
DC
2511out_unlock_inode:
2512 spin_unlock(&inode->i_lock);
03ba3782
JA
2513}
2514EXPORT_SYMBOL(__mark_inode_dirty);
2515
e97fedb9
DC
2516/*
2517 * The @s_sync_lock is used to serialise concurrent sync operations
2518 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2519 * Concurrent callers will block on the s_sync_lock rather than doing contending
2520 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2521 * has been issued up to the time this function is enter is guaranteed to be
2522 * completed by the time we have gained the lock and waited for all IO that is
2523 * in progress regardless of the order callers are granted the lock.
2524 */
b6e51316 2525static void wait_sb_inodes(struct super_block *sb)
03ba3782 2526{
6c60d2b5 2527 LIST_HEAD(sync_list);
03ba3782
JA
2528
2529 /*
2530 * We need to be protected against the filesystem going from
2531 * r/o to r/w or vice versa.
2532 */
b6e51316 2533 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2534
e97fedb9 2535 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2536
2537 /*
6c60d2b5
DC
2538 * Splice the writeback list onto a temporary list to avoid waiting on
2539 * inodes that have started writeback after this point.
2540 *
2541 * Use rcu_read_lock() to keep the inodes around until we have a
2542 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2543 * the local list because inodes can be dropped from either by writeback
2544 * completion.
2545 */
2546 rcu_read_lock();
2547 spin_lock_irq(&sb->s_inode_wblist_lock);
2548 list_splice_init(&sb->s_inodes_wb, &sync_list);
2549
2550 /*
2551 * Data integrity sync. Must wait for all pages under writeback, because
2552 * there may have been pages dirtied before our sync call, but which had
2553 * writeout started before we write it out. In which case, the inode
2554 * may not be on the dirty list, but we still have to wait for that
2555 * writeout.
03ba3782 2556 */
6c60d2b5
DC
2557 while (!list_empty(&sync_list)) {
2558 struct inode *inode = list_first_entry(&sync_list, struct inode,
2559 i_wb_list);
250df6ed 2560 struct address_space *mapping = inode->i_mapping;
03ba3782 2561
6c60d2b5
DC
2562 /*
2563 * Move each inode back to the wb list before we drop the lock
2564 * to preserve consistency between i_wb_list and the mapping
2565 * writeback tag. Writeback completion is responsible to remove
2566 * the inode from either list once the writeback tag is cleared.
2567 */
2568 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2569
2570 /*
2571 * The mapping can appear untagged while still on-list since we
2572 * do not have the mapping lock. Skip it here, wb completion
2573 * will remove it.
2574 */
2575 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2576 continue;
2577
2578 spin_unlock_irq(&sb->s_inode_wblist_lock);
2579
250df6ed 2580 spin_lock(&inode->i_lock);
6c60d2b5 2581 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2582 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2583
2584 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2585 continue;
250df6ed 2586 }
03ba3782 2587 __iget(inode);
250df6ed 2588 spin_unlock(&inode->i_lock);
6c60d2b5 2589 rcu_read_unlock();
03ba3782 2590
aa750fd7
JN
2591 /*
2592 * We keep the error status of individual mapping so that
2593 * applications can catch the writeback error using fsync(2).
2594 * See filemap_fdatawait_keep_errors() for details.
2595 */
2596 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2597
2598 cond_resched();
2599
6c60d2b5
DC
2600 iput(inode);
2601
2602 rcu_read_lock();
2603 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2604 }
6c60d2b5
DC
2605 spin_unlock_irq(&sb->s_inode_wblist_lock);
2606 rcu_read_unlock();
e97fedb9 2607 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2608}
2609
f30a7d0c
TH
2610static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2611 enum wb_reason reason, bool skip_if_busy)
1da177e4 2612{
5b9cce4c
TH
2613 struct backing_dev_info *bdi = sb->s_bdi;
2614 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2615 struct wb_writeback_work work = {
6e6938b6
WF
2616 .sb = sb,
2617 .sync_mode = WB_SYNC_NONE,
2618 .tagged_writepages = 1,
2619 .done = &done,
2620 .nr_pages = nr,
0e175a18 2621 .reason = reason,
3c4d7165 2622 };
d8a8559c 2623
e7972912 2624 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2625 return;
cf37e972 2626 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2627
db125360 2628 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
5b9cce4c 2629 wb_wait_for_completion(&done);
e913fc82 2630}
f30a7d0c
TH
2631
2632/**
2633 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2634 * @sb: the superblock
2635 * @nr: the number of pages to write
2636 * @reason: reason why some writeback work initiated
2637 *
2638 * Start writeback on some inodes on this super_block. No guarantees are made
2639 * on how many (if any) will be written, and this function does not wait
2640 * for IO completion of submitted IO.
2641 */
2642void writeback_inodes_sb_nr(struct super_block *sb,
2643 unsigned long nr,
2644 enum wb_reason reason)
2645{
2646 __writeback_inodes_sb_nr(sb, nr, reason, false);
2647}
3259f8be
CM
2648EXPORT_SYMBOL(writeback_inodes_sb_nr);
2649
2650/**
2651 * writeback_inodes_sb - writeback dirty inodes from given super_block
2652 * @sb: the superblock
786228ab 2653 * @reason: reason why some writeback work was initiated
3259f8be
CM
2654 *
2655 * Start writeback on some inodes on this super_block. No guarantees are made
2656 * on how many (if any) will be written, and this function does not wait
2657 * for IO completion of submitted IO.
2658 */
0e175a18 2659void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2660{
0e175a18 2661 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2662}
0e3c9a22 2663EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2664
17bd55d0 2665/**
8264c321 2666 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2667 * @sb: the superblock
8264c321 2668 * @reason: reason why some writeback work was initiated
17bd55d0 2669 *
8264c321 2670 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2671 */
8264c321 2672void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2673{
10ee27a0 2674 if (!down_read_trylock(&sb->s_umount))
8264c321 2675 return;
10ee27a0 2676
8264c321 2677 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2678 up_read(&sb->s_umount);
3259f8be 2679}
10ee27a0 2680EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2681
d8a8559c
JA
2682/**
2683 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2684 * @sb: the superblock
d8a8559c
JA
2685 *
2686 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2687 * super_block.
d8a8559c 2688 */
0dc83bd3 2689void sync_inodes_sb(struct super_block *sb)
d8a8559c 2690{
5b9cce4c
TH
2691 struct backing_dev_info *bdi = sb->s_bdi;
2692 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2693 struct wb_writeback_work work = {
3c4d7165
CH
2694 .sb = sb,
2695 .sync_mode = WB_SYNC_ALL,
2696 .nr_pages = LONG_MAX,
2697 .range_cyclic = 0,
83ba7b07 2698 .done = &done,
0e175a18 2699 .reason = WB_REASON_SYNC,
7747bd4b 2700 .for_sync = 1,
3c4d7165
CH
2701 };
2702
006a0973
TH
2703 /*
2704 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2705 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2706 * bdi_has_dirty() need to be written out too.
2707 */
2708 if (bdi == &noop_backing_dev_info)
6eedc701 2709 return;
cf37e972
CH
2710 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2711
7fc5854f
TH
2712 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2713 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2714 bdi_split_work_to_wbs(bdi, &work, false);
5b9cce4c 2715 wb_wait_for_completion(&done);
7fc5854f 2716 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2717
b6e51316 2718 wait_sb_inodes(sb);
1da177e4 2719}
d8a8559c 2720EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2721
1da177e4 2722/**
7f04c26d
AA
2723 * write_inode_now - write an inode to disk
2724 * @inode: inode to write to disk
2725 * @sync: whether the write should be synchronous or not
2726 *
2727 * This function commits an inode to disk immediately if it is dirty. This is
2728 * primarily needed by knfsd.
1da177e4 2729 *
7f04c26d 2730 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2731 */
1da177e4
LT
2732int write_inode_now(struct inode *inode, int sync)
2733{
1da177e4
LT
2734 struct writeback_control wbc = {
2735 .nr_to_write = LONG_MAX,
18914b18 2736 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2737 .range_start = 0,
2738 .range_end = LLONG_MAX,
1da177e4
LT
2739 };
2740
f56753ac 2741 if (!mapping_can_writeback(inode->i_mapping))
49364ce2 2742 wbc.nr_to_write = 0;
1da177e4
LT
2743
2744 might_sleep();
aaf25593 2745 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2746}
2747EXPORT_SYMBOL(write_inode_now);
2748
2749/**
2750 * sync_inode - write an inode and its pages to disk.
2751 * @inode: the inode to sync
2752 * @wbc: controls the writeback mode
2753 *
2754 * sync_inode() will write an inode and its pages to disk. It will also
2755 * correctly update the inode on its superblock's dirty inode lists and will
2756 * update inode->i_state.
2757 *
2758 * The caller must have a ref on the inode.
2759 */
2760int sync_inode(struct inode *inode, struct writeback_control *wbc)
2761{
aaf25593 2762 return writeback_single_inode(inode, wbc);
1da177e4
LT
2763}
2764EXPORT_SYMBOL(sync_inode);
c3765016
CH
2765
2766/**
c691b9d9 2767 * sync_inode_metadata - write an inode to disk
c3765016
CH
2768 * @inode: the inode to sync
2769 * @wait: wait for I/O to complete.
2770 *
c691b9d9 2771 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2772 *
2773 * Note: only writes the actual inode, no associated data or other metadata.
2774 */
2775int sync_inode_metadata(struct inode *inode, int wait)
2776{
2777 struct writeback_control wbc = {
2778 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2779 .nr_to_write = 0, /* metadata-only */
2780 };
2781
2782 return sync_inode(inode, &wbc);
2783}
2784EXPORT_SYMBOL(sync_inode_metadata);