Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[linux-2.6-block.git] / fs / f2fs / segment.h
CommitLineData
0a8165d7 1/*
39a53e0c
JK
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
ac5d156c
JK
11#include <linux/blkdev.h>
12
39a53e0c
JK
13/* constant macro */
14#define NULL_SEGNO ((unsigned int)(~0))
5ec4e49f 15#define NULL_SECNO ((unsigned int)(~0))
39a53e0c 16
81eb8d6e
JK
17#define DEF_RECLAIM_PREFREE_SEGMENTS 100 /* 200MB of prefree segments */
18
6224da87 19/* L: Logical segment # in volume, R: Relative segment # in main area */
39a53e0c
JK
20#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
22
61ae45c8
CL
23#define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24#define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
39a53e0c 25
5c773ba3
JK
26#define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
39a53e0c
JK
33
34#define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
46 sbi->segs_per_sec)) \
47
48#define START_BLOCK(sbi, segno) \
49 (SM_I(sbi)->seg0_blkaddr + \
50 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51#define NEXT_FREE_BLKADDR(sbi, curseg) \
52 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54#define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
55
56#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
57 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
59 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60#define GET_SEGNO(sbi, blk_addr) \
61 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
62 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
63 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64#define GET_SECNO(sbi, segno) \
65 ((segno) / sbi->segs_per_sec)
66#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
67 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
68
69#define GET_SUM_BLOCK(sbi, segno) \
70 ((sbi->sm_info->ssa_blkaddr) + segno)
71
72#define GET_SUM_TYPE(footer) ((footer)->entry_type)
73#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
74
75#define SIT_ENTRY_OFFSET(sit_i, segno) \
76 (segno % sit_i->sents_per_block)
77#define SIT_BLOCK_OFFSET(sit_i, segno) \
78 (segno / SIT_ENTRY_PER_BLOCK)
79#define START_SEGNO(sit_i, segno) \
80 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
74de593a
CY
81#define SIT_BLK_CNT(sbi) \
82 ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
39a53e0c
JK
83#define f2fs_bitmap_size(nr) \
84 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
85#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
53cf9522 86#define TOTAL_SECS(sbi) (sbi->total_sections)
39a53e0c 87
3cd8a239 88#define SECTOR_FROM_BLOCK(sbi, blk_addr) \
f9a4e6df 89 (((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
ac5d156c 90#define SECTOR_TO_BLOCK(sbi, sectors) \
f9a4e6df 91 (sectors >> (sbi)->log_sectors_per_block)
cc7b1bb1
CY
92#define MAX_BIO_BLOCKS(max_hw_blocks) \
93 (min((int)max_hw_blocks, BIO_MAX_PAGES))
3cd8a239 94
39a53e0c
JK
95/*
96 * indicate a block allocation direction: RIGHT and LEFT.
97 * RIGHT means allocating new sections towards the end of volume.
98 * LEFT means the opposite direction.
99 */
100enum {
101 ALLOC_RIGHT = 0,
102 ALLOC_LEFT
103};
104
105/*
106 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
107 * LFS writes data sequentially with cleaning operations.
108 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
109 */
110enum {
111 LFS = 0,
112 SSR
113};
114
115/*
116 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
117 * GC_CB is based on cost-benefit algorithm.
118 * GC_GREEDY is based on greedy algorithm.
119 */
120enum {
121 GC_CB = 0,
122 GC_GREEDY
123};
124
125/*
126 * BG_GC means the background cleaning job.
127 * FG_GC means the on-demand cleaning job.
128 */
129enum {
130 BG_GC = 0,
131 FG_GC
132};
133
134/* for a function parameter to select a victim segment */
135struct victim_sel_policy {
136 int alloc_mode; /* LFS or SSR */
137 int gc_mode; /* GC_CB or GC_GREEDY */
138 unsigned long *dirty_segmap; /* dirty segment bitmap */
a26b7c8a 139 unsigned int max_search; /* maximum # of segments to search */
39a53e0c
JK
140 unsigned int offset; /* last scanned bitmap offset */
141 unsigned int ofs_unit; /* bitmap search unit */
142 unsigned int min_cost; /* minimum cost */
143 unsigned int min_segno; /* segment # having min. cost */
144};
145
146struct seg_entry {
147 unsigned short valid_blocks; /* # of valid blocks */
148 unsigned char *cur_valid_map; /* validity bitmap of blocks */
149 /*
150 * # of valid blocks and the validity bitmap stored in the the last
151 * checkpoint pack. This information is used by the SSR mode.
152 */
153 unsigned short ckpt_valid_blocks;
154 unsigned char *ckpt_valid_map;
155 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
156 unsigned long long mtime; /* modification time of the segment */
157};
158
159struct sec_entry {
160 unsigned int valid_blocks; /* # of valid blocks in a section */
161};
162
163struct segment_allocation {
164 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
165};
166
167struct sit_info {
168 const struct segment_allocation *s_ops;
169
170 block_t sit_base_addr; /* start block address of SIT area */
171 block_t sit_blocks; /* # of blocks used by SIT area */
172 block_t written_valid_blocks; /* # of valid blocks in main area */
173 char *sit_bitmap; /* SIT bitmap pointer */
174 unsigned int bitmap_size; /* SIT bitmap size */
175
176 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
177 unsigned int dirty_sentries; /* # of dirty sentries */
178 unsigned int sents_per_block; /* # of SIT entries per block */
179 struct mutex sentry_lock; /* to protect SIT cache */
180 struct seg_entry *sentries; /* SIT segment-level cache */
181 struct sec_entry *sec_entries; /* SIT section-level cache */
182
183 /* for cost-benefit algorithm in cleaning procedure */
184 unsigned long long elapsed_time; /* elapsed time after mount */
185 unsigned long long mounted_time; /* mount time */
186 unsigned long long min_mtime; /* min. modification time */
187 unsigned long long max_mtime; /* max. modification time */
188};
189
190struct free_segmap_info {
191 unsigned int start_segno; /* start segment number logically */
192 unsigned int free_segments; /* # of free segments */
193 unsigned int free_sections; /* # of free sections */
194 rwlock_t segmap_lock; /* free segmap lock */
195 unsigned long *free_segmap; /* free segment bitmap */
196 unsigned long *free_secmap; /* free section bitmap */
197};
198
199/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
200enum dirty_type {
201 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
202 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
203 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
204 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
205 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
206 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
207 DIRTY, /* to count # of dirty segments */
208 PRE, /* to count # of entirely obsolete segments */
209 NR_DIRTY_TYPE
210};
211
212struct dirty_seglist_info {
213 const struct victim_selection *v_ops; /* victim selction operation */
214 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
215 struct mutex seglist_lock; /* lock for segment bitmaps */
216 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
5ec4e49f 217 unsigned long *victim_secmap; /* background GC victims */
39a53e0c
JK
218};
219
220/* victim selection function for cleaning and SSR */
221struct victim_selection {
222 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
223 int, int, char);
224};
225
226/* for active log information */
227struct curseg_info {
228 struct mutex curseg_mutex; /* lock for consistency */
229 struct f2fs_summary_block *sum_blk; /* cached summary block */
230 unsigned char alloc_type; /* current allocation type */
231 unsigned int segno; /* current segment number */
232 unsigned short next_blkoff; /* next block offset to write */
233 unsigned int zone; /* current zone number */
234 unsigned int next_segno; /* preallocated segment */
235};
236
237/*
238 * inline functions
239 */
240static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
241{
242 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
243}
244
245static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
246 unsigned int segno)
247{
248 struct sit_info *sit_i = SIT_I(sbi);
249 return &sit_i->sentries[segno];
250}
251
252static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
253 unsigned int segno)
254{
255 struct sit_info *sit_i = SIT_I(sbi);
256 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
257}
258
259static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
260 unsigned int segno, int section)
261{
262 /*
263 * In order to get # of valid blocks in a section instantly from many
264 * segments, f2fs manages two counting structures separately.
265 */
266 if (section > 1)
267 return get_sec_entry(sbi, segno)->valid_blocks;
268 else
269 return get_seg_entry(sbi, segno)->valid_blocks;
270}
271
272static inline void seg_info_from_raw_sit(struct seg_entry *se,
273 struct f2fs_sit_entry *rs)
274{
275 se->valid_blocks = GET_SIT_VBLOCKS(rs);
276 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
277 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
278 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
279 se->type = GET_SIT_TYPE(rs);
280 se->mtime = le64_to_cpu(rs->mtime);
281}
282
283static inline void seg_info_to_raw_sit(struct seg_entry *se,
284 struct f2fs_sit_entry *rs)
285{
286 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
287 se->valid_blocks;
288 rs->vblocks = cpu_to_le16(raw_vblocks);
289 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
290 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
291 se->ckpt_valid_blocks = se->valid_blocks;
292 rs->mtime = cpu_to_le64(se->mtime);
293}
294
295static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
296 unsigned int max, unsigned int segno)
297{
298 unsigned int ret;
299 read_lock(&free_i->segmap_lock);
300 ret = find_next_bit(free_i->free_segmap, max, segno);
301 read_unlock(&free_i->segmap_lock);
302 return ret;
303}
304
305static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
306{
307 struct free_segmap_info *free_i = FREE_I(sbi);
308 unsigned int secno = segno / sbi->segs_per_sec;
309 unsigned int start_segno = secno * sbi->segs_per_sec;
310 unsigned int next;
311
312 write_lock(&free_i->segmap_lock);
313 clear_bit(segno, free_i->free_segmap);
314 free_i->free_segments++;
315
316 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
317 if (next >= start_segno + sbi->segs_per_sec) {
318 clear_bit(secno, free_i->free_secmap);
319 free_i->free_sections++;
320 }
321 write_unlock(&free_i->segmap_lock);
322}
323
324static inline void __set_inuse(struct f2fs_sb_info *sbi,
325 unsigned int segno)
326{
327 struct free_segmap_info *free_i = FREE_I(sbi);
328 unsigned int secno = segno / sbi->segs_per_sec;
329 set_bit(segno, free_i->free_segmap);
330 free_i->free_segments--;
331 if (!test_and_set_bit(secno, free_i->free_secmap))
332 free_i->free_sections--;
333}
334
335static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
336 unsigned int segno)
337{
338 struct free_segmap_info *free_i = FREE_I(sbi);
339 unsigned int secno = segno / sbi->segs_per_sec;
340 unsigned int start_segno = secno * sbi->segs_per_sec;
341 unsigned int next;
342
343 write_lock(&free_i->segmap_lock);
344 if (test_and_clear_bit(segno, free_i->free_segmap)) {
345 free_i->free_segments++;
346
347 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
348 start_segno);
349 if (next >= start_segno + sbi->segs_per_sec) {
350 if (test_and_clear_bit(secno, free_i->free_secmap))
351 free_i->free_sections++;
352 }
353 }
354 write_unlock(&free_i->segmap_lock);
355}
356
357static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
358 unsigned int segno)
359{
360 struct free_segmap_info *free_i = FREE_I(sbi);
361 unsigned int secno = segno / sbi->segs_per_sec;
362 write_lock(&free_i->segmap_lock);
363 if (!test_and_set_bit(segno, free_i->free_segmap)) {
364 free_i->free_segments--;
365 if (!test_and_set_bit(secno, free_i->free_secmap))
366 free_i->free_sections--;
367 }
368 write_unlock(&free_i->segmap_lock);
369}
370
371static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
372 void *dst_addr)
373{
374 struct sit_info *sit_i = SIT_I(sbi);
375 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
376}
377
378static inline block_t written_block_count(struct f2fs_sb_info *sbi)
379{
380 struct sit_info *sit_i = SIT_I(sbi);
381 block_t vblocks;
382
383 mutex_lock(&sit_i->sentry_lock);
384 vblocks = sit_i->written_valid_blocks;
385 mutex_unlock(&sit_i->sentry_lock);
386
387 return vblocks;
388}
389
390static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
391{
392 struct free_segmap_info *free_i = FREE_I(sbi);
393 unsigned int free_segs;
394
395 read_lock(&free_i->segmap_lock);
396 free_segs = free_i->free_segments;
397 read_unlock(&free_i->segmap_lock);
398
399 return free_segs;
400}
401
402static inline int reserved_segments(struct f2fs_sb_info *sbi)
403{
404 return SM_I(sbi)->reserved_segments;
405}
406
407static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
408{
409 struct free_segmap_info *free_i = FREE_I(sbi);
410 unsigned int free_secs;
411
412 read_lock(&free_i->segmap_lock);
413 free_secs = free_i->free_sections;
414 read_unlock(&free_i->segmap_lock);
415
416 return free_secs;
417}
418
419static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
420{
421 return DIRTY_I(sbi)->nr_dirty[PRE];
422}
423
424static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
425{
426 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
427 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
428 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
429 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
430 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
431 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
432}
433
434static inline int overprovision_segments(struct f2fs_sb_info *sbi)
435{
436 return SM_I(sbi)->ovp_segments;
437}
438
439static inline int overprovision_sections(struct f2fs_sb_info *sbi)
440{
441 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
442}
443
444static inline int reserved_sections(struct f2fs_sb_info *sbi)
445{
446 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
447}
448
449static inline bool need_SSR(struct f2fs_sb_info *sbi)
450{
6c311ec6
CF
451 return (prefree_segments(sbi) / sbi->segs_per_sec)
452 + free_sections(sbi) < overprovision_sections(sbi);
39a53e0c
JK
453}
454
43727527 455static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
39a53e0c 456{
5ac206cf
NJ
457 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
458 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
43727527 459
cfb271d4 460 if (unlikely(sbi->por_doing))
029cd28c
JK
461 return false;
462
6c311ec6
CF
463 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
464 reserved_sections(sbi));
39a53e0c
JK
465}
466
81eb8d6e
JK
467static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
468{
6c311ec6 469 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
81eb8d6e
JK
470}
471
39a53e0c
JK
472static inline int utilization(struct f2fs_sb_info *sbi)
473{
6c311ec6
CF
474 return div_u64((u64)valid_user_blocks(sbi) * 100,
475 sbi->user_block_count);
39a53e0c
JK
476}
477
478/*
479 * Sometimes f2fs may be better to drop out-of-place update policy.
216fbd64
JK
480 * And, users can control the policy through sysfs entries.
481 * There are five policies with triggering conditions as follows.
482 * F2FS_IPU_FORCE - all the time,
483 * F2FS_IPU_SSR - if SSR mode is activated,
484 * F2FS_IPU_UTIL - if FS utilization is over threashold,
485 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
486 * threashold,
487 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
39a53e0c 488 */
216fbd64
JK
489#define DEF_MIN_IPU_UTIL 70
490
491enum {
492 F2FS_IPU_FORCE,
493 F2FS_IPU_SSR,
494 F2FS_IPU_UTIL,
495 F2FS_IPU_SSR_UTIL,
496 F2FS_IPU_DISABLE,
497};
498
39a53e0c
JK
499static inline bool need_inplace_update(struct inode *inode)
500{
501 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
216fbd64
JK
502
503 /* IPU can be done only for the user data */
39a53e0c
JK
504 if (S_ISDIR(inode->i_mode))
505 return false;
216fbd64
JK
506
507 switch (SM_I(sbi)->ipu_policy) {
508 case F2FS_IPU_FORCE:
39a53e0c 509 return true;
216fbd64
JK
510 case F2FS_IPU_SSR:
511 if (need_SSR(sbi))
512 return true;
513 break;
514 case F2FS_IPU_UTIL:
515 if (utilization(sbi) > SM_I(sbi)->min_ipu_util)
516 return true;
517 break;
518 case F2FS_IPU_SSR_UTIL:
519 if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
520 return true;
521 break;
522 case F2FS_IPU_DISABLE:
523 break;
524 }
39a53e0c
JK
525 return false;
526}
527
528static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
529 int type)
530{
531 struct curseg_info *curseg = CURSEG_I(sbi, type);
532 return curseg->segno;
533}
534
535static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
536 int type)
537{
538 struct curseg_info *curseg = CURSEG_I(sbi, type);
539 return curseg->alloc_type;
540}
541
542static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
543{
544 struct curseg_info *curseg = CURSEG_I(sbi, type);
545 return curseg->next_blkoff;
546}
547
5d56b671 548#ifdef CONFIG_F2FS_CHECK_FS
39a53e0c
JK
549static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
550{
551 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
552 BUG_ON(segno > end_segno);
553}
554
39a53e0c
JK
555static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
556{
557 struct f2fs_sm_info *sm_info = SM_I(sbi);
558 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
559 block_t start_addr = sm_info->seg0_blkaddr;
560 block_t end_addr = start_addr + total_blks - 1;
561 BUG_ON(blk_addr < start_addr);
562 BUG_ON(blk_addr > end_addr);
563}
564
565/*
566 * Summary block is always treated as invalid block
567 */
568static inline void check_block_count(struct f2fs_sb_info *sbi,
569 int segno, struct f2fs_sit_entry *raw_sit)
570{
571 struct f2fs_sm_info *sm_info = SM_I(sbi);
572 unsigned int end_segno = sm_info->segment_count - 1;
44c60bf2 573 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
39a53e0c 574 int valid_blocks = 0;
44c60bf2 575 int cur_pos = 0, next_pos;
39a53e0c
JK
576
577 /* check segment usage */
578 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
579
580 /* check boundary of a given segment number */
581 BUG_ON(segno > end_segno);
582
583 /* check bitmap with valid block count */
44c60bf2
CY
584 do {
585 if (is_valid) {
586 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
587 sbi->blocks_per_seg,
588 cur_pos);
589 valid_blocks += next_pos - cur_pos;
590 } else
591 next_pos = find_next_bit_le(&raw_sit->valid_map,
592 sbi->blocks_per_seg,
593 cur_pos);
594 cur_pos = next_pos;
595 is_valid = !is_valid;
596 } while (cur_pos < sbi->blocks_per_seg);
39a53e0c
JK
597 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
598}
5d56b671
JK
599#else
600#define check_seg_range(sbi, segno)
601#define verify_block_addr(sbi, blk_addr)
602#define check_block_count(sbi, segno, raw_sit)
603#endif
39a53e0c
JK
604
605static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
606 unsigned int start)
607{
608 struct sit_info *sit_i = SIT_I(sbi);
609 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
610 block_t blk_addr = sit_i->sit_base_addr + offset;
611
612 check_seg_range(sbi, start);
613
614 /* calculate sit block address */
615 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
616 blk_addr += sit_i->sit_blocks;
617
618 return blk_addr;
619}
620
621static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
622 pgoff_t block_addr)
623{
624 struct sit_info *sit_i = SIT_I(sbi);
625 block_addr -= sit_i->sit_base_addr;
626 if (block_addr < sit_i->sit_blocks)
627 block_addr += sit_i->sit_blocks;
628 else
629 block_addr -= sit_i->sit_blocks;
630
631 return block_addr + sit_i->sit_base_addr;
632}
633
634static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
635{
636 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
637
638 if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
639 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
640 else
641 f2fs_set_bit(block_off, sit_i->sit_bitmap);
642}
643
644static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
645{
646 struct sit_info *sit_i = SIT_I(sbi);
647 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
648 sit_i->mounted_time;
649}
650
651static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
652 unsigned int ofs_in_node, unsigned char version)
653{
654 sum->nid = cpu_to_le32(nid);
655 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
656 sum->version = version;
657}
658
659static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
660{
661 return __start_cp_addr(sbi) +
662 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
663}
664
665static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
666{
667 return __start_cp_addr(sbi) +
668 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
669 - (base + 1) + type;
670}
5ec4e49f
JK
671
672static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
673{
674 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
675 return true;
676 return false;
677}
ac5d156c
JK
678
679static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
680{
681 struct block_device *bdev = sbi->sb->s_bdev;
682 struct request_queue *q = bdev_get_queue(bdev);
683 return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
684}