ext4: don't let i_reserved_meta_blocks go negative
[linux-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
617ba13b 148static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
617ba13b 150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154}
155
ac27a0ec
DK
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
fa5d1113 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 162 int nblocks)
ac27a0ec 163{
487caeef
JK
164 int ret;
165
166 /*
e35fd660 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
0390131b 172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 173 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 174 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 175 ret = ext4_journal_restart(handle, nblocks);
487caeef 176 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 177 ext4_discard_preallocations(inode);
487caeef
JK
178
179 return ret;
ac27a0ec
DK
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
0930fcc1 185void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
186{
187 handle_t *handle;
bc965ab3 188 int err;
ac27a0ec 189
7ff9c073 190 trace_ext4_evict_inode(inode);
2581fdc8 191
2581fdc8
JZ
192 ext4_ioend_wait(inode);
193
0930fcc1 194 if (inode->i_nlink) {
2d859db3
JK
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
0930fcc1
AV
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
907f4554 226 if (!is_bad_inode(inode))
871a2931 227 dquot_initialize(inode);
907f4554 228
678aaf48
JK
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
9f125d64 236 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 237 if (IS_ERR(handle)) {
bc965ab3 238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
239 /*
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
242 * cleaned up.
243 */
617ba13b 244 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
245 goto no_delete;
246 }
247
248 if (IS_SYNC(inode))
0390131b 249 ext4_handle_sync(handle);
ac27a0ec 250 inode->i_size = 0;
bc965ab3
TT
251 err = ext4_mark_inode_dirty(handle, inode);
252 if (err) {
12062ddd 253 ext4_warning(inode->i_sb,
bc965ab3
TT
254 "couldn't mark inode dirty (err %d)", err);
255 goto stop_handle;
256 }
ac27a0ec 257 if (inode->i_blocks)
617ba13b 258 ext4_truncate(inode);
bc965ab3
TT
259
260 /*
261 * ext4_ext_truncate() doesn't reserve any slop when it
262 * restarts journal transactions; therefore there may not be
263 * enough credits left in the handle to remove the inode from
264 * the orphan list and set the dtime field.
265 */
0390131b 266 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
267 err = ext4_journal_extend(handle, 3);
268 if (err > 0)
269 err = ext4_journal_restart(handle, 3);
270 if (err != 0) {
12062ddd 271 ext4_warning(inode->i_sb,
bc965ab3
TT
272 "couldn't extend journal (err %d)", err);
273 stop_handle:
274 ext4_journal_stop(handle);
45388219 275 ext4_orphan_del(NULL, inode);
bc965ab3
TT
276 goto no_delete;
277 }
278 }
279
ac27a0ec 280 /*
617ba13b 281 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 282 * AKPM: I think this can be inside the above `if'.
617ba13b 283 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 284 * deletion of a non-existent orphan - this is because we don't
617ba13b 285 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
286 * (Well, we could do this if we need to, but heck - it works)
287 */
617ba13b
MC
288 ext4_orphan_del(handle, inode);
289 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
290
291 /*
292 * One subtle ordering requirement: if anything has gone wrong
293 * (transaction abort, IO errors, whatever), then we can still
294 * do these next steps (the fs will already have been marked as
295 * having errors), but we can't free the inode if the mark_dirty
296 * fails.
297 */
617ba13b 298 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 299 /* If that failed, just do the required in-core inode clear. */
0930fcc1 300 ext4_clear_inode(inode);
ac27a0ec 301 else
617ba13b
MC
302 ext4_free_inode(handle, inode);
303 ext4_journal_stop(handle);
ac27a0ec
DK
304 return;
305no_delete:
0930fcc1 306 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
307}
308
a9e7f447
DM
309#ifdef CONFIG_QUOTA
310qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 311{
a9e7f447 312 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 313}
a9e7f447 314#endif
9d0be502 315
12219aea
AK
316/*
317 * Calculate the number of metadata blocks need to reserve
9d0be502 318 * to allocate a block located at @lblock
12219aea 319 */
01f49d0b 320static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 321{
12e9b892 322 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 323 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 324
8bb2b247 325 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
326}
327
0637c6f4
TT
328/*
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
331 */
5f634d06
AK
332void ext4_da_update_reserve_space(struct inode *inode,
333 int used, int quota_claim)
12219aea
AK
334{
335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 336 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
337
338 spin_lock(&ei->i_block_reservation_lock);
d8990240 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
340 if (unlikely(used > ei->i_reserved_data_blocks)) {
341 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084f252 342 "with only %d reserved data blocks",
0637c6f4
TT
343 __func__, inode->i_ino, used,
344 ei->i_reserved_data_blocks);
345 WARN_ON(1);
346 used = ei->i_reserved_data_blocks;
347 }
12219aea 348
97795d2a
BF
349 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
350 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
351 "with only %d reserved metadata blocks\n", __func__,
352 inode->i_ino, ei->i_allocated_meta_blocks,
353 ei->i_reserved_meta_blocks);
354 WARN_ON(1);
355 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
356 }
357
0637c6f4
TT
358 /* Update per-inode reservations */
359 ei->i_reserved_data_blocks -= used;
0637c6f4 360 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 361 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 362 used + ei->i_allocated_meta_blocks);
0637c6f4 363 ei->i_allocated_meta_blocks = 0;
6bc6e63f 364
0637c6f4
TT
365 if (ei->i_reserved_data_blocks == 0) {
366 /*
367 * We can release all of the reserved metadata blocks
368 * only when we have written all of the delayed
369 * allocation blocks.
370 */
57042651 371 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 372 ei->i_reserved_meta_blocks);
ee5f4d9c 373 ei->i_reserved_meta_blocks = 0;
9d0be502 374 ei->i_da_metadata_calc_len = 0;
6bc6e63f 375 }
12219aea 376 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 377
72b8ab9d
ES
378 /* Update quota subsystem for data blocks */
379 if (quota_claim)
7b415bf6 380 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 381 else {
5f634d06
AK
382 /*
383 * We did fallocate with an offset that is already delayed
384 * allocated. So on delayed allocated writeback we should
72b8ab9d 385 * not re-claim the quota for fallocated blocks.
5f634d06 386 */
7b415bf6 387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 388 }
d6014301
AK
389
390 /*
391 * If we have done all the pending block allocations and if
392 * there aren't any writers on the inode, we can discard the
393 * inode's preallocations.
394 */
0637c6f4
TT
395 if ((ei->i_reserved_data_blocks == 0) &&
396 (atomic_read(&inode->i_writecount) == 0))
d6014301 397 ext4_discard_preallocations(inode);
12219aea
AK
398}
399
e29136f8 400static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
401 unsigned int line,
402 struct ext4_map_blocks *map)
6fd058f7 403{
24676da4
TT
404 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
405 map->m_len)) {
c398eda0
TT
406 ext4_error_inode(inode, func, line, map->m_pblk,
407 "lblock %lu mapped to illegal pblock "
408 "(length %d)", (unsigned long) map->m_lblk,
409 map->m_len);
6fd058f7
TT
410 return -EIO;
411 }
412 return 0;
413}
414
e29136f8 415#define check_block_validity(inode, map) \
c398eda0 416 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 417
55138e0b 418/*
1f94533d
TT
419 * Return the number of contiguous dirty pages in a given inode
420 * starting at page frame idx.
55138e0b
TT
421 */
422static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
423 unsigned int max_pages)
424{
425 struct address_space *mapping = inode->i_mapping;
426 pgoff_t index;
427 struct pagevec pvec;
428 pgoff_t num = 0;
429 int i, nr_pages, done = 0;
430
431 if (max_pages == 0)
432 return 0;
433 pagevec_init(&pvec, 0);
434 while (!done) {
435 index = idx;
436 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 PAGECACHE_TAG_DIRTY,
438 (pgoff_t)PAGEVEC_SIZE);
439 if (nr_pages == 0)
440 break;
441 for (i = 0; i < nr_pages; i++) {
442 struct page *page = pvec.pages[i];
443 struct buffer_head *bh, *head;
444
445 lock_page(page);
446 if (unlikely(page->mapping != mapping) ||
447 !PageDirty(page) ||
448 PageWriteback(page) ||
449 page->index != idx) {
450 done = 1;
451 unlock_page(page);
452 break;
453 }
1f94533d
TT
454 if (page_has_buffers(page)) {
455 bh = head = page_buffers(page);
456 do {
457 if (!buffer_delay(bh) &&
458 !buffer_unwritten(bh))
459 done = 1;
460 bh = bh->b_this_page;
461 } while (!done && (bh != head));
462 }
55138e0b
TT
463 unlock_page(page);
464 if (done)
465 break;
466 idx++;
467 num++;
659c6009
ES
468 if (num >= max_pages) {
469 done = 1;
55138e0b 470 break;
659c6009 471 }
55138e0b
TT
472 }
473 pagevec_release(&pvec);
474 }
475 return num;
476}
477
5356f261
AK
478/*
479 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
480 */
481static void set_buffers_da_mapped(struct inode *inode,
482 struct ext4_map_blocks *map)
483{
484 struct address_space *mapping = inode->i_mapping;
485 struct pagevec pvec;
486 int i, nr_pages;
487 pgoff_t index, end;
488
489 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
490 end = (map->m_lblk + map->m_len - 1) >>
491 (PAGE_CACHE_SHIFT - inode->i_blkbits);
492
493 pagevec_init(&pvec, 0);
494 while (index <= end) {
495 nr_pages = pagevec_lookup(&pvec, mapping, index,
496 min(end - index + 1,
497 (pgoff_t)PAGEVEC_SIZE));
498 if (nr_pages == 0)
499 break;
500 for (i = 0; i < nr_pages; i++) {
501 struct page *page = pvec.pages[i];
502 struct buffer_head *bh, *head;
503
504 if (unlikely(page->mapping != mapping) ||
505 !PageDirty(page))
506 break;
507
508 if (page_has_buffers(page)) {
509 bh = head = page_buffers(page);
510 do {
511 set_buffer_da_mapped(bh);
512 bh = bh->b_this_page;
513 } while (bh != head);
514 }
515 index++;
516 }
517 pagevec_release(&pvec);
518 }
519}
520
f5ab0d1f 521/*
e35fd660 522 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 523 * and returns if the blocks are already mapped.
f5ab0d1f 524 *
f5ab0d1f
MC
525 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
526 * and store the allocated blocks in the result buffer head and mark it
527 * mapped.
528 *
e35fd660
TT
529 * If file type is extents based, it will call ext4_ext_map_blocks(),
530 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
531 * based files
532 *
533 * On success, it returns the number of blocks being mapped or allocate.
534 * if create==0 and the blocks are pre-allocated and uninitialized block,
535 * the result buffer head is unmapped. If the create ==1, it will make sure
536 * the buffer head is mapped.
537 *
538 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 539 * that case, buffer head is unmapped
f5ab0d1f
MC
540 *
541 * It returns the error in case of allocation failure.
542 */
e35fd660
TT
543int ext4_map_blocks(handle_t *handle, struct inode *inode,
544 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
545{
546 int retval;
f5ab0d1f 547
e35fd660
TT
548 map->m_flags = 0;
549 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
550 "logical block %lu\n", inode->i_ino, flags, map->m_len,
551 (unsigned long) map->m_lblk);
4df3d265 552 /*
b920c755
TT
553 * Try to see if we can get the block without requesting a new
554 * file system block.
4df3d265 555 */
729f52c6
ZL
556 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
557 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
559 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 561 } else {
a4e5d88b
DM
562 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 564 }
729f52c6
ZL
565 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
566 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 567
e35fd660 568 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 569 int ret = check_block_validity(inode, map);
6fd058f7
TT
570 if (ret != 0)
571 return ret;
572 }
573
f5ab0d1f 574 /* If it is only a block(s) look up */
c2177057 575 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
576 return retval;
577
578 /*
579 * Returns if the blocks have already allocated
580 *
581 * Note that if blocks have been preallocated
df3ab170 582 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
583 * with buffer head unmapped.
584 */
e35fd660 585 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
586 return retval;
587
2a8964d6
AK
588 /*
589 * When we call get_blocks without the create flag, the
590 * BH_Unwritten flag could have gotten set if the blocks
591 * requested were part of a uninitialized extent. We need to
592 * clear this flag now that we are committed to convert all or
593 * part of the uninitialized extent to be an initialized
594 * extent. This is because we need to avoid the combination
595 * of BH_Unwritten and BH_Mapped flags being simultaneously
596 * set on the buffer_head.
597 */
e35fd660 598 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 599
4df3d265 600 /*
f5ab0d1f
MC
601 * New blocks allocate and/or writing to uninitialized extent
602 * will possibly result in updating i_data, so we take
603 * the write lock of i_data_sem, and call get_blocks()
604 * with create == 1 flag.
4df3d265
AK
605 */
606 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
607
608 /*
609 * if the caller is from delayed allocation writeout path
610 * we have already reserved fs blocks for allocation
611 * let the underlying get_block() function know to
612 * avoid double accounting
613 */
c2177057 614 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 615 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
616 /*
617 * We need to check for EXT4 here because migrate
618 * could have changed the inode type in between
619 */
12e9b892 620 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 621 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 622 } else {
e35fd660 623 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 624
e35fd660 625 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
626 /*
627 * We allocated new blocks which will result in
628 * i_data's format changing. Force the migrate
629 * to fail by clearing migrate flags
630 */
19f5fb7a 631 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 632 }
d2a17637 633
5f634d06
AK
634 /*
635 * Update reserved blocks/metadata blocks after successful
636 * block allocation which had been deferred till now. We don't
637 * support fallocate for non extent files. So we can update
638 * reserve space here.
639 */
640 if ((retval > 0) &&
1296cc85 641 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
642 ext4_da_update_reserve_space(inode, retval, 1);
643 }
5356f261 644 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 645 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 646
5356f261
AK
647 /* If we have successfully mapped the delayed allocated blocks,
648 * set the BH_Da_Mapped bit on them. Its important to do this
649 * under the protection of i_data_sem.
650 */
651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
652 set_buffers_da_mapped(inode, map);
653 }
654
4df3d265 655 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 656 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 657 int ret = check_block_validity(inode, map);
6fd058f7
TT
658 if (ret != 0)
659 return ret;
660 }
0e855ac8
AK
661 return retval;
662}
663
f3bd1f3f
MC
664/* Maximum number of blocks we map for direct IO at once. */
665#define DIO_MAX_BLOCKS 4096
666
2ed88685
TT
667static int _ext4_get_block(struct inode *inode, sector_t iblock,
668 struct buffer_head *bh, int flags)
ac27a0ec 669{
3e4fdaf8 670 handle_t *handle = ext4_journal_current_handle();
2ed88685 671 struct ext4_map_blocks map;
7fb5409d 672 int ret = 0, started = 0;
f3bd1f3f 673 int dio_credits;
ac27a0ec 674
2ed88685
TT
675 map.m_lblk = iblock;
676 map.m_len = bh->b_size >> inode->i_blkbits;
677
678 if (flags && !handle) {
7fb5409d 679 /* Direct IO write... */
2ed88685
TT
680 if (map.m_len > DIO_MAX_BLOCKS)
681 map.m_len = DIO_MAX_BLOCKS;
682 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 683 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 684 if (IS_ERR(handle)) {
ac27a0ec 685 ret = PTR_ERR(handle);
2ed88685 686 return ret;
ac27a0ec 687 }
7fb5409d 688 started = 1;
ac27a0ec
DK
689 }
690
2ed88685 691 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 692 if (ret > 0) {
2ed88685
TT
693 map_bh(bh, inode->i_sb, map.m_pblk);
694 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
695 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 696 ret = 0;
ac27a0ec 697 }
7fb5409d
JK
698 if (started)
699 ext4_journal_stop(handle);
ac27a0ec
DK
700 return ret;
701}
702
2ed88685
TT
703int ext4_get_block(struct inode *inode, sector_t iblock,
704 struct buffer_head *bh, int create)
705{
706 return _ext4_get_block(inode, iblock, bh,
707 create ? EXT4_GET_BLOCKS_CREATE : 0);
708}
709
ac27a0ec
DK
710/*
711 * `handle' can be NULL if create is zero
712 */
617ba13b 713struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 714 ext4_lblk_t block, int create, int *errp)
ac27a0ec 715{
2ed88685
TT
716 struct ext4_map_blocks map;
717 struct buffer_head *bh;
ac27a0ec
DK
718 int fatal = 0, err;
719
720 J_ASSERT(handle != NULL || create == 0);
721
2ed88685
TT
722 map.m_lblk = block;
723 map.m_len = 1;
724 err = ext4_map_blocks(handle, inode, &map,
725 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 726
2ed88685
TT
727 if (err < 0)
728 *errp = err;
729 if (err <= 0)
730 return NULL;
731 *errp = 0;
732
733 bh = sb_getblk(inode->i_sb, map.m_pblk);
734 if (!bh) {
735 *errp = -EIO;
736 return NULL;
ac27a0ec 737 }
2ed88685
TT
738 if (map.m_flags & EXT4_MAP_NEW) {
739 J_ASSERT(create != 0);
740 J_ASSERT(handle != NULL);
ac27a0ec 741
2ed88685
TT
742 /*
743 * Now that we do not always journal data, we should
744 * keep in mind whether this should always journal the
745 * new buffer as metadata. For now, regular file
746 * writes use ext4_get_block instead, so it's not a
747 * problem.
748 */
749 lock_buffer(bh);
750 BUFFER_TRACE(bh, "call get_create_access");
751 fatal = ext4_journal_get_create_access(handle, bh);
752 if (!fatal && !buffer_uptodate(bh)) {
753 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
754 set_buffer_uptodate(bh);
ac27a0ec 755 }
2ed88685
TT
756 unlock_buffer(bh);
757 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
758 err = ext4_handle_dirty_metadata(handle, inode, bh);
759 if (!fatal)
760 fatal = err;
761 } else {
762 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 763 }
2ed88685
TT
764 if (fatal) {
765 *errp = fatal;
766 brelse(bh);
767 bh = NULL;
768 }
769 return bh;
ac27a0ec
DK
770}
771
617ba13b 772struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 773 ext4_lblk_t block, int create, int *err)
ac27a0ec 774{
af5bc92d 775 struct buffer_head *bh;
ac27a0ec 776
617ba13b 777 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
778 if (!bh)
779 return bh;
780 if (buffer_uptodate(bh))
781 return bh;
65299a3b 782 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
783 wait_on_buffer(bh);
784 if (buffer_uptodate(bh))
785 return bh;
786 put_bh(bh);
787 *err = -EIO;
788 return NULL;
789}
790
af5bc92d
TT
791static int walk_page_buffers(handle_t *handle,
792 struct buffer_head *head,
793 unsigned from,
794 unsigned to,
795 int *partial,
796 int (*fn)(handle_t *handle,
797 struct buffer_head *bh))
ac27a0ec
DK
798{
799 struct buffer_head *bh;
800 unsigned block_start, block_end;
801 unsigned blocksize = head->b_size;
802 int err, ret = 0;
803 struct buffer_head *next;
804
af5bc92d
TT
805 for (bh = head, block_start = 0;
806 ret == 0 && (bh != head || !block_start);
de9a55b8 807 block_start = block_end, bh = next) {
ac27a0ec
DK
808 next = bh->b_this_page;
809 block_end = block_start + blocksize;
810 if (block_end <= from || block_start >= to) {
811 if (partial && !buffer_uptodate(bh))
812 *partial = 1;
813 continue;
814 }
815 err = (*fn)(handle, bh);
816 if (!ret)
817 ret = err;
818 }
819 return ret;
820}
821
822/*
823 * To preserve ordering, it is essential that the hole instantiation and
824 * the data write be encapsulated in a single transaction. We cannot
617ba13b 825 * close off a transaction and start a new one between the ext4_get_block()
dab291af 826 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
827 * prepare_write() is the right place.
828 *
617ba13b
MC
829 * Also, this function can nest inside ext4_writepage() ->
830 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
831 * has generated enough buffer credits to do the whole page. So we won't
832 * block on the journal in that case, which is good, because the caller may
833 * be PF_MEMALLOC.
834 *
617ba13b 835 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
836 * quota file writes. If we were to commit the transaction while thus
837 * reentered, there can be a deadlock - we would be holding a quota
838 * lock, and the commit would never complete if another thread had a
839 * transaction open and was blocking on the quota lock - a ranking
840 * violation.
841 *
dab291af 842 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
843 * will _not_ run commit under these circumstances because handle->h_ref
844 * is elevated. We'll still have enough credits for the tiny quotafile
845 * write.
846 */
847static int do_journal_get_write_access(handle_t *handle,
de9a55b8 848 struct buffer_head *bh)
ac27a0ec 849{
56d35a4c
JK
850 int dirty = buffer_dirty(bh);
851 int ret;
852
ac27a0ec
DK
853 if (!buffer_mapped(bh) || buffer_freed(bh))
854 return 0;
56d35a4c 855 /*
ebdec241 856 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
857 * the dirty bit as jbd2_journal_get_write_access() could complain
858 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 859 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
860 * the bit before releasing a page lock and thus writeback cannot
861 * ever write the buffer.
862 */
863 if (dirty)
864 clear_buffer_dirty(bh);
865 ret = ext4_journal_get_write_access(handle, bh);
866 if (!ret && dirty)
867 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
868 return ret;
ac27a0ec
DK
869}
870
744692dc
JZ
871static int ext4_get_block_write(struct inode *inode, sector_t iblock,
872 struct buffer_head *bh_result, int create);
bfc1af65 873static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
874 loff_t pos, unsigned len, unsigned flags,
875 struct page **pagep, void **fsdata)
ac27a0ec 876{
af5bc92d 877 struct inode *inode = mapping->host;
1938a150 878 int ret, needed_blocks;
ac27a0ec
DK
879 handle_t *handle;
880 int retries = 0;
af5bc92d 881 struct page *page;
de9a55b8 882 pgoff_t index;
af5bc92d 883 unsigned from, to;
bfc1af65 884
9bffad1e 885 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
886 /*
887 * Reserve one block more for addition to orphan list in case
888 * we allocate blocks but write fails for some reason
889 */
890 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 891 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
892 from = pos & (PAGE_CACHE_SIZE - 1);
893 to = from + len;
ac27a0ec
DK
894
895retry:
af5bc92d
TT
896 handle = ext4_journal_start(inode, needed_blocks);
897 if (IS_ERR(handle)) {
898 ret = PTR_ERR(handle);
899 goto out;
7479d2b9 900 }
ac27a0ec 901
ebd3610b
JK
902 /* We cannot recurse into the filesystem as the transaction is already
903 * started */
904 flags |= AOP_FLAG_NOFS;
905
54566b2c 906 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
907 if (!page) {
908 ext4_journal_stop(handle);
909 ret = -ENOMEM;
910 goto out;
911 }
912 *pagep = page;
913
744692dc 914 if (ext4_should_dioread_nolock(inode))
6e1db88d 915 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 916 else
6e1db88d 917 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
918
919 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
920 ret = walk_page_buffers(handle, page_buffers(page),
921 from, to, NULL, do_journal_get_write_access);
922 }
bfc1af65
NP
923
924 if (ret) {
af5bc92d 925 unlock_page(page);
af5bc92d 926 page_cache_release(page);
ae4d5372 927 /*
6e1db88d 928 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
929 * outside i_size. Trim these off again. Don't need
930 * i_size_read because we hold i_mutex.
1938a150
AK
931 *
932 * Add inode to orphan list in case we crash before
933 * truncate finishes
ae4d5372 934 */
ffacfa7a 935 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
936 ext4_orphan_add(handle, inode);
937
938 ext4_journal_stop(handle);
939 if (pos + len > inode->i_size) {
b9a4207d 940 ext4_truncate_failed_write(inode);
de9a55b8 941 /*
ffacfa7a 942 * If truncate failed early the inode might
1938a150
AK
943 * still be on the orphan list; we need to
944 * make sure the inode is removed from the
945 * orphan list in that case.
946 */
947 if (inode->i_nlink)
948 ext4_orphan_del(NULL, inode);
949 }
bfc1af65
NP
950 }
951
617ba13b 952 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 953 goto retry;
7479d2b9 954out:
ac27a0ec
DK
955 return ret;
956}
957
bfc1af65
NP
958/* For write_end() in data=journal mode */
959static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
960{
961 if (!buffer_mapped(bh) || buffer_freed(bh))
962 return 0;
963 set_buffer_uptodate(bh);
0390131b 964 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
965}
966
f8514083 967static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
968 struct address_space *mapping,
969 loff_t pos, unsigned len, unsigned copied,
970 struct page *page, void *fsdata)
f8514083
AK
971{
972 int i_size_changed = 0;
973 struct inode *inode = mapping->host;
974 handle_t *handle = ext4_journal_current_handle();
975
976 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
977
978 /*
979 * No need to use i_size_read() here, the i_size
980 * cannot change under us because we hold i_mutex.
981 *
982 * But it's important to update i_size while still holding page lock:
983 * page writeout could otherwise come in and zero beyond i_size.
984 */
985 if (pos + copied > inode->i_size) {
986 i_size_write(inode, pos + copied);
987 i_size_changed = 1;
988 }
989
990 if (pos + copied > EXT4_I(inode)->i_disksize) {
991 /* We need to mark inode dirty even if
992 * new_i_size is less that inode->i_size
993 * bu greater than i_disksize.(hint delalloc)
994 */
995 ext4_update_i_disksize(inode, (pos + copied));
996 i_size_changed = 1;
997 }
998 unlock_page(page);
999 page_cache_release(page);
1000
1001 /*
1002 * Don't mark the inode dirty under page lock. First, it unnecessarily
1003 * makes the holding time of page lock longer. Second, it forces lock
1004 * ordering of page lock and transaction start for journaling
1005 * filesystems.
1006 */
1007 if (i_size_changed)
1008 ext4_mark_inode_dirty(handle, inode);
1009
1010 return copied;
1011}
1012
ac27a0ec
DK
1013/*
1014 * We need to pick up the new inode size which generic_commit_write gave us
1015 * `file' can be NULL - eg, when called from page_symlink().
1016 *
617ba13b 1017 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1018 * buffers are managed internally.
1019 */
bfc1af65 1020static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1021 struct address_space *mapping,
1022 loff_t pos, unsigned len, unsigned copied,
1023 struct page *page, void *fsdata)
ac27a0ec 1024{
617ba13b 1025 handle_t *handle = ext4_journal_current_handle();
cf108bca 1026 struct inode *inode = mapping->host;
ac27a0ec
DK
1027 int ret = 0, ret2;
1028
9bffad1e 1029 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1030 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1031
1032 if (ret == 0) {
f8514083 1033 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1034 page, fsdata);
f8a87d89 1035 copied = ret2;
ffacfa7a 1036 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1037 /* if we have allocated more blocks and copied
1038 * less. We will have blocks allocated outside
1039 * inode->i_size. So truncate them
1040 */
1041 ext4_orphan_add(handle, inode);
f8a87d89
RK
1042 if (ret2 < 0)
1043 ret = ret2;
09e0834f
AF
1044 } else {
1045 unlock_page(page);
1046 page_cache_release(page);
ac27a0ec 1047 }
09e0834f 1048
617ba13b 1049 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1050 if (!ret)
1051 ret = ret2;
bfc1af65 1052
f8514083 1053 if (pos + len > inode->i_size) {
b9a4207d 1054 ext4_truncate_failed_write(inode);
de9a55b8 1055 /*
ffacfa7a 1056 * If truncate failed early the inode might still be
f8514083
AK
1057 * on the orphan list; we need to make sure the inode
1058 * is removed from the orphan list in that case.
1059 */
1060 if (inode->i_nlink)
1061 ext4_orphan_del(NULL, inode);
1062 }
1063
1064
bfc1af65 1065 return ret ? ret : copied;
ac27a0ec
DK
1066}
1067
bfc1af65 1068static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1069 struct address_space *mapping,
1070 loff_t pos, unsigned len, unsigned copied,
1071 struct page *page, void *fsdata)
ac27a0ec 1072{
617ba13b 1073 handle_t *handle = ext4_journal_current_handle();
cf108bca 1074 struct inode *inode = mapping->host;
ac27a0ec 1075 int ret = 0, ret2;
ac27a0ec 1076
9bffad1e 1077 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1078 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1079 page, fsdata);
f8a87d89 1080 copied = ret2;
ffacfa7a 1081 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1082 /* if we have allocated more blocks and copied
1083 * less. We will have blocks allocated outside
1084 * inode->i_size. So truncate them
1085 */
1086 ext4_orphan_add(handle, inode);
1087
f8a87d89
RK
1088 if (ret2 < 0)
1089 ret = ret2;
ac27a0ec 1090
617ba13b 1091 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1092 if (!ret)
1093 ret = ret2;
bfc1af65 1094
f8514083 1095 if (pos + len > inode->i_size) {
b9a4207d 1096 ext4_truncate_failed_write(inode);
de9a55b8 1097 /*
ffacfa7a 1098 * If truncate failed early the inode might still be
f8514083
AK
1099 * on the orphan list; we need to make sure the inode
1100 * is removed from the orphan list in that case.
1101 */
1102 if (inode->i_nlink)
1103 ext4_orphan_del(NULL, inode);
1104 }
1105
bfc1af65 1106 return ret ? ret : copied;
ac27a0ec
DK
1107}
1108
bfc1af65 1109static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1110 struct address_space *mapping,
1111 loff_t pos, unsigned len, unsigned copied,
1112 struct page *page, void *fsdata)
ac27a0ec 1113{
617ba13b 1114 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1115 struct inode *inode = mapping->host;
ac27a0ec
DK
1116 int ret = 0, ret2;
1117 int partial = 0;
bfc1af65 1118 unsigned from, to;
cf17fea6 1119 loff_t new_i_size;
ac27a0ec 1120
9bffad1e 1121 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1122 from = pos & (PAGE_CACHE_SIZE - 1);
1123 to = from + len;
1124
441c8508
CW
1125 BUG_ON(!ext4_handle_valid(handle));
1126
bfc1af65
NP
1127 if (copied < len) {
1128 if (!PageUptodate(page))
1129 copied = 0;
1130 page_zero_new_buffers(page, from+copied, to);
1131 }
ac27a0ec
DK
1132
1133 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1134 to, &partial, write_end_fn);
ac27a0ec
DK
1135 if (!partial)
1136 SetPageUptodate(page);
cf17fea6
AK
1137 new_i_size = pos + copied;
1138 if (new_i_size > inode->i_size)
bfc1af65 1139 i_size_write(inode, pos+copied);
19f5fb7a 1140 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1141 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1142 if (new_i_size > EXT4_I(inode)->i_disksize) {
1143 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1144 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1145 if (!ret)
1146 ret = ret2;
1147 }
bfc1af65 1148
cf108bca 1149 unlock_page(page);
f8514083 1150 page_cache_release(page);
ffacfa7a 1151 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1152 /* if we have allocated more blocks and copied
1153 * less. We will have blocks allocated outside
1154 * inode->i_size. So truncate them
1155 */
1156 ext4_orphan_add(handle, inode);
1157
617ba13b 1158 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1159 if (!ret)
1160 ret = ret2;
f8514083 1161 if (pos + len > inode->i_size) {
b9a4207d 1162 ext4_truncate_failed_write(inode);
de9a55b8 1163 /*
ffacfa7a 1164 * If truncate failed early the inode might still be
f8514083
AK
1165 * on the orphan list; we need to make sure the inode
1166 * is removed from the orphan list in that case.
1167 */
1168 if (inode->i_nlink)
1169 ext4_orphan_del(NULL, inode);
1170 }
bfc1af65
NP
1171
1172 return ret ? ret : copied;
ac27a0ec 1173}
d2a17637 1174
9d0be502 1175/*
7b415bf6 1176 * Reserve a single cluster located at lblock
9d0be502 1177 */
01f49d0b 1178static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1179{
030ba6bc 1180 int retries = 0;
60e58e0f 1181 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1182 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1183 unsigned int md_needed;
5dd4056d 1184 int ret;
d2a17637
MC
1185
1186 /*
1187 * recalculate the amount of metadata blocks to reserve
1188 * in order to allocate nrblocks
1189 * worse case is one extent per block
1190 */
030ba6bc 1191repeat:
0637c6f4 1192 spin_lock(&ei->i_block_reservation_lock);
7b415bf6
AK
1193 md_needed = EXT4_NUM_B2C(sbi,
1194 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1195 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1196 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1197
60e58e0f 1198 /*
72b8ab9d
ES
1199 * We will charge metadata quota at writeout time; this saves
1200 * us from metadata over-estimation, though we may go over by
1201 * a small amount in the end. Here we just reserve for data.
60e58e0f 1202 */
7b415bf6 1203 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
5dd4056d
CH
1204 if (ret)
1205 return ret;
72b8ab9d
ES
1206 /*
1207 * We do still charge estimated metadata to the sb though;
1208 * we cannot afford to run out of free blocks.
1209 */
e7d5f315 1210 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
7b415bf6 1211 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
030ba6bc
AK
1212 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1213 yield();
1214 goto repeat;
1215 }
d2a17637
MC
1216 return -ENOSPC;
1217 }
0637c6f4 1218 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1219 ei->i_reserved_data_blocks++;
0637c6f4
TT
1220 ei->i_reserved_meta_blocks += md_needed;
1221 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1222
d2a17637
MC
1223 return 0; /* success */
1224}
1225
12219aea 1226static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1227{
1228 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1229 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1230
cd213226
MC
1231 if (!to_free)
1232 return; /* Nothing to release, exit */
1233
d2a17637 1234 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1235
5a58ec87 1236 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1237 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1238 /*
0637c6f4
TT
1239 * if there aren't enough reserved blocks, then the
1240 * counter is messed up somewhere. Since this
1241 * function is called from invalidate page, it's
1242 * harmless to return without any action.
cd213226 1243 */
0637c6f4
TT
1244 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1245 "ino %lu, to_free %d with only %d reserved "
1084f252 1246 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1247 ei->i_reserved_data_blocks);
1248 WARN_ON(1);
1249 to_free = ei->i_reserved_data_blocks;
cd213226 1250 }
0637c6f4 1251 ei->i_reserved_data_blocks -= to_free;
cd213226 1252
0637c6f4
TT
1253 if (ei->i_reserved_data_blocks == 0) {
1254 /*
1255 * We can release all of the reserved metadata blocks
1256 * only when we have written all of the delayed
1257 * allocation blocks.
7b415bf6
AK
1258 * Note that in case of bigalloc, i_reserved_meta_blocks,
1259 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1260 */
57042651 1261 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1262 ei->i_reserved_meta_blocks);
ee5f4d9c 1263 ei->i_reserved_meta_blocks = 0;
9d0be502 1264 ei->i_da_metadata_calc_len = 0;
0637c6f4 1265 }
d2a17637 1266
72b8ab9d 1267 /* update fs dirty data blocks counter */
57042651 1268 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1269
d2a17637 1270 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1271
7b415bf6 1272 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1273}
1274
1275static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1276 unsigned long offset)
d2a17637
MC
1277{
1278 int to_release = 0;
1279 struct buffer_head *head, *bh;
1280 unsigned int curr_off = 0;
7b415bf6
AK
1281 struct inode *inode = page->mapping->host;
1282 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1283 int num_clusters;
d2a17637
MC
1284
1285 head = page_buffers(page);
1286 bh = head;
1287 do {
1288 unsigned int next_off = curr_off + bh->b_size;
1289
1290 if ((offset <= curr_off) && (buffer_delay(bh))) {
1291 to_release++;
1292 clear_buffer_delay(bh);
5356f261 1293 clear_buffer_da_mapped(bh);
d2a17637
MC
1294 }
1295 curr_off = next_off;
1296 } while ((bh = bh->b_this_page) != head);
7b415bf6
AK
1297
1298 /* If we have released all the blocks belonging to a cluster, then we
1299 * need to release the reserved space for that cluster. */
1300 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1301 while (num_clusters > 0) {
1302 ext4_fsblk_t lblk;
1303 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1304 ((num_clusters - 1) << sbi->s_cluster_bits);
1305 if (sbi->s_cluster_ratio == 1 ||
1306 !ext4_find_delalloc_cluster(inode, lblk, 1))
1307 ext4_da_release_space(inode, 1);
1308
1309 num_clusters--;
1310 }
d2a17637 1311}
ac27a0ec 1312
64769240
AT
1313/*
1314 * Delayed allocation stuff
1315 */
1316
64769240
AT
1317/*
1318 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1319 * them with writepage() call back
64769240
AT
1320 *
1321 * @mpd->inode: inode
1322 * @mpd->first_page: first page of the extent
1323 * @mpd->next_page: page after the last page of the extent
64769240
AT
1324 *
1325 * By the time mpage_da_submit_io() is called we expect all blocks
1326 * to be allocated. this may be wrong if allocation failed.
1327 *
1328 * As pages are already locked by write_cache_pages(), we can't use it
1329 */
1de3e3df
TT
1330static int mpage_da_submit_io(struct mpage_da_data *mpd,
1331 struct ext4_map_blocks *map)
64769240 1332{
791b7f08
AK
1333 struct pagevec pvec;
1334 unsigned long index, end;
1335 int ret = 0, err, nr_pages, i;
1336 struct inode *inode = mpd->inode;
1337 struct address_space *mapping = inode->i_mapping;
cb20d518 1338 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1339 unsigned int len, block_start;
1340 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1341 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1342 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1343 struct ext4_io_submit io_submit;
64769240
AT
1344
1345 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1346 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1347 /*
1348 * We need to start from the first_page to the next_page - 1
1349 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1350 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1351 * at the currently mapped buffer_heads.
1352 */
64769240
AT
1353 index = mpd->first_page;
1354 end = mpd->next_page - 1;
1355
791b7f08 1356 pagevec_init(&pvec, 0);
64769240 1357 while (index <= end) {
791b7f08 1358 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1359 if (nr_pages == 0)
1360 break;
1361 for (i = 0; i < nr_pages; i++) {
97498956 1362 int commit_write = 0, skip_page = 0;
64769240
AT
1363 struct page *page = pvec.pages[i];
1364
791b7f08
AK
1365 index = page->index;
1366 if (index > end)
1367 break;
cb20d518
TT
1368
1369 if (index == size >> PAGE_CACHE_SHIFT)
1370 len = size & ~PAGE_CACHE_MASK;
1371 else
1372 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1373 if (map) {
1374 cur_logical = index << (PAGE_CACHE_SHIFT -
1375 inode->i_blkbits);
1376 pblock = map->m_pblk + (cur_logical -
1377 map->m_lblk);
1378 }
791b7f08
AK
1379 index++;
1380
1381 BUG_ON(!PageLocked(page));
1382 BUG_ON(PageWriteback(page));
1383
64769240 1384 /*
cb20d518
TT
1385 * If the page does not have buffers (for
1386 * whatever reason), try to create them using
a107e5a3 1387 * __block_write_begin. If this fails,
97498956 1388 * skip the page and move on.
64769240 1389 */
cb20d518 1390 if (!page_has_buffers(page)) {
a107e5a3 1391 if (__block_write_begin(page, 0, len,
cb20d518 1392 noalloc_get_block_write)) {
97498956 1393 skip_page:
cb20d518
TT
1394 unlock_page(page);
1395 continue;
1396 }
1397 commit_write = 1;
1398 }
64769240 1399
3ecdb3a1
TT
1400 bh = page_bufs = page_buffers(page);
1401 block_start = 0;
64769240 1402 do {
1de3e3df 1403 if (!bh)
97498956 1404 goto skip_page;
1de3e3df
TT
1405 if (map && (cur_logical >= map->m_lblk) &&
1406 (cur_logical <= (map->m_lblk +
1407 (map->m_len - 1)))) {
29fa89d0
AK
1408 if (buffer_delay(bh)) {
1409 clear_buffer_delay(bh);
1410 bh->b_blocknr = pblock;
29fa89d0 1411 }
5356f261
AK
1412 if (buffer_da_mapped(bh))
1413 clear_buffer_da_mapped(bh);
1de3e3df
TT
1414 if (buffer_unwritten(bh) ||
1415 buffer_mapped(bh))
1416 BUG_ON(bh->b_blocknr != pblock);
1417 if (map->m_flags & EXT4_MAP_UNINIT)
1418 set_buffer_uninit(bh);
1419 clear_buffer_unwritten(bh);
1420 }
29fa89d0 1421
13a79a47
YY
1422 /*
1423 * skip page if block allocation undone and
1424 * block is dirty
1425 */
1426 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1427 skip_page = 1;
3ecdb3a1
TT
1428 bh = bh->b_this_page;
1429 block_start += bh->b_size;
64769240
AT
1430 cur_logical++;
1431 pblock++;
1de3e3df
TT
1432 } while (bh != page_bufs);
1433
97498956
TT
1434 if (skip_page)
1435 goto skip_page;
cb20d518
TT
1436
1437 if (commit_write)
1438 /* mark the buffer_heads as dirty & uptodate */
1439 block_commit_write(page, 0, len);
1440
97498956 1441 clear_page_dirty_for_io(page);
bd2d0210
TT
1442 /*
1443 * Delalloc doesn't support data journalling,
1444 * but eventually maybe we'll lift this
1445 * restriction.
1446 */
1447 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1448 err = __ext4_journalled_writepage(page, len);
1449032b 1449 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1450 err = ext4_bio_write_page(&io_submit, page,
1451 len, mpd->wbc);
9dd75f1f
TT
1452 else if (buffer_uninit(page_bufs)) {
1453 ext4_set_bh_endio(page_bufs, inode);
1454 err = block_write_full_page_endio(page,
1455 noalloc_get_block_write,
1456 mpd->wbc, ext4_end_io_buffer_write);
1457 } else
1449032b
TT
1458 err = block_write_full_page(page,
1459 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1460
1461 if (!err)
a1d6cc56 1462 mpd->pages_written++;
64769240
AT
1463 /*
1464 * In error case, we have to continue because
1465 * remaining pages are still locked
64769240
AT
1466 */
1467 if (ret == 0)
1468 ret = err;
64769240
AT
1469 }
1470 pagevec_release(&pvec);
1471 }
bd2d0210 1472 ext4_io_submit(&io_submit);
64769240 1473 return ret;
64769240
AT
1474}
1475
c7f5938a 1476static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1477{
1478 int nr_pages, i;
1479 pgoff_t index, end;
1480 struct pagevec pvec;
1481 struct inode *inode = mpd->inode;
1482 struct address_space *mapping = inode->i_mapping;
1483
c7f5938a
CW
1484 index = mpd->first_page;
1485 end = mpd->next_page - 1;
c4a0c46e
AK
1486 while (index <= end) {
1487 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1488 if (nr_pages == 0)
1489 break;
1490 for (i = 0; i < nr_pages; i++) {
1491 struct page *page = pvec.pages[i];
9b1d0998 1492 if (page->index > end)
c4a0c46e 1493 break;
c4a0c46e
AK
1494 BUG_ON(!PageLocked(page));
1495 BUG_ON(PageWriteback(page));
1496 block_invalidatepage(page, 0);
1497 ClearPageUptodate(page);
1498 unlock_page(page);
1499 }
9b1d0998
JK
1500 index = pvec.pages[nr_pages - 1]->index + 1;
1501 pagevec_release(&pvec);
c4a0c46e
AK
1502 }
1503 return;
1504}
1505
df22291f
AK
1506static void ext4_print_free_blocks(struct inode *inode)
1507{
1508 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1509 struct super_block *sb = inode->i_sb;
1510
1511 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1512 EXT4_C2B(EXT4_SB(inode->i_sb),
1513 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1514 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1515 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1516 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1517 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1518 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1519 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1520 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1521 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1522 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1523 EXT4_I(inode)->i_reserved_data_blocks);
1524 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1525 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1526 return;
1527}
1528
64769240 1529/*
5a87b7a5
TT
1530 * mpage_da_map_and_submit - go through given space, map them
1531 * if necessary, and then submit them for I/O
64769240 1532 *
8dc207c0 1533 * @mpd - bh describing space
64769240
AT
1534 *
1535 * The function skips space we know is already mapped to disk blocks.
1536 *
64769240 1537 */
5a87b7a5 1538static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1539{
2ac3b6e0 1540 int err, blks, get_blocks_flags;
1de3e3df 1541 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1542 sector_t next = mpd->b_blocknr;
1543 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1544 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1545 handle_t *handle = NULL;
64769240
AT
1546
1547 /*
5a87b7a5
TT
1548 * If the blocks are mapped already, or we couldn't accumulate
1549 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1550 */
5a87b7a5
TT
1551 if ((mpd->b_size == 0) ||
1552 ((mpd->b_state & (1 << BH_Mapped)) &&
1553 !(mpd->b_state & (1 << BH_Delay)) &&
1554 !(mpd->b_state & (1 << BH_Unwritten))))
1555 goto submit_io;
2fa3cdfb
TT
1556
1557 handle = ext4_journal_current_handle();
1558 BUG_ON(!handle);
1559
79ffab34 1560 /*
79e83036 1561 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1562 * blocks, or to convert an uninitialized extent to be
1563 * initialized (in the case where we have written into
1564 * one or more preallocated blocks).
1565 *
1566 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1567 * indicate that we are on the delayed allocation path. This
1568 * affects functions in many different parts of the allocation
1569 * call path. This flag exists primarily because we don't
79e83036 1570 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1571 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1572 * inode's allocation semaphore is taken.
1573 *
1574 * If the blocks in questions were delalloc blocks, set
1575 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1576 * variables are updated after the blocks have been allocated.
79ffab34 1577 */
2ed88685
TT
1578 map.m_lblk = next;
1579 map.m_len = max_blocks;
1296cc85 1580 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1581 if (ext4_should_dioread_nolock(mpd->inode))
1582 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1583 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1584 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1585
2ed88685 1586 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1587 if (blks < 0) {
e3570639
ES
1588 struct super_block *sb = mpd->inode->i_sb;
1589
2fa3cdfb 1590 err = blks;
ed5bde0b 1591 /*
5a87b7a5 1592 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1593 * appears to be free blocks we will just let
1594 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1595 */
1596 if (err == -EAGAIN)
5a87b7a5 1597 goto submit_io;
df22291f 1598
5dee5437 1599 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1600 mpd->retval = err;
5a87b7a5 1601 goto submit_io;
df22291f
AK
1602 }
1603
c4a0c46e 1604 /*
ed5bde0b
TT
1605 * get block failure will cause us to loop in
1606 * writepages, because a_ops->writepage won't be able
1607 * to make progress. The page will be redirtied by
1608 * writepage and writepages will again try to write
1609 * the same.
c4a0c46e 1610 */
e3570639
ES
1611 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1612 ext4_msg(sb, KERN_CRIT,
1613 "delayed block allocation failed for inode %lu "
1614 "at logical offset %llu with max blocks %zd "
1615 "with error %d", mpd->inode->i_ino,
1616 (unsigned long long) next,
1617 mpd->b_size >> mpd->inode->i_blkbits, err);
1618 ext4_msg(sb, KERN_CRIT,
1619 "This should not happen!! Data will be lost\n");
1620 if (err == -ENOSPC)
1621 ext4_print_free_blocks(mpd->inode);
030ba6bc 1622 }
2fa3cdfb 1623 /* invalidate all the pages */
c7f5938a 1624 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1625
1626 /* Mark this page range as having been completed */
1627 mpd->io_done = 1;
5a87b7a5 1628 return;
c4a0c46e 1629 }
2fa3cdfb
TT
1630 BUG_ON(blks == 0);
1631
1de3e3df 1632 mapp = &map;
2ed88685
TT
1633 if (map.m_flags & EXT4_MAP_NEW) {
1634 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1635 int i;
64769240 1636
2ed88685
TT
1637 for (i = 0; i < map.m_len; i++)
1638 unmap_underlying_metadata(bdev, map.m_pblk + i);
64769240 1639
decbd919
TT
1640 if (ext4_should_order_data(mpd->inode)) {
1641 err = ext4_jbd2_file_inode(handle, mpd->inode);
8de49e67 1642 if (err) {
decbd919 1643 /* Only if the journal is aborted */
8de49e67
KM
1644 mpd->retval = err;
1645 goto submit_io;
1646 }
decbd919 1647 }
2fa3cdfb
TT
1648 }
1649
1650 /*
03f5d8bc 1651 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1652 */
1653 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1654 if (disksize > i_size_read(mpd->inode))
1655 disksize = i_size_read(mpd->inode);
1656 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1657 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1658 err = ext4_mark_inode_dirty(handle, mpd->inode);
1659 if (err)
1660 ext4_error(mpd->inode->i_sb,
1661 "Failed to mark inode %lu dirty",
1662 mpd->inode->i_ino);
2fa3cdfb
TT
1663 }
1664
5a87b7a5 1665submit_io:
1de3e3df 1666 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1667 mpd->io_done = 1;
64769240
AT
1668}
1669
bf068ee2
AK
1670#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1671 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1672
1673/*
1674 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1675 *
1676 * @mpd->lbh - extent of blocks
1677 * @logical - logical number of the block in the file
1678 * @bh - bh of the block (used to access block's state)
1679 *
1680 * the function is used to collect contig. blocks in same state
1681 */
1682static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1683 sector_t logical, size_t b_size,
1684 unsigned long b_state)
64769240 1685{
64769240 1686 sector_t next;
8dc207c0 1687 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1688
c445e3e0
ES
1689 /*
1690 * XXX Don't go larger than mballoc is willing to allocate
1691 * This is a stopgap solution. We eventually need to fold
1692 * mpage_da_submit_io() into this function and then call
79e83036 1693 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1694 */
1695 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1696 goto flush_it;
1697
525f4ed8 1698 /* check if thereserved journal credits might overflow */
12e9b892 1699 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1700 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1701 /*
1702 * With non-extent format we are limited by the journal
1703 * credit available. Total credit needed to insert
1704 * nrblocks contiguous blocks is dependent on the
1705 * nrblocks. So limit nrblocks.
1706 */
1707 goto flush_it;
1708 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1709 EXT4_MAX_TRANS_DATA) {
1710 /*
1711 * Adding the new buffer_head would make it cross the
1712 * allowed limit for which we have journal credit
1713 * reserved. So limit the new bh->b_size
1714 */
1715 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1716 mpd->inode->i_blkbits;
1717 /* we will do mpage_da_submit_io in the next loop */
1718 }
1719 }
64769240
AT
1720 /*
1721 * First block in the extent
1722 */
8dc207c0
TT
1723 if (mpd->b_size == 0) {
1724 mpd->b_blocknr = logical;
1725 mpd->b_size = b_size;
1726 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1727 return;
1728 }
1729
8dc207c0 1730 next = mpd->b_blocknr + nrblocks;
64769240
AT
1731 /*
1732 * Can we merge the block to our big extent?
1733 */
8dc207c0
TT
1734 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1735 mpd->b_size += b_size;
64769240
AT
1736 return;
1737 }
1738
525f4ed8 1739flush_it:
64769240
AT
1740 /*
1741 * We couldn't merge the block to our extent, so we
1742 * need to flush current extent and start new one
1743 */
5a87b7a5 1744 mpage_da_map_and_submit(mpd);
a1d6cc56 1745 return;
64769240
AT
1746}
1747
c364b22c 1748static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1749{
c364b22c 1750 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1751}
1752
5356f261
AK
1753/*
1754 * This function is grabs code from the very beginning of
1755 * ext4_map_blocks, but assumes that the caller is from delayed write
1756 * time. This function looks up the requested blocks and sets the
1757 * buffer delay bit under the protection of i_data_sem.
1758 */
1759static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1760 struct ext4_map_blocks *map,
1761 struct buffer_head *bh)
1762{
1763 int retval;
1764 sector_t invalid_block = ~((sector_t) 0xffff);
1765
1766 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1767 invalid_block = ~0;
1768
1769 map->m_flags = 0;
1770 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1771 "logical block %lu\n", inode->i_ino, map->m_len,
1772 (unsigned long) map->m_lblk);
1773 /*
1774 * Try to see if we can get the block without requesting a new
1775 * file system block.
1776 */
1777 down_read((&EXT4_I(inode)->i_data_sem));
1778 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1779 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1780 else
1781 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1782
1783 if (retval == 0) {
1784 /*
1785 * XXX: __block_prepare_write() unmaps passed block,
1786 * is it OK?
1787 */
1788 /* If the block was allocated from previously allocated cluster,
1789 * then we dont need to reserve it again. */
1790 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1791 retval = ext4_da_reserve_space(inode, iblock);
1792 if (retval)
1793 /* not enough space to reserve */
1794 goto out_unlock;
1795 }
1796
1797 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1798 * and it should not appear on the bh->b_state.
1799 */
1800 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1801
1802 map_bh(bh, inode->i_sb, invalid_block);
1803 set_buffer_new(bh);
1804 set_buffer_delay(bh);
1805 }
1806
1807out_unlock:
1808 up_read((&EXT4_I(inode)->i_data_sem));
1809
1810 return retval;
1811}
1812
64769240 1813/*
b920c755
TT
1814 * This is a special get_blocks_t callback which is used by
1815 * ext4_da_write_begin(). It will either return mapped block or
1816 * reserve space for a single block.
29fa89d0
AK
1817 *
1818 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1819 * We also have b_blocknr = -1 and b_bdev initialized properly
1820 *
1821 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1822 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1823 * initialized properly.
64769240
AT
1824 */
1825static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1826 struct buffer_head *bh, int create)
64769240 1827{
2ed88685 1828 struct ext4_map_blocks map;
64769240
AT
1829 int ret = 0;
1830
1831 BUG_ON(create == 0);
2ed88685
TT
1832 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1833
1834 map.m_lblk = iblock;
1835 map.m_len = 1;
64769240
AT
1836
1837 /*
1838 * first, we need to know whether the block is allocated already
1839 * preallocated blocks are unmapped but should treated
1840 * the same as allocated blocks.
1841 */
5356f261
AK
1842 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1843 if (ret <= 0)
2ed88685 1844 return ret;
64769240 1845
2ed88685
TT
1846 map_bh(bh, inode->i_sb, map.m_pblk);
1847 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1848
1849 if (buffer_unwritten(bh)) {
1850 /* A delayed write to unwritten bh should be marked
1851 * new and mapped. Mapped ensures that we don't do
1852 * get_block multiple times when we write to the same
1853 * offset and new ensures that we do proper zero out
1854 * for partial write.
1855 */
1856 set_buffer_new(bh);
c8205636 1857 set_buffer_mapped(bh);
2ed88685
TT
1858 }
1859 return 0;
64769240 1860}
61628a3f 1861
b920c755
TT
1862/*
1863 * This function is used as a standard get_block_t calback function
1864 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1865 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1866 * These functions should only try to map a single block at a time.
b920c755
TT
1867 *
1868 * Since this function doesn't do block allocations even if the caller
1869 * requests it by passing in create=1, it is critically important that
1870 * any caller checks to make sure that any buffer heads are returned
1871 * by this function are either all already mapped or marked for
206f7ab4
CH
1872 * delayed allocation before calling block_write_full_page(). Otherwise,
1873 * b_blocknr could be left unitialized, and the page write functions will
1874 * be taken by surprise.
b920c755
TT
1875 */
1876static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1877 struct buffer_head *bh_result, int create)
1878{
a2dc52b5 1879 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1880 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1881}
1882
62e086be
AK
1883static int bget_one(handle_t *handle, struct buffer_head *bh)
1884{
1885 get_bh(bh);
1886 return 0;
1887}
1888
1889static int bput_one(handle_t *handle, struct buffer_head *bh)
1890{
1891 put_bh(bh);
1892 return 0;
1893}
1894
1895static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1896 unsigned int len)
1897{
1898 struct address_space *mapping = page->mapping;
1899 struct inode *inode = mapping->host;
1900 struct buffer_head *page_bufs;
1901 handle_t *handle = NULL;
1902 int ret = 0;
1903 int err;
1904
cb20d518 1905 ClearPageChecked(page);
62e086be
AK
1906 page_bufs = page_buffers(page);
1907 BUG_ON(!page_bufs);
1908 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1909 /* As soon as we unlock the page, it can go away, but we have
1910 * references to buffers so we are safe */
1911 unlock_page(page);
1912
1913 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1914 if (IS_ERR(handle)) {
1915 ret = PTR_ERR(handle);
1916 goto out;
1917 }
1918
441c8508
CW
1919 BUG_ON(!ext4_handle_valid(handle));
1920
62e086be
AK
1921 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1922 do_journal_get_write_access);
1923
1924 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1925 write_end_fn);
1926 if (ret == 0)
1927 ret = err;
2d859db3 1928 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1929 err = ext4_journal_stop(handle);
1930 if (!ret)
1931 ret = err;
1932
1933 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1934 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1935out:
1936 return ret;
1937}
1938
744692dc
JZ
1939static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1940static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1941
61628a3f 1942/*
43ce1d23
AK
1943 * Note that we don't need to start a transaction unless we're journaling data
1944 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1945 * need to file the inode to the transaction's list in ordered mode because if
1946 * we are writing back data added by write(), the inode is already there and if
25985edc 1947 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1948 * transaction the data will hit the disk. In case we are journaling data, we
1949 * cannot start transaction directly because transaction start ranks above page
1950 * lock so we have to do some magic.
1951 *
b920c755
TT
1952 * This function can get called via...
1953 * - ext4_da_writepages after taking page lock (have journal handle)
1954 * - journal_submit_inode_data_buffers (no journal handle)
1955 * - shrink_page_list via pdflush (no journal handle)
1956 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1957 *
1958 * We don't do any block allocation in this function. If we have page with
1959 * multiple blocks we need to write those buffer_heads that are mapped. This
1960 * is important for mmaped based write. So if we do with blocksize 1K
1961 * truncate(f, 1024);
1962 * a = mmap(f, 0, 4096);
1963 * a[0] = 'a';
1964 * truncate(f, 4096);
1965 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1966 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1967 * do_wp_page). So writepage should write the first block. If we modify
1968 * the mmap area beyond 1024 we will again get a page_fault and the
1969 * page_mkwrite callback will do the block allocation and mark the
1970 * buffer_heads mapped.
1971 *
1972 * We redirty the page if we have any buffer_heads that is either delay or
1973 * unwritten in the page.
1974 *
1975 * We can get recursively called as show below.
1976 *
1977 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1978 * ext4_writepage()
1979 *
1980 * But since we don't do any block allocation we should not deadlock.
1981 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1982 */
43ce1d23 1983static int ext4_writepage(struct page *page,
62e086be 1984 struct writeback_control *wbc)
64769240 1985{
a42afc5f 1986 int ret = 0, commit_write = 0;
61628a3f 1987 loff_t size;
498e5f24 1988 unsigned int len;
744692dc 1989 struct buffer_head *page_bufs = NULL;
61628a3f
MC
1990 struct inode *inode = page->mapping->host;
1991
a9c667f8 1992 trace_ext4_writepage(page);
f0e6c985
AK
1993 size = i_size_read(inode);
1994 if (page->index == size >> PAGE_CACHE_SHIFT)
1995 len = size & ~PAGE_CACHE_MASK;
1996 else
1997 len = PAGE_CACHE_SIZE;
64769240 1998
a42afc5f
TT
1999 /*
2000 * If the page does not have buffers (for whatever reason),
a107e5a3 2001 * try to create them using __block_write_begin. If this
a42afc5f
TT
2002 * fails, redirty the page and move on.
2003 */
b1142e8f 2004 if (!page_has_buffers(page)) {
a107e5a3 2005 if (__block_write_begin(page, 0, len,
a42afc5f
TT
2006 noalloc_get_block_write)) {
2007 redirty_page:
f0e6c985
AK
2008 redirty_page_for_writepage(wbc, page);
2009 unlock_page(page);
2010 return 0;
2011 }
a42afc5f
TT
2012 commit_write = 1;
2013 }
2014 page_bufs = page_buffers(page);
2015 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2016 ext4_bh_delay_or_unwritten)) {
f0e6c985 2017 /*
b1142e8f
TT
2018 * We don't want to do block allocation, so redirty
2019 * the page and return. We may reach here when we do
2020 * a journal commit via journal_submit_inode_data_buffers.
966dbde2
MG
2021 * We can also reach here via shrink_page_list but it
2022 * should never be for direct reclaim so warn if that
2023 * happens
f0e6c985 2024 */
966dbde2
MG
2025 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2026 PF_MEMALLOC);
a42afc5f
TT
2027 goto redirty_page;
2028 }
2029 if (commit_write)
ed9b3e33 2030 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2031 block_commit_write(page, 0, len);
64769240 2032
cb20d518 2033 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2034 /*
2035 * It's mmapped pagecache. Add buffers and journal it. There
2036 * doesn't seem much point in redirtying the page here.
2037 */
3f0ca309 2038 return __ext4_journalled_writepage(page, len);
43ce1d23 2039
a42afc5f 2040 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2041 ext4_set_bh_endio(page_bufs, inode);
2042 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2043 wbc, ext4_end_io_buffer_write);
2044 } else
b920c755
TT
2045 ret = block_write_full_page(page, noalloc_get_block_write,
2046 wbc);
64769240 2047
64769240
AT
2048 return ret;
2049}
2050
61628a3f 2051/*
525f4ed8 2052 * This is called via ext4_da_writepages() to
25985edc 2053 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2054 * a single extent allocation into a single transaction,
2055 * ext4_da_writpeages() will loop calling this before
2056 * the block allocation.
61628a3f 2057 */
525f4ed8
MC
2058
2059static int ext4_da_writepages_trans_blocks(struct inode *inode)
2060{
2061 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2062
2063 /*
2064 * With non-extent format the journal credit needed to
2065 * insert nrblocks contiguous block is dependent on
2066 * number of contiguous block. So we will limit
2067 * number of contiguous block to a sane value
2068 */
12e9b892 2069 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2070 (max_blocks > EXT4_MAX_TRANS_DATA))
2071 max_blocks = EXT4_MAX_TRANS_DATA;
2072
2073 return ext4_chunk_trans_blocks(inode, max_blocks);
2074}
61628a3f 2075
8e48dcfb
TT
2076/*
2077 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2078 * address space and accumulate pages that need writing, and call
168fc022
TT
2079 * mpage_da_map_and_submit to map a single contiguous memory region
2080 * and then write them.
8e48dcfb
TT
2081 */
2082static int write_cache_pages_da(struct address_space *mapping,
2083 struct writeback_control *wbc,
72f84e65
ES
2084 struct mpage_da_data *mpd,
2085 pgoff_t *done_index)
8e48dcfb 2086{
4f01b02c 2087 struct buffer_head *bh, *head;
168fc022 2088 struct inode *inode = mapping->host;
4f01b02c
TT
2089 struct pagevec pvec;
2090 unsigned int nr_pages;
2091 sector_t logical;
2092 pgoff_t index, end;
2093 long nr_to_write = wbc->nr_to_write;
2094 int i, tag, ret = 0;
8e48dcfb 2095
168fc022
TT
2096 memset(mpd, 0, sizeof(struct mpage_da_data));
2097 mpd->wbc = wbc;
2098 mpd->inode = inode;
8e48dcfb
TT
2099 pagevec_init(&pvec, 0);
2100 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2101 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2102
6e6938b6 2103 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2104 tag = PAGECACHE_TAG_TOWRITE;
2105 else
2106 tag = PAGECACHE_TAG_DIRTY;
2107
72f84e65 2108 *done_index = index;
4f01b02c 2109 while (index <= end) {
5b41d924 2110 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2111 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2112 if (nr_pages == 0)
4f01b02c 2113 return 0;
8e48dcfb
TT
2114
2115 for (i = 0; i < nr_pages; i++) {
2116 struct page *page = pvec.pages[i];
2117
2118 /*
2119 * At this point, the page may be truncated or
2120 * invalidated (changing page->mapping to NULL), or
2121 * even swizzled back from swapper_space to tmpfs file
2122 * mapping. However, page->index will not change
2123 * because we have a reference on the page.
2124 */
4f01b02c
TT
2125 if (page->index > end)
2126 goto out;
8e48dcfb 2127
72f84e65
ES
2128 *done_index = page->index + 1;
2129
78aaced3
TT
2130 /*
2131 * If we can't merge this page, and we have
2132 * accumulated an contiguous region, write it
2133 */
2134 if ((mpd->next_page != page->index) &&
2135 (mpd->next_page != mpd->first_page)) {
2136 mpage_da_map_and_submit(mpd);
2137 goto ret_extent_tail;
2138 }
2139
8e48dcfb
TT
2140 lock_page(page);
2141
2142 /*
4f01b02c
TT
2143 * If the page is no longer dirty, or its
2144 * mapping no longer corresponds to inode we
2145 * are writing (which means it has been
2146 * truncated or invalidated), or the page is
2147 * already under writeback and we are not
2148 * doing a data integrity writeback, skip the page
8e48dcfb 2149 */
4f01b02c
TT
2150 if (!PageDirty(page) ||
2151 (PageWriteback(page) &&
2152 (wbc->sync_mode == WB_SYNC_NONE)) ||
2153 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2154 unlock_page(page);
2155 continue;
2156 }
2157
7cb1a535 2158 wait_on_page_writeback(page);
8e48dcfb 2159 BUG_ON(PageWriteback(page));
8e48dcfb 2160
168fc022 2161 if (mpd->next_page != page->index)
8eb9e5ce 2162 mpd->first_page = page->index;
8eb9e5ce
TT
2163 mpd->next_page = page->index + 1;
2164 logical = (sector_t) page->index <<
2165 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2166
2167 if (!page_has_buffers(page)) {
4f01b02c
TT
2168 mpage_add_bh_to_extent(mpd, logical,
2169 PAGE_CACHE_SIZE,
8eb9e5ce 2170 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2171 if (mpd->io_done)
2172 goto ret_extent_tail;
8eb9e5ce
TT
2173 } else {
2174 /*
4f01b02c
TT
2175 * Page with regular buffer heads,
2176 * just add all dirty ones
8eb9e5ce
TT
2177 */
2178 head = page_buffers(page);
2179 bh = head;
2180 do {
2181 BUG_ON(buffer_locked(bh));
2182 /*
2183 * We need to try to allocate
2184 * unmapped blocks in the same page.
2185 * Otherwise we won't make progress
2186 * with the page in ext4_writepage
2187 */
2188 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2189 mpage_add_bh_to_extent(mpd, logical,
2190 bh->b_size,
2191 bh->b_state);
4f01b02c
TT
2192 if (mpd->io_done)
2193 goto ret_extent_tail;
8eb9e5ce
TT
2194 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2195 /*
4f01b02c
TT
2196 * mapped dirty buffer. We need
2197 * to update the b_state
2198 * because we look at b_state
2199 * in mpage_da_map_blocks. We
2200 * don't update b_size because
2201 * if we find an unmapped
2202 * buffer_head later we need to
2203 * use the b_state flag of that
2204 * buffer_head.
8eb9e5ce
TT
2205 */
2206 if (mpd->b_size == 0)
2207 mpd->b_state = bh->b_state & BH_FLAGS;
2208 }
2209 logical++;
2210 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2211 }
2212
2213 if (nr_to_write > 0) {
2214 nr_to_write--;
2215 if (nr_to_write == 0 &&
4f01b02c 2216 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2217 /*
2218 * We stop writing back only if we are
2219 * not doing integrity sync. In case of
2220 * integrity sync we have to keep going
2221 * because someone may be concurrently
2222 * dirtying pages, and we might have
2223 * synced a lot of newly appeared dirty
2224 * pages, but have not synced all of the
2225 * old dirty pages.
2226 */
4f01b02c 2227 goto out;
8e48dcfb
TT
2228 }
2229 }
2230 pagevec_release(&pvec);
2231 cond_resched();
2232 }
4f01b02c
TT
2233 return 0;
2234ret_extent_tail:
2235 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2236out:
2237 pagevec_release(&pvec);
2238 cond_resched();
8e48dcfb
TT
2239 return ret;
2240}
2241
2242
64769240 2243static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2244 struct writeback_control *wbc)
64769240 2245{
22208ded
AK
2246 pgoff_t index;
2247 int range_whole = 0;
61628a3f 2248 handle_t *handle = NULL;
df22291f 2249 struct mpage_da_data mpd;
5e745b04 2250 struct inode *inode = mapping->host;
498e5f24 2251 int pages_written = 0;
55138e0b 2252 unsigned int max_pages;
2acf2c26 2253 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2254 int needed_blocks, ret = 0;
2255 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2256 loff_t range_start = wbc->range_start;
5e745b04 2257 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2258 pgoff_t done_index = 0;
5b41d924 2259 pgoff_t end;
1bce63d1 2260 struct blk_plug plug;
61628a3f 2261
9bffad1e 2262 trace_ext4_da_writepages(inode, wbc);
ba80b101 2263
61628a3f
MC
2264 /*
2265 * No pages to write? This is mainly a kludge to avoid starting
2266 * a transaction for special inodes like journal inode on last iput()
2267 * because that could violate lock ordering on umount
2268 */
a1d6cc56 2269 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2270 return 0;
2a21e37e
TT
2271
2272 /*
2273 * If the filesystem has aborted, it is read-only, so return
2274 * right away instead of dumping stack traces later on that
2275 * will obscure the real source of the problem. We test
4ab2f15b 2276 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2277 * the latter could be true if the filesystem is mounted
2278 * read-only, and in that case, ext4_da_writepages should
2279 * *never* be called, so if that ever happens, we would want
2280 * the stack trace.
2281 */
4ab2f15b 2282 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2283 return -EROFS;
2284
22208ded
AK
2285 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2286 range_whole = 1;
61628a3f 2287
2acf2c26
AK
2288 range_cyclic = wbc->range_cyclic;
2289 if (wbc->range_cyclic) {
22208ded 2290 index = mapping->writeback_index;
2acf2c26
AK
2291 if (index)
2292 cycled = 0;
2293 wbc->range_start = index << PAGE_CACHE_SHIFT;
2294 wbc->range_end = LLONG_MAX;
2295 wbc->range_cyclic = 0;
5b41d924
ES
2296 end = -1;
2297 } else {
22208ded 2298 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2299 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2300 }
a1d6cc56 2301
55138e0b
TT
2302 /*
2303 * This works around two forms of stupidity. The first is in
2304 * the writeback code, which caps the maximum number of pages
2305 * written to be 1024 pages. This is wrong on multiple
2306 * levels; different architectues have a different page size,
2307 * which changes the maximum amount of data which gets
2308 * written. Secondly, 4 megabytes is way too small. XFS
2309 * forces this value to be 16 megabytes by multiplying
2310 * nr_to_write parameter by four, and then relies on its
2311 * allocator to allocate larger extents to make them
2312 * contiguous. Unfortunately this brings us to the second
2313 * stupidity, which is that ext4's mballoc code only allocates
2314 * at most 2048 blocks. So we force contiguous writes up to
2315 * the number of dirty blocks in the inode, or
2316 * sbi->max_writeback_mb_bump whichever is smaller.
2317 */
2318 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2319 if (!range_cyclic && range_whole) {
2320 if (wbc->nr_to_write == LONG_MAX)
2321 desired_nr_to_write = wbc->nr_to_write;
2322 else
2323 desired_nr_to_write = wbc->nr_to_write * 8;
2324 } else
55138e0b
TT
2325 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2326 max_pages);
2327 if (desired_nr_to_write > max_pages)
2328 desired_nr_to_write = max_pages;
2329
2330 if (wbc->nr_to_write < desired_nr_to_write) {
2331 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2332 wbc->nr_to_write = desired_nr_to_write;
2333 }
2334
2acf2c26 2335retry:
6e6938b6 2336 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2337 tag_pages_for_writeback(mapping, index, end);
2338
1bce63d1 2339 blk_start_plug(&plug);
22208ded 2340 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2341
2342 /*
2343 * we insert one extent at a time. So we need
2344 * credit needed for single extent allocation.
2345 * journalled mode is currently not supported
2346 * by delalloc
2347 */
2348 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2349 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2350
61628a3f
MC
2351 /* start a new transaction*/
2352 handle = ext4_journal_start(inode, needed_blocks);
2353 if (IS_ERR(handle)) {
2354 ret = PTR_ERR(handle);
1693918e 2355 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2356 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2357 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2358 blk_finish_plug(&plug);
61628a3f
MC
2359 goto out_writepages;
2360 }
f63e6005
TT
2361
2362 /*
8eb9e5ce 2363 * Now call write_cache_pages_da() to find the next
f63e6005 2364 * contiguous region of logical blocks that need
8eb9e5ce 2365 * blocks to be allocated by ext4 and submit them.
f63e6005 2366 */
72f84e65 2367 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2368 /*
af901ca1 2369 * If we have a contiguous extent of pages and we
f63e6005
TT
2370 * haven't done the I/O yet, map the blocks and submit
2371 * them for I/O.
2372 */
2373 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2374 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2375 ret = MPAGE_DA_EXTENT_TAIL;
2376 }
b3a3ca8c 2377 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2378 wbc->nr_to_write -= mpd.pages_written;
df22291f 2379
61628a3f 2380 ext4_journal_stop(handle);
df22291f 2381
8f64b32e 2382 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2383 /* commit the transaction which would
2384 * free blocks released in the transaction
2385 * and try again
2386 */
df22291f 2387 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2388 ret = 0;
2389 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2390 /*
8de49e67
KM
2391 * Got one extent now try with rest of the pages.
2392 * If mpd.retval is set -EIO, journal is aborted.
2393 * So we don't need to write any more.
a1d6cc56 2394 */
22208ded 2395 pages_written += mpd.pages_written;
8de49e67 2396 ret = mpd.retval;
2acf2c26 2397 io_done = 1;
22208ded 2398 } else if (wbc->nr_to_write)
61628a3f
MC
2399 /*
2400 * There is no more writeout needed
2401 * or we requested for a noblocking writeout
2402 * and we found the device congested
2403 */
61628a3f 2404 break;
a1d6cc56 2405 }
1bce63d1 2406 blk_finish_plug(&plug);
2acf2c26
AK
2407 if (!io_done && !cycled) {
2408 cycled = 1;
2409 index = 0;
2410 wbc->range_start = index << PAGE_CACHE_SHIFT;
2411 wbc->range_end = mapping->writeback_index - 1;
2412 goto retry;
2413 }
22208ded
AK
2414
2415 /* Update index */
2acf2c26 2416 wbc->range_cyclic = range_cyclic;
22208ded
AK
2417 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2418 /*
2419 * set the writeback_index so that range_cyclic
2420 * mode will write it back later
2421 */
72f84e65 2422 mapping->writeback_index = done_index;
a1d6cc56 2423
61628a3f 2424out_writepages:
2faf2e19 2425 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2426 wbc->range_start = range_start;
9bffad1e 2427 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2428 return ret;
64769240
AT
2429}
2430
79f0be8d
AK
2431#define FALL_BACK_TO_NONDELALLOC 1
2432static int ext4_nonda_switch(struct super_block *sb)
2433{
2434 s64 free_blocks, dirty_blocks;
2435 struct ext4_sb_info *sbi = EXT4_SB(sb);
2436
2437 /*
2438 * switch to non delalloc mode if we are running low
2439 * on free block. The free block accounting via percpu
179f7ebf 2440 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2441 * accumulated on each CPU without updating global counters
2442 * Delalloc need an accurate free block accounting. So switch
2443 * to non delalloc when we are near to error range.
2444 */
57042651
TT
2445 free_blocks = EXT4_C2B(sbi,
2446 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2447 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
79f0be8d 2448 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2449 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2450 /*
c8afb446
ES
2451 * free block count is less than 150% of dirty blocks
2452 * or free blocks is less than watermark
79f0be8d
AK
2453 */
2454 return 1;
2455 }
c8afb446
ES
2456 /*
2457 * Even if we don't switch but are nearing capacity,
2458 * start pushing delalloc when 1/2 of free blocks are dirty.
2459 */
2460 if (free_blocks < 2 * dirty_blocks)
0e175a18 2461 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
c8afb446 2462
79f0be8d
AK
2463 return 0;
2464}
2465
64769240 2466static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2467 loff_t pos, unsigned len, unsigned flags,
2468 struct page **pagep, void **fsdata)
64769240 2469{
72b8ab9d 2470 int ret, retries = 0;
64769240
AT
2471 struct page *page;
2472 pgoff_t index;
64769240
AT
2473 struct inode *inode = mapping->host;
2474 handle_t *handle;
2475
2476 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2477
2478 if (ext4_nonda_switch(inode->i_sb)) {
2479 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2480 return ext4_write_begin(file, mapping, pos,
2481 len, flags, pagep, fsdata);
2482 }
2483 *fsdata = (void *)0;
9bffad1e 2484 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2485retry:
64769240
AT
2486 /*
2487 * With delayed allocation, we don't log the i_disksize update
2488 * if there is delayed block allocation. But we still need
2489 * to journalling the i_disksize update if writes to the end
2490 * of file which has an already mapped buffer.
2491 */
2492 handle = ext4_journal_start(inode, 1);
2493 if (IS_ERR(handle)) {
2494 ret = PTR_ERR(handle);
2495 goto out;
2496 }
ebd3610b
JK
2497 /* We cannot recurse into the filesystem as the transaction is already
2498 * started */
2499 flags |= AOP_FLAG_NOFS;
64769240 2500
54566b2c 2501 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2502 if (!page) {
2503 ext4_journal_stop(handle);
2504 ret = -ENOMEM;
2505 goto out;
2506 }
64769240
AT
2507 *pagep = page;
2508
6e1db88d 2509 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2510 if (ret < 0) {
2511 unlock_page(page);
2512 ext4_journal_stop(handle);
2513 page_cache_release(page);
ae4d5372
AK
2514 /*
2515 * block_write_begin may have instantiated a few blocks
2516 * outside i_size. Trim these off again. Don't need
2517 * i_size_read because we hold i_mutex.
2518 */
2519 if (pos + len > inode->i_size)
b9a4207d 2520 ext4_truncate_failed_write(inode);
64769240
AT
2521 }
2522
d2a17637
MC
2523 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2524 goto retry;
64769240
AT
2525out:
2526 return ret;
2527}
2528
632eaeab
MC
2529/*
2530 * Check if we should update i_disksize
2531 * when write to the end of file but not require block allocation
2532 */
2533static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2534 unsigned long offset)
632eaeab
MC
2535{
2536 struct buffer_head *bh;
2537 struct inode *inode = page->mapping->host;
2538 unsigned int idx;
2539 int i;
2540
2541 bh = page_buffers(page);
2542 idx = offset >> inode->i_blkbits;
2543
af5bc92d 2544 for (i = 0; i < idx; i++)
632eaeab
MC
2545 bh = bh->b_this_page;
2546
29fa89d0 2547 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2548 return 0;
2549 return 1;
2550}
2551
64769240 2552static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2553 struct address_space *mapping,
2554 loff_t pos, unsigned len, unsigned copied,
2555 struct page *page, void *fsdata)
64769240
AT
2556{
2557 struct inode *inode = mapping->host;
2558 int ret = 0, ret2;
2559 handle_t *handle = ext4_journal_current_handle();
2560 loff_t new_i_size;
632eaeab 2561 unsigned long start, end;
79f0be8d
AK
2562 int write_mode = (int)(unsigned long)fsdata;
2563
2564 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2565 switch (ext4_inode_journal_mode(inode)) {
2566 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2567 return ext4_ordered_write_end(file, mapping, pos,
2568 len, copied, page, fsdata);
3d2b1582 2569 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2570 return ext4_writeback_write_end(file, mapping, pos,
2571 len, copied, page, fsdata);
3d2b1582 2572 default:
79f0be8d
AK
2573 BUG();
2574 }
2575 }
632eaeab 2576
9bffad1e 2577 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2578 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2579 end = start + copied - 1;
64769240
AT
2580
2581 /*
2582 * generic_write_end() will run mark_inode_dirty() if i_size
2583 * changes. So let's piggyback the i_disksize mark_inode_dirty
2584 * into that.
2585 */
2586
2587 new_i_size = pos + copied;
ea51d132 2588 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
632eaeab
MC
2589 if (ext4_da_should_update_i_disksize(page, end)) {
2590 down_write(&EXT4_I(inode)->i_data_sem);
2591 if (new_i_size > EXT4_I(inode)->i_disksize) {
2592 /*
2593 * Updating i_disksize when extending file
2594 * without needing block allocation
2595 */
2596 if (ext4_should_order_data(inode))
2597 ret = ext4_jbd2_file_inode(handle,
2598 inode);
64769240 2599
632eaeab
MC
2600 EXT4_I(inode)->i_disksize = new_i_size;
2601 }
2602 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2603 /* We need to mark inode dirty even if
2604 * new_i_size is less that inode->i_size
2605 * bu greater than i_disksize.(hint delalloc)
2606 */
2607 ext4_mark_inode_dirty(handle, inode);
64769240 2608 }
632eaeab 2609 }
64769240
AT
2610 ret2 = generic_write_end(file, mapping, pos, len, copied,
2611 page, fsdata);
2612 copied = ret2;
2613 if (ret2 < 0)
2614 ret = ret2;
2615 ret2 = ext4_journal_stop(handle);
2616 if (!ret)
2617 ret = ret2;
2618
2619 return ret ? ret : copied;
2620}
2621
2622static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2623{
64769240
AT
2624 /*
2625 * Drop reserved blocks
2626 */
2627 BUG_ON(!PageLocked(page));
2628 if (!page_has_buffers(page))
2629 goto out;
2630
d2a17637 2631 ext4_da_page_release_reservation(page, offset);
64769240
AT
2632
2633out:
2634 ext4_invalidatepage(page, offset);
2635
2636 return;
2637}
2638
ccd2506b
TT
2639/*
2640 * Force all delayed allocation blocks to be allocated for a given inode.
2641 */
2642int ext4_alloc_da_blocks(struct inode *inode)
2643{
fb40ba0d
TT
2644 trace_ext4_alloc_da_blocks(inode);
2645
ccd2506b
TT
2646 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2647 !EXT4_I(inode)->i_reserved_meta_blocks)
2648 return 0;
2649
2650 /*
2651 * We do something simple for now. The filemap_flush() will
2652 * also start triggering a write of the data blocks, which is
2653 * not strictly speaking necessary (and for users of
2654 * laptop_mode, not even desirable). However, to do otherwise
2655 * would require replicating code paths in:
de9a55b8 2656 *
ccd2506b
TT
2657 * ext4_da_writepages() ->
2658 * write_cache_pages() ---> (via passed in callback function)
2659 * __mpage_da_writepage() -->
2660 * mpage_add_bh_to_extent()
2661 * mpage_da_map_blocks()
2662 *
2663 * The problem is that write_cache_pages(), located in
2664 * mm/page-writeback.c, marks pages clean in preparation for
2665 * doing I/O, which is not desirable if we're not planning on
2666 * doing I/O at all.
2667 *
2668 * We could call write_cache_pages(), and then redirty all of
380cf090 2669 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2670 * would be ugly in the extreme. So instead we would need to
2671 * replicate parts of the code in the above functions,
25985edc 2672 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2673 * write out the pages, but rather only collect contiguous
2674 * logical block extents, call the multi-block allocator, and
2675 * then update the buffer heads with the block allocations.
de9a55b8 2676 *
ccd2506b
TT
2677 * For now, though, we'll cheat by calling filemap_flush(),
2678 * which will map the blocks, and start the I/O, but not
2679 * actually wait for the I/O to complete.
2680 */
2681 return filemap_flush(inode->i_mapping);
2682}
64769240 2683
ac27a0ec
DK
2684/*
2685 * bmap() is special. It gets used by applications such as lilo and by
2686 * the swapper to find the on-disk block of a specific piece of data.
2687 *
2688 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2689 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2690 * filesystem and enables swap, then they may get a nasty shock when the
2691 * data getting swapped to that swapfile suddenly gets overwritten by
2692 * the original zero's written out previously to the journal and
2693 * awaiting writeback in the kernel's buffer cache.
2694 *
2695 * So, if we see any bmap calls here on a modified, data-journaled file,
2696 * take extra steps to flush any blocks which might be in the cache.
2697 */
617ba13b 2698static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2699{
2700 struct inode *inode = mapping->host;
2701 journal_t *journal;
2702 int err;
2703
64769240
AT
2704 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2705 test_opt(inode->i_sb, DELALLOC)) {
2706 /*
2707 * With delalloc we want to sync the file
2708 * so that we can make sure we allocate
2709 * blocks for file
2710 */
2711 filemap_write_and_wait(mapping);
2712 }
2713
19f5fb7a
TT
2714 if (EXT4_JOURNAL(inode) &&
2715 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2716 /*
2717 * This is a REALLY heavyweight approach, but the use of
2718 * bmap on dirty files is expected to be extremely rare:
2719 * only if we run lilo or swapon on a freshly made file
2720 * do we expect this to happen.
2721 *
2722 * (bmap requires CAP_SYS_RAWIO so this does not
2723 * represent an unprivileged user DOS attack --- we'd be
2724 * in trouble if mortal users could trigger this path at
2725 * will.)
2726 *
617ba13b 2727 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2728 * regular files. If somebody wants to bmap a directory
2729 * or symlink and gets confused because the buffer
2730 * hasn't yet been flushed to disk, they deserve
2731 * everything they get.
2732 */
2733
19f5fb7a 2734 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2735 journal = EXT4_JOURNAL(inode);
dab291af
MC
2736 jbd2_journal_lock_updates(journal);
2737 err = jbd2_journal_flush(journal);
2738 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2739
2740 if (err)
2741 return 0;
2742 }
2743
af5bc92d 2744 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2745}
2746
617ba13b 2747static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2748{
0562e0ba 2749 trace_ext4_readpage(page);
617ba13b 2750 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2751}
2752
2753static int
617ba13b 2754ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2755 struct list_head *pages, unsigned nr_pages)
2756{
617ba13b 2757 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2758}
2759
744692dc
JZ
2760static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2761{
2762 struct buffer_head *head, *bh;
2763 unsigned int curr_off = 0;
2764
2765 if (!page_has_buffers(page))
2766 return;
2767 head = bh = page_buffers(page);
2768 do {
2769 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2770 && bh->b_private) {
2771 ext4_free_io_end(bh->b_private);
2772 bh->b_private = NULL;
2773 bh->b_end_io = NULL;
2774 }
2775 curr_off = curr_off + bh->b_size;
2776 bh = bh->b_this_page;
2777 } while (bh != head);
2778}
2779
617ba13b 2780static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2781{
617ba13b 2782 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2783
0562e0ba
JZ
2784 trace_ext4_invalidatepage(page, offset);
2785
744692dc
JZ
2786 /*
2787 * free any io_end structure allocated for buffers to be discarded
2788 */
2789 if (ext4_should_dioread_nolock(page->mapping->host))
2790 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2791 /*
2792 * If it's a full truncate we just forget about the pending dirtying
2793 */
2794 if (offset == 0)
2795 ClearPageChecked(page);
2796
0390131b
FM
2797 if (journal)
2798 jbd2_journal_invalidatepage(journal, page, offset);
2799 else
2800 block_invalidatepage(page, offset);
ac27a0ec
DK
2801}
2802
617ba13b 2803static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2804{
617ba13b 2805 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2806
0562e0ba
JZ
2807 trace_ext4_releasepage(page);
2808
ac27a0ec
DK
2809 WARN_ON(PageChecked(page));
2810 if (!page_has_buffers(page))
2811 return 0;
0390131b
FM
2812 if (journal)
2813 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2814 else
2815 return try_to_free_buffers(page);
ac27a0ec
DK
2816}
2817
2ed88685
TT
2818/*
2819 * ext4_get_block used when preparing for a DIO write or buffer write.
2820 * We allocate an uinitialized extent if blocks haven't been allocated.
2821 * The extent will be converted to initialized after the IO is complete.
2822 */
c7064ef1 2823static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2824 struct buffer_head *bh_result, int create)
2825{
c7064ef1 2826 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2827 inode->i_ino, create);
2ed88685
TT
2828 return _ext4_get_block(inode, iblock, bh_result,
2829 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2830}
2831
729f52c6
ZL
2832static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2833 struct buffer_head *bh_result, int flags)
2834{
2835 handle_t *handle = ext4_journal_current_handle();
2836 struct ext4_map_blocks map;
2837 int ret = 0;
2838
2839 ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
2840 inode->i_ino, flags);
2841
2842 flags = EXT4_GET_BLOCKS_NO_LOCK;
2843
2844 map.m_lblk = iblock;
2845 map.m_len = bh_result->b_size >> inode->i_blkbits;
2846
2847 ret = ext4_map_blocks(handle, inode, &map, flags);
2848 if (ret > 0) {
2849 map_bh(bh_result, inode->i_sb, map.m_pblk);
2850 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
2851 map.m_flags;
2852 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
2853 ret = 0;
2854 }
2855 return ret;
2856}
2857
4c0425ff 2858static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2859 ssize_t size, void *private, int ret,
2860 bool is_async)
4c0425ff 2861{
72c5052d 2862 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff
MC
2863 ext4_io_end_t *io_end = iocb->private;
2864 struct workqueue_struct *wq;
744692dc
JZ
2865 unsigned long flags;
2866 struct ext4_inode_info *ei;
4c0425ff 2867
4b70df18
M
2868 /* if not async direct IO or dio with 0 bytes write, just return */
2869 if (!io_end || !size)
552ef802 2870 goto out;
4b70df18 2871
88635ca2 2872 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2873 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2874 iocb->private, io_end->inode->i_ino, iocb, offset,
2875 size);
8d5d02e6 2876
b5a7e970
TT
2877 iocb->private = NULL;
2878
8d5d02e6 2879 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2880 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 2881 ext4_free_io_end(io_end);
5b3ff237
JZ
2882out:
2883 if (is_async)
2884 aio_complete(iocb, ret, 0);
72c5052d 2885 inode_dio_done(inode);
5b3ff237 2886 return;
8d5d02e6
MC
2887 }
2888
4c0425ff
MC
2889 io_end->offset = offset;
2890 io_end->size = size;
5b3ff237
JZ
2891 if (is_async) {
2892 io_end->iocb = iocb;
2893 io_end->result = ret;
2894 }
4c0425ff
MC
2895 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2896
8d5d02e6 2897 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
2898 ei = EXT4_I(io_end->inode);
2899 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2900 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2901 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
2902
2903 /* queue the work to convert unwritten extents to written */
4c81f045 2904 queue_work(wq, &io_end->work);
4c0425ff 2905}
c7064ef1 2906
744692dc
JZ
2907static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2908{
2909 ext4_io_end_t *io_end = bh->b_private;
2910 struct workqueue_struct *wq;
2911 struct inode *inode;
2912 unsigned long flags;
2913
2914 if (!test_clear_buffer_uninit(bh) || !io_end)
2915 goto out;
2916
2917 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
92b97816
TT
2918 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2919 "sb umounted, discard end_io request for inode %lu",
2920 io_end->inode->i_ino);
744692dc
JZ
2921 ext4_free_io_end(io_end);
2922 goto out;
2923 }
2924
32c80b32
TM
2925 /*
2926 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2927 * but being more careful is always safe for the future change.
2928 */
744692dc 2929 inode = io_end->inode;
0edeb71d 2930 ext4_set_io_unwritten_flag(inode, io_end);
744692dc
JZ
2931
2932 /* Add the io_end to per-inode completed io list*/
2933 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2934 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2935 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2936
2937 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2938 /* queue the work to convert unwritten extents to written */
2939 queue_work(wq, &io_end->work);
2940out:
2941 bh->b_private = NULL;
2942 bh->b_end_io = NULL;
2943 clear_buffer_uninit(bh);
2944 end_buffer_async_write(bh, uptodate);
2945}
2946
2947static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2948{
2949 ext4_io_end_t *io_end;
2950 struct page *page = bh->b_page;
2951 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2952 size_t size = bh->b_size;
2953
2954retry:
2955 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2956 if (!io_end) {
6db26ffc 2957 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2958 schedule();
2959 goto retry;
2960 }
2961 io_end->offset = offset;
2962 io_end->size = size;
2963 /*
2964 * We need to hold a reference to the page to make sure it
2965 * doesn't get evicted before ext4_end_io_work() has a chance
2966 * to convert the extent from written to unwritten.
2967 */
2968 io_end->page = page;
2969 get_page(io_end->page);
2970
2971 bh->b_private = io_end;
2972 bh->b_end_io = ext4_end_io_buffer_write;
2973 return 0;
2974}
2975
4c0425ff
MC
2976/*
2977 * For ext4 extent files, ext4 will do direct-io write to holes,
2978 * preallocated extents, and those write extend the file, no need to
2979 * fall back to buffered IO.
2980 *
b595076a 2981 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 2982 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 2983 * still keep the range to write as uninitialized.
4c0425ff 2984 *
8d5d02e6
MC
2985 * The unwrritten extents will be converted to written when DIO is completed.
2986 * For async direct IO, since the IO may still pending when return, we
25985edc 2987 * set up an end_io call back function, which will do the conversion
8d5d02e6 2988 * when async direct IO completed.
4c0425ff
MC
2989 *
2990 * If the O_DIRECT write will extend the file then add this inode to the
2991 * orphan list. So recovery will truncate it back to the original size
2992 * if the machine crashes during the write.
2993 *
2994 */
2995static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2996 const struct iovec *iov, loff_t offset,
2997 unsigned long nr_segs)
2998{
2999 struct file *file = iocb->ki_filp;
3000 struct inode *inode = file->f_mapping->host;
3001 ssize_t ret;
3002 size_t count = iov_length(iov, nr_segs);
3003
3004 loff_t final_size = offset + count;
3005 if (rw == WRITE && final_size <= inode->i_size) {
729f52c6
ZL
3006 int overwrite = 0;
3007
4bd809db
ZL
3008 BUG_ON(iocb->private == NULL);
3009
3010 /* If we do a overwrite dio, i_mutex locking can be released */
3011 overwrite = *((int *)iocb->private);
3012
3013 if (overwrite) {
3014 down_read(&EXT4_I(inode)->i_data_sem);
3015 mutex_unlock(&inode->i_mutex);
3016 }
3017
4c0425ff 3018 /*
8d5d02e6
MC
3019 * We could direct write to holes and fallocate.
3020 *
3021 * Allocated blocks to fill the hole are marked as uninitialized
25985edc 3022 * to prevent parallel buffered read to expose the stale data
4c0425ff 3023 * before DIO complete the data IO.
8d5d02e6
MC
3024 *
3025 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3026 * will just simply mark the buffer mapped but still
3027 * keep the extents uninitialized.
3028 *
8d5d02e6
MC
3029 * for non AIO case, we will convert those unwritten extents
3030 * to written after return back from blockdev_direct_IO.
3031 *
3032 * for async DIO, the conversion needs to be defered when
3033 * the IO is completed. The ext4 end_io callback function
3034 * will be called to take care of the conversion work.
3035 * Here for async case, we allocate an io_end structure to
3036 * hook to the iocb.
4c0425ff 3037 */
8d5d02e6
MC
3038 iocb->private = NULL;
3039 EXT4_I(inode)->cur_aio_dio = NULL;
3040 if (!is_sync_kiocb(iocb)) {
266991b1
JM
3041 ext4_io_end_t *io_end =
3042 ext4_init_io_end(inode, GFP_NOFS);
4bd809db
ZL
3043 if (!io_end) {
3044 ret = -ENOMEM;
3045 goto retake_lock;
3046 }
266991b1
JM
3047 io_end->flag |= EXT4_IO_END_DIRECT;
3048 iocb->private = io_end;
8d5d02e6
MC
3049 /*
3050 * we save the io structure for current async
79e83036 3051 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3052 * could flag the io structure whether there
3053 * is a unwritten extents needs to be converted
3054 * when IO is completed.
3055 */
3056 EXT4_I(inode)->cur_aio_dio = iocb->private;
3057 }
3058
729f52c6
ZL
3059 if (overwrite)
3060 ret = __blockdev_direct_IO(rw, iocb, inode,
3061 inode->i_sb->s_bdev, iov,
3062 offset, nr_segs,
3063 ext4_get_block_write_nolock,
3064 ext4_end_io_dio,
3065 NULL,
3066 0);
3067 else
3068 ret = __blockdev_direct_IO(rw, iocb, inode,
3069 inode->i_sb->s_bdev, iov,
3070 offset, nr_segs,
3071 ext4_get_block_write,
3072 ext4_end_io_dio,
3073 NULL,
3074 DIO_LOCKING);
8d5d02e6
MC
3075 if (iocb->private)
3076 EXT4_I(inode)->cur_aio_dio = NULL;
3077 /*
3078 * The io_end structure takes a reference to the inode,
3079 * that structure needs to be destroyed and the
3080 * reference to the inode need to be dropped, when IO is
3081 * complete, even with 0 byte write, or failed.
3082 *
3083 * In the successful AIO DIO case, the io_end structure will be
3084 * desctroyed and the reference to the inode will be dropped
3085 * after the end_io call back function is called.
3086 *
3087 * In the case there is 0 byte write, or error case, since
3088 * VFS direct IO won't invoke the end_io call back function,
3089 * we need to free the end_io structure here.
3090 */
3091 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3092 ext4_free_io_end(iocb->private);
3093 iocb->private = NULL;
729f52c6 3094 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
19f5fb7a 3095 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3096 int err;
8d5d02e6
MC
3097 /*
3098 * for non AIO case, since the IO is already
25985edc 3099 * completed, we could do the conversion right here
8d5d02e6 3100 */
109f5565
M
3101 err = ext4_convert_unwritten_extents(inode,
3102 offset, ret);
3103 if (err < 0)
3104 ret = err;
19f5fb7a 3105 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3106 }
4bd809db
ZL
3107
3108 retake_lock:
3109 /* take i_mutex locking again if we do a ovewrite dio */
3110 if (overwrite) {
3111 up_read(&EXT4_I(inode)->i_data_sem);
3112 mutex_lock(&inode->i_mutex);
3113 }
3114
4c0425ff
MC
3115 return ret;
3116 }
8d5d02e6
MC
3117
3118 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3119 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3120}
3121
3122static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3123 const struct iovec *iov, loff_t offset,
3124 unsigned long nr_segs)
3125{
3126 struct file *file = iocb->ki_filp;
3127 struct inode *inode = file->f_mapping->host;
0562e0ba 3128 ssize_t ret;
4c0425ff 3129
84ebd795
TT
3130 /*
3131 * If we are doing data journalling we don't support O_DIRECT
3132 */
3133 if (ext4_should_journal_data(inode))
3134 return 0;
3135
0562e0ba 3136 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3137 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3138 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3139 else
3140 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3141 trace_ext4_direct_IO_exit(inode, offset,
3142 iov_length(iov, nr_segs), rw, ret);
3143 return ret;
4c0425ff
MC
3144}
3145
ac27a0ec 3146/*
617ba13b 3147 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3148 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3149 * much here because ->set_page_dirty is called under VFS locks. The page is
3150 * not necessarily locked.
3151 *
3152 * We cannot just dirty the page and leave attached buffers clean, because the
3153 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3154 * or jbddirty because all the journalling code will explode.
3155 *
3156 * So what we do is to mark the page "pending dirty" and next time writepage
3157 * is called, propagate that into the buffers appropriately.
3158 */
617ba13b 3159static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3160{
3161 SetPageChecked(page);
3162 return __set_page_dirty_nobuffers(page);
3163}
3164
617ba13b 3165static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3166 .readpage = ext4_readpage,
3167 .readpages = ext4_readpages,
43ce1d23 3168 .writepage = ext4_writepage,
8ab22b9a
HH
3169 .write_begin = ext4_write_begin,
3170 .write_end = ext4_ordered_write_end,
3171 .bmap = ext4_bmap,
3172 .invalidatepage = ext4_invalidatepage,
3173 .releasepage = ext4_releasepage,
3174 .direct_IO = ext4_direct_IO,
3175 .migratepage = buffer_migrate_page,
3176 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3177 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3178};
3179
617ba13b 3180static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3181 .readpage = ext4_readpage,
3182 .readpages = ext4_readpages,
43ce1d23 3183 .writepage = ext4_writepage,
8ab22b9a
HH
3184 .write_begin = ext4_write_begin,
3185 .write_end = ext4_writeback_write_end,
3186 .bmap = ext4_bmap,
3187 .invalidatepage = ext4_invalidatepage,
3188 .releasepage = ext4_releasepage,
3189 .direct_IO = ext4_direct_IO,
3190 .migratepage = buffer_migrate_page,
3191 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3192 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3193};
3194
617ba13b 3195static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3196 .readpage = ext4_readpage,
3197 .readpages = ext4_readpages,
43ce1d23 3198 .writepage = ext4_writepage,
8ab22b9a
HH
3199 .write_begin = ext4_write_begin,
3200 .write_end = ext4_journalled_write_end,
3201 .set_page_dirty = ext4_journalled_set_page_dirty,
3202 .bmap = ext4_bmap,
3203 .invalidatepage = ext4_invalidatepage,
3204 .releasepage = ext4_releasepage,
84ebd795 3205 .direct_IO = ext4_direct_IO,
8ab22b9a 3206 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3207 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3208};
3209
64769240 3210static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3211 .readpage = ext4_readpage,
3212 .readpages = ext4_readpages,
43ce1d23 3213 .writepage = ext4_writepage,
8ab22b9a 3214 .writepages = ext4_da_writepages,
8ab22b9a
HH
3215 .write_begin = ext4_da_write_begin,
3216 .write_end = ext4_da_write_end,
3217 .bmap = ext4_bmap,
3218 .invalidatepage = ext4_da_invalidatepage,
3219 .releasepage = ext4_releasepage,
3220 .direct_IO = ext4_direct_IO,
3221 .migratepage = buffer_migrate_page,
3222 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3223 .error_remove_page = generic_error_remove_page,
64769240
AT
3224};
3225
617ba13b 3226void ext4_set_aops(struct inode *inode)
ac27a0ec 3227{
3d2b1582
LC
3228 switch (ext4_inode_journal_mode(inode)) {
3229 case EXT4_INODE_ORDERED_DATA_MODE:
3230 if (test_opt(inode->i_sb, DELALLOC))
3231 inode->i_mapping->a_ops = &ext4_da_aops;
3232 else
3233 inode->i_mapping->a_ops = &ext4_ordered_aops;
3234 break;
3235 case EXT4_INODE_WRITEBACK_DATA_MODE:
3236 if (test_opt(inode->i_sb, DELALLOC))
3237 inode->i_mapping->a_ops = &ext4_da_aops;
3238 else
3239 inode->i_mapping->a_ops = &ext4_writeback_aops;
3240 break;
3241 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3242 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3243 break;
3244 default:
3245 BUG();
3246 }
ac27a0ec
DK
3247}
3248
4e96b2db
AH
3249
3250/*
3251 * ext4_discard_partial_page_buffers()
3252 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3253 * This function finds and locks the page containing the offset
3254 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3255 * Calling functions that already have the page locked should call
3256 * ext4_discard_partial_page_buffers_no_lock directly.
3257 */
3258int ext4_discard_partial_page_buffers(handle_t *handle,
3259 struct address_space *mapping, loff_t from,
3260 loff_t length, int flags)
3261{
3262 struct inode *inode = mapping->host;
3263 struct page *page;
3264 int err = 0;
3265
3266 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3267 mapping_gfp_mask(mapping) & ~__GFP_FS);
3268 if (!page)
5129d05f 3269 return -ENOMEM;
4e96b2db
AH
3270
3271 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3272 from, length, flags);
3273
3274 unlock_page(page);
3275 page_cache_release(page);
3276 return err;
3277}
3278
3279/*
3280 * ext4_discard_partial_page_buffers_no_lock()
3281 * Zeros a page range of length 'length' starting from offset 'from'.
3282 * Buffer heads that correspond to the block aligned regions of the
3283 * zeroed range will be unmapped. Unblock aligned regions
3284 * will have the corresponding buffer head mapped if needed so that
3285 * that region of the page can be updated with the partial zero out.
3286 *
3287 * This function assumes that the page has already been locked. The
3288 * The range to be discarded must be contained with in the given page.
3289 * If the specified range exceeds the end of the page it will be shortened
3290 * to the end of the page that corresponds to 'from'. This function is
3291 * appropriate for updating a page and it buffer heads to be unmapped and
3292 * zeroed for blocks that have been either released, or are going to be
3293 * released.
3294 *
3295 * handle: The journal handle
3296 * inode: The files inode
3297 * page: A locked page that contains the offset "from"
3298 * from: The starting byte offset (from the begining of the file)
3299 * to begin discarding
3300 * len: The length of bytes to discard
3301 * flags: Optional flags that may be used:
3302 *
3303 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3304 * Only zero the regions of the page whose buffer heads
3305 * have already been unmapped. This flag is appropriate
3306 * for updateing the contents of a page whose blocks may
3307 * have already been released, and we only want to zero
3308 * out the regions that correspond to those released blocks.
3309 *
3310 * Returns zero on sucess or negative on failure.
3311 */
5f163cc7 3312static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3313 struct inode *inode, struct page *page, loff_t from,
3314 loff_t length, int flags)
3315{
3316 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3317 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3318 unsigned int blocksize, max, pos;
4e96b2db
AH
3319 ext4_lblk_t iblock;
3320 struct buffer_head *bh;
3321 int err = 0;
3322
3323 blocksize = inode->i_sb->s_blocksize;
3324 max = PAGE_CACHE_SIZE - offset;
3325
3326 if (index != page->index)
3327 return -EINVAL;
3328
3329 /*
3330 * correct length if it does not fall between
3331 * 'from' and the end of the page
3332 */
3333 if (length > max || length < 0)
3334 length = max;
3335
3336 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3337
093e6e36
YY
3338 if (!page_has_buffers(page))
3339 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3340
3341 /* Find the buffer that contains "offset" */
3342 bh = page_buffers(page);
3343 pos = blocksize;
3344 while (offset >= pos) {
3345 bh = bh->b_this_page;
3346 iblock++;
3347 pos += blocksize;
3348 }
3349
3350 pos = offset;
3351 while (pos < offset + length) {
e260daf2
YY
3352 unsigned int end_of_block, range_to_discard;
3353
4e96b2db
AH
3354 err = 0;
3355
3356 /* The length of space left to zero and unmap */
3357 range_to_discard = offset + length - pos;
3358
3359 /* The length of space until the end of the block */
3360 end_of_block = blocksize - (pos & (blocksize-1));
3361
3362 /*
3363 * Do not unmap or zero past end of block
3364 * for this buffer head
3365 */
3366 if (range_to_discard > end_of_block)
3367 range_to_discard = end_of_block;
3368
3369
3370 /*
3371 * Skip this buffer head if we are only zeroing unampped
3372 * regions of the page
3373 */
3374 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3375 buffer_mapped(bh))
3376 goto next;
3377
3378 /* If the range is block aligned, unmap */
3379 if (range_to_discard == blocksize) {
3380 clear_buffer_dirty(bh);
3381 bh->b_bdev = NULL;
3382 clear_buffer_mapped(bh);
3383 clear_buffer_req(bh);
3384 clear_buffer_new(bh);
3385 clear_buffer_delay(bh);
3386 clear_buffer_unwritten(bh);
3387 clear_buffer_uptodate(bh);
3388 zero_user(page, pos, range_to_discard);
3389 BUFFER_TRACE(bh, "Buffer discarded");
3390 goto next;
3391 }
3392
3393 /*
3394 * If this block is not completely contained in the range
3395 * to be discarded, then it is not going to be released. Because
3396 * we need to keep this block, we need to make sure this part
3397 * of the page is uptodate before we modify it by writeing
3398 * partial zeros on it.
3399 */
3400 if (!buffer_mapped(bh)) {
3401 /*
3402 * Buffer head must be mapped before we can read
3403 * from the block
3404 */
3405 BUFFER_TRACE(bh, "unmapped");
3406 ext4_get_block(inode, iblock, bh, 0);
3407 /* unmapped? It's a hole - nothing to do */
3408 if (!buffer_mapped(bh)) {
3409 BUFFER_TRACE(bh, "still unmapped");
3410 goto next;
3411 }
3412 }
3413
3414 /* Ok, it's mapped. Make sure it's up-to-date */
3415 if (PageUptodate(page))
3416 set_buffer_uptodate(bh);
3417
3418 if (!buffer_uptodate(bh)) {
3419 err = -EIO;
3420 ll_rw_block(READ, 1, &bh);
3421 wait_on_buffer(bh);
3422 /* Uhhuh. Read error. Complain and punt.*/
3423 if (!buffer_uptodate(bh))
3424 goto next;
3425 }
3426
3427 if (ext4_should_journal_data(inode)) {
3428 BUFFER_TRACE(bh, "get write access");
3429 err = ext4_journal_get_write_access(handle, bh);
3430 if (err)
3431 goto next;
3432 }
3433
3434 zero_user(page, pos, range_to_discard);
3435
3436 err = 0;
3437 if (ext4_should_journal_data(inode)) {
3438 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3439 } else
4e96b2db 3440 mark_buffer_dirty(bh);
4e96b2db
AH
3441
3442 BUFFER_TRACE(bh, "Partial buffer zeroed");
3443next:
3444 bh = bh->b_this_page;
3445 iblock++;
3446 pos += range_to_discard;
3447 }
3448
3449 return err;
3450}
3451
91ef4caf
DG
3452int ext4_can_truncate(struct inode *inode)
3453{
91ef4caf
DG
3454 if (S_ISREG(inode->i_mode))
3455 return 1;
3456 if (S_ISDIR(inode->i_mode))
3457 return 1;
3458 if (S_ISLNK(inode->i_mode))
3459 return !ext4_inode_is_fast_symlink(inode);
3460 return 0;
3461}
3462
a4bb6b64
AH
3463/*
3464 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3465 * associated with the given offset and length
3466 *
3467 * @inode: File inode
3468 * @offset: The offset where the hole will begin
3469 * @len: The length of the hole
3470 *
3471 * Returns: 0 on sucess or negative on failure
3472 */
3473
3474int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3475{
3476 struct inode *inode = file->f_path.dentry->d_inode;
3477 if (!S_ISREG(inode->i_mode))
73355192 3478 return -EOPNOTSUPP;
a4bb6b64
AH
3479
3480 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3481 /* TODO: Add support for non extent hole punching */
73355192 3482 return -EOPNOTSUPP;
a4bb6b64
AH
3483 }
3484
bab08ab9
TT
3485 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3486 /* TODO: Add support for bigalloc file systems */
73355192 3487 return -EOPNOTSUPP;
bab08ab9
TT
3488 }
3489
a4bb6b64
AH
3490 return ext4_ext_punch_hole(file, offset, length);
3491}
3492
ac27a0ec 3493/*
617ba13b 3494 * ext4_truncate()
ac27a0ec 3495 *
617ba13b
MC
3496 * We block out ext4_get_block() block instantiations across the entire
3497 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3498 * simultaneously on behalf of the same inode.
3499 *
42b2aa86 3500 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3501 * is one core, guiding principle: the file's tree must always be consistent on
3502 * disk. We must be able to restart the truncate after a crash.
3503 *
3504 * The file's tree may be transiently inconsistent in memory (although it
3505 * probably isn't), but whenever we close off and commit a journal transaction,
3506 * the contents of (the filesystem + the journal) must be consistent and
3507 * restartable. It's pretty simple, really: bottom up, right to left (although
3508 * left-to-right works OK too).
3509 *
3510 * Note that at recovery time, journal replay occurs *before* the restart of
3511 * truncate against the orphan inode list.
3512 *
3513 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3514 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3515 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3516 * ext4_truncate() to have another go. So there will be instantiated blocks
3517 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3518 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3519 * ext4_truncate() run will find them and release them.
ac27a0ec 3520 */
617ba13b 3521void ext4_truncate(struct inode *inode)
ac27a0ec 3522{
0562e0ba
JZ
3523 trace_ext4_truncate_enter(inode);
3524
91ef4caf 3525 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3526 return;
3527
12e9b892 3528 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3529
5534fb5b 3530 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3531 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3532
ff9893dc 3533 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3534 ext4_ext_truncate(inode);
ff9893dc
AG
3535 else
3536 ext4_ind_truncate(inode);
ac27a0ec 3537
0562e0ba 3538 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3539}
3540
ac27a0ec 3541/*
617ba13b 3542 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3543 * underlying buffer_head on success. If 'in_mem' is true, we have all
3544 * data in memory that is needed to recreate the on-disk version of this
3545 * inode.
3546 */
617ba13b
MC
3547static int __ext4_get_inode_loc(struct inode *inode,
3548 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3549{
240799cd
TT
3550 struct ext4_group_desc *gdp;
3551 struct buffer_head *bh;
3552 struct super_block *sb = inode->i_sb;
3553 ext4_fsblk_t block;
3554 int inodes_per_block, inode_offset;
3555
3a06d778 3556 iloc->bh = NULL;
240799cd
TT
3557 if (!ext4_valid_inum(sb, inode->i_ino))
3558 return -EIO;
ac27a0ec 3559
240799cd
TT
3560 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3561 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3562 if (!gdp)
ac27a0ec
DK
3563 return -EIO;
3564
240799cd
TT
3565 /*
3566 * Figure out the offset within the block group inode table
3567 */
00d09882 3568 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3569 inode_offset = ((inode->i_ino - 1) %
3570 EXT4_INODES_PER_GROUP(sb));
3571 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3572 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3573
3574 bh = sb_getblk(sb, block);
ac27a0ec 3575 if (!bh) {
c398eda0
TT
3576 EXT4_ERROR_INODE_BLOCK(inode, block,
3577 "unable to read itable block");
ac27a0ec
DK
3578 return -EIO;
3579 }
3580 if (!buffer_uptodate(bh)) {
3581 lock_buffer(bh);
9c83a923
HK
3582
3583 /*
3584 * If the buffer has the write error flag, we have failed
3585 * to write out another inode in the same block. In this
3586 * case, we don't have to read the block because we may
3587 * read the old inode data successfully.
3588 */
3589 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3590 set_buffer_uptodate(bh);
3591
ac27a0ec
DK
3592 if (buffer_uptodate(bh)) {
3593 /* someone brought it uptodate while we waited */
3594 unlock_buffer(bh);
3595 goto has_buffer;
3596 }
3597
3598 /*
3599 * If we have all information of the inode in memory and this
3600 * is the only valid inode in the block, we need not read the
3601 * block.
3602 */
3603 if (in_mem) {
3604 struct buffer_head *bitmap_bh;
240799cd 3605 int i, start;
ac27a0ec 3606
240799cd 3607 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3608
240799cd
TT
3609 /* Is the inode bitmap in cache? */
3610 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3611 if (!bitmap_bh)
3612 goto make_io;
3613
3614 /*
3615 * If the inode bitmap isn't in cache then the
3616 * optimisation may end up performing two reads instead
3617 * of one, so skip it.
3618 */
3619 if (!buffer_uptodate(bitmap_bh)) {
3620 brelse(bitmap_bh);
3621 goto make_io;
3622 }
240799cd 3623 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3624 if (i == inode_offset)
3625 continue;
617ba13b 3626 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3627 break;
3628 }
3629 brelse(bitmap_bh);
240799cd 3630 if (i == start + inodes_per_block) {
ac27a0ec
DK
3631 /* all other inodes are free, so skip I/O */
3632 memset(bh->b_data, 0, bh->b_size);
3633 set_buffer_uptodate(bh);
3634 unlock_buffer(bh);
3635 goto has_buffer;
3636 }
3637 }
3638
3639make_io:
240799cd
TT
3640 /*
3641 * If we need to do any I/O, try to pre-readahead extra
3642 * blocks from the inode table.
3643 */
3644 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3645 ext4_fsblk_t b, end, table;
3646 unsigned num;
3647
3648 table = ext4_inode_table(sb, gdp);
b713a5ec 3649 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3650 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3651 if (table > b)
3652 b = table;
3653 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3654 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3655 if (ext4_has_group_desc_csum(sb))
560671a0 3656 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3657 table += num / inodes_per_block;
3658 if (end > table)
3659 end = table;
3660 while (b <= end)
3661 sb_breadahead(sb, b++);
3662 }
3663
ac27a0ec
DK
3664 /*
3665 * There are other valid inodes in the buffer, this inode
3666 * has in-inode xattrs, or we don't have this inode in memory.
3667 * Read the block from disk.
3668 */
0562e0ba 3669 trace_ext4_load_inode(inode);
ac27a0ec
DK
3670 get_bh(bh);
3671 bh->b_end_io = end_buffer_read_sync;
65299a3b 3672 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3673 wait_on_buffer(bh);
3674 if (!buffer_uptodate(bh)) {
c398eda0
TT
3675 EXT4_ERROR_INODE_BLOCK(inode, block,
3676 "unable to read itable block");
ac27a0ec
DK
3677 brelse(bh);
3678 return -EIO;
3679 }
3680 }
3681has_buffer:
3682 iloc->bh = bh;
3683 return 0;
3684}
3685
617ba13b 3686int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3687{
3688 /* We have all inode data except xattrs in memory here. */
617ba13b 3689 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3690 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3691}
3692
617ba13b 3693void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3694{
617ba13b 3695 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3696
3697 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3698 if (flags & EXT4_SYNC_FL)
ac27a0ec 3699 inode->i_flags |= S_SYNC;
617ba13b 3700 if (flags & EXT4_APPEND_FL)
ac27a0ec 3701 inode->i_flags |= S_APPEND;
617ba13b 3702 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3703 inode->i_flags |= S_IMMUTABLE;
617ba13b 3704 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3705 inode->i_flags |= S_NOATIME;
617ba13b 3706 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3707 inode->i_flags |= S_DIRSYNC;
3708}
3709
ff9ddf7e
JK
3710/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3711void ext4_get_inode_flags(struct ext4_inode_info *ei)
3712{
84a8dce2
DM
3713 unsigned int vfs_fl;
3714 unsigned long old_fl, new_fl;
3715
3716 do {
3717 vfs_fl = ei->vfs_inode.i_flags;
3718 old_fl = ei->i_flags;
3719 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3720 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3721 EXT4_DIRSYNC_FL);
3722 if (vfs_fl & S_SYNC)
3723 new_fl |= EXT4_SYNC_FL;
3724 if (vfs_fl & S_APPEND)
3725 new_fl |= EXT4_APPEND_FL;
3726 if (vfs_fl & S_IMMUTABLE)
3727 new_fl |= EXT4_IMMUTABLE_FL;
3728 if (vfs_fl & S_NOATIME)
3729 new_fl |= EXT4_NOATIME_FL;
3730 if (vfs_fl & S_DIRSYNC)
3731 new_fl |= EXT4_DIRSYNC_FL;
3732 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3733}
de9a55b8 3734
0fc1b451 3735static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3736 struct ext4_inode_info *ei)
0fc1b451
AK
3737{
3738 blkcnt_t i_blocks ;
8180a562
AK
3739 struct inode *inode = &(ei->vfs_inode);
3740 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3741
3742 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3743 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3744 /* we are using combined 48 bit field */
3745 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3746 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3747 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3748 /* i_blocks represent file system block size */
3749 return i_blocks << (inode->i_blkbits - 9);
3750 } else {
3751 return i_blocks;
3752 }
0fc1b451
AK
3753 } else {
3754 return le32_to_cpu(raw_inode->i_blocks_lo);
3755 }
3756}
ff9ddf7e 3757
1d1fe1ee 3758struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3759{
617ba13b
MC
3760 struct ext4_iloc iloc;
3761 struct ext4_inode *raw_inode;
1d1fe1ee 3762 struct ext4_inode_info *ei;
1d1fe1ee 3763 struct inode *inode;
b436b9be 3764 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3765 long ret;
ac27a0ec 3766 int block;
08cefc7a
EB
3767 uid_t i_uid;
3768 gid_t i_gid;
ac27a0ec 3769
1d1fe1ee
DH
3770 inode = iget_locked(sb, ino);
3771 if (!inode)
3772 return ERR_PTR(-ENOMEM);
3773 if (!(inode->i_state & I_NEW))
3774 return inode;
3775
3776 ei = EXT4_I(inode);
7dc57615 3777 iloc.bh = NULL;
ac27a0ec 3778
1d1fe1ee
DH
3779 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3780 if (ret < 0)
ac27a0ec 3781 goto bad_inode;
617ba13b 3782 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3783
3784 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3785 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3786 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3787 EXT4_INODE_SIZE(inode->i_sb)) {
3788 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3789 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3790 EXT4_INODE_SIZE(inode->i_sb));
3791 ret = -EIO;
3792 goto bad_inode;
3793 }
3794 } else
3795 ei->i_extra_isize = 0;
3796
3797 /* Precompute checksum seed for inode metadata */
3798 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3799 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3800 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3801 __u32 csum;
3802 __le32 inum = cpu_to_le32(inode->i_ino);
3803 __le32 gen = raw_inode->i_generation;
3804 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3805 sizeof(inum));
3806 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3807 sizeof(gen));
3808 }
3809
3810 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3811 EXT4_ERROR_INODE(inode, "checksum invalid");
3812 ret = -EIO;
3813 goto bad_inode;
3814 }
3815
ac27a0ec 3816 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3817 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3818 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3819 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3820 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3821 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3822 }
08cefc7a
EB
3823 i_uid_write(inode, i_uid);
3824 i_gid_write(inode, i_gid);
bfe86848 3825 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3826
353eb83c 3827 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
3828 ei->i_dir_start_lookup = 0;
3829 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3830 /* We now have enough fields to check if the inode was active or not.
3831 * This is needed because nfsd might try to access dead inodes
3832 * the test is that same one that e2fsck uses
3833 * NeilBrown 1999oct15
3834 */
3835 if (inode->i_nlink == 0) {
3836 if (inode->i_mode == 0 ||
617ba13b 3837 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3838 /* this inode is deleted */
1d1fe1ee 3839 ret = -ESTALE;
ac27a0ec
DK
3840 goto bad_inode;
3841 }
3842 /* The only unlinked inodes we let through here have
3843 * valid i_mode and are being read by the orphan
3844 * recovery code: that's fine, we're about to complete
3845 * the process of deleting those. */
3846 }
ac27a0ec 3847 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3848 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3849 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3850 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3851 ei->i_file_acl |=
3852 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3853 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3854 ei->i_disksize = inode->i_size;
a9e7f447
DM
3855#ifdef CONFIG_QUOTA
3856 ei->i_reserved_quota = 0;
3857#endif
ac27a0ec
DK
3858 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3859 ei->i_block_group = iloc.block_group;
a4912123 3860 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3861 /*
3862 * NOTE! The in-memory inode i_data array is in little-endian order
3863 * even on big-endian machines: we do NOT byteswap the block numbers!
3864 */
617ba13b 3865 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3866 ei->i_data[block] = raw_inode->i_block[block];
3867 INIT_LIST_HEAD(&ei->i_orphan);
3868
b436b9be
JK
3869 /*
3870 * Set transaction id's of transactions that have to be committed
3871 * to finish f[data]sync. We set them to currently running transaction
3872 * as we cannot be sure that the inode or some of its metadata isn't
3873 * part of the transaction - the inode could have been reclaimed and
3874 * now it is reread from disk.
3875 */
3876 if (journal) {
3877 transaction_t *transaction;
3878 tid_t tid;
3879
a931da6a 3880 read_lock(&journal->j_state_lock);
b436b9be
JK
3881 if (journal->j_running_transaction)
3882 transaction = journal->j_running_transaction;
3883 else
3884 transaction = journal->j_committing_transaction;
3885 if (transaction)
3886 tid = transaction->t_tid;
3887 else
3888 tid = journal->j_commit_sequence;
a931da6a 3889 read_unlock(&journal->j_state_lock);
b436b9be
JK
3890 ei->i_sync_tid = tid;
3891 ei->i_datasync_tid = tid;
3892 }
3893
0040d987 3894 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
3895 if (ei->i_extra_isize == 0) {
3896 /* The extra space is currently unused. Use it. */
617ba13b
MC
3897 ei->i_extra_isize = sizeof(struct ext4_inode) -
3898 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3899 } else {
3900 __le32 *magic = (void *)raw_inode +
617ba13b 3901 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3902 ei->i_extra_isize;
617ba13b 3903 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 3904 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec 3905 }
814525f4 3906 }
ac27a0ec 3907
ef7f3835
KS
3908 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3909 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3910 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3911 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3912
25ec56b5
JNC
3913 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3914 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3915 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3916 inode->i_version |=
3917 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3918 }
3919
c4b5a614 3920 ret = 0;
485c26ec 3921 if (ei->i_file_acl &&
1032988c 3922 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3923 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3924 ei->i_file_acl);
485c26ec
TT
3925 ret = -EIO;
3926 goto bad_inode;
07a03824 3927 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
3928 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3929 (S_ISLNK(inode->i_mode) &&
3930 !ext4_inode_is_fast_symlink(inode)))
3931 /* Validate extent which is part of inode */
3932 ret = ext4_ext_check_inode(inode);
de9a55b8 3933 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
3934 (S_ISLNK(inode->i_mode) &&
3935 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 3936 /* Validate block references which are part of inode */
1f7d1e77 3937 ret = ext4_ind_check_inode(inode);
fe2c8191 3938 }
567f3e9a 3939 if (ret)
de9a55b8 3940 goto bad_inode;
7a262f7c 3941
ac27a0ec 3942 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3943 inode->i_op = &ext4_file_inode_operations;
3944 inode->i_fop = &ext4_file_operations;
3945 ext4_set_aops(inode);
ac27a0ec 3946 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3947 inode->i_op = &ext4_dir_inode_operations;
3948 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3949 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3950 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3951 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3952 nd_terminate_link(ei->i_data, inode->i_size,
3953 sizeof(ei->i_data) - 1);
3954 } else {
617ba13b
MC
3955 inode->i_op = &ext4_symlink_inode_operations;
3956 ext4_set_aops(inode);
ac27a0ec 3957 }
563bdd61
TT
3958 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3959 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3960 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3961 if (raw_inode->i_block[0])
3962 init_special_inode(inode, inode->i_mode,
3963 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3964 else
3965 init_special_inode(inode, inode->i_mode,
3966 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3967 } else {
563bdd61 3968 ret = -EIO;
24676da4 3969 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3970 goto bad_inode;
ac27a0ec 3971 }
af5bc92d 3972 brelse(iloc.bh);
617ba13b 3973 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3974 unlock_new_inode(inode);
3975 return inode;
ac27a0ec
DK
3976
3977bad_inode:
567f3e9a 3978 brelse(iloc.bh);
1d1fe1ee
DH
3979 iget_failed(inode);
3980 return ERR_PTR(ret);
ac27a0ec
DK
3981}
3982
0fc1b451
AK
3983static int ext4_inode_blocks_set(handle_t *handle,
3984 struct ext4_inode *raw_inode,
3985 struct ext4_inode_info *ei)
3986{
3987 struct inode *inode = &(ei->vfs_inode);
3988 u64 i_blocks = inode->i_blocks;
3989 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3990
3991 if (i_blocks <= ~0U) {
3992 /*
3993 * i_blocks can be represnted in a 32 bit variable
3994 * as multiple of 512 bytes
3995 */
8180a562 3996 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3997 raw_inode->i_blocks_high = 0;
84a8dce2 3998 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
3999 return 0;
4000 }
4001 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4002 return -EFBIG;
4003
4004 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4005 /*
4006 * i_blocks can be represented in a 48 bit variable
4007 * as multiple of 512 bytes
4008 */
8180a562 4009 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4010 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4011 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4012 } else {
84a8dce2 4013 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4014 /* i_block is stored in file system block size */
4015 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4016 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4017 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4018 }
f287a1a5 4019 return 0;
0fc1b451
AK
4020}
4021
ac27a0ec
DK
4022/*
4023 * Post the struct inode info into an on-disk inode location in the
4024 * buffer-cache. This gobbles the caller's reference to the
4025 * buffer_head in the inode location struct.
4026 *
4027 * The caller must have write access to iloc->bh.
4028 */
617ba13b 4029static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4030 struct inode *inode,
830156c7 4031 struct ext4_iloc *iloc)
ac27a0ec 4032{
617ba13b
MC
4033 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4034 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4035 struct buffer_head *bh = iloc->bh;
4036 int err = 0, rc, block;
08cefc7a
EB
4037 uid_t i_uid;
4038 gid_t i_gid;
ac27a0ec
DK
4039
4040 /* For fields not not tracking in the in-memory inode,
4041 * initialise them to zero for new inodes. */
19f5fb7a 4042 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4043 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4044
ff9ddf7e 4045 ext4_get_inode_flags(ei);
ac27a0ec 4046 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4047 i_uid = i_uid_read(inode);
4048 i_gid = i_gid_read(inode);
af5bc92d 4049 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4050 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4051 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4052/*
4053 * Fix up interoperability with old kernels. Otherwise, old inodes get
4054 * re-used with the upper 16 bits of the uid/gid intact
4055 */
af5bc92d 4056 if (!ei->i_dtime) {
ac27a0ec 4057 raw_inode->i_uid_high =
08cefc7a 4058 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4059 raw_inode->i_gid_high =
08cefc7a 4060 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4061 } else {
4062 raw_inode->i_uid_high = 0;
4063 raw_inode->i_gid_high = 0;
4064 }
4065 } else {
08cefc7a
EB
4066 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4067 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4068 raw_inode->i_uid_high = 0;
4069 raw_inode->i_gid_high = 0;
4070 }
4071 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4072
4073 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4074 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4075 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4076 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4077
0fc1b451
AK
4078 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4079 goto out_brelse;
ac27a0ec 4080 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4081 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4082 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4083 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4084 raw_inode->i_file_acl_high =
4085 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4086 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4087 ext4_isize_set(raw_inode, ei->i_disksize);
4088 if (ei->i_disksize > 0x7fffffffULL) {
4089 struct super_block *sb = inode->i_sb;
4090 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4091 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4092 EXT4_SB(sb)->s_es->s_rev_level ==
4093 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4094 /* If this is the first large file
4095 * created, add a flag to the superblock.
4096 */
4097 err = ext4_journal_get_write_access(handle,
4098 EXT4_SB(sb)->s_sbh);
4099 if (err)
4100 goto out_brelse;
4101 ext4_update_dynamic_rev(sb);
4102 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4103 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4104 ext4_handle_sync(handle);
b50924c2 4105 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4106 }
4107 }
4108 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4109 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4110 if (old_valid_dev(inode->i_rdev)) {
4111 raw_inode->i_block[0] =
4112 cpu_to_le32(old_encode_dev(inode->i_rdev));
4113 raw_inode->i_block[1] = 0;
4114 } else {
4115 raw_inode->i_block[0] = 0;
4116 raw_inode->i_block[1] =
4117 cpu_to_le32(new_encode_dev(inode->i_rdev));
4118 raw_inode->i_block[2] = 0;
4119 }
de9a55b8
TT
4120 } else
4121 for (block = 0; block < EXT4_N_BLOCKS; block++)
4122 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4123
25ec56b5
JNC
4124 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4125 if (ei->i_extra_isize) {
4126 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4127 raw_inode->i_version_hi =
4128 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4129 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4130 }
4131
814525f4
DW
4132 ext4_inode_csum_set(inode, raw_inode, ei);
4133
830156c7 4134 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4135 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4136 if (!err)
4137 err = rc;
19f5fb7a 4138 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4139
b436b9be 4140 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 4141out_brelse:
af5bc92d 4142 brelse(bh);
617ba13b 4143 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4144 return err;
4145}
4146
4147/*
617ba13b 4148 * ext4_write_inode()
ac27a0ec
DK
4149 *
4150 * We are called from a few places:
4151 *
4152 * - Within generic_file_write() for O_SYNC files.
4153 * Here, there will be no transaction running. We wait for any running
4154 * trasnaction to commit.
4155 *
4156 * - Within sys_sync(), kupdate and such.
4157 * We wait on commit, if tol to.
4158 *
4159 * - Within prune_icache() (PF_MEMALLOC == true)
4160 * Here we simply return. We can't afford to block kswapd on the
4161 * journal commit.
4162 *
4163 * In all cases it is actually safe for us to return without doing anything,
4164 * because the inode has been copied into a raw inode buffer in
617ba13b 4165 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4166 * knfsd.
4167 *
4168 * Note that we are absolutely dependent upon all inode dirtiers doing the
4169 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4170 * which we are interested.
4171 *
4172 * It would be a bug for them to not do this. The code:
4173 *
4174 * mark_inode_dirty(inode)
4175 * stuff();
4176 * inode->i_size = expr;
4177 *
4178 * is in error because a kswapd-driven write_inode() could occur while
4179 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4180 * will no longer be on the superblock's dirty inode list.
4181 */
a9185b41 4182int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4183{
91ac6f43
FM
4184 int err;
4185
ac27a0ec
DK
4186 if (current->flags & PF_MEMALLOC)
4187 return 0;
4188
91ac6f43
FM
4189 if (EXT4_SB(inode->i_sb)->s_journal) {
4190 if (ext4_journal_current_handle()) {
4191 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4192 dump_stack();
4193 return -EIO;
4194 }
ac27a0ec 4195
a9185b41 4196 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4197 return 0;
4198
4199 err = ext4_force_commit(inode->i_sb);
4200 } else {
4201 struct ext4_iloc iloc;
ac27a0ec 4202
8b472d73 4203 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4204 if (err)
4205 return err;
a9185b41 4206 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4207 sync_dirty_buffer(iloc.bh);
4208 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4209 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4210 "IO error syncing inode");
830156c7
FM
4211 err = -EIO;
4212 }
fd2dd9fb 4213 brelse(iloc.bh);
91ac6f43
FM
4214 }
4215 return err;
ac27a0ec
DK
4216}
4217
4218/*
617ba13b 4219 * ext4_setattr()
ac27a0ec
DK
4220 *
4221 * Called from notify_change.
4222 *
4223 * We want to trap VFS attempts to truncate the file as soon as
4224 * possible. In particular, we want to make sure that when the VFS
4225 * shrinks i_size, we put the inode on the orphan list and modify
4226 * i_disksize immediately, so that during the subsequent flushing of
4227 * dirty pages and freeing of disk blocks, we can guarantee that any
4228 * commit will leave the blocks being flushed in an unused state on
4229 * disk. (On recovery, the inode will get truncated and the blocks will
4230 * be freed, so we have a strong guarantee that no future commit will
4231 * leave these blocks visible to the user.)
4232 *
678aaf48
JK
4233 * Another thing we have to assure is that if we are in ordered mode
4234 * and inode is still attached to the committing transaction, we must
4235 * we start writeout of all the dirty pages which are being truncated.
4236 * This way we are sure that all the data written in the previous
4237 * transaction are already on disk (truncate waits for pages under
4238 * writeback).
4239 *
4240 * Called with inode->i_mutex down.
ac27a0ec 4241 */
617ba13b 4242int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4243{
4244 struct inode *inode = dentry->d_inode;
4245 int error, rc = 0;
3d287de3 4246 int orphan = 0;
ac27a0ec
DK
4247 const unsigned int ia_valid = attr->ia_valid;
4248
4249 error = inode_change_ok(inode, attr);
4250 if (error)
4251 return error;
4252
12755627 4253 if (is_quota_modification(inode, attr))
871a2931 4254 dquot_initialize(inode);
08cefc7a
EB
4255 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4256 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4257 handle_t *handle;
4258
4259 /* (user+group)*(old+new) structure, inode write (sb,
4260 * inode block, ? - but truncate inode update has it) */
5aca07eb 4261 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4262 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4263 if (IS_ERR(handle)) {
4264 error = PTR_ERR(handle);
4265 goto err_out;
4266 }
b43fa828 4267 error = dquot_transfer(inode, attr);
ac27a0ec 4268 if (error) {
617ba13b 4269 ext4_journal_stop(handle);
ac27a0ec
DK
4270 return error;
4271 }
4272 /* Update corresponding info in inode so that everything is in
4273 * one transaction */
4274 if (attr->ia_valid & ATTR_UID)
4275 inode->i_uid = attr->ia_uid;
4276 if (attr->ia_valid & ATTR_GID)
4277 inode->i_gid = attr->ia_gid;
617ba13b
MC
4278 error = ext4_mark_inode_dirty(handle, inode);
4279 ext4_journal_stop(handle);
ac27a0ec
DK
4280 }
4281
e2b46574 4282 if (attr->ia_valid & ATTR_SIZE) {
562c72aa
CH
4283 inode_dio_wait(inode);
4284
12e9b892 4285 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4286 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4287
0c095c7f
TT
4288 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4289 return -EFBIG;
e2b46574
ES
4290 }
4291 }
4292
ac27a0ec 4293 if (S_ISREG(inode->i_mode) &&
c8d46e41 4294 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4295 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4296 handle_t *handle;
4297
617ba13b 4298 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4299 if (IS_ERR(handle)) {
4300 error = PTR_ERR(handle);
4301 goto err_out;
4302 }
3d287de3
DM
4303 if (ext4_handle_valid(handle)) {
4304 error = ext4_orphan_add(handle, inode);
4305 orphan = 1;
4306 }
617ba13b
MC
4307 EXT4_I(inode)->i_disksize = attr->ia_size;
4308 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4309 if (!error)
4310 error = rc;
617ba13b 4311 ext4_journal_stop(handle);
678aaf48
JK
4312
4313 if (ext4_should_order_data(inode)) {
4314 error = ext4_begin_ordered_truncate(inode,
4315 attr->ia_size);
4316 if (error) {
4317 /* Do as much error cleanup as possible */
4318 handle = ext4_journal_start(inode, 3);
4319 if (IS_ERR(handle)) {
4320 ext4_orphan_del(NULL, inode);
4321 goto err_out;
4322 }
4323 ext4_orphan_del(handle, inode);
3d287de3 4324 orphan = 0;
678aaf48
JK
4325 ext4_journal_stop(handle);
4326 goto err_out;
4327 }
4328 }
ac27a0ec
DK
4329 }
4330
072bd7ea 4331 if (attr->ia_valid & ATTR_SIZE) {
afcff5d8 4332 if (attr->ia_size != i_size_read(inode))
072bd7ea 4333 truncate_setsize(inode, attr->ia_size);
afcff5d8 4334 ext4_truncate(inode);
072bd7ea 4335 }
ac27a0ec 4336
1025774c
CH
4337 if (!rc) {
4338 setattr_copy(inode, attr);
4339 mark_inode_dirty(inode);
4340 }
4341
4342 /*
4343 * If the call to ext4_truncate failed to get a transaction handle at
4344 * all, we need to clean up the in-core orphan list manually.
4345 */
3d287de3 4346 if (orphan && inode->i_nlink)
617ba13b 4347 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4348
4349 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4350 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4351
4352err_out:
617ba13b 4353 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4354 if (!error)
4355 error = rc;
4356 return error;
4357}
4358
3e3398a0
MC
4359int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4360 struct kstat *stat)
4361{
4362 struct inode *inode;
4363 unsigned long delalloc_blocks;
4364
4365 inode = dentry->d_inode;
4366 generic_fillattr(inode, stat);
4367
4368 /*
4369 * We can't update i_blocks if the block allocation is delayed
4370 * otherwise in the case of system crash before the real block
4371 * allocation is done, we will have i_blocks inconsistent with
4372 * on-disk file blocks.
4373 * We always keep i_blocks updated together with real
4374 * allocation. But to not confuse with user, stat
4375 * will return the blocks that include the delayed allocation
4376 * blocks for this file.
4377 */
96607551
TM
4378 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4379 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4380
4381 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4382 return 0;
4383}
ac27a0ec 4384
a02908f1
MC
4385static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4386{
12e9b892 4387 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4388 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4389 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4390}
ac51d837 4391
ac27a0ec 4392/*
a02908f1
MC
4393 * Account for index blocks, block groups bitmaps and block group
4394 * descriptor blocks if modify datablocks and index blocks
4395 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4396 *
a02908f1 4397 * If datablocks are discontiguous, they are possible to spread over
af901ca1 4398 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 4399 * they could still across block group boundary.
ac27a0ec 4400 *
a02908f1
MC
4401 * Also account for superblock, inode, quota and xattr blocks
4402 */
1f109d5a 4403static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4404{
8df9675f
TT
4405 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4406 int gdpblocks;
a02908f1
MC
4407 int idxblocks;
4408 int ret = 0;
4409
4410 /*
4411 * How many index blocks need to touch to modify nrblocks?
4412 * The "Chunk" flag indicating whether the nrblocks is
4413 * physically contiguous on disk
4414 *
4415 * For Direct IO and fallocate, they calls get_block to allocate
4416 * one single extent at a time, so they could set the "Chunk" flag
4417 */
4418 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4419
4420 ret = idxblocks;
4421
4422 /*
4423 * Now let's see how many group bitmaps and group descriptors need
4424 * to account
4425 */
4426 groups = idxblocks;
4427 if (chunk)
4428 groups += 1;
4429 else
4430 groups += nrblocks;
4431
4432 gdpblocks = groups;
8df9675f
TT
4433 if (groups > ngroups)
4434 groups = ngroups;
a02908f1
MC
4435 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4436 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4437
4438 /* bitmaps and block group descriptor blocks */
4439 ret += groups + gdpblocks;
4440
4441 /* Blocks for super block, inode, quota and xattr blocks */
4442 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4443
4444 return ret;
4445}
4446
4447/*
25985edc 4448 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4449 * the modification of a single pages into a single transaction,
4450 * which may include multiple chunks of block allocations.
ac27a0ec 4451 *
525f4ed8 4452 * This could be called via ext4_write_begin()
ac27a0ec 4453 *
525f4ed8 4454 * We need to consider the worse case, when
a02908f1 4455 * one new block per extent.
ac27a0ec 4456 */
a86c6181 4457int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4458{
617ba13b 4459 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4460 int ret;
4461
a02908f1 4462 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4463
a02908f1 4464 /* Account for data blocks for journalled mode */
617ba13b 4465 if (ext4_should_journal_data(inode))
a02908f1 4466 ret += bpp;
ac27a0ec
DK
4467 return ret;
4468}
f3bd1f3f
MC
4469
4470/*
4471 * Calculate the journal credits for a chunk of data modification.
4472 *
4473 * This is called from DIO, fallocate or whoever calling
79e83036 4474 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4475 *
4476 * journal buffers for data blocks are not included here, as DIO
4477 * and fallocate do no need to journal data buffers.
4478 */
4479int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4480{
4481 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4482}
4483
ac27a0ec 4484/*
617ba13b 4485 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4486 * Give this, we know that the caller already has write access to iloc->bh.
4487 */
617ba13b 4488int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4489 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4490{
4491 int err = 0;
4492
c64db50e 4493 if (IS_I_VERSION(inode))
25ec56b5
JNC
4494 inode_inc_iversion(inode);
4495
ac27a0ec
DK
4496 /* the do_update_inode consumes one bh->b_count */
4497 get_bh(iloc->bh);
4498
dab291af 4499 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4500 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4501 put_bh(iloc->bh);
4502 return err;
4503}
4504
4505/*
4506 * On success, We end up with an outstanding reference count against
4507 * iloc->bh. This _must_ be cleaned up later.
4508 */
4509
4510int
617ba13b
MC
4511ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4512 struct ext4_iloc *iloc)
ac27a0ec 4513{
0390131b
FM
4514 int err;
4515
4516 err = ext4_get_inode_loc(inode, iloc);
4517 if (!err) {
4518 BUFFER_TRACE(iloc->bh, "get_write_access");
4519 err = ext4_journal_get_write_access(handle, iloc->bh);
4520 if (err) {
4521 brelse(iloc->bh);
4522 iloc->bh = NULL;
ac27a0ec
DK
4523 }
4524 }
617ba13b 4525 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4526 return err;
4527}
4528
6dd4ee7c
KS
4529/*
4530 * Expand an inode by new_extra_isize bytes.
4531 * Returns 0 on success or negative error number on failure.
4532 */
1d03ec98
AK
4533static int ext4_expand_extra_isize(struct inode *inode,
4534 unsigned int new_extra_isize,
4535 struct ext4_iloc iloc,
4536 handle_t *handle)
6dd4ee7c
KS
4537{
4538 struct ext4_inode *raw_inode;
4539 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4540
4541 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4542 return 0;
4543
4544 raw_inode = ext4_raw_inode(&iloc);
4545
4546 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4547
4548 /* No extended attributes present */
19f5fb7a
TT
4549 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4550 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4551 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4552 new_extra_isize);
4553 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4554 return 0;
4555 }
4556
4557 /* try to expand with EAs present */
4558 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4559 raw_inode, handle);
4560}
4561
ac27a0ec
DK
4562/*
4563 * What we do here is to mark the in-core inode as clean with respect to inode
4564 * dirtiness (it may still be data-dirty).
4565 * This means that the in-core inode may be reaped by prune_icache
4566 * without having to perform any I/O. This is a very good thing,
4567 * because *any* task may call prune_icache - even ones which
4568 * have a transaction open against a different journal.
4569 *
4570 * Is this cheating? Not really. Sure, we haven't written the
4571 * inode out, but prune_icache isn't a user-visible syncing function.
4572 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4573 * we start and wait on commits.
4574 *
4575 * Is this efficient/effective? Well, we're being nice to the system
4576 * by cleaning up our inodes proactively so they can be reaped
4577 * without I/O. But we are potentially leaving up to five seconds'
4578 * worth of inodes floating about which prune_icache wants us to
4579 * write out. One way to fix that would be to get prune_icache()
4580 * to do a write_super() to free up some memory. It has the desired
4581 * effect.
4582 */
617ba13b 4583int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4584{
617ba13b 4585 struct ext4_iloc iloc;
6dd4ee7c
KS
4586 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4587 static unsigned int mnt_count;
4588 int err, ret;
ac27a0ec
DK
4589
4590 might_sleep();
7ff9c073 4591 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4592 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4593 if (ext4_handle_valid(handle) &&
4594 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4595 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4596 /*
4597 * We need extra buffer credits since we may write into EA block
4598 * with this same handle. If journal_extend fails, then it will
4599 * only result in a minor loss of functionality for that inode.
4600 * If this is felt to be critical, then e2fsck should be run to
4601 * force a large enough s_min_extra_isize.
4602 */
4603 if ((jbd2_journal_extend(handle,
4604 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4605 ret = ext4_expand_extra_isize(inode,
4606 sbi->s_want_extra_isize,
4607 iloc, handle);
4608 if (ret) {
19f5fb7a
TT
4609 ext4_set_inode_state(inode,
4610 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4611 if (mnt_count !=
4612 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4613 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4614 "Unable to expand inode %lu. Delete"
4615 " some EAs or run e2fsck.",
4616 inode->i_ino);
c1bddad9
AK
4617 mnt_count =
4618 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4619 }
4620 }
4621 }
4622 }
ac27a0ec 4623 if (!err)
617ba13b 4624 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4625 return err;
4626}
4627
4628/*
617ba13b 4629 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4630 *
4631 * We're really interested in the case where a file is being extended.
4632 * i_size has been changed by generic_commit_write() and we thus need
4633 * to include the updated inode in the current transaction.
4634 *
5dd4056d 4635 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4636 * are allocated to the file.
4637 *
4638 * If the inode is marked synchronous, we don't honour that here - doing
4639 * so would cause a commit on atime updates, which we don't bother doing.
4640 * We handle synchronous inodes at the highest possible level.
4641 */
aa385729 4642void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4643{
ac27a0ec
DK
4644 handle_t *handle;
4645
617ba13b 4646 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4647 if (IS_ERR(handle))
4648 goto out;
f3dc272f 4649
f3dc272f
CW
4650 ext4_mark_inode_dirty(handle, inode);
4651
617ba13b 4652 ext4_journal_stop(handle);
ac27a0ec
DK
4653out:
4654 return;
4655}
4656
4657#if 0
4658/*
4659 * Bind an inode's backing buffer_head into this transaction, to prevent
4660 * it from being flushed to disk early. Unlike
617ba13b 4661 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4662 * returns no iloc structure, so the caller needs to repeat the iloc
4663 * lookup to mark the inode dirty later.
4664 */
617ba13b 4665static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4666{
617ba13b 4667 struct ext4_iloc iloc;
ac27a0ec
DK
4668
4669 int err = 0;
4670 if (handle) {
617ba13b 4671 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4672 if (!err) {
4673 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4674 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4675 if (!err)
0390131b 4676 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4677 NULL,
0390131b 4678 iloc.bh);
ac27a0ec
DK
4679 brelse(iloc.bh);
4680 }
4681 }
617ba13b 4682 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4683 return err;
4684}
4685#endif
4686
617ba13b 4687int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4688{
4689 journal_t *journal;
4690 handle_t *handle;
4691 int err;
4692
4693 /*
4694 * We have to be very careful here: changing a data block's
4695 * journaling status dynamically is dangerous. If we write a
4696 * data block to the journal, change the status and then delete
4697 * that block, we risk forgetting to revoke the old log record
4698 * from the journal and so a subsequent replay can corrupt data.
4699 * So, first we make sure that the journal is empty and that
4700 * nobody is changing anything.
4701 */
4702
617ba13b 4703 journal = EXT4_JOURNAL(inode);
0390131b
FM
4704 if (!journal)
4705 return 0;
d699594d 4706 if (is_journal_aborted(journal))
ac27a0ec 4707 return -EROFS;
2aff57b0
YY
4708 /* We have to allocate physical blocks for delalloc blocks
4709 * before flushing journal. otherwise delalloc blocks can not
4710 * be allocated any more. even more truncate on delalloc blocks
4711 * could trigger BUG by flushing delalloc blocks in journal.
4712 * There is no delalloc block in non-journal data mode.
4713 */
4714 if (val && test_opt(inode->i_sb, DELALLOC)) {
4715 err = ext4_alloc_da_blocks(inode);
4716 if (err < 0)
4717 return err;
4718 }
ac27a0ec 4719
dab291af 4720 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4721
4722 /*
4723 * OK, there are no updates running now, and all cached data is
4724 * synced to disk. We are now in a completely consistent state
4725 * which doesn't have anything in the journal, and we know that
4726 * no filesystem updates are running, so it is safe to modify
4727 * the inode's in-core data-journaling state flag now.
4728 */
4729
4730 if (val)
12e9b892 4731 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4732 else {
4733 jbd2_journal_flush(journal);
12e9b892 4734 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4735 }
617ba13b 4736 ext4_set_aops(inode);
ac27a0ec 4737
dab291af 4738 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4739
4740 /* Finally we can mark the inode as dirty. */
4741
617ba13b 4742 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4743 if (IS_ERR(handle))
4744 return PTR_ERR(handle);
4745
617ba13b 4746 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4747 ext4_handle_sync(handle);
617ba13b
MC
4748 ext4_journal_stop(handle);
4749 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4750
4751 return err;
4752}
2e9ee850
AK
4753
4754static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4755{
4756 return !buffer_mapped(bh);
4757}
4758
c2ec175c 4759int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4760{
c2ec175c 4761 struct page *page = vmf->page;
2e9ee850
AK
4762 loff_t size;
4763 unsigned long len;
9ea7df53 4764 int ret;
2e9ee850
AK
4765 struct file *file = vma->vm_file;
4766 struct inode *inode = file->f_path.dentry->d_inode;
4767 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4768 handle_t *handle;
4769 get_block_t *get_block;
4770 int retries = 0;
2e9ee850
AK
4771
4772 /*
9ea7df53
JK
4773 * This check is racy but catches the common case. We rely on
4774 * __block_page_mkwrite() to do a reliable check.
2e9ee850 4775 */
9ea7df53
JK
4776 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4777 /* Delalloc case is easy... */
4778 if (test_opt(inode->i_sb, DELALLOC) &&
4779 !ext4_should_journal_data(inode) &&
4780 !ext4_nonda_switch(inode->i_sb)) {
4781 do {
4782 ret = __block_page_mkwrite(vma, vmf,
4783 ext4_da_get_block_prep);
4784 } while (ret == -ENOSPC &&
4785 ext4_should_retry_alloc(inode->i_sb, &retries));
4786 goto out_ret;
2e9ee850 4787 }
0e499890
DW
4788
4789 lock_page(page);
9ea7df53
JK
4790 size = i_size_read(inode);
4791 /* Page got truncated from under us? */
4792 if (page->mapping != mapping || page_offset(page) > size) {
4793 unlock_page(page);
4794 ret = VM_FAULT_NOPAGE;
4795 goto out;
0e499890 4796 }
2e9ee850
AK
4797
4798 if (page->index == size >> PAGE_CACHE_SHIFT)
4799 len = size & ~PAGE_CACHE_MASK;
4800 else
4801 len = PAGE_CACHE_SIZE;
a827eaff 4802 /*
9ea7df53
JK
4803 * Return if we have all the buffers mapped. This avoids the need to do
4804 * journal_start/journal_stop which can block and take a long time
a827eaff 4805 */
2e9ee850 4806 if (page_has_buffers(page)) {
2e9ee850 4807 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 4808 ext4_bh_unmapped)) {
9ea7df53
JK
4809 /* Wait so that we don't change page under IO */
4810 wait_on_page_writeback(page);
4811 ret = VM_FAULT_LOCKED;
4812 goto out;
a827eaff 4813 }
2e9ee850 4814 }
a827eaff 4815 unlock_page(page);
9ea7df53
JK
4816 /* OK, we need to fill the hole... */
4817 if (ext4_should_dioread_nolock(inode))
4818 get_block = ext4_get_block_write;
4819 else
4820 get_block = ext4_get_block;
4821retry_alloc:
4822 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4823 if (IS_ERR(handle)) {
c2ec175c 4824 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4825 goto out;
4826 }
4827 ret = __block_page_mkwrite(vma, vmf, get_block);
4828 if (!ret && ext4_should_journal_data(inode)) {
4829 if (walk_page_buffers(handle, page_buffers(page), 0,
4830 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4831 unlock_page(page);
4832 ret = VM_FAULT_SIGBUS;
fcbb5515 4833 ext4_journal_stop(handle);
9ea7df53
JK
4834 goto out;
4835 }
4836 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4837 }
4838 ext4_journal_stop(handle);
4839 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4840 goto retry_alloc;
4841out_ret:
4842 ret = block_page_mkwrite_return(ret);
4843out:
2e9ee850
AK
4844 return ret;
4845}