ext4: only set S_DAX if DAX is really supported
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 54 __u32 csum;
b47820ed
DJ
55 __u16 dummy_csum = 0;
56 int offset = offsetof(struct ext4_inode, i_checksum_lo);
57 unsigned int csum_size = sizeof(dummy_csum);
814525f4 58
b47820ed
DJ
59 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61 offset += csum_size;
62 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 64
b47820ed
DJ
65 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66 offset = offsetof(struct ext4_inode, i_checksum_hi);
67 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68 EXT4_GOOD_OLD_INODE_SIZE,
69 offset - EXT4_GOOD_OLD_INODE_SIZE);
70 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72 csum_size);
73 offset += csum_size;
74 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
75 EXT4_INODE_SIZE(inode->i_sb) -
76 offset);
77 }
814525f4
DW
78 }
79
814525f4
DW
80 return csum;
81}
82
83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85{
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 90 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102}
103
104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106{
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 111 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119}
120
678aaf48
JK
121static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123{
7ff9c073 124 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
678aaf48
JK
136}
137
d47992f8
LC
138static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
cb20d518
TT
140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
f348c252 148int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
65eddb56
YY
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 152
bd9db175
ZL
153 if (ext4_has_inline_data(inode))
154 return 0;
155
ac27a0ec
DK
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157}
158
ac27a0ec
DK
159/*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
fa5d1113 164int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 165 int nblocks)
ac27a0ec 166{
487caeef
JK
167 int ret;
168
169 /*
e35fd660 170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
0390131b 175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 176 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 177 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 178 ret = ext4_journal_restart(handle, nblocks);
487caeef 179 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 180 ext4_discard_preallocations(inode);
487caeef
JK
181
182 return ret;
ac27a0ec
DK
183}
184
185/*
186 * Called at the last iput() if i_nlink is zero.
187 */
0930fcc1 188void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
189{
190 handle_t *handle;
bc965ab3 191 int err;
ac27a0ec 192
7ff9c073 193 trace_ext4_evict_inode(inode);
2581fdc8 194
0930fcc1 195 if (inode->i_nlink) {
2d859db3
JK
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
6a7fd522
VN
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
2d859db3
JK
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
d76a3a77 220 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
221 filemap_write_and_wait(&inode->i_data);
222 }
91b0abe3 223 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 224
0930fcc1
AV
225 goto no_delete;
226 }
227
e2bfb088
TT
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
907f4554 231
678aaf48
JK
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 234 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9924a92a
TT
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 243 if (IS_ERR(handle)) {
bc965ab3 244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
617ba13b 250 ext4_orphan_del(NULL, inode);
8e8ad8a5 251 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
0390131b 256 ext4_handle_sync(handle);
ac27a0ec 257 inode->i_size = 0;
bc965ab3
TT
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
12062ddd 260 ext4_warning(inode->i_sb,
bc965ab3
TT
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
2c98eb5e
TT
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
bc965ab3
TT
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
0390131b 280 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
12062ddd 285 ext4_warning(inode->i_sb,
bc965ab3
TT
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
45388219 289 ext4_orphan_del(NULL, inode);
8e8ad8a5 290 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
291 goto no_delete;
292 }
293 }
294
ac27a0ec 295 /*
617ba13b 296 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 297 * AKPM: I think this can be inside the above `if'.
617ba13b 298 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 299 * deletion of a non-existent orphan - this is because we don't
617ba13b 300 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
301 * (Well, we could do this if we need to, but heck - it works)
302 */
617ba13b
MC
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
617ba13b 313 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 314 /* If that failed, just do the required in-core inode clear. */
0930fcc1 315 ext4_clear_inode(inode);
ac27a0ec 316 else
617ba13b
MC
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
8e8ad8a5 319 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
320 return;
321no_delete:
0930fcc1 322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
323}
324
a9e7f447
DM
325#ifdef CONFIG_QUOTA
326qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 327{
a9e7f447 328 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 329}
a9e7f447 330#endif
9d0be502 331
0637c6f4
TT
332/*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
5f634d06
AK
336void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
12219aea
AK
338{
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 340 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
341
342 spin_lock(&ei->i_block_reservation_lock);
d8990240 343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 344 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 346 "with only %d reserved data blocks",
0637c6f4
TT
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
12219aea 352
0637c6f4
TT
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
71d4f7d0 355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 356
12219aea 357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 358
72b8ab9d
ES
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
7b415bf6 361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 362 else {
5f634d06
AK
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
72b8ab9d 366 * not re-claim the quota for fallocated blocks.
5f634d06 367 */
7b415bf6 368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 369 }
d6014301
AK
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
0637c6f4
TT
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
d6014301 378 ext4_discard_preallocations(inode);
12219aea
AK
379}
380
e29136f8 381static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
382 unsigned int line,
383 struct ext4_map_blocks *map)
6fd058f7 384{
24676da4
TT
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
c398eda0
TT
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
6a797d27 391 return -EFSCORRUPTED;
6fd058f7
TT
392 }
393 return 0;
394}
395
53085fac
JK
396int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398{
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
a7550b30 402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409}
410
e29136f8 411#define check_block_validity(inode, map) \
c398eda0 412 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 413
921f266b
DM
414#ifdef ES_AGGRESSIVE_TEST
415static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420{
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
2dcba478 431 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
2dcba478 439 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
bdafe42a 448 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456}
457#endif /* ES_AGGRESSIVE_TEST */
458
f5ab0d1f 459/*
e35fd660 460 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 461 * and returns if the blocks are already mapped.
f5ab0d1f 462 *
f5ab0d1f
MC
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
e35fd660
TT
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
469 * based files
470 *
facab4d9
JK
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
478 *
479 * It returns the error in case of allocation failure.
480 */
e35fd660
TT
481int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
0e855ac8 483{
d100eef2 484 struct extent_status es;
0e855ac8 485 int retval;
b8a86845 486 int ret = 0;
921f266b
DM
487#ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491#endif
f5ab0d1f 492
e35fd660
TT
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
d100eef2 497
e861b5e9
TT
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
4adb6ab3
KM
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 506 return -EFSCORRUPTED;
4adb6ab3 507
d100eef2
ZL
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
d100eef2
ZL
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
921f266b
DM
529#ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532#endif
d100eef2
ZL
533 goto found;
534 }
535
4df3d265 536 /*
b920c755
TT
537 * Try to see if we can get the block without requesting a new
538 * file system block.
4df3d265 539 */
2dcba478 540 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 544 } else {
a4e5d88b
DM
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 547 }
f7fec032 548 if (retval > 0) {
3be78c73 549 unsigned int status;
f7fec032 550
44fb851d
ZL
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
921f266b 557 }
921f266b 558
f7fec032
ZL
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 562 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
2dcba478 571 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 572
d100eef2 573found:
e35fd660 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 575 ret = check_block_validity(inode, map);
6fd058f7
TT
576 if (ret != 0)
577 return ret;
578 }
579
f5ab0d1f 580 /* If it is only a block(s) look up */
c2177057 581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
df3ab170 588 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
589 * with buffer head unmapped.
590 */
e35fd660 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
4df3d265 599
2a8964d6 600 /*
a25a4e1a
ZL
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
2a8964d6 603 */
a25a4e1a 604 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 605
4df3d265 606 /*
556615dc 607 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 608 * will possibly result in updating i_data, so we take
d91bd2c1 609 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 610 * with create == 1 flag.
4df3d265 611 */
c8b459f4 612 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 613
4df3d265
AK
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
12e9b892 618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 620 } else {
e35fd660 621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 622
e35fd660 623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
19f5fb7a 629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 630 }
d2a17637 631
5f634d06
AK
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
1296cc85 639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
2ac3b6e0 642
f7fec032 643 if (retval > 0) {
3be78c73 644 unsigned int status;
f7fec032 645
44fb851d
ZL
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
921f266b 652 }
921f266b 653
c86d8db3
JK
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
9b623df6
JK
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
c86d8db3
JK
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
9b623df6
JK
664 ext4_lblk_t i;
665
666 for (i = 0; i < map->m_len; i++) {
667 unmap_underlying_metadata(inode->i_sb->s_bdev,
668 map->m_pblk + i);
669 }
c86d8db3
JK
670 ret = ext4_issue_zeroout(inode, map->m_lblk,
671 map->m_pblk, map->m_len);
672 if (ret) {
673 retval = ret;
674 goto out_sem;
675 }
676 }
677
adb23551
ZL
678 /*
679 * If the extent has been zeroed out, we don't need to update
680 * extent status tree.
681 */
682 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
683 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
684 if (ext4_es_is_written(&es))
c86d8db3 685 goto out_sem;
adb23551 686 }
f7fec032
ZL
687 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
688 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
689 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 690 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
691 ext4_find_delalloc_range(inode, map->m_lblk,
692 map->m_lblk + map->m_len - 1))
693 status |= EXTENT_STATUS_DELAYED;
694 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
695 map->m_pblk, status);
c86d8db3 696 if (ret < 0) {
f7fec032 697 retval = ret;
c86d8db3
JK
698 goto out_sem;
699 }
5356f261
AK
700 }
701
c86d8db3 702out_sem:
4df3d265 703 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 704 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 705 ret = check_block_validity(inode, map);
6fd058f7
TT
706 if (ret != 0)
707 return ret;
06bd3c36
JK
708
709 /*
710 * Inodes with freshly allocated blocks where contents will be
711 * visible after transaction commit must be on transaction's
712 * ordered data list.
713 */
714 if (map->m_flags & EXT4_MAP_NEW &&
715 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716 !(flags & EXT4_GET_BLOCKS_ZERO) &&
717 !IS_NOQUOTA(inode) &&
718 ext4_should_order_data(inode)) {
ee0876bc
JK
719 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
720 ret = ext4_jbd2_inode_add_wait(handle, inode);
721 else
722 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
723 if (ret)
724 return ret;
725 }
6fd058f7 726 }
0e855ac8
AK
727 return retval;
728}
729
ed8ad838
JK
730/*
731 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
732 * we have to be careful as someone else may be manipulating b_state as well.
733 */
734static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
735{
736 unsigned long old_state;
737 unsigned long new_state;
738
739 flags &= EXT4_MAP_FLAGS;
740
741 /* Dummy buffer_head? Set non-atomically. */
742 if (!bh->b_page) {
743 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
744 return;
745 }
746 /*
747 * Someone else may be modifying b_state. Be careful! This is ugly but
748 * once we get rid of using bh as a container for mapping information
749 * to pass to / from get_block functions, this can go away.
750 */
751 do {
752 old_state = READ_ONCE(bh->b_state);
753 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
754 } while (unlikely(
755 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
756}
757
2ed88685
TT
758static int _ext4_get_block(struct inode *inode, sector_t iblock,
759 struct buffer_head *bh, int flags)
ac27a0ec 760{
2ed88685 761 struct ext4_map_blocks map;
efe70c29 762 int ret = 0;
ac27a0ec 763
46c7f254
TM
764 if (ext4_has_inline_data(inode))
765 return -ERANGE;
766
2ed88685
TT
767 map.m_lblk = iblock;
768 map.m_len = bh->b_size >> inode->i_blkbits;
769
efe70c29
JK
770 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
771 flags);
7fb5409d 772 if (ret > 0) {
2ed88685 773 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 774 ext4_update_bh_state(bh, map.m_flags);
2ed88685 775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 776 ret = 0;
547edce3
RZ
777 } else if (ret == 0) {
778 /* hole case, need to fill in bh->b_size */
779 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
780 }
781 return ret;
782}
783
2ed88685
TT
784int ext4_get_block(struct inode *inode, sector_t iblock,
785 struct buffer_head *bh, int create)
786{
787 return _ext4_get_block(inode, iblock, bh,
788 create ? EXT4_GET_BLOCKS_CREATE : 0);
789}
790
705965bd
JK
791/*
792 * Get block function used when preparing for buffered write if we require
793 * creating an unwritten extent if blocks haven't been allocated. The extent
794 * will be converted to written after the IO is complete.
795 */
796int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
797 struct buffer_head *bh_result, int create)
798{
799 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
800 inode->i_ino, create);
801 return _ext4_get_block(inode, iblock, bh_result,
802 EXT4_GET_BLOCKS_IO_CREATE_EXT);
803}
804
efe70c29
JK
805/* Maximum number of blocks we map for direct IO at once. */
806#define DIO_MAX_BLOCKS 4096
807
e84dfbe2
JK
808/*
809 * Get blocks function for the cases that need to start a transaction -
810 * generally difference cases of direct IO and DAX IO. It also handles retries
811 * in case of ENOSPC.
812 */
813static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
814 struct buffer_head *bh_result, int flags)
efe70c29
JK
815{
816 int dio_credits;
e84dfbe2
JK
817 handle_t *handle;
818 int retries = 0;
819 int ret;
efe70c29
JK
820
821 /* Trim mapping request to maximum we can map at once for DIO */
822 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
823 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
824 dio_credits = ext4_chunk_trans_blocks(inode,
825 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
826retry:
827 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
828 if (IS_ERR(handle))
829 return PTR_ERR(handle);
830
831 ret = _ext4_get_block(inode, iblock, bh_result, flags);
832 ext4_journal_stop(handle);
833
834 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
835 goto retry;
836 return ret;
efe70c29
JK
837}
838
705965bd
JK
839/* Get block function for DIO reads and writes to inodes without extents */
840int ext4_dio_get_block(struct inode *inode, sector_t iblock,
841 struct buffer_head *bh, int create)
842{
efe70c29
JK
843 /* We don't expect handle for direct IO */
844 WARN_ON_ONCE(ext4_journal_current_handle());
845
e84dfbe2
JK
846 if (!create)
847 return _ext4_get_block(inode, iblock, bh, 0);
848 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
849}
850
851/*
109811c2 852 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
853 * blocks are not allocated yet. The extent will be converted to written
854 * after IO is complete.
855 */
109811c2
JK
856static int ext4_dio_get_block_unwritten_async(struct inode *inode,
857 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 858{
efe70c29
JK
859 int ret;
860
efe70c29
JK
861 /* We don't expect handle for direct IO */
862 WARN_ON_ONCE(ext4_journal_current_handle());
863
e84dfbe2
JK
864 ret = ext4_get_block_trans(inode, iblock, bh_result,
865 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 866
109811c2
JK
867 /*
868 * When doing DIO using unwritten extents, we need io_end to convert
869 * unwritten extents to written on IO completion. We allocate io_end
870 * once we spot unwritten extent and store it in b_private. Generic
871 * DIO code keeps b_private set and furthermore passes the value to
872 * our completion callback in 'private' argument.
873 */
874 if (!ret && buffer_unwritten(bh_result)) {
875 if (!bh_result->b_private) {
876 ext4_io_end_t *io_end;
877
878 io_end = ext4_init_io_end(inode, GFP_KERNEL);
879 if (!io_end)
880 return -ENOMEM;
881 bh_result->b_private = io_end;
882 ext4_set_io_unwritten_flag(inode, io_end);
883 }
efe70c29 884 set_buffer_defer_completion(bh_result);
efe70c29
JK
885 }
886
887 return ret;
705965bd
JK
888}
889
109811c2
JK
890/*
891 * Get block function for non-AIO DIO writes when we create unwritten extent if
892 * blocks are not allocated yet. The extent will be converted to written
893 * after IO is complete from ext4_ext_direct_IO() function.
894 */
895static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
896 sector_t iblock, struct buffer_head *bh_result, int create)
897{
109811c2
JK
898 int ret;
899
900 /* We don't expect handle for direct IO */
901 WARN_ON_ONCE(ext4_journal_current_handle());
902
e84dfbe2
JK
903 ret = ext4_get_block_trans(inode, iblock, bh_result,
904 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
905
906 /*
907 * Mark inode as having pending DIO writes to unwritten extents.
908 * ext4_ext_direct_IO() checks this flag and converts extents to
909 * written.
910 */
911 if (!ret && buffer_unwritten(bh_result))
912 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
913
914 return ret;
915}
916
705965bd
JK
917static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
918 struct buffer_head *bh_result, int create)
919{
920 int ret;
921
922 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
923 inode->i_ino, create);
efe70c29
JK
924 /* We don't expect handle for direct IO */
925 WARN_ON_ONCE(ext4_journal_current_handle());
926
705965bd
JK
927 ret = _ext4_get_block(inode, iblock, bh_result, 0);
928 /*
929 * Blocks should have been preallocated! ext4_file_write_iter() checks
930 * that.
931 */
efe70c29 932 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
933
934 return ret;
935}
936
937
ac27a0ec
DK
938/*
939 * `handle' can be NULL if create is zero
940 */
617ba13b 941struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 942 ext4_lblk_t block, int map_flags)
ac27a0ec 943{
2ed88685
TT
944 struct ext4_map_blocks map;
945 struct buffer_head *bh;
c5e298ae 946 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 947 int err;
ac27a0ec
DK
948
949 J_ASSERT(handle != NULL || create == 0);
950
2ed88685
TT
951 map.m_lblk = block;
952 map.m_len = 1;
c5e298ae 953 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 954
10560082
TT
955 if (err == 0)
956 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 957 if (err < 0)
10560082 958 return ERR_PTR(err);
2ed88685
TT
959
960 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
961 if (unlikely(!bh))
962 return ERR_PTR(-ENOMEM);
2ed88685
TT
963 if (map.m_flags & EXT4_MAP_NEW) {
964 J_ASSERT(create != 0);
965 J_ASSERT(handle != NULL);
ac27a0ec 966
2ed88685
TT
967 /*
968 * Now that we do not always journal data, we should
969 * keep in mind whether this should always journal the
970 * new buffer as metadata. For now, regular file
971 * writes use ext4_get_block instead, so it's not a
972 * problem.
973 */
974 lock_buffer(bh);
975 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
976 err = ext4_journal_get_create_access(handle, bh);
977 if (unlikely(err)) {
978 unlock_buffer(bh);
979 goto errout;
980 }
981 if (!buffer_uptodate(bh)) {
2ed88685
TT
982 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
983 set_buffer_uptodate(bh);
ac27a0ec 984 }
2ed88685
TT
985 unlock_buffer(bh);
986 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
987 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
988 if (unlikely(err))
989 goto errout;
990 } else
2ed88685 991 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 992 return bh;
10560082
TT
993errout:
994 brelse(bh);
995 return ERR_PTR(err);
ac27a0ec
DK
996}
997
617ba13b 998struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 999 ext4_lblk_t block, int map_flags)
ac27a0ec 1000{
af5bc92d 1001 struct buffer_head *bh;
ac27a0ec 1002
c5e298ae 1003 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1004 if (IS_ERR(bh))
ac27a0ec 1005 return bh;
1c215028 1006 if (!bh || buffer_uptodate(bh))
ac27a0ec 1007 return bh;
dfec8a14 1008 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1009 wait_on_buffer(bh);
1010 if (buffer_uptodate(bh))
1011 return bh;
1012 put_bh(bh);
1c215028 1013 return ERR_PTR(-EIO);
ac27a0ec
DK
1014}
1015
f19d5870
TM
1016int ext4_walk_page_buffers(handle_t *handle,
1017 struct buffer_head *head,
1018 unsigned from,
1019 unsigned to,
1020 int *partial,
1021 int (*fn)(handle_t *handle,
1022 struct buffer_head *bh))
ac27a0ec
DK
1023{
1024 struct buffer_head *bh;
1025 unsigned block_start, block_end;
1026 unsigned blocksize = head->b_size;
1027 int err, ret = 0;
1028 struct buffer_head *next;
1029
af5bc92d
TT
1030 for (bh = head, block_start = 0;
1031 ret == 0 && (bh != head || !block_start);
de9a55b8 1032 block_start = block_end, bh = next) {
ac27a0ec
DK
1033 next = bh->b_this_page;
1034 block_end = block_start + blocksize;
1035 if (block_end <= from || block_start >= to) {
1036 if (partial && !buffer_uptodate(bh))
1037 *partial = 1;
1038 continue;
1039 }
1040 err = (*fn)(handle, bh);
1041 if (!ret)
1042 ret = err;
1043 }
1044 return ret;
1045}
1046
1047/*
1048 * To preserve ordering, it is essential that the hole instantiation and
1049 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1050 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1051 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1052 * prepare_write() is the right place.
1053 *
36ade451
JK
1054 * Also, this function can nest inside ext4_writepage(). In that case, we
1055 * *know* that ext4_writepage() has generated enough buffer credits to do the
1056 * whole page. So we won't block on the journal in that case, which is good,
1057 * because the caller may be PF_MEMALLOC.
ac27a0ec 1058 *
617ba13b 1059 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1060 * quota file writes. If we were to commit the transaction while thus
1061 * reentered, there can be a deadlock - we would be holding a quota
1062 * lock, and the commit would never complete if another thread had a
1063 * transaction open and was blocking on the quota lock - a ranking
1064 * violation.
1065 *
dab291af 1066 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1067 * will _not_ run commit under these circumstances because handle->h_ref
1068 * is elevated. We'll still have enough credits for the tiny quotafile
1069 * write.
1070 */
f19d5870
TM
1071int do_journal_get_write_access(handle_t *handle,
1072 struct buffer_head *bh)
ac27a0ec 1073{
56d35a4c
JK
1074 int dirty = buffer_dirty(bh);
1075 int ret;
1076
ac27a0ec
DK
1077 if (!buffer_mapped(bh) || buffer_freed(bh))
1078 return 0;
56d35a4c 1079 /*
ebdec241 1080 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1081 * the dirty bit as jbd2_journal_get_write_access() could complain
1082 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1083 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1084 * the bit before releasing a page lock and thus writeback cannot
1085 * ever write the buffer.
1086 */
1087 if (dirty)
1088 clear_buffer_dirty(bh);
5d601255 1089 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1090 ret = ext4_journal_get_write_access(handle, bh);
1091 if (!ret && dirty)
1092 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1093 return ret;
ac27a0ec
DK
1094}
1095
2058f83a
MH
1096#ifdef CONFIG_EXT4_FS_ENCRYPTION
1097static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1098 get_block_t *get_block)
1099{
09cbfeaf 1100 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1101 unsigned to = from + len;
1102 struct inode *inode = page->mapping->host;
1103 unsigned block_start, block_end;
1104 sector_t block;
1105 int err = 0;
1106 unsigned blocksize = inode->i_sb->s_blocksize;
1107 unsigned bbits;
1108 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1109 bool decrypt = false;
1110
1111 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1112 BUG_ON(from > PAGE_SIZE);
1113 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1114 BUG_ON(from > to);
1115
1116 if (!page_has_buffers(page))
1117 create_empty_buffers(page, blocksize, 0);
1118 head = page_buffers(page);
1119 bbits = ilog2(blocksize);
09cbfeaf 1120 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1121
1122 for (bh = head, block_start = 0; bh != head || !block_start;
1123 block++, block_start = block_end, bh = bh->b_this_page) {
1124 block_end = block_start + blocksize;
1125 if (block_end <= from || block_start >= to) {
1126 if (PageUptodate(page)) {
1127 if (!buffer_uptodate(bh))
1128 set_buffer_uptodate(bh);
1129 }
1130 continue;
1131 }
1132 if (buffer_new(bh))
1133 clear_buffer_new(bh);
1134 if (!buffer_mapped(bh)) {
1135 WARN_ON(bh->b_size != blocksize);
1136 err = get_block(inode, block, bh, 1);
1137 if (err)
1138 break;
1139 if (buffer_new(bh)) {
1140 unmap_underlying_metadata(bh->b_bdev,
1141 bh->b_blocknr);
1142 if (PageUptodate(page)) {
1143 clear_buffer_new(bh);
1144 set_buffer_uptodate(bh);
1145 mark_buffer_dirty(bh);
1146 continue;
1147 }
1148 if (block_end > to || block_start < from)
1149 zero_user_segments(page, to, block_end,
1150 block_start, from);
1151 continue;
1152 }
1153 }
1154 if (PageUptodate(page)) {
1155 if (!buffer_uptodate(bh))
1156 set_buffer_uptodate(bh);
1157 continue;
1158 }
1159 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1160 !buffer_unwritten(bh) &&
1161 (block_start < from || block_end > to)) {
dfec8a14 1162 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1163 *wait_bh++ = bh;
1164 decrypt = ext4_encrypted_inode(inode) &&
1165 S_ISREG(inode->i_mode);
1166 }
1167 }
1168 /*
1169 * If we issued read requests, let them complete.
1170 */
1171 while (wait_bh > wait) {
1172 wait_on_buffer(*--wait_bh);
1173 if (!buffer_uptodate(*wait_bh))
1174 err = -EIO;
1175 }
1176 if (unlikely(err))
1177 page_zero_new_buffers(page, from, to);
1178 else if (decrypt)
7821d4dd 1179 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1180 PAGE_SIZE, 0, page->index);
2058f83a
MH
1181 return err;
1182}
1183#endif
1184
bfc1af65 1185static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1186 loff_t pos, unsigned len, unsigned flags,
1187 struct page **pagep, void **fsdata)
ac27a0ec 1188{
af5bc92d 1189 struct inode *inode = mapping->host;
1938a150 1190 int ret, needed_blocks;
ac27a0ec
DK
1191 handle_t *handle;
1192 int retries = 0;
af5bc92d 1193 struct page *page;
de9a55b8 1194 pgoff_t index;
af5bc92d 1195 unsigned from, to;
bfc1af65 1196
9bffad1e 1197 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1198 /*
1199 * Reserve one block more for addition to orphan list in case
1200 * we allocate blocks but write fails for some reason
1201 */
1202 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1203 index = pos >> PAGE_SHIFT;
1204 from = pos & (PAGE_SIZE - 1);
af5bc92d 1205 to = from + len;
ac27a0ec 1206
f19d5870
TM
1207 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1208 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1209 flags, pagep);
1210 if (ret < 0)
47564bfb
TT
1211 return ret;
1212 if (ret == 1)
1213 return 0;
f19d5870
TM
1214 }
1215
47564bfb
TT
1216 /*
1217 * grab_cache_page_write_begin() can take a long time if the
1218 * system is thrashing due to memory pressure, or if the page
1219 * is being written back. So grab it first before we start
1220 * the transaction handle. This also allows us to allocate
1221 * the page (if needed) without using GFP_NOFS.
1222 */
1223retry_grab:
1224 page = grab_cache_page_write_begin(mapping, index, flags);
1225 if (!page)
1226 return -ENOMEM;
1227 unlock_page(page);
1228
1229retry_journal:
9924a92a 1230 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1231 if (IS_ERR(handle)) {
09cbfeaf 1232 put_page(page);
47564bfb 1233 return PTR_ERR(handle);
7479d2b9 1234 }
ac27a0ec 1235
47564bfb
TT
1236 lock_page(page);
1237 if (page->mapping != mapping) {
1238 /* The page got truncated from under us */
1239 unlock_page(page);
09cbfeaf 1240 put_page(page);
cf108bca 1241 ext4_journal_stop(handle);
47564bfb 1242 goto retry_grab;
cf108bca 1243 }
7afe5aa5
DM
1244 /* In case writeback began while the page was unlocked */
1245 wait_for_stable_page(page);
cf108bca 1246
2058f83a
MH
1247#ifdef CONFIG_EXT4_FS_ENCRYPTION
1248 if (ext4_should_dioread_nolock(inode))
1249 ret = ext4_block_write_begin(page, pos, len,
705965bd 1250 ext4_get_block_unwritten);
2058f83a
MH
1251 else
1252 ret = ext4_block_write_begin(page, pos, len,
1253 ext4_get_block);
1254#else
744692dc 1255 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1256 ret = __block_write_begin(page, pos, len,
1257 ext4_get_block_unwritten);
744692dc 1258 else
6e1db88d 1259 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1260#endif
bfc1af65 1261 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1262 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1263 from, to, NULL,
1264 do_journal_get_write_access);
ac27a0ec 1265 }
bfc1af65
NP
1266
1267 if (ret) {
af5bc92d 1268 unlock_page(page);
ae4d5372 1269 /*
6e1db88d 1270 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1271 * outside i_size. Trim these off again. Don't need
1272 * i_size_read because we hold i_mutex.
1938a150
AK
1273 *
1274 * Add inode to orphan list in case we crash before
1275 * truncate finishes
ae4d5372 1276 */
ffacfa7a 1277 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1278 ext4_orphan_add(handle, inode);
1279
1280 ext4_journal_stop(handle);
1281 if (pos + len > inode->i_size) {
b9a4207d 1282 ext4_truncate_failed_write(inode);
de9a55b8 1283 /*
ffacfa7a 1284 * If truncate failed early the inode might
1938a150
AK
1285 * still be on the orphan list; we need to
1286 * make sure the inode is removed from the
1287 * orphan list in that case.
1288 */
1289 if (inode->i_nlink)
1290 ext4_orphan_del(NULL, inode);
1291 }
bfc1af65 1292
47564bfb
TT
1293 if (ret == -ENOSPC &&
1294 ext4_should_retry_alloc(inode->i_sb, &retries))
1295 goto retry_journal;
09cbfeaf 1296 put_page(page);
47564bfb
TT
1297 return ret;
1298 }
1299 *pagep = page;
ac27a0ec
DK
1300 return ret;
1301}
1302
bfc1af65
NP
1303/* For write_end() in data=journal mode */
1304static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1305{
13fca323 1306 int ret;
ac27a0ec
DK
1307 if (!buffer_mapped(bh) || buffer_freed(bh))
1308 return 0;
1309 set_buffer_uptodate(bh);
13fca323
TT
1310 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1311 clear_buffer_meta(bh);
1312 clear_buffer_prio(bh);
1313 return ret;
ac27a0ec
DK
1314}
1315
eed4333f
ZL
1316/*
1317 * We need to pick up the new inode size which generic_commit_write gave us
1318 * `file' can be NULL - eg, when called from page_symlink().
1319 *
1320 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1321 * buffers are managed internally.
1322 */
1323static int ext4_write_end(struct file *file,
1324 struct address_space *mapping,
1325 loff_t pos, unsigned len, unsigned copied,
1326 struct page *page, void *fsdata)
f8514083 1327{
f8514083 1328 handle_t *handle = ext4_journal_current_handle();
eed4333f 1329 struct inode *inode = mapping->host;
0572639f 1330 loff_t old_size = inode->i_size;
eed4333f
ZL
1331 int ret = 0, ret2;
1332 int i_size_changed = 0;
1333
1334 trace_ext4_write_end(inode, pos, len, copied);
42c832de
TT
1335 if (ext4_has_inline_data(inode)) {
1336 ret = ext4_write_inline_data_end(inode, pos, len,
1337 copied, page);
1338 if (ret < 0)
1339 goto errout;
1340 copied = ret;
1341 } else
f19d5870
TM
1342 copied = block_write_end(file, mapping, pos,
1343 len, copied, page, fsdata);
f8514083 1344 /*
4631dbf6 1345 * it's important to update i_size while still holding page lock:
f8514083
AK
1346 * page writeout could otherwise come in and zero beyond i_size.
1347 */
4631dbf6 1348 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1349 unlock_page(page);
09cbfeaf 1350 put_page(page);
f8514083 1351
0572639f
XW
1352 if (old_size < pos)
1353 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1354 /*
1355 * Don't mark the inode dirty under page lock. First, it unnecessarily
1356 * makes the holding time of page lock longer. Second, it forces lock
1357 * ordering of page lock and transaction start for journaling
1358 * filesystems.
1359 */
1360 if (i_size_changed)
1361 ext4_mark_inode_dirty(handle, inode);
1362
ffacfa7a 1363 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1364 /* if we have allocated more blocks and copied
1365 * less. We will have blocks allocated outside
1366 * inode->i_size. So truncate them
1367 */
1368 ext4_orphan_add(handle, inode);
74d553aa 1369errout:
617ba13b 1370 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1371 if (!ret)
1372 ret = ret2;
bfc1af65 1373
f8514083 1374 if (pos + len > inode->i_size) {
b9a4207d 1375 ext4_truncate_failed_write(inode);
de9a55b8 1376 /*
ffacfa7a 1377 * If truncate failed early the inode might still be
f8514083
AK
1378 * on the orphan list; we need to make sure the inode
1379 * is removed from the orphan list in that case.
1380 */
1381 if (inode->i_nlink)
1382 ext4_orphan_del(NULL, inode);
1383 }
1384
bfc1af65 1385 return ret ? ret : copied;
ac27a0ec
DK
1386}
1387
b90197b6
TT
1388/*
1389 * This is a private version of page_zero_new_buffers() which doesn't
1390 * set the buffer to be dirty, since in data=journalled mode we need
1391 * to call ext4_handle_dirty_metadata() instead.
1392 */
1393static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1394{
1395 unsigned int block_start = 0, block_end;
1396 struct buffer_head *head, *bh;
1397
1398 bh = head = page_buffers(page);
1399 do {
1400 block_end = block_start + bh->b_size;
1401 if (buffer_new(bh)) {
1402 if (block_end > from && block_start < to) {
1403 if (!PageUptodate(page)) {
1404 unsigned start, size;
1405
1406 start = max(from, block_start);
1407 size = min(to, block_end) - start;
1408
1409 zero_user(page, start, size);
1410 set_buffer_uptodate(bh);
1411 }
1412 clear_buffer_new(bh);
1413 }
1414 }
1415 block_start = block_end;
1416 bh = bh->b_this_page;
1417 } while (bh != head);
1418}
1419
bfc1af65 1420static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1421 struct address_space *mapping,
1422 loff_t pos, unsigned len, unsigned copied,
1423 struct page *page, void *fsdata)
ac27a0ec 1424{
617ba13b 1425 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1426 struct inode *inode = mapping->host;
0572639f 1427 loff_t old_size = inode->i_size;
ac27a0ec
DK
1428 int ret = 0, ret2;
1429 int partial = 0;
bfc1af65 1430 unsigned from, to;
4631dbf6 1431 int size_changed = 0;
ac27a0ec 1432
9bffad1e 1433 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1434 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1435 to = from + len;
1436
441c8508
CW
1437 BUG_ON(!ext4_handle_valid(handle));
1438
3fdcfb66
TM
1439 if (ext4_has_inline_data(inode))
1440 copied = ext4_write_inline_data_end(inode, pos, len,
1441 copied, page);
1442 else {
1443 if (copied < len) {
1444 if (!PageUptodate(page))
1445 copied = 0;
b90197b6 1446 zero_new_buffers(page, from+copied, to);
3fdcfb66 1447 }
ac27a0ec 1448
3fdcfb66
TM
1449 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1450 to, &partial, write_end_fn);
1451 if (!partial)
1452 SetPageUptodate(page);
1453 }
4631dbf6 1454 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1455 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1456 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1457 unlock_page(page);
09cbfeaf 1458 put_page(page);
4631dbf6 1459
0572639f
XW
1460 if (old_size < pos)
1461 pagecache_isize_extended(inode, old_size, pos);
1462
4631dbf6 1463 if (size_changed) {
617ba13b 1464 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1465 if (!ret)
1466 ret = ret2;
1467 }
bfc1af65 1468
ffacfa7a 1469 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1470 /* if we have allocated more blocks and copied
1471 * less. We will have blocks allocated outside
1472 * inode->i_size. So truncate them
1473 */
1474 ext4_orphan_add(handle, inode);
1475
617ba13b 1476 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1477 if (!ret)
1478 ret = ret2;
f8514083 1479 if (pos + len > inode->i_size) {
b9a4207d 1480 ext4_truncate_failed_write(inode);
de9a55b8 1481 /*
ffacfa7a 1482 * If truncate failed early the inode might still be
f8514083
AK
1483 * on the orphan list; we need to make sure the inode
1484 * is removed from the orphan list in that case.
1485 */
1486 if (inode->i_nlink)
1487 ext4_orphan_del(NULL, inode);
1488 }
bfc1af65
NP
1489
1490 return ret ? ret : copied;
ac27a0ec 1491}
d2a17637 1492
9d0be502 1493/*
c27e43a1 1494 * Reserve space for a single cluster
9d0be502 1495 */
c27e43a1 1496static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1497{
60e58e0f 1498 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1499 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1500 int ret;
03179fe9
TT
1501
1502 /*
1503 * We will charge metadata quota at writeout time; this saves
1504 * us from metadata over-estimation, though we may go over by
1505 * a small amount in the end. Here we just reserve for data.
1506 */
1507 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1508 if (ret)
1509 return ret;
d2a17637 1510
0637c6f4 1511 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1512 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1513 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1514 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1515 return -ENOSPC;
1516 }
9d0be502 1517 ei->i_reserved_data_blocks++;
c27e43a1 1518 trace_ext4_da_reserve_space(inode);
0637c6f4 1519 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1520
d2a17637
MC
1521 return 0; /* success */
1522}
1523
12219aea 1524static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1525{
1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1527 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1528
cd213226
MC
1529 if (!to_free)
1530 return; /* Nothing to release, exit */
1531
d2a17637 1532 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1533
5a58ec87 1534 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1535 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1536 /*
0637c6f4
TT
1537 * if there aren't enough reserved blocks, then the
1538 * counter is messed up somewhere. Since this
1539 * function is called from invalidate page, it's
1540 * harmless to return without any action.
cd213226 1541 */
8de5c325 1542 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1543 "ino %lu, to_free %d with only %d reserved "
1084f252 1544 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1545 ei->i_reserved_data_blocks);
1546 WARN_ON(1);
1547 to_free = ei->i_reserved_data_blocks;
cd213226 1548 }
0637c6f4 1549 ei->i_reserved_data_blocks -= to_free;
cd213226 1550
72b8ab9d 1551 /* update fs dirty data blocks counter */
57042651 1552 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1553
d2a17637 1554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1555
7b415bf6 1556 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1557}
1558
1559static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1560 unsigned int offset,
1561 unsigned int length)
d2a17637 1562{
9705acd6 1563 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1564 struct buffer_head *head, *bh;
1565 unsigned int curr_off = 0;
7b415bf6
AK
1566 struct inode *inode = page->mapping->host;
1567 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1568 unsigned int stop = offset + length;
7b415bf6 1569 int num_clusters;
51865fda 1570 ext4_fsblk_t lblk;
d2a17637 1571
09cbfeaf 1572 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1573
d2a17637
MC
1574 head = page_buffers(page);
1575 bh = head;
1576 do {
1577 unsigned int next_off = curr_off + bh->b_size;
1578
ca99fdd2
LC
1579 if (next_off > stop)
1580 break;
1581
d2a17637
MC
1582 if ((offset <= curr_off) && (buffer_delay(bh))) {
1583 to_release++;
9705acd6 1584 contiguous_blks++;
d2a17637 1585 clear_buffer_delay(bh);
9705acd6
LC
1586 } else if (contiguous_blks) {
1587 lblk = page->index <<
09cbfeaf 1588 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1589 lblk += (curr_off >> inode->i_blkbits) -
1590 contiguous_blks;
1591 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1592 contiguous_blks = 0;
d2a17637
MC
1593 }
1594 curr_off = next_off;
1595 } while ((bh = bh->b_this_page) != head);
7b415bf6 1596
9705acd6 1597 if (contiguous_blks) {
09cbfeaf 1598 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1599 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1600 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1601 }
1602
7b415bf6
AK
1603 /* If we have released all the blocks belonging to a cluster, then we
1604 * need to release the reserved space for that cluster. */
1605 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1606 while (num_clusters > 0) {
09cbfeaf 1607 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1608 ((num_clusters - 1) << sbi->s_cluster_bits);
1609 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1610 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1611 ext4_da_release_space(inode, 1);
1612
1613 num_clusters--;
1614 }
d2a17637 1615}
ac27a0ec 1616
64769240
AT
1617/*
1618 * Delayed allocation stuff
1619 */
1620
4e7ea81d
JK
1621struct mpage_da_data {
1622 struct inode *inode;
1623 struct writeback_control *wbc;
6b523df4 1624
4e7ea81d
JK
1625 pgoff_t first_page; /* The first page to write */
1626 pgoff_t next_page; /* Current page to examine */
1627 pgoff_t last_page; /* Last page to examine */
791b7f08 1628 /*
4e7ea81d
JK
1629 * Extent to map - this can be after first_page because that can be
1630 * fully mapped. We somewhat abuse m_flags to store whether the extent
1631 * is delalloc or unwritten.
791b7f08 1632 */
4e7ea81d
JK
1633 struct ext4_map_blocks map;
1634 struct ext4_io_submit io_submit; /* IO submission data */
1635};
64769240 1636
4e7ea81d
JK
1637static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1638 bool invalidate)
c4a0c46e
AK
1639{
1640 int nr_pages, i;
1641 pgoff_t index, end;
1642 struct pagevec pvec;
1643 struct inode *inode = mpd->inode;
1644 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1645
1646 /* This is necessary when next_page == 0. */
1647 if (mpd->first_page >= mpd->next_page)
1648 return;
c4a0c46e 1649
c7f5938a
CW
1650 index = mpd->first_page;
1651 end = mpd->next_page - 1;
4e7ea81d
JK
1652 if (invalidate) {
1653 ext4_lblk_t start, last;
09cbfeaf
KS
1654 start = index << (PAGE_SHIFT - inode->i_blkbits);
1655 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1656 ext4_es_remove_extent(inode, start, last - start + 1);
1657 }
51865fda 1658
66bea92c 1659 pagevec_init(&pvec, 0);
c4a0c46e
AK
1660 while (index <= end) {
1661 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1662 if (nr_pages == 0)
1663 break;
1664 for (i = 0; i < nr_pages; i++) {
1665 struct page *page = pvec.pages[i];
9b1d0998 1666 if (page->index > end)
c4a0c46e 1667 break;
c4a0c46e
AK
1668 BUG_ON(!PageLocked(page));
1669 BUG_ON(PageWriteback(page));
4e7ea81d 1670 if (invalidate) {
4e800c03 1671 if (page_mapped(page))
1672 clear_page_dirty_for_io(page);
09cbfeaf 1673 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1674 ClearPageUptodate(page);
1675 }
c4a0c46e
AK
1676 unlock_page(page);
1677 }
9b1d0998
JK
1678 index = pvec.pages[nr_pages - 1]->index + 1;
1679 pagevec_release(&pvec);
c4a0c46e 1680 }
c4a0c46e
AK
1681}
1682
df22291f
AK
1683static void ext4_print_free_blocks(struct inode *inode)
1684{
1685 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1686 struct super_block *sb = inode->i_sb;
f78ee70d 1687 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1688
1689 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1690 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1691 ext4_count_free_clusters(sb)));
92b97816
TT
1692 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1693 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1694 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1695 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1696 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1697 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1698 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1699 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1700 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1701 ei->i_reserved_data_blocks);
df22291f
AK
1702 return;
1703}
1704
c364b22c 1705static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1706{
c364b22c 1707 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1708}
1709
5356f261
AK
1710/*
1711 * This function is grabs code from the very beginning of
1712 * ext4_map_blocks, but assumes that the caller is from delayed write
1713 * time. This function looks up the requested blocks and sets the
1714 * buffer delay bit under the protection of i_data_sem.
1715 */
1716static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1717 struct ext4_map_blocks *map,
1718 struct buffer_head *bh)
1719{
d100eef2 1720 struct extent_status es;
5356f261
AK
1721 int retval;
1722 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1723#ifdef ES_AGGRESSIVE_TEST
1724 struct ext4_map_blocks orig_map;
1725
1726 memcpy(&orig_map, map, sizeof(*map));
1727#endif
5356f261
AK
1728
1729 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1730 invalid_block = ~0;
1731
1732 map->m_flags = 0;
1733 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1734 "logical block %lu\n", inode->i_ino, map->m_len,
1735 (unsigned long) map->m_lblk);
d100eef2
ZL
1736
1737 /* Lookup extent status tree firstly */
1738 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1739 if (ext4_es_is_hole(&es)) {
1740 retval = 0;
c8b459f4 1741 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1742 goto add_delayed;
1743 }
1744
1745 /*
1746 * Delayed extent could be allocated by fallocate.
1747 * So we need to check it.
1748 */
1749 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1750 map_bh(bh, inode->i_sb, invalid_block);
1751 set_buffer_new(bh);
1752 set_buffer_delay(bh);
1753 return 0;
1754 }
1755
1756 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1757 retval = es.es_len - (iblock - es.es_lblk);
1758 if (retval > map->m_len)
1759 retval = map->m_len;
1760 map->m_len = retval;
1761 if (ext4_es_is_written(&es))
1762 map->m_flags |= EXT4_MAP_MAPPED;
1763 else if (ext4_es_is_unwritten(&es))
1764 map->m_flags |= EXT4_MAP_UNWRITTEN;
1765 else
1766 BUG_ON(1);
1767
921f266b
DM
1768#ifdef ES_AGGRESSIVE_TEST
1769 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1770#endif
d100eef2
ZL
1771 return retval;
1772 }
1773
5356f261
AK
1774 /*
1775 * Try to see if we can get the block without requesting a new
1776 * file system block.
1777 */
c8b459f4 1778 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1779 if (ext4_has_inline_data(inode))
9c3569b5 1780 retval = 0;
cbd7584e 1781 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1782 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1783 else
2f8e0a7c 1784 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1785
d100eef2 1786add_delayed:
5356f261 1787 if (retval == 0) {
f7fec032 1788 int ret;
5356f261
AK
1789 /*
1790 * XXX: __block_prepare_write() unmaps passed block,
1791 * is it OK?
1792 */
386ad67c
LC
1793 /*
1794 * If the block was allocated from previously allocated cluster,
1795 * then we don't need to reserve it again. However we still need
1796 * to reserve metadata for every block we're going to write.
1797 */
c27e43a1 1798 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1799 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1800 ret = ext4_da_reserve_space(inode);
f7fec032 1801 if (ret) {
5356f261 1802 /* not enough space to reserve */
f7fec032 1803 retval = ret;
5356f261 1804 goto out_unlock;
f7fec032 1805 }
5356f261
AK
1806 }
1807
f7fec032
ZL
1808 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1809 ~0, EXTENT_STATUS_DELAYED);
1810 if (ret) {
1811 retval = ret;
51865fda 1812 goto out_unlock;
f7fec032 1813 }
51865fda 1814
5356f261
AK
1815 map_bh(bh, inode->i_sb, invalid_block);
1816 set_buffer_new(bh);
1817 set_buffer_delay(bh);
f7fec032
ZL
1818 } else if (retval > 0) {
1819 int ret;
3be78c73 1820 unsigned int status;
f7fec032 1821
44fb851d
ZL
1822 if (unlikely(retval != map->m_len)) {
1823 ext4_warning(inode->i_sb,
1824 "ES len assertion failed for inode "
1825 "%lu: retval %d != map->m_len %d",
1826 inode->i_ino, retval, map->m_len);
1827 WARN_ON(1);
921f266b 1828 }
921f266b 1829
f7fec032
ZL
1830 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1831 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1832 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1833 map->m_pblk, status);
1834 if (ret != 0)
1835 retval = ret;
5356f261
AK
1836 }
1837
1838out_unlock:
1839 up_read((&EXT4_I(inode)->i_data_sem));
1840
1841 return retval;
1842}
1843
64769240 1844/*
d91bd2c1 1845 * This is a special get_block_t callback which is used by
b920c755
TT
1846 * ext4_da_write_begin(). It will either return mapped block or
1847 * reserve space for a single block.
29fa89d0
AK
1848 *
1849 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1850 * We also have b_blocknr = -1 and b_bdev initialized properly
1851 *
1852 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1853 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1854 * initialized properly.
64769240 1855 */
9c3569b5
TM
1856int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1857 struct buffer_head *bh, int create)
64769240 1858{
2ed88685 1859 struct ext4_map_blocks map;
64769240
AT
1860 int ret = 0;
1861
1862 BUG_ON(create == 0);
2ed88685
TT
1863 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1864
1865 map.m_lblk = iblock;
1866 map.m_len = 1;
64769240
AT
1867
1868 /*
1869 * first, we need to know whether the block is allocated already
1870 * preallocated blocks are unmapped but should treated
1871 * the same as allocated blocks.
1872 */
5356f261
AK
1873 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1874 if (ret <= 0)
2ed88685 1875 return ret;
64769240 1876
2ed88685 1877 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1878 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1879
1880 if (buffer_unwritten(bh)) {
1881 /* A delayed write to unwritten bh should be marked
1882 * new and mapped. Mapped ensures that we don't do
1883 * get_block multiple times when we write to the same
1884 * offset and new ensures that we do proper zero out
1885 * for partial write.
1886 */
1887 set_buffer_new(bh);
c8205636 1888 set_buffer_mapped(bh);
2ed88685
TT
1889 }
1890 return 0;
64769240 1891}
61628a3f 1892
62e086be
AK
1893static int bget_one(handle_t *handle, struct buffer_head *bh)
1894{
1895 get_bh(bh);
1896 return 0;
1897}
1898
1899static int bput_one(handle_t *handle, struct buffer_head *bh)
1900{
1901 put_bh(bh);
1902 return 0;
1903}
1904
1905static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1906 unsigned int len)
1907{
1908 struct address_space *mapping = page->mapping;
1909 struct inode *inode = mapping->host;
3fdcfb66 1910 struct buffer_head *page_bufs = NULL;
62e086be 1911 handle_t *handle = NULL;
3fdcfb66
TM
1912 int ret = 0, err = 0;
1913 int inline_data = ext4_has_inline_data(inode);
1914 struct buffer_head *inode_bh = NULL;
62e086be 1915
cb20d518 1916 ClearPageChecked(page);
3fdcfb66
TM
1917
1918 if (inline_data) {
1919 BUG_ON(page->index != 0);
1920 BUG_ON(len > ext4_get_max_inline_size(inode));
1921 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1922 if (inode_bh == NULL)
1923 goto out;
1924 } else {
1925 page_bufs = page_buffers(page);
1926 if (!page_bufs) {
1927 BUG();
1928 goto out;
1929 }
1930 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1931 NULL, bget_one);
1932 }
bdf96838
TT
1933 /*
1934 * We need to release the page lock before we start the
1935 * journal, so grab a reference so the page won't disappear
1936 * out from under us.
1937 */
1938 get_page(page);
62e086be
AK
1939 unlock_page(page);
1940
9924a92a
TT
1941 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1942 ext4_writepage_trans_blocks(inode));
62e086be
AK
1943 if (IS_ERR(handle)) {
1944 ret = PTR_ERR(handle);
bdf96838
TT
1945 put_page(page);
1946 goto out_no_pagelock;
62e086be 1947 }
441c8508
CW
1948 BUG_ON(!ext4_handle_valid(handle));
1949
bdf96838
TT
1950 lock_page(page);
1951 put_page(page);
1952 if (page->mapping != mapping) {
1953 /* The page got truncated from under us */
1954 ext4_journal_stop(handle);
1955 ret = 0;
1956 goto out;
1957 }
1958
3fdcfb66 1959 if (inline_data) {
5d601255 1960 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1961 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1962
3fdcfb66
TM
1963 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1964
1965 } else {
1966 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1967 do_journal_get_write_access);
1968
1969 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1970 write_end_fn);
1971 }
62e086be
AK
1972 if (ret == 0)
1973 ret = err;
2d859db3 1974 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1975 err = ext4_journal_stop(handle);
1976 if (!ret)
1977 ret = err;
1978
3fdcfb66 1979 if (!ext4_has_inline_data(inode))
8c9367fd 1980 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1981 NULL, bput_one);
19f5fb7a 1982 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1983out:
bdf96838
TT
1984 unlock_page(page);
1985out_no_pagelock:
3fdcfb66 1986 brelse(inode_bh);
62e086be
AK
1987 return ret;
1988}
1989
61628a3f 1990/*
43ce1d23
AK
1991 * Note that we don't need to start a transaction unless we're journaling data
1992 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1993 * need to file the inode to the transaction's list in ordered mode because if
1994 * we are writing back data added by write(), the inode is already there and if
25985edc 1995 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1996 * transaction the data will hit the disk. In case we are journaling data, we
1997 * cannot start transaction directly because transaction start ranks above page
1998 * lock so we have to do some magic.
1999 *
b920c755 2000 * This function can get called via...
20970ba6 2001 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2002 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2003 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2004 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2005 *
2006 * We don't do any block allocation in this function. If we have page with
2007 * multiple blocks we need to write those buffer_heads that are mapped. This
2008 * is important for mmaped based write. So if we do with blocksize 1K
2009 * truncate(f, 1024);
2010 * a = mmap(f, 0, 4096);
2011 * a[0] = 'a';
2012 * truncate(f, 4096);
2013 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2014 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2015 * do_wp_page). So writepage should write the first block. If we modify
2016 * the mmap area beyond 1024 we will again get a page_fault and the
2017 * page_mkwrite callback will do the block allocation and mark the
2018 * buffer_heads mapped.
2019 *
2020 * We redirty the page if we have any buffer_heads that is either delay or
2021 * unwritten in the page.
2022 *
2023 * We can get recursively called as show below.
2024 *
2025 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2026 * ext4_writepage()
2027 *
2028 * But since we don't do any block allocation we should not deadlock.
2029 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2030 */
43ce1d23 2031static int ext4_writepage(struct page *page,
62e086be 2032 struct writeback_control *wbc)
64769240 2033{
f8bec370 2034 int ret = 0;
61628a3f 2035 loff_t size;
498e5f24 2036 unsigned int len;
744692dc 2037 struct buffer_head *page_bufs = NULL;
61628a3f 2038 struct inode *inode = page->mapping->host;
36ade451 2039 struct ext4_io_submit io_submit;
1c8349a1 2040 bool keep_towrite = false;
61628a3f 2041
a9c667f8 2042 trace_ext4_writepage(page);
f0e6c985 2043 size = i_size_read(inode);
09cbfeaf
KS
2044 if (page->index == size >> PAGE_SHIFT)
2045 len = size & ~PAGE_MASK;
f0e6c985 2046 else
09cbfeaf 2047 len = PAGE_SIZE;
64769240 2048
a42afc5f 2049 page_bufs = page_buffers(page);
a42afc5f 2050 /*
fe386132
JK
2051 * We cannot do block allocation or other extent handling in this
2052 * function. If there are buffers needing that, we have to redirty
2053 * the page. But we may reach here when we do a journal commit via
2054 * journal_submit_inode_data_buffers() and in that case we must write
2055 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2056 *
2057 * Also, if there is only one buffer per page (the fs block
2058 * size == the page size), if one buffer needs block
2059 * allocation or needs to modify the extent tree to clear the
2060 * unwritten flag, we know that the page can't be written at
2061 * all, so we might as well refuse the write immediately.
2062 * Unfortunately if the block size != page size, we can't as
2063 * easily detect this case using ext4_walk_page_buffers(), but
2064 * for the extremely common case, this is an optimization that
2065 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2066 */
f19d5870
TM
2067 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068 ext4_bh_delay_or_unwritten)) {
f8bec370 2069 redirty_page_for_writepage(wbc, page);
cccd147a 2070 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2071 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2072 /*
2073 * For memory cleaning there's no point in writing only
2074 * some buffers. So just bail out. Warn if we came here
2075 * from direct reclaim.
2076 */
2077 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2078 == PF_MEMALLOC);
f0e6c985
AK
2079 unlock_page(page);
2080 return 0;
2081 }
1c8349a1 2082 keep_towrite = true;
a42afc5f 2083 }
64769240 2084
cb20d518 2085 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2086 /*
2087 * It's mmapped pagecache. Add buffers and journal it. There
2088 * doesn't seem much point in redirtying the page here.
2089 */
3f0ca309 2090 return __ext4_journalled_writepage(page, len);
43ce1d23 2091
97a851ed
JK
2092 ext4_io_submit_init(&io_submit, wbc);
2093 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2094 if (!io_submit.io_end) {
2095 redirty_page_for_writepage(wbc, page);
2096 unlock_page(page);
2097 return -ENOMEM;
2098 }
1c8349a1 2099 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2100 ext4_io_submit(&io_submit);
97a851ed
JK
2101 /* Drop io_end reference we got from init */
2102 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2103 return ret;
2104}
2105
5f1132b2
JK
2106static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2107{
2108 int len;
2109 loff_t size = i_size_read(mpd->inode);
2110 int err;
2111
2112 BUG_ON(page->index != mpd->first_page);
09cbfeaf
KS
2113 if (page->index == size >> PAGE_SHIFT)
2114 len = size & ~PAGE_MASK;
5f1132b2 2115 else
09cbfeaf 2116 len = PAGE_SIZE;
5f1132b2 2117 clear_page_dirty_for_io(page);
1c8349a1 2118 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2119 if (!err)
2120 mpd->wbc->nr_to_write--;
2121 mpd->first_page++;
2122
2123 return err;
2124}
2125
4e7ea81d
JK
2126#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2127
61628a3f 2128/*
fffb2739
JK
2129 * mballoc gives us at most this number of blocks...
2130 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2131 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2132 */
fffb2739 2133#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2134
4e7ea81d
JK
2135/*
2136 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2137 *
2138 * @mpd - extent of blocks
2139 * @lblk - logical number of the block in the file
09930042 2140 * @bh - buffer head we want to add to the extent
4e7ea81d 2141 *
09930042
JK
2142 * The function is used to collect contig. blocks in the same state. If the
2143 * buffer doesn't require mapping for writeback and we haven't started the
2144 * extent of buffers to map yet, the function returns 'true' immediately - the
2145 * caller can write the buffer right away. Otherwise the function returns true
2146 * if the block has been added to the extent, false if the block couldn't be
2147 * added.
4e7ea81d 2148 */
09930042
JK
2149static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2150 struct buffer_head *bh)
4e7ea81d
JK
2151{
2152 struct ext4_map_blocks *map = &mpd->map;
2153
09930042
JK
2154 /* Buffer that doesn't need mapping for writeback? */
2155 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2156 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2157 /* So far no extent to map => we write the buffer right away */
2158 if (map->m_len == 0)
2159 return true;
2160 return false;
2161 }
4e7ea81d
JK
2162
2163 /* First block in the extent? */
2164 if (map->m_len == 0) {
2165 map->m_lblk = lblk;
2166 map->m_len = 1;
09930042
JK
2167 map->m_flags = bh->b_state & BH_FLAGS;
2168 return true;
4e7ea81d
JK
2169 }
2170
09930042
JK
2171 /* Don't go larger than mballoc is willing to allocate */
2172 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2173 return false;
2174
4e7ea81d
JK
2175 /* Can we merge the block to our big extent? */
2176 if (lblk == map->m_lblk + map->m_len &&
09930042 2177 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2178 map->m_len++;
09930042 2179 return true;
4e7ea81d 2180 }
09930042 2181 return false;
4e7ea81d
JK
2182}
2183
5f1132b2
JK
2184/*
2185 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2186 *
2187 * @mpd - extent of blocks for mapping
2188 * @head - the first buffer in the page
2189 * @bh - buffer we should start processing from
2190 * @lblk - logical number of the block in the file corresponding to @bh
2191 *
2192 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2193 * the page for IO if all buffers in this page were mapped and there's no
2194 * accumulated extent of buffers to map or add buffers in the page to the
2195 * extent of buffers to map. The function returns 1 if the caller can continue
2196 * by processing the next page, 0 if it should stop adding buffers to the
2197 * extent to map because we cannot extend it anymore. It can also return value
2198 * < 0 in case of error during IO submission.
2199 */
2200static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2201 struct buffer_head *head,
2202 struct buffer_head *bh,
2203 ext4_lblk_t lblk)
4e7ea81d
JK
2204{
2205 struct inode *inode = mpd->inode;
5f1132b2 2206 int err;
4e7ea81d
JK
2207 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2208 >> inode->i_blkbits;
2209
2210 do {
2211 BUG_ON(buffer_locked(bh));
2212
09930042 2213 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2214 /* Found extent to map? */
2215 if (mpd->map.m_len)
5f1132b2 2216 return 0;
09930042 2217 /* Everything mapped so far and we hit EOF */
5f1132b2 2218 break;
4e7ea81d 2219 }
4e7ea81d 2220 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2221 /* So far everything mapped? Submit the page for IO. */
2222 if (mpd->map.m_len == 0) {
2223 err = mpage_submit_page(mpd, head->b_page);
2224 if (err < 0)
2225 return err;
2226 }
2227 return lblk < blocks;
4e7ea81d
JK
2228}
2229
2230/*
2231 * mpage_map_buffers - update buffers corresponding to changed extent and
2232 * submit fully mapped pages for IO
2233 *
2234 * @mpd - description of extent to map, on return next extent to map
2235 *
2236 * Scan buffers corresponding to changed extent (we expect corresponding pages
2237 * to be already locked) and update buffer state according to new extent state.
2238 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2239 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2240 * and do extent conversion after IO is finished. If the last page is not fully
2241 * mapped, we update @map to the next extent in the last page that needs
2242 * mapping. Otherwise we submit the page for IO.
2243 */
2244static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2245{
2246 struct pagevec pvec;
2247 int nr_pages, i;
2248 struct inode *inode = mpd->inode;
2249 struct buffer_head *head, *bh;
09cbfeaf 2250 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2251 pgoff_t start, end;
2252 ext4_lblk_t lblk;
2253 sector_t pblock;
2254 int err;
2255
2256 start = mpd->map.m_lblk >> bpp_bits;
2257 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2258 lblk = start << bpp_bits;
2259 pblock = mpd->map.m_pblk;
2260
2261 pagevec_init(&pvec, 0);
2262 while (start <= end) {
2263 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2264 PAGEVEC_SIZE);
2265 if (nr_pages == 0)
2266 break;
2267 for (i = 0; i < nr_pages; i++) {
2268 struct page *page = pvec.pages[i];
2269
2270 if (page->index > end)
2271 break;
70261f56 2272 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2273 BUG_ON(page->index != start);
2274 bh = head = page_buffers(page);
2275 do {
2276 if (lblk < mpd->map.m_lblk)
2277 continue;
2278 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2279 /*
2280 * Buffer after end of mapped extent.
2281 * Find next buffer in the page to map.
2282 */
2283 mpd->map.m_len = 0;
2284 mpd->map.m_flags = 0;
5f1132b2
JK
2285 /*
2286 * FIXME: If dioread_nolock supports
2287 * blocksize < pagesize, we need to make
2288 * sure we add size mapped so far to
2289 * io_end->size as the following call
2290 * can submit the page for IO.
2291 */
2292 err = mpage_process_page_bufs(mpd, head,
2293 bh, lblk);
4e7ea81d 2294 pagevec_release(&pvec);
5f1132b2
JK
2295 if (err > 0)
2296 err = 0;
2297 return err;
4e7ea81d
JK
2298 }
2299 if (buffer_delay(bh)) {
2300 clear_buffer_delay(bh);
2301 bh->b_blocknr = pblock++;
2302 }
4e7ea81d 2303 clear_buffer_unwritten(bh);
5f1132b2 2304 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2305
2306 /*
2307 * FIXME: This is going to break if dioread_nolock
2308 * supports blocksize < pagesize as we will try to
2309 * convert potentially unmapped parts of inode.
2310 */
09cbfeaf 2311 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2312 /* Page fully mapped - let IO run! */
2313 err = mpage_submit_page(mpd, page);
2314 if (err < 0) {
2315 pagevec_release(&pvec);
2316 return err;
2317 }
2318 start++;
2319 }
2320 pagevec_release(&pvec);
2321 }
2322 /* Extent fully mapped and matches with page boundary. We are done. */
2323 mpd->map.m_len = 0;
2324 mpd->map.m_flags = 0;
2325 return 0;
2326}
2327
2328static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2329{
2330 struct inode *inode = mpd->inode;
2331 struct ext4_map_blocks *map = &mpd->map;
2332 int get_blocks_flags;
090f32ee 2333 int err, dioread_nolock;
4e7ea81d
JK
2334
2335 trace_ext4_da_write_pages_extent(inode, map);
2336 /*
2337 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2338 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2339 * where we have written into one or more preallocated blocks). It is
2340 * possible that we're going to need more metadata blocks than
2341 * previously reserved. However we must not fail because we're in
2342 * writeback and there is nothing we can do about it so it might result
2343 * in data loss. So use reserved blocks to allocate metadata if
2344 * possible.
2345 *
754cfed6
TT
2346 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2347 * the blocks in question are delalloc blocks. This indicates
2348 * that the blocks and quotas has already been checked when
2349 * the data was copied into the page cache.
4e7ea81d
JK
2350 */
2351 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2352 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2353 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2354 dioread_nolock = ext4_should_dioread_nolock(inode);
2355 if (dioread_nolock)
4e7ea81d
JK
2356 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2357 if (map->m_flags & (1 << BH_Delay))
2358 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2359
2360 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2361 if (err < 0)
2362 return err;
090f32ee 2363 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2364 if (!mpd->io_submit.io_end->handle &&
2365 ext4_handle_valid(handle)) {
2366 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2367 handle->h_rsv_handle = NULL;
2368 }
3613d228 2369 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2370 }
4e7ea81d
JK
2371
2372 BUG_ON(map->m_len == 0);
2373 if (map->m_flags & EXT4_MAP_NEW) {
2374 struct block_device *bdev = inode->i_sb->s_bdev;
2375 int i;
2376
2377 for (i = 0; i < map->m_len; i++)
2378 unmap_underlying_metadata(bdev, map->m_pblk + i);
2379 }
2380 return 0;
2381}
2382
2383/*
2384 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2385 * mpd->len and submit pages underlying it for IO
2386 *
2387 * @handle - handle for journal operations
2388 * @mpd - extent to map
7534e854
JK
2389 * @give_up_on_write - we set this to true iff there is a fatal error and there
2390 * is no hope of writing the data. The caller should discard
2391 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2392 *
2393 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2394 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2395 * them to initialized or split the described range from larger unwritten
2396 * extent. Note that we need not map all the described range since allocation
2397 * can return less blocks or the range is covered by more unwritten extents. We
2398 * cannot map more because we are limited by reserved transaction credits. On
2399 * the other hand we always make sure that the last touched page is fully
2400 * mapped so that it can be written out (and thus forward progress is
2401 * guaranteed). After mapping we submit all mapped pages for IO.
2402 */
2403static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2404 struct mpage_da_data *mpd,
2405 bool *give_up_on_write)
4e7ea81d
JK
2406{
2407 struct inode *inode = mpd->inode;
2408 struct ext4_map_blocks *map = &mpd->map;
2409 int err;
2410 loff_t disksize;
6603120e 2411 int progress = 0;
4e7ea81d
JK
2412
2413 mpd->io_submit.io_end->offset =
2414 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2415 do {
4e7ea81d
JK
2416 err = mpage_map_one_extent(handle, mpd);
2417 if (err < 0) {
2418 struct super_block *sb = inode->i_sb;
2419
cb530541
TT
2420 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2421 goto invalidate_dirty_pages;
4e7ea81d 2422 /*
cb530541
TT
2423 * Let the uper layers retry transient errors.
2424 * In the case of ENOSPC, if ext4_count_free_blocks()
2425 * is non-zero, a commit should free up blocks.
4e7ea81d 2426 */
cb530541 2427 if ((err == -ENOMEM) ||
6603120e
DM
2428 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2429 if (progress)
2430 goto update_disksize;
cb530541 2431 return err;
6603120e 2432 }
cb530541
TT
2433 ext4_msg(sb, KERN_CRIT,
2434 "Delayed block allocation failed for "
2435 "inode %lu at logical offset %llu with"
2436 " max blocks %u with error %d",
2437 inode->i_ino,
2438 (unsigned long long)map->m_lblk,
2439 (unsigned)map->m_len, -err);
2440 ext4_msg(sb, KERN_CRIT,
2441 "This should not happen!! Data will "
2442 "be lost\n");
2443 if (err == -ENOSPC)
2444 ext4_print_free_blocks(inode);
2445 invalidate_dirty_pages:
2446 *give_up_on_write = true;
4e7ea81d
JK
2447 return err;
2448 }
6603120e 2449 progress = 1;
4e7ea81d
JK
2450 /*
2451 * Update buffer state, submit mapped pages, and get us new
2452 * extent to map
2453 */
2454 err = mpage_map_and_submit_buffers(mpd);
2455 if (err < 0)
6603120e 2456 goto update_disksize;
27d7c4ed 2457 } while (map->m_len);
4e7ea81d 2458
6603120e 2459update_disksize:
622cad13
TT
2460 /*
2461 * Update on-disk size after IO is submitted. Races with
2462 * truncate are avoided by checking i_size under i_data_sem.
2463 */
09cbfeaf 2464 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2465 if (disksize > EXT4_I(inode)->i_disksize) {
2466 int err2;
622cad13
TT
2467 loff_t i_size;
2468
2469 down_write(&EXT4_I(inode)->i_data_sem);
2470 i_size = i_size_read(inode);
2471 if (disksize > i_size)
2472 disksize = i_size;
2473 if (disksize > EXT4_I(inode)->i_disksize)
2474 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2475 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2476 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2477 if (err2)
2478 ext4_error(inode->i_sb,
2479 "Failed to mark inode %lu dirty",
2480 inode->i_ino);
2481 if (!err)
2482 err = err2;
2483 }
2484 return err;
2485}
2486
fffb2739
JK
2487/*
2488 * Calculate the total number of credits to reserve for one writepages
20970ba6 2489 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2490 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2491 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2492 * bpp - 1 blocks in bpp different extents.
2493 */
525f4ed8
MC
2494static int ext4_da_writepages_trans_blocks(struct inode *inode)
2495{
fffb2739 2496 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2497
fffb2739
JK
2498 return ext4_meta_trans_blocks(inode,
2499 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2500}
61628a3f 2501
8e48dcfb 2502/*
4e7ea81d
JK
2503 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2504 * and underlying extent to map
2505 *
2506 * @mpd - where to look for pages
2507 *
2508 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2509 * IO immediately. When we find a page which isn't mapped we start accumulating
2510 * extent of buffers underlying these pages that needs mapping (formed by
2511 * either delayed or unwritten buffers). We also lock the pages containing
2512 * these buffers. The extent found is returned in @mpd structure (starting at
2513 * mpd->lblk with length mpd->len blocks).
2514 *
2515 * Note that this function can attach bios to one io_end structure which are
2516 * neither logically nor physically contiguous. Although it may seem as an
2517 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2518 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2519 */
4e7ea81d 2520static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2521{
4e7ea81d
JK
2522 struct address_space *mapping = mpd->inode->i_mapping;
2523 struct pagevec pvec;
2524 unsigned int nr_pages;
aeac589a 2525 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2526 pgoff_t index = mpd->first_page;
2527 pgoff_t end = mpd->last_page;
2528 int tag;
2529 int i, err = 0;
2530 int blkbits = mpd->inode->i_blkbits;
2531 ext4_lblk_t lblk;
2532 struct buffer_head *head;
8e48dcfb 2533
4e7ea81d 2534 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2535 tag = PAGECACHE_TAG_TOWRITE;
2536 else
2537 tag = PAGECACHE_TAG_DIRTY;
2538
4e7ea81d
JK
2539 pagevec_init(&pvec, 0);
2540 mpd->map.m_len = 0;
2541 mpd->next_page = index;
4f01b02c 2542 while (index <= end) {
5b41d924 2543 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2544 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2545 if (nr_pages == 0)
4e7ea81d 2546 goto out;
8e48dcfb
TT
2547
2548 for (i = 0; i < nr_pages; i++) {
2549 struct page *page = pvec.pages[i];
2550
2551 /*
2552 * At this point, the page may be truncated or
2553 * invalidated (changing page->mapping to NULL), or
2554 * even swizzled back from swapper_space to tmpfs file
2555 * mapping. However, page->index will not change
2556 * because we have a reference on the page.
2557 */
4f01b02c
TT
2558 if (page->index > end)
2559 goto out;
8e48dcfb 2560
aeac589a
ML
2561 /*
2562 * Accumulated enough dirty pages? This doesn't apply
2563 * to WB_SYNC_ALL mode. For integrity sync we have to
2564 * keep going because someone may be concurrently
2565 * dirtying pages, and we might have synced a lot of
2566 * newly appeared dirty pages, but have not synced all
2567 * of the old dirty pages.
2568 */
2569 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2570 goto out;
2571
4e7ea81d
JK
2572 /* If we can't merge this page, we are done. */
2573 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2574 goto out;
78aaced3 2575
8e48dcfb 2576 lock_page(page);
8e48dcfb 2577 /*
4e7ea81d
JK
2578 * If the page is no longer dirty, or its mapping no
2579 * longer corresponds to inode we are writing (which
2580 * means it has been truncated or invalidated), or the
2581 * page is already under writeback and we are not doing
2582 * a data integrity writeback, skip the page
8e48dcfb 2583 */
4f01b02c
TT
2584 if (!PageDirty(page) ||
2585 (PageWriteback(page) &&
4e7ea81d 2586 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2587 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2588 unlock_page(page);
2589 continue;
2590 }
2591
7cb1a535 2592 wait_on_page_writeback(page);
8e48dcfb 2593 BUG_ON(PageWriteback(page));
8e48dcfb 2594
4e7ea81d 2595 if (mpd->map.m_len == 0)
8eb9e5ce 2596 mpd->first_page = page->index;
8eb9e5ce 2597 mpd->next_page = page->index + 1;
f8bec370 2598 /* Add all dirty buffers to mpd */
4e7ea81d 2599 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2600 (PAGE_SHIFT - blkbits);
f8bec370 2601 head = page_buffers(page);
5f1132b2
JK
2602 err = mpage_process_page_bufs(mpd, head, head, lblk);
2603 if (err <= 0)
4e7ea81d 2604 goto out;
5f1132b2 2605 err = 0;
aeac589a 2606 left--;
8e48dcfb
TT
2607 }
2608 pagevec_release(&pvec);
2609 cond_resched();
2610 }
4f01b02c 2611 return 0;
8eb9e5ce
TT
2612out:
2613 pagevec_release(&pvec);
4e7ea81d 2614 return err;
8e48dcfb
TT
2615}
2616
20970ba6
TT
2617static int __writepage(struct page *page, struct writeback_control *wbc,
2618 void *data)
2619{
2620 struct address_space *mapping = data;
2621 int ret = ext4_writepage(page, wbc);
2622 mapping_set_error(mapping, ret);
2623 return ret;
2624}
2625
2626static int ext4_writepages(struct address_space *mapping,
2627 struct writeback_control *wbc)
64769240 2628{
4e7ea81d
JK
2629 pgoff_t writeback_index = 0;
2630 long nr_to_write = wbc->nr_to_write;
22208ded 2631 int range_whole = 0;
4e7ea81d 2632 int cycled = 1;
61628a3f 2633 handle_t *handle = NULL;
df22291f 2634 struct mpage_da_data mpd;
5e745b04 2635 struct inode *inode = mapping->host;
6b523df4 2636 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2637 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2638 bool done;
1bce63d1 2639 struct blk_plug plug;
cb530541 2640 bool give_up_on_write = false;
61628a3f 2641
c8585c6f 2642 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2643 trace_ext4_writepages(inode, wbc);
ba80b101 2644
c8585c6f
DJ
2645 if (dax_mapping(mapping)) {
2646 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2647 wbc);
2648 goto out_writepages;
2649 }
7f6d5b52 2650
61628a3f
MC
2651 /*
2652 * No pages to write? This is mainly a kludge to avoid starting
2653 * a transaction for special inodes like journal inode on last iput()
2654 * because that could violate lock ordering on umount
2655 */
a1d6cc56 2656 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2657 goto out_writepages;
2a21e37e 2658
20970ba6
TT
2659 if (ext4_should_journal_data(inode)) {
2660 struct blk_plug plug;
20970ba6
TT
2661
2662 blk_start_plug(&plug);
2663 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2664 blk_finish_plug(&plug);
bbf023c7 2665 goto out_writepages;
20970ba6
TT
2666 }
2667
2a21e37e
TT
2668 /*
2669 * If the filesystem has aborted, it is read-only, so return
2670 * right away instead of dumping stack traces later on that
2671 * will obscure the real source of the problem. We test
4ab2f15b 2672 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2673 * the latter could be true if the filesystem is mounted
20970ba6 2674 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2675 * *never* be called, so if that ever happens, we would want
2676 * the stack trace.
2677 */
bbf023c7
ML
2678 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2679 ret = -EROFS;
2680 goto out_writepages;
2681 }
2a21e37e 2682
6b523df4
JK
2683 if (ext4_should_dioread_nolock(inode)) {
2684 /*
70261f56 2685 * We may need to convert up to one extent per block in
6b523df4
JK
2686 * the page and we may dirty the inode.
2687 */
09cbfeaf 2688 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2689 }
2690
4e7ea81d
JK
2691 /*
2692 * If we have inline data and arrive here, it means that
2693 * we will soon create the block for the 1st page, so
2694 * we'd better clear the inline data here.
2695 */
2696 if (ext4_has_inline_data(inode)) {
2697 /* Just inode will be modified... */
2698 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2699 if (IS_ERR(handle)) {
2700 ret = PTR_ERR(handle);
2701 goto out_writepages;
2702 }
2703 BUG_ON(ext4_test_inode_state(inode,
2704 EXT4_STATE_MAY_INLINE_DATA));
2705 ext4_destroy_inline_data(handle, inode);
2706 ext4_journal_stop(handle);
2707 }
2708
22208ded
AK
2709 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2710 range_whole = 1;
61628a3f 2711
2acf2c26 2712 if (wbc->range_cyclic) {
4e7ea81d
JK
2713 writeback_index = mapping->writeback_index;
2714 if (writeback_index)
2acf2c26 2715 cycled = 0;
4e7ea81d
JK
2716 mpd.first_page = writeback_index;
2717 mpd.last_page = -1;
5b41d924 2718 } else {
09cbfeaf
KS
2719 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2720 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2721 }
a1d6cc56 2722
4e7ea81d
JK
2723 mpd.inode = inode;
2724 mpd.wbc = wbc;
2725 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2726retry:
6e6938b6 2727 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2728 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2729 done = false;
1bce63d1 2730 blk_start_plug(&plug);
4e7ea81d
JK
2731 while (!done && mpd.first_page <= mpd.last_page) {
2732 /* For each extent of pages we use new io_end */
2733 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2734 if (!mpd.io_submit.io_end) {
2735 ret = -ENOMEM;
2736 break;
2737 }
a1d6cc56
AK
2738
2739 /*
4e7ea81d
JK
2740 * We have two constraints: We find one extent to map and we
2741 * must always write out whole page (makes a difference when
2742 * blocksize < pagesize) so that we don't block on IO when we
2743 * try to write out the rest of the page. Journalled mode is
2744 * not supported by delalloc.
a1d6cc56
AK
2745 */
2746 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2747 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2748
4e7ea81d 2749 /* start a new transaction */
6b523df4
JK
2750 handle = ext4_journal_start_with_reserve(inode,
2751 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2752 if (IS_ERR(handle)) {
2753 ret = PTR_ERR(handle);
1693918e 2754 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2755 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2756 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2757 /* Release allocated io_end */
2758 ext4_put_io_end(mpd.io_submit.io_end);
2759 break;
61628a3f 2760 }
f63e6005 2761
4e7ea81d
JK
2762 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2763 ret = mpage_prepare_extent_to_map(&mpd);
2764 if (!ret) {
2765 if (mpd.map.m_len)
cb530541
TT
2766 ret = mpage_map_and_submit_extent(handle, &mpd,
2767 &give_up_on_write);
4e7ea81d
JK
2768 else {
2769 /*
2770 * We scanned the whole range (or exhausted
2771 * nr_to_write), submitted what was mapped and
2772 * didn't find anything needing mapping. We are
2773 * done.
2774 */
2775 done = true;
2776 }
f63e6005 2777 }
646caa9c
JK
2778 /*
2779 * Caution: If the handle is synchronous,
2780 * ext4_journal_stop() can wait for transaction commit
2781 * to finish which may depend on writeback of pages to
2782 * complete or on page lock to be released. In that
2783 * case, we have to wait until after after we have
2784 * submitted all the IO, released page locks we hold,
2785 * and dropped io_end reference (for extent conversion
2786 * to be able to complete) before stopping the handle.
2787 */
2788 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2789 ext4_journal_stop(handle);
2790 handle = NULL;
2791 }
4e7ea81d
JK
2792 /* Submit prepared bio */
2793 ext4_io_submit(&mpd.io_submit);
2794 /* Unlock pages we didn't use */
cb530541 2795 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2796 /*
2797 * Drop our io_end reference we got from init. We have
2798 * to be careful and use deferred io_end finishing if
2799 * we are still holding the transaction as we can
2800 * release the last reference to io_end which may end
2801 * up doing unwritten extent conversion.
2802 */
2803 if (handle) {
2804 ext4_put_io_end_defer(mpd.io_submit.io_end);
2805 ext4_journal_stop(handle);
2806 } else
2807 ext4_put_io_end(mpd.io_submit.io_end);
4e7ea81d
JK
2808
2809 if (ret == -ENOSPC && sbi->s_journal) {
2810 /*
2811 * Commit the transaction which would
22208ded
AK
2812 * free blocks released in the transaction
2813 * and try again
2814 */
df22291f 2815 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2816 ret = 0;
4e7ea81d
JK
2817 continue;
2818 }
2819 /* Fatal error - ENOMEM, EIO... */
2820 if (ret)
61628a3f 2821 break;
a1d6cc56 2822 }
1bce63d1 2823 blk_finish_plug(&plug);
9c12a831 2824 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2825 cycled = 1;
4e7ea81d
JK
2826 mpd.last_page = writeback_index - 1;
2827 mpd.first_page = 0;
2acf2c26
AK
2828 goto retry;
2829 }
22208ded
AK
2830
2831 /* Update index */
22208ded
AK
2832 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2833 /*
4e7ea81d 2834 * Set the writeback_index so that range_cyclic
22208ded
AK
2835 * mode will write it back later
2836 */
4e7ea81d 2837 mapping->writeback_index = mpd.first_page;
a1d6cc56 2838
61628a3f 2839out_writepages:
20970ba6
TT
2840 trace_ext4_writepages_result(inode, wbc, ret,
2841 nr_to_write - wbc->nr_to_write);
c8585c6f 2842 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2843 return ret;
64769240
AT
2844}
2845
79f0be8d
AK
2846static int ext4_nonda_switch(struct super_block *sb)
2847{
5c1ff336 2848 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2849 struct ext4_sb_info *sbi = EXT4_SB(sb);
2850
2851 /*
2852 * switch to non delalloc mode if we are running low
2853 * on free block. The free block accounting via percpu
179f7ebf 2854 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2855 * accumulated on each CPU without updating global counters
2856 * Delalloc need an accurate free block accounting. So switch
2857 * to non delalloc when we are near to error range.
2858 */
5c1ff336
EW
2859 free_clusters =
2860 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2861 dirty_clusters =
2862 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2863 /*
2864 * Start pushing delalloc when 1/2 of free blocks are dirty.
2865 */
5c1ff336 2866 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2867 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2868
5c1ff336
EW
2869 if (2 * free_clusters < 3 * dirty_clusters ||
2870 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2871 /*
c8afb446
ES
2872 * free block count is less than 150% of dirty blocks
2873 * or free blocks is less than watermark
79f0be8d
AK
2874 */
2875 return 1;
2876 }
2877 return 0;
2878}
2879
0ff8947f
ES
2880/* We always reserve for an inode update; the superblock could be there too */
2881static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2882{
e2b911c5 2883 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2884 return 1;
2885
2886 if (pos + len <= 0x7fffffffULL)
2887 return 1;
2888
2889 /* We might need to update the superblock to set LARGE_FILE */
2890 return 2;
2891}
2892
64769240 2893static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2894 loff_t pos, unsigned len, unsigned flags,
2895 struct page **pagep, void **fsdata)
64769240 2896{
72b8ab9d 2897 int ret, retries = 0;
64769240
AT
2898 struct page *page;
2899 pgoff_t index;
64769240
AT
2900 struct inode *inode = mapping->host;
2901 handle_t *handle;
2902
09cbfeaf 2903 index = pos >> PAGE_SHIFT;
79f0be8d
AK
2904
2905 if (ext4_nonda_switch(inode->i_sb)) {
2906 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2907 return ext4_write_begin(file, mapping, pos,
2908 len, flags, pagep, fsdata);
2909 }
2910 *fsdata = (void *)0;
9bffad1e 2911 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2912
2913 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2914 ret = ext4_da_write_inline_data_begin(mapping, inode,
2915 pos, len, flags,
2916 pagep, fsdata);
2917 if (ret < 0)
47564bfb
TT
2918 return ret;
2919 if (ret == 1)
2920 return 0;
9c3569b5
TM
2921 }
2922
47564bfb
TT
2923 /*
2924 * grab_cache_page_write_begin() can take a long time if the
2925 * system is thrashing due to memory pressure, or if the page
2926 * is being written back. So grab it first before we start
2927 * the transaction handle. This also allows us to allocate
2928 * the page (if needed) without using GFP_NOFS.
2929 */
2930retry_grab:
2931 page = grab_cache_page_write_begin(mapping, index, flags);
2932 if (!page)
2933 return -ENOMEM;
2934 unlock_page(page);
2935
64769240
AT
2936 /*
2937 * With delayed allocation, we don't log the i_disksize update
2938 * if there is delayed block allocation. But we still need
2939 * to journalling the i_disksize update if writes to the end
2940 * of file which has an already mapped buffer.
2941 */
47564bfb 2942retry_journal:
0ff8947f
ES
2943 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2944 ext4_da_write_credits(inode, pos, len));
64769240 2945 if (IS_ERR(handle)) {
09cbfeaf 2946 put_page(page);
47564bfb 2947 return PTR_ERR(handle);
64769240
AT
2948 }
2949
47564bfb
TT
2950 lock_page(page);
2951 if (page->mapping != mapping) {
2952 /* The page got truncated from under us */
2953 unlock_page(page);
09cbfeaf 2954 put_page(page);
d5a0d4f7 2955 ext4_journal_stop(handle);
47564bfb 2956 goto retry_grab;
d5a0d4f7 2957 }
47564bfb 2958 /* In case writeback began while the page was unlocked */
7afe5aa5 2959 wait_for_stable_page(page);
64769240 2960
2058f83a
MH
2961#ifdef CONFIG_EXT4_FS_ENCRYPTION
2962 ret = ext4_block_write_begin(page, pos, len,
2963 ext4_da_get_block_prep);
2964#else
6e1db88d 2965 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2966#endif
64769240
AT
2967 if (ret < 0) {
2968 unlock_page(page);
2969 ext4_journal_stop(handle);
ae4d5372
AK
2970 /*
2971 * block_write_begin may have instantiated a few blocks
2972 * outside i_size. Trim these off again. Don't need
2973 * i_size_read because we hold i_mutex.
2974 */
2975 if (pos + len > inode->i_size)
b9a4207d 2976 ext4_truncate_failed_write(inode);
47564bfb
TT
2977
2978 if (ret == -ENOSPC &&
2979 ext4_should_retry_alloc(inode->i_sb, &retries))
2980 goto retry_journal;
2981
09cbfeaf 2982 put_page(page);
47564bfb 2983 return ret;
64769240
AT
2984 }
2985
47564bfb 2986 *pagep = page;
64769240
AT
2987 return ret;
2988}
2989
632eaeab
MC
2990/*
2991 * Check if we should update i_disksize
2992 * when write to the end of file but not require block allocation
2993 */
2994static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2995 unsigned long offset)
632eaeab
MC
2996{
2997 struct buffer_head *bh;
2998 struct inode *inode = page->mapping->host;
2999 unsigned int idx;
3000 int i;
3001
3002 bh = page_buffers(page);
3003 idx = offset >> inode->i_blkbits;
3004
af5bc92d 3005 for (i = 0; i < idx; i++)
632eaeab
MC
3006 bh = bh->b_this_page;
3007
29fa89d0 3008 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3009 return 0;
3010 return 1;
3011}
3012
64769240 3013static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3014 struct address_space *mapping,
3015 loff_t pos, unsigned len, unsigned copied,
3016 struct page *page, void *fsdata)
64769240
AT
3017{
3018 struct inode *inode = mapping->host;
3019 int ret = 0, ret2;
3020 handle_t *handle = ext4_journal_current_handle();
3021 loff_t new_i_size;
632eaeab 3022 unsigned long start, end;
79f0be8d
AK
3023 int write_mode = (int)(unsigned long)fsdata;
3024
74d553aa
TT
3025 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3026 return ext4_write_end(file, mapping, pos,
3027 len, copied, page, fsdata);
632eaeab 3028
9bffad1e 3029 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3030 start = pos & (PAGE_SIZE - 1);
af5bc92d 3031 end = start + copied - 1;
64769240
AT
3032
3033 /*
3034 * generic_write_end() will run mark_inode_dirty() if i_size
3035 * changes. So let's piggyback the i_disksize mark_inode_dirty
3036 * into that.
3037 */
64769240 3038 new_i_size = pos + copied;
ea51d132 3039 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3040 if (ext4_has_inline_data(inode) ||
3041 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3042 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3043 /* We need to mark inode dirty even if
3044 * new_i_size is less that inode->i_size
3045 * bu greater than i_disksize.(hint delalloc)
3046 */
3047 ext4_mark_inode_dirty(handle, inode);
64769240 3048 }
632eaeab 3049 }
9c3569b5
TM
3050
3051 if (write_mode != CONVERT_INLINE_DATA &&
3052 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3053 ext4_has_inline_data(inode))
3054 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3055 page);
3056 else
3057 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3058 page, fsdata);
9c3569b5 3059
64769240
AT
3060 copied = ret2;
3061 if (ret2 < 0)
3062 ret = ret2;
3063 ret2 = ext4_journal_stop(handle);
3064 if (!ret)
3065 ret = ret2;
3066
3067 return ret ? ret : copied;
3068}
3069
d47992f8
LC
3070static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3071 unsigned int length)
64769240 3072{
64769240
AT
3073 /*
3074 * Drop reserved blocks
3075 */
3076 BUG_ON(!PageLocked(page));
3077 if (!page_has_buffers(page))
3078 goto out;
3079
ca99fdd2 3080 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3081
3082out:
d47992f8 3083 ext4_invalidatepage(page, offset, length);
64769240
AT
3084
3085 return;
3086}
3087
ccd2506b
TT
3088/*
3089 * Force all delayed allocation blocks to be allocated for a given inode.
3090 */
3091int ext4_alloc_da_blocks(struct inode *inode)
3092{
fb40ba0d
TT
3093 trace_ext4_alloc_da_blocks(inode);
3094
71d4f7d0 3095 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3096 return 0;
3097
3098 /*
3099 * We do something simple for now. The filemap_flush() will
3100 * also start triggering a write of the data blocks, which is
3101 * not strictly speaking necessary (and for users of
3102 * laptop_mode, not even desirable). However, to do otherwise
3103 * would require replicating code paths in:
de9a55b8 3104 *
20970ba6 3105 * ext4_writepages() ->
ccd2506b
TT
3106 * write_cache_pages() ---> (via passed in callback function)
3107 * __mpage_da_writepage() -->
3108 * mpage_add_bh_to_extent()
3109 * mpage_da_map_blocks()
3110 *
3111 * The problem is that write_cache_pages(), located in
3112 * mm/page-writeback.c, marks pages clean in preparation for
3113 * doing I/O, which is not desirable if we're not planning on
3114 * doing I/O at all.
3115 *
3116 * We could call write_cache_pages(), and then redirty all of
380cf090 3117 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3118 * would be ugly in the extreme. So instead we would need to
3119 * replicate parts of the code in the above functions,
25985edc 3120 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3121 * write out the pages, but rather only collect contiguous
3122 * logical block extents, call the multi-block allocator, and
3123 * then update the buffer heads with the block allocations.
de9a55b8 3124 *
ccd2506b
TT
3125 * For now, though, we'll cheat by calling filemap_flush(),
3126 * which will map the blocks, and start the I/O, but not
3127 * actually wait for the I/O to complete.
3128 */
3129 return filemap_flush(inode->i_mapping);
3130}
64769240 3131
ac27a0ec
DK
3132/*
3133 * bmap() is special. It gets used by applications such as lilo and by
3134 * the swapper to find the on-disk block of a specific piece of data.
3135 *
3136 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3137 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3138 * filesystem and enables swap, then they may get a nasty shock when the
3139 * data getting swapped to that swapfile suddenly gets overwritten by
3140 * the original zero's written out previously to the journal and
3141 * awaiting writeback in the kernel's buffer cache.
3142 *
3143 * So, if we see any bmap calls here on a modified, data-journaled file,
3144 * take extra steps to flush any blocks which might be in the cache.
3145 */
617ba13b 3146static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3147{
3148 struct inode *inode = mapping->host;
3149 journal_t *journal;
3150 int err;
3151
46c7f254
TM
3152 /*
3153 * We can get here for an inline file via the FIBMAP ioctl
3154 */
3155 if (ext4_has_inline_data(inode))
3156 return 0;
3157
64769240
AT
3158 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3159 test_opt(inode->i_sb, DELALLOC)) {
3160 /*
3161 * With delalloc we want to sync the file
3162 * so that we can make sure we allocate
3163 * blocks for file
3164 */
3165 filemap_write_and_wait(mapping);
3166 }
3167
19f5fb7a
TT
3168 if (EXT4_JOURNAL(inode) &&
3169 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3170 /*
3171 * This is a REALLY heavyweight approach, but the use of
3172 * bmap on dirty files is expected to be extremely rare:
3173 * only if we run lilo or swapon on a freshly made file
3174 * do we expect this to happen.
3175 *
3176 * (bmap requires CAP_SYS_RAWIO so this does not
3177 * represent an unprivileged user DOS attack --- we'd be
3178 * in trouble if mortal users could trigger this path at
3179 * will.)
3180 *
617ba13b 3181 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3182 * regular files. If somebody wants to bmap a directory
3183 * or symlink and gets confused because the buffer
3184 * hasn't yet been flushed to disk, they deserve
3185 * everything they get.
3186 */
3187
19f5fb7a 3188 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3189 journal = EXT4_JOURNAL(inode);
dab291af
MC
3190 jbd2_journal_lock_updates(journal);
3191 err = jbd2_journal_flush(journal);
3192 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3193
3194 if (err)
3195 return 0;
3196 }
3197
af5bc92d 3198 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3199}
3200
617ba13b 3201static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3202{
46c7f254
TM
3203 int ret = -EAGAIN;
3204 struct inode *inode = page->mapping->host;
3205
0562e0ba 3206 trace_ext4_readpage(page);
46c7f254
TM
3207
3208 if (ext4_has_inline_data(inode))
3209 ret = ext4_readpage_inline(inode, page);
3210
3211 if (ret == -EAGAIN)
f64e02fe 3212 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3213
3214 return ret;
ac27a0ec
DK
3215}
3216
3217static int
617ba13b 3218ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3219 struct list_head *pages, unsigned nr_pages)
3220{
46c7f254
TM
3221 struct inode *inode = mapping->host;
3222
3223 /* If the file has inline data, no need to do readpages. */
3224 if (ext4_has_inline_data(inode))
3225 return 0;
3226
f64e02fe 3227 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3228}
3229
d47992f8
LC
3230static void ext4_invalidatepage(struct page *page, unsigned int offset,
3231 unsigned int length)
ac27a0ec 3232{
ca99fdd2 3233 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3234
4520fb3c
JK
3235 /* No journalling happens on data buffers when this function is used */
3236 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3237
ca99fdd2 3238 block_invalidatepage(page, offset, length);
4520fb3c
JK
3239}
3240
53e87268 3241static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3242 unsigned int offset,
3243 unsigned int length)
4520fb3c
JK
3244{
3245 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3246
ca99fdd2 3247 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3248
ac27a0ec
DK
3249 /*
3250 * If it's a full truncate we just forget about the pending dirtying
3251 */
09cbfeaf 3252 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3253 ClearPageChecked(page);
3254
ca99fdd2 3255 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3256}
3257
3258/* Wrapper for aops... */
3259static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3260 unsigned int offset,
3261 unsigned int length)
53e87268 3262{
ca99fdd2 3263 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3264}
3265
617ba13b 3266static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3267{
617ba13b 3268 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3269
0562e0ba
JZ
3270 trace_ext4_releasepage(page);
3271
e1c36595
JK
3272 /* Page has dirty journalled data -> cannot release */
3273 if (PageChecked(page))
ac27a0ec 3274 return 0;
0390131b
FM
3275 if (journal)
3276 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3277 else
3278 return try_to_free_buffers(page);
ac27a0ec
DK
3279}
3280
ba5843f5 3281#ifdef CONFIG_FS_DAX
12735f88
JK
3282/*
3283 * Get block function for DAX IO and mmap faults. It takes care of converting
3284 * unwritten extents to written ones and initializes new / converted blocks
3285 * to zeros.
3286 */
3287int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3288 struct buffer_head *bh_result, int create)
ed923b57 3289{
7cb476f8 3290 int ret;
ba5843f5 3291
12735f88 3292 ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
7cb476f8
JK
3293 if (!create)
3294 return _ext4_get_block(inode, iblock, bh_result, 0);
ba5843f5 3295
7cb476f8
JK
3296 ret = ext4_get_block_trans(inode, iblock, bh_result,
3297 EXT4_GET_BLOCKS_PRE_IO |
3298 EXT4_GET_BLOCKS_CREATE_ZERO);
3299 if (ret < 0)
3300 return ret;
ba5843f5 3301
7cb476f8 3302 if (buffer_unwritten(bh_result)) {
ba5843f5 3303 /*
12735f88
JK
3304 * We are protected by i_mmap_sem or i_mutex so we know block
3305 * cannot go away from under us even though we dropped
3306 * i_data_sem. Convert extent to written and write zeros there.
ba5843f5 3307 */
7cb476f8
JK
3308 ret = ext4_get_block_trans(inode, iblock, bh_result,
3309 EXT4_GET_BLOCKS_CONVERT |
3310 EXT4_GET_BLOCKS_CREATE_ZERO);
3311 if (ret < 0)
3312 return ret;
ba5843f5 3313 }
7cb476f8
JK
3314 /*
3315 * At least for now we have to clear BH_New so that DAX code
3316 * doesn't attempt to zero blocks again in a racy way.
3317 */
3318 clear_buffer_new(bh_result);
3319 return 0;
ed923b57 3320}
12735f88
JK
3321#else
3322/* Just define empty function, it will never get called. */
3323int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3324 struct buffer_head *bh_result, int create)
3325{
3326 BUG();
3327 return 0;
ed923b57 3328}
ba5843f5 3329#endif
ed923b57 3330
187372a3 3331static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3332 ssize_t size, void *private)
4c0425ff 3333{
109811c2 3334 ext4_io_end_t *io_end = private;
4c0425ff 3335
97a851ed 3336 /* if not async direct IO just return */
7b7a8665 3337 if (!io_end)
187372a3 3338 return 0;
4b70df18 3339
88635ca2 3340 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3341 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3342 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3343
74c66bcb
JK
3344 /*
3345 * Error during AIO DIO. We cannot convert unwritten extents as the
3346 * data was not written. Just clear the unwritten flag and drop io_end.
3347 */
3348 if (size <= 0) {
3349 ext4_clear_io_unwritten_flag(io_end);
3350 size = 0;
3351 }
4c0425ff
MC
3352 io_end->offset = offset;
3353 io_end->size = size;
7b7a8665 3354 ext4_put_io_end(io_end);
187372a3
CH
3355
3356 return 0;
4c0425ff 3357}
c7064ef1 3358
4c0425ff 3359/*
914f82a3
JK
3360 * Handling of direct IO writes.
3361 *
3362 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3363 * preallocated extents, and those write extend the file, no need to
3364 * fall back to buffered IO.
3365 *
556615dc 3366 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3367 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3368 * still keep the range to write as unwritten.
4c0425ff 3369 *
69c499d1 3370 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3371 * For async direct IO, since the IO may still pending when return, we
25985edc 3372 * set up an end_io call back function, which will do the conversion
8d5d02e6 3373 * when async direct IO completed.
4c0425ff
MC
3374 *
3375 * If the O_DIRECT write will extend the file then add this inode to the
3376 * orphan list. So recovery will truncate it back to the original size
3377 * if the machine crashes during the write.
3378 *
3379 */
0e01df10 3380static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3381{
3382 struct file *file = iocb->ki_filp;
3383 struct inode *inode = file->f_mapping->host;
914f82a3 3384 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3385 ssize_t ret;
c8b8e32d 3386 loff_t offset = iocb->ki_pos;
a6cbcd4a 3387 size_t count = iov_iter_count(iter);
69c499d1
TT
3388 int overwrite = 0;
3389 get_block_t *get_block_func = NULL;
3390 int dio_flags = 0;
4c0425ff 3391 loff_t final_size = offset + count;
914f82a3
JK
3392 int orphan = 0;
3393 handle_t *handle;
729f52c6 3394
914f82a3
JK
3395 if (final_size > inode->i_size) {
3396 /* Credits for sb + inode write */
3397 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3398 if (IS_ERR(handle)) {
3399 ret = PTR_ERR(handle);
3400 goto out;
3401 }
3402 ret = ext4_orphan_add(handle, inode);
3403 if (ret) {
3404 ext4_journal_stop(handle);
3405 goto out;
3406 }
3407 orphan = 1;
3408 ei->i_disksize = inode->i_size;
3409 ext4_journal_stop(handle);
3410 }
4bd809db 3411
69c499d1 3412 BUG_ON(iocb->private == NULL);
4bd809db 3413
e8340395
JK
3414 /*
3415 * Make all waiters for direct IO properly wait also for extent
3416 * conversion. This also disallows race between truncate() and
3417 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3418 */
914f82a3 3419 inode_dio_begin(inode);
e8340395 3420
69c499d1
TT
3421 /* If we do a overwrite dio, i_mutex locking can be released */
3422 overwrite = *((int *)iocb->private);
4bd809db 3423
2dcba478 3424 if (overwrite)
5955102c 3425 inode_unlock(inode);
8d5d02e6 3426
69c499d1 3427 /*
914f82a3 3428 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3429 *
109811c2
JK
3430 * Allocated blocks to fill the hole are marked as unwritten to prevent
3431 * parallel buffered read to expose the stale data before DIO complete
3432 * the data IO.
69c499d1 3433 *
109811c2
JK
3434 * As to previously fallocated extents, ext4 get_block will just simply
3435 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3436 *
109811c2
JK
3437 * For non AIO case, we will convert those unwritten extents to written
3438 * after return back from blockdev_direct_IO. That way we save us from
3439 * allocating io_end structure and also the overhead of offloading
3440 * the extent convertion to a workqueue.
69c499d1
TT
3441 *
3442 * For async DIO, the conversion needs to be deferred when the
3443 * IO is completed. The ext4 end_io callback function will be
3444 * called to take care of the conversion work. Here for async
3445 * case, we allocate an io_end structure to hook to the iocb.
3446 */
3447 iocb->private = NULL;
109811c2 3448 if (overwrite)
705965bd 3449 get_block_func = ext4_dio_get_block_overwrite;
12735f88
JK
3450 else if (IS_DAX(inode)) {
3451 /*
3452 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3453 * writes need zeroing either because they can race with page
3454 * faults or because they use partial blocks.
3455 */
3456 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3457 ext4_aligned_io(inode, offset, count))
3458 get_block_func = ext4_dio_get_block;
3459 else
3460 get_block_func = ext4_dax_get_block;
3461 dio_flags = DIO_LOCKING;
3462 } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3463 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
914f82a3
JK
3464 get_block_func = ext4_dio_get_block;
3465 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3466 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3467 get_block_func = ext4_dio_get_block_unwritten_sync;
3468 dio_flags = DIO_LOCKING;
69c499d1 3469 } else {
109811c2 3470 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3471 dio_flags = DIO_LOCKING;
3472 }
2058f83a
MH
3473#ifdef CONFIG_EXT4_FS_ENCRYPTION
3474 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3475#endif
914f82a3 3476 if (IS_DAX(inode)) {
c8b8e32d 3477 ret = dax_do_io(iocb, inode, iter, get_block_func,
923ae0ff 3478 ext4_end_io_dio, dio_flags);
914f82a3 3479 } else
17f8c842 3480 ret = __blockdev_direct_IO(iocb, inode,
c8b8e32d 3481 inode->i_sb->s_bdev, iter,
923ae0ff
RZ
3482 get_block_func,
3483 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3484
97a851ed 3485 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3486 EXT4_STATE_DIO_UNWRITTEN)) {
3487 int err;
3488 /*
3489 * for non AIO case, since the IO is already
3490 * completed, we could do the conversion right here
3491 */
6b523df4 3492 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3493 offset, ret);
3494 if (err < 0)
3495 ret = err;
3496 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3497 }
4bd809db 3498
914f82a3 3499 inode_dio_end(inode);
69c499d1 3500 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3501 if (overwrite)
5955102c 3502 inode_lock(inode);
8d5d02e6 3503
914f82a3
JK
3504 if (ret < 0 && final_size > inode->i_size)
3505 ext4_truncate_failed_write(inode);
3506
3507 /* Handle extending of i_size after direct IO write */
3508 if (orphan) {
3509 int err;
3510
3511 /* Credits for sb + inode write */
3512 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3513 if (IS_ERR(handle)) {
3514 /* This is really bad luck. We've written the data
3515 * but cannot extend i_size. Bail out and pretend
3516 * the write failed... */
3517 ret = PTR_ERR(handle);
3518 if (inode->i_nlink)
3519 ext4_orphan_del(NULL, inode);
3520
3521 goto out;
3522 }
3523 if (inode->i_nlink)
3524 ext4_orphan_del(handle, inode);
3525 if (ret > 0) {
3526 loff_t end = offset + ret;
3527 if (end > inode->i_size) {
3528 ei->i_disksize = end;
3529 i_size_write(inode, end);
3530 /*
3531 * We're going to return a positive `ret'
3532 * here due to non-zero-length I/O, so there's
3533 * no way of reporting error returns from
3534 * ext4_mark_inode_dirty() to userspace. So
3535 * ignore it.
3536 */
3537 ext4_mark_inode_dirty(handle, inode);
3538 }
3539 }
3540 err = ext4_journal_stop(handle);
3541 if (ret == 0)
3542 ret = err;
3543 }
3544out:
3545 return ret;
3546}
3547
0e01df10 3548static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3549{
16c54688
JK
3550 struct address_space *mapping = iocb->ki_filp->f_mapping;
3551 struct inode *inode = mapping->host;
914f82a3
JK
3552 ssize_t ret;
3553
16c54688
JK
3554 /*
3555 * Shared inode_lock is enough for us - it protects against concurrent
3556 * writes & truncates and since we take care of writing back page cache,
3557 * we are protected against page writeback as well.
3558 */
3559 inode_lock_shared(inode);
914f82a3 3560 if (IS_DAX(inode)) {
16c54688 3561 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
914f82a3 3562 } else {
16c54688
JK
3563 size_t count = iov_iter_count(iter);
3564
3565 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3566 iocb->ki_pos + count);
3567 if (ret)
3568 goto out_unlock;
914f82a3 3569 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
0e01df10 3570 iter, ext4_dio_get_block,
16c54688 3571 NULL, NULL, 0);
914f82a3 3572 }
16c54688
JK
3573out_unlock:
3574 inode_unlock_shared(inode);
69c499d1 3575 return ret;
4c0425ff
MC
3576}
3577
c8b8e32d 3578static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3579{
3580 struct file *file = iocb->ki_filp;
3581 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3582 size_t count = iov_iter_count(iter);
c8b8e32d 3583 loff_t offset = iocb->ki_pos;
0562e0ba 3584 ssize_t ret;
4c0425ff 3585
2058f83a
MH
3586#ifdef CONFIG_EXT4_FS_ENCRYPTION
3587 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3588 return 0;
3589#endif
3590
84ebd795
TT
3591 /*
3592 * If we are doing data journalling we don't support O_DIRECT
3593 */
3594 if (ext4_should_journal_data(inode))
3595 return 0;
3596
46c7f254
TM
3597 /* Let buffer I/O handle the inline data case. */
3598 if (ext4_has_inline_data(inode))
3599 return 0;
3600
6f673763 3601 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3602 if (iov_iter_rw(iter) == READ)
0e01df10 3603 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3604 else
0e01df10 3605 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3606 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3607 return ret;
4c0425ff
MC
3608}
3609
ac27a0ec 3610/*
617ba13b 3611 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3612 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3613 * much here because ->set_page_dirty is called under VFS locks. The page is
3614 * not necessarily locked.
3615 *
3616 * We cannot just dirty the page and leave attached buffers clean, because the
3617 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3618 * or jbddirty because all the journalling code will explode.
3619 *
3620 * So what we do is to mark the page "pending dirty" and next time writepage
3621 * is called, propagate that into the buffers appropriately.
3622 */
617ba13b 3623static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3624{
3625 SetPageChecked(page);
3626 return __set_page_dirty_nobuffers(page);
3627}
3628
74d553aa 3629static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3630 .readpage = ext4_readpage,
3631 .readpages = ext4_readpages,
43ce1d23 3632 .writepage = ext4_writepage,
20970ba6 3633 .writepages = ext4_writepages,
8ab22b9a 3634 .write_begin = ext4_write_begin,
74d553aa 3635 .write_end = ext4_write_end,
8ab22b9a
HH
3636 .bmap = ext4_bmap,
3637 .invalidatepage = ext4_invalidatepage,
3638 .releasepage = ext4_releasepage,
3639 .direct_IO = ext4_direct_IO,
3640 .migratepage = buffer_migrate_page,
3641 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3642 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3643};
3644
617ba13b 3645static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3646 .readpage = ext4_readpage,
3647 .readpages = ext4_readpages,
43ce1d23 3648 .writepage = ext4_writepage,
20970ba6 3649 .writepages = ext4_writepages,
8ab22b9a
HH
3650 .write_begin = ext4_write_begin,
3651 .write_end = ext4_journalled_write_end,
3652 .set_page_dirty = ext4_journalled_set_page_dirty,
3653 .bmap = ext4_bmap,
4520fb3c 3654 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3655 .releasepage = ext4_releasepage,
84ebd795 3656 .direct_IO = ext4_direct_IO,
8ab22b9a 3657 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3658 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3659};
3660
64769240 3661static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3662 .readpage = ext4_readpage,
3663 .readpages = ext4_readpages,
43ce1d23 3664 .writepage = ext4_writepage,
20970ba6 3665 .writepages = ext4_writepages,
8ab22b9a
HH
3666 .write_begin = ext4_da_write_begin,
3667 .write_end = ext4_da_write_end,
3668 .bmap = ext4_bmap,
3669 .invalidatepage = ext4_da_invalidatepage,
3670 .releasepage = ext4_releasepage,
3671 .direct_IO = ext4_direct_IO,
3672 .migratepage = buffer_migrate_page,
3673 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3674 .error_remove_page = generic_error_remove_page,
64769240
AT
3675};
3676
617ba13b 3677void ext4_set_aops(struct inode *inode)
ac27a0ec 3678{
3d2b1582
LC
3679 switch (ext4_inode_journal_mode(inode)) {
3680 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3681 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3682 break;
3683 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3684 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3685 return;
3d2b1582
LC
3686 default:
3687 BUG();
3688 }
74d553aa
TT
3689 if (test_opt(inode->i_sb, DELALLOC))
3690 inode->i_mapping->a_ops = &ext4_da_aops;
3691 else
3692 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3693}
3694
923ae0ff 3695static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3696 struct address_space *mapping, loff_t from, loff_t length)
3697{
09cbfeaf
KS
3698 ext4_fsblk_t index = from >> PAGE_SHIFT;
3699 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3700 unsigned blocksize, pos;
d863dc36
LC
3701 ext4_lblk_t iblock;
3702 struct inode *inode = mapping->host;
3703 struct buffer_head *bh;
3704 struct page *page;
3705 int err = 0;
3706
09cbfeaf 3707 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3708 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3709 if (!page)
3710 return -ENOMEM;
3711
3712 blocksize = inode->i_sb->s_blocksize;
d863dc36 3713
09cbfeaf 3714 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3715
3716 if (!page_has_buffers(page))
3717 create_empty_buffers(page, blocksize, 0);
3718
3719 /* Find the buffer that contains "offset" */
3720 bh = page_buffers(page);
3721 pos = blocksize;
3722 while (offset >= pos) {
3723 bh = bh->b_this_page;
3724 iblock++;
3725 pos += blocksize;
3726 }
d863dc36
LC
3727 if (buffer_freed(bh)) {
3728 BUFFER_TRACE(bh, "freed: skip");
3729 goto unlock;
3730 }
d863dc36
LC
3731 if (!buffer_mapped(bh)) {
3732 BUFFER_TRACE(bh, "unmapped");
3733 ext4_get_block(inode, iblock, bh, 0);
3734 /* unmapped? It's a hole - nothing to do */
3735 if (!buffer_mapped(bh)) {
3736 BUFFER_TRACE(bh, "still unmapped");
3737 goto unlock;
3738 }
3739 }
3740
3741 /* Ok, it's mapped. Make sure it's up-to-date */
3742 if (PageUptodate(page))
3743 set_buffer_uptodate(bh);
3744
3745 if (!buffer_uptodate(bh)) {
3746 err = -EIO;
dfec8a14 3747 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
3748 wait_on_buffer(bh);
3749 /* Uhhuh. Read error. Complain and punt. */
3750 if (!buffer_uptodate(bh))
3751 goto unlock;
c9c7429c
MH
3752 if (S_ISREG(inode->i_mode) &&
3753 ext4_encrypted_inode(inode)) {
3754 /* We expect the key to be set. */
a7550b30 3755 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 3756 BUG_ON(blocksize != PAGE_SIZE);
7821d4dd 3757 BUG_ON(!PageLocked(page));
b50f7b26 3758 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 3759 page, PAGE_SIZE, 0, page->index));
c9c7429c 3760 }
d863dc36 3761 }
d863dc36
LC
3762 if (ext4_should_journal_data(inode)) {
3763 BUFFER_TRACE(bh, "get write access");
3764 err = ext4_journal_get_write_access(handle, bh);
3765 if (err)
3766 goto unlock;
3767 }
d863dc36 3768 zero_user(page, offset, length);
d863dc36
LC
3769 BUFFER_TRACE(bh, "zeroed end of block");
3770
d863dc36
LC
3771 if (ext4_should_journal_data(inode)) {
3772 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3773 } else {
353eefd3 3774 err = 0;
d863dc36 3775 mark_buffer_dirty(bh);
3957ef53 3776 if (ext4_should_order_data(inode))
ee0876bc 3777 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 3778 }
d863dc36
LC
3779
3780unlock:
3781 unlock_page(page);
09cbfeaf 3782 put_page(page);
d863dc36
LC
3783 return err;
3784}
3785
923ae0ff
RZ
3786/*
3787 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3788 * starting from file offset 'from'. The range to be zero'd must
3789 * be contained with in one block. If the specified range exceeds
3790 * the end of the block it will be shortened to end of the block
3791 * that cooresponds to 'from'
3792 */
3793static int ext4_block_zero_page_range(handle_t *handle,
3794 struct address_space *mapping, loff_t from, loff_t length)
3795{
3796 struct inode *inode = mapping->host;
09cbfeaf 3797 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3798 unsigned blocksize = inode->i_sb->s_blocksize;
3799 unsigned max = blocksize - (offset & (blocksize - 1));
3800
3801 /*
3802 * correct length if it does not fall between
3803 * 'from' and the end of the block
3804 */
3805 if (length > max || length < 0)
3806 length = max;
3807
3808 if (IS_DAX(inode))
3809 return dax_zero_page_range(inode, from, length, ext4_get_block);
3810 return __ext4_block_zero_page_range(handle, mapping, from, length);
3811}
3812
94350ab5
MW
3813/*
3814 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3815 * up to the end of the block which corresponds to `from'.
3816 * This required during truncate. We need to physically zero the tail end
3817 * of that block so it doesn't yield old data if the file is later grown.
3818 */
c197855e 3819static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3820 struct address_space *mapping, loff_t from)
3821{
09cbfeaf 3822 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
3823 unsigned length;
3824 unsigned blocksize;
3825 struct inode *inode = mapping->host;
3826
3827 blocksize = inode->i_sb->s_blocksize;
3828 length = blocksize - (offset & (blocksize - 1));
3829
3830 return ext4_block_zero_page_range(handle, mapping, from, length);
3831}
3832
a87dd18c
LC
3833int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3834 loff_t lstart, loff_t length)
3835{
3836 struct super_block *sb = inode->i_sb;
3837 struct address_space *mapping = inode->i_mapping;
e1be3a92 3838 unsigned partial_start, partial_end;
a87dd18c
LC
3839 ext4_fsblk_t start, end;
3840 loff_t byte_end = (lstart + length - 1);
3841 int err = 0;
3842
e1be3a92
LC
3843 partial_start = lstart & (sb->s_blocksize - 1);
3844 partial_end = byte_end & (sb->s_blocksize - 1);
3845
a87dd18c
LC
3846 start = lstart >> sb->s_blocksize_bits;
3847 end = byte_end >> sb->s_blocksize_bits;
3848
3849 /* Handle partial zero within the single block */
e1be3a92
LC
3850 if (start == end &&
3851 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3852 err = ext4_block_zero_page_range(handle, mapping,
3853 lstart, length);
3854 return err;
3855 }
3856 /* Handle partial zero out on the start of the range */
e1be3a92 3857 if (partial_start) {
a87dd18c
LC
3858 err = ext4_block_zero_page_range(handle, mapping,
3859 lstart, sb->s_blocksize);
3860 if (err)
3861 return err;
3862 }
3863 /* Handle partial zero out on the end of the range */
e1be3a92 3864 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3865 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3866 byte_end - partial_end,
3867 partial_end + 1);
a87dd18c
LC
3868 return err;
3869}
3870
91ef4caf
DG
3871int ext4_can_truncate(struct inode *inode)
3872{
91ef4caf
DG
3873 if (S_ISREG(inode->i_mode))
3874 return 1;
3875 if (S_ISDIR(inode->i_mode))
3876 return 1;
3877 if (S_ISLNK(inode->i_mode))
3878 return !ext4_inode_is_fast_symlink(inode);
3879 return 0;
3880}
3881
01127848
JK
3882/*
3883 * We have to make sure i_disksize gets properly updated before we truncate
3884 * page cache due to hole punching or zero range. Otherwise i_disksize update
3885 * can get lost as it may have been postponed to submission of writeback but
3886 * that will never happen after we truncate page cache.
3887 */
3888int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3889 loff_t len)
3890{
3891 handle_t *handle;
3892 loff_t size = i_size_read(inode);
3893
5955102c 3894 WARN_ON(!inode_is_locked(inode));
01127848
JK
3895 if (offset > size || offset + len < size)
3896 return 0;
3897
3898 if (EXT4_I(inode)->i_disksize >= size)
3899 return 0;
3900
3901 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3902 if (IS_ERR(handle))
3903 return PTR_ERR(handle);
3904 ext4_update_i_disksize(inode, size);
3905 ext4_mark_inode_dirty(handle, inode);
3906 ext4_journal_stop(handle);
3907
3908 return 0;
3909}
3910
a4bb6b64 3911/*
cca32b7e 3912 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
3913 * associated with the given offset and length
3914 *
3915 * @inode: File inode
3916 * @offset: The offset where the hole will begin
3917 * @len: The length of the hole
3918 *
4907cb7b 3919 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3920 */
3921
aeb2817a 3922int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3923{
26a4c0c6
TT
3924 struct super_block *sb = inode->i_sb;
3925 ext4_lblk_t first_block, stop_block;
3926 struct address_space *mapping = inode->i_mapping;
a87dd18c 3927 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3928 handle_t *handle;
3929 unsigned int credits;
3930 int ret = 0;
3931
a4bb6b64 3932 if (!S_ISREG(inode->i_mode))
73355192 3933 return -EOPNOTSUPP;
a4bb6b64 3934
b8a86845 3935 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3936
26a4c0c6
TT
3937 /*
3938 * Write out all dirty pages to avoid race conditions
3939 * Then release them.
3940 */
cca32b7e 3941 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
3942 ret = filemap_write_and_wait_range(mapping, offset,
3943 offset + length - 1);
3944 if (ret)
3945 return ret;
3946 }
3947
5955102c 3948 inode_lock(inode);
9ef06cec 3949
26a4c0c6
TT
3950 /* No need to punch hole beyond i_size */
3951 if (offset >= inode->i_size)
3952 goto out_mutex;
3953
3954 /*
3955 * If the hole extends beyond i_size, set the hole
3956 * to end after the page that contains i_size
3957 */
3958 if (offset + length > inode->i_size) {
3959 length = inode->i_size +
09cbfeaf 3960 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
3961 offset;
3962 }
3963
a361293f
JK
3964 if (offset & (sb->s_blocksize - 1) ||
3965 (offset + length) & (sb->s_blocksize - 1)) {
3966 /*
3967 * Attach jinode to inode for jbd2 if we do any zeroing of
3968 * partial block
3969 */
3970 ret = ext4_inode_attach_jinode(inode);
3971 if (ret < 0)
3972 goto out_mutex;
3973
3974 }
3975
ea3d7209
JK
3976 /* Wait all existing dio workers, newcomers will block on i_mutex */
3977 ext4_inode_block_unlocked_dio(inode);
3978 inode_dio_wait(inode);
3979
3980 /*
3981 * Prevent page faults from reinstantiating pages we have released from
3982 * page cache.
3983 */
3984 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
3985 first_block_offset = round_up(offset, sb->s_blocksize);
3986 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3987
a87dd18c 3988 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
3989 if (last_block_offset > first_block_offset) {
3990 ret = ext4_update_disksize_before_punch(inode, offset, length);
3991 if (ret)
3992 goto out_dio;
a87dd18c
LC
3993 truncate_pagecache_range(inode, first_block_offset,
3994 last_block_offset);
01127848 3995 }
26a4c0c6
TT
3996
3997 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3998 credits = ext4_writepage_trans_blocks(inode);
3999 else
4000 credits = ext4_blocks_for_truncate(inode);
4001 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4002 if (IS_ERR(handle)) {
4003 ret = PTR_ERR(handle);
4004 ext4_std_error(sb, ret);
4005 goto out_dio;
4006 }
4007
a87dd18c
LC
4008 ret = ext4_zero_partial_blocks(handle, inode, offset,
4009 length);
4010 if (ret)
4011 goto out_stop;
26a4c0c6
TT
4012
4013 first_block = (offset + sb->s_blocksize - 1) >>
4014 EXT4_BLOCK_SIZE_BITS(sb);
4015 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4016
4017 /* If there are no blocks to remove, return now */
4018 if (first_block >= stop_block)
4019 goto out_stop;
4020
4021 down_write(&EXT4_I(inode)->i_data_sem);
4022 ext4_discard_preallocations(inode);
4023
4024 ret = ext4_es_remove_extent(inode, first_block,
4025 stop_block - first_block);
4026 if (ret) {
4027 up_write(&EXT4_I(inode)->i_data_sem);
4028 goto out_stop;
4029 }
4030
4031 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4032 ret = ext4_ext_remove_space(inode, first_block,
4033 stop_block - 1);
4034 else
4f579ae7 4035 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
4036 stop_block);
4037
819c4920 4038 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
4039 if (IS_SYNC(inode))
4040 ext4_handle_sync(handle);
e251f9bc 4041
eeca7ea1 4042 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6
TT
4043 ext4_mark_inode_dirty(handle, inode);
4044out_stop:
4045 ext4_journal_stop(handle);
4046out_dio:
ea3d7209 4047 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
4048 ext4_inode_resume_unlocked_dio(inode);
4049out_mutex:
5955102c 4050 inode_unlock(inode);
26a4c0c6 4051 return ret;
a4bb6b64
AH
4052}
4053
a361293f
JK
4054int ext4_inode_attach_jinode(struct inode *inode)
4055{
4056 struct ext4_inode_info *ei = EXT4_I(inode);
4057 struct jbd2_inode *jinode;
4058
4059 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4060 return 0;
4061
4062 jinode = jbd2_alloc_inode(GFP_KERNEL);
4063 spin_lock(&inode->i_lock);
4064 if (!ei->jinode) {
4065 if (!jinode) {
4066 spin_unlock(&inode->i_lock);
4067 return -ENOMEM;
4068 }
4069 ei->jinode = jinode;
4070 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4071 jinode = NULL;
4072 }
4073 spin_unlock(&inode->i_lock);
4074 if (unlikely(jinode != NULL))
4075 jbd2_free_inode(jinode);
4076 return 0;
4077}
4078
ac27a0ec 4079/*
617ba13b 4080 * ext4_truncate()
ac27a0ec 4081 *
617ba13b
MC
4082 * We block out ext4_get_block() block instantiations across the entire
4083 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4084 * simultaneously on behalf of the same inode.
4085 *
42b2aa86 4086 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4087 * is one core, guiding principle: the file's tree must always be consistent on
4088 * disk. We must be able to restart the truncate after a crash.
4089 *
4090 * The file's tree may be transiently inconsistent in memory (although it
4091 * probably isn't), but whenever we close off and commit a journal transaction,
4092 * the contents of (the filesystem + the journal) must be consistent and
4093 * restartable. It's pretty simple, really: bottom up, right to left (although
4094 * left-to-right works OK too).
4095 *
4096 * Note that at recovery time, journal replay occurs *before* the restart of
4097 * truncate against the orphan inode list.
4098 *
4099 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4100 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4101 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4102 * ext4_truncate() to have another go. So there will be instantiated blocks
4103 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4104 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4105 * ext4_truncate() run will find them and release them.
ac27a0ec 4106 */
2c98eb5e 4107int ext4_truncate(struct inode *inode)
ac27a0ec 4108{
819c4920
TT
4109 struct ext4_inode_info *ei = EXT4_I(inode);
4110 unsigned int credits;
2c98eb5e 4111 int err = 0;
819c4920
TT
4112 handle_t *handle;
4113 struct address_space *mapping = inode->i_mapping;
819c4920 4114
19b5ef61
TT
4115 /*
4116 * There is a possibility that we're either freeing the inode
e04027e8 4117 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4118 * have i_mutex locked because it's not necessary.
4119 */
4120 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4121 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4122 trace_ext4_truncate_enter(inode);
4123
91ef4caf 4124 if (!ext4_can_truncate(inode))
2c98eb5e 4125 return 0;
ac27a0ec 4126
12e9b892 4127 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4128
5534fb5b 4129 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4130 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4131
aef1c851
TM
4132 if (ext4_has_inline_data(inode)) {
4133 int has_inline = 1;
4134
4135 ext4_inline_data_truncate(inode, &has_inline);
4136 if (has_inline)
2c98eb5e 4137 return 0;
aef1c851
TM
4138 }
4139
a361293f
JK
4140 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4141 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4142 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4143 return 0;
a361293f
JK
4144 }
4145
819c4920
TT
4146 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4147 credits = ext4_writepage_trans_blocks(inode);
4148 else
4149 credits = ext4_blocks_for_truncate(inode);
4150
4151 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4152 if (IS_ERR(handle))
4153 return PTR_ERR(handle);
819c4920 4154
eb3544c6
LC
4155 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4156 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4157
4158 /*
4159 * We add the inode to the orphan list, so that if this
4160 * truncate spans multiple transactions, and we crash, we will
4161 * resume the truncate when the filesystem recovers. It also
4162 * marks the inode dirty, to catch the new size.
4163 *
4164 * Implication: the file must always be in a sane, consistent
4165 * truncatable state while each transaction commits.
4166 */
2c98eb5e
TT
4167 err = ext4_orphan_add(handle, inode);
4168 if (err)
819c4920
TT
4169 goto out_stop;
4170
4171 down_write(&EXT4_I(inode)->i_data_sem);
4172
4173 ext4_discard_preallocations(inode);
4174
ff9893dc 4175 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4176 err = ext4_ext_truncate(handle, inode);
ff9893dc 4177 else
819c4920
TT
4178 ext4_ind_truncate(handle, inode);
4179
4180 up_write(&ei->i_data_sem);
d0abb36d
TT
4181 if (err)
4182 goto out_stop;
819c4920
TT
4183
4184 if (IS_SYNC(inode))
4185 ext4_handle_sync(handle);
4186
4187out_stop:
4188 /*
4189 * If this was a simple ftruncate() and the file will remain alive,
4190 * then we need to clear up the orphan record which we created above.
4191 * However, if this was a real unlink then we were called by
58d86a50 4192 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4193 * orphan info for us.
4194 */
4195 if (inode->i_nlink)
4196 ext4_orphan_del(handle, inode);
4197
eeca7ea1 4198 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4199 ext4_mark_inode_dirty(handle, inode);
4200 ext4_journal_stop(handle);
ac27a0ec 4201
0562e0ba 4202 trace_ext4_truncate_exit(inode);
2c98eb5e 4203 return err;
ac27a0ec
DK
4204}
4205
ac27a0ec 4206/*
617ba13b 4207 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4208 * underlying buffer_head on success. If 'in_mem' is true, we have all
4209 * data in memory that is needed to recreate the on-disk version of this
4210 * inode.
4211 */
617ba13b
MC
4212static int __ext4_get_inode_loc(struct inode *inode,
4213 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4214{
240799cd
TT
4215 struct ext4_group_desc *gdp;
4216 struct buffer_head *bh;
4217 struct super_block *sb = inode->i_sb;
4218 ext4_fsblk_t block;
4219 int inodes_per_block, inode_offset;
4220
3a06d778 4221 iloc->bh = NULL;
240799cd 4222 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4223 return -EFSCORRUPTED;
ac27a0ec 4224
240799cd
TT
4225 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4226 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4227 if (!gdp)
ac27a0ec
DK
4228 return -EIO;
4229
240799cd
TT
4230 /*
4231 * Figure out the offset within the block group inode table
4232 */
00d09882 4233 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4234 inode_offset = ((inode->i_ino - 1) %
4235 EXT4_INODES_PER_GROUP(sb));
4236 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4237 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4238
4239 bh = sb_getblk(sb, block);
aebf0243 4240 if (unlikely(!bh))
860d21e2 4241 return -ENOMEM;
ac27a0ec
DK
4242 if (!buffer_uptodate(bh)) {
4243 lock_buffer(bh);
9c83a923
HK
4244
4245 /*
4246 * If the buffer has the write error flag, we have failed
4247 * to write out another inode in the same block. In this
4248 * case, we don't have to read the block because we may
4249 * read the old inode data successfully.
4250 */
4251 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4252 set_buffer_uptodate(bh);
4253
ac27a0ec
DK
4254 if (buffer_uptodate(bh)) {
4255 /* someone brought it uptodate while we waited */
4256 unlock_buffer(bh);
4257 goto has_buffer;
4258 }
4259
4260 /*
4261 * If we have all information of the inode in memory and this
4262 * is the only valid inode in the block, we need not read the
4263 * block.
4264 */
4265 if (in_mem) {
4266 struct buffer_head *bitmap_bh;
240799cd 4267 int i, start;
ac27a0ec 4268
240799cd 4269 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4270
240799cd
TT
4271 /* Is the inode bitmap in cache? */
4272 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4273 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4274 goto make_io;
4275
4276 /*
4277 * If the inode bitmap isn't in cache then the
4278 * optimisation may end up performing two reads instead
4279 * of one, so skip it.
4280 */
4281 if (!buffer_uptodate(bitmap_bh)) {
4282 brelse(bitmap_bh);
4283 goto make_io;
4284 }
240799cd 4285 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4286 if (i == inode_offset)
4287 continue;
617ba13b 4288 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4289 break;
4290 }
4291 brelse(bitmap_bh);
240799cd 4292 if (i == start + inodes_per_block) {
ac27a0ec
DK
4293 /* all other inodes are free, so skip I/O */
4294 memset(bh->b_data, 0, bh->b_size);
4295 set_buffer_uptodate(bh);
4296 unlock_buffer(bh);
4297 goto has_buffer;
4298 }
4299 }
4300
4301make_io:
240799cd
TT
4302 /*
4303 * If we need to do any I/O, try to pre-readahead extra
4304 * blocks from the inode table.
4305 */
4306 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4307 ext4_fsblk_t b, end, table;
4308 unsigned num;
0d606e2c 4309 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4310
4311 table = ext4_inode_table(sb, gdp);
b713a5ec 4312 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4313 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4314 if (table > b)
4315 b = table;
0d606e2c 4316 end = b + ra_blks;
240799cd 4317 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4318 if (ext4_has_group_desc_csum(sb))
560671a0 4319 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4320 table += num / inodes_per_block;
4321 if (end > table)
4322 end = table;
4323 while (b <= end)
4324 sb_breadahead(sb, b++);
4325 }
4326
ac27a0ec
DK
4327 /*
4328 * There are other valid inodes in the buffer, this inode
4329 * has in-inode xattrs, or we don't have this inode in memory.
4330 * Read the block from disk.
4331 */
0562e0ba 4332 trace_ext4_load_inode(inode);
ac27a0ec
DK
4333 get_bh(bh);
4334 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4335 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4336 wait_on_buffer(bh);
4337 if (!buffer_uptodate(bh)) {
c398eda0
TT
4338 EXT4_ERROR_INODE_BLOCK(inode, block,
4339 "unable to read itable block");
ac27a0ec
DK
4340 brelse(bh);
4341 return -EIO;
4342 }
4343 }
4344has_buffer:
4345 iloc->bh = bh;
4346 return 0;
4347}
4348
617ba13b 4349int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4350{
4351 /* We have all inode data except xattrs in memory here. */
617ba13b 4352 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4353 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4354}
4355
617ba13b 4356void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4357{
617ba13b 4358 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4359 unsigned int new_fl = 0;
ac27a0ec 4360
617ba13b 4361 if (flags & EXT4_SYNC_FL)
00a1a053 4362 new_fl |= S_SYNC;
617ba13b 4363 if (flags & EXT4_APPEND_FL)
00a1a053 4364 new_fl |= S_APPEND;
617ba13b 4365 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4366 new_fl |= S_IMMUTABLE;
617ba13b 4367 if (flags & EXT4_NOATIME_FL)
00a1a053 4368 new_fl |= S_NOATIME;
617ba13b 4369 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4370 new_fl |= S_DIRSYNC;
a3caa24b
JK
4371 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4372 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4373 !ext4_encrypted_inode(inode))
923ae0ff 4374 new_fl |= S_DAX;
5f16f322 4375 inode_set_flags(inode, new_fl,
923ae0ff 4376 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4377}
4378
ff9ddf7e
JK
4379/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4380void ext4_get_inode_flags(struct ext4_inode_info *ei)
4381{
84a8dce2
DM
4382 unsigned int vfs_fl;
4383 unsigned long old_fl, new_fl;
4384
4385 do {
4386 vfs_fl = ei->vfs_inode.i_flags;
4387 old_fl = ei->i_flags;
4388 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4389 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4390 EXT4_DIRSYNC_FL);
4391 if (vfs_fl & S_SYNC)
4392 new_fl |= EXT4_SYNC_FL;
4393 if (vfs_fl & S_APPEND)
4394 new_fl |= EXT4_APPEND_FL;
4395 if (vfs_fl & S_IMMUTABLE)
4396 new_fl |= EXT4_IMMUTABLE_FL;
4397 if (vfs_fl & S_NOATIME)
4398 new_fl |= EXT4_NOATIME_FL;
4399 if (vfs_fl & S_DIRSYNC)
4400 new_fl |= EXT4_DIRSYNC_FL;
4401 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4402}
de9a55b8 4403
0fc1b451 4404static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4405 struct ext4_inode_info *ei)
0fc1b451
AK
4406{
4407 blkcnt_t i_blocks ;
8180a562
AK
4408 struct inode *inode = &(ei->vfs_inode);
4409 struct super_block *sb = inode->i_sb;
0fc1b451 4410
e2b911c5 4411 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4412 /* we are using combined 48 bit field */
4413 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4414 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4415 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4416 /* i_blocks represent file system block size */
4417 return i_blocks << (inode->i_blkbits - 9);
4418 } else {
4419 return i_blocks;
4420 }
0fc1b451
AK
4421 } else {
4422 return le32_to_cpu(raw_inode->i_blocks_lo);
4423 }
4424}
ff9ddf7e 4425
152a7b0a
TM
4426static inline void ext4_iget_extra_inode(struct inode *inode,
4427 struct ext4_inode *raw_inode,
4428 struct ext4_inode_info *ei)
4429{
4430 __le32 *magic = (void *)raw_inode +
4431 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4432 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4433 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4434 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4435 } else
4436 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4437}
4438
040cb378
LX
4439int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4440{
0b7b7779 4441 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4442 return -EOPNOTSUPP;
4443 *projid = EXT4_I(inode)->i_projid;
4444 return 0;
4445}
4446
1d1fe1ee 4447struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4448{
617ba13b
MC
4449 struct ext4_iloc iloc;
4450 struct ext4_inode *raw_inode;
1d1fe1ee 4451 struct ext4_inode_info *ei;
1d1fe1ee 4452 struct inode *inode;
b436b9be 4453 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4454 long ret;
ac27a0ec 4455 int block;
08cefc7a
EB
4456 uid_t i_uid;
4457 gid_t i_gid;
040cb378 4458 projid_t i_projid;
ac27a0ec 4459
1d1fe1ee
DH
4460 inode = iget_locked(sb, ino);
4461 if (!inode)
4462 return ERR_PTR(-ENOMEM);
4463 if (!(inode->i_state & I_NEW))
4464 return inode;
4465
4466 ei = EXT4_I(inode);
7dc57615 4467 iloc.bh = NULL;
ac27a0ec 4468
1d1fe1ee
DH
4469 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4470 if (ret < 0)
ac27a0ec 4471 goto bad_inode;
617ba13b 4472 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4473
4474 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4475 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4476 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4477 EXT4_INODE_SIZE(inode->i_sb)) {
4478 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4479 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4480 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4481 ret = -EFSCORRUPTED;
814525f4
DW
4482 goto bad_inode;
4483 }
4484 } else
4485 ei->i_extra_isize = 0;
4486
4487 /* Precompute checksum seed for inode metadata */
9aa5d32b 4488 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4489 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4490 __u32 csum;
4491 __le32 inum = cpu_to_le32(inode->i_ino);
4492 __le32 gen = raw_inode->i_generation;
4493 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4494 sizeof(inum));
4495 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4496 sizeof(gen));
4497 }
4498
4499 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4500 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4501 ret = -EFSBADCRC;
814525f4
DW
4502 goto bad_inode;
4503 }
4504
ac27a0ec 4505 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4506 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4507 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4508 if (ext4_has_feature_project(sb) &&
040cb378
LX
4509 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4510 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4511 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4512 else
4513 i_projid = EXT4_DEF_PROJID;
4514
af5bc92d 4515 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4516 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4517 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4518 }
08cefc7a
EB
4519 i_uid_write(inode, i_uid);
4520 i_gid_write(inode, i_gid);
040cb378 4521 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4522 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4523
353eb83c 4524 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4525 ei->i_inline_off = 0;
ac27a0ec
DK
4526 ei->i_dir_start_lookup = 0;
4527 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4528 /* We now have enough fields to check if the inode was active or not.
4529 * This is needed because nfsd might try to access dead inodes
4530 * the test is that same one that e2fsck uses
4531 * NeilBrown 1999oct15
4532 */
4533 if (inode->i_nlink == 0) {
393d1d1d
DTB
4534 if ((inode->i_mode == 0 ||
4535 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4536 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4537 /* this inode is deleted */
1d1fe1ee 4538 ret = -ESTALE;
ac27a0ec
DK
4539 goto bad_inode;
4540 }
4541 /* The only unlinked inodes we let through here have
4542 * valid i_mode and are being read by the orphan
4543 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4544 * the process of deleting those.
4545 * OR it is the EXT4_BOOT_LOADER_INO which is
4546 * not initialized on a new filesystem. */
ac27a0ec 4547 }
ac27a0ec 4548 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4549 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4550 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4551 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4552 ei->i_file_acl |=
4553 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4554 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4555 ei->i_disksize = inode->i_size;
a9e7f447
DM
4556#ifdef CONFIG_QUOTA
4557 ei->i_reserved_quota = 0;
4558#endif
ac27a0ec
DK
4559 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4560 ei->i_block_group = iloc.block_group;
a4912123 4561 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4562 /*
4563 * NOTE! The in-memory inode i_data array is in little-endian order
4564 * even on big-endian machines: we do NOT byteswap the block numbers!
4565 */
617ba13b 4566 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4567 ei->i_data[block] = raw_inode->i_block[block];
4568 INIT_LIST_HEAD(&ei->i_orphan);
4569
b436b9be
JK
4570 /*
4571 * Set transaction id's of transactions that have to be committed
4572 * to finish f[data]sync. We set them to currently running transaction
4573 * as we cannot be sure that the inode or some of its metadata isn't
4574 * part of the transaction - the inode could have been reclaimed and
4575 * now it is reread from disk.
4576 */
4577 if (journal) {
4578 transaction_t *transaction;
4579 tid_t tid;
4580
a931da6a 4581 read_lock(&journal->j_state_lock);
b436b9be
JK
4582 if (journal->j_running_transaction)
4583 transaction = journal->j_running_transaction;
4584 else
4585 transaction = journal->j_committing_transaction;
4586 if (transaction)
4587 tid = transaction->t_tid;
4588 else
4589 tid = journal->j_commit_sequence;
a931da6a 4590 read_unlock(&journal->j_state_lock);
b436b9be
JK
4591 ei->i_sync_tid = tid;
4592 ei->i_datasync_tid = tid;
4593 }
4594
0040d987 4595 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4596 if (ei->i_extra_isize == 0) {
4597 /* The extra space is currently unused. Use it. */
617ba13b
MC
4598 ei->i_extra_isize = sizeof(struct ext4_inode) -
4599 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4600 } else {
152a7b0a 4601 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4602 }
814525f4 4603 }
ac27a0ec 4604
ef7f3835
KS
4605 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4606 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4607 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4608 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4609
ed3654eb 4610 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4611 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4612 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4613 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4614 inode->i_version |=
4615 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4616 }
25ec56b5
JNC
4617 }
4618
c4b5a614 4619 ret = 0;
485c26ec 4620 if (ei->i_file_acl &&
1032988c 4621 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4622 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4623 ei->i_file_acl);
6a797d27 4624 ret = -EFSCORRUPTED;
485c26ec 4625 goto bad_inode;
f19d5870
TM
4626 } else if (!ext4_has_inline_data(inode)) {
4627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4628 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4629 (S_ISLNK(inode->i_mode) &&
4630 !ext4_inode_is_fast_symlink(inode))))
4631 /* Validate extent which is part of inode */
4632 ret = ext4_ext_check_inode(inode);
4633 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4634 (S_ISLNK(inode->i_mode) &&
4635 !ext4_inode_is_fast_symlink(inode))) {
4636 /* Validate block references which are part of inode */
4637 ret = ext4_ind_check_inode(inode);
4638 }
fe2c8191 4639 }
567f3e9a 4640 if (ret)
de9a55b8 4641 goto bad_inode;
7a262f7c 4642
ac27a0ec 4643 if (S_ISREG(inode->i_mode)) {
617ba13b 4644 inode->i_op = &ext4_file_inode_operations;
be64f884 4645 inode->i_fop = &ext4_file_operations;
617ba13b 4646 ext4_set_aops(inode);
ac27a0ec 4647 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4648 inode->i_op = &ext4_dir_inode_operations;
4649 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4650 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4651 if (ext4_encrypted_inode(inode)) {
4652 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4653 ext4_set_aops(inode);
4654 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4655 inode->i_link = (char *)ei->i_data;
617ba13b 4656 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4657 nd_terminate_link(ei->i_data, inode->i_size,
4658 sizeof(ei->i_data) - 1);
4659 } else {
617ba13b
MC
4660 inode->i_op = &ext4_symlink_inode_operations;
4661 ext4_set_aops(inode);
ac27a0ec 4662 }
21fc61c7 4663 inode_nohighmem(inode);
563bdd61
TT
4664 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4665 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4666 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4667 if (raw_inode->i_block[0])
4668 init_special_inode(inode, inode->i_mode,
4669 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4670 else
4671 init_special_inode(inode, inode->i_mode,
4672 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4673 } else if (ino == EXT4_BOOT_LOADER_INO) {
4674 make_bad_inode(inode);
563bdd61 4675 } else {
6a797d27 4676 ret = -EFSCORRUPTED;
24676da4 4677 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4678 goto bad_inode;
ac27a0ec 4679 }
af5bc92d 4680 brelse(iloc.bh);
617ba13b 4681 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4682 unlock_new_inode(inode);
4683 return inode;
ac27a0ec
DK
4684
4685bad_inode:
567f3e9a 4686 brelse(iloc.bh);
1d1fe1ee
DH
4687 iget_failed(inode);
4688 return ERR_PTR(ret);
ac27a0ec
DK
4689}
4690
f4bb2981
TT
4691struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4692{
4693 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4694 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4695 return ext4_iget(sb, ino);
4696}
4697
0fc1b451
AK
4698static int ext4_inode_blocks_set(handle_t *handle,
4699 struct ext4_inode *raw_inode,
4700 struct ext4_inode_info *ei)
4701{
4702 struct inode *inode = &(ei->vfs_inode);
4703 u64 i_blocks = inode->i_blocks;
4704 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4705
4706 if (i_blocks <= ~0U) {
4707 /*
4907cb7b 4708 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4709 * as multiple of 512 bytes
4710 */
8180a562 4711 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4712 raw_inode->i_blocks_high = 0;
84a8dce2 4713 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4714 return 0;
4715 }
e2b911c5 4716 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4717 return -EFBIG;
4718
4719 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4720 /*
4721 * i_blocks can be represented in a 48 bit variable
4722 * as multiple of 512 bytes
4723 */
8180a562 4724 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4725 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4726 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4727 } else {
84a8dce2 4728 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4729 /* i_block is stored in file system block size */
4730 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4731 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4732 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4733 }
f287a1a5 4734 return 0;
0fc1b451
AK
4735}
4736
a26f4992
TT
4737struct other_inode {
4738 unsigned long orig_ino;
4739 struct ext4_inode *raw_inode;
4740};
4741
4742static int other_inode_match(struct inode * inode, unsigned long ino,
4743 void *data)
4744{
4745 struct other_inode *oi = (struct other_inode *) data;
4746
4747 if ((inode->i_ino != ino) ||
4748 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4749 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4750 ((inode->i_state & I_DIRTY_TIME) == 0))
4751 return 0;
4752 spin_lock(&inode->i_lock);
4753 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4754 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4755 (inode->i_state & I_DIRTY_TIME)) {
4756 struct ext4_inode_info *ei = EXT4_I(inode);
4757
4758 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4759 spin_unlock(&inode->i_lock);
4760
4761 spin_lock(&ei->i_raw_lock);
4762 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4763 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4764 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4765 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4766 spin_unlock(&ei->i_raw_lock);
4767 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4768 return -1;
4769 }
4770 spin_unlock(&inode->i_lock);
4771 return -1;
4772}
4773
4774/*
4775 * Opportunistically update the other time fields for other inodes in
4776 * the same inode table block.
4777 */
4778static void ext4_update_other_inodes_time(struct super_block *sb,
4779 unsigned long orig_ino, char *buf)
4780{
4781 struct other_inode oi;
4782 unsigned long ino;
4783 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4784 int inode_size = EXT4_INODE_SIZE(sb);
4785
4786 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4787 /*
4788 * Calculate the first inode in the inode table block. Inode
4789 * numbers are one-based. That is, the first inode in a block
4790 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4791 */
4792 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4793 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4794 if (ino == orig_ino)
4795 continue;
4796 oi.raw_inode = (struct ext4_inode *) buf;
4797 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4798 }
4799}
4800
ac27a0ec
DK
4801/*
4802 * Post the struct inode info into an on-disk inode location in the
4803 * buffer-cache. This gobbles the caller's reference to the
4804 * buffer_head in the inode location struct.
4805 *
4806 * The caller must have write access to iloc->bh.
4807 */
617ba13b 4808static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4809 struct inode *inode,
830156c7 4810 struct ext4_iloc *iloc)
ac27a0ec 4811{
617ba13b
MC
4812 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4813 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4814 struct buffer_head *bh = iloc->bh;
202ee5df 4815 struct super_block *sb = inode->i_sb;
ac27a0ec 4816 int err = 0, rc, block;
202ee5df 4817 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4818 uid_t i_uid;
4819 gid_t i_gid;
040cb378 4820 projid_t i_projid;
ac27a0ec 4821
202ee5df
TT
4822 spin_lock(&ei->i_raw_lock);
4823
4824 /* For fields not tracked in the in-memory inode,
ac27a0ec 4825 * initialise them to zero for new inodes. */
19f5fb7a 4826 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4827 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4828
ff9ddf7e 4829 ext4_get_inode_flags(ei);
ac27a0ec 4830 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4831 i_uid = i_uid_read(inode);
4832 i_gid = i_gid_read(inode);
040cb378 4833 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 4834 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4835 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4836 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4837/*
4838 * Fix up interoperability with old kernels. Otherwise, old inodes get
4839 * re-used with the upper 16 bits of the uid/gid intact
4840 */
93e3b4e6
DJ
4841 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4842 raw_inode->i_uid_high = 0;
4843 raw_inode->i_gid_high = 0;
4844 } else {
ac27a0ec 4845 raw_inode->i_uid_high =
08cefc7a 4846 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4847 raw_inode->i_gid_high =
08cefc7a 4848 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4849 }
4850 } else {
08cefc7a
EB
4851 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4852 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4853 raw_inode->i_uid_high = 0;
4854 raw_inode->i_gid_high = 0;
4855 }
4856 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4857
4858 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4859 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4860 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4861 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4862
bce92d56
LX
4863 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4864 if (err) {
202ee5df 4865 spin_unlock(&ei->i_raw_lock);
0fc1b451 4866 goto out_brelse;
202ee5df 4867 }
ac27a0ec 4868 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4869 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4870 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4871 raw_inode->i_file_acl_high =
4872 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4873 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4874 if (ei->i_disksize != ext4_isize(raw_inode)) {
4875 ext4_isize_set(raw_inode, ei->i_disksize);
4876 need_datasync = 1;
4877 }
a48380f7 4878 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 4879 if (!ext4_has_feature_large_file(sb) ||
a48380f7 4880 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4881 cpu_to_le32(EXT4_GOOD_OLD_REV))
4882 set_large_file = 1;
ac27a0ec
DK
4883 }
4884 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4885 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4886 if (old_valid_dev(inode->i_rdev)) {
4887 raw_inode->i_block[0] =
4888 cpu_to_le32(old_encode_dev(inode->i_rdev));
4889 raw_inode->i_block[1] = 0;
4890 } else {
4891 raw_inode->i_block[0] = 0;
4892 raw_inode->i_block[1] =
4893 cpu_to_le32(new_encode_dev(inode->i_rdev));
4894 raw_inode->i_block[2] = 0;
4895 }
f19d5870 4896 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4897 for (block = 0; block < EXT4_N_BLOCKS; block++)
4898 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4899 }
ac27a0ec 4900
ed3654eb 4901 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4902 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4903 if (ei->i_extra_isize) {
4904 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4905 raw_inode->i_version_hi =
4906 cpu_to_le32(inode->i_version >> 32);
4907 raw_inode->i_extra_isize =
4908 cpu_to_le16(ei->i_extra_isize);
4909 }
25ec56b5 4910 }
040cb378 4911
0b7b7779 4912 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
4913 i_projid != EXT4_DEF_PROJID);
4914
4915 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4916 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4917 raw_inode->i_projid = cpu_to_le32(i_projid);
4918
814525f4 4919 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4920 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4921 if (inode->i_sb->s_flags & MS_LAZYTIME)
4922 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4923 bh->b_data);
202ee5df 4924
830156c7 4925 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4926 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4927 if (!err)
4928 err = rc;
19f5fb7a 4929 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4930 if (set_large_file) {
5d601255 4931 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4932 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4933 if (err)
4934 goto out_brelse;
4935 ext4_update_dynamic_rev(sb);
e2b911c5 4936 ext4_set_feature_large_file(sb);
202ee5df
TT
4937 ext4_handle_sync(handle);
4938 err = ext4_handle_dirty_super(handle, sb);
4939 }
b71fc079 4940 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4941out_brelse:
af5bc92d 4942 brelse(bh);
617ba13b 4943 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4944 return err;
4945}
4946
4947/*
617ba13b 4948 * ext4_write_inode()
ac27a0ec
DK
4949 *
4950 * We are called from a few places:
4951 *
87f7e416 4952 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4953 * Here, there will be no transaction running. We wait for any running
4907cb7b 4954 * transaction to commit.
ac27a0ec 4955 *
87f7e416
TT
4956 * - Within flush work (sys_sync(), kupdate and such).
4957 * We wait on commit, if told to.
ac27a0ec 4958 *
87f7e416
TT
4959 * - Within iput_final() -> write_inode_now()
4960 * We wait on commit, if told to.
ac27a0ec
DK
4961 *
4962 * In all cases it is actually safe for us to return without doing anything,
4963 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4964 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4965 * writeback.
ac27a0ec
DK
4966 *
4967 * Note that we are absolutely dependent upon all inode dirtiers doing the
4968 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4969 * which we are interested.
4970 *
4971 * It would be a bug for them to not do this. The code:
4972 *
4973 * mark_inode_dirty(inode)
4974 * stuff();
4975 * inode->i_size = expr;
4976 *
87f7e416
TT
4977 * is in error because write_inode() could occur while `stuff()' is running,
4978 * and the new i_size will be lost. Plus the inode will no longer be on the
4979 * superblock's dirty inode list.
ac27a0ec 4980 */
a9185b41 4981int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4982{
91ac6f43
FM
4983 int err;
4984
87f7e416 4985 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4986 return 0;
4987
91ac6f43
FM
4988 if (EXT4_SB(inode->i_sb)->s_journal) {
4989 if (ext4_journal_current_handle()) {
4990 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4991 dump_stack();
4992 return -EIO;
4993 }
ac27a0ec 4994
10542c22
JK
4995 /*
4996 * No need to force transaction in WB_SYNC_NONE mode. Also
4997 * ext4_sync_fs() will force the commit after everything is
4998 * written.
4999 */
5000 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5001 return 0;
5002
5003 err = ext4_force_commit(inode->i_sb);
5004 } else {
5005 struct ext4_iloc iloc;
ac27a0ec 5006
8b472d73 5007 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5008 if (err)
5009 return err;
10542c22
JK
5010 /*
5011 * sync(2) will flush the whole buffer cache. No need to do
5012 * it here separately for each inode.
5013 */
5014 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5015 sync_dirty_buffer(iloc.bh);
5016 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5017 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5018 "IO error syncing inode");
830156c7
FM
5019 err = -EIO;
5020 }
fd2dd9fb 5021 brelse(iloc.bh);
91ac6f43
FM
5022 }
5023 return err;
ac27a0ec
DK
5024}
5025
53e87268
JK
5026/*
5027 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5028 * buffers that are attached to a page stradding i_size and are undergoing
5029 * commit. In that case we have to wait for commit to finish and try again.
5030 */
5031static void ext4_wait_for_tail_page_commit(struct inode *inode)
5032{
5033 struct page *page;
5034 unsigned offset;
5035 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5036 tid_t commit_tid = 0;
5037 int ret;
5038
09cbfeaf 5039 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5040 /*
5041 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5042 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5043 * blocksize case
5044 */
09cbfeaf 5045 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
53e87268
JK
5046 return;
5047 while (1) {
5048 page = find_lock_page(inode->i_mapping,
09cbfeaf 5049 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5050 if (!page)
5051 return;
ca99fdd2 5052 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5053 PAGE_SIZE - offset);
53e87268 5054 unlock_page(page);
09cbfeaf 5055 put_page(page);
53e87268
JK
5056 if (ret != -EBUSY)
5057 return;
5058 commit_tid = 0;
5059 read_lock(&journal->j_state_lock);
5060 if (journal->j_committing_transaction)
5061 commit_tid = journal->j_committing_transaction->t_tid;
5062 read_unlock(&journal->j_state_lock);
5063 if (commit_tid)
5064 jbd2_log_wait_commit(journal, commit_tid);
5065 }
5066}
5067
ac27a0ec 5068/*
617ba13b 5069 * ext4_setattr()
ac27a0ec
DK
5070 *
5071 * Called from notify_change.
5072 *
5073 * We want to trap VFS attempts to truncate the file as soon as
5074 * possible. In particular, we want to make sure that when the VFS
5075 * shrinks i_size, we put the inode on the orphan list and modify
5076 * i_disksize immediately, so that during the subsequent flushing of
5077 * dirty pages and freeing of disk blocks, we can guarantee that any
5078 * commit will leave the blocks being flushed in an unused state on
5079 * disk. (On recovery, the inode will get truncated and the blocks will
5080 * be freed, so we have a strong guarantee that no future commit will
5081 * leave these blocks visible to the user.)
5082 *
678aaf48
JK
5083 * Another thing we have to assure is that if we are in ordered mode
5084 * and inode is still attached to the committing transaction, we must
5085 * we start writeout of all the dirty pages which are being truncated.
5086 * This way we are sure that all the data written in the previous
5087 * transaction are already on disk (truncate waits for pages under
5088 * writeback).
5089 *
5090 * Called with inode->i_mutex down.
ac27a0ec 5091 */
617ba13b 5092int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5093{
2b0143b5 5094 struct inode *inode = d_inode(dentry);
ac27a0ec 5095 int error, rc = 0;
3d287de3 5096 int orphan = 0;
ac27a0ec
DK
5097 const unsigned int ia_valid = attr->ia_valid;
5098
31051c85 5099 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5100 if (error)
5101 return error;
5102
a7cdadee
JK
5103 if (is_quota_modification(inode, attr)) {
5104 error = dquot_initialize(inode);
5105 if (error)
5106 return error;
5107 }
08cefc7a
EB
5108 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5109 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5110 handle_t *handle;
5111
5112 /* (user+group)*(old+new) structure, inode write (sb,
5113 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5114 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5115 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5116 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5117 if (IS_ERR(handle)) {
5118 error = PTR_ERR(handle);
5119 goto err_out;
5120 }
b43fa828 5121 error = dquot_transfer(inode, attr);
ac27a0ec 5122 if (error) {
617ba13b 5123 ext4_journal_stop(handle);
ac27a0ec
DK
5124 return error;
5125 }
5126 /* Update corresponding info in inode so that everything is in
5127 * one transaction */
5128 if (attr->ia_valid & ATTR_UID)
5129 inode->i_uid = attr->ia_uid;
5130 if (attr->ia_valid & ATTR_GID)
5131 inode->i_gid = attr->ia_gid;
617ba13b
MC
5132 error = ext4_mark_inode_dirty(handle, inode);
5133 ext4_journal_stop(handle);
ac27a0ec
DK
5134 }
5135
3da40c7b 5136 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5137 handle_t *handle;
3da40c7b
JB
5138 loff_t oldsize = inode->i_size;
5139 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5140
12e9b892 5141 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5142 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5143
0c095c7f
TT
5144 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5145 return -EFBIG;
e2b46574 5146 }
3da40c7b
JB
5147 if (!S_ISREG(inode->i_mode))
5148 return -EINVAL;
dff6efc3
CH
5149
5150 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5151 inode_inc_iversion(inode);
5152
3da40c7b 5153 if (ext4_should_order_data(inode) &&
5208386c 5154 (attr->ia_size < inode->i_size)) {
3da40c7b 5155 error = ext4_begin_ordered_truncate(inode,
678aaf48 5156 attr->ia_size);
3da40c7b
JB
5157 if (error)
5158 goto err_out;
5159 }
5160 if (attr->ia_size != inode->i_size) {
5208386c
JK
5161 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5162 if (IS_ERR(handle)) {
5163 error = PTR_ERR(handle);
5164 goto err_out;
5165 }
3da40c7b 5166 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5167 error = ext4_orphan_add(handle, inode);
5168 orphan = 1;
5169 }
911af577
EG
5170 /*
5171 * Update c/mtime on truncate up, ext4_truncate() will
5172 * update c/mtime in shrink case below
5173 */
5174 if (!shrink) {
eeca7ea1 5175 inode->i_mtime = current_time(inode);
911af577
EG
5176 inode->i_ctime = inode->i_mtime;
5177 }
90e775b7 5178 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5179 EXT4_I(inode)->i_disksize = attr->ia_size;
5180 rc = ext4_mark_inode_dirty(handle, inode);
5181 if (!error)
5182 error = rc;
90e775b7
JK
5183 /*
5184 * We have to update i_size under i_data_sem together
5185 * with i_disksize to avoid races with writeback code
5186 * running ext4_wb_update_i_disksize().
5187 */
5188 if (!error)
5189 i_size_write(inode, attr->ia_size);
5190 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5191 ext4_journal_stop(handle);
5192 if (error) {
3da40c7b
JB
5193 if (orphan)
5194 ext4_orphan_del(NULL, inode);
678aaf48
JK
5195 goto err_out;
5196 }
d6320cbf 5197 }
3da40c7b
JB
5198 if (!shrink)
5199 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5200
5208386c
JK
5201 /*
5202 * Blocks are going to be removed from the inode. Wait
5203 * for dio in flight. Temporarily disable
5204 * dioread_nolock to prevent livelock.
5205 */
5206 if (orphan) {
5207 if (!ext4_should_journal_data(inode)) {
5208 ext4_inode_block_unlocked_dio(inode);
5209 inode_dio_wait(inode);
5210 ext4_inode_resume_unlocked_dio(inode);
5211 } else
5212 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5213 }
ea3d7209 5214 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5215 /*
5216 * Truncate pagecache after we've waited for commit
5217 * in data=journal mode to make pages freeable.
5218 */
923ae0ff 5219 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5220 if (shrink) {
5221 rc = ext4_truncate(inode);
5222 if (rc)
5223 error = rc;
5224 }
ea3d7209 5225 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5226 }
ac27a0ec 5227
2c98eb5e 5228 if (!error) {
1025774c
CH
5229 setattr_copy(inode, attr);
5230 mark_inode_dirty(inode);
5231 }
5232
5233 /*
5234 * If the call to ext4_truncate failed to get a transaction handle at
5235 * all, we need to clean up the in-core orphan list manually.
5236 */
3d287de3 5237 if (orphan && inode->i_nlink)
617ba13b 5238 ext4_orphan_del(NULL, inode);
ac27a0ec 5239
2c98eb5e 5240 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5241 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5242
5243err_out:
617ba13b 5244 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5245 if (!error)
5246 error = rc;
5247 return error;
5248}
5249
3e3398a0
MC
5250int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5251 struct kstat *stat)
5252{
5253 struct inode *inode;
8af8eecc 5254 unsigned long long delalloc_blocks;
3e3398a0 5255
2b0143b5 5256 inode = d_inode(dentry);
3e3398a0
MC
5257 generic_fillattr(inode, stat);
5258
9206c561
AD
5259 /*
5260 * If there is inline data in the inode, the inode will normally not
5261 * have data blocks allocated (it may have an external xattr block).
5262 * Report at least one sector for such files, so tools like tar, rsync,
5263 * others doen't incorrectly think the file is completely sparse.
5264 */
5265 if (unlikely(ext4_has_inline_data(inode)))
5266 stat->blocks += (stat->size + 511) >> 9;
5267
3e3398a0
MC
5268 /*
5269 * We can't update i_blocks if the block allocation is delayed
5270 * otherwise in the case of system crash before the real block
5271 * allocation is done, we will have i_blocks inconsistent with
5272 * on-disk file blocks.
5273 * We always keep i_blocks updated together with real
5274 * allocation. But to not confuse with user, stat
5275 * will return the blocks that include the delayed allocation
5276 * blocks for this file.
5277 */
96607551 5278 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5279 EXT4_I(inode)->i_reserved_data_blocks);
5280 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5281 return 0;
5282}
ac27a0ec 5283
fffb2739
JK
5284static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5285 int pextents)
a02908f1 5286{
12e9b892 5287 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5288 return ext4_ind_trans_blocks(inode, lblocks);
5289 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5290}
ac51d837 5291
ac27a0ec 5292/*
a02908f1
MC
5293 * Account for index blocks, block groups bitmaps and block group
5294 * descriptor blocks if modify datablocks and index blocks
5295 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5296 *
a02908f1 5297 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5298 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5299 * they could still across block group boundary.
ac27a0ec 5300 *
a02908f1
MC
5301 * Also account for superblock, inode, quota and xattr blocks
5302 */
fffb2739
JK
5303static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5304 int pextents)
a02908f1 5305{
8df9675f
TT
5306 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5307 int gdpblocks;
a02908f1
MC
5308 int idxblocks;
5309 int ret = 0;
5310
5311 /*
fffb2739
JK
5312 * How many index blocks need to touch to map @lblocks logical blocks
5313 * to @pextents physical extents?
a02908f1 5314 */
fffb2739 5315 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5316
5317 ret = idxblocks;
5318
5319 /*
5320 * Now let's see how many group bitmaps and group descriptors need
5321 * to account
5322 */
fffb2739 5323 groups = idxblocks + pextents;
a02908f1 5324 gdpblocks = groups;
8df9675f
TT
5325 if (groups > ngroups)
5326 groups = ngroups;
a02908f1
MC
5327 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5328 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5329
5330 /* bitmaps and block group descriptor blocks */
5331 ret += groups + gdpblocks;
5332
5333 /* Blocks for super block, inode, quota and xattr blocks */
5334 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5335
5336 return ret;
5337}
5338
5339/*
25985edc 5340 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5341 * the modification of a single pages into a single transaction,
5342 * which may include multiple chunks of block allocations.
ac27a0ec 5343 *
525f4ed8 5344 * This could be called via ext4_write_begin()
ac27a0ec 5345 *
525f4ed8 5346 * We need to consider the worse case, when
a02908f1 5347 * one new block per extent.
ac27a0ec 5348 */
a86c6181 5349int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5350{
617ba13b 5351 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5352 int ret;
5353
fffb2739 5354 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5355
a02908f1 5356 /* Account for data blocks for journalled mode */
617ba13b 5357 if (ext4_should_journal_data(inode))
a02908f1 5358 ret += bpp;
ac27a0ec
DK
5359 return ret;
5360}
f3bd1f3f
MC
5361
5362/*
5363 * Calculate the journal credits for a chunk of data modification.
5364 *
5365 * This is called from DIO, fallocate or whoever calling
79e83036 5366 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5367 *
5368 * journal buffers for data blocks are not included here, as DIO
5369 * and fallocate do no need to journal data buffers.
5370 */
5371int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5372{
5373 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5374}
5375
ac27a0ec 5376/*
617ba13b 5377 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5378 * Give this, we know that the caller already has write access to iloc->bh.
5379 */
617ba13b 5380int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5381 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5382{
5383 int err = 0;
5384
c64db50e 5385 if (IS_I_VERSION(inode))
25ec56b5
JNC
5386 inode_inc_iversion(inode);
5387
ac27a0ec
DK
5388 /* the do_update_inode consumes one bh->b_count */
5389 get_bh(iloc->bh);
5390
dab291af 5391 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5392 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5393 put_bh(iloc->bh);
5394 return err;
5395}
5396
5397/*
5398 * On success, We end up with an outstanding reference count against
5399 * iloc->bh. This _must_ be cleaned up later.
5400 */
5401
5402int
617ba13b
MC
5403ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5404 struct ext4_iloc *iloc)
ac27a0ec 5405{
0390131b
FM
5406 int err;
5407
5408 err = ext4_get_inode_loc(inode, iloc);
5409 if (!err) {
5410 BUFFER_TRACE(iloc->bh, "get_write_access");
5411 err = ext4_journal_get_write_access(handle, iloc->bh);
5412 if (err) {
5413 brelse(iloc->bh);
5414 iloc->bh = NULL;
ac27a0ec
DK
5415 }
5416 }
617ba13b 5417 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5418 return err;
5419}
5420
6dd4ee7c
KS
5421/*
5422 * Expand an inode by new_extra_isize bytes.
5423 * Returns 0 on success or negative error number on failure.
5424 */
1d03ec98
AK
5425static int ext4_expand_extra_isize(struct inode *inode,
5426 unsigned int new_extra_isize,
5427 struct ext4_iloc iloc,
5428 handle_t *handle)
6dd4ee7c
KS
5429{
5430 struct ext4_inode *raw_inode;
5431 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5432
5433 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5434 return 0;
5435
5436 raw_inode = ext4_raw_inode(&iloc);
5437
5438 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5439
5440 /* No extended attributes present */
19f5fb7a
TT
5441 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5442 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5443 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5444 new_extra_isize);
5445 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5446 return 0;
5447 }
5448
5449 /* try to expand with EAs present */
5450 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5451 raw_inode, handle);
5452}
5453
ac27a0ec
DK
5454/*
5455 * What we do here is to mark the in-core inode as clean with respect to inode
5456 * dirtiness (it may still be data-dirty).
5457 * This means that the in-core inode may be reaped by prune_icache
5458 * without having to perform any I/O. This is a very good thing,
5459 * because *any* task may call prune_icache - even ones which
5460 * have a transaction open against a different journal.
5461 *
5462 * Is this cheating? Not really. Sure, we haven't written the
5463 * inode out, but prune_icache isn't a user-visible syncing function.
5464 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5465 * we start and wait on commits.
ac27a0ec 5466 */
617ba13b 5467int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5468{
617ba13b 5469 struct ext4_iloc iloc;
6dd4ee7c
KS
5470 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5471 static unsigned int mnt_count;
5472 int err, ret;
ac27a0ec
DK
5473
5474 might_sleep();
7ff9c073 5475 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5476 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5477 if (err)
5478 return err;
88e03877 5479 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5480 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c 5481 /*
88e03877
EW
5482 * In nojournal mode, we can immediately attempt to expand
5483 * the inode. When journaled, we first need to obtain extra
5484 * buffer credits since we may write into the EA block
6dd4ee7c
KS
5485 * with this same handle. If journal_extend fails, then it will
5486 * only result in a minor loss of functionality for that inode.
5487 * If this is felt to be critical, then e2fsck should be run to
5488 * force a large enough s_min_extra_isize.
5489 */
88e03877
EW
5490 if (!ext4_handle_valid(handle) ||
5491 jbd2_journal_extend(handle,
5492 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
6dd4ee7c
KS
5493 ret = ext4_expand_extra_isize(inode,
5494 sbi->s_want_extra_isize,
5495 iloc, handle);
5496 if (ret) {
c1bddad9
AK
5497 if (mnt_count !=
5498 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5499 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5500 "Unable to expand inode %lu. Delete"
5501 " some EAs or run e2fsck.",
5502 inode->i_ino);
c1bddad9
AK
5503 mnt_count =
5504 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5505 }
5506 }
5507 }
5508 }
5e1021f2 5509 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5510}
5511
5512/*
617ba13b 5513 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5514 *
5515 * We're really interested in the case where a file is being extended.
5516 * i_size has been changed by generic_commit_write() and we thus need
5517 * to include the updated inode in the current transaction.
5518 *
5dd4056d 5519 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5520 * are allocated to the file.
5521 *
5522 * If the inode is marked synchronous, we don't honour that here - doing
5523 * so would cause a commit on atime updates, which we don't bother doing.
5524 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5525 *
5526 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5527 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5528 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5529 */
aa385729 5530void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5531{
ac27a0ec
DK
5532 handle_t *handle;
5533
0ae45f63
TT
5534 if (flags == I_DIRTY_TIME)
5535 return;
9924a92a 5536 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5537 if (IS_ERR(handle))
5538 goto out;
f3dc272f 5539
f3dc272f
CW
5540 ext4_mark_inode_dirty(handle, inode);
5541
617ba13b 5542 ext4_journal_stop(handle);
ac27a0ec
DK
5543out:
5544 return;
5545}
5546
5547#if 0
5548/*
5549 * Bind an inode's backing buffer_head into this transaction, to prevent
5550 * it from being flushed to disk early. Unlike
617ba13b 5551 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5552 * returns no iloc structure, so the caller needs to repeat the iloc
5553 * lookup to mark the inode dirty later.
5554 */
617ba13b 5555static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5556{
617ba13b 5557 struct ext4_iloc iloc;
ac27a0ec
DK
5558
5559 int err = 0;
5560 if (handle) {
617ba13b 5561 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5562 if (!err) {
5563 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5564 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5565 if (!err)
0390131b 5566 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5567 NULL,
0390131b 5568 iloc.bh);
ac27a0ec
DK
5569 brelse(iloc.bh);
5570 }
5571 }
617ba13b 5572 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5573 return err;
5574}
5575#endif
5576
617ba13b 5577int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5578{
5579 journal_t *journal;
5580 handle_t *handle;
5581 int err;
c8585c6f 5582 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5583
5584 /*
5585 * We have to be very careful here: changing a data block's
5586 * journaling status dynamically is dangerous. If we write a
5587 * data block to the journal, change the status and then delete
5588 * that block, we risk forgetting to revoke the old log record
5589 * from the journal and so a subsequent replay can corrupt data.
5590 * So, first we make sure that the journal is empty and that
5591 * nobody is changing anything.
5592 */
5593
617ba13b 5594 journal = EXT4_JOURNAL(inode);
0390131b
FM
5595 if (!journal)
5596 return 0;
d699594d 5597 if (is_journal_aborted(journal))
ac27a0ec
DK
5598 return -EROFS;
5599
17335dcc
DM
5600 /* Wait for all existing dio workers */
5601 ext4_inode_block_unlocked_dio(inode);
5602 inode_dio_wait(inode);
5603
4c546592
DJ
5604 /*
5605 * Before flushing the journal and switching inode's aops, we have
5606 * to flush all dirty data the inode has. There can be outstanding
5607 * delayed allocations, there can be unwritten extents created by
5608 * fallocate or buffered writes in dioread_nolock mode covered by
5609 * dirty data which can be converted only after flushing the dirty
5610 * data (and journalled aops don't know how to handle these cases).
5611 */
5612 if (val) {
5613 down_write(&EXT4_I(inode)->i_mmap_sem);
5614 err = filemap_write_and_wait(inode->i_mapping);
5615 if (err < 0) {
5616 up_write(&EXT4_I(inode)->i_mmap_sem);
5617 ext4_inode_resume_unlocked_dio(inode);
5618 return err;
5619 }
5620 }
5621
c8585c6f 5622 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 5623 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5624
5625 /*
5626 * OK, there are no updates running now, and all cached data is
5627 * synced to disk. We are now in a completely consistent state
5628 * which doesn't have anything in the journal, and we know that
5629 * no filesystem updates are running, so it is safe to modify
5630 * the inode's in-core data-journaling state flag now.
5631 */
5632
5633 if (val)
12e9b892 5634 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5635 else {
4f879ca6
JK
5636 err = jbd2_journal_flush(journal);
5637 if (err < 0) {
5638 jbd2_journal_unlock_updates(journal);
c8585c6f 5639 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
5640 ext4_inode_resume_unlocked_dio(inode);
5641 return err;
5642 }
12e9b892 5643 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5644 }
617ba13b 5645 ext4_set_aops(inode);
a3caa24b
JK
5646 /*
5647 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5648 * E.g. S_DAX may get cleared / set.
5649 */
5650 ext4_set_inode_flags(inode);
ac27a0ec 5651
dab291af 5652 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
5653 percpu_up_write(&sbi->s_journal_flag_rwsem);
5654
4c546592
DJ
5655 if (val)
5656 up_write(&EXT4_I(inode)->i_mmap_sem);
17335dcc 5657 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5658
5659 /* Finally we can mark the inode as dirty. */
5660
9924a92a 5661 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5662 if (IS_ERR(handle))
5663 return PTR_ERR(handle);
5664
617ba13b 5665 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5666 ext4_handle_sync(handle);
617ba13b
MC
5667 ext4_journal_stop(handle);
5668 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5669
5670 return err;
5671}
2e9ee850
AK
5672
5673static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5674{
5675 return !buffer_mapped(bh);
5676}
5677
c2ec175c 5678int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5679{
c2ec175c 5680 struct page *page = vmf->page;
2e9ee850
AK
5681 loff_t size;
5682 unsigned long len;
9ea7df53 5683 int ret;
2e9ee850 5684 struct file *file = vma->vm_file;
496ad9aa 5685 struct inode *inode = file_inode(file);
2e9ee850 5686 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5687 handle_t *handle;
5688 get_block_t *get_block;
5689 int retries = 0;
2e9ee850 5690
8e8ad8a5 5691 sb_start_pagefault(inode->i_sb);
041bbb6d 5692 file_update_time(vma->vm_file);
ea3d7209
JK
5693
5694 down_read(&EXT4_I(inode)->i_mmap_sem);
9ea7df53
JK
5695 /* Delalloc case is easy... */
5696 if (test_opt(inode->i_sb, DELALLOC) &&
5697 !ext4_should_journal_data(inode) &&
5698 !ext4_nonda_switch(inode->i_sb)) {
5699 do {
5c500029 5700 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5701 ext4_da_get_block_prep);
5702 } while (ret == -ENOSPC &&
5703 ext4_should_retry_alloc(inode->i_sb, &retries));
5704 goto out_ret;
2e9ee850 5705 }
0e499890
DW
5706
5707 lock_page(page);
9ea7df53
JK
5708 size = i_size_read(inode);
5709 /* Page got truncated from under us? */
5710 if (page->mapping != mapping || page_offset(page) > size) {
5711 unlock_page(page);
5712 ret = VM_FAULT_NOPAGE;
5713 goto out;
0e499890 5714 }
2e9ee850 5715
09cbfeaf
KS
5716 if (page->index == size >> PAGE_SHIFT)
5717 len = size & ~PAGE_MASK;
2e9ee850 5718 else
09cbfeaf 5719 len = PAGE_SIZE;
a827eaff 5720 /*
9ea7df53
JK
5721 * Return if we have all the buffers mapped. This avoids the need to do
5722 * journal_start/journal_stop which can block and take a long time
a827eaff 5723 */
2e9ee850 5724 if (page_has_buffers(page)) {
f19d5870
TM
5725 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5726 0, len, NULL,
5727 ext4_bh_unmapped)) {
9ea7df53 5728 /* Wait so that we don't change page under IO */
1d1d1a76 5729 wait_for_stable_page(page);
9ea7df53
JK
5730 ret = VM_FAULT_LOCKED;
5731 goto out;
a827eaff 5732 }
2e9ee850 5733 }
a827eaff 5734 unlock_page(page);
9ea7df53
JK
5735 /* OK, we need to fill the hole... */
5736 if (ext4_should_dioread_nolock(inode))
705965bd 5737 get_block = ext4_get_block_unwritten;
9ea7df53
JK
5738 else
5739 get_block = ext4_get_block;
5740retry_alloc:
9924a92a
TT
5741 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5742 ext4_writepage_trans_blocks(inode));
9ea7df53 5743 if (IS_ERR(handle)) {
c2ec175c 5744 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5745 goto out;
5746 }
5c500029 5747 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5748 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5749 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 5750 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
5751 unlock_page(page);
5752 ret = VM_FAULT_SIGBUS;
fcbb5515 5753 ext4_journal_stop(handle);
9ea7df53
JK
5754 goto out;
5755 }
5756 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5757 }
5758 ext4_journal_stop(handle);
5759 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5760 goto retry_alloc;
5761out_ret:
5762 ret = block_page_mkwrite_return(ret);
5763out:
ea3d7209 5764 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 5765 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5766 return ret;
5767}
ea3d7209
JK
5768
5769int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5770{
5771 struct inode *inode = file_inode(vma->vm_file);
5772 int err;
5773
5774 down_read(&EXT4_I(inode)->i_mmap_sem);
5775 err = filemap_fault(vma, vmf);
5776 up_read(&EXT4_I(inode)->i_mmap_sem);
5777
5778 return err;
5779}
2d90c160
JK
5780
5781/*
5782 * Find the first extent at or after @lblk in an inode that is not a hole.
5783 * Search for @map_len blocks at most. The extent is returned in @result.
5784 *
5785 * The function returns 1 if we found an extent. The function returns 0 in
5786 * case there is no extent at or after @lblk and in that case also sets
5787 * @result->es_len to 0. In case of error, the error code is returned.
5788 */
5789int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5790 unsigned int map_len, struct extent_status *result)
5791{
5792 struct ext4_map_blocks map;
5793 struct extent_status es = {};
5794 int ret;
5795
5796 map.m_lblk = lblk;
5797 map.m_len = map_len;
5798
5799 /*
5800 * For non-extent based files this loop may iterate several times since
5801 * we do not determine full hole size.
5802 */
5803 while (map.m_len > 0) {
5804 ret = ext4_map_blocks(NULL, inode, &map, 0);
5805 if (ret < 0)
5806 return ret;
5807 /* There's extent covering m_lblk? Just return it. */
5808 if (ret > 0) {
5809 int status;
5810
5811 ext4_es_store_pblock(result, map.m_pblk);
5812 result->es_lblk = map.m_lblk;
5813 result->es_len = map.m_len;
5814 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5815 status = EXTENT_STATUS_UNWRITTEN;
5816 else
5817 status = EXTENT_STATUS_WRITTEN;
5818 ext4_es_store_status(result, status);
5819 return 1;
5820 }
5821 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5822 map.m_lblk + map.m_len - 1,
5823 &es);
5824 /* Is delalloc data before next block in extent tree? */
5825 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5826 ext4_lblk_t offset = 0;
5827
5828 if (es.es_lblk < lblk)
5829 offset = lblk - es.es_lblk;
5830 result->es_lblk = es.es_lblk + offset;
5831 ext4_es_store_pblock(result,
5832 ext4_es_pblock(&es) + offset);
5833 result->es_len = es.es_len - offset;
5834 ext4_es_store_status(result, ext4_es_status(&es));
5835
5836 return 1;
5837 }
5838 /* There's a hole at m_lblk, advance us after it */
5839 map.m_lblk += map.m_len;
5840 map_len -= map.m_len;
5841 map.m_len = map_len;
5842 cond_resched();
5843 }
5844 result->es_len = 0;
5845 return 0;
5846}