f2fs: move alloc new orphan node out of lock protection region
[linux-block.git] / fs / f2fs / checkpoint.c
CommitLineData
0a8165d7 1/*
127e670a
JK
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/bio.h>
13#include <linux/mpage.h>
14#include <linux/writeback.h>
15#include <linux/blkdev.h>
16#include <linux/f2fs_fs.h>
17#include <linux/pagevec.h>
18#include <linux/swap.h>
19
20#include "f2fs.h"
21#include "node.h"
22#include "segment.h"
2af4bd6c 23#include <trace/events/f2fs.h>
127e670a
JK
24
25static struct kmem_cache *orphan_entry_slab;
26static struct kmem_cache *inode_entry_slab;
27
0a8165d7 28/*
127e670a
JK
29 * We guarantee no failure on the returned page.
30 */
31struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32{
33 struct address_space *mapping = sbi->meta_inode->i_mapping;
34 struct page *page = NULL;
35repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page);
44 SetPageUptodate(page);
45 return page;
46}
47
0a8165d7 48/*
127e670a
JK
49 * We guarantee no failure on the returned page.
50 */
51struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52{
53 struct address_space *mapping = sbi->meta_inode->i_mapping;
54 struct page *page;
55repeat:
56 page = grab_cache_page(mapping, index);
57 if (!page) {
58 cond_resched();
59 goto repeat;
60 }
393ff91f
JK
61 if (PageUptodate(page))
62 goto out;
63
93dfe2ac
JK
64 if (f2fs_submit_page_bio(sbi, page, index,
65 READ_SYNC | REQ_META | REQ_PRIO))
127e670a 66 goto repeat;
127e670a 67
393ff91f 68 lock_page(page);
6bacf52f 69 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
70 f2fs_put_page(page, 1);
71 goto repeat;
72 }
393ff91f
JK
73out:
74 mark_page_accessed(page);
127e670a
JK
75 return page;
76}
77
78static int f2fs_write_meta_page(struct page *page,
79 struct writeback_control *wbc)
80{
81 struct inode *inode = page->mapping->host;
82 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
127e670a 83
577e3495 84 /* Should not write any meta pages, if any IO error was occurred */
cfb271d4
CY
85 if (unlikely(sbi->por_doing ||
86 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
87 goto redirty_out;
88
89 if (wbc->for_reclaim)
90 goto redirty_out;
127e670a 91
577e3495 92 wait_on_page_writeback(page);
127e670a 93
577e3495
JK
94 write_meta_page(sbi, page);
95 dec_page_count(sbi, F2FS_DIRTY_META);
96 unlock_page(page);
97 return 0;
cfb271d4
CY
98
99redirty_out:
100 dec_page_count(sbi, F2FS_DIRTY_META);
101 wbc->pages_skipped++;
102 set_page_dirty(page);
103 return AOP_WRITEPAGE_ACTIVATE;
127e670a
JK
104}
105
106static int f2fs_write_meta_pages(struct address_space *mapping,
107 struct writeback_control *wbc)
108{
109 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
5459aa97 110 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
127e670a
JK
111 long written;
112
113 if (wbc->for_kupdate)
114 return 0;
115
5459aa97
JK
116 /* collect a number of dirty meta pages and write together */
117 if (get_pages(sbi, F2FS_DIRTY_META) < nrpages)
127e670a
JK
118 return 0;
119
120 /* if mounting is failed, skip writing node pages */
121 mutex_lock(&sbi->cp_mutex);
5459aa97 122 written = sync_meta_pages(sbi, META, nrpages);
127e670a
JK
123 mutex_unlock(&sbi->cp_mutex);
124 wbc->nr_to_write -= written;
125 return 0;
126}
127
128long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
129 long nr_to_write)
130{
131 struct address_space *mapping = sbi->meta_inode->i_mapping;
132 pgoff_t index = 0, end = LONG_MAX;
133 struct pagevec pvec;
134 long nwritten = 0;
135 struct writeback_control wbc = {
136 .for_reclaim = 0,
137 };
138
139 pagevec_init(&pvec, 0);
140
141 while (index <= end) {
142 int i, nr_pages;
143 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
144 PAGECACHE_TAG_DIRTY,
145 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
cfb271d4 146 if (unlikely(nr_pages == 0))
127e670a
JK
147 break;
148
149 for (i = 0; i < nr_pages; i++) {
150 struct page *page = pvec.pages[i];
151 lock_page(page);
5d56b671
JK
152 f2fs_bug_on(page->mapping != mapping);
153 f2fs_bug_on(!PageDirty(page));
127e670a 154 clear_page_dirty_for_io(page);
577e3495
JK
155 if (f2fs_write_meta_page(page, &wbc)) {
156 unlock_page(page);
157 break;
158 }
cfb271d4
CY
159 nwritten++;
160 if (unlikely(nwritten >= nr_to_write))
127e670a
JK
161 break;
162 }
163 pagevec_release(&pvec);
164 cond_resched();
165 }
166
167 if (nwritten)
458e6197 168 f2fs_submit_merged_bio(sbi, type, WRITE);
127e670a
JK
169
170 return nwritten;
171}
172
173static int f2fs_set_meta_page_dirty(struct page *page)
174{
175 struct address_space *mapping = page->mapping;
176 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
177
26c6b887
JK
178 trace_f2fs_set_page_dirty(page, META);
179
127e670a
JK
180 SetPageUptodate(page);
181 if (!PageDirty(page)) {
182 __set_page_dirty_nobuffers(page);
183 inc_page_count(sbi, F2FS_DIRTY_META);
127e670a
JK
184 return 1;
185 }
186 return 0;
187}
188
189const struct address_space_operations f2fs_meta_aops = {
190 .writepage = f2fs_write_meta_page,
191 .writepages = f2fs_write_meta_pages,
192 .set_page_dirty = f2fs_set_meta_page_dirty,
193};
194
cbd56e7d 195int acquire_orphan_inode(struct f2fs_sb_info *sbi)
127e670a 196{
127e670a
JK
197 int err = 0;
198
127e670a 199 mutex_lock(&sbi->orphan_inode_mutex);
0d47c1ad 200 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
127e670a 201 err = -ENOSPC;
cbd56e7d
JK
202 else
203 sbi->n_orphans++;
127e670a 204 mutex_unlock(&sbi->orphan_inode_mutex);
0d47c1ad 205
127e670a
JK
206 return err;
207}
208
cbd56e7d
JK
209void release_orphan_inode(struct f2fs_sb_info *sbi)
210{
211 mutex_lock(&sbi->orphan_inode_mutex);
5d56b671 212 f2fs_bug_on(sbi->n_orphans == 0);
cbd56e7d
JK
213 sbi->n_orphans--;
214 mutex_unlock(&sbi->orphan_inode_mutex);
215}
216
127e670a
JK
217void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
218{
219 struct list_head *head, *this;
220 struct orphan_inode_entry *new = NULL, *orphan = NULL;
221
c1ef3725
GZ
222 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
223 new->ino = ino;
224
127e670a
JK
225 mutex_lock(&sbi->orphan_inode_mutex);
226 head = &sbi->orphan_inode_list;
227 list_for_each(this, head) {
228 orphan = list_entry(this, struct orphan_inode_entry, list);
c1ef3725
GZ
229 if (orphan->ino == ino) {
230 mutex_unlock(&sbi->orphan_inode_mutex);
231 kmem_cache_free(orphan_entry_slab, new);
232 return;
233 }
234
127e670a
JK
235 if (orphan->ino > ino)
236 break;
237 orphan = NULL;
238 }
7bd59381 239
127e670a 240 /* add new_oentry into list which is sorted by inode number */
a2617dc6 241 if (orphan)
242 list_add(&new->list, this->prev);
243 else
127e670a 244 list_add_tail(&new->list, head);
127e670a
JK
245 mutex_unlock(&sbi->orphan_inode_mutex);
246}
247
248void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
249{
60ed9a0f 250 struct list_head *head;
127e670a
JK
251 struct orphan_inode_entry *orphan;
252
253 mutex_lock(&sbi->orphan_inode_mutex);
254 head = &sbi->orphan_inode_list;
60ed9a0f 255 list_for_each_entry(orphan, head, list) {
127e670a
JK
256 if (orphan->ino == ino) {
257 list_del(&orphan->list);
258 kmem_cache_free(orphan_entry_slab, orphan);
5d56b671 259 f2fs_bug_on(sbi->n_orphans == 0);
127e670a
JK
260 sbi->n_orphans--;
261 break;
262 }
263 }
264 mutex_unlock(&sbi->orphan_inode_mutex);
265}
266
267static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
268{
269 struct inode *inode = f2fs_iget(sbi->sb, ino);
5d56b671 270 f2fs_bug_on(IS_ERR(inode));
127e670a
JK
271 clear_nlink(inode);
272
273 /* truncate all the data during iput */
274 iput(inode);
275}
276
8f99a946 277void recover_orphan_inodes(struct f2fs_sb_info *sbi)
127e670a
JK
278{
279 block_t start_blk, orphan_blkaddr, i, j;
280
25ca923b 281 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
8f99a946 282 return;
127e670a 283
aabe5136 284 sbi->por_doing = true;
127e670a
JK
285 start_blk = __start_cp_addr(sbi) + 1;
286 orphan_blkaddr = __start_sum_addr(sbi) - 1;
287
288 for (i = 0; i < orphan_blkaddr; i++) {
289 struct page *page = get_meta_page(sbi, start_blk + i);
290 struct f2fs_orphan_block *orphan_blk;
291
292 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
293 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
294 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
295 recover_orphan_inode(sbi, ino);
296 }
297 f2fs_put_page(page, 1);
298 }
299 /* clear Orphan Flag */
25ca923b 300 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
aabe5136 301 sbi->por_doing = false;
8f99a946 302 return;
127e670a
JK
303}
304
305static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
306{
502c6e0b 307 struct list_head *head;
127e670a 308 struct f2fs_orphan_block *orphan_blk = NULL;
127e670a 309 unsigned int nentries = 0;
4531929e
GZ
310 unsigned short index;
311 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
312 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
313 struct page *page = NULL;
314 struct page *pages[orphan_blocks];
502c6e0b 315 struct orphan_inode_entry *orphan = NULL;
127e670a 316
4531929e
GZ
317 for (index = 0; index < orphan_blocks; index++)
318 pages[index] = grab_meta_page(sbi, start_blk + index);
127e670a 319
4531929e 320 index = 1;
127e670a
JK
321 mutex_lock(&sbi->orphan_inode_mutex);
322 head = &sbi->orphan_inode_list;
323
324 /* loop for each orphan inode entry and write them in Jornal block */
502c6e0b
GZ
325 list_for_each_entry(orphan, head, list) {
326 if (!page) {
4531929e 327 page = pages[index - 1];
502c6e0b
GZ
328 orphan_blk =
329 (struct f2fs_orphan_block *)page_address(page);
330 memset(orphan_blk, 0, sizeof(*orphan_blk));
331 }
127e670a 332
36795567 333 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
127e670a 334
36795567 335 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
127e670a
JK
336 /*
337 * an orphan block is full of 1020 entries,
338 * then we need to flush current orphan blocks
339 * and bring another one in memory
340 */
341 orphan_blk->blk_addr = cpu_to_le16(index);
342 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
343 orphan_blk->entry_count = cpu_to_le32(nentries);
344 set_page_dirty(page);
345 f2fs_put_page(page, 1);
346 index++;
127e670a
JK
347 nentries = 0;
348 page = NULL;
349 }
502c6e0b 350 }
127e670a 351
502c6e0b
GZ
352 if (page) {
353 orphan_blk->blk_addr = cpu_to_le16(index);
354 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
355 orphan_blk->entry_count = cpu_to_le32(nentries);
356 set_page_dirty(page);
357 f2fs_put_page(page, 1);
127e670a 358 }
502c6e0b 359
127e670a
JK
360 mutex_unlock(&sbi->orphan_inode_mutex);
361}
362
363static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
364 block_t cp_addr, unsigned long long *version)
365{
366 struct page *cp_page_1, *cp_page_2 = NULL;
367 unsigned long blk_size = sbi->blocksize;
368 struct f2fs_checkpoint *cp_block;
369 unsigned long long cur_version = 0, pre_version = 0;
127e670a 370 size_t crc_offset;
7e586fa0 371 __u32 crc = 0;
127e670a
JK
372
373 /* Read the 1st cp block in this CP pack */
374 cp_page_1 = get_meta_page(sbi, cp_addr);
375
376 /* get the version number */
377 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
378 crc_offset = le32_to_cpu(cp_block->checksum_offset);
379 if (crc_offset >= blk_size)
380 goto invalid_cp1;
381
7e586fa0 382 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
127e670a
JK
383 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
384 goto invalid_cp1;
385
d71b5564 386 pre_version = cur_cp_version(cp_block);
127e670a
JK
387
388 /* Read the 2nd cp block in this CP pack */
25ca923b 389 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
127e670a
JK
390 cp_page_2 = get_meta_page(sbi, cp_addr);
391
392 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
393 crc_offset = le32_to_cpu(cp_block->checksum_offset);
394 if (crc_offset >= blk_size)
395 goto invalid_cp2;
396
7e586fa0 397 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
127e670a
JK
398 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
399 goto invalid_cp2;
400
d71b5564 401 cur_version = cur_cp_version(cp_block);
127e670a
JK
402
403 if (cur_version == pre_version) {
404 *version = cur_version;
405 f2fs_put_page(cp_page_2, 1);
406 return cp_page_1;
407 }
408invalid_cp2:
409 f2fs_put_page(cp_page_2, 1);
410invalid_cp1:
411 f2fs_put_page(cp_page_1, 1);
412 return NULL;
413}
414
415int get_valid_checkpoint(struct f2fs_sb_info *sbi)
416{
417 struct f2fs_checkpoint *cp_block;
418 struct f2fs_super_block *fsb = sbi->raw_super;
419 struct page *cp1, *cp2, *cur_page;
420 unsigned long blk_size = sbi->blocksize;
421 unsigned long long cp1_version = 0, cp2_version = 0;
422 unsigned long long cp_start_blk_no;
423
424 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
425 if (!sbi->ckpt)
426 return -ENOMEM;
427 /*
428 * Finding out valid cp block involves read both
429 * sets( cp pack1 and cp pack 2)
430 */
431 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
432 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
433
434 /* The second checkpoint pack should start at the next segment */
f9a4e6df
JK
435 cp_start_blk_no += ((unsigned long long)1) <<
436 le32_to_cpu(fsb->log_blocks_per_seg);
127e670a
JK
437 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
438
439 if (cp1 && cp2) {
440 if (ver_after(cp2_version, cp1_version))
441 cur_page = cp2;
442 else
443 cur_page = cp1;
444 } else if (cp1) {
445 cur_page = cp1;
446 } else if (cp2) {
447 cur_page = cp2;
448 } else {
449 goto fail_no_cp;
450 }
451
452 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
453 memcpy(sbi->ckpt, cp_block, blk_size);
454
455 f2fs_put_page(cp1, 1);
456 f2fs_put_page(cp2, 1);
457 return 0;
458
459fail_no_cp:
460 kfree(sbi->ckpt);
461 return -EINVAL;
462}
463
5deb8267 464static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
127e670a
JK
465{
466 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
467 struct list_head *head = &sbi->dir_inode_list;
127e670a
JK
468 struct list_head *this;
469
5deb8267
JK
470 list_for_each(this, head) {
471 struct dir_inode_entry *entry;
472 entry = list_entry(this, struct dir_inode_entry, list);
6bacf52f 473 if (unlikely(entry->inode == inode))
5deb8267
JK
474 return -EEXIST;
475 }
476 list_add_tail(&new->list, head);
dcdfff65 477 stat_inc_dirty_dir(sbi);
5deb8267
JK
478 return 0;
479}
480
481void set_dirty_dir_page(struct inode *inode, struct page *page)
482{
483 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
484 struct dir_inode_entry *new;
485
127e670a
JK
486 if (!S_ISDIR(inode->i_mode))
487 return;
7bd59381
GZ
488
489 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
127e670a
JK
490 new->inode = inode;
491 INIT_LIST_HEAD(&new->list);
492
493 spin_lock(&sbi->dir_inode_lock);
5deb8267
JK
494 if (__add_dirty_inode(inode, new))
495 kmem_cache_free(inode_entry_slab, new);
127e670a 496
127e670a
JK
497 inc_page_count(sbi, F2FS_DIRTY_DENTS);
498 inode_inc_dirty_dents(inode);
499 SetPagePrivate(page);
5deb8267
JK
500 spin_unlock(&sbi->dir_inode_lock);
501}
502
503void add_dirty_dir_inode(struct inode *inode)
504{
505 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
7bd59381
GZ
506 struct dir_inode_entry *new =
507 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
508
5deb8267
JK
509 new->inode = inode;
510 INIT_LIST_HEAD(&new->list);
127e670a 511
5deb8267
JK
512 spin_lock(&sbi->dir_inode_lock);
513 if (__add_dirty_inode(inode, new))
514 kmem_cache_free(inode_entry_slab, new);
127e670a
JK
515 spin_unlock(&sbi->dir_inode_lock);
516}
517
518void remove_dirty_dir_inode(struct inode *inode)
519{
520 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
ce3b7d80
GZ
521
522 struct list_head *this, *head;
127e670a
JK
523
524 if (!S_ISDIR(inode->i_mode))
525 return;
526
527 spin_lock(&sbi->dir_inode_lock);
3b10b1fd
JK
528 if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
529 spin_unlock(&sbi->dir_inode_lock);
530 return;
531 }
127e670a 532
ce3b7d80 533 head = &sbi->dir_inode_list;
127e670a
JK
534 list_for_each(this, head) {
535 struct dir_inode_entry *entry;
536 entry = list_entry(this, struct dir_inode_entry, list);
537 if (entry->inode == inode) {
538 list_del(&entry->list);
539 kmem_cache_free(inode_entry_slab, entry);
dcdfff65 540 stat_dec_dirty_dir(sbi);
127e670a
JK
541 break;
542 }
543 }
127e670a 544 spin_unlock(&sbi->dir_inode_lock);
74d0b917
JK
545
546 /* Only from the recovery routine */
afc3eda2
JK
547 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
548 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
74d0b917 549 iput(inode);
afc3eda2 550 }
74d0b917
JK
551}
552
553struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
554{
ce3b7d80
GZ
555
556 struct list_head *this, *head;
74d0b917
JK
557 struct inode *inode = NULL;
558
559 spin_lock(&sbi->dir_inode_lock);
ce3b7d80
GZ
560
561 head = &sbi->dir_inode_list;
74d0b917
JK
562 list_for_each(this, head) {
563 struct dir_inode_entry *entry;
564 entry = list_entry(this, struct dir_inode_entry, list);
565 if (entry->inode->i_ino == ino) {
566 inode = entry->inode;
567 break;
568 }
569 }
570 spin_unlock(&sbi->dir_inode_lock);
571 return inode;
127e670a
JK
572}
573
574void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
575{
ce3b7d80 576 struct list_head *head;
127e670a
JK
577 struct dir_inode_entry *entry;
578 struct inode *inode;
579retry:
580 spin_lock(&sbi->dir_inode_lock);
ce3b7d80
GZ
581
582 head = &sbi->dir_inode_list;
127e670a
JK
583 if (list_empty(head)) {
584 spin_unlock(&sbi->dir_inode_lock);
585 return;
586 }
587 entry = list_entry(head->next, struct dir_inode_entry, list);
588 inode = igrab(entry->inode);
589 spin_unlock(&sbi->dir_inode_lock);
590 if (inode) {
591 filemap_flush(inode->i_mapping);
592 iput(inode);
593 } else {
594 /*
595 * We should submit bio, since it exists several
596 * wribacking dentry pages in the freeing inode.
597 */
458e6197 598 f2fs_submit_merged_bio(sbi, DATA, WRITE);
127e670a
JK
599 }
600 goto retry;
601}
602
0a8165d7 603/*
127e670a
JK
604 * Freeze all the FS-operations for checkpoint.
605 */
43727527 606static void block_operations(struct f2fs_sb_info *sbi)
127e670a 607{
127e670a
JK
608 struct writeback_control wbc = {
609 .sync_mode = WB_SYNC_ALL,
610 .nr_to_write = LONG_MAX,
611 .for_reclaim = 0,
612 };
c718379b
JK
613 struct blk_plug plug;
614
615 blk_start_plug(&plug);
616
39936837 617retry_flush_dents:
e479556b 618 f2fs_lock_all(sbi);
127e670a 619 /* write all the dirty dentry pages */
127e670a 620 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
e479556b 621 f2fs_unlock_all(sbi);
39936837
JK
622 sync_dirty_dir_inodes(sbi);
623 goto retry_flush_dents;
127e670a
JK
624 }
625
127e670a
JK
626 /*
627 * POR: we should ensure that there is no dirty node pages
628 * until finishing nat/sit flush.
629 */
39936837
JK
630retry_flush_nodes:
631 mutex_lock(&sbi->node_write);
127e670a
JK
632
633 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
39936837
JK
634 mutex_unlock(&sbi->node_write);
635 sync_node_pages(sbi, 0, &wbc);
636 goto retry_flush_nodes;
127e670a 637 }
c718379b 638 blk_finish_plug(&plug);
127e670a
JK
639}
640
641static void unblock_operations(struct f2fs_sb_info *sbi)
642{
39936837 643 mutex_unlock(&sbi->node_write);
e479556b 644 f2fs_unlock_all(sbi);
127e670a
JK
645}
646
fb51b5ef
CL
647static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
648{
649 DEFINE_WAIT(wait);
650
651 for (;;) {
652 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
653
654 if (!get_pages(sbi, F2FS_WRITEBACK))
655 break;
656
657 io_schedule();
658 }
659 finish_wait(&sbi->cp_wait, &wait);
660}
661
127e670a
JK
662static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
663{
664 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
665 nid_t last_nid = 0;
666 block_t start_blk;
667 struct page *cp_page;
668 unsigned int data_sum_blocks, orphan_blocks;
7e586fa0 669 __u32 crc32 = 0;
127e670a 670 void *kaddr;
127e670a
JK
671 int i;
672
673 /* Flush all the NAT/SIT pages */
674 while (get_pages(sbi, F2FS_DIRTY_META))
675 sync_meta_pages(sbi, META, LONG_MAX);
676
677 next_free_nid(sbi, &last_nid);
678
679 /*
680 * modify checkpoint
681 * version number is already updated
682 */
683 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
684 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
685 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
686 for (i = 0; i < 3; i++) {
687 ckpt->cur_node_segno[i] =
688 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
689 ckpt->cur_node_blkoff[i] =
690 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
691 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
692 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
693 }
694 for (i = 0; i < 3; i++) {
695 ckpt->cur_data_segno[i] =
696 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
697 ckpt->cur_data_blkoff[i] =
698 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
699 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
700 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
701 }
702
703 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
704 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
705 ckpt->next_free_nid = cpu_to_le32(last_nid);
706
707 /* 2 cp + n data seg summary + orphan inode blocks */
708 data_sum_blocks = npages_for_summary_flush(sbi);
709 if (data_sum_blocks < 3)
25ca923b 710 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
127e670a 711 else
25ca923b 712 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
127e670a
JK
713
714 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
715 / F2FS_ORPHANS_PER_BLOCK;
25ca923b 716 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
127e670a
JK
717
718 if (is_umount) {
25ca923b
JK
719 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
720 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
721 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
127e670a 722 } else {
25ca923b
JK
723 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
724 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
725 data_sum_blocks + orphan_blocks);
127e670a
JK
726 }
727
728 if (sbi->n_orphans)
25ca923b 729 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
127e670a 730 else
25ca923b 731 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
127e670a
JK
732
733 /* update SIT/NAT bitmap */
734 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
735 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
736
737 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
7e586fa0
JK
738 *((__le32 *)((unsigned char *)ckpt +
739 le32_to_cpu(ckpt->checksum_offset)))
127e670a
JK
740 = cpu_to_le32(crc32);
741
742 start_blk = __start_cp_addr(sbi);
743
744 /* write out checkpoint buffer at block 0 */
745 cp_page = grab_meta_page(sbi, start_blk++);
746 kaddr = page_address(cp_page);
747 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
748 set_page_dirty(cp_page);
749 f2fs_put_page(cp_page, 1);
750
751 if (sbi->n_orphans) {
752 write_orphan_inodes(sbi, start_blk);
753 start_blk += orphan_blocks;
754 }
755
756 write_data_summaries(sbi, start_blk);
757 start_blk += data_sum_blocks;
758 if (is_umount) {
759 write_node_summaries(sbi, start_blk);
760 start_blk += NR_CURSEG_NODE_TYPE;
761 }
762
763 /* writeout checkpoint block */
764 cp_page = grab_meta_page(sbi, start_blk);
765 kaddr = page_address(cp_page);
766 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
767 set_page_dirty(cp_page);
768 f2fs_put_page(cp_page, 1);
769
770 /* wait for previous submitted node/meta pages writeback */
fb51b5ef 771 wait_on_all_pages_writeback(sbi);
127e670a
JK
772
773 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
774 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
775
776 /* update user_block_counts */
777 sbi->last_valid_block_count = sbi->total_valid_block_count;
778 sbi->alloc_valid_block_count = 0;
779
780 /* Here, we only have one bio having CP pack */
577e3495 781 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
127e670a 782
6bacf52f 783 if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
577e3495
JK
784 clear_prefree_segments(sbi);
785 F2FS_RESET_SB_DIRT(sbi);
786 }
127e670a
JK
787}
788
0a8165d7 789/*
127e670a
JK
790 * We guarantee that this checkpoint procedure should not fail.
791 */
43727527 792void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
127e670a
JK
793{
794 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
795 unsigned long long ckpt_ver;
796
2af4bd6c
NJ
797 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
798
43727527
JK
799 mutex_lock(&sbi->cp_mutex);
800 block_operations(sbi);
127e670a 801
2af4bd6c
NJ
802 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
803
458e6197
JK
804 f2fs_submit_merged_bio(sbi, DATA, WRITE);
805 f2fs_submit_merged_bio(sbi, NODE, WRITE);
806 f2fs_submit_merged_bio(sbi, META, WRITE);
127e670a
JK
807
808 /*
809 * update checkpoint pack index
810 * Increase the version number so that
811 * SIT entries and seg summaries are written at correct place
812 */
d71b5564 813 ckpt_ver = cur_cp_version(ckpt);
127e670a
JK
814 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
815
816 /* write cached NAT/SIT entries to NAT/SIT area */
817 flush_nat_entries(sbi);
818 flush_sit_entries(sbi);
819
127e670a
JK
820 /* unlock all the fs_lock[] in do_checkpoint() */
821 do_checkpoint(sbi, is_umount);
822
823 unblock_operations(sbi);
824 mutex_unlock(&sbi->cp_mutex);
2af4bd6c
NJ
825
826 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
127e670a
JK
827}
828
829void init_orphan_info(struct f2fs_sb_info *sbi)
830{
831 mutex_init(&sbi->orphan_inode_mutex);
832 INIT_LIST_HEAD(&sbi->orphan_inode_list);
833 sbi->n_orphans = 0;
0d47c1ad
GZ
834 /*
835 * considering 512 blocks in a segment 8 blocks are needed for cp
836 * and log segment summaries. Remaining blocks are used to keep
837 * orphan entries with the limitation one reserved segment
838 * for cp pack we can have max 1020*504 orphan entries
839 */
840 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
841 * F2FS_ORPHANS_PER_BLOCK;
127e670a
JK
842}
843
6e6093a8 844int __init create_checkpoint_caches(void)
127e670a
JK
845{
846 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
847 sizeof(struct orphan_inode_entry), NULL);
6bacf52f 848 if (!orphan_entry_slab)
127e670a
JK
849 return -ENOMEM;
850 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
851 sizeof(struct dir_inode_entry), NULL);
6bacf52f 852 if (!inode_entry_slab) {
127e670a
JK
853 kmem_cache_destroy(orphan_entry_slab);
854 return -ENOMEM;
855 }
856 return 0;
857}
858
859void destroy_checkpoint_caches(void)
860{
861 kmem_cache_destroy(orphan_entry_slab);
862 kmem_cache_destroy(inode_entry_slab);
863}