ext4: fix use-after-free in ext4_orphan_cleanup
[linux-block.git] / fs / ext4 / inode.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
ac27a0ec 2/*
617ba13b 3 * linux/fs/ext4/inode.c
ac27a0ec
DK
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
ac27a0ec
DK
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
617ba13b 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
20 */
21
ac27a0ec 22#include <linux/fs.h>
14f3db55 23#include <linux/mount.h>
ac27a0ec 24#include <linux/time.h>
ac27a0ec
DK
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
c94c2acf 27#include <linux/dax.h>
ac27a0ec
DK
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
64769240 32#include <linux/pagevec.h>
ac27a0ec 33#include <linux/mpage.h>
e83c1397 34#include <linux/namei.h>
ac27a0ec
DK
35#include <linux/uio.h>
36#include <linux/bio.h>
4c0425ff 37#include <linux/workqueue.h>
744692dc 38#include <linux/kernel.h>
6db26ffc 39#include <linux/printk.h>
5a0e3ad6 40#include <linux/slab.h>
00a1a053 41#include <linux/bitops.h>
364443cb 42#include <linux/iomap.h>
ae5e165d 43#include <linux/iversion.h>
9bffad1e 44
3dcf5451 45#include "ext4_jbd2.h"
ac27a0ec
DK
46#include "xattr.h"
47#include "acl.h"
9f125d64 48#include "truncate.h"
ac27a0ec 49
9bffad1e
TT
50#include <trace/events/ext4.h>
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 56 __u32 csum;
b47820ed
DJ
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
814525f4 60
b47820ed
DJ
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 66
b47820ed
DJ
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
b47820ed 76 }
05ac5aa1
DJ
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
79 }
80
814525f4
DW
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 91 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
8016e29f
HS
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
814525f4
DW
107{
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 112 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
678aaf48
JK
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
7ff9c073 125 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
678aaf48
JK
137}
138
cb20d518 139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
dec214d0
TE
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
407cd7fb 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
ac27a0ec 146 */
f348c252 147int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 148{
fc82228a
AK
149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
407cd7fb
TE
158 return S_ISLNK(inode->i_mode) && inode->i_size &&
159 (inode->i_size < EXT4_N_BLOCKS * 4);
ac27a0ec
DK
160}
161
ac27a0ec
DK
162/*
163 * Called at the last iput() if i_nlink is zero.
164 */
0930fcc1 165void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
166{
167 handle_t *handle;
bc965ab3 168 int err;
65db869c
JK
169 /*
170 * Credits for final inode cleanup and freeing:
171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 */
174 int extra_credits = 6;
0421a189 175 struct ext4_xattr_inode_array *ea_inode_array = NULL;
46e294ef 176 bool freeze_protected = false;
ac27a0ec 177
7ff9c073 178 trace_ext4_evict_inode(inode);
2581fdc8 179
6bc0d63d
JK
180 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 ext4_evict_ea_inode(inode);
0930fcc1 182 if (inode->i_nlink) {
2d859db3
JK
183 /*
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
ccd16945 188 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
2d859db3
JK
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
197 *
198 * Note that directories do not have this problem because they
199 * don't use page cache.
200 */
6a7fd522
VN
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
6493792d 203 S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
2d859db3
JK
204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
d76a3a77 207 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
208 filemap_write_and_wait(&inode->i_data);
209 }
91b0abe3 210 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 211
0930fcc1
AV
212 goto no_delete;
213 }
214
e2bfb088
TT
215 if (is_bad_inode(inode))
216 goto no_delete;
217 dquot_initialize(inode);
907f4554 218
678aaf48
JK
219 if (ext4_should_order_data(inode))
220 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 221 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 222
ceff86fd
JK
223 /*
224 * For inodes with journalled data, transaction commit could have
bc12ac98
ZY
225 * dirtied the inode. And for inodes with dioread_nolock, unwritten
226 * extents converting worker could merge extents and also have dirtied
227 * the inode. Flush worker is ignoring it because of I_FREEING flag but
228 * we still need to remove the inode from the writeback lists.
ceff86fd 229 */
bc12ac98 230 if (!list_empty_careful(&inode->i_io_list))
ceff86fd 231 inode_io_list_del(inode);
ceff86fd 232
8e8ad8a5
JK
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
46e294ef
JK
235 * protection against it. When we are in a running transaction though,
236 * we are already protected against freezing and we cannot grab further
237 * protection due to lock ordering constraints.
8e8ad8a5 238 */
46e294ef
JK
239 if (!ext4_journal_current_handle()) {
240 sb_start_intwrite(inode->i_sb);
241 freeze_protected = true;
242 }
e50e5129 243
30a7eb97
TE
244 if (!IS_NOQUOTA(inode))
245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
65db869c
JK
247 /*
248 * Block bitmap, group descriptor, and inode are accounted in both
249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250 */
30a7eb97 251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
65db869c 252 ext4_blocks_for_truncate(inode) + extra_credits - 3);
ac27a0ec 253 if (IS_ERR(handle)) {
bc965ab3 254 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
255 /*
256 * If we're going to skip the normal cleanup, we still need to
257 * make sure that the in-core orphan linked list is properly
258 * cleaned up.
259 */
617ba13b 260 ext4_orphan_del(NULL, inode);
46e294ef
JK
261 if (freeze_protected)
262 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
263 goto no_delete;
264 }
30a7eb97 265
ac27a0ec 266 if (IS_SYNC(inode))
0390131b 267 ext4_handle_sync(handle);
407cd7fb
TE
268
269 /*
270 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 * special handling of symlinks here because i_size is used to
272 * determine whether ext4_inode_info->i_data contains symlink data or
273 * block mappings. Setting i_size to 0 will remove its fast symlink
274 * status. Erase i_data so that it becomes a valid empty block map.
275 */
276 if (ext4_inode_is_fast_symlink(inode))
277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
ac27a0ec 278 inode->i_size = 0;
bc965ab3
TT
279 err = ext4_mark_inode_dirty(handle, inode);
280 if (err) {
12062ddd 281 ext4_warning(inode->i_sb,
bc965ab3
TT
282 "couldn't mark inode dirty (err %d)", err);
283 goto stop_handle;
284 }
2c98eb5e
TT
285 if (inode->i_blocks) {
286 err = ext4_truncate(inode);
287 if (err) {
54d3adbc
TT
288 ext4_error_err(inode->i_sb, -err,
289 "couldn't truncate inode %lu (err %d)",
290 inode->i_ino, err);
2c98eb5e
TT
291 goto stop_handle;
292 }
293 }
bc965ab3 294
30a7eb97
TE
295 /* Remove xattr references. */
296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297 extra_credits);
298 if (err) {
299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300stop_handle:
301 ext4_journal_stop(handle);
302 ext4_orphan_del(NULL, inode);
46e294ef
JK
303 if (freeze_protected)
304 sb_end_intwrite(inode->i_sb);
30a7eb97
TE
305 ext4_xattr_inode_array_free(ea_inode_array);
306 goto no_delete;
bc965ab3
TT
307 }
308
ac27a0ec 309 /*
617ba13b 310 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 311 * AKPM: I think this can be inside the above `if'.
617ba13b 312 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 313 * deletion of a non-existent orphan - this is because we don't
617ba13b 314 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
315 * (Well, we could do this if we need to, but heck - it works)
316 */
617ba13b 317 ext4_orphan_del(handle, inode);
5ffff834 318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
ac27a0ec
DK
319
320 /*
321 * One subtle ordering requirement: if anything has gone wrong
322 * (transaction abort, IO errors, whatever), then we can still
323 * do these next steps (the fs will already have been marked as
324 * having errors), but we can't free the inode if the mark_dirty
325 * fails.
326 */
617ba13b 327 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 328 /* If that failed, just do the required in-core inode clear. */
0930fcc1 329 ext4_clear_inode(inode);
ac27a0ec 330 else
617ba13b
MC
331 ext4_free_inode(handle, inode);
332 ext4_journal_stop(handle);
46e294ef
JK
333 if (freeze_protected)
334 sb_end_intwrite(inode->i_sb);
0421a189 335 ext4_xattr_inode_array_free(ea_inode_array);
ac27a0ec
DK
336 return;
337no_delete:
318cdc82
ZY
338 /*
339 * Check out some where else accidentally dirty the evicting inode,
340 * which may probably cause inode use-after-free issues later.
341 */
342 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
343
b21ebf14 344 if (!list_empty(&EXT4_I(inode)->i_fc_list))
e85c81ba 345 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
0930fcc1 346 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
347}
348
a9e7f447
DM
349#ifdef CONFIG_QUOTA
350qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 351{
a9e7f447 352 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 353}
a9e7f447 354#endif
9d0be502 355
0637c6f4
TT
356/*
357 * Called with i_data_sem down, which is important since we can call
358 * ext4_discard_preallocations() from here.
359 */
5f634d06
AK
360void ext4_da_update_reserve_space(struct inode *inode,
361 int used, int quota_claim)
12219aea
AK
362{
363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 364 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
365
366 spin_lock(&ei->i_block_reservation_lock);
d8990240 367 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 368 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 369 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 370 "with only %d reserved data blocks",
0637c6f4
TT
371 __func__, inode->i_ino, used,
372 ei->i_reserved_data_blocks);
373 WARN_ON(1);
374 used = ei->i_reserved_data_blocks;
375 }
12219aea 376
0637c6f4
TT
377 /* Update per-inode reservations */
378 ei->i_reserved_data_blocks -= used;
71d4f7d0 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 380
f9505c72 381 spin_unlock(&ei->i_block_reservation_lock);
60e58e0f 382
72b8ab9d
ES
383 /* Update quota subsystem for data blocks */
384 if (quota_claim)
7b415bf6 385 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 386 else {
5f634d06
AK
387 /*
388 * We did fallocate with an offset that is already delayed
389 * allocated. So on delayed allocated writeback we should
72b8ab9d 390 * not re-claim the quota for fallocated blocks.
5f634d06 391 */
7b415bf6 392 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 393 }
d6014301
AK
394
395 /*
396 * If we have done all the pending block allocations and if
397 * there aren't any writers on the inode, we can discard the
398 * inode's preallocations.
399 */
0637c6f4 400 if ((ei->i_reserved_data_blocks == 0) &&
82dd124c 401 !inode_is_open_for_write(inode))
27bc446e 402 ext4_discard_preallocations(inode, 0);
12219aea
AK
403}
404
e29136f8 405static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
406 unsigned int line,
407 struct ext4_map_blocks *map)
6fd058f7 408{
345c0dbf
TT
409 if (ext4_has_feature_journal(inode->i_sb) &&
410 (inode->i_ino ==
411 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
412 return 0;
ce9f24cc 413 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
c398eda0 414 ext4_error_inode(inode, func, line, map->m_pblk,
bdbd6ce0 415 "lblock %lu mapped to illegal pblock %llu "
c398eda0 416 "(length %d)", (unsigned long) map->m_lblk,
bdbd6ce0 417 map->m_pblk, map->m_len);
6a797d27 418 return -EFSCORRUPTED;
6fd058f7
TT
419 }
420 return 0;
421}
422
53085fac
JK
423int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
424 ext4_lblk_t len)
425{
426 int ret;
427
33b4cc25 428 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
a7550b30 429 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
430
431 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432 if (ret > 0)
433 ret = 0;
434
435 return ret;
436}
437
e29136f8 438#define check_block_validity(inode, map) \
c398eda0 439 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 440
921f266b
DM
441#ifdef ES_AGGRESSIVE_TEST
442static void ext4_map_blocks_es_recheck(handle_t *handle,
443 struct inode *inode,
444 struct ext4_map_blocks *es_map,
445 struct ext4_map_blocks *map,
446 int flags)
447{
448 int retval;
449
450 map->m_flags = 0;
451 /*
452 * There is a race window that the result is not the same.
453 * e.g. xfstests #223 when dioread_nolock enables. The reason
454 * is that we lookup a block mapping in extent status tree with
455 * out taking i_data_sem. So at the time the unwritten extent
456 * could be converted.
457 */
2dcba478 458 down_read(&EXT4_I(inode)->i_data_sem);
921f266b 459 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
9e52484c 460 retval = ext4_ext_map_blocks(handle, inode, map, 0);
921f266b 461 } else {
9e52484c 462 retval = ext4_ind_map_blocks(handle, inode, map, 0);
921f266b 463 }
2dcba478 464 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
465
466 /*
467 * We don't check m_len because extent will be collpased in status
468 * tree. So the m_len might not equal.
469 */
470 if (es_map->m_lblk != map->m_lblk ||
471 es_map->m_flags != map->m_flags ||
472 es_map->m_pblk != map->m_pblk) {
bdafe42a 473 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
474 "es_cached ex [%d/%d/%llu/%x] != "
475 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476 inode->i_ino, es_map->m_lblk, es_map->m_len,
477 es_map->m_pblk, es_map->m_flags, map->m_lblk,
478 map->m_len, map->m_pblk, map->m_flags,
479 retval, flags);
480 }
481}
482#endif /* ES_AGGRESSIVE_TEST */
483
f5ab0d1f 484/*
e35fd660 485 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 486 * and returns if the blocks are already mapped.
f5ab0d1f 487 *
f5ab0d1f
MC
488 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489 * and store the allocated blocks in the result buffer head and mark it
490 * mapped.
491 *
e35fd660
TT
492 * If file type is extents based, it will call ext4_ext_map_blocks(),
493 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
494 * based files
495 *
facab4d9
JK
496 * On success, it returns the number of blocks being mapped or allocated. if
497 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
499 *
500 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
501 * that case, @map is returned as unmapped but we still do fill map->m_len to
502 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
503 *
504 * It returns the error in case of allocation failure.
505 */
e35fd660
TT
506int ext4_map_blocks(handle_t *handle, struct inode *inode,
507 struct ext4_map_blocks *map, int flags)
0e855ac8 508{
d100eef2 509 struct extent_status es;
0e855ac8 510 int retval;
b8a86845 511 int ret = 0;
921f266b
DM
512#ifdef ES_AGGRESSIVE_TEST
513 struct ext4_map_blocks orig_map;
514
515 memcpy(&orig_map, map, sizeof(*map));
516#endif
f5ab0d1f 517
e35fd660 518 map->m_flags = 0;
70aa1554
RH
519 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520 flags, map->m_len, (unsigned long) map->m_lblk);
d100eef2 521
e861b5e9
TT
522 /*
523 * ext4_map_blocks returns an int, and m_len is an unsigned int
524 */
525 if (unlikely(map->m_len > INT_MAX))
526 map->m_len = INT_MAX;
527
4adb6ab3
KM
528 /* We can handle the block number less than EXT_MAX_BLOCKS */
529 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 530 return -EFSCORRUPTED;
4adb6ab3 531
d100eef2 532 /* Lookup extent status tree firstly */
8016e29f
HS
533 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
d100eef2
ZL
535 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536 map->m_pblk = ext4_es_pblock(&es) +
537 map->m_lblk - es.es_lblk;
538 map->m_flags |= ext4_es_is_written(&es) ?
539 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540 retval = es.es_len - (map->m_lblk - es.es_lblk);
541 if (retval > map->m_len)
542 retval = map->m_len;
543 map->m_len = retval;
544 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
545 map->m_pblk = 0;
546 retval = es.es_len - (map->m_lblk - es.es_lblk);
547 if (retval > map->m_len)
548 retval = map->m_len;
549 map->m_len = retval;
d100eef2
ZL
550 retval = 0;
551 } else {
1e83bc81 552 BUG();
d100eef2 553 }
9558cf14
ZY
554
555 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
556 return retval;
921f266b
DM
557#ifdef ES_AGGRESSIVE_TEST
558 ext4_map_blocks_es_recheck(handle, inode, map,
559 &orig_map, flags);
560#endif
d100eef2
ZL
561 goto found;
562 }
9558cf14
ZY
563 /*
564 * In the query cache no-wait mode, nothing we can do more if we
565 * cannot find extent in the cache.
566 */
567 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
568 return 0;
d100eef2 569
4df3d265 570 /*
b920c755
TT
571 * Try to see if we can get the block without requesting a new
572 * file system block.
4df3d265 573 */
2dcba478 574 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 575 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
9e52484c 576 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 577 } else {
9e52484c 578 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 579 }
f7fec032 580 if (retval > 0) {
3be78c73 581 unsigned int status;
f7fec032 582
44fb851d
ZL
583 if (unlikely(retval != map->m_len)) {
584 ext4_warning(inode->i_sb,
585 "ES len assertion failed for inode "
586 "%lu: retval %d != map->m_len %d",
587 inode->i_ino, retval, map->m_len);
588 WARN_ON(1);
921f266b 589 }
921f266b 590
f7fec032
ZL
591 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 594 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
595 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596 map->m_lblk + map->m_len - 1))
f7fec032
ZL
597 status |= EXTENT_STATUS_DELAYED;
598 ret = ext4_es_insert_extent(inode, map->m_lblk,
599 map->m_len, map->m_pblk, status);
600 if (ret < 0)
601 retval = ret;
602 }
2dcba478 603 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 604
d100eef2 605found:
e35fd660 606 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 607 ret = check_block_validity(inode, map);
6fd058f7
TT
608 if (ret != 0)
609 return ret;
610 }
611
f5ab0d1f 612 /* If it is only a block(s) look up */
c2177057 613 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
614 return retval;
615
616 /*
617 * Returns if the blocks have already allocated
618 *
619 * Note that if blocks have been preallocated
df3ab170 620 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
621 * with buffer head unmapped.
622 */
e35fd660 623 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
624 /*
625 * If we need to convert extent to unwritten
626 * we continue and do the actual work in
627 * ext4_ext_map_blocks()
628 */
629 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
630 return retval;
4df3d265 631
2a8964d6 632 /*
a25a4e1a
ZL
633 * Here we clear m_flags because after allocating an new extent,
634 * it will be set again.
2a8964d6 635 */
a25a4e1a 636 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 637
4df3d265 638 /*
556615dc 639 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 640 * will possibly result in updating i_data, so we take
d91bd2c1 641 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 642 * with create == 1 flag.
4df3d265 643 */
c8b459f4 644 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 645
4df3d265
AK
646 /*
647 * We need to check for EXT4 here because migrate
648 * could have changed the inode type in between
649 */
12e9b892 650 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 651 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 652 } else {
e35fd660 653 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 654
e35fd660 655 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
656 /*
657 * We allocated new blocks which will result in
658 * i_data's format changing. Force the migrate
659 * to fail by clearing migrate flags
660 */
19f5fb7a 661 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 662 }
d2a17637 663
5f634d06
AK
664 /*
665 * Update reserved blocks/metadata blocks after successful
666 * block allocation which had been deferred till now. We don't
667 * support fallocate for non extent files. So we can update
668 * reserve space here.
669 */
670 if ((retval > 0) &&
1296cc85 671 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
672 ext4_da_update_reserve_space(inode, retval, 1);
673 }
2ac3b6e0 674
f7fec032 675 if (retval > 0) {
3be78c73 676 unsigned int status;
f7fec032 677
44fb851d
ZL
678 if (unlikely(retval != map->m_len)) {
679 ext4_warning(inode->i_sb,
680 "ES len assertion failed for inode "
681 "%lu: retval %d != map->m_len %d",
682 inode->i_ino, retval, map->m_len);
683 WARN_ON(1);
921f266b 684 }
921f266b 685
c86d8db3
JK
686 /*
687 * We have to zeroout blocks before inserting them into extent
688 * status tree. Otherwise someone could look them up there and
9b623df6
JK
689 * use them before they are really zeroed. We also have to
690 * unmap metadata before zeroing as otherwise writeback can
691 * overwrite zeros with stale data from block device.
c86d8db3
JK
692 */
693 if (flags & EXT4_GET_BLOCKS_ZERO &&
694 map->m_flags & EXT4_MAP_MAPPED &&
695 map->m_flags & EXT4_MAP_NEW) {
696 ret = ext4_issue_zeroout(inode, map->m_lblk,
697 map->m_pblk, map->m_len);
698 if (ret) {
699 retval = ret;
700 goto out_sem;
701 }
702 }
703
adb23551
ZL
704 /*
705 * If the extent has been zeroed out, we don't need to update
706 * extent status tree.
707 */
708 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
bb5835ed 709 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
adb23551 710 if (ext4_es_is_written(&es))
c86d8db3 711 goto out_sem;
adb23551 712 }
f7fec032
ZL
713 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 716 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
717 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
718 map->m_lblk + map->m_len - 1))
f7fec032
ZL
719 status |= EXTENT_STATUS_DELAYED;
720 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721 map->m_pblk, status);
c86d8db3 722 if (ret < 0) {
f7fec032 723 retval = ret;
c86d8db3
JK
724 goto out_sem;
725 }
5356f261
AK
726 }
727
c86d8db3 728out_sem:
4df3d265 729 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 730 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 731 ret = check_block_validity(inode, map);
6fd058f7
TT
732 if (ret != 0)
733 return ret;
06bd3c36
JK
734
735 /*
736 * Inodes with freshly allocated blocks where contents will be
737 * visible after transaction commit must be on transaction's
738 * ordered data list.
739 */
740 if (map->m_flags & EXT4_MAP_NEW &&
741 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742 !(flags & EXT4_GET_BLOCKS_ZERO) &&
02749a4c 743 !ext4_is_quota_file(inode) &&
06bd3c36 744 ext4_should_order_data(inode)) {
73131fbb
RZ
745 loff_t start_byte =
746 (loff_t)map->m_lblk << inode->i_blkbits;
747 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748
ee0876bc 749 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
73131fbb
RZ
750 ret = ext4_jbd2_inode_add_wait(handle, inode,
751 start_byte, length);
ee0876bc 752 else
73131fbb
RZ
753 ret = ext4_jbd2_inode_add_write(handle, inode,
754 start_byte, length);
06bd3c36
JK
755 if (ret)
756 return ret;
757 }
6fd058f7 758 }
5e4d0eba
XY
759 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
760 map->m_flags & EXT4_MAP_MAPPED))
761 ext4_fc_track_range(handle, inode, map->m_lblk,
762 map->m_lblk + map->m_len - 1);
ec8c60be 763 if (retval < 0)
70aa1554 764 ext_debug(inode, "failed with err %d\n", retval);
0e855ac8
AK
765 return retval;
766}
767
ed8ad838
JK
768/*
769 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
770 * we have to be careful as someone else may be manipulating b_state as well.
771 */
772static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
773{
774 unsigned long old_state;
775 unsigned long new_state;
776
777 flags &= EXT4_MAP_FLAGS;
778
779 /* Dummy buffer_head? Set non-atomically. */
780 if (!bh->b_page) {
781 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
782 return;
783 }
784 /*
785 * Someone else may be modifying b_state. Be careful! This is ugly but
786 * once we get rid of using bh as a container for mapping information
787 * to pass to / from get_block functions, this can go away.
788 */
789 do {
790 old_state = READ_ONCE(bh->b_state);
791 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
792 } while (unlikely(
793 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
794}
795
2ed88685
TT
796static int _ext4_get_block(struct inode *inode, sector_t iblock,
797 struct buffer_head *bh, int flags)
ac27a0ec 798{
2ed88685 799 struct ext4_map_blocks map;
efe70c29 800 int ret = 0;
ac27a0ec 801
46c7f254
TM
802 if (ext4_has_inline_data(inode))
803 return -ERANGE;
804
2ed88685
TT
805 map.m_lblk = iblock;
806 map.m_len = bh->b_size >> inode->i_blkbits;
807
efe70c29
JK
808 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
809 flags);
7fb5409d 810 if (ret > 0) {
2ed88685 811 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 812 ext4_update_bh_state(bh, map.m_flags);
2ed88685 813 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 814 ret = 0;
547edce3
RZ
815 } else if (ret == 0) {
816 /* hole case, need to fill in bh->b_size */
817 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
818 }
819 return ret;
820}
821
2ed88685
TT
822int ext4_get_block(struct inode *inode, sector_t iblock,
823 struct buffer_head *bh, int create)
824{
825 return _ext4_get_block(inode, iblock, bh,
826 create ? EXT4_GET_BLOCKS_CREATE : 0);
827}
828
705965bd
JK
829/*
830 * Get block function used when preparing for buffered write if we require
831 * creating an unwritten extent if blocks haven't been allocated. The extent
832 * will be converted to written after the IO is complete.
833 */
834int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
835 struct buffer_head *bh_result, int create)
836{
837 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
838 inode->i_ino, create);
839 return _ext4_get_block(inode, iblock, bh_result,
8d5459c1 840 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
705965bd
JK
841}
842
efe70c29
JK
843/* Maximum number of blocks we map for direct IO at once. */
844#define DIO_MAX_BLOCKS 4096
845
ac27a0ec
DK
846/*
847 * `handle' can be NULL if create is zero
848 */
617ba13b 849struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 850 ext4_lblk_t block, int map_flags)
ac27a0ec 851{
2ed88685
TT
852 struct ext4_map_blocks map;
853 struct buffer_head *bh;
c5e298ae 854 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
9558cf14 855 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
10560082 856 int err;
ac27a0ec 857
837c23fb
CX
858 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
859 || handle != NULL || create == 0);
9558cf14 860 ASSERT(create == 0 || !nowait);
ac27a0ec 861
2ed88685
TT
862 map.m_lblk = block;
863 map.m_len = 1;
c5e298ae 864 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 865
10560082
TT
866 if (err == 0)
867 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 868 if (err < 0)
10560082 869 return ERR_PTR(err);
2ed88685 870
9558cf14
ZY
871 if (nowait)
872 return sb_find_get_block(inode->i_sb, map.m_pblk);
873
2ed88685 874 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
875 if (unlikely(!bh))
876 return ERR_PTR(-ENOMEM);
2ed88685 877 if (map.m_flags & EXT4_MAP_NEW) {
837c23fb
CX
878 ASSERT(create != 0);
879 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
880 || (handle != NULL));
ac27a0ec 881
2ed88685
TT
882 /*
883 * Now that we do not always journal data, we should
884 * keep in mind whether this should always journal the
885 * new buffer as metadata. For now, regular file
886 * writes use ext4_get_block instead, so it's not a
887 * problem.
888 */
889 lock_buffer(bh);
890 BUFFER_TRACE(bh, "call get_create_access");
188c299e
JK
891 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
892 EXT4_JTR_NONE);
10560082
TT
893 if (unlikely(err)) {
894 unlock_buffer(bh);
895 goto errout;
896 }
897 if (!buffer_uptodate(bh)) {
2ed88685
TT
898 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
899 set_buffer_uptodate(bh);
ac27a0ec 900 }
2ed88685
TT
901 unlock_buffer(bh);
902 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
903 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
904 if (unlikely(err))
905 goto errout;
906 } else
2ed88685 907 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 908 return bh;
10560082
TT
909errout:
910 brelse(bh);
911 return ERR_PTR(err);
ac27a0ec
DK
912}
913
617ba13b 914struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 915 ext4_lblk_t block, int map_flags)
ac27a0ec 916{
af5bc92d 917 struct buffer_head *bh;
2d069c08 918 int ret;
ac27a0ec 919
c5e298ae 920 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 921 if (IS_ERR(bh))
ac27a0ec 922 return bh;
7963e5ac 923 if (!bh || ext4_buffer_uptodate(bh))
ac27a0ec 924 return bh;
2d069c08 925
926 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
927 if (ret) {
928 put_bh(bh);
929 return ERR_PTR(ret);
930 }
931 return bh;
ac27a0ec
DK
932}
933
9699d4f9
TE
934/* Read a contiguous batch of blocks. */
935int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
936 bool wait, struct buffer_head **bhs)
937{
938 int i, err;
939
940 for (i = 0; i < bh_count; i++) {
941 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
942 if (IS_ERR(bhs[i])) {
943 err = PTR_ERR(bhs[i]);
944 bh_count = i;
945 goto out_brelse;
946 }
947 }
948
949 for (i = 0; i < bh_count; i++)
950 /* Note that NULL bhs[i] is valid because of holes. */
2d069c08 951 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
952 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
9699d4f9
TE
953
954 if (!wait)
955 return 0;
956
957 for (i = 0; i < bh_count; i++)
958 if (bhs[i])
959 wait_on_buffer(bhs[i]);
960
961 for (i = 0; i < bh_count; i++) {
962 if (bhs[i] && !buffer_uptodate(bhs[i])) {
963 err = -EIO;
964 goto out_brelse;
965 }
966 }
967 return 0;
968
969out_brelse:
970 for (i = 0; i < bh_count; i++) {
971 brelse(bhs[i]);
972 bhs[i] = NULL;
973 }
974 return err;
975}
976
188c299e 977int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
f19d5870
TM
978 struct buffer_head *head,
979 unsigned from,
980 unsigned to,
981 int *partial,
188c299e 982 int (*fn)(handle_t *handle, struct inode *inode,
f19d5870 983 struct buffer_head *bh))
ac27a0ec
DK
984{
985 struct buffer_head *bh;
986 unsigned block_start, block_end;
987 unsigned blocksize = head->b_size;
988 int err, ret = 0;
989 struct buffer_head *next;
990
af5bc92d
TT
991 for (bh = head, block_start = 0;
992 ret == 0 && (bh != head || !block_start);
de9a55b8 993 block_start = block_end, bh = next) {
ac27a0ec
DK
994 next = bh->b_this_page;
995 block_end = block_start + blocksize;
996 if (block_end <= from || block_start >= to) {
997 if (partial && !buffer_uptodate(bh))
998 *partial = 1;
999 continue;
1000 }
188c299e 1001 err = (*fn)(handle, inode, bh);
ac27a0ec
DK
1002 if (!ret)
1003 ret = err;
1004 }
1005 return ret;
1006}
1007
1008/*
1009 * To preserve ordering, it is essential that the hole instantiation and
1010 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1011 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1012 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1013 * prepare_write() is the right place.
1014 *
36ade451
JK
1015 * Also, this function can nest inside ext4_writepage(). In that case, we
1016 * *know* that ext4_writepage() has generated enough buffer credits to do the
1017 * whole page. So we won't block on the journal in that case, which is good,
1018 * because the caller may be PF_MEMALLOC.
ac27a0ec 1019 *
617ba13b 1020 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1021 * quota file writes. If we were to commit the transaction while thus
1022 * reentered, there can be a deadlock - we would be holding a quota
1023 * lock, and the commit would never complete if another thread had a
1024 * transaction open and was blocking on the quota lock - a ranking
1025 * violation.
1026 *
dab291af 1027 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1028 * will _not_ run commit under these circumstances because handle->h_ref
1029 * is elevated. We'll still have enough credits for the tiny quotafile
1030 * write.
1031 */
188c299e 1032int do_journal_get_write_access(handle_t *handle, struct inode *inode,
f19d5870 1033 struct buffer_head *bh)
ac27a0ec 1034{
56d35a4c
JK
1035 int dirty = buffer_dirty(bh);
1036 int ret;
1037
ac27a0ec
DK
1038 if (!buffer_mapped(bh) || buffer_freed(bh))
1039 return 0;
56d35a4c 1040 /*
ebdec241 1041 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1042 * the dirty bit as jbd2_journal_get_write_access() could complain
1043 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1044 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1045 * the bit before releasing a page lock and thus writeback cannot
1046 * ever write the buffer.
1047 */
1048 if (dirty)
1049 clear_buffer_dirty(bh);
5d601255 1050 BUFFER_TRACE(bh, "get write access");
188c299e
JK
1051 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1052 EXT4_JTR_NONE);
56d35a4c
JK
1053 if (!ret && dirty)
1054 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1055 return ret;
ac27a0ec
DK
1056}
1057
643fa961 1058#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
1059static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1060 get_block_t *get_block)
1061{
09cbfeaf 1062 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1063 unsigned to = from + len;
1064 struct inode *inode = page->mapping->host;
1065 unsigned block_start, block_end;
1066 sector_t block;
1067 int err = 0;
1068 unsigned blocksize = inode->i_sb->s_blocksize;
1069 unsigned bbits;
0b578f35
CR
1070 struct buffer_head *bh, *head, *wait[2];
1071 int nr_wait = 0;
1072 int i;
2058f83a
MH
1073
1074 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1075 BUG_ON(from > PAGE_SIZE);
1076 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1077 BUG_ON(from > to);
1078
1079 if (!page_has_buffers(page))
1080 create_empty_buffers(page, blocksize, 0);
1081 head = page_buffers(page);
1082 bbits = ilog2(blocksize);
09cbfeaf 1083 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1084
1085 for (bh = head, block_start = 0; bh != head || !block_start;
1086 block++, block_start = block_end, bh = bh->b_this_page) {
1087 block_end = block_start + blocksize;
1088 if (block_end <= from || block_start >= to) {
1089 if (PageUptodate(page)) {
3cd46171 1090 set_buffer_uptodate(bh);
2058f83a
MH
1091 }
1092 continue;
1093 }
1094 if (buffer_new(bh))
1095 clear_buffer_new(bh);
1096 if (!buffer_mapped(bh)) {
1097 WARN_ON(bh->b_size != blocksize);
1098 err = get_block(inode, block, bh, 1);
1099 if (err)
1100 break;
1101 if (buffer_new(bh)) {
2058f83a
MH
1102 if (PageUptodate(page)) {
1103 clear_buffer_new(bh);
1104 set_buffer_uptodate(bh);
1105 mark_buffer_dirty(bh);
1106 continue;
1107 }
1108 if (block_end > to || block_start < from)
1109 zero_user_segments(page, to, block_end,
1110 block_start, from);
1111 continue;
1112 }
1113 }
1114 if (PageUptodate(page)) {
3cd46171 1115 set_buffer_uptodate(bh);
2058f83a
MH
1116 continue;
1117 }
1118 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119 !buffer_unwritten(bh) &&
1120 (block_start < from || block_end > to)) {
2d069c08 1121 ext4_read_bh_lock(bh, 0, false);
0b578f35 1122 wait[nr_wait++] = bh;
2058f83a
MH
1123 }
1124 }
1125 /*
1126 * If we issued read requests, let them complete.
1127 */
0b578f35
CR
1128 for (i = 0; i < nr_wait; i++) {
1129 wait_on_buffer(wait[i]);
1130 if (!buffer_uptodate(wait[i]))
2058f83a
MH
1131 err = -EIO;
1132 }
7e0785fc 1133 if (unlikely(err)) {
2058f83a 1134 page_zero_new_buffers(page, from, to);
4f74d15f 1135 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
0b578f35
CR
1136 for (i = 0; i < nr_wait; i++) {
1137 int err2;
1138
1139 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1140 bh_offset(wait[i]));
1141 if (err2) {
1142 clear_buffer_uptodate(wait[i]);
1143 err = err2;
1144 }
1145 }
7e0785fc
CR
1146 }
1147
2058f83a
MH
1148 return err;
1149}
1150#endif
1151
bfc1af65 1152static int ext4_write_begin(struct file *file, struct address_space *mapping,
9d6b0cd7 1153 loff_t pos, unsigned len,
de9a55b8 1154 struct page **pagep, void **fsdata)
ac27a0ec 1155{
af5bc92d 1156 struct inode *inode = mapping->host;
1938a150 1157 int ret, needed_blocks;
ac27a0ec
DK
1158 handle_t *handle;
1159 int retries = 0;
af5bc92d 1160 struct page *page;
de9a55b8 1161 pgoff_t index;
af5bc92d 1162 unsigned from, to;
bfc1af65 1163
0db1ff22
TT
1164 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1165 return -EIO;
1166
9d6b0cd7 1167 trace_ext4_write_begin(inode, pos, len);
1938a150
AK
1168 /*
1169 * Reserve one block more for addition to orphan list in case
1170 * we allocate blocks but write fails for some reason
1171 */
1172 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1173 index = pos >> PAGE_SHIFT;
1174 from = pos & (PAGE_SIZE - 1);
af5bc92d 1175 to = from + len;
ac27a0ec 1176
f19d5870
TM
1177 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1178 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
832ee62d 1179 pagep);
f19d5870 1180 if (ret < 0)
47564bfb
TT
1181 return ret;
1182 if (ret == 1)
1183 return 0;
f19d5870
TM
1184 }
1185
47564bfb
TT
1186 /*
1187 * grab_cache_page_write_begin() can take a long time if the
1188 * system is thrashing due to memory pressure, or if the page
1189 * is being written back. So grab it first before we start
1190 * the transaction handle. This also allows us to allocate
1191 * the page (if needed) without using GFP_NOFS.
1192 */
1193retry_grab:
b7446e7c 1194 page = grab_cache_page_write_begin(mapping, index);
47564bfb
TT
1195 if (!page)
1196 return -ENOMEM;
d1052d23
JH
1197 /*
1198 * The same as page allocation, we prealloc buffer heads before
1199 * starting the handle.
1200 */
1201 if (!page_has_buffers(page))
1202 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1203
47564bfb
TT
1204 unlock_page(page);
1205
1206retry_journal:
9924a92a 1207 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1208 if (IS_ERR(handle)) {
09cbfeaf 1209 put_page(page);
47564bfb 1210 return PTR_ERR(handle);
7479d2b9 1211 }
ac27a0ec 1212
47564bfb
TT
1213 lock_page(page);
1214 if (page->mapping != mapping) {
1215 /* The page got truncated from under us */
1216 unlock_page(page);
09cbfeaf 1217 put_page(page);
cf108bca 1218 ext4_journal_stop(handle);
47564bfb 1219 goto retry_grab;
cf108bca 1220 }
7afe5aa5
DM
1221 /* In case writeback began while the page was unlocked */
1222 wait_for_stable_page(page);
cf108bca 1223
643fa961 1224#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
1225 if (ext4_should_dioread_nolock(inode))
1226 ret = ext4_block_write_begin(page, pos, len,
705965bd 1227 ext4_get_block_unwritten);
2058f83a
MH
1228 else
1229 ret = ext4_block_write_begin(page, pos, len,
1230 ext4_get_block);
1231#else
744692dc 1232 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1233 ret = __block_write_begin(page, pos, len,
1234 ext4_get_block_unwritten);
744692dc 1235 else
6e1db88d 1236 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1237#endif
bfc1af65 1238 if (!ret && ext4_should_journal_data(inode)) {
188c299e
JK
1239 ret = ext4_walk_page_buffers(handle, inode,
1240 page_buffers(page), from, to, NULL,
f19d5870 1241 do_journal_get_write_access);
ac27a0ec 1242 }
bfc1af65
NP
1243
1244 if (ret) {
c93d8f88
EB
1245 bool extended = (pos + len > inode->i_size) &&
1246 !ext4_verity_in_progress(inode);
1247
af5bc92d 1248 unlock_page(page);
ae4d5372 1249 /*
6e1db88d 1250 * __block_write_begin may have instantiated a few blocks
ae4d5372 1251 * outside i_size. Trim these off again. Don't need
f340b3d9 1252 * i_size_read because we hold i_rwsem.
1938a150
AK
1253 *
1254 * Add inode to orphan list in case we crash before
1255 * truncate finishes
ae4d5372 1256 */
c93d8f88 1257 if (extended && ext4_can_truncate(inode))
1938a150
AK
1258 ext4_orphan_add(handle, inode);
1259
1260 ext4_journal_stop(handle);
c93d8f88 1261 if (extended) {
b9a4207d 1262 ext4_truncate_failed_write(inode);
de9a55b8 1263 /*
ffacfa7a 1264 * If truncate failed early the inode might
1938a150
AK
1265 * still be on the orphan list; we need to
1266 * make sure the inode is removed from the
1267 * orphan list in that case.
1268 */
1269 if (inode->i_nlink)
1270 ext4_orphan_del(NULL, inode);
1271 }
bfc1af65 1272
47564bfb
TT
1273 if (ret == -ENOSPC &&
1274 ext4_should_retry_alloc(inode->i_sb, &retries))
1275 goto retry_journal;
09cbfeaf 1276 put_page(page);
47564bfb
TT
1277 return ret;
1278 }
1279 *pagep = page;
ac27a0ec
DK
1280 return ret;
1281}
1282
bfc1af65 1283/* For write_end() in data=journal mode */
188c299e
JK
1284static int write_end_fn(handle_t *handle, struct inode *inode,
1285 struct buffer_head *bh)
ac27a0ec 1286{
13fca323 1287 int ret;
ac27a0ec
DK
1288 if (!buffer_mapped(bh) || buffer_freed(bh))
1289 return 0;
1290 set_buffer_uptodate(bh);
13fca323
TT
1291 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292 clear_buffer_meta(bh);
1293 clear_buffer_prio(bh);
1294 return ret;
ac27a0ec
DK
1295}
1296
eed4333f
ZL
1297/*
1298 * We need to pick up the new inode size which generic_commit_write gave us
1299 * `file' can be NULL - eg, when called from page_symlink().
1300 *
1301 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1302 * buffers are managed internally.
1303 */
1304static int ext4_write_end(struct file *file,
1305 struct address_space *mapping,
1306 loff_t pos, unsigned len, unsigned copied,
1307 struct page *page, void *fsdata)
f8514083 1308{
f8514083 1309 handle_t *handle = ext4_journal_current_handle();
eed4333f 1310 struct inode *inode = mapping->host;
0572639f 1311 loff_t old_size = inode->i_size;
eed4333f
ZL
1312 int ret = 0, ret2;
1313 int i_size_changed = 0;
c93d8f88 1314 bool verity = ext4_verity_in_progress(inode);
eed4333f
ZL
1315
1316 trace_ext4_write_end(inode, pos, len, copied);
6984aef5
ZY
1317
1318 if (ext4_has_inline_data(inode))
1319 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1320
1321 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
f8514083 1322 /*
4631dbf6 1323 * it's important to update i_size while still holding page lock:
f8514083 1324 * page writeout could otherwise come in and zero beyond i_size.
c93d8f88
EB
1325 *
1326 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1327 * blocks are being written past EOF, so skip the i_size update.
f8514083 1328 */
c93d8f88
EB
1329 if (!verity)
1330 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1331 unlock_page(page);
09cbfeaf 1332 put_page(page);
f8514083 1333
c93d8f88 1334 if (old_size < pos && !verity)
0572639f 1335 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1336 /*
1337 * Don't mark the inode dirty under page lock. First, it unnecessarily
1338 * makes the holding time of page lock longer. Second, it forces lock
1339 * ordering of page lock and transaction start for journaling
1340 * filesystems.
1341 */
6984aef5 1342 if (i_size_changed)
4209ae12 1343 ret = ext4_mark_inode_dirty(handle, inode);
f8514083 1344
c93d8f88 1345 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
f8514083
AK
1346 /* if we have allocated more blocks and copied
1347 * less. We will have blocks allocated outside
1348 * inode->i_size. So truncate them
1349 */
1350 ext4_orphan_add(handle, inode);
55ce2f64 1351
617ba13b 1352 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1353 if (!ret)
1354 ret = ret2;
bfc1af65 1355
c93d8f88 1356 if (pos + len > inode->i_size && !verity) {
b9a4207d 1357 ext4_truncate_failed_write(inode);
de9a55b8 1358 /*
ffacfa7a 1359 * If truncate failed early the inode might still be
f8514083
AK
1360 * on the orphan list; we need to make sure the inode
1361 * is removed from the orphan list in that case.
1362 */
1363 if (inode->i_nlink)
1364 ext4_orphan_del(NULL, inode);
1365 }
1366
bfc1af65 1367 return ret ? ret : copied;
ac27a0ec
DK
1368}
1369
b90197b6
TT
1370/*
1371 * This is a private version of page_zero_new_buffers() which doesn't
1372 * set the buffer to be dirty, since in data=journalled mode we need
1373 * to call ext4_handle_dirty_metadata() instead.
1374 */
3b136499 1375static void ext4_journalled_zero_new_buffers(handle_t *handle,
188c299e 1376 struct inode *inode,
3b136499
JK
1377 struct page *page,
1378 unsigned from, unsigned to)
b90197b6
TT
1379{
1380 unsigned int block_start = 0, block_end;
1381 struct buffer_head *head, *bh;
1382
1383 bh = head = page_buffers(page);
1384 do {
1385 block_end = block_start + bh->b_size;
1386 if (buffer_new(bh)) {
1387 if (block_end > from && block_start < to) {
1388 if (!PageUptodate(page)) {
1389 unsigned start, size;
1390
1391 start = max(from, block_start);
1392 size = min(to, block_end) - start;
1393
1394 zero_user(page, start, size);
188c299e 1395 write_end_fn(handle, inode, bh);
b90197b6
TT
1396 }
1397 clear_buffer_new(bh);
1398 }
1399 }
1400 block_start = block_end;
1401 bh = bh->b_this_page;
1402 } while (bh != head);
1403}
1404
bfc1af65 1405static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1406 struct address_space *mapping,
1407 loff_t pos, unsigned len, unsigned copied,
1408 struct page *page, void *fsdata)
ac27a0ec 1409{
617ba13b 1410 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1411 struct inode *inode = mapping->host;
0572639f 1412 loff_t old_size = inode->i_size;
ac27a0ec
DK
1413 int ret = 0, ret2;
1414 int partial = 0;
bfc1af65 1415 unsigned from, to;
4631dbf6 1416 int size_changed = 0;
c93d8f88 1417 bool verity = ext4_verity_in_progress(inode);
ac27a0ec 1418
9bffad1e 1419 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1420 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1421 to = from + len;
1422
441c8508
CW
1423 BUG_ON(!ext4_handle_valid(handle));
1424
6984aef5
ZY
1425 if (ext4_has_inline_data(inode))
1426 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1427
1428 if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499 1429 copied = 0;
188c299e 1430 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
3b136499
JK
1431 } else {
1432 if (unlikely(copied < len))
188c299e 1433 ext4_journalled_zero_new_buffers(handle, inode, page,
3b136499 1434 from + copied, to);
188c299e
JK
1435 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1436 from, from + copied, &partial,
3b136499 1437 write_end_fn);
3fdcfb66
TM
1438 if (!partial)
1439 SetPageUptodate(page);
1440 }
c93d8f88
EB
1441 if (!verity)
1442 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1443 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1444 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1445 unlock_page(page);
09cbfeaf 1446 put_page(page);
4631dbf6 1447
c93d8f88 1448 if (old_size < pos && !verity)
0572639f
XW
1449 pagecache_isize_extended(inode, old_size, pos);
1450
6984aef5 1451 if (size_changed) {
617ba13b 1452 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1453 if (!ret)
1454 ret = ret2;
1455 }
bfc1af65 1456
c93d8f88 1457 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
f8514083
AK
1458 /* if we have allocated more blocks and copied
1459 * less. We will have blocks allocated outside
1460 * inode->i_size. So truncate them
1461 */
1462 ext4_orphan_add(handle, inode);
1463
617ba13b 1464 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1465 if (!ret)
1466 ret = ret2;
c93d8f88 1467 if (pos + len > inode->i_size && !verity) {
b9a4207d 1468 ext4_truncate_failed_write(inode);
de9a55b8 1469 /*
ffacfa7a 1470 * If truncate failed early the inode might still be
f8514083
AK
1471 * on the orphan list; we need to make sure the inode
1472 * is removed from the orphan list in that case.
1473 */
1474 if (inode->i_nlink)
1475 ext4_orphan_del(NULL, inode);
1476 }
bfc1af65
NP
1477
1478 return ret ? ret : copied;
ac27a0ec 1479}
d2a17637 1480
9d0be502 1481/*
c27e43a1 1482 * Reserve space for a single cluster
9d0be502 1483 */
c27e43a1 1484static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1485{
60e58e0f 1486 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1487 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1488 int ret;
03179fe9
TT
1489
1490 /*
1491 * We will charge metadata quota at writeout time; this saves
1492 * us from metadata over-estimation, though we may go over by
1493 * a small amount in the end. Here we just reserve for data.
1494 */
1495 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1496 if (ret)
1497 return ret;
d2a17637 1498
0637c6f4 1499 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1500 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1501 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1502 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1503 return -ENOSPC;
1504 }
9d0be502 1505 ei->i_reserved_data_blocks++;
c27e43a1 1506 trace_ext4_da_reserve_space(inode);
0637c6f4 1507 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1508
d2a17637
MC
1509 return 0; /* success */
1510}
1511
f456767d 1512void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1513{
1514 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1515 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1516
cd213226
MC
1517 if (!to_free)
1518 return; /* Nothing to release, exit */
1519
d2a17637 1520 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1521
5a58ec87 1522 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1523 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1524 /*
0637c6f4
TT
1525 * if there aren't enough reserved blocks, then the
1526 * counter is messed up somewhere. Since this
1527 * function is called from invalidate page, it's
1528 * harmless to return without any action.
cd213226 1529 */
8de5c325 1530 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1531 "ino %lu, to_free %d with only %d reserved "
1084f252 1532 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1533 ei->i_reserved_data_blocks);
1534 WARN_ON(1);
1535 to_free = ei->i_reserved_data_blocks;
cd213226 1536 }
0637c6f4 1537 ei->i_reserved_data_blocks -= to_free;
cd213226 1538
72b8ab9d 1539 /* update fs dirty data blocks counter */
57042651 1540 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1541
d2a17637 1542 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1543
7b415bf6 1544 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1545}
1546
64769240
AT
1547/*
1548 * Delayed allocation stuff
1549 */
1550
4e7ea81d
JK
1551struct mpage_da_data {
1552 struct inode *inode;
1553 struct writeback_control *wbc;
6b523df4 1554
4e7ea81d
JK
1555 pgoff_t first_page; /* The first page to write */
1556 pgoff_t next_page; /* Current page to examine */
1557 pgoff_t last_page; /* Last page to examine */
791b7f08 1558 /*
4e7ea81d
JK
1559 * Extent to map - this can be after first_page because that can be
1560 * fully mapped. We somewhat abuse m_flags to store whether the extent
1561 * is delalloc or unwritten.
791b7f08 1562 */
4e7ea81d
JK
1563 struct ext4_map_blocks map;
1564 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1565 unsigned int do_map:1;
6b8ed620 1566 unsigned int scanned_until_end:1;
4e7ea81d 1567};
64769240 1568
4e7ea81d
JK
1569static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1570 bool invalidate)
c4a0c46e 1571{
fb5a5be0 1572 unsigned nr, i;
c4a0c46e 1573 pgoff_t index, end;
fb5a5be0 1574 struct folio_batch fbatch;
c4a0c46e
AK
1575 struct inode *inode = mpd->inode;
1576 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1577
1578 /* This is necessary when next_page == 0. */
1579 if (mpd->first_page >= mpd->next_page)
1580 return;
c4a0c46e 1581
6b8ed620 1582 mpd->scanned_until_end = 0;
c7f5938a
CW
1583 index = mpd->first_page;
1584 end = mpd->next_page - 1;
4e7ea81d
JK
1585 if (invalidate) {
1586 ext4_lblk_t start, last;
09cbfeaf
KS
1587 start = index << (PAGE_SHIFT - inode->i_blkbits);
1588 last = end << (PAGE_SHIFT - inode->i_blkbits);
7f0d8e1d
EW
1589
1590 /*
1591 * avoid racing with extent status tree scans made by
1592 * ext4_insert_delayed_block()
1593 */
1594 down_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d 1595 ext4_es_remove_extent(inode, start, last - start + 1);
7f0d8e1d 1596 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d 1597 }
51865fda 1598
fb5a5be0 1599 folio_batch_init(&fbatch);
c4a0c46e 1600 while (index <= end) {
fb5a5be0
MWO
1601 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1602 if (nr == 0)
c4a0c46e 1603 break;
fb5a5be0
MWO
1604 for (i = 0; i < nr; i++) {
1605 struct folio *folio = fbatch.folios[i];
2b85a617 1606
fb5a5be0
MWO
1607 if (folio->index < mpd->first_page)
1608 continue;
1609 if (folio->index + folio_nr_pages(folio) - 1 > end)
1610 continue;
7ba13abb
MWO
1611 BUG_ON(!folio_test_locked(folio));
1612 BUG_ON(folio_test_writeback(folio));
4e7ea81d 1613 if (invalidate) {
7ba13abb
MWO
1614 if (folio_mapped(folio))
1615 folio_clear_dirty_for_io(folio);
1616 block_invalidate_folio(folio, 0,
1617 folio_size(folio));
1618 folio_clear_uptodate(folio);
4e7ea81d 1619 }
7ba13abb 1620 folio_unlock(folio);
c4a0c46e 1621 }
fb5a5be0 1622 folio_batch_release(&fbatch);
c4a0c46e 1623 }
c4a0c46e
AK
1624}
1625
df22291f
AK
1626static void ext4_print_free_blocks(struct inode *inode)
1627{
1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1629 struct super_block *sb = inode->i_sb;
f78ee70d 1630 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1631
1632 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1633 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1634 ext4_count_free_clusters(sb)));
92b97816
TT
1635 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1636 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1637 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1638 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1639 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1640 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1641 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1642 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1643 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1644 ei->i_reserved_data_blocks);
df22291f
AK
1645 return;
1646}
1647
188c299e
JK
1648static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1649 struct buffer_head *bh)
29fa89d0 1650{
c364b22c 1651 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1652}
1653
0b02f4c0
EW
1654/*
1655 * ext4_insert_delayed_block - adds a delayed block to the extents status
1656 * tree, incrementing the reserved cluster/block
1657 * count or making a pending reservation
1658 * where needed
1659 *
1660 * @inode - file containing the newly added block
1661 * @lblk - logical block to be added
1662 *
1663 * Returns 0 on success, negative error code on failure.
1664 */
1665static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1666{
1667 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1668 int ret;
1669 bool allocated = false;
6fed8395 1670 bool reserved = false;
0b02f4c0
EW
1671
1672 /*
1673 * If the cluster containing lblk is shared with a delayed,
1674 * written, or unwritten extent in a bigalloc file system, it's
1675 * already been accounted for and does not need to be reserved.
1676 * A pending reservation must be made for the cluster if it's
1677 * shared with a written or unwritten extent and doesn't already
1678 * have one. Written and unwritten extents can be purged from the
1679 * extents status tree if the system is under memory pressure, so
1680 * it's necessary to examine the extent tree if a search of the
1681 * extents status tree doesn't get a match.
1682 */
1683 if (sbi->s_cluster_ratio == 1) {
1684 ret = ext4_da_reserve_space(inode);
1685 if (ret != 0) /* ENOSPC */
1686 goto errout;
6fed8395 1687 reserved = true;
0b02f4c0
EW
1688 } else { /* bigalloc */
1689 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1690 if (!ext4_es_scan_clu(inode,
1691 &ext4_es_is_mapped, lblk)) {
1692 ret = ext4_clu_mapped(inode,
1693 EXT4_B2C(sbi, lblk));
1694 if (ret < 0)
1695 goto errout;
1696 if (ret == 0) {
1697 ret = ext4_da_reserve_space(inode);
1698 if (ret != 0) /* ENOSPC */
1699 goto errout;
6fed8395 1700 reserved = true;
0b02f4c0
EW
1701 } else {
1702 allocated = true;
1703 }
1704 } else {
1705 allocated = true;
1706 }
1707 }
1708 }
1709
1710 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
6fed8395
JX
1711 if (ret && reserved)
1712 ext4_da_release_space(inode, 1);
0b02f4c0
EW
1713
1714errout:
1715 return ret;
1716}
1717
5356f261
AK
1718/*
1719 * This function is grabs code from the very beginning of
1720 * ext4_map_blocks, but assumes that the caller is from delayed write
1721 * time. This function looks up the requested blocks and sets the
1722 * buffer delay bit under the protection of i_data_sem.
1723 */
1724static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1725 struct ext4_map_blocks *map,
1726 struct buffer_head *bh)
1727{
d100eef2 1728 struct extent_status es;
5356f261
AK
1729 int retval;
1730 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1731#ifdef ES_AGGRESSIVE_TEST
1732 struct ext4_map_blocks orig_map;
1733
1734 memcpy(&orig_map, map, sizeof(*map));
1735#endif
5356f261
AK
1736
1737 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1738 invalid_block = ~0;
1739
1740 map->m_flags = 0;
70aa1554 1741 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
5356f261 1742 (unsigned long) map->m_lblk);
d100eef2
ZL
1743
1744 /* Lookup extent status tree firstly */
bb5835ed 1745 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
d100eef2
ZL
1746 if (ext4_es_is_hole(&es)) {
1747 retval = 0;
c8b459f4 1748 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1749 goto add_delayed;
1750 }
1751
1752 /*
3eda41df
EW
1753 * Delayed extent could be allocated by fallocate.
1754 * So we need to check it.
d100eef2 1755 */
3eda41df
EW
1756 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1757 map_bh(bh, inode->i_sb, invalid_block);
1758 set_buffer_new(bh);
1759 set_buffer_delay(bh);
d100eef2
ZL
1760 return 0;
1761 }
1762
1763 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1764 retval = es.es_len - (iblock - es.es_lblk);
1765 if (retval > map->m_len)
1766 retval = map->m_len;
1767 map->m_len = retval;
1768 if (ext4_es_is_written(&es))
1769 map->m_flags |= EXT4_MAP_MAPPED;
1770 else if (ext4_es_is_unwritten(&es))
1771 map->m_flags |= EXT4_MAP_UNWRITTEN;
1772 else
1e83bc81 1773 BUG();
d100eef2 1774
921f266b
DM
1775#ifdef ES_AGGRESSIVE_TEST
1776 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1777#endif
d100eef2
ZL
1778 return retval;
1779 }
1780
5356f261
AK
1781 /*
1782 * Try to see if we can get the block without requesting a new
1783 * file system block.
1784 */
c8b459f4 1785 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1786 if (ext4_has_inline_data(inode))
9c3569b5 1787 retval = 0;
cbd7584e 1788 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1789 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1790 else
2f8e0a7c 1791 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1792
d100eef2 1793add_delayed:
5356f261 1794 if (retval == 0) {
f7fec032 1795 int ret;
ad431025 1796
5356f261
AK
1797 /*
1798 * XXX: __block_prepare_write() unmaps passed block,
1799 * is it OK?
1800 */
5356f261 1801
0b02f4c0
EW
1802 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1803 if (ret != 0) {
f7fec032 1804 retval = ret;
51865fda 1805 goto out_unlock;
f7fec032 1806 }
51865fda 1807
5356f261
AK
1808 map_bh(bh, inode->i_sb, invalid_block);
1809 set_buffer_new(bh);
1810 set_buffer_delay(bh);
f7fec032
ZL
1811 } else if (retval > 0) {
1812 int ret;
3be78c73 1813 unsigned int status;
f7fec032 1814
44fb851d
ZL
1815 if (unlikely(retval != map->m_len)) {
1816 ext4_warning(inode->i_sb,
1817 "ES len assertion failed for inode "
1818 "%lu: retval %d != map->m_len %d",
1819 inode->i_ino, retval, map->m_len);
1820 WARN_ON(1);
921f266b 1821 }
921f266b 1822
f7fec032
ZL
1823 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1824 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1825 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1826 map->m_pblk, status);
1827 if (ret != 0)
1828 retval = ret;
5356f261
AK
1829 }
1830
1831out_unlock:
1832 up_read((&EXT4_I(inode)->i_data_sem));
1833
1834 return retval;
1835}
1836
64769240 1837/*
d91bd2c1 1838 * This is a special get_block_t callback which is used by
b920c755
TT
1839 * ext4_da_write_begin(). It will either return mapped block or
1840 * reserve space for a single block.
29fa89d0
AK
1841 *
1842 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1843 * We also have b_blocknr = -1 and b_bdev initialized properly
1844 *
1845 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1846 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1847 * initialized properly.
64769240 1848 */
9c3569b5
TM
1849int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1850 struct buffer_head *bh, int create)
64769240 1851{
2ed88685 1852 struct ext4_map_blocks map;
64769240
AT
1853 int ret = 0;
1854
1855 BUG_ON(create == 0);
2ed88685
TT
1856 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1857
1858 map.m_lblk = iblock;
1859 map.m_len = 1;
64769240
AT
1860
1861 /*
1862 * first, we need to know whether the block is allocated already
1863 * preallocated blocks are unmapped but should treated
1864 * the same as allocated blocks.
1865 */
5356f261
AK
1866 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1867 if (ret <= 0)
2ed88685 1868 return ret;
64769240 1869
2ed88685 1870 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1871 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1872
1873 if (buffer_unwritten(bh)) {
1874 /* A delayed write to unwritten bh should be marked
1875 * new and mapped. Mapped ensures that we don't do
1876 * get_block multiple times when we write to the same
1877 * offset and new ensures that we do proper zero out
1878 * for partial write.
1879 */
1880 set_buffer_new(bh);
c8205636 1881 set_buffer_mapped(bh);
2ed88685
TT
1882 }
1883 return 0;
64769240 1884}
61628a3f 1885
62e086be 1886static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1887 unsigned int len)
1888{
1889 struct address_space *mapping = page->mapping;
1890 struct inode *inode = mapping->host;
62e086be 1891 handle_t *handle = NULL;
3fdcfb66
TM
1892 int ret = 0, err = 0;
1893 int inline_data = ext4_has_inline_data(inode);
1894 struct buffer_head *inode_bh = NULL;
5c48a7df 1895 loff_t size;
62e086be 1896
cb20d518 1897 ClearPageChecked(page);
3fdcfb66
TM
1898
1899 if (inline_data) {
1900 BUG_ON(page->index != 0);
1901 BUG_ON(len > ext4_get_max_inline_size(inode));
1902 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1903 if (inode_bh == NULL)
1904 goto out;
3fdcfb66 1905 }
bdf96838
TT
1906 /*
1907 * We need to release the page lock before we start the
1908 * journal, so grab a reference so the page won't disappear
1909 * out from under us.
1910 */
1911 get_page(page);
62e086be
AK
1912 unlock_page(page);
1913
9924a92a
TT
1914 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1915 ext4_writepage_trans_blocks(inode));
62e086be
AK
1916 if (IS_ERR(handle)) {
1917 ret = PTR_ERR(handle);
bdf96838
TT
1918 put_page(page);
1919 goto out_no_pagelock;
62e086be 1920 }
441c8508
CW
1921 BUG_ON(!ext4_handle_valid(handle));
1922
bdf96838
TT
1923 lock_page(page);
1924 put_page(page);
5c48a7df
ZY
1925 size = i_size_read(inode);
1926 if (page->mapping != mapping || page_offset(page) > size) {
bdf96838
TT
1927 /* The page got truncated from under us */
1928 ext4_journal_stop(handle);
1929 ret = 0;
1930 goto out;
1931 }
1932
3fdcfb66 1933 if (inline_data) {
362eca70 1934 ret = ext4_mark_inode_dirty(handle, inode);
3fdcfb66 1935 } else {
5c48a7df
ZY
1936 struct buffer_head *page_bufs = page_buffers(page);
1937
1938 if (page->index == size >> PAGE_SHIFT)
1939 len = size & ~PAGE_MASK;
1940 else
1941 len = PAGE_SIZE;
1942
188c299e
JK
1943 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1944 NULL, do_journal_get_write_access);
3fdcfb66 1945
188c299e
JK
1946 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1947 NULL, write_end_fn);
3fdcfb66 1948 }
afb585a9
MFO
1949 if (ret == 0)
1950 ret = err;
b5b18160 1951 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
62e086be
AK
1952 if (ret == 0)
1953 ret = err;
2d859db3 1954 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1955 err = ext4_journal_stop(handle);
1956 if (!ret)
1957 ret = err;
1958
19f5fb7a 1959 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1960out:
bdf96838
TT
1961 unlock_page(page);
1962out_no_pagelock:
3fdcfb66 1963 brelse(inode_bh);
62e086be
AK
1964 return ret;
1965}
1966
61628a3f 1967/*
43ce1d23
AK
1968 * Note that we don't need to start a transaction unless we're journaling data
1969 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1970 * need to file the inode to the transaction's list in ordered mode because if
1971 * we are writing back data added by write(), the inode is already there and if
25985edc 1972 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1973 * transaction the data will hit the disk. In case we are journaling data, we
1974 * cannot start transaction directly because transaction start ranks above page
1975 * lock so we have to do some magic.
1976 *
b920c755 1977 * This function can get called via...
20970ba6 1978 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1979 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1980 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1981 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1982 *
1983 * We don't do any block allocation in this function. If we have page with
1984 * multiple blocks we need to write those buffer_heads that are mapped. This
1985 * is important for mmaped based write. So if we do with blocksize 1K
1986 * truncate(f, 1024);
1987 * a = mmap(f, 0, 4096);
1988 * a[0] = 'a';
1989 * truncate(f, 4096);
1990 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1991 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1992 * do_wp_page). So writepage should write the first block. If we modify
1993 * the mmap area beyond 1024 we will again get a page_fault and the
1994 * page_mkwrite callback will do the block allocation and mark the
1995 * buffer_heads mapped.
1996 *
1997 * We redirty the page if we have any buffer_heads that is either delay or
1998 * unwritten in the page.
1999 *
2000 * We can get recursively called as show below.
2001 *
2002 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2003 * ext4_writepage()
2004 *
2005 * But since we don't do any block allocation we should not deadlock.
2006 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2007 */
43ce1d23 2008static int ext4_writepage(struct page *page,
62e086be 2009 struct writeback_control *wbc)
64769240 2010{
020df9ba 2011 struct folio *folio = page_folio(page);
f8bec370 2012 int ret = 0;
61628a3f 2013 loff_t size;
498e5f24 2014 unsigned int len;
744692dc 2015 struct buffer_head *page_bufs = NULL;
61628a3f 2016 struct inode *inode = page->mapping->host;
36ade451 2017 struct ext4_io_submit io_submit;
1c8349a1 2018 bool keep_towrite = false;
61628a3f 2019
0db1ff22 2020 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
020df9ba
MWO
2021 folio_invalidate(folio, 0, folio_size(folio));
2022 folio_unlock(folio);
0db1ff22
TT
2023 return -EIO;
2024 }
2025
a9c667f8 2026 trace_ext4_writepage(page);
f0e6c985 2027 size = i_size_read(inode);
c93d8f88
EB
2028 if (page->index == size >> PAGE_SHIFT &&
2029 !ext4_verity_in_progress(inode))
09cbfeaf 2030 len = size & ~PAGE_MASK;
f0e6c985 2031 else
09cbfeaf 2032 len = PAGE_SIZE;
64769240 2033
cc509574
TT
2034 /* Should never happen but for bugs in other kernel subsystems */
2035 if (!page_has_buffers(page)) {
2036 ext4_warning_inode(inode,
2037 "page %lu does not have buffers attached", page->index);
2038 ClearPageDirty(page);
2039 unlock_page(page);
2040 return 0;
2041 }
2042
a42afc5f 2043 page_bufs = page_buffers(page);
a42afc5f 2044 /*
fe386132
JK
2045 * We cannot do block allocation or other extent handling in this
2046 * function. If there are buffers needing that, we have to redirty
2047 * the page. But we may reach here when we do a journal commit via
2048 * journal_submit_inode_data_buffers() and in that case we must write
2049 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2050 *
2051 * Also, if there is only one buffer per page (the fs block
2052 * size == the page size), if one buffer needs block
2053 * allocation or needs to modify the extent tree to clear the
2054 * unwritten flag, we know that the page can't be written at
2055 * all, so we might as well refuse the write immediately.
2056 * Unfortunately if the block size != page size, we can't as
2057 * easily detect this case using ext4_walk_page_buffers(), but
2058 * for the extremely common case, this is an optimization that
2059 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2060 */
188c299e 2061 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
f19d5870 2062 ext4_bh_delay_or_unwritten)) {
f8bec370 2063 redirty_page_for_writepage(wbc, page);
cccd147a 2064 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2065 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2066 /*
2067 * For memory cleaning there's no point in writing only
2068 * some buffers. So just bail out. Warn if we came here
2069 * from direct reclaim.
2070 */
2071 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2072 == PF_MEMALLOC);
f0e6c985
AK
2073 unlock_page(page);
2074 return 0;
2075 }
1c8349a1 2076 keep_towrite = true;
a42afc5f 2077 }
64769240 2078
cb20d518 2079 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2080 /*
2081 * It's mmapped pagecache. Add buffers and journal it. There
2082 * doesn't seem much point in redirtying the page here.
2083 */
3f0ca309 2084 return __ext4_journalled_writepage(page, len);
43ce1d23 2085
97a851ed
JK
2086 ext4_io_submit_init(&io_submit, wbc);
2087 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2088 if (!io_submit.io_end) {
2089 redirty_page_for_writepage(wbc, page);
2090 unlock_page(page);
2091 return -ENOMEM;
2092 }
be993933 2093 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
36ade451 2094 ext4_io_submit(&io_submit);
97a851ed
JK
2095 /* Drop io_end reference we got from init */
2096 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2097 return ret;
2098}
2099
5f1132b2
JK
2100static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2101{
2102 int len;
a056bdaa 2103 loff_t size;
5f1132b2
JK
2104 int err;
2105
2106 BUG_ON(page->index != mpd->first_page);
a056bdaa
JK
2107 clear_page_dirty_for_io(page);
2108 /*
2109 * We have to be very careful here! Nothing protects writeback path
2110 * against i_size changes and the page can be writeably mapped into
2111 * page tables. So an application can be growing i_size and writing
2112 * data through mmap while writeback runs. clear_page_dirty_for_io()
2113 * write-protects our page in page tables and the page cannot get
2114 * written to again until we release page lock. So only after
2115 * clear_page_dirty_for_io() we are safe to sample i_size for
2116 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2117 * on the barrier provided by TestClearPageDirty in
2118 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2119 * after page tables are updated.
2120 */
2121 size = i_size_read(mpd->inode);
c93d8f88
EB
2122 if (page->index == size >> PAGE_SHIFT &&
2123 !ext4_verity_in_progress(mpd->inode))
09cbfeaf 2124 len = size & ~PAGE_MASK;
5f1132b2 2125 else
09cbfeaf 2126 len = PAGE_SIZE;
be993933 2127 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
5f1132b2
JK
2128 if (!err)
2129 mpd->wbc->nr_to_write--;
2130 mpd->first_page++;
2131
2132 return err;
2133}
2134
6db07461 2135#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
4e7ea81d 2136
61628a3f 2137/*
fffb2739
JK
2138 * mballoc gives us at most this number of blocks...
2139 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2140 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2141 */
fffb2739 2142#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2143
4e7ea81d
JK
2144/*
2145 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2146 *
2147 * @mpd - extent of blocks
2148 * @lblk - logical number of the block in the file
09930042 2149 * @bh - buffer head we want to add to the extent
4e7ea81d 2150 *
09930042
JK
2151 * The function is used to collect contig. blocks in the same state. If the
2152 * buffer doesn't require mapping for writeback and we haven't started the
2153 * extent of buffers to map yet, the function returns 'true' immediately - the
2154 * caller can write the buffer right away. Otherwise the function returns true
2155 * if the block has been added to the extent, false if the block couldn't be
2156 * added.
4e7ea81d 2157 */
09930042
JK
2158static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2159 struct buffer_head *bh)
4e7ea81d
JK
2160{
2161 struct ext4_map_blocks *map = &mpd->map;
2162
09930042
JK
2163 /* Buffer that doesn't need mapping for writeback? */
2164 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2165 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2166 /* So far no extent to map => we write the buffer right away */
2167 if (map->m_len == 0)
2168 return true;
2169 return false;
2170 }
4e7ea81d
JK
2171
2172 /* First block in the extent? */
2173 if (map->m_len == 0) {
dddbd6ac
JK
2174 /* We cannot map unless handle is started... */
2175 if (!mpd->do_map)
2176 return false;
4e7ea81d
JK
2177 map->m_lblk = lblk;
2178 map->m_len = 1;
09930042
JK
2179 map->m_flags = bh->b_state & BH_FLAGS;
2180 return true;
4e7ea81d
JK
2181 }
2182
09930042
JK
2183 /* Don't go larger than mballoc is willing to allocate */
2184 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2185 return false;
2186
4e7ea81d
JK
2187 /* Can we merge the block to our big extent? */
2188 if (lblk == map->m_lblk + map->m_len &&
09930042 2189 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2190 map->m_len++;
09930042 2191 return true;
4e7ea81d 2192 }
09930042 2193 return false;
4e7ea81d
JK
2194}
2195
5f1132b2
JK
2196/*
2197 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2198 *
2199 * @mpd - extent of blocks for mapping
2200 * @head - the first buffer in the page
2201 * @bh - buffer we should start processing from
2202 * @lblk - logical number of the block in the file corresponding to @bh
2203 *
2204 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2205 * the page for IO if all buffers in this page were mapped and there's no
2206 * accumulated extent of buffers to map or add buffers in the page to the
2207 * extent of buffers to map. The function returns 1 if the caller can continue
2208 * by processing the next page, 0 if it should stop adding buffers to the
2209 * extent to map because we cannot extend it anymore. It can also return value
2210 * < 0 in case of error during IO submission.
2211 */
2212static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2213 struct buffer_head *head,
2214 struct buffer_head *bh,
2215 ext4_lblk_t lblk)
4e7ea81d
JK
2216{
2217 struct inode *inode = mpd->inode;
5f1132b2 2218 int err;
93407472 2219 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2220 >> inode->i_blkbits;
2221
c93d8f88
EB
2222 if (ext4_verity_in_progress(inode))
2223 blocks = EXT_MAX_BLOCKS;
2224
4e7ea81d
JK
2225 do {
2226 BUG_ON(buffer_locked(bh));
2227
09930042 2228 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2229 /* Found extent to map? */
2230 if (mpd->map.m_len)
5f1132b2 2231 return 0;
dddbd6ac
JK
2232 /* Buffer needs mapping and handle is not started? */
2233 if (!mpd->do_map)
2234 return 0;
09930042 2235 /* Everything mapped so far and we hit EOF */
5f1132b2 2236 break;
4e7ea81d 2237 }
4e7ea81d 2238 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2239 /* So far everything mapped? Submit the page for IO. */
2240 if (mpd->map.m_len == 0) {
2241 err = mpage_submit_page(mpd, head->b_page);
2242 if (err < 0)
2243 return err;
2244 }
6b8ed620
JK
2245 if (lblk >= blocks) {
2246 mpd->scanned_until_end = 1;
2247 return 0;
2248 }
2249 return 1;
4e7ea81d
JK
2250}
2251
2943fdbc
RH
2252/*
2253 * mpage_process_page - update page buffers corresponding to changed extent and
2254 * may submit fully mapped page for IO
2255 *
2256 * @mpd - description of extent to map, on return next extent to map
2257 * @m_lblk - logical block mapping.
2258 * @m_pblk - corresponding physical mapping.
2259 * @map_bh - determines on return whether this page requires any further
2260 * mapping or not.
2261 * Scan given page buffers corresponding to changed extent and update buffer
2262 * state according to new extent state.
2263 * We map delalloc buffers to their physical location, clear unwritten bits.
2264 * If the given page is not fully mapped, we update @map to the next extent in
2265 * the given page that needs mapping & return @map_bh as true.
2266 */
2267static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2268 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2269 bool *map_bh)
2270{
2271 struct buffer_head *head, *bh;
2272 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2273 ext4_lblk_t lblk = *m_lblk;
2274 ext4_fsblk_t pblock = *m_pblk;
2275 int err = 0;
c8cc8816
RH
2276 int blkbits = mpd->inode->i_blkbits;
2277 ssize_t io_end_size = 0;
2278 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2943fdbc
RH
2279
2280 bh = head = page_buffers(page);
2281 do {
2282 if (lblk < mpd->map.m_lblk)
2283 continue;
2284 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2285 /*
2286 * Buffer after end of mapped extent.
2287 * Find next buffer in the page to map.
2288 */
2289 mpd->map.m_len = 0;
2290 mpd->map.m_flags = 0;
c8cc8816 2291 io_end_vec->size += io_end_size;
2943fdbc 2292
2943fdbc
RH
2293 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2294 if (err > 0)
2295 err = 0;
c8cc8816
RH
2296 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2297 io_end_vec = ext4_alloc_io_end_vec(io_end);
4d06bfb9
RH
2298 if (IS_ERR(io_end_vec)) {
2299 err = PTR_ERR(io_end_vec);
2300 goto out;
2301 }
d1e18b88 2302 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
c8cc8816 2303 }
2943fdbc
RH
2304 *map_bh = true;
2305 goto out;
2306 }
2307 if (buffer_delay(bh)) {
2308 clear_buffer_delay(bh);
2309 bh->b_blocknr = pblock++;
2310 }
2311 clear_buffer_unwritten(bh);
c8cc8816 2312 io_end_size += (1 << blkbits);
2943fdbc 2313 } while (lblk++, (bh = bh->b_this_page) != head);
c8cc8816
RH
2314
2315 io_end_vec->size += io_end_size;
2943fdbc
RH
2316 *map_bh = false;
2317out:
2318 *m_lblk = lblk;
2319 *m_pblk = pblock;
2320 return err;
2321}
2322
4e7ea81d
JK
2323/*
2324 * mpage_map_buffers - update buffers corresponding to changed extent and
2325 * submit fully mapped pages for IO
2326 *
2327 * @mpd - description of extent to map, on return next extent to map
2328 *
2329 * Scan buffers corresponding to changed extent (we expect corresponding pages
2330 * to be already locked) and update buffer state according to new extent state.
2331 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2332 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2333 * and do extent conversion after IO is finished. If the last page is not fully
2334 * mapped, we update @map to the next extent in the last page that needs
2335 * mapping. Otherwise we submit the page for IO.
2336 */
2337static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2338{
7530d093
MWO
2339 struct folio_batch fbatch;
2340 unsigned nr, i;
4e7ea81d 2341 struct inode *inode = mpd->inode;
09cbfeaf 2342 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2343 pgoff_t start, end;
2344 ext4_lblk_t lblk;
2943fdbc 2345 ext4_fsblk_t pblock;
4e7ea81d 2346 int err;
2943fdbc 2347 bool map_bh = false;
4e7ea81d
JK
2348
2349 start = mpd->map.m_lblk >> bpp_bits;
2350 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2351 lblk = start << bpp_bits;
2352 pblock = mpd->map.m_pblk;
2353
7530d093 2354 folio_batch_init(&fbatch);
4e7ea81d 2355 while (start <= end) {
7530d093
MWO
2356 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2357 if (nr == 0)
4e7ea81d 2358 break;
7530d093
MWO
2359 for (i = 0; i < nr; i++) {
2360 struct page *page = &fbatch.folios[i]->page;
4e7ea81d 2361
2943fdbc
RH
2362 err = mpage_process_page(mpd, page, &lblk, &pblock,
2363 &map_bh);
4e7ea81d 2364 /*
2943fdbc
RH
2365 * If map_bh is true, means page may require further bh
2366 * mapping, or maybe the page was submitted for IO.
2367 * So we return to call further extent mapping.
4e7ea81d 2368 */
39c0ae16 2369 if (err < 0 || map_bh)
2943fdbc 2370 goto out;
4e7ea81d
JK
2371 /* Page fully mapped - let IO run! */
2372 err = mpage_submit_page(mpd, page);
2943fdbc
RH
2373 if (err < 0)
2374 goto out;
4e7ea81d 2375 }
7530d093 2376 folio_batch_release(&fbatch);
4e7ea81d
JK
2377 }
2378 /* Extent fully mapped and matches with page boundary. We are done. */
2379 mpd->map.m_len = 0;
2380 mpd->map.m_flags = 0;
2381 return 0;
2943fdbc 2382out:
7530d093 2383 folio_batch_release(&fbatch);
2943fdbc 2384 return err;
4e7ea81d
JK
2385}
2386
2387static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2388{
2389 struct inode *inode = mpd->inode;
2390 struct ext4_map_blocks *map = &mpd->map;
2391 int get_blocks_flags;
090f32ee 2392 int err, dioread_nolock;
4e7ea81d
JK
2393
2394 trace_ext4_da_write_pages_extent(inode, map);
2395 /*
2396 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2397 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2398 * where we have written into one or more preallocated blocks). It is
2399 * possible that we're going to need more metadata blocks than
2400 * previously reserved. However we must not fail because we're in
2401 * writeback and there is nothing we can do about it so it might result
2402 * in data loss. So use reserved blocks to allocate metadata if
2403 * possible.
2404 *
754cfed6
TT
2405 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2406 * the blocks in question are delalloc blocks. This indicates
2407 * that the blocks and quotas has already been checked when
2408 * the data was copied into the page cache.
4e7ea81d
JK
2409 */
2410 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2411 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2412 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2413 dioread_nolock = ext4_should_dioread_nolock(inode);
2414 if (dioread_nolock)
4e7ea81d 2415 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
6db07461 2416 if (map->m_flags & BIT(BH_Delay))
4e7ea81d
JK
2417 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2418
2419 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2420 if (err < 0)
2421 return err;
090f32ee 2422 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2423 if (!mpd->io_submit.io_end->handle &&
2424 ext4_handle_valid(handle)) {
2425 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2426 handle->h_rsv_handle = NULL;
2427 }
3613d228 2428 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2429 }
4e7ea81d
JK
2430
2431 BUG_ON(map->m_len == 0);
4e7ea81d
JK
2432 return 0;
2433}
2434
2435/*
2436 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2437 * mpd->len and submit pages underlying it for IO
2438 *
2439 * @handle - handle for journal operations
2440 * @mpd - extent to map
7534e854
JK
2441 * @give_up_on_write - we set this to true iff there is a fatal error and there
2442 * is no hope of writing the data. The caller should discard
2443 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2444 *
2445 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2446 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2447 * them to initialized or split the described range from larger unwritten
2448 * extent. Note that we need not map all the described range since allocation
2449 * can return less blocks or the range is covered by more unwritten extents. We
2450 * cannot map more because we are limited by reserved transaction credits. On
2451 * the other hand we always make sure that the last touched page is fully
2452 * mapped so that it can be written out (and thus forward progress is
2453 * guaranteed). After mapping we submit all mapped pages for IO.
2454 */
2455static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2456 struct mpage_da_data *mpd,
2457 bool *give_up_on_write)
4e7ea81d
JK
2458{
2459 struct inode *inode = mpd->inode;
2460 struct ext4_map_blocks *map = &mpd->map;
2461 int err;
2462 loff_t disksize;
6603120e 2463 int progress = 0;
c8cc8816 2464 ext4_io_end_t *io_end = mpd->io_submit.io_end;
4d06bfb9 2465 struct ext4_io_end_vec *io_end_vec;
4e7ea81d 2466
4d06bfb9
RH
2467 io_end_vec = ext4_alloc_io_end_vec(io_end);
2468 if (IS_ERR(io_end_vec))
2469 return PTR_ERR(io_end_vec);
c8cc8816 2470 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2471 do {
4e7ea81d
JK
2472 err = mpage_map_one_extent(handle, mpd);
2473 if (err < 0) {
2474 struct super_block *sb = inode->i_sb;
2475
0db1ff22 2476 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
9b5f6c9b 2477 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
cb530541 2478 goto invalidate_dirty_pages;
4e7ea81d 2479 /*
cb530541
TT
2480 * Let the uper layers retry transient errors.
2481 * In the case of ENOSPC, if ext4_count_free_blocks()
2482 * is non-zero, a commit should free up blocks.
4e7ea81d 2483 */
cb530541 2484 if ((err == -ENOMEM) ||
6603120e
DM
2485 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2486 if (progress)
2487 goto update_disksize;
cb530541 2488 return err;
6603120e 2489 }
cb530541
TT
2490 ext4_msg(sb, KERN_CRIT,
2491 "Delayed block allocation failed for "
2492 "inode %lu at logical offset %llu with"
2493 " max blocks %u with error %d",
2494 inode->i_ino,
2495 (unsigned long long)map->m_lblk,
2496 (unsigned)map->m_len, -err);
2497 ext4_msg(sb, KERN_CRIT,
2498 "This should not happen!! Data will "
2499 "be lost\n");
2500 if (err == -ENOSPC)
2501 ext4_print_free_blocks(inode);
2502 invalidate_dirty_pages:
2503 *give_up_on_write = true;
4e7ea81d
JK
2504 return err;
2505 }
6603120e 2506 progress = 1;
4e7ea81d
JK
2507 /*
2508 * Update buffer state, submit mapped pages, and get us new
2509 * extent to map
2510 */
2511 err = mpage_map_and_submit_buffers(mpd);
2512 if (err < 0)
6603120e 2513 goto update_disksize;
27d7c4ed 2514 } while (map->m_len);
4e7ea81d 2515
6603120e 2516update_disksize:
622cad13
TT
2517 /*
2518 * Update on-disk size after IO is submitted. Races with
2519 * truncate are avoided by checking i_size under i_data_sem.
2520 */
09cbfeaf 2521 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
35df4299 2522 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
4e7ea81d 2523 int err2;
622cad13
TT
2524 loff_t i_size;
2525
2526 down_write(&EXT4_I(inode)->i_data_sem);
2527 i_size = i_size_read(inode);
2528 if (disksize > i_size)
2529 disksize = i_size;
2530 if (disksize > EXT4_I(inode)->i_disksize)
2531 EXT4_I(inode)->i_disksize = disksize;
622cad13 2532 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2533 err2 = ext4_mark_inode_dirty(handle, inode);
878520ac 2534 if (err2) {
54d3adbc
TT
2535 ext4_error_err(inode->i_sb, -err2,
2536 "Failed to mark inode %lu dirty",
2537 inode->i_ino);
878520ac 2538 }
4e7ea81d
JK
2539 if (!err)
2540 err = err2;
2541 }
2542 return err;
2543}
2544
fffb2739
JK
2545/*
2546 * Calculate the total number of credits to reserve for one writepages
20970ba6 2547 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2548 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2549 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2550 * bpp - 1 blocks in bpp different extents.
2551 */
525f4ed8
MC
2552static int ext4_da_writepages_trans_blocks(struct inode *inode)
2553{
fffb2739 2554 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2555
fffb2739
JK
2556 return ext4_meta_trans_blocks(inode,
2557 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2558}
61628a3f 2559
8e48dcfb 2560/*
4e7ea81d
JK
2561 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2562 * and underlying extent to map
2563 *
2564 * @mpd - where to look for pages
2565 *
2566 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2567 * IO immediately. When we find a page which isn't mapped we start accumulating
2568 * extent of buffers underlying these pages that needs mapping (formed by
2569 * either delayed or unwritten buffers). We also lock the pages containing
2570 * these buffers. The extent found is returned in @mpd structure (starting at
2571 * mpd->lblk with length mpd->len blocks).
2572 *
2573 * Note that this function can attach bios to one io_end structure which are
2574 * neither logically nor physically contiguous. Although it may seem as an
2575 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2576 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2577 */
4e7ea81d 2578static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2579{
4e7ea81d
JK
2580 struct address_space *mapping = mpd->inode->i_mapping;
2581 struct pagevec pvec;
2582 unsigned int nr_pages;
aeac589a 2583 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2584 pgoff_t index = mpd->first_page;
2585 pgoff_t end = mpd->last_page;
10bbd235 2586 xa_mark_t tag;
4e7ea81d
JK
2587 int i, err = 0;
2588 int blkbits = mpd->inode->i_blkbits;
2589 ext4_lblk_t lblk;
2590 struct buffer_head *head;
8e48dcfb 2591
4e7ea81d 2592 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2593 tag = PAGECACHE_TAG_TOWRITE;
2594 else
2595 tag = PAGECACHE_TAG_DIRTY;
2596
86679820 2597 pagevec_init(&pvec);
4e7ea81d
JK
2598 mpd->map.m_len = 0;
2599 mpd->next_page = index;
4f01b02c 2600 while (index <= end) {
dc7f3e86 2601 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2602 tag);
8e48dcfb 2603 if (nr_pages == 0)
6b8ed620 2604 break;
8e48dcfb
TT
2605
2606 for (i = 0; i < nr_pages; i++) {
2607 struct page *page = pvec.pages[i];
2608
aeac589a
ML
2609 /*
2610 * Accumulated enough dirty pages? This doesn't apply
2611 * to WB_SYNC_ALL mode. For integrity sync we have to
2612 * keep going because someone may be concurrently
2613 * dirtying pages, and we might have synced a lot of
2614 * newly appeared dirty pages, but have not synced all
2615 * of the old dirty pages.
2616 */
2617 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2618 goto out;
2619
4e7ea81d
JK
2620 /* If we can't merge this page, we are done. */
2621 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2622 goto out;
78aaced3 2623
8e48dcfb 2624 lock_page(page);
8e48dcfb 2625 /*
4e7ea81d
JK
2626 * If the page is no longer dirty, or its mapping no
2627 * longer corresponds to inode we are writing (which
2628 * means it has been truncated or invalidated), or the
2629 * page is already under writeback and we are not doing
2630 * a data integrity writeback, skip the page
8e48dcfb 2631 */
4f01b02c
TT
2632 if (!PageDirty(page) ||
2633 (PageWriteback(page) &&
4e7ea81d 2634 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2635 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2636 unlock_page(page);
2637 continue;
2638 }
2639
7cb1a535 2640 wait_on_page_writeback(page);
8e48dcfb 2641 BUG_ON(PageWriteback(page));
8e48dcfb 2642
cc509574
TT
2643 /*
2644 * Should never happen but for buggy code in
2645 * other subsystems that call
2646 * set_page_dirty() without properly warning
2647 * the file system first. See [1] for more
2648 * information.
2649 *
2650 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2651 */
2652 if (!page_has_buffers(page)) {
2653 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2654 ClearPageDirty(page);
2655 unlock_page(page);
2656 continue;
2657 }
2658
4e7ea81d 2659 if (mpd->map.m_len == 0)
8eb9e5ce 2660 mpd->first_page = page->index;
8eb9e5ce 2661 mpd->next_page = page->index + 1;
f8bec370 2662 /* Add all dirty buffers to mpd */
4e7ea81d 2663 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2664 (PAGE_SHIFT - blkbits);
f8bec370 2665 head = page_buffers(page);
5f1132b2
JK
2666 err = mpage_process_page_bufs(mpd, head, head, lblk);
2667 if (err <= 0)
4e7ea81d 2668 goto out;
5f1132b2 2669 err = 0;
aeac589a 2670 left--;
8e48dcfb
TT
2671 }
2672 pagevec_release(&pvec);
2673 cond_resched();
2674 }
6b8ed620 2675 mpd->scanned_until_end = 1;
4f01b02c 2676 return 0;
8eb9e5ce
TT
2677out:
2678 pagevec_release(&pvec);
4e7ea81d 2679 return err;
8e48dcfb
TT
2680}
2681
20970ba6
TT
2682static int ext4_writepages(struct address_space *mapping,
2683 struct writeback_control *wbc)
64769240 2684{
4e7ea81d
JK
2685 pgoff_t writeback_index = 0;
2686 long nr_to_write = wbc->nr_to_write;
22208ded 2687 int range_whole = 0;
4e7ea81d 2688 int cycled = 1;
61628a3f 2689 handle_t *handle = NULL;
df22291f 2690 struct mpage_da_data mpd;
5e745b04 2691 struct inode *inode = mapping->host;
6b523df4 2692 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2693 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
1bce63d1 2694 struct blk_plug plug;
cb530541 2695 bool give_up_on_write = false;
61628a3f 2696
0db1ff22
TT
2697 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2698 return -EIO;
2699
bbd55937 2700 percpu_down_read(&sbi->s_writepages_rwsem);
20970ba6 2701 trace_ext4_writepages(inode, wbc);
ba80b101 2702
61628a3f
MC
2703 /*
2704 * No pages to write? This is mainly a kludge to avoid starting
2705 * a transaction for special inodes like journal inode on last iput()
2706 * because that could violate lock ordering on umount
2707 */
a1d6cc56 2708 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2709 goto out_writepages;
2a21e37e 2710
20970ba6 2711 if (ext4_should_journal_data(inode)) {
043d20d1 2712 ret = generic_writepages(mapping, wbc);
bbf023c7 2713 goto out_writepages;
20970ba6
TT
2714 }
2715
2a21e37e
TT
2716 /*
2717 * If the filesystem has aborted, it is read-only, so return
2718 * right away instead of dumping stack traces later on that
2719 * will obscure the real source of the problem. We test
1751e8a6 2720 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2a21e37e 2721 * the latter could be true if the filesystem is mounted
20970ba6 2722 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2723 * *never* be called, so if that ever happens, we would want
2724 * the stack trace.
2725 */
0db1ff22 2726 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
9b5f6c9b 2727 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
bbf023c7
ML
2728 ret = -EROFS;
2729 goto out_writepages;
2730 }
2a21e37e 2731
4e7ea81d
JK
2732 /*
2733 * If we have inline data and arrive here, it means that
2734 * we will soon create the block for the 1st page, so
2735 * we'd better clear the inline data here.
2736 */
2737 if (ext4_has_inline_data(inode)) {
2738 /* Just inode will be modified... */
2739 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2740 if (IS_ERR(handle)) {
2741 ret = PTR_ERR(handle);
2742 goto out_writepages;
2743 }
2744 BUG_ON(ext4_test_inode_state(inode,
2745 EXT4_STATE_MAY_INLINE_DATA));
2746 ext4_destroy_inline_data(handle, inode);
2747 ext4_journal_stop(handle);
2748 }
2749
4e343231 2750 if (ext4_should_dioread_nolock(inode)) {
2751 /*
2752 * We may need to convert up to one extent per block in
2753 * the page and we may dirty the inode.
2754 */
2755 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2756 PAGE_SIZE >> inode->i_blkbits);
2757 }
2758
22208ded
AK
2759 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2760 range_whole = 1;
61628a3f 2761
2acf2c26 2762 if (wbc->range_cyclic) {
4e7ea81d
JK
2763 writeback_index = mapping->writeback_index;
2764 if (writeback_index)
2acf2c26 2765 cycled = 0;
4e7ea81d
JK
2766 mpd.first_page = writeback_index;
2767 mpd.last_page = -1;
5b41d924 2768 } else {
09cbfeaf
KS
2769 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2770 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2771 }
a1d6cc56 2772
4e7ea81d
JK
2773 mpd.inode = inode;
2774 mpd.wbc = wbc;
2775 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2776retry:
6e6938b6 2777 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d 2778 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
1bce63d1 2779 blk_start_plug(&plug);
dddbd6ac
JK
2780
2781 /*
2782 * First writeback pages that don't need mapping - we can avoid
2783 * starting a transaction unnecessarily and also avoid being blocked
2784 * in the block layer on device congestion while having transaction
2785 * started.
2786 */
2787 mpd.do_map = 0;
6b8ed620 2788 mpd.scanned_until_end = 0;
dddbd6ac
JK
2789 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2790 if (!mpd.io_submit.io_end) {
2791 ret = -ENOMEM;
2792 goto unplug;
2793 }
2794 ret = mpage_prepare_extent_to_map(&mpd);
a297b2fc
XW
2795 /* Unlock pages we didn't use */
2796 mpage_release_unused_pages(&mpd, false);
dddbd6ac
JK
2797 /* Submit prepared bio */
2798 ext4_io_submit(&mpd.io_submit);
2799 ext4_put_io_end_defer(mpd.io_submit.io_end);
2800 mpd.io_submit.io_end = NULL;
dddbd6ac
JK
2801 if (ret < 0)
2802 goto unplug;
2803
6b8ed620 2804 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
4e7ea81d
JK
2805 /* For each extent of pages we use new io_end */
2806 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2807 if (!mpd.io_submit.io_end) {
2808 ret = -ENOMEM;
2809 break;
2810 }
a1d6cc56
AK
2811
2812 /*
4e7ea81d
JK
2813 * We have two constraints: We find one extent to map and we
2814 * must always write out whole page (makes a difference when
2815 * blocksize < pagesize) so that we don't block on IO when we
2816 * try to write out the rest of the page. Journalled mode is
2817 * not supported by delalloc.
a1d6cc56
AK
2818 */
2819 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2820 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2821
4e7ea81d 2822 /* start a new transaction */
6b523df4
JK
2823 handle = ext4_journal_start_with_reserve(inode,
2824 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2825 if (IS_ERR(handle)) {
2826 ret = PTR_ERR(handle);
1693918e 2827 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2828 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2829 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2830 /* Release allocated io_end */
2831 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2832 mpd.io_submit.io_end = NULL;
4e7ea81d 2833 break;
61628a3f 2834 }
dddbd6ac 2835 mpd.do_map = 1;
f63e6005 2836
4e7ea81d
JK
2837 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2838 ret = mpage_prepare_extent_to_map(&mpd);
6b8ed620
JK
2839 if (!ret && mpd.map.m_len)
2840 ret = mpage_map_and_submit_extent(handle, &mpd,
cb530541 2841 &give_up_on_write);
646caa9c
JK
2842 /*
2843 * Caution: If the handle is synchronous,
2844 * ext4_journal_stop() can wait for transaction commit
2845 * to finish which may depend on writeback of pages to
2846 * complete or on page lock to be released. In that
b483bb77 2847 * case, we have to wait until after we have
646caa9c
JK
2848 * submitted all the IO, released page locks we hold,
2849 * and dropped io_end reference (for extent conversion
2850 * to be able to complete) before stopping the handle.
2851 */
2852 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2853 ext4_journal_stop(handle);
2854 handle = NULL;
dddbd6ac 2855 mpd.do_map = 0;
646caa9c 2856 }
4e7ea81d 2857 /* Unlock pages we didn't use */
cb530541 2858 mpage_release_unused_pages(&mpd, give_up_on_write);
a297b2fc
XW
2859 /* Submit prepared bio */
2860 ext4_io_submit(&mpd.io_submit);
2861
646caa9c
JK
2862 /*
2863 * Drop our io_end reference we got from init. We have
2864 * to be careful and use deferred io_end finishing if
2865 * we are still holding the transaction as we can
2866 * release the last reference to io_end which may end
2867 * up doing unwritten extent conversion.
2868 */
2869 if (handle) {
2870 ext4_put_io_end_defer(mpd.io_submit.io_end);
2871 ext4_journal_stop(handle);
2872 } else
2873 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2874 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2875
2876 if (ret == -ENOSPC && sbi->s_journal) {
2877 /*
2878 * Commit the transaction which would
22208ded
AK
2879 * free blocks released in the transaction
2880 * and try again
2881 */
df22291f 2882 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2883 ret = 0;
4e7ea81d
JK
2884 continue;
2885 }
2886 /* Fatal error - ENOMEM, EIO... */
2887 if (ret)
61628a3f 2888 break;
a1d6cc56 2889 }
dddbd6ac 2890unplug:
1bce63d1 2891 blk_finish_plug(&plug);
9c12a831 2892 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2893 cycled = 1;
4e7ea81d
JK
2894 mpd.last_page = writeback_index - 1;
2895 mpd.first_page = 0;
2acf2c26
AK
2896 goto retry;
2897 }
22208ded
AK
2898
2899 /* Update index */
22208ded
AK
2900 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2901 /*
4e7ea81d 2902 * Set the writeback_index so that range_cyclic
22208ded
AK
2903 * mode will write it back later
2904 */
4e7ea81d 2905 mapping->writeback_index = mpd.first_page;
a1d6cc56 2906
61628a3f 2907out_writepages:
20970ba6
TT
2908 trace_ext4_writepages_result(inode, wbc, ret,
2909 nr_to_write - wbc->nr_to_write);
bbd55937 2910 percpu_up_read(&sbi->s_writepages_rwsem);
61628a3f 2911 return ret;
64769240
AT
2912}
2913
5f0663bb
DW
2914static int ext4_dax_writepages(struct address_space *mapping,
2915 struct writeback_control *wbc)
2916{
2917 int ret;
2918 long nr_to_write = wbc->nr_to_write;
2919 struct inode *inode = mapping->host;
2920 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2921
2922 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2923 return -EIO;
2924
bbd55937 2925 percpu_down_read(&sbi->s_writepages_rwsem);
5f0663bb
DW
2926 trace_ext4_writepages(inode, wbc);
2927
3f666c56 2928 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
5f0663bb
DW
2929 trace_ext4_writepages_result(inode, wbc, ret,
2930 nr_to_write - wbc->nr_to_write);
bbd55937 2931 percpu_up_read(&sbi->s_writepages_rwsem);
5f0663bb
DW
2932 return ret;
2933}
2934
79f0be8d
AK
2935static int ext4_nonda_switch(struct super_block *sb)
2936{
5c1ff336 2937 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2938 struct ext4_sb_info *sbi = EXT4_SB(sb);
2939
2940 /*
2941 * switch to non delalloc mode if we are running low
2942 * on free block. The free block accounting via percpu
179f7ebf 2943 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2944 * accumulated on each CPU without updating global counters
2945 * Delalloc need an accurate free block accounting. So switch
2946 * to non delalloc when we are near to error range.
2947 */
5c1ff336
EW
2948 free_clusters =
2949 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2950 dirty_clusters =
2951 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2952 /*
2953 * Start pushing delalloc when 1/2 of free blocks are dirty.
2954 */
5c1ff336 2955 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2956 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2957
5c1ff336
EW
2958 if (2 * free_clusters < 3 * dirty_clusters ||
2959 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2960 /*
c8afb446
ES
2961 * free block count is less than 150% of dirty blocks
2962 * or free blocks is less than watermark
79f0be8d
AK
2963 */
2964 return 1;
2965 }
2966 return 0;
2967}
2968
64769240 2969static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
9d6b0cd7 2970 loff_t pos, unsigned len,
de9a55b8 2971 struct page **pagep, void **fsdata)
64769240 2972{
72b8ab9d 2973 int ret, retries = 0;
64769240
AT
2974 struct page *page;
2975 pgoff_t index;
64769240 2976 struct inode *inode = mapping->host;
64769240 2977
0db1ff22
TT
2978 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2979 return -EIO;
2980
09cbfeaf 2981 index = pos >> PAGE_SHIFT;
79f0be8d 2982
6493792d 2983 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
79f0be8d
AK
2984 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2985 return ext4_write_begin(file, mapping, pos,
9d6b0cd7 2986 len, pagep, fsdata);
79f0be8d
AK
2987 }
2988 *fsdata = (void *)0;
9d6b0cd7 2989 trace_ext4_da_write_begin(inode, pos, len);
9c3569b5
TM
2990
2991 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
36d116e9 2992 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
9c3569b5
TM
2993 pagep, fsdata);
2994 if (ret < 0)
47564bfb
TT
2995 return ret;
2996 if (ret == 1)
2997 return 0;
9c3569b5
TM
2998 }
2999
cc883236 3000retry:
b7446e7c 3001 page = grab_cache_page_write_begin(mapping, index);
47564bfb
TT
3002 if (!page)
3003 return -ENOMEM;
47564bfb 3004
47564bfb 3005 /* In case writeback began while the page was unlocked */
7afe5aa5 3006 wait_for_stable_page(page);
64769240 3007
643fa961 3008#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
3009 ret = ext4_block_write_begin(page, pos, len,
3010 ext4_da_get_block_prep);
3011#else
6e1db88d 3012 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 3013#endif
64769240
AT
3014 if (ret < 0) {
3015 unlock_page(page);
cc883236 3016 put_page(page);
ae4d5372
AK
3017 /*
3018 * block_write_begin may have instantiated a few blocks
3019 * outside i_size. Trim these off again. Don't need
cc883236 3020 * i_size_read because we hold inode lock.
ae4d5372
AK
3021 */
3022 if (pos + len > inode->i_size)
b9a4207d 3023 ext4_truncate_failed_write(inode);
47564bfb
TT
3024
3025 if (ret == -ENOSPC &&
3026 ext4_should_retry_alloc(inode->i_sb, &retries))
cc883236 3027 goto retry;
47564bfb 3028 return ret;
64769240
AT
3029 }
3030
47564bfb 3031 *pagep = page;
64769240
AT
3032 return ret;
3033}
3034
632eaeab
MC
3035/*
3036 * Check if we should update i_disksize
3037 * when write to the end of file but not require block allocation
3038 */
3039static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3040 unsigned long offset)
632eaeab
MC
3041{
3042 struct buffer_head *bh;
3043 struct inode *inode = page->mapping->host;
3044 unsigned int idx;
3045 int i;
3046
3047 bh = page_buffers(page);
3048 idx = offset >> inode->i_blkbits;
3049
af5bc92d 3050 for (i = 0; i < idx; i++)
632eaeab
MC
3051 bh = bh->b_this_page;
3052
29fa89d0 3053 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3054 return 0;
3055 return 1;
3056}
3057
64769240 3058static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3059 struct address_space *mapping,
3060 loff_t pos, unsigned len, unsigned copied,
3061 struct page *page, void *fsdata)
64769240
AT
3062{
3063 struct inode *inode = mapping->host;
64769240 3064 loff_t new_i_size;
632eaeab 3065 unsigned long start, end;
79f0be8d
AK
3066 int write_mode = (int)(unsigned long)fsdata;
3067
74d553aa
TT
3068 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3069 return ext4_write_end(file, mapping, pos,
3070 len, copied, page, fsdata);
632eaeab 3071
9bffad1e 3072 trace_ext4_da_write_end(inode, pos, len, copied);
6984aef5
ZY
3073
3074 if (write_mode != CONVERT_INLINE_DATA &&
3075 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3076 ext4_has_inline_data(inode))
3077 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3078
09cbfeaf 3079 start = pos & (PAGE_SIZE - 1);
af5bc92d 3080 end = start + copied - 1;
64769240
AT
3081
3082 /*
4df031ff
ZY
3083 * Since we are holding inode lock, we are sure i_disksize <=
3084 * i_size. We also know that if i_disksize < i_size, there are
3085 * delalloc writes pending in the range upto i_size. If the end of
3086 * the current write is <= i_size, there's no need to touch
3087 * i_disksize since writeback will push i_disksize upto i_size
3088 * eventually. If the end of the current write is > i_size and
3089 * inside an allocated block (ext4_da_should_update_i_disksize()
3090 * check), we need to update i_disksize here as neither
3091 * ext4_writepage() nor certain ext4_writepages() paths not
3092 * allocating blocks update i_disksize.
3093 *
3094 * Note that we defer inode dirtying to generic_write_end() /
3095 * ext4_da_write_inline_data_end().
64769240 3096 */
64769240 3097 new_i_size = pos + copied;
6984aef5
ZY
3098 if (copied && new_i_size > inode->i_size &&
3099 ext4_da_should_update_i_disksize(page, end))
3100 ext4_update_i_disksize(inode, new_i_size);
9c3569b5 3101
cc883236 3102 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
64769240
AT
3103}
3104
ccd2506b
TT
3105/*
3106 * Force all delayed allocation blocks to be allocated for a given inode.
3107 */
3108int ext4_alloc_da_blocks(struct inode *inode)
3109{
fb40ba0d
TT
3110 trace_ext4_alloc_da_blocks(inode);
3111
71d4f7d0 3112 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3113 return 0;
3114
3115 /*
3116 * We do something simple for now. The filemap_flush() will
3117 * also start triggering a write of the data blocks, which is
3118 * not strictly speaking necessary (and for users of
3119 * laptop_mode, not even desirable). However, to do otherwise
3120 * would require replicating code paths in:
de9a55b8 3121 *
20970ba6 3122 * ext4_writepages() ->
ccd2506b
TT
3123 * write_cache_pages() ---> (via passed in callback function)
3124 * __mpage_da_writepage() -->
3125 * mpage_add_bh_to_extent()
3126 * mpage_da_map_blocks()
3127 *
3128 * The problem is that write_cache_pages(), located in
3129 * mm/page-writeback.c, marks pages clean in preparation for
3130 * doing I/O, which is not desirable if we're not planning on
3131 * doing I/O at all.
3132 *
3133 * We could call write_cache_pages(), and then redirty all of
380cf090 3134 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3135 * would be ugly in the extreme. So instead we would need to
3136 * replicate parts of the code in the above functions,
25985edc 3137 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3138 * write out the pages, but rather only collect contiguous
3139 * logical block extents, call the multi-block allocator, and
3140 * then update the buffer heads with the block allocations.
de9a55b8 3141 *
ccd2506b
TT
3142 * For now, though, we'll cheat by calling filemap_flush(),
3143 * which will map the blocks, and start the I/O, but not
3144 * actually wait for the I/O to complete.
3145 */
3146 return filemap_flush(inode->i_mapping);
3147}
64769240 3148
ac27a0ec
DK
3149/*
3150 * bmap() is special. It gets used by applications such as lilo and by
3151 * the swapper to find the on-disk block of a specific piece of data.
3152 *
3153 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3154 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3155 * filesystem and enables swap, then they may get a nasty shock when the
3156 * data getting swapped to that swapfile suddenly gets overwritten by
3157 * the original zero's written out previously to the journal and
3158 * awaiting writeback in the kernel's buffer cache.
3159 *
3160 * So, if we see any bmap calls here on a modified, data-journaled file,
3161 * take extra steps to flush any blocks which might be in the cache.
3162 */
617ba13b 3163static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3164{
3165 struct inode *inode = mapping->host;
3166 journal_t *journal;
51ae846c 3167 sector_t ret = 0;
ac27a0ec
DK
3168 int err;
3169
51ae846c 3170 inode_lock_shared(inode);
46c7f254
TM
3171 /*
3172 * We can get here for an inline file via the FIBMAP ioctl
3173 */
3174 if (ext4_has_inline_data(inode))
51ae846c 3175 goto out;
46c7f254 3176
64769240
AT
3177 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3178 test_opt(inode->i_sb, DELALLOC)) {
3179 /*
3180 * With delalloc we want to sync the file
3181 * so that we can make sure we allocate
3182 * blocks for file
3183 */
3184 filemap_write_and_wait(mapping);
3185 }
3186
19f5fb7a
TT
3187 if (EXT4_JOURNAL(inode) &&
3188 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3189 /*
3190 * This is a REALLY heavyweight approach, but the use of
3191 * bmap on dirty files is expected to be extremely rare:
3192 * only if we run lilo or swapon on a freshly made file
3193 * do we expect this to happen.
3194 *
3195 * (bmap requires CAP_SYS_RAWIO so this does not
3196 * represent an unprivileged user DOS attack --- we'd be
3197 * in trouble if mortal users could trigger this path at
3198 * will.)
3199 *
617ba13b 3200 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3201 * regular files. If somebody wants to bmap a directory
3202 * or symlink and gets confused because the buffer
3203 * hasn't yet been flushed to disk, they deserve
3204 * everything they get.
3205 */
3206
19f5fb7a 3207 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3208 journal = EXT4_JOURNAL(inode);
dab291af 3209 jbd2_journal_lock_updates(journal);
01d5d965 3210 err = jbd2_journal_flush(journal, 0);
dab291af 3211 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3212
3213 if (err)
51ae846c 3214 goto out;
ac27a0ec
DK
3215 }
3216
51ae846c
YB
3217 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3218
3219out:
3220 inode_unlock_shared(inode);
3221 return ret;
ac27a0ec
DK
3222}
3223
fe5ddf6b 3224static int ext4_read_folio(struct file *file, struct folio *folio)
ac27a0ec 3225{
fe5ddf6b 3226 struct page *page = &folio->page;
46c7f254
TM
3227 int ret = -EAGAIN;
3228 struct inode *inode = page->mapping->host;
3229
0562e0ba 3230 trace_ext4_readpage(page);
46c7f254
TM
3231
3232 if (ext4_has_inline_data(inode))
3233 ret = ext4_readpage_inline(inode, page);
3234
3235 if (ret == -EAGAIN)
a07f624b 3236 return ext4_mpage_readpages(inode, NULL, page);
46c7f254
TM
3237
3238 return ret;
ac27a0ec
DK
3239}
3240
6311f91f 3241static void ext4_readahead(struct readahead_control *rac)
ac27a0ec 3242{
6311f91f 3243 struct inode *inode = rac->mapping->host;
46c7f254 3244
6311f91f 3245 /* If the file has inline data, no need to do readahead. */
46c7f254 3246 if (ext4_has_inline_data(inode))
6311f91f 3247 return;
46c7f254 3248
a07f624b 3249 ext4_mpage_readpages(inode, rac, NULL);
ac27a0ec
DK
3250}
3251
7ba13abb
MWO
3252static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3253 size_t length)
ac27a0ec 3254{
ccd16945 3255 trace_ext4_invalidate_folio(folio, offset, length);
0562e0ba 3256
4520fb3c 3257 /* No journalling happens on data buffers when this function is used */
7ba13abb 3258 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
4520fb3c 3259
7ba13abb 3260 block_invalidate_folio(folio, offset, length);
4520fb3c
JK
3261}
3262
ccd16945
MWO
3263static int __ext4_journalled_invalidate_folio(struct folio *folio,
3264 size_t offset, size_t length)
4520fb3c 3265{
ccd16945 3266 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
4520fb3c 3267
ccd16945 3268 trace_ext4_journalled_invalidate_folio(folio, offset, length);
4520fb3c 3269
ac27a0ec
DK
3270 /*
3271 * If it's a full truncate we just forget about the pending dirtying
3272 */
ccd16945
MWO
3273 if (offset == 0 && length == folio_size(folio))
3274 folio_clear_checked(folio);
ac27a0ec 3275
ccd16945 3276 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
53e87268
JK
3277}
3278
3279/* Wrapper for aops... */
ccd16945
MWO
3280static void ext4_journalled_invalidate_folio(struct folio *folio,
3281 size_t offset,
3282 size_t length)
53e87268 3283{
ccd16945 3284 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
ac27a0ec
DK
3285}
3286
3c402f15 3287static bool ext4_release_folio(struct folio *folio, gfp_t wait)
ac27a0ec 3288{
3c402f15 3289 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
ac27a0ec 3290
3c402f15 3291 trace_ext4_releasepage(&folio->page);
0562e0ba 3292
e1c36595 3293 /* Page has dirty journalled data -> cannot release */
3c402f15
MWO
3294 if (folio_test_checked(folio))
3295 return false;
0390131b 3296 if (journal)
c56a6eb0 3297 return jbd2_journal_try_to_free_buffers(journal, folio);
0390131b 3298 else
68189fef 3299 return try_to_free_buffers(folio);
ac27a0ec
DK
3300}
3301
b8a6176c
JK
3302static bool ext4_inode_datasync_dirty(struct inode *inode)
3303{
3304 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3305
aa75f4d3
HS
3306 if (journal) {
3307 if (jbd2_transaction_committed(journal,
d0520df7
AR
3308 EXT4_I(inode)->i_datasync_tid))
3309 return false;
3310 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
1ceecb53 3311 return !list_empty(&EXT4_I(inode)->i_fc_list);
d0520df7 3312 return true;
aa75f4d3
HS
3313 }
3314
b8a6176c
JK
3315 /* Any metadata buffers to write? */
3316 if (!list_empty(&inode->i_mapping->private_list))
3317 return true;
3318 return inode->i_state & I_DIRTY_DATASYNC;
3319}
3320
c8fdfe29
MB
3321static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3322 struct ext4_map_blocks *map, loff_t offset,
de205114 3323 loff_t length, unsigned int flags)
364443cb 3324{
c8fdfe29 3325 u8 blkbits = inode->i_blkbits;
364443cb 3326
c8fdfe29
MB
3327 /*
3328 * Writes that span EOF might trigger an I/O size update on completion,
3329 * so consider them to be dirty for the purpose of O_DSYNC, even if
3330 * there is no other metadata changes being made or are pending.
3331 */
364443cb 3332 iomap->flags = 0;
c8fdfe29
MB
3333 if (ext4_inode_datasync_dirty(inode) ||
3334 offset + length > i_size_read(inode))
b8a6176c 3335 iomap->flags |= IOMAP_F_DIRTY;
c8fdfe29
MB
3336
3337 if (map->m_flags & EXT4_MAP_NEW)
3338 iomap->flags |= IOMAP_F_NEW;
3339
de205114
CH
3340 if (flags & IOMAP_DAX)
3341 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3342 else
3343 iomap->bdev = inode->i_sb->s_bdev;
c8fdfe29
MB
3344 iomap->offset = (u64) map->m_lblk << blkbits;
3345 iomap->length = (u64) map->m_len << blkbits;
364443cb 3346
6386722a
RH
3347 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3348 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3349 iomap->flags |= IOMAP_F_MERGED;
3350
c8fdfe29
MB
3351 /*
3352 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3353 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3354 * set. In order for any allocated unwritten extents to be converted
3355 * into written extents correctly within the ->end_io() handler, we
3356 * need to ensure that the iomap->type is set appropriately. Hence, the
3357 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3358 * been set first.
3359 */
3360 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3361 iomap->type = IOMAP_UNWRITTEN;
3362 iomap->addr = (u64) map->m_pblk << blkbits;
de205114
CH
3363 if (flags & IOMAP_DAX)
3364 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
c8fdfe29
MB
3365 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3366 iomap->type = IOMAP_MAPPED;
3367 iomap->addr = (u64) map->m_pblk << blkbits;
de205114
CH
3368 if (flags & IOMAP_DAX)
3369 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
364443cb 3370 } else {
c8fdfe29
MB
3371 iomap->type = IOMAP_HOLE;
3372 iomap->addr = IOMAP_NULL_ADDR;
364443cb 3373 }
364443cb
JK
3374}
3375
f063db5e
MB
3376static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3377 unsigned int flags)
776722e8 3378{
776722e8 3379 handle_t *handle;
378f32ba
MB
3380 u8 blkbits = inode->i_blkbits;
3381 int ret, dio_credits, m_flags = 0, retries = 0;
776722e8 3382
776722e8 3383 /*
f063db5e
MB
3384 * Trim the mapping request to the maximum value that we can map at
3385 * once for direct I/O.
776722e8 3386 */
f063db5e
MB
3387 if (map->m_len > DIO_MAX_BLOCKS)
3388 map->m_len = DIO_MAX_BLOCKS;
3389 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
776722e8 3390
f063db5e 3391retry:
776722e8 3392 /*
f063db5e
MB
3393 * Either we allocate blocks and then don't get an unwritten extent, so
3394 * in that case we have reserved enough credits. Or, the blocks are
3395 * already allocated and unwritten. In that case, the extent conversion
3396 * fits into the credits as well.
776722e8 3397 */
f063db5e
MB
3398 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3399 if (IS_ERR(handle))
3400 return PTR_ERR(handle);
4c0425ff 3401
378f32ba
MB
3402 /*
3403 * DAX and direct I/O are the only two operations that are currently
3404 * supported with IOMAP_WRITE.
3405 */
952da063
CH
3406 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3407 if (flags & IOMAP_DAX)
378f32ba
MB
3408 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3409 /*
3410 * We use i_size instead of i_disksize here because delalloc writeback
3411 * can complete at any point during the I/O and subsequently push the
3412 * i_disksize out to i_size. This could be beyond where direct I/O is
3413 * happening and thus expose allocated blocks to direct I/O reads.
3414 */
d0b040f5 3415 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
378f32ba
MB
3416 m_flags = EXT4_GET_BLOCKS_CREATE;
3417 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3418 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
4b70df18 3419
378f32ba 3420 ret = ext4_map_blocks(handle, inode, map, m_flags);
8d5d02e6 3421
74c66bcb 3422 /*
378f32ba
MB
3423 * We cannot fill holes in indirect tree based inodes as that could
3424 * expose stale data in the case of a crash. Use the magic error code
3425 * to fallback to buffered I/O.
74c66bcb 3426 */
378f32ba
MB
3427 if (!m_flags && !ret)
3428 ret = -ENOTBLK;
187372a3 3429
f063db5e
MB
3430 ext4_journal_stop(handle);
3431 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3432 goto retry;
3433
3434 return ret;
4c0425ff 3435}
c7064ef1 3436
f063db5e 3437
364443cb 3438static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
c039b997 3439 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
4c0425ff 3440{
364443cb 3441 int ret;
09edf4d3
MB
3442 struct ext4_map_blocks map;
3443 u8 blkbits = inode->i_blkbits;
729f52c6 3444
bcd8e91f
TT
3445 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3446 return -EINVAL;
4bd809db 3447
09edf4d3
MB
3448 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3449 return -ERANGE;
4bd809db 3450
e8340395 3451 /*
09edf4d3 3452 * Calculate the first and last logical blocks respectively.
e8340395 3453 */
09edf4d3
MB
3454 map.m_lblk = offset >> blkbits;
3455 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3456 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
e8340395 3457
9faac62d
RH
3458 if (flags & IOMAP_WRITE) {
3459 /*
3460 * We check here if the blocks are already allocated, then we
3461 * don't need to start a journal txn and we can directly return
3462 * the mapping information. This could boost performance
3463 * especially in multi-threaded overwrite requests.
3464 */
3465 if (offset + length <= i_size_read(inode)) {
3466 ret = ext4_map_blocks(NULL, inode, &map, 0);
3467 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3468 goto out;
3469 }
f063db5e 3470 ret = ext4_iomap_alloc(inode, &map, flags);
9faac62d 3471 } else {
545052e9 3472 ret = ext4_map_blocks(NULL, inode, &map, 0);
9faac62d 3473 }
4bd809db 3474
f063db5e
MB
3475 if (ret < 0)
3476 return ret;
9faac62d 3477out:
38ea50da
EB
3478 /*
3479 * When inline encryption is enabled, sometimes I/O to an encrypted file
3480 * has to be broken up to guarantee DUN contiguity. Handle this by
3481 * limiting the length of the mapping returned.
3482 */
3483 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3484
de205114 3485 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
4bd809db 3486
364443cb
JK
3487 return 0;
3488}
8d5d02e6 3489
8cd115bd
JK
3490static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3491 loff_t length, unsigned flags, struct iomap *iomap,
3492 struct iomap *srcmap)
3493{
3494 int ret;
3495
3496 /*
3497 * Even for writes we don't need to allocate blocks, so just pretend
3498 * we are reading to save overhead of starting a transaction.
3499 */
3500 flags &= ~IOMAP_WRITE;
3501 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3502 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3503 return ret;
3504}
3505
776722e8
JK
3506static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3507 ssize_t written, unsigned flags, struct iomap *iomap)
3508{
69c499d1 3509 /*
378f32ba
MB
3510 * Check to see whether an error occurred while writing out the data to
3511 * the allocated blocks. If so, return the magic error code so that we
3512 * fallback to buffered I/O and attempt to complete the remainder of
3513 * the I/O. Any blocks that may have been allocated in preparation for
3514 * the direct I/O will be reused during buffered I/O.
69c499d1 3515 */
378f32ba
MB
3516 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3517 return -ENOTBLK;
69c499d1 3518
569342dc 3519 return 0;
776722e8 3520}
4bd809db 3521
8ff6daa1 3522const struct iomap_ops ext4_iomap_ops = {
364443cb 3523 .iomap_begin = ext4_iomap_begin,
776722e8 3524 .iomap_end = ext4_iomap_end,
364443cb 3525};
8d5d02e6 3526
8cd115bd
JK
3527const struct iomap_ops ext4_iomap_overwrite_ops = {
3528 .iomap_begin = ext4_iomap_overwrite_begin,
3529 .iomap_end = ext4_iomap_end,
3530};
3531
09edf4d3
MB
3532static bool ext4_iomap_is_delalloc(struct inode *inode,
3533 struct ext4_map_blocks *map)
3534{
3535 struct extent_status es;
3536 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
914f82a3 3537
09edf4d3
MB
3538 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3539 map->m_lblk, end, &es);
914f82a3 3540
09edf4d3
MB
3541 if (!es.es_len || es.es_lblk > end)
3542 return false;
914f82a3 3543
09edf4d3
MB
3544 if (es.es_lblk > map->m_lblk) {
3545 map->m_len = es.es_lblk - map->m_lblk;
3546 return false;
914f82a3 3547 }
914f82a3 3548
09edf4d3
MB
3549 offset = map->m_lblk - es.es_lblk;
3550 map->m_len = es.es_len - offset;
914f82a3 3551
09edf4d3 3552 return true;
4c0425ff
MC
3553}
3554
09edf4d3
MB
3555static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3556 loff_t length, unsigned int flags,
3557 struct iomap *iomap, struct iomap *srcmap)
4c0425ff 3558{
09edf4d3
MB
3559 int ret;
3560 bool delalloc = false;
3561 struct ext4_map_blocks map;
3562 u8 blkbits = inode->i_blkbits;
4c0425ff 3563
09edf4d3
MB
3564 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3565 return -EINVAL;
3566
3567 if (ext4_has_inline_data(inode)) {
3568 ret = ext4_inline_data_iomap(inode, iomap);
3569 if (ret != -EAGAIN) {
3570 if (ret == 0 && offset >= iomap->length)
3571 ret = -ENOENT;
3572 return ret;
3573 }
3574 }
2058f83a 3575
84ebd795 3576 /*
09edf4d3 3577 * Calculate the first and last logical block respectively.
84ebd795 3578 */
09edf4d3
MB
3579 map.m_lblk = offset >> blkbits;
3580 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3581 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
84ebd795 3582
b2c57642
RH
3583 /*
3584 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3585 * So handle it here itself instead of querying ext4_map_blocks().
3586 * Since ext4_map_blocks() will warn about it and will return
3587 * -EIO error.
3588 */
3589 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3590 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3591
3592 if (offset >= sbi->s_bitmap_maxbytes) {
3593 map.m_flags = 0;
3594 goto set_iomap;
3595 }
3596 }
3597
09edf4d3
MB
3598 ret = ext4_map_blocks(NULL, inode, &map, 0);
3599 if (ret < 0)
3600 return ret;
3601 if (ret == 0)
3602 delalloc = ext4_iomap_is_delalloc(inode, &map);
46c7f254 3603
b2c57642 3604set_iomap:
de205114 3605 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
09edf4d3
MB
3606 if (delalloc && iomap->type == IOMAP_HOLE)
3607 iomap->type = IOMAP_DELALLOC;
3608
3609 return 0;
4c0425ff
MC
3610}
3611
09edf4d3
MB
3612const struct iomap_ops ext4_iomap_report_ops = {
3613 .iomap_begin = ext4_iomap_begin_report,
3614};
3615
ac27a0ec 3616/*
6b1f86f8
LT
3617 * Whenever the folio is being dirtied, corresponding buffers should already
3618 * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3619 * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3620 * lists here because ->dirty_folio is called under VFS locks and the folio
2bb8dd40 3621 * is not necessarily locked.
ac27a0ec 3622 *
187c82cb 3623 * We cannot just dirty the folio and leave attached buffers clean, because the
ac27a0ec
DK
3624 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3625 * or jbddirty because all the journalling code will explode.
3626 *
187c82cb 3627 * So what we do is to mark the folio "pending dirty" and next time writepage
ac27a0ec
DK
3628 * is called, propagate that into the buffers appropriately.
3629 */
187c82cb
MWO
3630static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3631 struct folio *folio)
ac27a0ec 3632{
0f252336 3633 WARN_ON_ONCE(!folio_buffers(folio));
187c82cb
MWO
3634 folio_set_checked(folio);
3635 return filemap_dirty_folio(mapping, folio);
ac27a0ec
DK
3636}
3637
e621900a 3638static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
6dcc693b 3639{
e621900a
MWO
3640 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3641 WARN_ON_ONCE(!folio_buffers(folio));
3642 return block_dirty_folio(mapping, folio);
6dcc693b
JK
3643}
3644
0e6895ba
RH
3645static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3646 struct file *file, sector_t *span)
3647{
3648 return iomap_swapfile_activate(sis, file, span,
3649 &ext4_iomap_report_ops);
3650}
3651
74d553aa 3652static const struct address_space_operations ext4_aops = {
fe5ddf6b 3653 .read_folio = ext4_read_folio,
6311f91f 3654 .readahead = ext4_readahead,
43ce1d23 3655 .writepage = ext4_writepage,
20970ba6 3656 .writepages = ext4_writepages,
8ab22b9a 3657 .write_begin = ext4_write_begin,
74d553aa 3658 .write_end = ext4_write_end,
e621900a 3659 .dirty_folio = ext4_dirty_folio,
8ab22b9a 3660 .bmap = ext4_bmap,
7ba13abb 3661 .invalidate_folio = ext4_invalidate_folio,
3c402f15 3662 .release_folio = ext4_release_folio,
378f32ba 3663 .direct_IO = noop_direct_IO,
67235182 3664 .migrate_folio = buffer_migrate_folio,
8ab22b9a 3665 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3666 .error_remove_page = generic_error_remove_page,
0e6895ba 3667 .swap_activate = ext4_iomap_swap_activate,
ac27a0ec
DK
3668};
3669
617ba13b 3670static const struct address_space_operations ext4_journalled_aops = {
fe5ddf6b 3671 .read_folio = ext4_read_folio,
6311f91f 3672 .readahead = ext4_readahead,
43ce1d23 3673 .writepage = ext4_writepage,
20970ba6 3674 .writepages = ext4_writepages,
8ab22b9a
HH
3675 .write_begin = ext4_write_begin,
3676 .write_end = ext4_journalled_write_end,
187c82cb 3677 .dirty_folio = ext4_journalled_dirty_folio,
8ab22b9a 3678 .bmap = ext4_bmap,
ccd16945 3679 .invalidate_folio = ext4_journalled_invalidate_folio,
3c402f15 3680 .release_folio = ext4_release_folio,
378f32ba 3681 .direct_IO = noop_direct_IO,
8ab22b9a 3682 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3683 .error_remove_page = generic_error_remove_page,
0e6895ba 3684 .swap_activate = ext4_iomap_swap_activate,
ac27a0ec
DK
3685};
3686
64769240 3687static const struct address_space_operations ext4_da_aops = {
fe5ddf6b 3688 .read_folio = ext4_read_folio,
6311f91f 3689 .readahead = ext4_readahead,
43ce1d23 3690 .writepage = ext4_writepage,
20970ba6 3691 .writepages = ext4_writepages,
8ab22b9a
HH
3692 .write_begin = ext4_da_write_begin,
3693 .write_end = ext4_da_write_end,
e621900a 3694 .dirty_folio = ext4_dirty_folio,
8ab22b9a 3695 .bmap = ext4_bmap,
7ba13abb 3696 .invalidate_folio = ext4_invalidate_folio,
3c402f15 3697 .release_folio = ext4_release_folio,
378f32ba 3698 .direct_IO = noop_direct_IO,
67235182 3699 .migrate_folio = buffer_migrate_folio,
8ab22b9a 3700 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3701 .error_remove_page = generic_error_remove_page,
0e6895ba 3702 .swap_activate = ext4_iomap_swap_activate,
64769240
AT
3703};
3704
5f0663bb
DW
3705static const struct address_space_operations ext4_dax_aops = {
3706 .writepages = ext4_dax_writepages,
3707 .direct_IO = noop_direct_IO,
46de8b97 3708 .dirty_folio = noop_dirty_folio,
94dbb631 3709 .bmap = ext4_bmap,
0e6895ba 3710 .swap_activate = ext4_iomap_swap_activate,
5f0663bb
DW
3711};
3712
617ba13b 3713void ext4_set_aops(struct inode *inode)
ac27a0ec 3714{
3d2b1582
LC
3715 switch (ext4_inode_journal_mode(inode)) {
3716 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3717 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3718 break;
3719 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3720 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3721 return;
3d2b1582
LC
3722 default:
3723 BUG();
3724 }
5f0663bb
DW
3725 if (IS_DAX(inode))
3726 inode->i_mapping->a_ops = &ext4_dax_aops;
3727 else if (test_opt(inode->i_sb, DELALLOC))
74d553aa
TT
3728 inode->i_mapping->a_ops = &ext4_da_aops;
3729 else
3730 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3731}
3732
923ae0ff 3733static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3734 struct address_space *mapping, loff_t from, loff_t length)
3735{
09cbfeaf
KS
3736 ext4_fsblk_t index = from >> PAGE_SHIFT;
3737 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3738 unsigned blocksize, pos;
d863dc36
LC
3739 ext4_lblk_t iblock;
3740 struct inode *inode = mapping->host;
3741 struct buffer_head *bh;
3742 struct page *page;
3743 int err = 0;
3744
09cbfeaf 3745 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3746 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3747 if (!page)
3748 return -ENOMEM;
3749
3750 blocksize = inode->i_sb->s_blocksize;
d863dc36 3751
09cbfeaf 3752 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3753
3754 if (!page_has_buffers(page))
3755 create_empty_buffers(page, blocksize, 0);
3756
3757 /* Find the buffer that contains "offset" */
3758 bh = page_buffers(page);
3759 pos = blocksize;
3760 while (offset >= pos) {
3761 bh = bh->b_this_page;
3762 iblock++;
3763 pos += blocksize;
3764 }
d863dc36
LC
3765 if (buffer_freed(bh)) {
3766 BUFFER_TRACE(bh, "freed: skip");
3767 goto unlock;
3768 }
d863dc36
LC
3769 if (!buffer_mapped(bh)) {
3770 BUFFER_TRACE(bh, "unmapped");
3771 ext4_get_block(inode, iblock, bh, 0);
3772 /* unmapped? It's a hole - nothing to do */
3773 if (!buffer_mapped(bh)) {
3774 BUFFER_TRACE(bh, "still unmapped");
3775 goto unlock;
3776 }
3777 }
3778
3779 /* Ok, it's mapped. Make sure it's up-to-date */
3780 if (PageUptodate(page))
3781 set_buffer_uptodate(bh);
3782
3783 if (!buffer_uptodate(bh)) {
2d069c08 3784 err = ext4_read_bh_lock(bh, 0, true);
3785 if (err)
d863dc36 3786 goto unlock;
4f74d15f 3787 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
c9c7429c 3788 /* We expect the key to be set. */
a7550b30 3789 BUG_ON(!fscrypt_has_encryption_key(inode));
834f1565
EB
3790 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3791 bh_offset(bh));
3792 if (err) {
3793 clear_buffer_uptodate(bh);
3794 goto unlock;
3795 }
c9c7429c 3796 }
d863dc36 3797 }
d863dc36
LC
3798 if (ext4_should_journal_data(inode)) {
3799 BUFFER_TRACE(bh, "get write access");
188c299e
JK
3800 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3801 EXT4_JTR_NONE);
d863dc36
LC
3802 if (err)
3803 goto unlock;
3804 }
d863dc36 3805 zero_user(page, offset, length);
d863dc36
LC
3806 BUFFER_TRACE(bh, "zeroed end of block");
3807
d863dc36
LC
3808 if (ext4_should_journal_data(inode)) {
3809 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3810 } else {
353eefd3 3811 err = 0;
d863dc36 3812 mark_buffer_dirty(bh);
3957ef53 3813 if (ext4_should_order_data(inode))
73131fbb
RZ
3814 err = ext4_jbd2_inode_add_write(handle, inode, from,
3815 length);
0713ed0c 3816 }
d863dc36
LC
3817
3818unlock:
3819 unlock_page(page);
09cbfeaf 3820 put_page(page);
d863dc36
LC
3821 return err;
3822}
3823
923ae0ff
RZ
3824/*
3825 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3826 * starting from file offset 'from'. The range to be zero'd must
3827 * be contained with in one block. If the specified range exceeds
3828 * the end of the block it will be shortened to end of the block
3088e5a5 3829 * that corresponds to 'from'
923ae0ff
RZ
3830 */
3831static int ext4_block_zero_page_range(handle_t *handle,
3832 struct address_space *mapping, loff_t from, loff_t length)
3833{
3834 struct inode *inode = mapping->host;
09cbfeaf 3835 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3836 unsigned blocksize = inode->i_sb->s_blocksize;
3837 unsigned max = blocksize - (offset & (blocksize - 1));
3838
3839 /*
3840 * correct length if it does not fall between
3841 * 'from' and the end of the block
3842 */
3843 if (length > max || length < 0)
3844 length = max;
3845
47e69351 3846 if (IS_DAX(inode)) {
c6f40468
CH
3847 return dax_zero_range(inode, from, length, NULL,
3848 &ext4_iomap_ops);
47e69351 3849 }
923ae0ff
RZ
3850 return __ext4_block_zero_page_range(handle, mapping, from, length);
3851}
3852
94350ab5
MW
3853/*
3854 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3855 * up to the end of the block which corresponds to `from'.
3856 * This required during truncate. We need to physically zero the tail end
3857 * of that block so it doesn't yield old data if the file is later grown.
3858 */
c197855e 3859static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3860 struct address_space *mapping, loff_t from)
3861{
09cbfeaf 3862 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
3863 unsigned length;
3864 unsigned blocksize;
3865 struct inode *inode = mapping->host;
3866
0d06863f 3867 /* If we are processing an encrypted inode during orphan list handling */
592ddec7 3868 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
0d06863f
TT
3869 return 0;
3870
94350ab5
MW
3871 blocksize = inode->i_sb->s_blocksize;
3872 length = blocksize - (offset & (blocksize - 1));
3873
3874 return ext4_block_zero_page_range(handle, mapping, from, length);
3875}
3876
a87dd18c
LC
3877int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3878 loff_t lstart, loff_t length)
3879{
3880 struct super_block *sb = inode->i_sb;
3881 struct address_space *mapping = inode->i_mapping;
e1be3a92 3882 unsigned partial_start, partial_end;
a87dd18c
LC
3883 ext4_fsblk_t start, end;
3884 loff_t byte_end = (lstart + length - 1);
3885 int err = 0;
3886
e1be3a92
LC
3887 partial_start = lstart & (sb->s_blocksize - 1);
3888 partial_end = byte_end & (sb->s_blocksize - 1);
3889
a87dd18c
LC
3890 start = lstart >> sb->s_blocksize_bits;
3891 end = byte_end >> sb->s_blocksize_bits;
3892
3893 /* Handle partial zero within the single block */
e1be3a92
LC
3894 if (start == end &&
3895 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3896 err = ext4_block_zero_page_range(handle, mapping,
3897 lstart, length);
3898 return err;
3899 }
3900 /* Handle partial zero out on the start of the range */
e1be3a92 3901 if (partial_start) {
a87dd18c
LC
3902 err = ext4_block_zero_page_range(handle, mapping,
3903 lstart, sb->s_blocksize);
3904 if (err)
3905 return err;
3906 }
3907 /* Handle partial zero out on the end of the range */
e1be3a92 3908 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3909 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3910 byte_end - partial_end,
3911 partial_end + 1);
a87dd18c
LC
3912 return err;
3913}
3914
91ef4caf
DG
3915int ext4_can_truncate(struct inode *inode)
3916{
91ef4caf
DG
3917 if (S_ISREG(inode->i_mode))
3918 return 1;
3919 if (S_ISDIR(inode->i_mode))
3920 return 1;
3921 if (S_ISLNK(inode->i_mode))
3922 return !ext4_inode_is_fast_symlink(inode);
3923 return 0;
3924}
3925
01127848
JK
3926/*
3927 * We have to make sure i_disksize gets properly updated before we truncate
3928 * page cache due to hole punching or zero range. Otherwise i_disksize update
3929 * can get lost as it may have been postponed to submission of writeback but
3930 * that will never happen after we truncate page cache.
3931 */
3932int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3933 loff_t len)
3934{
3935 handle_t *handle;
4209ae12
HS
3936 int ret;
3937
01127848
JK
3938 loff_t size = i_size_read(inode);
3939
5955102c 3940 WARN_ON(!inode_is_locked(inode));
01127848
JK
3941 if (offset > size || offset + len < size)
3942 return 0;
3943
3944 if (EXT4_I(inode)->i_disksize >= size)
3945 return 0;
3946
3947 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3948 if (IS_ERR(handle))
3949 return PTR_ERR(handle);
3950 ext4_update_i_disksize(inode, size);
4209ae12 3951 ret = ext4_mark_inode_dirty(handle, inode);
01127848
JK
3952 ext4_journal_stop(handle);
3953
4209ae12 3954 return ret;
01127848
JK
3955}
3956
d4f5258e 3957static void ext4_wait_dax_page(struct inode *inode)
430657b6 3958{
d4f5258e 3959 filemap_invalidate_unlock(inode->i_mapping);
430657b6 3960 schedule();
d4f5258e 3961 filemap_invalidate_lock(inode->i_mapping);
430657b6
RZ
3962}
3963
3964int ext4_break_layouts(struct inode *inode)
3965{
430657b6 3966 struct page *page;
430657b6
RZ
3967 int error;
3968
d4f5258e 3969 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
430657b6
RZ
3970 return -EINVAL;
3971
3972 do {
430657b6
RZ
3973 page = dax_layout_busy_page(inode->i_mapping);
3974 if (!page)
3975 return 0;
3976
3977 error = ___wait_var_event(&page->_refcount,
3978 atomic_read(&page->_refcount) == 1,
3979 TASK_INTERRUPTIBLE, 0, 0,
d4f5258e 3980 ext4_wait_dax_page(inode));
b1f38217 3981 } while (error == 0);
430657b6
RZ
3982
3983 return error;
3984}
3985
a4bb6b64 3986/*
cca32b7e 3987 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
3988 * associated with the given offset and length
3989 *
3990 * @inode: File inode
3991 * @offset: The offset where the hole will begin
3992 * @len: The length of the hole
3993 *
4907cb7b 3994 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3995 */
3996
ad5cd4f4 3997int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
a4bb6b64 3998{
ad5cd4f4 3999 struct inode *inode = file_inode(file);
26a4c0c6
TT
4000 struct super_block *sb = inode->i_sb;
4001 ext4_lblk_t first_block, stop_block;
4002 struct address_space *mapping = inode->i_mapping;
2da37622
TS
4003 loff_t first_block_offset, last_block_offset, max_length;
4004 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
26a4c0c6
TT
4005 handle_t *handle;
4006 unsigned int credits;
4209ae12 4007 int ret = 0, ret2 = 0;
26a4c0c6 4008
b8a86845 4009 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4010
26a4c0c6
TT
4011 /*
4012 * Write out all dirty pages to avoid race conditions
4013 * Then release them.
4014 */
cca32b7e 4015 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4016 ret = filemap_write_and_wait_range(mapping, offset,
4017 offset + length - 1);
4018 if (ret)
4019 return ret;
4020 }
4021
5955102c 4022 inode_lock(inode);
9ef06cec 4023
26a4c0c6
TT
4024 /* No need to punch hole beyond i_size */
4025 if (offset >= inode->i_size)
4026 goto out_mutex;
4027
4028 /*
4029 * If the hole extends beyond i_size, set the hole
4030 * to end after the page that contains i_size
4031 */
4032 if (offset + length > inode->i_size) {
4033 length = inode->i_size +
09cbfeaf 4034 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4035 offset;
4036 }
4037
2da37622
TS
4038 /*
4039 * For punch hole the length + offset needs to be within one block
4040 * before last range. Adjust the length if it goes beyond that limit.
4041 */
4042 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4043 if (offset + length > max_length)
4044 length = max_length - offset;
4045
a361293f
JK
4046 if (offset & (sb->s_blocksize - 1) ||
4047 (offset + length) & (sb->s_blocksize - 1)) {
4048 /*
4049 * Attach jinode to inode for jbd2 if we do any zeroing of
4050 * partial block
4051 */
4052 ret = ext4_inode_attach_jinode(inode);
4053 if (ret < 0)
4054 goto out_mutex;
4055
4056 }
4057
f340b3d9 4058 /* Wait all existing dio workers, newcomers will block on i_rwsem */
ea3d7209
JK
4059 inode_dio_wait(inode);
4060
ad5cd4f4
DW
4061 ret = file_modified(file);
4062 if (ret)
4063 goto out_mutex;
4064
ea3d7209
JK
4065 /*
4066 * Prevent page faults from reinstantiating pages we have released from
4067 * page cache.
4068 */
d4f5258e 4069 filemap_invalidate_lock(mapping);
430657b6
RZ
4070
4071 ret = ext4_break_layouts(inode);
4072 if (ret)
4073 goto out_dio;
4074
a87dd18c
LC
4075 first_block_offset = round_up(offset, sb->s_blocksize);
4076 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4077
a87dd18c 4078 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4079 if (last_block_offset > first_block_offset) {
4080 ret = ext4_update_disksize_before_punch(inode, offset, length);
4081 if (ret)
4082 goto out_dio;
a87dd18c
LC
4083 truncate_pagecache_range(inode, first_block_offset,
4084 last_block_offset);
01127848 4085 }
26a4c0c6
TT
4086
4087 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4088 credits = ext4_writepage_trans_blocks(inode);
4089 else
4090 credits = ext4_blocks_for_truncate(inode);
4091 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4092 if (IS_ERR(handle)) {
4093 ret = PTR_ERR(handle);
4094 ext4_std_error(sb, ret);
4095 goto out_dio;
4096 }
4097
a87dd18c
LC
4098 ret = ext4_zero_partial_blocks(handle, inode, offset,
4099 length);
4100 if (ret)
4101 goto out_stop;
26a4c0c6
TT
4102
4103 first_block = (offset + sb->s_blocksize - 1) >>
4104 EXT4_BLOCK_SIZE_BITS(sb);
4105 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4106
eee597ac
LC
4107 /* If there are blocks to remove, do it */
4108 if (stop_block > first_block) {
26a4c0c6 4109
eee597ac 4110 down_write(&EXT4_I(inode)->i_data_sem);
27bc446e 4111 ext4_discard_preallocations(inode, 0);
26a4c0c6 4112
eee597ac
LC
4113 ret = ext4_es_remove_extent(inode, first_block,
4114 stop_block - first_block);
4115 if (ret) {
4116 up_write(&EXT4_I(inode)->i_data_sem);
4117 goto out_stop;
4118 }
26a4c0c6 4119
eee597ac
LC
4120 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4121 ret = ext4_ext_remove_space(inode, first_block,
4122 stop_block - 1);
4123 else
4124 ret = ext4_ind_remove_space(handle, inode, first_block,
4125 stop_block);
26a4c0c6 4126
eee597ac
LC
4127 up_write(&EXT4_I(inode)->i_data_sem);
4128 }
a80f7fcf 4129 ext4_fc_track_range(handle, inode, first_block, stop_block);
26a4c0c6
TT
4130 if (IS_SYNC(inode))
4131 ext4_handle_sync(handle);
e251f9bc 4132
eeca7ea1 4133 inode->i_mtime = inode->i_ctime = current_time(inode);
4209ae12
HS
4134 ret2 = ext4_mark_inode_dirty(handle, inode);
4135 if (unlikely(ret2))
4136 ret = ret2;
67a7d5f5
JK
4137 if (ret >= 0)
4138 ext4_update_inode_fsync_trans(handle, inode, 1);
26a4c0c6
TT
4139out_stop:
4140 ext4_journal_stop(handle);
4141out_dio:
d4f5258e 4142 filemap_invalidate_unlock(mapping);
26a4c0c6 4143out_mutex:
5955102c 4144 inode_unlock(inode);
26a4c0c6 4145 return ret;
a4bb6b64
AH
4146}
4147
a361293f
JK
4148int ext4_inode_attach_jinode(struct inode *inode)
4149{
4150 struct ext4_inode_info *ei = EXT4_I(inode);
4151 struct jbd2_inode *jinode;
4152
4153 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4154 return 0;
4155
4156 jinode = jbd2_alloc_inode(GFP_KERNEL);
4157 spin_lock(&inode->i_lock);
4158 if (!ei->jinode) {
4159 if (!jinode) {
4160 spin_unlock(&inode->i_lock);
4161 return -ENOMEM;
4162 }
4163 ei->jinode = jinode;
4164 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4165 jinode = NULL;
4166 }
4167 spin_unlock(&inode->i_lock);
4168 if (unlikely(jinode != NULL))
4169 jbd2_free_inode(jinode);
4170 return 0;
4171}
4172
ac27a0ec 4173/*
617ba13b 4174 * ext4_truncate()
ac27a0ec 4175 *
617ba13b
MC
4176 * We block out ext4_get_block() block instantiations across the entire
4177 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4178 * simultaneously on behalf of the same inode.
4179 *
42b2aa86 4180 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4181 * is one core, guiding principle: the file's tree must always be consistent on
4182 * disk. We must be able to restart the truncate after a crash.
4183 *
4184 * The file's tree may be transiently inconsistent in memory (although it
4185 * probably isn't), but whenever we close off and commit a journal transaction,
4186 * the contents of (the filesystem + the journal) must be consistent and
4187 * restartable. It's pretty simple, really: bottom up, right to left (although
4188 * left-to-right works OK too).
4189 *
4190 * Note that at recovery time, journal replay occurs *before* the restart of
4191 * truncate against the orphan inode list.
4192 *
4193 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4194 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4195 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4196 * ext4_truncate() to have another go. So there will be instantiated blocks
4197 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4198 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4199 * ext4_truncate() run will find them and release them.
ac27a0ec 4200 */
2c98eb5e 4201int ext4_truncate(struct inode *inode)
ac27a0ec 4202{
819c4920
TT
4203 struct ext4_inode_info *ei = EXT4_I(inode);
4204 unsigned int credits;
4209ae12 4205 int err = 0, err2;
819c4920
TT
4206 handle_t *handle;
4207 struct address_space *mapping = inode->i_mapping;
819c4920 4208
19b5ef61
TT
4209 /*
4210 * There is a possibility that we're either freeing the inode
e04027e8 4211 * or it's a completely new inode. In those cases we might not
f340b3d9 4212 * have i_rwsem locked because it's not necessary.
19b5ef61
TT
4213 */
4214 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4215 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4216 trace_ext4_truncate_enter(inode);
4217
91ef4caf 4218 if (!ext4_can_truncate(inode))
9a5d265f 4219 goto out_trace;
ac27a0ec 4220
5534fb5b 4221 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4222 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4223
aef1c851
TM
4224 if (ext4_has_inline_data(inode)) {
4225 int has_inline = 1;
4226
01daf945 4227 err = ext4_inline_data_truncate(inode, &has_inline);
9a5d265f 4228 if (err || has_inline)
4229 goto out_trace;
aef1c851
TM
4230 }
4231
a361293f
JK
4232 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4233 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
a71248b1
BL
4234 err = ext4_inode_attach_jinode(inode);
4235 if (err)
9a5d265f 4236 goto out_trace;
a361293f
JK
4237 }
4238
819c4920
TT
4239 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4240 credits = ext4_writepage_trans_blocks(inode);
4241 else
4242 credits = ext4_blocks_for_truncate(inode);
4243
4244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
9a5d265f 4245 if (IS_ERR(handle)) {
4246 err = PTR_ERR(handle);
4247 goto out_trace;
4248 }
819c4920 4249
eb3544c6
LC
4250 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4251 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4252
4253 /*
4254 * We add the inode to the orphan list, so that if this
4255 * truncate spans multiple transactions, and we crash, we will
4256 * resume the truncate when the filesystem recovers. It also
4257 * marks the inode dirty, to catch the new size.
4258 *
4259 * Implication: the file must always be in a sane, consistent
4260 * truncatable state while each transaction commits.
4261 */
2c98eb5e
TT
4262 err = ext4_orphan_add(handle, inode);
4263 if (err)
819c4920
TT
4264 goto out_stop;
4265
4266 down_write(&EXT4_I(inode)->i_data_sem);
4267
27bc446e 4268 ext4_discard_preallocations(inode, 0);
819c4920 4269
ff9893dc 4270 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4271 err = ext4_ext_truncate(handle, inode);
ff9893dc 4272 else
819c4920
TT
4273 ext4_ind_truncate(handle, inode);
4274
4275 up_write(&ei->i_data_sem);
d0abb36d
TT
4276 if (err)
4277 goto out_stop;
819c4920
TT
4278
4279 if (IS_SYNC(inode))
4280 ext4_handle_sync(handle);
4281
4282out_stop:
4283 /*
4284 * If this was a simple ftruncate() and the file will remain alive,
4285 * then we need to clear up the orphan record which we created above.
4286 * However, if this was a real unlink then we were called by
58d86a50 4287 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4288 * orphan info for us.
4289 */
4290 if (inode->i_nlink)
4291 ext4_orphan_del(handle, inode);
4292
eeca7ea1 4293 inode->i_mtime = inode->i_ctime = current_time(inode);
4209ae12
HS
4294 err2 = ext4_mark_inode_dirty(handle, inode);
4295 if (unlikely(err2 && !err))
4296 err = err2;
819c4920 4297 ext4_journal_stop(handle);
ac27a0ec 4298
9a5d265f 4299out_trace:
0562e0ba 4300 trace_ext4_truncate_exit(inode);
2c98eb5e 4301 return err;
ac27a0ec
DK
4302}
4303
9a1bf32c
ZY
4304static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4305{
4306 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4307 return inode_peek_iversion_raw(inode);
4308 else
4309 return inode_peek_iversion(inode);
4310}
4311
4312static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4313 struct ext4_inode_info *ei)
4314{
4315 struct inode *inode = &(ei->vfs_inode);
4316 u64 i_blocks = READ_ONCE(inode->i_blocks);
4317 struct super_block *sb = inode->i_sb;
4318
4319 if (i_blocks <= ~0U) {
4320 /*
4321 * i_blocks can be represented in a 32 bit variable
4322 * as multiple of 512 bytes
4323 */
4324 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4325 raw_inode->i_blocks_high = 0;
4326 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4327 return 0;
4328 }
4329
4330 /*
4331 * This should never happen since sb->s_maxbytes should not have
4332 * allowed this, sb->s_maxbytes was set according to the huge_file
4333 * feature in ext4_fill_super().
4334 */
4335 if (!ext4_has_feature_huge_file(sb))
4336 return -EFSCORRUPTED;
4337
4338 if (i_blocks <= 0xffffffffffffULL) {
4339 /*
4340 * i_blocks can be represented in a 48 bit variable
4341 * as multiple of 512 bytes
4342 */
4343 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4344 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4345 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4346 } else {
4347 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4348 /* i_block is stored in file system block size */
4349 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4350 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4351 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4352 }
4353 return 0;
4354}
4355
4356static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4357{
4358 struct ext4_inode_info *ei = EXT4_I(inode);
4359 uid_t i_uid;
4360 gid_t i_gid;
4361 projid_t i_projid;
4362 int block;
4363 int err;
4364
4365 err = ext4_inode_blocks_set(raw_inode, ei);
4366
4367 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4368 i_uid = i_uid_read(inode);
4369 i_gid = i_gid_read(inode);
4370 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4371 if (!(test_opt(inode->i_sb, NO_UID32))) {
4372 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4373 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4374 /*
4375 * Fix up interoperability with old kernels. Otherwise,
4376 * old inodes get re-used with the upper 16 bits of the
4377 * uid/gid intact.
4378 */
4379 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4380 raw_inode->i_uid_high = 0;
4381 raw_inode->i_gid_high = 0;
4382 } else {
4383 raw_inode->i_uid_high =
4384 cpu_to_le16(high_16_bits(i_uid));
4385 raw_inode->i_gid_high =
4386 cpu_to_le16(high_16_bits(i_gid));
4387 }
4388 } else {
4389 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4390 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4391 raw_inode->i_uid_high = 0;
4392 raw_inode->i_gid_high = 0;
4393 }
4394 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4395
4396 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4397 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4398 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4399 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4400
4401 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4402 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4403 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4404 raw_inode->i_file_acl_high =
4405 cpu_to_le16(ei->i_file_acl >> 32);
4406 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4407 ext4_isize_set(raw_inode, ei->i_disksize);
4408
4409 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4410 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4411 if (old_valid_dev(inode->i_rdev)) {
4412 raw_inode->i_block[0] =
4413 cpu_to_le32(old_encode_dev(inode->i_rdev));
4414 raw_inode->i_block[1] = 0;
4415 } else {
4416 raw_inode->i_block[0] = 0;
4417 raw_inode->i_block[1] =
4418 cpu_to_le32(new_encode_dev(inode->i_rdev));
4419 raw_inode->i_block[2] = 0;
4420 }
4421 } else if (!ext4_has_inline_data(inode)) {
4422 for (block = 0; block < EXT4_N_BLOCKS; block++)
4423 raw_inode->i_block[block] = ei->i_data[block];
4424 }
4425
4426 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4427 u64 ivers = ext4_inode_peek_iversion(inode);
4428
4429 raw_inode->i_disk_version = cpu_to_le32(ivers);
4430 if (ei->i_extra_isize) {
4431 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4432 raw_inode->i_version_hi =
4433 cpu_to_le32(ivers >> 32);
4434 raw_inode->i_extra_isize =
4435 cpu_to_le16(ei->i_extra_isize);
4436 }
4437 }
4438
4439 if (i_projid != EXT4_DEF_PROJID &&
4440 !ext4_has_feature_project(inode->i_sb))
4441 err = err ?: -EFSCORRUPTED;
4442
4443 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4444 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4445 raw_inode->i_projid = cpu_to_le32(i_projid);
4446
4447 ext4_inode_csum_set(inode, raw_inode, ei);
4448 return err;
4449}
4450
ac27a0ec 4451/*
617ba13b 4452 * ext4_get_inode_loc returns with an extra refcount against the inode's
de01f484
ZY
4453 * underlying buffer_head on success. If we pass 'inode' and it does not
4454 * have in-inode xattr, we have all inode data in memory that is needed
4455 * to recreate the on-disk version of this inode.
ac27a0ec 4456 */
8016e29f 4457static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
de01f484 4458 struct inode *inode, struct ext4_iloc *iloc,
8016e29f 4459 ext4_fsblk_t *ret_block)
ac27a0ec 4460{
240799cd
TT
4461 struct ext4_group_desc *gdp;
4462 struct buffer_head *bh;
240799cd 4463 ext4_fsblk_t block;
02f03c42 4464 struct blk_plug plug;
240799cd
TT
4465 int inodes_per_block, inode_offset;
4466
3a06d778 4467 iloc->bh = NULL;
8016e29f
HS
4468 if (ino < EXT4_ROOT_INO ||
4469 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
6a797d27 4470 return -EFSCORRUPTED;
ac27a0ec 4471
8016e29f 4472 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
240799cd
TT
4473 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4474 if (!gdp)
ac27a0ec
DK
4475 return -EIO;
4476
240799cd
TT
4477 /*
4478 * Figure out the offset within the block group inode table
4479 */
00d09882 4480 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
8016e29f 4481 inode_offset = ((ino - 1) %
240799cd 4482 EXT4_INODES_PER_GROUP(sb));
240799cd
TT
4483 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4484
eee22187
BL
4485 block = ext4_inode_table(sb, gdp);
4486 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4487 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4488 ext4_error(sb, "Invalid inode table block %llu in "
4489 "block_group %u", block, iloc->block_group);
4490 return -EFSCORRUPTED;
4491 }
4492 block += (inode_offset / inodes_per_block);
4493
240799cd 4494 bh = sb_getblk(sb, block);
aebf0243 4495 if (unlikely(!bh))
860d21e2 4496 return -ENOMEM;
8e33fadf
ZY
4497 if (ext4_buffer_uptodate(bh))
4498 goto has_buffer;
9c83a923 4499
8e33fadf 4500 lock_buffer(bh);
f2c77973
ZY
4501 if (ext4_buffer_uptodate(bh)) {
4502 /* Someone brought it uptodate while we waited */
4503 unlock_buffer(bh);
4504 goto has_buffer;
4505 }
4506
8e33fadf
ZY
4507 /*
4508 * If we have all information of the inode in memory and this
4509 * is the only valid inode in the block, we need not read the
4510 * block.
4511 */
de01f484 4512 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
8e33fadf
ZY
4513 struct buffer_head *bitmap_bh;
4514 int i, start;
ac27a0ec 4515
8e33fadf 4516 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4517
8e33fadf
ZY
4518 /* Is the inode bitmap in cache? */
4519 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4520 if (unlikely(!bitmap_bh))
4521 goto make_io;
ac27a0ec 4522
8e33fadf
ZY
4523 /*
4524 * If the inode bitmap isn't in cache then the
4525 * optimisation may end up performing two reads instead
4526 * of one, so skip it.
4527 */
4528 if (!buffer_uptodate(bitmap_bh)) {
ac27a0ec 4529 brelse(bitmap_bh);
8e33fadf 4530 goto make_io;
ac27a0ec 4531 }
8e33fadf
ZY
4532 for (i = start; i < start + inodes_per_block; i++) {
4533 if (i == inode_offset)
4534 continue;
4535 if (ext4_test_bit(i, bitmap_bh->b_data))
4536 break;
ac27a0ec 4537 }
8e33fadf
ZY
4538 brelse(bitmap_bh);
4539 if (i == start + inodes_per_block) {
de01f484
ZY
4540 struct ext4_inode *raw_inode =
4541 (struct ext4_inode *) (bh->b_data + iloc->offset);
4542
8e33fadf
ZY
4543 /* all other inodes are free, so skip I/O */
4544 memset(bh->b_data, 0, bh->b_size);
de01f484
ZY
4545 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4546 ext4_fill_raw_inode(inode, raw_inode);
8e33fadf
ZY
4547 set_buffer_uptodate(bh);
4548 unlock_buffer(bh);
4549 goto has_buffer;
4550 }
4551 }
ac27a0ec
DK
4552
4553make_io:
8e33fadf
ZY
4554 /*
4555 * If we need to do any I/O, try to pre-readahead extra
4556 * blocks from the inode table.
4557 */
4558 blk_start_plug(&plug);
4559 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4560 ext4_fsblk_t b, end, table;
4561 unsigned num;
4562 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4563
4564 table = ext4_inode_table(sb, gdp);
4565 /* s_inode_readahead_blks is always a power of 2 */
4566 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4567 if (table > b)
4568 b = table;
4569 end = b + ra_blks;
4570 num = EXT4_INODES_PER_GROUP(sb);
4571 if (ext4_has_group_desc_csum(sb))
4572 num -= ext4_itable_unused_count(sb, gdp);
4573 table += num / inodes_per_block;
4574 if (end > table)
4575 end = table;
4576 while (b <= end)
4577 ext4_sb_breadahead_unmovable(sb, b++);
4578 }
240799cd 4579
8e33fadf
ZY
4580 /*
4581 * There are other valid inodes in the buffer, this inode
4582 * has in-inode xattrs, or we don't have this inode in memory.
4583 * Read the block from disk.
4584 */
4585 trace_ext4_load_inode(sb, ino);
4586 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4587 blk_finish_plug(&plug);
4588 wait_on_buffer(bh);
4589 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4590 if (!buffer_uptodate(bh)) {
4591 if (ret_block)
4592 *ret_block = block;
4593 brelse(bh);
4594 return -EIO;
ac27a0ec
DK
4595 }
4596has_buffer:
4597 iloc->bh = bh;
4598 return 0;
4599}
4600
8016e29f
HS
4601static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4602 struct ext4_iloc *iloc)
4603{
c27c29c6 4604 ext4_fsblk_t err_blk = 0;
8016e29f
HS
4605 int ret;
4606
de01f484 4607 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
8016e29f
HS
4608 &err_blk);
4609
4610 if (ret == -EIO)
4611 ext4_error_inode_block(inode, err_blk, EIO,
4612 "unable to read itable block");
4613
4614 return ret;
4615}
4616
617ba13b 4617int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec 4618{
c27c29c6 4619 ext4_fsblk_t err_blk = 0;
8016e29f
HS
4620 int ret;
4621
de01f484
ZY
4622 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4623 &err_blk);
8016e29f
HS
4624
4625 if (ret == -EIO)
4626 ext4_error_inode_block(inode, err_blk, EIO,
4627 "unable to read itable block");
4628
4629 return ret;
4630}
4631
4632
4633int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4634 struct ext4_iloc *iloc)
4635{
de01f484 4636 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
ac27a0ec
DK
4637}
4638
a8ab6d38 4639static bool ext4_should_enable_dax(struct inode *inode)
6642586b 4640{
a8ab6d38
IW
4641 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4642
9cb20f94 4643 if (test_opt2(inode->i_sb, DAX_NEVER))
6642586b
RZ
4644 return false;
4645 if (!S_ISREG(inode->i_mode))
4646 return false;
4647 if (ext4_should_journal_data(inode))
4648 return false;
4649 if (ext4_has_inline_data(inode))
4650 return false;
592ddec7 4651 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
6642586b 4652 return false;
c93d8f88
EB
4653 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4654 return false;
a8ab6d38
IW
4655 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4656 return false;
4657 if (test_opt(inode->i_sb, DAX_ALWAYS))
4658 return true;
4659
b383a73f 4660 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
6642586b
RZ
4661}
4662
043546e4 4663void ext4_set_inode_flags(struct inode *inode, bool init)
ac27a0ec 4664{
617ba13b 4665 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4666 unsigned int new_fl = 0;
ac27a0ec 4667
043546e4
IW
4668 WARN_ON_ONCE(IS_DAX(inode) && init);
4669
617ba13b 4670 if (flags & EXT4_SYNC_FL)
00a1a053 4671 new_fl |= S_SYNC;
617ba13b 4672 if (flags & EXT4_APPEND_FL)
00a1a053 4673 new_fl |= S_APPEND;
617ba13b 4674 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4675 new_fl |= S_IMMUTABLE;
617ba13b 4676 if (flags & EXT4_NOATIME_FL)
00a1a053 4677 new_fl |= S_NOATIME;
617ba13b 4678 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4679 new_fl |= S_DIRSYNC;
043546e4
IW
4680
4681 /* Because of the way inode_set_flags() works we must preserve S_DAX
4682 * here if already set. */
4683 new_fl |= (inode->i_flags & S_DAX);
4684 if (init && ext4_should_enable_dax(inode))
923ae0ff 4685 new_fl |= S_DAX;
043546e4 4686
2ee6a576
EB
4687 if (flags & EXT4_ENCRYPT_FL)
4688 new_fl |= S_ENCRYPTED;
b886ee3e
GKB
4689 if (flags & EXT4_CASEFOLD_FL)
4690 new_fl |= S_CASEFOLD;
c93d8f88
EB
4691 if (flags & EXT4_VERITY_FL)
4692 new_fl |= S_VERITY;
5f16f322 4693 inode_set_flags(inode, new_fl,
2ee6a576 4694 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
c93d8f88 4695 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
ac27a0ec
DK
4696}
4697
0fc1b451 4698static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4699 struct ext4_inode_info *ei)
0fc1b451
AK
4700{
4701 blkcnt_t i_blocks ;
8180a562
AK
4702 struct inode *inode = &(ei->vfs_inode);
4703 struct super_block *sb = inode->i_sb;
0fc1b451 4704
e2b911c5 4705 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4706 /* we are using combined 48 bit field */
4707 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4708 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4709 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4710 /* i_blocks represent file system block size */
4711 return i_blocks << (inode->i_blkbits - 9);
4712 } else {
4713 return i_blocks;
4714 }
0fc1b451
AK
4715 } else {
4716 return le32_to_cpu(raw_inode->i_blocks_lo);
4717 }
4718}
ff9ddf7e 4719
eb9b5f01 4720static inline int ext4_iget_extra_inode(struct inode *inode,
152a7b0a
TM
4721 struct ext4_inode *raw_inode,
4722 struct ext4_inode_info *ei)
4723{
4724 __le32 *magic = (void *)raw_inode +
4725 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
eb9b5f01 4726
fd7e672e 4727 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
290ab230 4728 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4729 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
eb9b5f01 4730 return ext4_find_inline_data_nolock(inode);
f19d5870
TM
4731 } else
4732 EXT4_I(inode)->i_inline_off = 0;
eb9b5f01 4733 return 0;
152a7b0a
TM
4734}
4735
040cb378
LX
4736int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4737{
0b7b7779 4738 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4739 return -EOPNOTSUPP;
4740 *projid = EXT4_I(inode)->i_projid;
4741 return 0;
4742}
4743
e254d1af
EG
4744/*
4745 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4746 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4747 * set.
4748 */
4749static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4750{
4751 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4752 inode_set_iversion_raw(inode, val);
4753 else
4754 inode_set_iversion_queried(inode, val);
4755}
e254d1af 4756
8a363970
TT
4757struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4758 ext4_iget_flags flags, const char *function,
4759 unsigned int line)
ac27a0ec 4760{
617ba13b
MC
4761 struct ext4_iloc iloc;
4762 struct ext4_inode *raw_inode;
1d1fe1ee 4763 struct ext4_inode_info *ei;
bd2c38cf 4764 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1d1fe1ee 4765 struct inode *inode;
b436b9be 4766 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4767 long ret;
7e6e1ef4 4768 loff_t size;
ac27a0ec 4769 int block;
08cefc7a
EB
4770 uid_t i_uid;
4771 gid_t i_gid;
040cb378 4772 projid_t i_projid;
ac27a0ec 4773
191ce178 4774 if ((!(flags & EXT4_IGET_SPECIAL) &&
bd2c38cf
JK
4775 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4776 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4777 ino == le32_to_cpu(es->s_grp_quota_inum) ||
02f310fc
JK
4778 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4779 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
8a363970 4780 (ino < EXT4_ROOT_INO) ||
bd2c38cf 4781 (ino > le32_to_cpu(es->s_inodes_count))) {
8a363970
TT
4782 if (flags & EXT4_IGET_HANDLE)
4783 return ERR_PTR(-ESTALE);
014c9caa 4784 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
8a363970
TT
4785 "inode #%lu: comm %s: iget: illegal inode #",
4786 ino, current->comm);
4787 return ERR_PTR(-EFSCORRUPTED);
4788 }
4789
1d1fe1ee
DH
4790 inode = iget_locked(sb, ino);
4791 if (!inode)
4792 return ERR_PTR(-ENOMEM);
4793 if (!(inode->i_state & I_NEW))
4794 return inode;
4795
4796 ei = EXT4_I(inode);
7dc57615 4797 iloc.bh = NULL;
ac27a0ec 4798
8016e29f 4799 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
1d1fe1ee 4800 if (ret < 0)
ac27a0ec 4801 goto bad_inode;
617ba13b 4802 raw_inode = ext4_raw_inode(&iloc);
814525f4 4803
8e4b5eae 4804 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
8a363970
TT
4805 ext4_error_inode(inode, function, line, 0,
4806 "iget: root inode unallocated");
8e4b5eae
TT
4807 ret = -EFSCORRUPTED;
4808 goto bad_inode;
4809 }
4810
8a363970
TT
4811 if ((flags & EXT4_IGET_HANDLE) &&
4812 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4813 ret = -ESTALE;
4814 goto bad_inode;
4815 }
4816
814525f4
DW
4817 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4818 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4819 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4820 EXT4_INODE_SIZE(inode->i_sb) ||
4821 (ei->i_extra_isize & 3)) {
8a363970
TT
4822 ext4_error_inode(inode, function, line, 0,
4823 "iget: bad extra_isize %u "
4824 "(inode size %u)",
2dc8d9e1
EB
4825 ei->i_extra_isize,
4826 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4827 ret = -EFSCORRUPTED;
814525f4
DW
4828 goto bad_inode;
4829 }
4830 } else
4831 ei->i_extra_isize = 0;
4832
4833 /* Precompute checksum seed for inode metadata */
9aa5d32b 4834 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4835 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4836 __u32 csum;
4837 __le32 inum = cpu_to_le32(inode->i_ino);
4838 __le32 gen = raw_inode->i_generation;
4839 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4840 sizeof(inum));
4841 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4842 sizeof(gen));
4843 }
4844
8016e29f
HS
4845 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4846 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4847 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4848 ext4_error_inode_err(inode, function, line, 0,
4849 EFSBADCRC, "iget: checksum invalid");
6a797d27 4850 ret = -EFSBADCRC;
814525f4
DW
4851 goto bad_inode;
4852 }
4853
ac27a0ec 4854 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4855 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4856 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4857 if (ext4_has_feature_project(sb) &&
040cb378
LX
4858 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4859 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4860 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4861 else
4862 i_projid = EXT4_DEF_PROJID;
4863
af5bc92d 4864 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4865 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4866 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4867 }
08cefc7a
EB
4868 i_uid_write(inode, i_uid);
4869 i_gid_write(inode, i_gid);
040cb378 4870 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4871 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4872
353eb83c 4873 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4874 ei->i_inline_off = 0;
ac27a0ec
DK
4875 ei->i_dir_start_lookup = 0;
4876 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4877 /* We now have enough fields to check if the inode was active or not.
4878 * This is needed because nfsd might try to access dead inodes
4879 * the test is that same one that e2fsck uses
4880 * NeilBrown 1999oct15
4881 */
4882 if (inode->i_nlink == 0) {
393d1d1d
DTB
4883 if ((inode->i_mode == 0 ||
4884 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4885 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4886 /* this inode is deleted */
1d1fe1ee 4887 ret = -ESTALE;
ac27a0ec
DK
4888 goto bad_inode;
4889 }
4890 /* The only unlinked inodes we let through here have
4891 * valid i_mode and are being read by the orphan
4892 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4893 * the process of deleting those.
4894 * OR it is the EXT4_BOOT_LOADER_INO which is
4895 * not initialized on a new filesystem. */
ac27a0ec 4896 }
ac27a0ec 4897 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
043546e4 4898 ext4_set_inode_flags(inode, true);
0fc1b451 4899 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4900 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4901 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4902 ei->i_file_acl |=
4903 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
e08ac99f 4904 inode->i_size = ext4_isize(sb, raw_inode);
7e6e1ef4 4905 if ((size = i_size_read(inode)) < 0) {
8a363970
TT
4906 ext4_error_inode(inode, function, line, 0,
4907 "iget: bad i_size value: %lld", size);
7e6e1ef4
DW
4908 ret = -EFSCORRUPTED;
4909 goto bad_inode;
4910 }
48a34311
JK
4911 /*
4912 * If dir_index is not enabled but there's dir with INDEX flag set,
4913 * we'd normally treat htree data as empty space. But with metadata
4914 * checksumming that corrupts checksums so forbid that.
4915 */
4916 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4917 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4918 ext4_error_inode(inode, function, line, 0,
4919 "iget: Dir with htree data on filesystem without dir_index feature.");
4920 ret = -EFSCORRUPTED;
4921 goto bad_inode;
4922 }
ac27a0ec 4923 ei->i_disksize = inode->i_size;
a9e7f447
DM
4924#ifdef CONFIG_QUOTA
4925 ei->i_reserved_quota = 0;
4926#endif
ac27a0ec
DK
4927 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4928 ei->i_block_group = iloc.block_group;
a4912123 4929 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4930 /*
4931 * NOTE! The in-memory inode i_data array is in little-endian order
4932 * even on big-endian machines: we do NOT byteswap the block numbers!
4933 */
617ba13b 4934 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4935 ei->i_data[block] = raw_inode->i_block[block];
4936 INIT_LIST_HEAD(&ei->i_orphan);
aa75f4d3 4937 ext4_fc_init_inode(&ei->vfs_inode);
ac27a0ec 4938
b436b9be
JK
4939 /*
4940 * Set transaction id's of transactions that have to be committed
4941 * to finish f[data]sync. We set them to currently running transaction
4942 * as we cannot be sure that the inode or some of its metadata isn't
4943 * part of the transaction - the inode could have been reclaimed and
4944 * now it is reread from disk.
4945 */
4946 if (journal) {
4947 transaction_t *transaction;
4948 tid_t tid;
4949
a931da6a 4950 read_lock(&journal->j_state_lock);
b436b9be
JK
4951 if (journal->j_running_transaction)
4952 transaction = journal->j_running_transaction;
4953 else
4954 transaction = journal->j_committing_transaction;
4955 if (transaction)
4956 tid = transaction->t_tid;
4957 else
4958 tid = journal->j_commit_sequence;
a931da6a 4959 read_unlock(&journal->j_state_lock);
b436b9be
JK
4960 ei->i_sync_tid = tid;
4961 ei->i_datasync_tid = tid;
4962 }
4963
0040d987 4964 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4965 if (ei->i_extra_isize == 0) {
4966 /* The extra space is currently unused. Use it. */
2dc8d9e1 4967 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4968 ei->i_extra_isize = sizeof(struct ext4_inode) -
4969 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4970 } else {
eb9b5f01
TT
4971 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4972 if (ret)
4973 goto bad_inode;
ac27a0ec 4974 }
814525f4 4975 }
ac27a0ec 4976
ef7f3835
KS
4977 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4978 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4979 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4980 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4981
ed3654eb 4982 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
ee73f9a5
JL
4983 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4984
c4f65706
TT
4985 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4986 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
ee73f9a5 4987 ivers |=
c4f65706
TT
4988 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4989 }
e254d1af 4990 ext4_inode_set_iversion_queried(inode, ivers);
25ec56b5
JNC
4991 }
4992
c4b5a614 4993 ret = 0;
485c26ec 4994 if (ei->i_file_acl &&
ce9f24cc 4995 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
8a363970
TT
4996 ext4_error_inode(inode, function, line, 0,
4997 "iget: bad extended attribute block %llu",
24676da4 4998 ei->i_file_acl);
6a797d27 4999 ret = -EFSCORRUPTED;
485c26ec 5000 goto bad_inode;
f19d5870 5001 } else if (!ext4_has_inline_data(inode)) {
bc716523 5002 /* validate the block references in the inode */
8016e29f
HS
5003 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5004 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5005 (S_ISLNK(inode->i_mode) &&
5006 !ext4_inode_is_fast_symlink(inode)))) {
bc716523 5007 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
f19d5870 5008 ret = ext4_ext_check_inode(inode);
bc716523
LS
5009 else
5010 ret = ext4_ind_check_inode(inode);
f19d5870 5011 }
fe2c8191 5012 }
567f3e9a 5013 if (ret)
de9a55b8 5014 goto bad_inode;
7a262f7c 5015
ac27a0ec 5016 if (S_ISREG(inode->i_mode)) {
617ba13b 5017 inode->i_op = &ext4_file_inode_operations;
be64f884 5018 inode->i_fop = &ext4_file_operations;
617ba13b 5019 ext4_set_aops(inode);
ac27a0ec 5020 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5021 inode->i_op = &ext4_dir_inode_operations;
5022 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5023 } else if (S_ISLNK(inode->i_mode)) {
6390d33b
LR
5024 /* VFS does not allow setting these so must be corruption */
5025 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
8a363970
TT
5026 ext4_error_inode(inode, function, line, 0,
5027 "iget: immutable or append flags "
5028 "not allowed on symlinks");
6390d33b
LR
5029 ret = -EFSCORRUPTED;
5030 goto bad_inode;
5031 }
592ddec7 5032 if (IS_ENCRYPTED(inode)) {
a7a67e8a 5033 inode->i_op = &ext4_encrypted_symlink_inode_operations;
a7a67e8a 5034 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 5035 inode->i_link = (char *)ei->i_data;
617ba13b 5036 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5037 nd_terminate_link(ei->i_data, inode->i_size,
5038 sizeof(ei->i_data) - 1);
5039 } else {
617ba13b 5040 inode->i_op = &ext4_symlink_inode_operations;
ac27a0ec 5041 }
563bdd61
TT
5042 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5043 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5044 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5045 if (raw_inode->i_block[0])
5046 init_special_inode(inode, inode->i_mode,
5047 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5048 else
5049 init_special_inode(inode, inode->i_mode,
5050 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
5051 } else if (ino == EXT4_BOOT_LOADER_INO) {
5052 make_bad_inode(inode);
563bdd61 5053 } else {
6a797d27 5054 ret = -EFSCORRUPTED;
8a363970
TT
5055 ext4_error_inode(inode, function, line, 0,
5056 "iget: bogus i_mode (%o)", inode->i_mode);
563bdd61 5057 goto bad_inode;
ac27a0ec 5058 }
6456ca65
TT
5059 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5060 ext4_error_inode(inode, function, line, 0,
5061 "casefold flag without casefold feature");
63b1e9bc
BL
5062 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5063 ext4_error_inode(inode, function, line, 0,
5064 "bad inode without EXT4_IGET_BAD flag");
5065 ret = -EUCLEAN;
5066 goto bad_inode;
5067 }
dec214d0 5068
63b1e9bc 5069 brelse(iloc.bh);
1d1fe1ee
DH
5070 unlock_new_inode(inode);
5071 return inode;
ac27a0ec
DK
5072
5073bad_inode:
567f3e9a 5074 brelse(iloc.bh);
1d1fe1ee
DH
5075 iget_failed(inode);
5076 return ERR_PTR(ret);
ac27a0ec
DK
5077}
5078
3f19b2ab
DH
5079static void __ext4_update_other_inode_time(struct super_block *sb,
5080 unsigned long orig_ino,
5081 unsigned long ino,
5082 struct ext4_inode *raw_inode)
a26f4992 5083{
3f19b2ab
DH
5084 struct inode *inode;
5085
5086 inode = find_inode_by_ino_rcu(sb, ino);
5087 if (!inode)
5088 return;
a26f4992 5089
ed296c6c 5090 if (!inode_is_dirtytime_only(inode))
3f19b2ab
DH
5091 return;
5092
a26f4992 5093 spin_lock(&inode->i_lock);
ed296c6c 5094 if (inode_is_dirtytime_only(inode)) {
a26f4992
TT
5095 struct ext4_inode_info *ei = EXT4_I(inode);
5096
5fcd5750 5097 inode->i_state &= ~I_DIRTY_TIME;
a26f4992
TT
5098 spin_unlock(&inode->i_lock);
5099
5100 spin_lock(&ei->i_raw_lock);
3f19b2ab
DH
5101 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5102 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5103 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5104 ext4_inode_csum_set(inode, raw_inode, ei);
a26f4992 5105 spin_unlock(&ei->i_raw_lock);
3f19b2ab
DH
5106 trace_ext4_other_inode_update_time(inode, orig_ino);
5107 return;
a26f4992
TT
5108 }
5109 spin_unlock(&inode->i_lock);
a26f4992
TT
5110}
5111
5112/*
5113 * Opportunistically update the other time fields for other inodes in
5114 * the same inode table block.
5115 */
5116static void ext4_update_other_inodes_time(struct super_block *sb,
5117 unsigned long orig_ino, char *buf)
5118{
a26f4992
TT
5119 unsigned long ino;
5120 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5121 int inode_size = EXT4_INODE_SIZE(sb);
5122
0f0ff9a9
TT
5123 /*
5124 * Calculate the first inode in the inode table block. Inode
5125 * numbers are one-based. That is, the first inode in a block
5126 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5127 */
5128 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
3f19b2ab 5129 rcu_read_lock();
a26f4992
TT
5130 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5131 if (ino == orig_ino)
5132 continue;
3f19b2ab
DH
5133 __ext4_update_other_inode_time(sb, orig_ino, ino,
5134 (struct ext4_inode *)buf);
a26f4992 5135 }
3f19b2ab 5136 rcu_read_unlock();
a26f4992
TT
5137}
5138
664bd38b
ZY
5139/*
5140 * Post the struct inode info into an on-disk inode location in the
5141 * buffer-cache. This gobbles the caller's reference to the
5142 * buffer_head in the inode location struct.
5143 *
5144 * The caller must have write access to iloc->bh.
5145 */
5146static int ext4_do_update_inode(handle_t *handle,
5147 struct inode *inode,
5148 struct ext4_iloc *iloc)
5149{
5150 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5151 struct ext4_inode_info *ei = EXT4_I(inode);
5152 struct buffer_head *bh = iloc->bh;
5153 struct super_block *sb = inode->i_sb;
5154 int err;
5155 int need_datasync = 0, set_large_file = 0;
5156
5157 spin_lock(&ei->i_raw_lock);
5158
5159 /*
5160 * For fields not tracked in the in-memory inode, initialise them
5161 * to zero for new inodes.
5162 */
5163 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5164 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5165
5166 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5167 need_datasync = 1;
5168 if (ei->i_disksize > 0x7fffffffULL) {
5169 if (!ext4_has_feature_large_file(sb) ||
5170 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5171 set_large_file = 1;
5172 }
5173
5174 err = ext4_fill_raw_inode(inode, raw_inode);
202ee5df 5175 spin_unlock(&ei->i_raw_lock);
baaae979
ZY
5176 if (err) {
5177 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5178 goto out_brelse;
5179 }
5180
1751e8a6 5181 if (inode->i_sb->s_flags & SB_LAZYTIME)
a26f4992
TT
5182 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5183 bh->b_data);
202ee5df 5184
830156c7 5185 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
7d8bd3c7
SL
5186 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5187 if (err)
baaae979 5188 goto out_error;
19f5fb7a 5189 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5190 if (set_large_file) {
5d601255 5191 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
188c299e
JK
5192 err = ext4_journal_get_write_access(handle, sb,
5193 EXT4_SB(sb)->s_sbh,
5194 EXT4_JTR_NONE);
202ee5df 5195 if (err)
baaae979 5196 goto out_error;
05c2c00f 5197 lock_buffer(EXT4_SB(sb)->s_sbh);
e2b911c5 5198 ext4_set_feature_large_file(sb);
05c2c00f
JK
5199 ext4_superblock_csum_set(sb);
5200 unlock_buffer(EXT4_SB(sb)->s_sbh);
202ee5df 5201 ext4_handle_sync(handle);
a3f5cf14
JK
5202 err = ext4_handle_dirty_metadata(handle, NULL,
5203 EXT4_SB(sb)->s_sbh);
202ee5df 5204 }
b71fc079 5205 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
baaae979
ZY
5206out_error:
5207 ext4_std_error(inode->i_sb, err);
ac27a0ec 5208out_brelse:
af5bc92d 5209 brelse(bh);
ac27a0ec
DK
5210 return err;
5211}
5212
5213/*
617ba13b 5214 * ext4_write_inode()
ac27a0ec
DK
5215 *
5216 * We are called from a few places:
5217 *
87f7e416 5218 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5219 * Here, there will be no transaction running. We wait for any running
4907cb7b 5220 * transaction to commit.
ac27a0ec 5221 *
87f7e416
TT
5222 * - Within flush work (sys_sync(), kupdate and such).
5223 * We wait on commit, if told to.
ac27a0ec 5224 *
87f7e416
TT
5225 * - Within iput_final() -> write_inode_now()
5226 * We wait on commit, if told to.
ac27a0ec
DK
5227 *
5228 * In all cases it is actually safe for us to return without doing anything,
5229 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5230 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5231 * writeback.
ac27a0ec
DK
5232 *
5233 * Note that we are absolutely dependent upon all inode dirtiers doing the
5234 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5235 * which we are interested.
5236 *
5237 * It would be a bug for them to not do this. The code:
5238 *
5239 * mark_inode_dirty(inode)
5240 * stuff();
5241 * inode->i_size = expr;
5242 *
87f7e416
TT
5243 * is in error because write_inode() could occur while `stuff()' is running,
5244 * and the new i_size will be lost. Plus the inode will no longer be on the
5245 * superblock's dirty inode list.
ac27a0ec 5246 */
a9185b41 5247int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5248{
91ac6f43
FM
5249 int err;
5250
18f2c4fc
TT
5251 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5252 sb_rdonly(inode->i_sb))
ac27a0ec
DK
5253 return 0;
5254
18f2c4fc
TT
5255 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5256 return -EIO;
5257
91ac6f43
FM
5258 if (EXT4_SB(inode->i_sb)->s_journal) {
5259 if (ext4_journal_current_handle()) {
4978c659 5260 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
91ac6f43
FM
5261 dump_stack();
5262 return -EIO;
5263 }
ac27a0ec 5264
10542c22
JK
5265 /*
5266 * No need to force transaction in WB_SYNC_NONE mode. Also
5267 * ext4_sync_fs() will force the commit after everything is
5268 * written.
5269 */
5270 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5271 return 0;
5272
aa75f4d3 5273 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
18f2c4fc 5274 EXT4_I(inode)->i_sync_tid);
91ac6f43
FM
5275 } else {
5276 struct ext4_iloc iloc;
ac27a0ec 5277
8016e29f 5278 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
91ac6f43
FM
5279 if (err)
5280 return err;
10542c22
JK
5281 /*
5282 * sync(2) will flush the whole buffer cache. No need to do
5283 * it here separately for each inode.
5284 */
5285 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5286 sync_dirty_buffer(iloc.bh);
5287 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
54d3adbc
TT
5288 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5289 "IO error syncing inode");
830156c7
FM
5290 err = -EIO;
5291 }
fd2dd9fb 5292 brelse(iloc.bh);
91ac6f43
FM
5293 }
5294 return err;
ac27a0ec
DK
5295}
5296
53e87268 5297/*
ccd16945
MWO
5298 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5299 * buffers that are attached to a folio straddling i_size and are undergoing
53e87268
JK
5300 * commit. In that case we have to wait for commit to finish and try again.
5301 */
5302static void ext4_wait_for_tail_page_commit(struct inode *inode)
5303{
53e87268
JK
5304 unsigned offset;
5305 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5306 tid_t commit_tid = 0;
5307 int ret;
5308
09cbfeaf 5309 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268 5310 /*
ccd16945
MWO
5311 * If the folio is fully truncated, we don't need to wait for any commit
5312 * (and we even should not as __ext4_journalled_invalidate_folio() may
5313 * strip all buffers from the folio but keep the folio dirty which can then
5314 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
565333a1 5315 * buffers). Also we don't need to wait for any commit if all buffers in
ccd16945 5316 * the folio remain valid. This is most beneficial for the common case of
565333a1 5317 * blocksize == PAGESIZE.
53e87268 5318 */
565333a1 5319 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
53e87268
JK
5320 return;
5321 while (1) {
ccd16945 5322 struct folio *folio = filemap_lock_folio(inode->i_mapping,
09cbfeaf 5323 inode->i_size >> PAGE_SHIFT);
ccd16945 5324 if (!folio)
53e87268 5325 return;
ccd16945
MWO
5326 ret = __ext4_journalled_invalidate_folio(folio, offset,
5327 folio_size(folio) - offset);
5328 folio_unlock(folio);
5329 folio_put(folio);
53e87268
JK
5330 if (ret != -EBUSY)
5331 return;
5332 commit_tid = 0;
5333 read_lock(&journal->j_state_lock);
5334 if (journal->j_committing_transaction)
5335 commit_tid = journal->j_committing_transaction->t_tid;
5336 read_unlock(&journal->j_state_lock);
5337 if (commit_tid)
5338 jbd2_log_wait_commit(journal, commit_tid);
5339 }
5340}
5341
ac27a0ec 5342/*
617ba13b 5343 * ext4_setattr()
ac27a0ec
DK
5344 *
5345 * Called from notify_change.
5346 *
5347 * We want to trap VFS attempts to truncate the file as soon as
5348 * possible. In particular, we want to make sure that when the VFS
5349 * shrinks i_size, we put the inode on the orphan list and modify
5350 * i_disksize immediately, so that during the subsequent flushing of
5351 * dirty pages and freeing of disk blocks, we can guarantee that any
5352 * commit will leave the blocks being flushed in an unused state on
5353 * disk. (On recovery, the inode will get truncated and the blocks will
5354 * be freed, so we have a strong guarantee that no future commit will
5355 * leave these blocks visible to the user.)
5356 *
678aaf48
JK
5357 * Another thing we have to assure is that if we are in ordered mode
5358 * and inode is still attached to the committing transaction, we must
5359 * we start writeout of all the dirty pages which are being truncated.
5360 * This way we are sure that all the data written in the previous
5361 * transaction are already on disk (truncate waits for pages under
5362 * writeback).
5363 *
f340b3d9 5364 * Called with inode->i_rwsem down.
ac27a0ec 5365 */
549c7297
CB
5366int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5367 struct iattr *attr)
ac27a0ec 5368{
2b0143b5 5369 struct inode *inode = d_inode(dentry);
ac27a0ec 5370 int error, rc = 0;
3d287de3 5371 int orphan = 0;
ac27a0ec 5372 const unsigned int ia_valid = attr->ia_valid;
a642c2c0 5373 bool inc_ivers = true;
ac27a0ec 5374
0db1ff22
TT
5375 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5376 return -EIO;
5377
02b016ca
TT
5378 if (unlikely(IS_IMMUTABLE(inode)))
5379 return -EPERM;
5380
5381 if (unlikely(IS_APPEND(inode) &&
5382 (ia_valid & (ATTR_MODE | ATTR_UID |
5383 ATTR_GID | ATTR_TIMES_SET))))
5384 return -EPERM;
5385
14f3db55 5386 error = setattr_prepare(mnt_userns, dentry, attr);
ac27a0ec
DK
5387 if (error)
5388 return error;
5389
3ce2b8dd
EB
5390 error = fscrypt_prepare_setattr(dentry, attr);
5391 if (error)
5392 return error;
5393
c93d8f88
EB
5394 error = fsverity_prepare_setattr(dentry, attr);
5395 if (error)
5396 return error;
5397
b27c82e1 5398 if (is_quota_modification(mnt_userns, inode, attr)) {
a7cdadee
JK
5399 error = dquot_initialize(inode);
5400 if (error)
5401 return error;
5402 }
2729cfdc 5403
b27c82e1
CB
5404 if (i_uid_needs_update(mnt_userns, attr, inode) ||
5405 i_gid_needs_update(mnt_userns, attr, inode)) {
ac27a0ec
DK
5406 handle_t *handle;
5407
5408 /* (user+group)*(old+new) structure, inode write (sb,
5409 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5410 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5411 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5412 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5413 if (IS_ERR(handle)) {
5414 error = PTR_ERR(handle);
5415 goto err_out;
5416 }
7a9ca53a
TE
5417
5418 /* dquot_transfer() calls back ext4_get_inode_usage() which
5419 * counts xattr inode references.
5420 */
5421 down_read(&EXT4_I(inode)->xattr_sem);
b27c82e1 5422 error = dquot_transfer(mnt_userns, inode, attr);
7a9ca53a
TE
5423 up_read(&EXT4_I(inode)->xattr_sem);
5424
ac27a0ec 5425 if (error) {
617ba13b 5426 ext4_journal_stop(handle);
ac27a0ec
DK
5427 return error;
5428 }
5429 /* Update corresponding info in inode so that everything is in
5430 * one transaction */
b27c82e1
CB
5431 i_uid_update(mnt_userns, attr, inode);
5432 i_gid_update(mnt_userns, attr, inode);
617ba13b
MC
5433 error = ext4_mark_inode_dirty(handle, inode);
5434 ext4_journal_stop(handle);
512c15ef 5435 if (unlikely(error)) {
4209ae12 5436 return error;
512c15ef 5437 }
ac27a0ec
DK
5438 }
5439
3da40c7b 5440 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5441 handle_t *handle;
3da40c7b 5442 loff_t oldsize = inode->i_size;
f4534c9f 5443 loff_t old_disksize;
b9c1c267 5444 int shrink = (attr->ia_size < inode->i_size);
562c72aa 5445
12e9b892 5446 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5447 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5448
aa75f4d3 5449 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
0c095c7f 5450 return -EFBIG;
aa75f4d3 5451 }
e2b46574 5452 }
aa75f4d3 5453 if (!S_ISREG(inode->i_mode)) {
3da40c7b 5454 return -EINVAL;
aa75f4d3 5455 }
dff6efc3 5456
a642c2c0
JL
5457 if (attr->ia_size == inode->i_size)
5458 inc_ivers = false;
dff6efc3 5459
b9c1c267
JK
5460 if (shrink) {
5461 if (ext4_should_order_data(inode)) {
5462 error = ext4_begin_ordered_truncate(inode,
678aaf48 5463 attr->ia_size);
b9c1c267
JK
5464 if (error)
5465 goto err_out;
5466 }
5467 /*
5468 * Blocks are going to be removed from the inode. Wait
5469 * for dio in flight.
5470 */
5471 inode_dio_wait(inode);
5472 }
5473
d4f5258e 5474 filemap_invalidate_lock(inode->i_mapping);
b9c1c267
JK
5475
5476 rc = ext4_break_layouts(inode);
5477 if (rc) {
d4f5258e 5478 filemap_invalidate_unlock(inode->i_mapping);
aa75f4d3 5479 goto err_out;
3da40c7b 5480 }
b9c1c267 5481
3da40c7b 5482 if (attr->ia_size != inode->i_size) {
5208386c
JK
5483 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5484 if (IS_ERR(handle)) {
5485 error = PTR_ERR(handle);
b9c1c267 5486 goto out_mmap_sem;
5208386c 5487 }
3da40c7b 5488 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5489 error = ext4_orphan_add(handle, inode);
5490 orphan = 1;
5491 }
911af577
EG
5492 /*
5493 * Update c/mtime on truncate up, ext4_truncate() will
5494 * update c/mtime in shrink case below
5495 */
5496 if (!shrink) {
eeca7ea1 5497 inode->i_mtime = current_time(inode);
911af577
EG
5498 inode->i_ctime = inode->i_mtime;
5499 }
aa75f4d3
HS
5500
5501 if (shrink)
a80f7fcf 5502 ext4_fc_track_range(handle, inode,
aa75f4d3
HS
5503 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5504 inode->i_sb->s_blocksize_bits,
9725958b 5505 EXT_MAX_BLOCKS - 1);
aa75f4d3
HS
5506 else
5507 ext4_fc_track_range(
a80f7fcf 5508 handle, inode,
aa75f4d3
HS
5509 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5510 inode->i_sb->s_blocksize_bits,
5511 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5512 inode->i_sb->s_blocksize_bits);
5513
90e775b7 5514 down_write(&EXT4_I(inode)->i_data_sem);
f4534c9f 5515 old_disksize = EXT4_I(inode)->i_disksize;
5208386c
JK
5516 EXT4_I(inode)->i_disksize = attr->ia_size;
5517 rc = ext4_mark_inode_dirty(handle, inode);
5518 if (!error)
5519 error = rc;
90e775b7
JK
5520 /*
5521 * We have to update i_size under i_data_sem together
5522 * with i_disksize to avoid races with writeback code
5523 * running ext4_wb_update_i_disksize().
5524 */
5525 if (!error)
5526 i_size_write(inode, attr->ia_size);
f4534c9f
YB
5527 else
5528 EXT4_I(inode)->i_disksize = old_disksize;
90e775b7 5529 up_write(&EXT4_I(inode)->i_data_sem);
5208386c 5530 ext4_journal_stop(handle);
b9c1c267
JK
5531 if (error)
5532 goto out_mmap_sem;
5533 if (!shrink) {
5534 pagecache_isize_extended(inode, oldsize,
5535 inode->i_size);
5536 } else if (ext4_should_journal_data(inode)) {
5537 ext4_wait_for_tail_page_commit(inode);
678aaf48 5538 }
d6320cbf 5539 }
430657b6 5540
5208386c
JK
5541 /*
5542 * Truncate pagecache after we've waited for commit
5543 * in data=journal mode to make pages freeable.
5544 */
923ae0ff 5545 truncate_pagecache(inode, inode->i_size);
b9c1c267
JK
5546 /*
5547 * Call ext4_truncate() even if i_size didn't change to
5548 * truncate possible preallocated blocks.
5549 */
5550 if (attr->ia_size <= oldsize) {
2c98eb5e
TT
5551 rc = ext4_truncate(inode);
5552 if (rc)
5553 error = rc;
5554 }
b9c1c267 5555out_mmap_sem:
d4f5258e 5556 filemap_invalidate_unlock(inode->i_mapping);
072bd7ea 5557 }
ac27a0ec 5558
2c98eb5e 5559 if (!error) {
a642c2c0
JL
5560 if (inc_ivers)
5561 inode_inc_iversion(inode);
14f3db55 5562 setattr_copy(mnt_userns, inode, attr);
1025774c
CH
5563 mark_inode_dirty(inode);
5564 }
5565
5566 /*
5567 * If the call to ext4_truncate failed to get a transaction handle at
5568 * all, we need to clean up the in-core orphan list manually.
5569 */
3d287de3 5570 if (orphan && inode->i_nlink)
617ba13b 5571 ext4_orphan_del(NULL, inode);
ac27a0ec 5572
2c98eb5e 5573 if (!error && (ia_valid & ATTR_MODE))
14f3db55 5574 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
ac27a0ec
DK
5575
5576err_out:
aa75f4d3
HS
5577 if (error)
5578 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5579 if (!error)
5580 error = rc;
5581 return error;
5582}
5583
8434ef1d
EB
5584u32 ext4_dio_alignment(struct inode *inode)
5585{
5586 if (fsverity_active(inode))
5587 return 0;
5588 if (ext4_should_journal_data(inode))
5589 return 0;
5590 if (ext4_has_inline_data(inode))
5591 return 0;
5592 if (IS_ENCRYPTED(inode)) {
5593 if (!fscrypt_dio_supported(inode))
5594 return 0;
5595 return i_blocksize(inode);
5596 }
5597 return 1; /* use the iomap defaults */
5598}
5599
549c7297
CB
5600int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5601 struct kstat *stat, u32 request_mask, unsigned int query_flags)
3e3398a0 5602{
99652ea5
DH
5603 struct inode *inode = d_inode(path->dentry);
5604 struct ext4_inode *raw_inode;
5605 struct ext4_inode_info *ei = EXT4_I(inode);
5606 unsigned int flags;
5607
d4c5e960
TT
5608 if ((request_mask & STATX_BTIME) &&
5609 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
99652ea5
DH
5610 stat->result_mask |= STATX_BTIME;
5611 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5612 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5613 }
5614
8434ef1d
EB
5615 /*
5616 * Return the DIO alignment restrictions if requested. We only return
5617 * this information when requested, since on encrypted files it might
5618 * take a fair bit of work to get if the file wasn't opened recently.
5619 */
5620 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5621 u32 dio_align = ext4_dio_alignment(inode);
5622
5623 stat->result_mask |= STATX_DIOALIGN;
5624 if (dio_align == 1) {
5625 struct block_device *bdev = inode->i_sb->s_bdev;
5626
5627 /* iomap defaults */
5628 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5629 stat->dio_offset_align = bdev_logical_block_size(bdev);
5630 } else {
5631 stat->dio_mem_align = dio_align;
5632 stat->dio_offset_align = dio_align;
5633 }
5634 }
5635
99652ea5
DH
5636 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5637 if (flags & EXT4_APPEND_FL)
5638 stat->attributes |= STATX_ATTR_APPEND;
5639 if (flags & EXT4_COMPR_FL)
5640 stat->attributes |= STATX_ATTR_COMPRESSED;
5641 if (flags & EXT4_ENCRYPT_FL)
5642 stat->attributes |= STATX_ATTR_ENCRYPTED;
5643 if (flags & EXT4_IMMUTABLE_FL)
5644 stat->attributes |= STATX_ATTR_IMMUTABLE;
5645 if (flags & EXT4_NODUMP_FL)
5646 stat->attributes |= STATX_ATTR_NODUMP;
1f607195
EB
5647 if (flags & EXT4_VERITY_FL)
5648 stat->attributes |= STATX_ATTR_VERITY;
3e3398a0 5649
3209f68b
DH
5650 stat->attributes_mask |= (STATX_ATTR_APPEND |
5651 STATX_ATTR_COMPRESSED |
5652 STATX_ATTR_ENCRYPTED |
5653 STATX_ATTR_IMMUTABLE |
1f607195
EB
5654 STATX_ATTR_NODUMP |
5655 STATX_ATTR_VERITY);
3209f68b 5656
14f3db55 5657 generic_fillattr(mnt_userns, inode, stat);
99652ea5
DH
5658 return 0;
5659}
5660
549c7297
CB
5661int ext4_file_getattr(struct user_namespace *mnt_userns,
5662 const struct path *path, struct kstat *stat,
99652ea5
DH
5663 u32 request_mask, unsigned int query_flags)
5664{
5665 struct inode *inode = d_inode(path->dentry);
5666 u64 delalloc_blocks;
5667
14f3db55 5668 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
3e3398a0 5669
9206c561
AD
5670 /*
5671 * If there is inline data in the inode, the inode will normally not
5672 * have data blocks allocated (it may have an external xattr block).
5673 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5674 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5675 */
5676 if (unlikely(ext4_has_inline_data(inode)))
5677 stat->blocks += (stat->size + 511) >> 9;
5678
3e3398a0
MC
5679 /*
5680 * We can't update i_blocks if the block allocation is delayed
5681 * otherwise in the case of system crash before the real block
5682 * allocation is done, we will have i_blocks inconsistent with
5683 * on-disk file blocks.
5684 * We always keep i_blocks updated together with real
5685 * allocation. But to not confuse with user, stat
5686 * will return the blocks that include the delayed allocation
5687 * blocks for this file.
5688 */
96607551 5689 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5690 EXT4_I(inode)->i_reserved_data_blocks);
5691 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5692 return 0;
5693}
ac27a0ec 5694
fffb2739
JK
5695static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5696 int pextents)
a02908f1 5697{
12e9b892 5698 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5699 return ext4_ind_trans_blocks(inode, lblocks);
5700 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5701}
ac51d837 5702
ac27a0ec 5703/*
a02908f1
MC
5704 * Account for index blocks, block groups bitmaps and block group
5705 * descriptor blocks if modify datablocks and index blocks
5706 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5707 *
a02908f1 5708 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5709 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5710 * they could still across block group boundary.
ac27a0ec 5711 *
a02908f1
MC
5712 * Also account for superblock, inode, quota and xattr blocks
5713 */
dec214d0 5714static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
fffb2739 5715 int pextents)
a02908f1 5716{
8df9675f
TT
5717 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5718 int gdpblocks;
a02908f1
MC
5719 int idxblocks;
5720 int ret = 0;
5721
5722 /*
fffb2739
JK
5723 * How many index blocks need to touch to map @lblocks logical blocks
5724 * to @pextents physical extents?
a02908f1 5725 */
fffb2739 5726 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5727
5728 ret = idxblocks;
5729
5730 /*
5731 * Now let's see how many group bitmaps and group descriptors need
5732 * to account
5733 */
fffb2739 5734 groups = idxblocks + pextents;
a02908f1 5735 gdpblocks = groups;
8df9675f
TT
5736 if (groups > ngroups)
5737 groups = ngroups;
a02908f1
MC
5738 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5739 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5740
5741 /* bitmaps and block group descriptor blocks */
5742 ret += groups + gdpblocks;
5743
5744 /* Blocks for super block, inode, quota and xattr blocks */
5745 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5746
5747 return ret;
5748}
5749
5750/*
25985edc 5751 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5752 * the modification of a single pages into a single transaction,
5753 * which may include multiple chunks of block allocations.
ac27a0ec 5754 *
525f4ed8 5755 * This could be called via ext4_write_begin()
ac27a0ec 5756 *
525f4ed8 5757 * We need to consider the worse case, when
a02908f1 5758 * one new block per extent.
ac27a0ec 5759 */
a86c6181 5760int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5761{
617ba13b 5762 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5763 int ret;
5764
fffb2739 5765 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5766
a02908f1 5767 /* Account for data blocks for journalled mode */
617ba13b 5768 if (ext4_should_journal_data(inode))
a02908f1 5769 ret += bpp;
ac27a0ec
DK
5770 return ret;
5771}
f3bd1f3f
MC
5772
5773/*
5774 * Calculate the journal credits for a chunk of data modification.
5775 *
5776 * This is called from DIO, fallocate or whoever calling
79e83036 5777 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5778 *
5779 * journal buffers for data blocks are not included here, as DIO
5780 * and fallocate do no need to journal data buffers.
5781 */
5782int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5783{
5784 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5785}
5786
ac27a0ec 5787/*
617ba13b 5788 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5789 * Give this, we know that the caller already has write access to iloc->bh.
5790 */
617ba13b 5791int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5792 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5793{
5794 int err = 0;
5795
a6758309
VA
5796 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5797 put_bh(iloc->bh);
0db1ff22 5798 return -EIO;
a6758309 5799 }
a80f7fcf 5800 ext4_fc_track_inode(handle, inode);
aa75f4d3 5801
ac27a0ec
DK
5802 /* the do_update_inode consumes one bh->b_count */
5803 get_bh(iloc->bh);
5804
dab291af 5805 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5806 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5807 put_bh(iloc->bh);
5808 return err;
5809}
5810
5811/*
5812 * On success, We end up with an outstanding reference count against
5813 * iloc->bh. This _must_ be cleaned up later.
5814 */
5815
5816int
617ba13b
MC
5817ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5818 struct ext4_iloc *iloc)
ac27a0ec 5819{
0390131b
FM
5820 int err;
5821
0db1ff22
TT
5822 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5823 return -EIO;
5824
0390131b
FM
5825 err = ext4_get_inode_loc(inode, iloc);
5826 if (!err) {
5827 BUFFER_TRACE(iloc->bh, "get_write_access");
188c299e
JK
5828 err = ext4_journal_get_write_access(handle, inode->i_sb,
5829 iloc->bh, EXT4_JTR_NONE);
0390131b
FM
5830 if (err) {
5831 brelse(iloc->bh);
5832 iloc->bh = NULL;
ac27a0ec
DK
5833 }
5834 }
617ba13b 5835 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5836 return err;
5837}
5838
c03b45b8
MX
5839static int __ext4_expand_extra_isize(struct inode *inode,
5840 unsigned int new_extra_isize,
5841 struct ext4_iloc *iloc,
5842 handle_t *handle, int *no_expand)
5843{
5844 struct ext4_inode *raw_inode;
5845 struct ext4_xattr_ibody_header *header;
4ea99936
TT
5846 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5847 struct ext4_inode_info *ei = EXT4_I(inode);
c03b45b8
MX
5848 int error;
5849
4ea99936
TT
5850 /* this was checked at iget time, but double check for good measure */
5851 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5852 (ei->i_extra_isize & 3)) {
5853 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5854 ei->i_extra_isize,
5855 EXT4_INODE_SIZE(inode->i_sb));
5856 return -EFSCORRUPTED;
5857 }
5858 if ((new_extra_isize < ei->i_extra_isize) ||
5859 (new_extra_isize < 4) ||
5860 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5861 return -EINVAL; /* Should never happen */
5862
c03b45b8
MX
5863 raw_inode = ext4_raw_inode(iloc);
5864
5865 header = IHDR(inode, raw_inode);
5866
5867 /* No extended attributes present */
5868 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5869 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5870 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5871 EXT4_I(inode)->i_extra_isize, 0,
5872 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5873 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5874 return 0;
5875 }
5876
5877 /* try to expand with EAs present */
5878 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5879 raw_inode, handle);
5880 if (error) {
5881 /*
5882 * Inode size expansion failed; don't try again
5883 */
5884 *no_expand = 1;
5885 }
5886
5887 return error;
5888}
5889
6dd4ee7c
KS
5890/*
5891 * Expand an inode by new_extra_isize bytes.
5892 * Returns 0 on success or negative error number on failure.
5893 */
cf0a5e81
MX
5894static int ext4_try_to_expand_extra_isize(struct inode *inode,
5895 unsigned int new_extra_isize,
5896 struct ext4_iloc iloc,
5897 handle_t *handle)
6dd4ee7c 5898{
3b10fdc6
MX
5899 int no_expand;
5900 int error;
6dd4ee7c 5901
cf0a5e81
MX
5902 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5903 return -EOVERFLOW;
5904
5905 /*
5906 * In nojournal mode, we can immediately attempt to expand
5907 * the inode. When journaled, we first need to obtain extra
5908 * buffer credits since we may write into the EA block
5909 * with this same handle. If journal_extend fails, then it will
5910 * only result in a minor loss of functionality for that inode.
5911 * If this is felt to be critical, then e2fsck should be run to
5912 * force a large enough s_min_extra_isize.
5913 */
6cb367c2 5914 if (ext4_journal_extend(handle,
83448bdf 5915 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
cf0a5e81 5916 return -ENOSPC;
6dd4ee7c 5917
3b10fdc6 5918 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
cf0a5e81 5919 return -EBUSY;
3b10fdc6 5920
c03b45b8
MX
5921 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5922 handle, &no_expand);
5923 ext4_write_unlock_xattr(inode, &no_expand);
6dd4ee7c 5924
c03b45b8
MX
5925 return error;
5926}
6dd4ee7c 5927
c03b45b8
MX
5928int ext4_expand_extra_isize(struct inode *inode,
5929 unsigned int new_extra_isize,
5930 struct ext4_iloc *iloc)
5931{
5932 handle_t *handle;
5933 int no_expand;
5934 int error, rc;
5935
5936 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5937 brelse(iloc->bh);
5938 return -EOVERFLOW;
6dd4ee7c
KS
5939 }
5940
c03b45b8
MX
5941 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5942 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5943 if (IS_ERR(handle)) {
5944 error = PTR_ERR(handle);
5945 brelse(iloc->bh);
5946 return error;
5947 }
5948
5949 ext4_write_lock_xattr(inode, &no_expand);
5950
ddccb6db 5951 BUFFER_TRACE(iloc->bh, "get_write_access");
188c299e
JK
5952 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5953 EXT4_JTR_NONE);
3b10fdc6 5954 if (error) {
c03b45b8 5955 brelse(iloc->bh);
7f420d64 5956 goto out_unlock;
3b10fdc6 5957 }
cf0a5e81 5958
c03b45b8
MX
5959 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5960 handle, &no_expand);
5961
5962 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5963 if (!error)
5964 error = rc;
5965
7f420d64 5966out_unlock:
c03b45b8 5967 ext4_write_unlock_xattr(inode, &no_expand);
c03b45b8 5968 ext4_journal_stop(handle);
3b10fdc6 5969 return error;
6dd4ee7c
KS
5970}
5971
ac27a0ec
DK
5972/*
5973 * What we do here is to mark the in-core inode as clean with respect to inode
5974 * dirtiness (it may still be data-dirty).
5975 * This means that the in-core inode may be reaped by prune_icache
5976 * without having to perform any I/O. This is a very good thing,
5977 * because *any* task may call prune_icache - even ones which
5978 * have a transaction open against a different journal.
5979 *
5980 * Is this cheating? Not really. Sure, we haven't written the
5981 * inode out, but prune_icache isn't a user-visible syncing function.
5982 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5983 * we start and wait on commits.
ac27a0ec 5984 */
4209ae12
HS
5985int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5986 const char *func, unsigned int line)
ac27a0ec 5987{
617ba13b 5988 struct ext4_iloc iloc;
6dd4ee7c 5989 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
cf0a5e81 5990 int err;
ac27a0ec
DK
5991
5992 might_sleep();
7ff9c073 5993 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5994 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2 5995 if (err)
4209ae12 5996 goto out;
cf0a5e81
MX
5997
5998 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5999 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6000 iloc, handle);
6001
4209ae12
HS
6002 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6003out:
6004 if (unlikely(err))
6005 ext4_error_inode_err(inode, func, line, 0, err,
6006 "mark_inode_dirty error");
6007 return err;
ac27a0ec
DK
6008}
6009
6010/*
617ba13b 6011 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
6012 *
6013 * We're really interested in the case where a file is being extended.
6014 * i_size has been changed by generic_commit_write() and we thus need
6015 * to include the updated inode in the current transaction.
6016 *
5dd4056d 6017 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
6018 * are allocated to the file.
6019 *
6020 * If the inode is marked synchronous, we don't honour that here - doing
6021 * so would cause a commit on atime updates, which we don't bother doing.
6022 * We handle synchronous inodes at the highest possible level.
6023 */
aa385729 6024void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 6025{
ac27a0ec
DK
6026 handle_t *handle;
6027
9924a92a 6028 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec 6029 if (IS_ERR(handle))
e2728c56 6030 return;
f3dc272f 6031 ext4_mark_inode_dirty(handle, inode);
617ba13b 6032 ext4_journal_stop(handle);
ac27a0ec
DK
6033}
6034
617ba13b 6035int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
6036{
6037 journal_t *journal;
6038 handle_t *handle;
6039 int err;
c8585c6f 6040 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
6041
6042 /*
6043 * We have to be very careful here: changing a data block's
6044 * journaling status dynamically is dangerous. If we write a
6045 * data block to the journal, change the status and then delete
6046 * that block, we risk forgetting to revoke the old log record
6047 * from the journal and so a subsequent replay can corrupt data.
6048 * So, first we make sure that the journal is empty and that
6049 * nobody is changing anything.
6050 */
6051
617ba13b 6052 journal = EXT4_JOURNAL(inode);
0390131b
FM
6053 if (!journal)
6054 return 0;
d699594d 6055 if (is_journal_aborted(journal))
ac27a0ec
DK
6056 return -EROFS;
6057
17335dcc 6058 /* Wait for all existing dio workers */
17335dcc
DM
6059 inode_dio_wait(inode);
6060
4c546592
DJ
6061 /*
6062 * Before flushing the journal and switching inode's aops, we have
6063 * to flush all dirty data the inode has. There can be outstanding
6064 * delayed allocations, there can be unwritten extents created by
6065 * fallocate or buffered writes in dioread_nolock mode covered by
6066 * dirty data which can be converted only after flushing the dirty
6067 * data (and journalled aops don't know how to handle these cases).
6068 */
6069 if (val) {
d4f5258e 6070 filemap_invalidate_lock(inode->i_mapping);
4c546592
DJ
6071 err = filemap_write_and_wait(inode->i_mapping);
6072 if (err < 0) {
d4f5258e 6073 filemap_invalidate_unlock(inode->i_mapping);
4c546592
DJ
6074 return err;
6075 }
6076 }
6077
bbd55937 6078 percpu_down_write(&sbi->s_writepages_rwsem);
dab291af 6079 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
6080
6081 /*
6082 * OK, there are no updates running now, and all cached data is
6083 * synced to disk. We are now in a completely consistent state
6084 * which doesn't have anything in the journal, and we know that
6085 * no filesystem updates are running, so it is safe to modify
6086 * the inode's in-core data-journaling state flag now.
6087 */
6088
6089 if (val)
12e9b892 6090 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6091 else {
01d5d965 6092 err = jbd2_journal_flush(journal, 0);
4f879ca6
JK
6093 if (err < 0) {
6094 jbd2_journal_unlock_updates(journal);
bbd55937 6095 percpu_up_write(&sbi->s_writepages_rwsem);
4f879ca6
JK
6096 return err;
6097 }
12e9b892 6098 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6099 }
617ba13b 6100 ext4_set_aops(inode);
ac27a0ec 6101
dab291af 6102 jbd2_journal_unlock_updates(journal);
bbd55937 6103 percpu_up_write(&sbi->s_writepages_rwsem);
c8585c6f 6104
4c546592 6105 if (val)
d4f5258e 6106 filemap_invalidate_unlock(inode->i_mapping);
ac27a0ec
DK
6107
6108 /* Finally we can mark the inode as dirty. */
6109
9924a92a 6110 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
6111 if (IS_ERR(handle))
6112 return PTR_ERR(handle);
6113
aa75f4d3 6114 ext4_fc_mark_ineligible(inode->i_sb,
e85c81ba 6115 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
617ba13b 6116 err = ext4_mark_inode_dirty(handle, inode);
0390131b 6117 ext4_handle_sync(handle);
617ba13b
MC
6118 ext4_journal_stop(handle);
6119 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6120
6121 return err;
6122}
2e9ee850 6123
188c299e
JK
6124static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6125 struct buffer_head *bh)
2e9ee850
AK
6126{
6127 return !buffer_mapped(bh);
6128}
6129
401b25aa 6130vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 6131{
11bac800 6132 struct vm_area_struct *vma = vmf->vma;
c2ec175c 6133 struct page *page = vmf->page;
2e9ee850
AK
6134 loff_t size;
6135 unsigned long len;
401b25aa
SJ
6136 int err;
6137 vm_fault_t ret;
2e9ee850 6138 struct file *file = vma->vm_file;
496ad9aa 6139 struct inode *inode = file_inode(file);
2e9ee850 6140 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
6141 handle_t *handle;
6142 get_block_t *get_block;
6143 int retries = 0;
2e9ee850 6144
02b016ca
TT
6145 if (unlikely(IS_IMMUTABLE(inode)))
6146 return VM_FAULT_SIGBUS;
6147
8e8ad8a5 6148 sb_start_pagefault(inode->i_sb);
041bbb6d 6149 file_update_time(vma->vm_file);
ea3d7209 6150
d4f5258e 6151 filemap_invalidate_lock_shared(mapping);
7b4cc978 6152
401b25aa
SJ
6153 err = ext4_convert_inline_data(inode);
6154 if (err)
7b4cc978
EB
6155 goto out_ret;
6156
64a9f144
MFO
6157 /*
6158 * On data journalling we skip straight to the transaction handle:
6159 * there's no delalloc; page truncated will be checked later; the
6160 * early return w/ all buffers mapped (calculates size/len) can't
6161 * be used; and there's no dioread_nolock, so only ext4_get_block.
6162 */
6163 if (ext4_should_journal_data(inode))
6164 goto retry_alloc;
6165
9ea7df53
JK
6166 /* Delalloc case is easy... */
6167 if (test_opt(inode->i_sb, DELALLOC) &&
9ea7df53
JK
6168 !ext4_nonda_switch(inode->i_sb)) {
6169 do {
401b25aa 6170 err = block_page_mkwrite(vma, vmf,
9ea7df53 6171 ext4_da_get_block_prep);
401b25aa 6172 } while (err == -ENOSPC &&
9ea7df53
JK
6173 ext4_should_retry_alloc(inode->i_sb, &retries));
6174 goto out_ret;
2e9ee850 6175 }
0e499890
DW
6176
6177 lock_page(page);
9ea7df53
JK
6178 size = i_size_read(inode);
6179 /* Page got truncated from under us? */
6180 if (page->mapping != mapping || page_offset(page) > size) {
6181 unlock_page(page);
6182 ret = VM_FAULT_NOPAGE;
6183 goto out;
0e499890 6184 }
2e9ee850 6185
09cbfeaf
KS
6186 if (page->index == size >> PAGE_SHIFT)
6187 len = size & ~PAGE_MASK;
2e9ee850 6188 else
09cbfeaf 6189 len = PAGE_SIZE;
a827eaff 6190 /*
9ea7df53
JK
6191 * Return if we have all the buffers mapped. This avoids the need to do
6192 * journal_start/journal_stop which can block and take a long time
64a9f144
MFO
6193 *
6194 * This cannot be done for data journalling, as we have to add the
6195 * inode to the transaction's list to writeprotect pages on commit.
a827eaff 6196 */
2e9ee850 6197 if (page_has_buffers(page)) {
188c299e 6198 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
f19d5870
TM
6199 0, len, NULL,
6200 ext4_bh_unmapped)) {
9ea7df53 6201 /* Wait so that we don't change page under IO */
1d1d1a76 6202 wait_for_stable_page(page);
9ea7df53
JK
6203 ret = VM_FAULT_LOCKED;
6204 goto out;
a827eaff 6205 }
2e9ee850 6206 }
a827eaff 6207 unlock_page(page);
9ea7df53
JK
6208 /* OK, we need to fill the hole... */
6209 if (ext4_should_dioread_nolock(inode))
705965bd 6210 get_block = ext4_get_block_unwritten;
9ea7df53
JK
6211 else
6212 get_block = ext4_get_block;
6213retry_alloc:
9924a92a
TT
6214 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6215 ext4_writepage_trans_blocks(inode));
9ea7df53 6216 if (IS_ERR(handle)) {
c2ec175c 6217 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
6218 goto out;
6219 }
64a9f144
MFO
6220 /*
6221 * Data journalling can't use block_page_mkwrite() because it
6222 * will set_buffer_dirty() before do_journal_get_write_access()
6223 * thus might hit warning messages for dirty metadata buffers.
6224 */
6225 if (!ext4_should_journal_data(inode)) {
6226 err = block_page_mkwrite(vma, vmf, get_block);
6227 } else {
6228 lock_page(page);
6229 size = i_size_read(inode);
6230 /* Page got truncated from under us? */
6231 if (page->mapping != mapping || page_offset(page) > size) {
64a9f144 6232 ret = VM_FAULT_NOPAGE;
afb585a9 6233 goto out_error;
9ea7df53 6234 }
64a9f144
MFO
6235
6236 if (page->index == size >> PAGE_SHIFT)
6237 len = size & ~PAGE_MASK;
6238 else
6239 len = PAGE_SIZE;
6240
6241 err = __block_write_begin(page, 0, len, ext4_get_block);
6242 if (!err) {
afb585a9 6243 ret = VM_FAULT_SIGBUS;
188c299e
JK
6244 if (ext4_walk_page_buffers(handle, inode,
6245 page_buffers(page), 0, len, NULL,
6246 do_journal_get_write_access))
afb585a9 6247 goto out_error;
188c299e
JK
6248 if (ext4_walk_page_buffers(handle, inode,
6249 page_buffers(page), 0, len, NULL,
6250 write_end_fn))
afb585a9 6251 goto out_error;
b5b18160
JK
6252 if (ext4_jbd2_inode_add_write(handle, inode,
6253 page_offset(page), len))
afb585a9 6254 goto out_error;
64a9f144
MFO
6255 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6256 } else {
6257 unlock_page(page);
6258 }
9ea7df53
JK
6259 }
6260 ext4_journal_stop(handle);
401b25aa 6261 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
9ea7df53
JK
6262 goto retry_alloc;
6263out_ret:
401b25aa 6264 ret = block_page_mkwrite_return(err);
9ea7df53 6265out:
d4f5258e 6266 filemap_invalidate_unlock_shared(mapping);
8e8ad8a5 6267 sb_end_pagefault(inode->i_sb);
2e9ee850 6268 return ret;
afb585a9
MFO
6269out_error:
6270 unlock_page(page);
6271 ext4_journal_stop(handle);
6272 goto out;
2e9ee850 6273}