f2fs: align f2fs maximum name length to linux based filesystem
[linux-block.git] / fs / f2fs / node.c
CommitLineData
0a8165d7 1/*
e05df3b1
JK
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22
23static struct kmem_cache *nat_entry_slab;
24static struct kmem_cache *free_nid_slab;
25
26static void clear_node_page_dirty(struct page *page)
27{
28 struct address_space *mapping = page->mapping;
29 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
30 unsigned int long flags;
31
32 if (PageDirty(page)) {
33 spin_lock_irqsave(&mapping->tree_lock, flags);
34 radix_tree_tag_clear(&mapping->page_tree,
35 page_index(page),
36 PAGECACHE_TAG_DIRTY);
37 spin_unlock_irqrestore(&mapping->tree_lock, flags);
38
39 clear_page_dirty_for_io(page);
40 dec_page_count(sbi, F2FS_DIRTY_NODES);
41 }
42 ClearPageUptodate(page);
43}
44
45static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
46{
47 pgoff_t index = current_nat_addr(sbi, nid);
48 return get_meta_page(sbi, index);
49}
50
51static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
52{
53 struct page *src_page;
54 struct page *dst_page;
55 pgoff_t src_off;
56 pgoff_t dst_off;
57 void *src_addr;
58 void *dst_addr;
59 struct f2fs_nm_info *nm_i = NM_I(sbi);
60
61 src_off = current_nat_addr(sbi, nid);
62 dst_off = next_nat_addr(sbi, src_off);
63
64 /* get current nat block page with lock */
65 src_page = get_meta_page(sbi, src_off);
66
67 /* Dirty src_page means that it is already the new target NAT page. */
68 if (PageDirty(src_page))
69 return src_page;
70
71 dst_page = grab_meta_page(sbi, dst_off);
72
73 src_addr = page_address(src_page);
74 dst_addr = page_address(dst_page);
75 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
76 set_page_dirty(dst_page);
77 f2fs_put_page(src_page, 1);
78
79 set_to_next_nat(nm_i, nid);
80
81 return dst_page;
82}
83
0a8165d7 84/*
e05df3b1
JK
85 * Readahead NAT pages
86 */
87static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
88{
89 struct address_space *mapping = sbi->meta_inode->i_mapping;
90 struct f2fs_nm_info *nm_i = NM_I(sbi);
91 struct page *page;
92 pgoff_t index;
93 int i;
94
95 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
96 if (nid >= nm_i->max_nid)
97 nid = 0;
98 index = current_nat_addr(sbi, nid);
99
100 page = grab_cache_page(mapping, index);
101 if (!page)
102 continue;
103 if (f2fs_readpage(sbi, page, index, READ)) {
104 f2fs_put_page(page, 1);
105 continue;
106 }
369a708c 107 f2fs_put_page(page, 0);
e05df3b1
JK
108 }
109}
110
111static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
112{
113 return radix_tree_lookup(&nm_i->nat_root, n);
114}
115
116static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
117 nid_t start, unsigned int nr, struct nat_entry **ep)
118{
119 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
120}
121
122static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
123{
124 list_del(&e->list);
125 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
126 nm_i->nat_cnt--;
127 kmem_cache_free(nat_entry_slab, e);
128}
129
130int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
131{
132 struct f2fs_nm_info *nm_i = NM_I(sbi);
133 struct nat_entry *e;
134 int is_cp = 1;
135
136 read_lock(&nm_i->nat_tree_lock);
137 e = __lookup_nat_cache(nm_i, nid);
138 if (e && !e->checkpointed)
139 is_cp = 0;
140 read_unlock(&nm_i->nat_tree_lock);
141 return is_cp;
142}
143
144static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
145{
146 struct nat_entry *new;
147
148 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
149 if (!new)
150 return NULL;
151 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
152 kmem_cache_free(nat_entry_slab, new);
153 return NULL;
154 }
155 memset(new, 0, sizeof(struct nat_entry));
156 nat_set_nid(new, nid);
157 list_add_tail(&new->list, &nm_i->nat_entries);
158 nm_i->nat_cnt++;
159 return new;
160}
161
162static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
163 struct f2fs_nat_entry *ne)
164{
165 struct nat_entry *e;
166retry:
167 write_lock(&nm_i->nat_tree_lock);
168 e = __lookup_nat_cache(nm_i, nid);
169 if (!e) {
170 e = grab_nat_entry(nm_i, nid);
171 if (!e) {
172 write_unlock(&nm_i->nat_tree_lock);
173 goto retry;
174 }
175 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
176 nat_set_ino(e, le32_to_cpu(ne->ino));
177 nat_set_version(e, ne->version);
178 e->checkpointed = true;
179 }
180 write_unlock(&nm_i->nat_tree_lock);
181}
182
183static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
184 block_t new_blkaddr)
185{
186 struct f2fs_nm_info *nm_i = NM_I(sbi);
187 struct nat_entry *e;
188retry:
189 write_lock(&nm_i->nat_tree_lock);
190 e = __lookup_nat_cache(nm_i, ni->nid);
191 if (!e) {
192 e = grab_nat_entry(nm_i, ni->nid);
193 if (!e) {
194 write_unlock(&nm_i->nat_tree_lock);
195 goto retry;
196 }
197 e->ni = *ni;
198 e->checkpointed = true;
199 BUG_ON(ni->blk_addr == NEW_ADDR);
200 } else if (new_blkaddr == NEW_ADDR) {
201 /*
202 * when nid is reallocated,
203 * previous nat entry can be remained in nat cache.
204 * So, reinitialize it with new information.
205 */
206 e->ni = *ni;
207 BUG_ON(ni->blk_addr != NULL_ADDR);
208 }
209
210 if (new_blkaddr == NEW_ADDR)
211 e->checkpointed = false;
212
213 /* sanity check */
214 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
215 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
216 new_blkaddr == NULL_ADDR);
217 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
218 new_blkaddr == NEW_ADDR);
219 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
220 nat_get_blkaddr(e) != NULL_ADDR &&
221 new_blkaddr == NEW_ADDR);
222
223 /* increament version no as node is removed */
224 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
225 unsigned char version = nat_get_version(e);
226 nat_set_version(e, inc_node_version(version));
227 }
228
229 /* change address */
230 nat_set_blkaddr(e, new_blkaddr);
231 __set_nat_cache_dirty(nm_i, e);
232 write_unlock(&nm_i->nat_tree_lock);
233}
234
235static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
236{
237 struct f2fs_nm_info *nm_i = NM_I(sbi);
238
239 if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
240 return 0;
241
242 write_lock(&nm_i->nat_tree_lock);
243 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
244 struct nat_entry *ne;
245 ne = list_first_entry(&nm_i->nat_entries,
246 struct nat_entry, list);
247 __del_from_nat_cache(nm_i, ne);
248 nr_shrink--;
249 }
250 write_unlock(&nm_i->nat_tree_lock);
251 return nr_shrink;
252}
253
0a8165d7 254/*
e05df3b1
JK
255 * This function returns always success
256 */
257void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
258{
259 struct f2fs_nm_info *nm_i = NM_I(sbi);
260 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
261 struct f2fs_summary_block *sum = curseg->sum_blk;
262 nid_t start_nid = START_NID(nid);
263 struct f2fs_nat_block *nat_blk;
264 struct page *page = NULL;
265 struct f2fs_nat_entry ne;
266 struct nat_entry *e;
267 int i;
268
be4124f8 269 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
e05df3b1
JK
270 ni->nid = nid;
271
272 /* Check nat cache */
273 read_lock(&nm_i->nat_tree_lock);
274 e = __lookup_nat_cache(nm_i, nid);
275 if (e) {
276 ni->ino = nat_get_ino(e);
277 ni->blk_addr = nat_get_blkaddr(e);
278 ni->version = nat_get_version(e);
279 }
280 read_unlock(&nm_i->nat_tree_lock);
281 if (e)
282 return;
283
284 /* Check current segment summary */
285 mutex_lock(&curseg->curseg_mutex);
286 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
287 if (i >= 0) {
288 ne = nat_in_journal(sum, i);
289 node_info_from_raw_nat(ni, &ne);
290 }
291 mutex_unlock(&curseg->curseg_mutex);
292 if (i >= 0)
293 goto cache;
294
295 /* Fill node_info from nat page */
296 page = get_current_nat_page(sbi, start_nid);
297 nat_blk = (struct f2fs_nat_block *)page_address(page);
298 ne = nat_blk->entries[nid - start_nid];
299 node_info_from_raw_nat(ni, &ne);
300 f2fs_put_page(page, 1);
301cache:
302 /* cache nat entry */
303 cache_nat_entry(NM_I(sbi), nid, &ne);
304}
305
0a8165d7 306/*
e05df3b1
JK
307 * The maximum depth is four.
308 * Offset[0] will have raw inode offset.
309 */
310static int get_node_path(long block, int offset[4], unsigned int noffset[4])
311{
312 const long direct_index = ADDRS_PER_INODE;
313 const long direct_blks = ADDRS_PER_BLOCK;
314 const long dptrs_per_blk = NIDS_PER_BLOCK;
315 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
316 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
317 int n = 0;
318 int level = 0;
319
320 noffset[0] = 0;
321
322 if (block < direct_index) {
323 offset[n++] = block;
324 level = 0;
325 goto got;
326 }
327 block -= direct_index;
328 if (block < direct_blks) {
329 offset[n++] = NODE_DIR1_BLOCK;
330 noffset[n] = 1;
331 offset[n++] = block;
332 level = 1;
333 goto got;
334 }
335 block -= direct_blks;
336 if (block < direct_blks) {
337 offset[n++] = NODE_DIR2_BLOCK;
338 noffset[n] = 2;
339 offset[n++] = block;
340 level = 1;
341 goto got;
342 }
343 block -= direct_blks;
344 if (block < indirect_blks) {
345 offset[n++] = NODE_IND1_BLOCK;
346 noffset[n] = 3;
347 offset[n++] = block / direct_blks;
348 noffset[n] = 4 + offset[n - 1];
349 offset[n++] = block % direct_blks;
350 level = 2;
351 goto got;
352 }
353 block -= indirect_blks;
354 if (block < indirect_blks) {
355 offset[n++] = NODE_IND2_BLOCK;
356 noffset[n] = 4 + dptrs_per_blk;
357 offset[n++] = block / direct_blks;
358 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
359 offset[n++] = block % direct_blks;
360 level = 2;
361 goto got;
362 }
363 block -= indirect_blks;
364 if (block < dindirect_blks) {
365 offset[n++] = NODE_DIND_BLOCK;
366 noffset[n] = 5 + (dptrs_per_blk * 2);
367 offset[n++] = block / indirect_blks;
368 noffset[n] = 6 + (dptrs_per_blk * 2) +
369 offset[n - 1] * (dptrs_per_blk + 1);
370 offset[n++] = (block / direct_blks) % dptrs_per_blk;
371 noffset[n] = 7 + (dptrs_per_blk * 2) +
372 offset[n - 2] * (dptrs_per_blk + 1) +
373 offset[n - 1];
374 offset[n++] = block % direct_blks;
375 level = 3;
376 goto got;
377 } else {
378 BUG();
379 }
380got:
381 return level;
382}
383
384/*
385 * Caller should call f2fs_put_dnode(dn).
386 */
266e97a8 387int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
e05df3b1
JK
388{
389 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
390 struct page *npage[4];
391 struct page *parent;
392 int offset[4];
393 unsigned int noffset[4];
394 nid_t nids[4];
395 int level, i;
396 int err = 0;
397
398 level = get_node_path(index, offset, noffset);
399
400 nids[0] = dn->inode->i_ino;
401 npage[0] = get_node_page(sbi, nids[0]);
402 if (IS_ERR(npage[0]))
403 return PTR_ERR(npage[0]);
404
405 parent = npage[0];
52c2db3f
CL
406 if (level != 0)
407 nids[1] = get_nid(parent, offset[0], true);
e05df3b1
JK
408 dn->inode_page = npage[0];
409 dn->inode_page_locked = true;
410
411 /* get indirect or direct nodes */
412 for (i = 1; i <= level; i++) {
413 bool done = false;
414
266e97a8 415 if (!nids[i] && mode == ALLOC_NODE) {
e05df3b1
JK
416 mutex_lock_op(sbi, NODE_NEW);
417
418 /* alloc new node */
419 if (!alloc_nid(sbi, &(nids[i]))) {
420 mutex_unlock_op(sbi, NODE_NEW);
421 err = -ENOSPC;
422 goto release_pages;
423 }
424
425 dn->nid = nids[i];
426 npage[i] = new_node_page(dn, noffset[i]);
427 if (IS_ERR(npage[i])) {
428 alloc_nid_failed(sbi, nids[i]);
429 mutex_unlock_op(sbi, NODE_NEW);
430 err = PTR_ERR(npage[i]);
431 goto release_pages;
432 }
433
434 set_nid(parent, offset[i - 1], nids[i], i == 1);
435 alloc_nid_done(sbi, nids[i]);
436 mutex_unlock_op(sbi, NODE_NEW);
437 done = true;
266e97a8 438 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
e05df3b1
JK
439 npage[i] = get_node_page_ra(parent, offset[i - 1]);
440 if (IS_ERR(npage[i])) {
441 err = PTR_ERR(npage[i]);
442 goto release_pages;
443 }
444 done = true;
445 }
446 if (i == 1) {
447 dn->inode_page_locked = false;
448 unlock_page(parent);
449 } else {
450 f2fs_put_page(parent, 1);
451 }
452
453 if (!done) {
454 npage[i] = get_node_page(sbi, nids[i]);
455 if (IS_ERR(npage[i])) {
456 err = PTR_ERR(npage[i]);
457 f2fs_put_page(npage[0], 0);
458 goto release_out;
459 }
460 }
461 if (i < level) {
462 parent = npage[i];
463 nids[i + 1] = get_nid(parent, offset[i], false);
464 }
465 }
466 dn->nid = nids[level];
467 dn->ofs_in_node = offset[level];
468 dn->node_page = npage[level];
469 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
470 return 0;
471
472release_pages:
473 f2fs_put_page(parent, 1);
474 if (i > 1)
475 f2fs_put_page(npage[0], 0);
476release_out:
477 dn->inode_page = NULL;
478 dn->node_page = NULL;
479 return err;
480}
481
482static void truncate_node(struct dnode_of_data *dn)
483{
484 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
485 struct node_info ni;
486
487 get_node_info(sbi, dn->nid, &ni);
71e9fec5
JK
488 if (dn->inode->i_blocks == 0) {
489 BUG_ON(ni.blk_addr != NULL_ADDR);
490 goto invalidate;
491 }
e05df3b1
JK
492 BUG_ON(ni.blk_addr == NULL_ADDR);
493
e05df3b1 494 /* Deallocate node address */
71e9fec5 495 invalidate_blocks(sbi, ni.blk_addr);
e05df3b1
JK
496 dec_valid_node_count(sbi, dn->inode, 1);
497 set_node_addr(sbi, &ni, NULL_ADDR);
498
499 if (dn->nid == dn->inode->i_ino) {
500 remove_orphan_inode(sbi, dn->nid);
501 dec_valid_inode_count(sbi);
502 } else {
503 sync_inode_page(dn);
504 }
71e9fec5 505invalidate:
e05df3b1
JK
506 clear_node_page_dirty(dn->node_page);
507 F2FS_SET_SB_DIRT(sbi);
508
509 f2fs_put_page(dn->node_page, 1);
510 dn->node_page = NULL;
511}
512
513static int truncate_dnode(struct dnode_of_data *dn)
514{
515 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
516 struct page *page;
517
518 if (dn->nid == 0)
519 return 1;
520
521 /* get direct node */
522 page = get_node_page(sbi, dn->nid);
523 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
524 return 1;
525 else if (IS_ERR(page))
526 return PTR_ERR(page);
527
528 /* Make dnode_of_data for parameter */
529 dn->node_page = page;
530 dn->ofs_in_node = 0;
531 truncate_data_blocks(dn);
532 truncate_node(dn);
533 return 1;
534}
535
536static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
537 int ofs, int depth)
538{
539 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
540 struct dnode_of_data rdn = *dn;
541 struct page *page;
542 struct f2fs_node *rn;
543 nid_t child_nid;
544 unsigned int child_nofs;
545 int freed = 0;
546 int i, ret;
547
548 if (dn->nid == 0)
549 return NIDS_PER_BLOCK + 1;
550
551 page = get_node_page(sbi, dn->nid);
552 if (IS_ERR(page))
553 return PTR_ERR(page);
554
555 rn = (struct f2fs_node *)page_address(page);
556 if (depth < 3) {
557 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
558 child_nid = le32_to_cpu(rn->in.nid[i]);
559 if (child_nid == 0)
560 continue;
561 rdn.nid = child_nid;
562 ret = truncate_dnode(&rdn);
563 if (ret < 0)
564 goto out_err;
565 set_nid(page, i, 0, false);
566 }
567 } else {
568 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
569 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
570 child_nid = le32_to_cpu(rn->in.nid[i]);
571 if (child_nid == 0) {
572 child_nofs += NIDS_PER_BLOCK + 1;
573 continue;
574 }
575 rdn.nid = child_nid;
576 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
577 if (ret == (NIDS_PER_BLOCK + 1)) {
578 set_nid(page, i, 0, false);
579 child_nofs += ret;
580 } else if (ret < 0 && ret != -ENOENT) {
581 goto out_err;
582 }
583 }
584 freed = child_nofs;
585 }
586
587 if (!ofs) {
588 /* remove current indirect node */
589 dn->node_page = page;
590 truncate_node(dn);
591 freed++;
592 } else {
593 f2fs_put_page(page, 1);
594 }
595 return freed;
596
597out_err:
598 f2fs_put_page(page, 1);
599 return ret;
600}
601
602static int truncate_partial_nodes(struct dnode_of_data *dn,
603 struct f2fs_inode *ri, int *offset, int depth)
604{
605 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
606 struct page *pages[2];
607 nid_t nid[3];
608 nid_t child_nid;
609 int err = 0;
610 int i;
611 int idx = depth - 2;
612
613 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
614 if (!nid[0])
615 return 0;
616
617 /* get indirect nodes in the path */
618 for (i = 0; i < depth - 1; i++) {
619 /* refernece count'll be increased */
620 pages[i] = get_node_page(sbi, nid[i]);
621 if (IS_ERR(pages[i])) {
622 depth = i + 1;
623 err = PTR_ERR(pages[i]);
624 goto fail;
625 }
626 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
627 }
628
629 /* free direct nodes linked to a partial indirect node */
630 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
631 child_nid = get_nid(pages[idx], i, false);
632 if (!child_nid)
633 continue;
634 dn->nid = child_nid;
635 err = truncate_dnode(dn);
636 if (err < 0)
637 goto fail;
638 set_nid(pages[idx], i, 0, false);
639 }
640
641 if (offset[depth - 1] == 0) {
642 dn->node_page = pages[idx];
643 dn->nid = nid[idx];
644 truncate_node(dn);
645 } else {
646 f2fs_put_page(pages[idx], 1);
647 }
648 offset[idx]++;
649 offset[depth - 1] = 0;
650fail:
651 for (i = depth - 3; i >= 0; i--)
652 f2fs_put_page(pages[i], 1);
653 return err;
654}
655
0a8165d7 656/*
e05df3b1
JK
657 * All the block addresses of data and nodes should be nullified.
658 */
659int truncate_inode_blocks(struct inode *inode, pgoff_t from)
660{
661 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
662 int err = 0, cont = 1;
663 int level, offset[4], noffset[4];
7dd690c8 664 unsigned int nofs = 0;
e05df3b1
JK
665 struct f2fs_node *rn;
666 struct dnode_of_data dn;
667 struct page *page;
668
669 level = get_node_path(from, offset, noffset);
670
671 page = get_node_page(sbi, inode->i_ino);
672 if (IS_ERR(page))
673 return PTR_ERR(page);
674
675 set_new_dnode(&dn, inode, page, NULL, 0);
676 unlock_page(page);
677
678 rn = page_address(page);
679 switch (level) {
680 case 0:
681 case 1:
682 nofs = noffset[1];
683 break;
684 case 2:
685 nofs = noffset[1];
686 if (!offset[level - 1])
687 goto skip_partial;
688 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
689 if (err < 0 && err != -ENOENT)
690 goto fail;
691 nofs += 1 + NIDS_PER_BLOCK;
692 break;
693 case 3:
694 nofs = 5 + 2 * NIDS_PER_BLOCK;
695 if (!offset[level - 1])
696 goto skip_partial;
697 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
698 if (err < 0 && err != -ENOENT)
699 goto fail;
700 break;
701 default:
702 BUG();
703 }
704
705skip_partial:
706 while (cont) {
707 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
708 switch (offset[0]) {
709 case NODE_DIR1_BLOCK:
710 case NODE_DIR2_BLOCK:
711 err = truncate_dnode(&dn);
712 break;
713
714 case NODE_IND1_BLOCK:
715 case NODE_IND2_BLOCK:
716 err = truncate_nodes(&dn, nofs, offset[1], 2);
717 break;
718
719 case NODE_DIND_BLOCK:
720 err = truncate_nodes(&dn, nofs, offset[1], 3);
721 cont = 0;
722 break;
723
724 default:
725 BUG();
726 }
727 if (err < 0 && err != -ENOENT)
728 goto fail;
729 if (offset[1] == 0 &&
730 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
731 lock_page(page);
732 wait_on_page_writeback(page);
733 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
734 set_page_dirty(page);
735 unlock_page(page);
736 }
737 offset[1] = 0;
738 offset[0]++;
739 nofs += err;
740 }
741fail:
742 f2fs_put_page(page, 0);
743 return err > 0 ? 0 : err;
744}
745
746int remove_inode_page(struct inode *inode)
747{
748 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
749 struct page *page;
750 nid_t ino = inode->i_ino;
751 struct dnode_of_data dn;
752
753 mutex_lock_op(sbi, NODE_TRUNC);
754 page = get_node_page(sbi, ino);
755 if (IS_ERR(page)) {
756 mutex_unlock_op(sbi, NODE_TRUNC);
757 return PTR_ERR(page);
758 }
759
760 if (F2FS_I(inode)->i_xattr_nid) {
761 nid_t nid = F2FS_I(inode)->i_xattr_nid;
762 struct page *npage = get_node_page(sbi, nid);
763
764 if (IS_ERR(npage)) {
765 mutex_unlock_op(sbi, NODE_TRUNC);
766 return PTR_ERR(npage);
767 }
768
769 F2FS_I(inode)->i_xattr_nid = 0;
770 set_new_dnode(&dn, inode, page, npage, nid);
771 dn.inode_page_locked = 1;
772 truncate_node(&dn);
773 }
e05df3b1 774
71e9fec5
JK
775 /* 0 is possible, after f2fs_new_inode() is failed */
776 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
777 set_new_dnode(&dn, inode, page, page, ino);
778 truncate_node(&dn);
779
e05df3b1
JK
780 mutex_unlock_op(sbi, NODE_TRUNC);
781 return 0;
782}
783
c004363d 784int new_inode_page(struct inode *inode, const struct qstr *name)
e05df3b1
JK
785{
786 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
787 struct page *page;
788 struct dnode_of_data dn;
789
790 /* allocate inode page for new inode */
791 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
792 mutex_lock_op(sbi, NODE_NEW);
793 page = new_node_page(&dn, 0);
c004363d 794 init_dent_inode(name, page);
e05df3b1
JK
795 mutex_unlock_op(sbi, NODE_NEW);
796 if (IS_ERR(page))
797 return PTR_ERR(page);
798 f2fs_put_page(page, 1);
799 return 0;
800}
801
802struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
803{
804 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
805 struct address_space *mapping = sbi->node_inode->i_mapping;
806 struct node_info old_ni, new_ni;
807 struct page *page;
808 int err;
809
810 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
811 return ERR_PTR(-EPERM);
812
813 page = grab_cache_page(mapping, dn->nid);
814 if (!page)
815 return ERR_PTR(-ENOMEM);
816
817 get_node_info(sbi, dn->nid, &old_ni);
818
819 SetPageUptodate(page);
820 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
821
822 /* Reinitialize old_ni with new node page */
823 BUG_ON(old_ni.blk_addr != NULL_ADDR);
824 new_ni = old_ni;
825 new_ni.ino = dn->inode->i_ino;
826
827 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
828 err = -ENOSPC;
829 goto fail;
830 }
831 set_node_addr(sbi, &new_ni, NEW_ADDR);
398b1ac5 832 set_cold_node(dn->inode, page);
e05df3b1
JK
833
834 dn->node_page = page;
835 sync_inode_page(dn);
836 set_page_dirty(page);
e05df3b1
JK
837 if (ofs == 0)
838 inc_valid_inode_count(sbi);
839
840 return page;
841
842fail:
71e9fec5 843 clear_node_page_dirty(page);
e05df3b1
JK
844 f2fs_put_page(page, 1);
845 return ERR_PTR(err);
846}
847
848static int read_node_page(struct page *page, int type)
849{
850 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
851 struct node_info ni;
852
853 get_node_info(sbi, page->index, &ni);
854
855 if (ni.blk_addr == NULL_ADDR)
856 return -ENOENT;
857 return f2fs_readpage(sbi, page, ni.blk_addr, type);
858}
859
0a8165d7 860/*
e05df3b1
JK
861 * Readahead a node page
862 */
863void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
864{
865 struct address_space *mapping = sbi->node_inode->i_mapping;
866 struct page *apage;
867
868 apage = find_get_page(mapping, nid);
869 if (apage && PageUptodate(apage))
870 goto release_out;
871 f2fs_put_page(apage, 0);
872
873 apage = grab_cache_page(mapping, nid);
874 if (!apage)
875 return;
876
877 if (read_node_page(apage, READA))
a2b52a59 878 unlock_page(apage);
e05df3b1 879
e05df3b1 880release_out:
369a708c 881 f2fs_put_page(apage, 0);
a2b52a59 882 return;
e05df3b1
JK
883}
884
885struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
886{
887 int err;
888 struct page *page;
889 struct address_space *mapping = sbi->node_inode->i_mapping;
890
891 page = grab_cache_page(mapping, nid);
892 if (!page)
893 return ERR_PTR(-ENOMEM);
894
895 err = read_node_page(page, READ_SYNC);
896 if (err) {
897 f2fs_put_page(page, 1);
898 return ERR_PTR(err);
899 }
900
901 BUG_ON(nid != nid_of_node(page));
902 mark_page_accessed(page);
903 return page;
904}
905
0a8165d7 906/*
e05df3b1
JK
907 * Return a locked page for the desired node page.
908 * And, readahead MAX_RA_NODE number of node pages.
909 */
910struct page *get_node_page_ra(struct page *parent, int start)
911{
912 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
913 struct address_space *mapping = sbi->node_inode->i_mapping;
914 int i, end;
915 int err = 0;
916 nid_t nid;
917 struct page *page;
918
919 /* First, try getting the desired direct node. */
920 nid = get_nid(parent, start, false);
921 if (!nid)
922 return ERR_PTR(-ENOENT);
923
e05df3b1
JK
924repeat:
925 page = grab_cache_page(mapping, nid);
926 if (!page)
927 return ERR_PTR(-ENOMEM);
e0f56cb4
NJ
928 else if (PageUptodate(page))
929 goto page_hit;
e05df3b1 930
66d36a29 931 err = read_node_page(page, READ_SYNC);
e0f56cb4 932 unlock_page(page);
e05df3b1 933 if (err) {
e0f56cb4 934 f2fs_put_page(page, 0);
e05df3b1
JK
935 return ERR_PTR(err);
936 }
937
938 /* Then, try readahead for siblings of the desired node */
939 end = start + MAX_RA_NODE;
940 end = min(end, NIDS_PER_BLOCK);
941 for (i = start + 1; i < end; i++) {
942 nid = get_nid(parent, i, false);
943 if (!nid)
944 continue;
945 ra_node_page(sbi, nid);
946 }
947
e05df3b1 948 lock_page(page);
e0f56cb4
NJ
949
950page_hit:
e05df3b1
JK
951 if (PageError(page)) {
952 f2fs_put_page(page, 1);
953 return ERR_PTR(-EIO);
954 }
955
956 /* Has the page been truncated? */
957 if (page->mapping != mapping) {
958 f2fs_put_page(page, 1);
959 goto repeat;
960 }
961 return page;
962}
963
964void sync_inode_page(struct dnode_of_data *dn)
965{
966 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
967 update_inode(dn->inode, dn->node_page);
968 } else if (dn->inode_page) {
969 if (!dn->inode_page_locked)
970 lock_page(dn->inode_page);
971 update_inode(dn->inode, dn->inode_page);
972 if (!dn->inode_page_locked)
973 unlock_page(dn->inode_page);
974 } else {
975 f2fs_write_inode(dn->inode, NULL);
976 }
977}
978
979int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
980 struct writeback_control *wbc)
981{
982 struct address_space *mapping = sbi->node_inode->i_mapping;
983 pgoff_t index, end;
984 struct pagevec pvec;
985 int step = ino ? 2 : 0;
986 int nwritten = 0, wrote = 0;
987
988 pagevec_init(&pvec, 0);
989
990next_step:
991 index = 0;
992 end = LONG_MAX;
993
994 while (index <= end) {
995 int i, nr_pages;
996 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
997 PAGECACHE_TAG_DIRTY,
998 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
999 if (nr_pages == 0)
1000 break;
1001
1002 for (i = 0; i < nr_pages; i++) {
1003 struct page *page = pvec.pages[i];
1004
1005 /*
1006 * flushing sequence with step:
1007 * 0. indirect nodes
1008 * 1. dentry dnodes
1009 * 2. file dnodes
1010 */
1011 if (step == 0 && IS_DNODE(page))
1012 continue;
1013 if (step == 1 && (!IS_DNODE(page) ||
1014 is_cold_node(page)))
1015 continue;
1016 if (step == 2 && (!IS_DNODE(page) ||
1017 !is_cold_node(page)))
1018 continue;
1019
1020 /*
1021 * If an fsync mode,
1022 * we should not skip writing node pages.
1023 */
1024 if (ino && ino_of_node(page) == ino)
1025 lock_page(page);
1026 else if (!trylock_page(page))
1027 continue;
1028
1029 if (unlikely(page->mapping != mapping)) {
1030continue_unlock:
1031 unlock_page(page);
1032 continue;
1033 }
1034 if (ino && ino_of_node(page) != ino)
1035 goto continue_unlock;
1036
1037 if (!PageDirty(page)) {
1038 /* someone wrote it for us */
1039 goto continue_unlock;
1040 }
1041
1042 if (!clear_page_dirty_for_io(page))
1043 goto continue_unlock;
1044
1045 /* called by fsync() */
1046 if (ino && IS_DNODE(page)) {
1047 int mark = !is_checkpointed_node(sbi, ino);
1048 set_fsync_mark(page, 1);
1049 if (IS_INODE(page))
1050 set_dentry_mark(page, mark);
1051 nwritten++;
1052 } else {
1053 set_fsync_mark(page, 0);
1054 set_dentry_mark(page, 0);
1055 }
1056 mapping->a_ops->writepage(page, wbc);
1057 wrote++;
1058
1059 if (--wbc->nr_to_write == 0)
1060 break;
1061 }
1062 pagevec_release(&pvec);
1063 cond_resched();
1064
1065 if (wbc->nr_to_write == 0) {
1066 step = 2;
1067 break;
1068 }
1069 }
1070
1071 if (step < 2) {
1072 step++;
1073 goto next_step;
1074 }
1075
1076 if (wrote)
1077 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1078
1079 return nwritten;
1080}
1081
1082static int f2fs_write_node_page(struct page *page,
1083 struct writeback_control *wbc)
1084{
1085 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1086 nid_t nid;
e05df3b1
JK
1087 block_t new_addr;
1088 struct node_info ni;
1089
1090 if (wbc->for_reclaim) {
1091 dec_page_count(sbi, F2FS_DIRTY_NODES);
1092 wbc->pages_skipped++;
1093 set_page_dirty(page);
1094 return AOP_WRITEPAGE_ACTIVATE;
1095 }
1096
1097 wait_on_page_writeback(page);
1098
1099 mutex_lock_op(sbi, NODE_WRITE);
1100
1101 /* get old block addr of this node page */
1102 nid = nid_of_node(page);
e05df3b1
JK
1103 BUG_ON(page->index != nid);
1104
1105 get_node_info(sbi, nid, &ni);
1106
1107 /* This page is already truncated */
1108 if (ni.blk_addr == NULL_ADDR)
12faafe4 1109 goto out;
e05df3b1
JK
1110
1111 set_page_writeback(page);
1112
1113 /* insert node offset */
1114 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1115 set_node_addr(sbi, &ni, new_addr);
12faafe4 1116out:
e05df3b1 1117 dec_page_count(sbi, F2FS_DIRTY_NODES);
e05df3b1
JK
1118 mutex_unlock_op(sbi, NODE_WRITE);
1119 unlock_page(page);
1120 return 0;
1121}
1122
a7fdffbd
JK
1123/*
1124 * It is very important to gather dirty pages and write at once, so that we can
1125 * submit a big bio without interfering other data writes.
1126 * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1127 */
1128#define COLLECT_DIRTY_NODES 512
e05df3b1
JK
1129static int f2fs_write_node_pages(struct address_space *mapping,
1130 struct writeback_control *wbc)
1131{
1132 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1133 struct block_device *bdev = sbi->sb->s_bdev;
1134 long nr_to_write = wbc->nr_to_write;
1135
a7fdffbd 1136 /* First check balancing cached NAT entries */
e05df3b1 1137 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
43727527 1138 write_checkpoint(sbi, false);
e05df3b1
JK
1139 return 0;
1140 }
1141
a7fdffbd
JK
1142 /* collect a number of dirty node pages and write together */
1143 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1144 return 0;
1145
e05df3b1
JK
1146 /* if mounting is failed, skip writing node pages */
1147 wbc->nr_to_write = bio_get_nr_vecs(bdev);
1148 sync_node_pages(sbi, 0, wbc);
1149 wbc->nr_to_write = nr_to_write -
1150 (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
1151 return 0;
1152}
1153
1154static int f2fs_set_node_page_dirty(struct page *page)
1155{
1156 struct address_space *mapping = page->mapping;
1157 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1158
1159 SetPageUptodate(page);
1160 if (!PageDirty(page)) {
1161 __set_page_dirty_nobuffers(page);
1162 inc_page_count(sbi, F2FS_DIRTY_NODES);
1163 SetPagePrivate(page);
1164 return 1;
1165 }
1166 return 0;
1167}
1168
1169static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1170{
1171 struct inode *inode = page->mapping->host;
1172 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1173 if (PageDirty(page))
1174 dec_page_count(sbi, F2FS_DIRTY_NODES);
1175 ClearPagePrivate(page);
1176}
1177
1178static int f2fs_release_node_page(struct page *page, gfp_t wait)
1179{
1180 ClearPagePrivate(page);
1181 return 0;
1182}
1183
0a8165d7 1184/*
e05df3b1
JK
1185 * Structure of the f2fs node operations
1186 */
1187const struct address_space_operations f2fs_node_aops = {
1188 .writepage = f2fs_write_node_page,
1189 .writepages = f2fs_write_node_pages,
1190 .set_page_dirty = f2fs_set_node_page_dirty,
1191 .invalidatepage = f2fs_invalidate_node_page,
1192 .releasepage = f2fs_release_node_page,
1193};
1194
1195static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1196{
1197 struct list_head *this;
3aa770a9 1198 struct free_nid *i;
e05df3b1
JK
1199 list_for_each(this, head) {
1200 i = list_entry(this, struct free_nid, list);
1201 if (i->nid == n)
3aa770a9 1202 return i;
e05df3b1 1203 }
3aa770a9 1204 return NULL;
e05df3b1
JK
1205}
1206
1207static void __del_from_free_nid_list(struct free_nid *i)
1208{
1209 list_del(&i->list);
1210 kmem_cache_free(free_nid_slab, i);
1211}
1212
1213static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1214{
1215 struct free_nid *i;
1216
1217 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1218 return 0;
1219retry:
1220 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1221 if (!i) {
1222 cond_resched();
1223 goto retry;
1224 }
1225 i->nid = nid;
1226 i->state = NID_NEW;
1227
1228 spin_lock(&nm_i->free_nid_list_lock);
1229 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1230 spin_unlock(&nm_i->free_nid_list_lock);
1231 kmem_cache_free(free_nid_slab, i);
1232 return 0;
1233 }
1234 list_add_tail(&i->list, &nm_i->free_nid_list);
1235 nm_i->fcnt++;
1236 spin_unlock(&nm_i->free_nid_list_lock);
1237 return 1;
1238}
1239
1240static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1241{
1242 struct free_nid *i;
1243 spin_lock(&nm_i->free_nid_list_lock);
1244 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1245 if (i && i->state == NID_NEW) {
1246 __del_from_free_nid_list(i);
1247 nm_i->fcnt--;
1248 }
1249 spin_unlock(&nm_i->free_nid_list_lock);
1250}
1251
1252static int scan_nat_page(struct f2fs_nm_info *nm_i,
1253 struct page *nat_page, nid_t start_nid)
1254{
1255 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1256 block_t blk_addr;
1257 int fcnt = 0;
1258 int i;
1259
1260 /* 0 nid should not be used */
1261 if (start_nid == 0)
1262 ++start_nid;
1263
1264 i = start_nid % NAT_ENTRY_PER_BLOCK;
1265
1266 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1267 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1268 BUG_ON(blk_addr == NEW_ADDR);
1269 if (blk_addr == NULL_ADDR)
1270 fcnt += add_free_nid(nm_i, start_nid);
1271 }
1272 return fcnt;
1273}
1274
1275static void build_free_nids(struct f2fs_sb_info *sbi)
1276{
1277 struct free_nid *fnid, *next_fnid;
1278 struct f2fs_nm_info *nm_i = NM_I(sbi);
1279 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1280 struct f2fs_summary_block *sum = curseg->sum_blk;
1281 nid_t nid = 0;
1282 bool is_cycled = false;
1283 int fcnt = 0;
1284 int i;
1285
1286 nid = nm_i->next_scan_nid;
1287 nm_i->init_scan_nid = nid;
1288
1289 ra_nat_pages(sbi, nid);
1290
1291 while (1) {
1292 struct page *page = get_current_nat_page(sbi, nid);
1293
1294 fcnt += scan_nat_page(nm_i, page, nid);
1295 f2fs_put_page(page, 1);
1296
1297 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1298
1299 if (nid >= nm_i->max_nid) {
1300 nid = 0;
1301 is_cycled = true;
1302 }
1303 if (fcnt > MAX_FREE_NIDS)
1304 break;
1305 if (is_cycled && nm_i->init_scan_nid <= nid)
1306 break;
1307 }
1308
1309 nm_i->next_scan_nid = nid;
1310
1311 /* find free nids from current sum_pages */
1312 mutex_lock(&curseg->curseg_mutex);
1313 for (i = 0; i < nats_in_cursum(sum); i++) {
1314 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1315 nid = le32_to_cpu(nid_in_journal(sum, i));
1316 if (addr == NULL_ADDR)
1317 add_free_nid(nm_i, nid);
1318 else
1319 remove_free_nid(nm_i, nid);
1320 }
1321 mutex_unlock(&curseg->curseg_mutex);
1322
1323 /* remove the free nids from current allocated nids */
1324 list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
1325 struct nat_entry *ne;
1326
1327 read_lock(&nm_i->nat_tree_lock);
1328 ne = __lookup_nat_cache(nm_i, fnid->nid);
1329 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1330 remove_free_nid(nm_i, fnid->nid);
1331 read_unlock(&nm_i->nat_tree_lock);
1332 }
1333}
1334
1335/*
1336 * If this function returns success, caller can obtain a new nid
1337 * from second parameter of this function.
1338 * The returned nid could be used ino as well as nid when inode is created.
1339 */
1340bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1341{
1342 struct f2fs_nm_info *nm_i = NM_I(sbi);
1343 struct free_nid *i = NULL;
1344 struct list_head *this;
1345retry:
1346 mutex_lock(&nm_i->build_lock);
1347 if (!nm_i->fcnt) {
1348 /* scan NAT in order to build free nid list */
1349 build_free_nids(sbi);
1350 if (!nm_i->fcnt) {
1351 mutex_unlock(&nm_i->build_lock);
1352 return false;
1353 }
1354 }
1355 mutex_unlock(&nm_i->build_lock);
1356
1357 /*
1358 * We check fcnt again since previous check is racy as
1359 * we didn't hold free_nid_list_lock. So other thread
1360 * could consume all of free nids.
1361 */
1362 spin_lock(&nm_i->free_nid_list_lock);
1363 if (!nm_i->fcnt) {
1364 spin_unlock(&nm_i->free_nid_list_lock);
1365 goto retry;
1366 }
1367
1368 BUG_ON(list_empty(&nm_i->free_nid_list));
1369 list_for_each(this, &nm_i->free_nid_list) {
1370 i = list_entry(this, struct free_nid, list);
1371 if (i->state == NID_NEW)
1372 break;
1373 }
1374
1375 BUG_ON(i->state != NID_NEW);
1376 *nid = i->nid;
1377 i->state = NID_ALLOC;
1378 nm_i->fcnt--;
1379 spin_unlock(&nm_i->free_nid_list_lock);
1380 return true;
1381}
1382
0a8165d7 1383/*
e05df3b1
JK
1384 * alloc_nid() should be called prior to this function.
1385 */
1386void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1387{
1388 struct f2fs_nm_info *nm_i = NM_I(sbi);
1389 struct free_nid *i;
1390
1391 spin_lock(&nm_i->free_nid_list_lock);
1392 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1393 if (i) {
1394 BUG_ON(i->state != NID_ALLOC);
1395 __del_from_free_nid_list(i);
1396 }
1397 spin_unlock(&nm_i->free_nid_list_lock);
1398}
1399
0a8165d7 1400/*
e05df3b1
JK
1401 * alloc_nid() should be called prior to this function.
1402 */
1403void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1404{
1405 alloc_nid_done(sbi, nid);
1406 add_free_nid(NM_I(sbi), nid);
1407}
1408
1409void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1410 struct f2fs_summary *sum, struct node_info *ni,
1411 block_t new_blkaddr)
1412{
1413 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1414 set_node_addr(sbi, ni, new_blkaddr);
1415 clear_node_page_dirty(page);
1416}
1417
1418int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1419{
1420 struct address_space *mapping = sbi->node_inode->i_mapping;
1421 struct f2fs_node *src, *dst;
1422 nid_t ino = ino_of_node(page);
1423 struct node_info old_ni, new_ni;
1424 struct page *ipage;
1425
1426 ipage = grab_cache_page(mapping, ino);
1427 if (!ipage)
1428 return -ENOMEM;
1429
1430 /* Should not use this inode from free nid list */
1431 remove_free_nid(NM_I(sbi), ino);
1432
1433 get_node_info(sbi, ino, &old_ni);
1434 SetPageUptodate(ipage);
1435 fill_node_footer(ipage, ino, ino, 0, true);
1436
1437 src = (struct f2fs_node *)page_address(page);
1438 dst = (struct f2fs_node *)page_address(ipage);
1439
1440 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1441 dst->i.i_size = 0;
25ca923b
JK
1442 dst->i.i_blocks = cpu_to_le64(1);
1443 dst->i.i_links = cpu_to_le32(1);
e05df3b1
JK
1444 dst->i.i_xattr_nid = 0;
1445
1446 new_ni = old_ni;
1447 new_ni.ino = ino;
1448
1449 set_node_addr(sbi, &new_ni, NEW_ADDR);
1450 inc_valid_inode_count(sbi);
1451
1452 f2fs_put_page(ipage, 1);
1453 return 0;
1454}
1455
1456int restore_node_summary(struct f2fs_sb_info *sbi,
1457 unsigned int segno, struct f2fs_summary_block *sum)
1458{
1459 struct f2fs_node *rn;
1460 struct f2fs_summary *sum_entry;
1461 struct page *page;
1462 block_t addr;
1463 int i, last_offset;
1464
1465 /* alloc temporal page for read node */
1466 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1467 if (IS_ERR(page))
1468 return PTR_ERR(page);
1469 lock_page(page);
1470
1471 /* scan the node segment */
1472 last_offset = sbi->blocks_per_seg;
1473 addr = START_BLOCK(sbi, segno);
1474 sum_entry = &sum->entries[0];
1475
1476 for (i = 0; i < last_offset; i++, sum_entry++) {
1477 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1478 goto out;
1479
1480 rn = (struct f2fs_node *)page_address(page);
1481 sum_entry->nid = rn->footer.nid;
1482 sum_entry->version = 0;
1483 sum_entry->ofs_in_node = 0;
1484 addr++;
1485
1486 /*
1487 * In order to read next node page,
1488 * we must clear PageUptodate flag.
1489 */
1490 ClearPageUptodate(page);
1491 }
1492out:
1493 unlock_page(page);
1494 __free_pages(page, 0);
1495 return 0;
1496}
1497
1498static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1499{
1500 struct f2fs_nm_info *nm_i = NM_I(sbi);
1501 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1502 struct f2fs_summary_block *sum = curseg->sum_blk;
1503 int i;
1504
1505 mutex_lock(&curseg->curseg_mutex);
1506
1507 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1508 mutex_unlock(&curseg->curseg_mutex);
1509 return false;
1510 }
1511
1512 for (i = 0; i < nats_in_cursum(sum); i++) {
1513 struct nat_entry *ne;
1514 struct f2fs_nat_entry raw_ne;
1515 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1516
1517 raw_ne = nat_in_journal(sum, i);
1518retry:
1519 write_lock(&nm_i->nat_tree_lock);
1520 ne = __lookup_nat_cache(nm_i, nid);
1521 if (ne) {
1522 __set_nat_cache_dirty(nm_i, ne);
1523 write_unlock(&nm_i->nat_tree_lock);
1524 continue;
1525 }
1526 ne = grab_nat_entry(nm_i, nid);
1527 if (!ne) {
1528 write_unlock(&nm_i->nat_tree_lock);
1529 goto retry;
1530 }
1531 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1532 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1533 nat_set_version(ne, raw_ne.version);
1534 __set_nat_cache_dirty(nm_i, ne);
1535 write_unlock(&nm_i->nat_tree_lock);
1536 }
1537 update_nats_in_cursum(sum, -i);
1538 mutex_unlock(&curseg->curseg_mutex);
1539 return true;
1540}
1541
0a8165d7 1542/*
e05df3b1
JK
1543 * This function is called during the checkpointing process.
1544 */
1545void flush_nat_entries(struct f2fs_sb_info *sbi)
1546{
1547 struct f2fs_nm_info *nm_i = NM_I(sbi);
1548 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1549 struct f2fs_summary_block *sum = curseg->sum_blk;
1550 struct list_head *cur, *n;
1551 struct page *page = NULL;
1552 struct f2fs_nat_block *nat_blk = NULL;
1553 nid_t start_nid = 0, end_nid = 0;
1554 bool flushed;
1555
1556 flushed = flush_nats_in_journal(sbi);
1557
1558 if (!flushed)
1559 mutex_lock(&curseg->curseg_mutex);
1560
1561 /* 1) flush dirty nat caches */
1562 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1563 struct nat_entry *ne;
1564 nid_t nid;
1565 struct f2fs_nat_entry raw_ne;
1566 int offset = -1;
2b50638d 1567 block_t new_blkaddr;
e05df3b1
JK
1568
1569 ne = list_entry(cur, struct nat_entry, list);
1570 nid = nat_get_nid(ne);
1571
1572 if (nat_get_blkaddr(ne) == NEW_ADDR)
1573 continue;
1574 if (flushed)
1575 goto to_nat_page;
1576
1577 /* if there is room for nat enries in curseg->sumpage */
1578 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1579 if (offset >= 0) {
1580 raw_ne = nat_in_journal(sum, offset);
e05df3b1
JK
1581 goto flush_now;
1582 }
1583to_nat_page:
1584 if (!page || (start_nid > nid || nid > end_nid)) {
1585 if (page) {
1586 f2fs_put_page(page, 1);
1587 page = NULL;
1588 }
1589 start_nid = START_NID(nid);
1590 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1591
1592 /*
1593 * get nat block with dirty flag, increased reference
1594 * count, mapped and lock
1595 */
1596 page = get_next_nat_page(sbi, start_nid);
1597 nat_blk = page_address(page);
1598 }
1599
1600 BUG_ON(!nat_blk);
1601 raw_ne = nat_blk->entries[nid - start_nid];
e05df3b1
JK
1602flush_now:
1603 new_blkaddr = nat_get_blkaddr(ne);
1604
1605 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1606 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1607 raw_ne.version = nat_get_version(ne);
1608
1609 if (offset < 0) {
1610 nat_blk->entries[nid - start_nid] = raw_ne;
1611 } else {
1612 nat_in_journal(sum, offset) = raw_ne;
1613 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1614 }
1615
1616 if (nat_get_blkaddr(ne) == NULL_ADDR) {
1617 write_lock(&nm_i->nat_tree_lock);
1618 __del_from_nat_cache(nm_i, ne);
1619 write_unlock(&nm_i->nat_tree_lock);
1620
1621 /* We can reuse this freed nid at this point */
1622 add_free_nid(NM_I(sbi), nid);
1623 } else {
1624 write_lock(&nm_i->nat_tree_lock);
1625 __clear_nat_cache_dirty(nm_i, ne);
1626 ne->checkpointed = true;
1627 write_unlock(&nm_i->nat_tree_lock);
1628 }
1629 }
1630 if (!flushed)
1631 mutex_unlock(&curseg->curseg_mutex);
1632 f2fs_put_page(page, 1);
1633
1634 /* 2) shrink nat caches if necessary */
1635 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1636}
1637
1638static int init_node_manager(struct f2fs_sb_info *sbi)
1639{
1640 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1641 struct f2fs_nm_info *nm_i = NM_I(sbi);
1642 unsigned char *version_bitmap;
1643 unsigned int nat_segs, nat_blocks;
1644
1645 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1646
1647 /* segment_count_nat includes pair segment so divide to 2. */
1648 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1649 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1650 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1651 nm_i->fcnt = 0;
1652 nm_i->nat_cnt = 0;
1653
1654 INIT_LIST_HEAD(&nm_i->free_nid_list);
1655 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1656 INIT_LIST_HEAD(&nm_i->nat_entries);
1657 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1658
1659 mutex_init(&nm_i->build_lock);
1660 spin_lock_init(&nm_i->free_nid_list_lock);
1661 rwlock_init(&nm_i->nat_tree_lock);
1662
1663 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1664 nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1665 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1666
1667 nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL);
1668 if (!nm_i->nat_bitmap)
1669 return -ENOMEM;
1670 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1671 if (!version_bitmap)
1672 return -EFAULT;
1673
1674 /* copy version bitmap */
1675 memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
1676 return 0;
1677}
1678
1679int build_node_manager(struct f2fs_sb_info *sbi)
1680{
1681 int err;
1682
1683 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1684 if (!sbi->nm_info)
1685 return -ENOMEM;
1686
1687 err = init_node_manager(sbi);
1688 if (err)
1689 return err;
1690
1691 build_free_nids(sbi);
1692 return 0;
1693}
1694
1695void destroy_node_manager(struct f2fs_sb_info *sbi)
1696{
1697 struct f2fs_nm_info *nm_i = NM_I(sbi);
1698 struct free_nid *i, *next_i;
1699 struct nat_entry *natvec[NATVEC_SIZE];
1700 nid_t nid = 0;
1701 unsigned int found;
1702
1703 if (!nm_i)
1704 return;
1705
1706 /* destroy free nid list */
1707 spin_lock(&nm_i->free_nid_list_lock);
1708 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1709 BUG_ON(i->state == NID_ALLOC);
1710 __del_from_free_nid_list(i);
1711 nm_i->fcnt--;
1712 }
1713 BUG_ON(nm_i->fcnt);
1714 spin_unlock(&nm_i->free_nid_list_lock);
1715
1716 /* destroy nat cache */
1717 write_lock(&nm_i->nat_tree_lock);
1718 while ((found = __gang_lookup_nat_cache(nm_i,
1719 nid, NATVEC_SIZE, natvec))) {
1720 unsigned idx;
1721 for (idx = 0; idx < found; idx++) {
1722 struct nat_entry *e = natvec[idx];
1723 nid = nat_get_nid(e) + 1;
1724 __del_from_nat_cache(nm_i, e);
1725 }
1726 }
1727 BUG_ON(nm_i->nat_cnt);
1728 write_unlock(&nm_i->nat_tree_lock);
1729
1730 kfree(nm_i->nat_bitmap);
1731 sbi->nm_info = NULL;
1732 kfree(nm_i);
1733}
1734
6e6093a8 1735int __init create_node_manager_caches(void)
e05df3b1
JK
1736{
1737 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1738 sizeof(struct nat_entry), NULL);
1739 if (!nat_entry_slab)
1740 return -ENOMEM;
1741
1742 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1743 sizeof(struct free_nid), NULL);
1744 if (!free_nid_slab) {
1745 kmem_cache_destroy(nat_entry_slab);
1746 return -ENOMEM;
1747 }
1748 return 0;
1749}
1750
1751void destroy_node_manager_caches(void)
1752{
1753 kmem_cache_destroy(free_nid_slab);
1754 kmem_cache_destroy(nat_entry_slab);
1755}