mm: teach truncate_inode_pages_range() to handle non page aligned ranges
[linux-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
139static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140 struct inode *inode, struct page *page, loff_t from,
141 loff_t length, int flags);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
145 */
617ba13b 146static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 147{
617ba13b 148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
149 (inode->i_sb->s_blocksize >> 9) : 0;
150
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152}
153
ac27a0ec
DK
154/*
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
157 * this transaction.
158 */
fa5d1113 159int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 160 int nblocks)
ac27a0ec 161{
487caeef
JK
162 int ret;
163
164 /*
e35fd660 165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
169 */
0390131b 170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 171 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 172 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 173 ret = ext4_journal_restart(handle, nblocks);
487caeef 174 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 175 ext4_discard_preallocations(inode);
487caeef
JK
176
177 return ret;
ac27a0ec
DK
178}
179
180/*
181 * Called at the last iput() if i_nlink is zero.
182 */
0930fcc1 183void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
184{
185 handle_t *handle;
bc965ab3 186 int err;
ac27a0ec 187
7ff9c073 188 trace_ext4_evict_inode(inode);
2581fdc8 189
0930fcc1 190 if (inode->i_nlink) {
2d859db3
JK
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
d76a3a77 215 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
216 filemap_write_and_wait(&inode->i_data);
217 }
0930fcc1 218 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 219 ext4_ioend_shutdown(inode);
0930fcc1
AV
220 goto no_delete;
221 }
222
907f4554 223 if (!is_bad_inode(inode))
871a2931 224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec 228 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 229 ext4_ioend_shutdown(inode);
ac27a0ec
DK
230
231 if (is_bad_inode(inode))
232 goto no_delete;
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
9924a92a
TT
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 241 if (IS_ERR(handle)) {
bc965ab3 242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
617ba13b 248 ext4_orphan_del(NULL, inode);
8e8ad8a5 249 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
0390131b 254 ext4_handle_sync(handle);
ac27a0ec 255 inode->i_size = 0;
bc965ab3
TT
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
12062ddd 258 ext4_warning(inode->i_sb,
bc965ab3
TT
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
ac27a0ec 262 if (inode->i_blocks)
617ba13b 263 ext4_truncate(inode);
bc965ab3
TT
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
0390131b 271 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
12062ddd 276 ext4_warning(inode->i_sb,
bc965ab3
TT
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
45388219 280 ext4_orphan_del(NULL, inode);
8e8ad8a5 281 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
282 goto no_delete;
283 }
284 }
285
ac27a0ec 286 /*
617ba13b 287 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 288 * AKPM: I think this can be inside the above `if'.
617ba13b 289 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 290 * deletion of a non-existent orphan - this is because we don't
617ba13b 291 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
292 * (Well, we could do this if we need to, but heck - it works)
293 */
617ba13b
MC
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
617ba13b 304 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 305 /* If that failed, just do the required in-core inode clear. */
0930fcc1 306 ext4_clear_inode(inode);
ac27a0ec 307 else
617ba13b
MC
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
8e8ad8a5 310 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
311 return;
312no_delete:
0930fcc1 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
314}
315
a9e7f447
DM
316#ifdef CONFIG_QUOTA
317qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 318{
a9e7f447 319 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 320}
a9e7f447 321#endif
9d0be502 322
12219aea
AK
323/*
324 * Calculate the number of metadata blocks need to reserve
9d0be502 325 * to allocate a block located at @lblock
12219aea 326 */
01f49d0b 327static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 328{
12e9b892 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 330 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 331
8bb2b247 332 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
333}
334
0637c6f4
TT
335/*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
5f634d06
AK
339void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
12219aea
AK
341{
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 343 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
344
345 spin_lock(&ei->i_block_reservation_lock);
d8990240 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 347 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 349 "with only %d reserved data blocks",
0637c6f4
TT
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
12219aea 355
97795d2a 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
97795d2a
BF
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
0637c6f4
TT
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
0637c6f4 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 371 used + ei->i_allocated_meta_blocks);
0637c6f4 372 ei->i_allocated_meta_blocks = 0;
6bc6e63f 373
0637c6f4
TT
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
57042651 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 381 ei->i_reserved_meta_blocks);
ee5f4d9c 382 ei->i_reserved_meta_blocks = 0;
9d0be502 383 ei->i_da_metadata_calc_len = 0;
6bc6e63f 384 }
12219aea 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 386
72b8ab9d
ES
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
7b415bf6 389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 390 else {
5f634d06
AK
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
72b8ab9d 394 * not re-claim the quota for fallocated blocks.
5f634d06 395 */
7b415bf6 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 397 }
d6014301
AK
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
0637c6f4
TT
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
d6014301 406 ext4_discard_preallocations(inode);
12219aea
AK
407}
408
e29136f8 409static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
410 unsigned int line,
411 struct ext4_map_blocks *map)
6fd058f7 412{
24676da4
TT
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
c398eda0
TT
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
6fd058f7
TT
419 return -EIO;
420 }
421 return 0;
422}
423
e29136f8 424#define check_block_validity(inode, map) \
c398eda0 425 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 426
55138e0b 427/*
1f94533d
TT
428 * Return the number of contiguous dirty pages in a given inode
429 * starting at page frame idx.
55138e0b
TT
430 */
431static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432 unsigned int max_pages)
433{
434 struct address_space *mapping = inode->i_mapping;
435 pgoff_t index;
436 struct pagevec pvec;
437 pgoff_t num = 0;
438 int i, nr_pages, done = 0;
439
440 if (max_pages == 0)
441 return 0;
442 pagevec_init(&pvec, 0);
443 while (!done) {
444 index = idx;
445 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446 PAGECACHE_TAG_DIRTY,
447 (pgoff_t)PAGEVEC_SIZE);
448 if (nr_pages == 0)
449 break;
450 for (i = 0; i < nr_pages; i++) {
451 struct page *page = pvec.pages[i];
452 struct buffer_head *bh, *head;
453
454 lock_page(page);
455 if (unlikely(page->mapping != mapping) ||
456 !PageDirty(page) ||
457 PageWriteback(page) ||
458 page->index != idx) {
459 done = 1;
460 unlock_page(page);
461 break;
462 }
1f94533d
TT
463 if (page_has_buffers(page)) {
464 bh = head = page_buffers(page);
465 do {
466 if (!buffer_delay(bh) &&
467 !buffer_unwritten(bh))
468 done = 1;
469 bh = bh->b_this_page;
470 } while (!done && (bh != head));
471 }
55138e0b
TT
472 unlock_page(page);
473 if (done)
474 break;
475 idx++;
476 num++;
659c6009
ES
477 if (num >= max_pages) {
478 done = 1;
55138e0b 479 break;
659c6009 480 }
55138e0b
TT
481 }
482 pagevec_release(&pvec);
483 }
484 return num;
485}
486
921f266b
DM
487#ifdef ES_AGGRESSIVE_TEST
488static void ext4_map_blocks_es_recheck(handle_t *handle,
489 struct inode *inode,
490 struct ext4_map_blocks *es_map,
491 struct ext4_map_blocks *map,
492 int flags)
493{
494 int retval;
495
496 map->m_flags = 0;
497 /*
498 * There is a race window that the result is not the same.
499 * e.g. xfstests #223 when dioread_nolock enables. The reason
500 * is that we lookup a block mapping in extent status tree with
501 * out taking i_data_sem. So at the time the unwritten extent
502 * could be converted.
503 */
504 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505 down_read((&EXT4_I(inode)->i_data_sem));
506 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508 EXT4_GET_BLOCKS_KEEP_SIZE);
509 } else {
510 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511 EXT4_GET_BLOCKS_KEEP_SIZE);
512 }
513 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514 up_read((&EXT4_I(inode)->i_data_sem));
515 /*
516 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517 * because it shouldn't be marked in es_map->m_flags.
518 */
519 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520
521 /*
522 * We don't check m_len because extent will be collpased in status
523 * tree. So the m_len might not equal.
524 */
525 if (es_map->m_lblk != map->m_lblk ||
526 es_map->m_flags != map->m_flags ||
527 es_map->m_pblk != map->m_pblk) {
528 printk("ES cache assertation failed for inode: %lu "
529 "es_cached ex [%d/%d/%llu/%x] != "
530 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531 inode->i_ino, es_map->m_lblk, es_map->m_len,
532 es_map->m_pblk, es_map->m_flags, map->m_lblk,
533 map->m_len, map->m_pblk, map->m_flags,
534 retval, flags);
535 }
536}
537#endif /* ES_AGGRESSIVE_TEST */
538
f5ab0d1f 539/*
e35fd660 540 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 541 * and returns if the blocks are already mapped.
f5ab0d1f 542 *
f5ab0d1f
MC
543 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544 * and store the allocated blocks in the result buffer head and mark it
545 * mapped.
546 *
e35fd660
TT
547 * If file type is extents based, it will call ext4_ext_map_blocks(),
548 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
549 * based files
550 *
551 * On success, it returns the number of blocks being mapped or allocate.
552 * if create==0 and the blocks are pre-allocated and uninitialized block,
553 * the result buffer head is unmapped. If the create ==1, it will make sure
554 * the buffer head is mapped.
555 *
556 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 557 * that case, buffer head is unmapped
f5ab0d1f
MC
558 *
559 * It returns the error in case of allocation failure.
560 */
e35fd660
TT
561int ext4_map_blocks(handle_t *handle, struct inode *inode,
562 struct ext4_map_blocks *map, int flags)
0e855ac8 563{
d100eef2 564 struct extent_status es;
0e855ac8 565 int retval;
921f266b
DM
566#ifdef ES_AGGRESSIVE_TEST
567 struct ext4_map_blocks orig_map;
568
569 memcpy(&orig_map, map, sizeof(*map));
570#endif
f5ab0d1f 571
e35fd660
TT
572 map->m_flags = 0;
573 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574 "logical block %lu\n", inode->i_ino, flags, map->m_len,
575 (unsigned long) map->m_lblk);
d100eef2
ZL
576
577 /* Lookup extent status tree firstly */
578 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580 map->m_pblk = ext4_es_pblock(&es) +
581 map->m_lblk - es.es_lblk;
582 map->m_flags |= ext4_es_is_written(&es) ?
583 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584 retval = es.es_len - (map->m_lblk - es.es_lblk);
585 if (retval > map->m_len)
586 retval = map->m_len;
587 map->m_len = retval;
588 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589 retval = 0;
590 } else {
591 BUG_ON(1);
592 }
921f266b
DM
593#ifdef ES_AGGRESSIVE_TEST
594 ext4_map_blocks_es_recheck(handle, inode, map,
595 &orig_map, flags);
596#endif
d100eef2
ZL
597 goto found;
598 }
599
4df3d265 600 /*
b920c755
TT
601 * Try to see if we can get the block without requesting a new
602 * file system block.
4df3d265 603 */
729f52c6
ZL
604 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 606 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
607 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 609 } else {
a4e5d88b
DM
610 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 612 }
f7fec032
ZL
613 if (retval > 0) {
614 int ret;
615 unsigned long long status;
616
921f266b
DM
617#ifdef ES_AGGRESSIVE_TEST
618 if (retval != map->m_len) {
619 printk("ES len assertation failed for inode: %lu "
620 "retval %d != map->m_len %d "
621 "in %s (lookup)\n", inode->i_ino, retval,
622 map->m_len, __func__);
623 }
624#endif
625
f7fec032
ZL
626 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629 ext4_find_delalloc_range(inode, map->m_lblk,
630 map->m_lblk + map->m_len - 1))
631 status |= EXTENT_STATUS_DELAYED;
632 ret = ext4_es_insert_extent(inode, map->m_lblk,
633 map->m_len, map->m_pblk, status);
634 if (ret < 0)
635 retval = ret;
636 }
729f52c6
ZL
637 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
638 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 639
d100eef2 640found:
e35fd660 641 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 642 int ret = check_block_validity(inode, map);
6fd058f7
TT
643 if (ret != 0)
644 return ret;
645 }
646
f5ab0d1f 647 /* If it is only a block(s) look up */
c2177057 648 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
649 return retval;
650
651 /*
652 * Returns if the blocks have already allocated
653 *
654 * Note that if blocks have been preallocated
df3ab170 655 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
656 * with buffer head unmapped.
657 */
e35fd660 658 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
659 return retval;
660
2a8964d6 661 /*
a25a4e1a
ZL
662 * Here we clear m_flags because after allocating an new extent,
663 * it will be set again.
2a8964d6 664 */
a25a4e1a 665 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 666
4df3d265 667 /*
f5ab0d1f
MC
668 * New blocks allocate and/or writing to uninitialized extent
669 * will possibly result in updating i_data, so we take
670 * the write lock of i_data_sem, and call get_blocks()
671 * with create == 1 flag.
4df3d265
AK
672 */
673 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
674
675 /*
676 * if the caller is from delayed allocation writeout path
677 * we have already reserved fs blocks for allocation
678 * let the underlying get_block() function know to
679 * avoid double accounting
680 */
c2177057 681 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 682 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
683 /*
684 * We need to check for EXT4 here because migrate
685 * could have changed the inode type in between
686 */
12e9b892 687 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 688 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 689 } else {
e35fd660 690 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 691
e35fd660 692 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
693 /*
694 * We allocated new blocks which will result in
695 * i_data's format changing. Force the migrate
696 * to fail by clearing migrate flags
697 */
19f5fb7a 698 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 699 }
d2a17637 700
5f634d06
AK
701 /*
702 * Update reserved blocks/metadata blocks after successful
703 * block allocation which had been deferred till now. We don't
704 * support fallocate for non extent files. So we can update
705 * reserve space here.
706 */
707 if ((retval > 0) &&
1296cc85 708 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
709 ext4_da_update_reserve_space(inode, retval, 1);
710 }
f7fec032 711 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 712 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 713
f7fec032
ZL
714 if (retval > 0) {
715 int ret;
716 unsigned long long status;
717
921f266b
DM
718#ifdef ES_AGGRESSIVE_TEST
719 if (retval != map->m_len) {
720 printk("ES len assertation failed for inode: %lu "
721 "retval %d != map->m_len %d "
722 "in %s (allocation)\n", inode->i_ino, retval,
723 map->m_len, __func__);
724 }
725#endif
726
adb23551
ZL
727 /*
728 * If the extent has been zeroed out, we don't need to update
729 * extent status tree.
730 */
731 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
732 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
733 if (ext4_es_is_written(&es))
734 goto has_zeroout;
735 }
f7fec032
ZL
736 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
737 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
738 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
739 ext4_find_delalloc_range(inode, map->m_lblk,
740 map->m_lblk + map->m_len - 1))
741 status |= EXTENT_STATUS_DELAYED;
742 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
743 map->m_pblk, status);
744 if (ret < 0)
745 retval = ret;
5356f261
AK
746 }
747
adb23551 748has_zeroout:
4df3d265 749 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 750 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 751 int ret = check_block_validity(inode, map);
6fd058f7
TT
752 if (ret != 0)
753 return ret;
754 }
0e855ac8
AK
755 return retval;
756}
757
f3bd1f3f
MC
758/* Maximum number of blocks we map for direct IO at once. */
759#define DIO_MAX_BLOCKS 4096
760
2ed88685
TT
761static int _ext4_get_block(struct inode *inode, sector_t iblock,
762 struct buffer_head *bh, int flags)
ac27a0ec 763{
3e4fdaf8 764 handle_t *handle = ext4_journal_current_handle();
2ed88685 765 struct ext4_map_blocks map;
7fb5409d 766 int ret = 0, started = 0;
f3bd1f3f 767 int dio_credits;
ac27a0ec 768
46c7f254
TM
769 if (ext4_has_inline_data(inode))
770 return -ERANGE;
771
2ed88685
TT
772 map.m_lblk = iblock;
773 map.m_len = bh->b_size >> inode->i_blkbits;
774
8b0f165f 775 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 776 /* Direct IO write... */
2ed88685
TT
777 if (map.m_len > DIO_MAX_BLOCKS)
778 map.m_len = DIO_MAX_BLOCKS;
779 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
780 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
781 dio_credits);
7fb5409d 782 if (IS_ERR(handle)) {
ac27a0ec 783 ret = PTR_ERR(handle);
2ed88685 784 return ret;
ac27a0ec 785 }
7fb5409d 786 started = 1;
ac27a0ec
DK
787 }
788
2ed88685 789 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 790 if (ret > 0) {
2ed88685
TT
791 map_bh(bh, inode->i_sb, map.m_pblk);
792 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
793 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 794 ret = 0;
ac27a0ec 795 }
7fb5409d
JK
796 if (started)
797 ext4_journal_stop(handle);
ac27a0ec
DK
798 return ret;
799}
800
2ed88685
TT
801int ext4_get_block(struct inode *inode, sector_t iblock,
802 struct buffer_head *bh, int create)
803{
804 return _ext4_get_block(inode, iblock, bh,
805 create ? EXT4_GET_BLOCKS_CREATE : 0);
806}
807
ac27a0ec
DK
808/*
809 * `handle' can be NULL if create is zero
810 */
617ba13b 811struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 812 ext4_lblk_t block, int create, int *errp)
ac27a0ec 813{
2ed88685
TT
814 struct ext4_map_blocks map;
815 struct buffer_head *bh;
ac27a0ec
DK
816 int fatal = 0, err;
817
818 J_ASSERT(handle != NULL || create == 0);
819
2ed88685
TT
820 map.m_lblk = block;
821 map.m_len = 1;
822 err = ext4_map_blocks(handle, inode, &map,
823 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 824
90b0a973
CM
825 /* ensure we send some value back into *errp */
826 *errp = 0;
827
0f70b406
TT
828 if (create && err == 0)
829 err = -ENOSPC; /* should never happen */
2ed88685
TT
830 if (err < 0)
831 *errp = err;
832 if (err <= 0)
833 return NULL;
2ed88685
TT
834
835 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 836 if (unlikely(!bh)) {
860d21e2 837 *errp = -ENOMEM;
2ed88685 838 return NULL;
ac27a0ec 839 }
2ed88685
TT
840 if (map.m_flags & EXT4_MAP_NEW) {
841 J_ASSERT(create != 0);
842 J_ASSERT(handle != NULL);
ac27a0ec 843
2ed88685
TT
844 /*
845 * Now that we do not always journal data, we should
846 * keep in mind whether this should always journal the
847 * new buffer as metadata. For now, regular file
848 * writes use ext4_get_block instead, so it's not a
849 * problem.
850 */
851 lock_buffer(bh);
852 BUFFER_TRACE(bh, "call get_create_access");
853 fatal = ext4_journal_get_create_access(handle, bh);
854 if (!fatal && !buffer_uptodate(bh)) {
855 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
856 set_buffer_uptodate(bh);
ac27a0ec 857 }
2ed88685
TT
858 unlock_buffer(bh);
859 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
860 err = ext4_handle_dirty_metadata(handle, inode, bh);
861 if (!fatal)
862 fatal = err;
863 } else {
864 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 865 }
2ed88685
TT
866 if (fatal) {
867 *errp = fatal;
868 brelse(bh);
869 bh = NULL;
870 }
871 return bh;
ac27a0ec
DK
872}
873
617ba13b 874struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 875 ext4_lblk_t block, int create, int *err)
ac27a0ec 876{
af5bc92d 877 struct buffer_head *bh;
ac27a0ec 878
617ba13b 879 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
880 if (!bh)
881 return bh;
882 if (buffer_uptodate(bh))
883 return bh;
65299a3b 884 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
885 wait_on_buffer(bh);
886 if (buffer_uptodate(bh))
887 return bh;
888 put_bh(bh);
889 *err = -EIO;
890 return NULL;
891}
892
f19d5870
TM
893int ext4_walk_page_buffers(handle_t *handle,
894 struct buffer_head *head,
895 unsigned from,
896 unsigned to,
897 int *partial,
898 int (*fn)(handle_t *handle,
899 struct buffer_head *bh))
ac27a0ec
DK
900{
901 struct buffer_head *bh;
902 unsigned block_start, block_end;
903 unsigned blocksize = head->b_size;
904 int err, ret = 0;
905 struct buffer_head *next;
906
af5bc92d
TT
907 for (bh = head, block_start = 0;
908 ret == 0 && (bh != head || !block_start);
de9a55b8 909 block_start = block_end, bh = next) {
ac27a0ec
DK
910 next = bh->b_this_page;
911 block_end = block_start + blocksize;
912 if (block_end <= from || block_start >= to) {
913 if (partial && !buffer_uptodate(bh))
914 *partial = 1;
915 continue;
916 }
917 err = (*fn)(handle, bh);
918 if (!ret)
919 ret = err;
920 }
921 return ret;
922}
923
924/*
925 * To preserve ordering, it is essential that the hole instantiation and
926 * the data write be encapsulated in a single transaction. We cannot
617ba13b 927 * close off a transaction and start a new one between the ext4_get_block()
dab291af 928 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
929 * prepare_write() is the right place.
930 *
36ade451
JK
931 * Also, this function can nest inside ext4_writepage(). In that case, we
932 * *know* that ext4_writepage() has generated enough buffer credits to do the
933 * whole page. So we won't block on the journal in that case, which is good,
934 * because the caller may be PF_MEMALLOC.
ac27a0ec 935 *
617ba13b 936 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
937 * quota file writes. If we were to commit the transaction while thus
938 * reentered, there can be a deadlock - we would be holding a quota
939 * lock, and the commit would never complete if another thread had a
940 * transaction open and was blocking on the quota lock - a ranking
941 * violation.
942 *
dab291af 943 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
944 * will _not_ run commit under these circumstances because handle->h_ref
945 * is elevated. We'll still have enough credits for the tiny quotafile
946 * write.
947 */
f19d5870
TM
948int do_journal_get_write_access(handle_t *handle,
949 struct buffer_head *bh)
ac27a0ec 950{
56d35a4c
JK
951 int dirty = buffer_dirty(bh);
952 int ret;
953
ac27a0ec
DK
954 if (!buffer_mapped(bh) || buffer_freed(bh))
955 return 0;
56d35a4c 956 /*
ebdec241 957 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
958 * the dirty bit as jbd2_journal_get_write_access() could complain
959 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 960 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
961 * the bit before releasing a page lock and thus writeback cannot
962 * ever write the buffer.
963 */
964 if (dirty)
965 clear_buffer_dirty(bh);
966 ret = ext4_journal_get_write_access(handle, bh);
967 if (!ret && dirty)
968 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
969 return ret;
ac27a0ec
DK
970}
971
8b0f165f
AP
972static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
973 struct buffer_head *bh_result, int create);
bfc1af65 974static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
975 loff_t pos, unsigned len, unsigned flags,
976 struct page **pagep, void **fsdata)
ac27a0ec 977{
af5bc92d 978 struct inode *inode = mapping->host;
1938a150 979 int ret, needed_blocks;
ac27a0ec
DK
980 handle_t *handle;
981 int retries = 0;
af5bc92d 982 struct page *page;
de9a55b8 983 pgoff_t index;
af5bc92d 984 unsigned from, to;
bfc1af65 985
9bffad1e 986 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
987 /*
988 * Reserve one block more for addition to orphan list in case
989 * we allocate blocks but write fails for some reason
990 */
991 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 992 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
993 from = pos & (PAGE_CACHE_SIZE - 1);
994 to = from + len;
ac27a0ec 995
f19d5870
TM
996 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
997 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
998 flags, pagep);
999 if (ret < 0)
47564bfb
TT
1000 return ret;
1001 if (ret == 1)
1002 return 0;
f19d5870
TM
1003 }
1004
47564bfb
TT
1005 /*
1006 * grab_cache_page_write_begin() can take a long time if the
1007 * system is thrashing due to memory pressure, or if the page
1008 * is being written back. So grab it first before we start
1009 * the transaction handle. This also allows us to allocate
1010 * the page (if needed) without using GFP_NOFS.
1011 */
1012retry_grab:
1013 page = grab_cache_page_write_begin(mapping, index, flags);
1014 if (!page)
1015 return -ENOMEM;
1016 unlock_page(page);
1017
1018retry_journal:
9924a92a 1019 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1020 if (IS_ERR(handle)) {
47564bfb
TT
1021 page_cache_release(page);
1022 return PTR_ERR(handle);
7479d2b9 1023 }
ac27a0ec 1024
47564bfb
TT
1025 lock_page(page);
1026 if (page->mapping != mapping) {
1027 /* The page got truncated from under us */
1028 unlock_page(page);
1029 page_cache_release(page);
cf108bca 1030 ext4_journal_stop(handle);
47564bfb 1031 goto retry_grab;
cf108bca 1032 }
47564bfb 1033 wait_on_page_writeback(page);
cf108bca 1034
744692dc 1035 if (ext4_should_dioread_nolock(inode))
6e1db88d 1036 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1037 else
6e1db88d 1038 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1039
1040 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1041 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1042 from, to, NULL,
1043 do_journal_get_write_access);
ac27a0ec 1044 }
bfc1af65
NP
1045
1046 if (ret) {
af5bc92d 1047 unlock_page(page);
ae4d5372 1048 /*
6e1db88d 1049 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1050 * outside i_size. Trim these off again. Don't need
1051 * i_size_read because we hold i_mutex.
1938a150
AK
1052 *
1053 * Add inode to orphan list in case we crash before
1054 * truncate finishes
ae4d5372 1055 */
ffacfa7a 1056 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1057 ext4_orphan_add(handle, inode);
1058
1059 ext4_journal_stop(handle);
1060 if (pos + len > inode->i_size) {
b9a4207d 1061 ext4_truncate_failed_write(inode);
de9a55b8 1062 /*
ffacfa7a 1063 * If truncate failed early the inode might
1938a150
AK
1064 * still be on the orphan list; we need to
1065 * make sure the inode is removed from the
1066 * orphan list in that case.
1067 */
1068 if (inode->i_nlink)
1069 ext4_orphan_del(NULL, inode);
1070 }
bfc1af65 1071
47564bfb
TT
1072 if (ret == -ENOSPC &&
1073 ext4_should_retry_alloc(inode->i_sb, &retries))
1074 goto retry_journal;
1075 page_cache_release(page);
1076 return ret;
1077 }
1078 *pagep = page;
ac27a0ec
DK
1079 return ret;
1080}
1081
bfc1af65
NP
1082/* For write_end() in data=journal mode */
1083static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1084{
13fca323 1085 int ret;
ac27a0ec
DK
1086 if (!buffer_mapped(bh) || buffer_freed(bh))
1087 return 0;
1088 set_buffer_uptodate(bh);
13fca323
TT
1089 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1090 clear_buffer_meta(bh);
1091 clear_buffer_prio(bh);
1092 return ret;
ac27a0ec
DK
1093}
1094
eed4333f
ZL
1095/*
1096 * We need to pick up the new inode size which generic_commit_write gave us
1097 * `file' can be NULL - eg, when called from page_symlink().
1098 *
1099 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1100 * buffers are managed internally.
1101 */
1102static int ext4_write_end(struct file *file,
1103 struct address_space *mapping,
1104 loff_t pos, unsigned len, unsigned copied,
1105 struct page *page, void *fsdata)
f8514083 1106{
f8514083 1107 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1108 struct inode *inode = mapping->host;
1109 int ret = 0, ret2;
1110 int i_size_changed = 0;
1111
1112 trace_ext4_write_end(inode, pos, len, copied);
1113 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1114 ret = ext4_jbd2_file_inode(handle, inode);
1115 if (ret) {
1116 unlock_page(page);
1117 page_cache_release(page);
1118 goto errout;
1119 }
1120 }
f8514083 1121
f19d5870
TM
1122 if (ext4_has_inline_data(inode))
1123 copied = ext4_write_inline_data_end(inode, pos, len,
1124 copied, page);
1125 else
1126 copied = block_write_end(file, mapping, pos,
1127 len, copied, page, fsdata);
f8514083
AK
1128
1129 /*
1130 * No need to use i_size_read() here, the i_size
eed4333f 1131 * cannot change under us because we hole i_mutex.
f8514083
AK
1132 *
1133 * But it's important to update i_size while still holding page lock:
1134 * page writeout could otherwise come in and zero beyond i_size.
1135 */
1136 if (pos + copied > inode->i_size) {
1137 i_size_write(inode, pos + copied);
1138 i_size_changed = 1;
1139 }
1140
eed4333f 1141 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1142 /* We need to mark inode dirty even if
1143 * new_i_size is less that inode->i_size
eed4333f 1144 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1145 */
1146 ext4_update_i_disksize(inode, (pos + copied));
1147 i_size_changed = 1;
1148 }
1149 unlock_page(page);
1150 page_cache_release(page);
1151
1152 /*
1153 * Don't mark the inode dirty under page lock. First, it unnecessarily
1154 * makes the holding time of page lock longer. Second, it forces lock
1155 * ordering of page lock and transaction start for journaling
1156 * filesystems.
1157 */
1158 if (i_size_changed)
1159 ext4_mark_inode_dirty(handle, inode);
1160
74d553aa
TT
1161 if (copied < 0)
1162 ret = copied;
ffacfa7a 1163 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1164 /* if we have allocated more blocks and copied
1165 * less. We will have blocks allocated outside
1166 * inode->i_size. So truncate them
1167 */
1168 ext4_orphan_add(handle, inode);
74d553aa 1169errout:
617ba13b 1170 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1171 if (!ret)
1172 ret = ret2;
bfc1af65 1173
f8514083 1174 if (pos + len > inode->i_size) {
b9a4207d 1175 ext4_truncate_failed_write(inode);
de9a55b8 1176 /*
ffacfa7a 1177 * If truncate failed early the inode might still be
f8514083
AK
1178 * on the orphan list; we need to make sure the inode
1179 * is removed from the orphan list in that case.
1180 */
1181 if (inode->i_nlink)
1182 ext4_orphan_del(NULL, inode);
1183 }
1184
bfc1af65 1185 return ret ? ret : copied;
ac27a0ec
DK
1186}
1187
bfc1af65 1188static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1189 struct address_space *mapping,
1190 loff_t pos, unsigned len, unsigned copied,
1191 struct page *page, void *fsdata)
ac27a0ec 1192{
617ba13b 1193 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1194 struct inode *inode = mapping->host;
ac27a0ec
DK
1195 int ret = 0, ret2;
1196 int partial = 0;
bfc1af65 1197 unsigned from, to;
cf17fea6 1198 loff_t new_i_size;
ac27a0ec 1199
9bffad1e 1200 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1201 from = pos & (PAGE_CACHE_SIZE - 1);
1202 to = from + len;
1203
441c8508
CW
1204 BUG_ON(!ext4_handle_valid(handle));
1205
3fdcfb66
TM
1206 if (ext4_has_inline_data(inode))
1207 copied = ext4_write_inline_data_end(inode, pos, len,
1208 copied, page);
1209 else {
1210 if (copied < len) {
1211 if (!PageUptodate(page))
1212 copied = 0;
1213 page_zero_new_buffers(page, from+copied, to);
1214 }
ac27a0ec 1215
3fdcfb66
TM
1216 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1217 to, &partial, write_end_fn);
1218 if (!partial)
1219 SetPageUptodate(page);
1220 }
cf17fea6
AK
1221 new_i_size = pos + copied;
1222 if (new_i_size > inode->i_size)
bfc1af65 1223 i_size_write(inode, pos+copied);
19f5fb7a 1224 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1225 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1226 if (new_i_size > EXT4_I(inode)->i_disksize) {
1227 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1228 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1229 if (!ret)
1230 ret = ret2;
1231 }
bfc1af65 1232
cf108bca 1233 unlock_page(page);
f8514083 1234 page_cache_release(page);
ffacfa7a 1235 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1236 /* if we have allocated more blocks and copied
1237 * less. We will have blocks allocated outside
1238 * inode->i_size. So truncate them
1239 */
1240 ext4_orphan_add(handle, inode);
1241
617ba13b 1242 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1243 if (!ret)
1244 ret = ret2;
f8514083 1245 if (pos + len > inode->i_size) {
b9a4207d 1246 ext4_truncate_failed_write(inode);
de9a55b8 1247 /*
ffacfa7a 1248 * If truncate failed early the inode might still be
f8514083
AK
1249 * on the orphan list; we need to make sure the inode
1250 * is removed from the orphan list in that case.
1251 */
1252 if (inode->i_nlink)
1253 ext4_orphan_del(NULL, inode);
1254 }
bfc1af65
NP
1255
1256 return ret ? ret : copied;
ac27a0ec 1257}
d2a17637 1258
386ad67c
LC
1259/*
1260 * Reserve a metadata for a single block located at lblock
1261 */
1262static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1263{
1264 int retries = 0;
1265 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1266 struct ext4_inode_info *ei = EXT4_I(inode);
1267 unsigned int md_needed;
1268 ext4_lblk_t save_last_lblock;
1269 int save_len;
1270
1271 /*
1272 * recalculate the amount of metadata blocks to reserve
1273 * in order to allocate nrblocks
1274 * worse case is one extent per block
1275 */
1276repeat:
1277 spin_lock(&ei->i_block_reservation_lock);
1278 /*
1279 * ext4_calc_metadata_amount() has side effects, which we have
1280 * to be prepared undo if we fail to claim space.
1281 */
1282 save_len = ei->i_da_metadata_calc_len;
1283 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1284 md_needed = EXT4_NUM_B2C(sbi,
1285 ext4_calc_metadata_amount(inode, lblock));
1286 trace_ext4_da_reserve_space(inode, md_needed);
1287
1288 /*
1289 * We do still charge estimated metadata to the sb though;
1290 * we cannot afford to run out of free blocks.
1291 */
1292 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1293 ei->i_da_metadata_calc_len = save_len;
1294 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1295 spin_unlock(&ei->i_block_reservation_lock);
1296 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1297 cond_resched();
1298 goto repeat;
1299 }
1300 return -ENOSPC;
1301 }
1302 ei->i_reserved_meta_blocks += md_needed;
1303 spin_unlock(&ei->i_block_reservation_lock);
1304
1305 return 0; /* success */
1306}
1307
9d0be502 1308/*
7b415bf6 1309 * Reserve a single cluster located at lblock
9d0be502 1310 */
01f49d0b 1311static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1312{
030ba6bc 1313 int retries = 0;
60e58e0f 1314 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1315 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1316 unsigned int md_needed;
5dd4056d 1317 int ret;
03179fe9
TT
1318 ext4_lblk_t save_last_lblock;
1319 int save_len;
1320
1321 /*
1322 * We will charge metadata quota at writeout time; this saves
1323 * us from metadata over-estimation, though we may go over by
1324 * a small amount in the end. Here we just reserve for data.
1325 */
1326 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1327 if (ret)
1328 return ret;
d2a17637
MC
1329
1330 /*
1331 * recalculate the amount of metadata blocks to reserve
1332 * in order to allocate nrblocks
1333 * worse case is one extent per block
1334 */
030ba6bc 1335repeat:
0637c6f4 1336 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1337 /*
1338 * ext4_calc_metadata_amount() has side effects, which we have
1339 * to be prepared undo if we fail to claim space.
1340 */
1341 save_len = ei->i_da_metadata_calc_len;
1342 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1343 md_needed = EXT4_NUM_B2C(sbi,
1344 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1345 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1346
72b8ab9d
ES
1347 /*
1348 * We do still charge estimated metadata to the sb though;
1349 * we cannot afford to run out of free blocks.
1350 */
e7d5f315 1351 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1352 ei->i_da_metadata_calc_len = save_len;
1353 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1354 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1355 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1356 cond_resched();
030ba6bc
AK
1357 goto repeat;
1358 }
03179fe9 1359 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1360 return -ENOSPC;
1361 }
9d0be502 1362 ei->i_reserved_data_blocks++;
0637c6f4
TT
1363 ei->i_reserved_meta_blocks += md_needed;
1364 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1365
d2a17637
MC
1366 return 0; /* success */
1367}
1368
12219aea 1369static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1370{
1371 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1372 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1373
cd213226
MC
1374 if (!to_free)
1375 return; /* Nothing to release, exit */
1376
d2a17637 1377 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1378
5a58ec87 1379 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1380 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1381 /*
0637c6f4
TT
1382 * if there aren't enough reserved blocks, then the
1383 * counter is messed up somewhere. Since this
1384 * function is called from invalidate page, it's
1385 * harmless to return without any action.
cd213226 1386 */
8de5c325 1387 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1388 "ino %lu, to_free %d with only %d reserved "
1084f252 1389 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1390 ei->i_reserved_data_blocks);
1391 WARN_ON(1);
1392 to_free = ei->i_reserved_data_blocks;
cd213226 1393 }
0637c6f4 1394 ei->i_reserved_data_blocks -= to_free;
cd213226 1395
0637c6f4
TT
1396 if (ei->i_reserved_data_blocks == 0) {
1397 /*
1398 * We can release all of the reserved metadata blocks
1399 * only when we have written all of the delayed
1400 * allocation blocks.
7b415bf6
AK
1401 * Note that in case of bigalloc, i_reserved_meta_blocks,
1402 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1403 */
57042651 1404 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1405 ei->i_reserved_meta_blocks);
ee5f4d9c 1406 ei->i_reserved_meta_blocks = 0;
9d0be502 1407 ei->i_da_metadata_calc_len = 0;
0637c6f4 1408 }
d2a17637 1409
72b8ab9d 1410 /* update fs dirty data blocks counter */
57042651 1411 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1412
d2a17637 1413 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1414
7b415bf6 1415 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1416}
1417
1418static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1419 unsigned int offset,
1420 unsigned int length)
d2a17637
MC
1421{
1422 int to_release = 0;
1423 struct buffer_head *head, *bh;
1424 unsigned int curr_off = 0;
7b415bf6
AK
1425 struct inode *inode = page->mapping->host;
1426 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1427 unsigned int stop = offset + length;
7b415bf6 1428 int num_clusters;
51865fda 1429 ext4_fsblk_t lblk;
d2a17637 1430
ca99fdd2
LC
1431 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1432
d2a17637
MC
1433 head = page_buffers(page);
1434 bh = head;
1435 do {
1436 unsigned int next_off = curr_off + bh->b_size;
1437
ca99fdd2
LC
1438 if (next_off > stop)
1439 break;
1440
d2a17637
MC
1441 if ((offset <= curr_off) && (buffer_delay(bh))) {
1442 to_release++;
1443 clear_buffer_delay(bh);
1444 }
1445 curr_off = next_off;
1446 } while ((bh = bh->b_this_page) != head);
7b415bf6 1447
51865fda
ZL
1448 if (to_release) {
1449 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450 ext4_es_remove_extent(inode, lblk, to_release);
1451 }
1452
7b415bf6
AK
1453 /* If we have released all the blocks belonging to a cluster, then we
1454 * need to release the reserved space for that cluster. */
1455 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1456 while (num_clusters > 0) {
7b415bf6
AK
1457 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1458 ((num_clusters - 1) << sbi->s_cluster_bits);
1459 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1460 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1461 ext4_da_release_space(inode, 1);
1462
1463 num_clusters--;
1464 }
d2a17637 1465}
ac27a0ec 1466
64769240
AT
1467/*
1468 * Delayed allocation stuff
1469 */
1470
64769240
AT
1471/*
1472 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1473 * them with writepage() call back
64769240
AT
1474 *
1475 * @mpd->inode: inode
1476 * @mpd->first_page: first page of the extent
1477 * @mpd->next_page: page after the last page of the extent
64769240
AT
1478 *
1479 * By the time mpage_da_submit_io() is called we expect all blocks
1480 * to be allocated. this may be wrong if allocation failed.
1481 *
1482 * As pages are already locked by write_cache_pages(), we can't use it
1483 */
1de3e3df
TT
1484static int mpage_da_submit_io(struct mpage_da_data *mpd,
1485 struct ext4_map_blocks *map)
64769240 1486{
791b7f08
AK
1487 struct pagevec pvec;
1488 unsigned long index, end;
1489 int ret = 0, err, nr_pages, i;
1490 struct inode *inode = mpd->inode;
1491 struct address_space *mapping = inode->i_mapping;
cb20d518 1492 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1493 unsigned int len, block_start;
1494 struct buffer_head *bh, *page_bufs = NULL;
1de3e3df 1495 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1496 struct ext4_io_submit io_submit;
64769240
AT
1497
1498 BUG_ON(mpd->next_page <= mpd->first_page);
a549984b 1499 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1500 /*
1501 * We need to start from the first_page to the next_page - 1
1502 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1503 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1504 * at the currently mapped buffer_heads.
1505 */
64769240
AT
1506 index = mpd->first_page;
1507 end = mpd->next_page - 1;
1508
791b7f08 1509 pagevec_init(&pvec, 0);
64769240 1510 while (index <= end) {
791b7f08 1511 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1512 if (nr_pages == 0)
1513 break;
1514 for (i = 0; i < nr_pages; i++) {
f8bec370 1515 int skip_page = 0;
64769240
AT
1516 struct page *page = pvec.pages[i];
1517
791b7f08
AK
1518 index = page->index;
1519 if (index > end)
1520 break;
cb20d518
TT
1521
1522 if (index == size >> PAGE_CACHE_SHIFT)
1523 len = size & ~PAGE_CACHE_MASK;
1524 else
1525 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1526 if (map) {
1527 cur_logical = index << (PAGE_CACHE_SHIFT -
1528 inode->i_blkbits);
1529 pblock = map->m_pblk + (cur_logical -
1530 map->m_lblk);
1531 }
791b7f08
AK
1532 index++;
1533
1534 BUG_ON(!PageLocked(page));
1535 BUG_ON(PageWriteback(page));
1536
3ecdb3a1
TT
1537 bh = page_bufs = page_buffers(page);
1538 block_start = 0;
64769240 1539 do {
1de3e3df
TT
1540 if (map && (cur_logical >= map->m_lblk) &&
1541 (cur_logical <= (map->m_lblk +
1542 (map->m_len - 1)))) {
29fa89d0
AK
1543 if (buffer_delay(bh)) {
1544 clear_buffer_delay(bh);
1545 bh->b_blocknr = pblock;
29fa89d0 1546 }
1de3e3df
TT
1547 if (buffer_unwritten(bh) ||
1548 buffer_mapped(bh))
1549 BUG_ON(bh->b_blocknr != pblock);
1550 if (map->m_flags & EXT4_MAP_UNINIT)
1551 set_buffer_uninit(bh);
1552 clear_buffer_unwritten(bh);
1553 }
29fa89d0 1554
13a79a47
YY
1555 /*
1556 * skip page if block allocation undone and
1557 * block is dirty
1558 */
1559 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1560 skip_page = 1;
3ecdb3a1
TT
1561 bh = bh->b_this_page;
1562 block_start += bh->b_size;
64769240
AT
1563 cur_logical++;
1564 pblock++;
1de3e3df
TT
1565 } while (bh != page_bufs);
1566
f8bec370
JK
1567 if (skip_page) {
1568 unlock_page(page);
1569 continue;
1570 }
cb20d518 1571
97498956 1572 clear_page_dirty_for_io(page);
fe089c77
JK
1573 err = ext4_bio_write_page(&io_submit, page, len,
1574 mpd->wbc);
cb20d518 1575 if (!err)
a1d6cc56 1576 mpd->pages_written++;
64769240
AT
1577 /*
1578 * In error case, we have to continue because
1579 * remaining pages are still locked
64769240
AT
1580 */
1581 if (ret == 0)
1582 ret = err;
64769240
AT
1583 }
1584 pagevec_release(&pvec);
1585 }
bd2d0210 1586 ext4_io_submit(&io_submit);
64769240 1587 return ret;
64769240
AT
1588}
1589
c7f5938a 1590static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1591{
1592 int nr_pages, i;
1593 pgoff_t index, end;
1594 struct pagevec pvec;
1595 struct inode *inode = mpd->inode;
1596 struct address_space *mapping = inode->i_mapping;
51865fda 1597 ext4_lblk_t start, last;
c4a0c46e 1598
c7f5938a
CW
1599 index = mpd->first_page;
1600 end = mpd->next_page - 1;
51865fda
ZL
1601
1602 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1603 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1604 ext4_es_remove_extent(inode, start, last - start + 1);
1605
66bea92c 1606 pagevec_init(&pvec, 0);
c4a0c46e
AK
1607 while (index <= end) {
1608 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1609 if (nr_pages == 0)
1610 break;
1611 for (i = 0; i < nr_pages; i++) {
1612 struct page *page = pvec.pages[i];
9b1d0998 1613 if (page->index > end)
c4a0c46e 1614 break;
c4a0c46e
AK
1615 BUG_ON(!PageLocked(page));
1616 BUG_ON(PageWriteback(page));
d47992f8 1617 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
c4a0c46e
AK
1618 ClearPageUptodate(page);
1619 unlock_page(page);
1620 }
9b1d0998
JK
1621 index = pvec.pages[nr_pages - 1]->index + 1;
1622 pagevec_release(&pvec);
c4a0c46e
AK
1623 }
1624 return;
1625}
1626
df22291f
AK
1627static void ext4_print_free_blocks(struct inode *inode)
1628{
1629 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1630 struct super_block *sb = inode->i_sb;
f78ee70d 1631 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1632
1633 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1634 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1635 ext4_count_free_clusters(sb)));
92b97816
TT
1636 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1637 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1638 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1639 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1640 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1641 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1642 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1643 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1644 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1645 ei->i_reserved_data_blocks);
92b97816 1646 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1647 ei->i_reserved_meta_blocks);
1648 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1649 ei->i_allocated_meta_blocks);
df22291f
AK
1650 return;
1651}
1652
64769240 1653/*
5a87b7a5
TT
1654 * mpage_da_map_and_submit - go through given space, map them
1655 * if necessary, and then submit them for I/O
64769240 1656 *
8dc207c0 1657 * @mpd - bh describing space
64769240
AT
1658 *
1659 * The function skips space we know is already mapped to disk blocks.
1660 *
64769240 1661 */
5a87b7a5 1662static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1663{
2ac3b6e0 1664 int err, blks, get_blocks_flags;
1de3e3df 1665 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1666 sector_t next = mpd->b_blocknr;
1667 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1668 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1669 handle_t *handle = NULL;
64769240
AT
1670
1671 /*
5a87b7a5
TT
1672 * If the blocks are mapped already, or we couldn't accumulate
1673 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1674 */
5a87b7a5
TT
1675 if ((mpd->b_size == 0) ||
1676 ((mpd->b_state & (1 << BH_Mapped)) &&
1677 !(mpd->b_state & (1 << BH_Delay)) &&
1678 !(mpd->b_state & (1 << BH_Unwritten))))
1679 goto submit_io;
2fa3cdfb
TT
1680
1681 handle = ext4_journal_current_handle();
1682 BUG_ON(!handle);
1683
79ffab34 1684 /*
79e83036 1685 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1686 * blocks, or to convert an uninitialized extent to be
1687 * initialized (in the case where we have written into
1688 * one or more preallocated blocks).
1689 *
1690 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1691 * indicate that we are on the delayed allocation path. This
1692 * affects functions in many different parts of the allocation
1693 * call path. This flag exists primarily because we don't
79e83036 1694 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1695 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1696 * inode's allocation semaphore is taken.
1697 *
1698 * If the blocks in questions were delalloc blocks, set
1699 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1700 * variables are updated after the blocks have been allocated.
79ffab34 1701 */
2ed88685
TT
1702 map.m_lblk = next;
1703 map.m_len = max_blocks;
27dd4385
LC
1704 /*
1705 * We're in delalloc path and it is possible that we're going to
1706 * need more metadata blocks than previously reserved. However
1707 * we must not fail because we're in writeback and there is
1708 * nothing we can do about it so it might result in data loss.
1709 * So use reserved blocks to allocate metadata if possible.
1710 */
1711 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1712 EXT4_GET_BLOCKS_METADATA_NOFAIL;
744692dc
JZ
1713 if (ext4_should_dioread_nolock(mpd->inode))
1714 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1715 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1716 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1717
27dd4385 1718
2ed88685 1719 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1720 if (blks < 0) {
e3570639
ES
1721 struct super_block *sb = mpd->inode->i_sb;
1722
2fa3cdfb 1723 err = blks;
ed5bde0b 1724 /*
5a87b7a5 1725 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1726 * appears to be free blocks we will just let
1727 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1728 */
1729 if (err == -EAGAIN)
5a87b7a5 1730 goto submit_io;
df22291f 1731
5dee5437 1732 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1733 mpd->retval = err;
5a87b7a5 1734 goto submit_io;
df22291f
AK
1735 }
1736
c4a0c46e 1737 /*
ed5bde0b
TT
1738 * get block failure will cause us to loop in
1739 * writepages, because a_ops->writepage won't be able
1740 * to make progress. The page will be redirtied by
1741 * writepage and writepages will again try to write
1742 * the same.
c4a0c46e 1743 */
e3570639
ES
1744 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1745 ext4_msg(sb, KERN_CRIT,
1746 "delayed block allocation failed for inode %lu "
1747 "at logical offset %llu with max blocks %zd "
1748 "with error %d", mpd->inode->i_ino,
1749 (unsigned long long) next,
1750 mpd->b_size >> mpd->inode->i_blkbits, err);
1751 ext4_msg(sb, KERN_CRIT,
01a523eb 1752 "This should not happen!! Data will be lost");
e3570639
ES
1753 if (err == -ENOSPC)
1754 ext4_print_free_blocks(mpd->inode);
030ba6bc 1755 }
2fa3cdfb 1756 /* invalidate all the pages */
c7f5938a 1757 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1758
1759 /* Mark this page range as having been completed */
1760 mpd->io_done = 1;
5a87b7a5 1761 return;
c4a0c46e 1762 }
2fa3cdfb
TT
1763 BUG_ON(blks == 0);
1764
1de3e3df 1765 mapp = &map;
2ed88685
TT
1766 if (map.m_flags & EXT4_MAP_NEW) {
1767 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1768 int i;
64769240 1769
2ed88685
TT
1770 for (i = 0; i < map.m_len; i++)
1771 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1772 }
1773
1774 /*
03f5d8bc 1775 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1776 */
1777 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1778 if (disksize > i_size_read(mpd->inode))
1779 disksize = i_size_read(mpd->inode);
1780 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1781 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1782 err = ext4_mark_inode_dirty(handle, mpd->inode);
1783 if (err)
1784 ext4_error(mpd->inode->i_sb,
1785 "Failed to mark inode %lu dirty",
1786 mpd->inode->i_ino);
2fa3cdfb
TT
1787 }
1788
5a87b7a5 1789submit_io:
1de3e3df 1790 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1791 mpd->io_done = 1;
64769240
AT
1792}
1793
bf068ee2
AK
1794#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1795 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1796
1797/*
1798 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1799 *
1800 * @mpd->lbh - extent of blocks
1801 * @logical - logical number of the block in the file
b6a8e62f 1802 * @b_state - b_state of the buffer head added
64769240
AT
1803 *
1804 * the function is used to collect contig. blocks in same state
1805 */
b6a8e62f 1806static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
8dc207c0 1807 unsigned long b_state)
64769240 1808{
64769240 1809 sector_t next;
b6a8e62f
JK
1810 int blkbits = mpd->inode->i_blkbits;
1811 int nrblocks = mpd->b_size >> blkbits;
64769240 1812
c445e3e0
ES
1813 /*
1814 * XXX Don't go larger than mballoc is willing to allocate
1815 * This is a stopgap solution. We eventually need to fold
1816 * mpage_da_submit_io() into this function and then call
79e83036 1817 * ext4_map_blocks() multiple times in a loop
c445e3e0 1818 */
b6a8e62f 1819 if (nrblocks >= (8*1024*1024 >> blkbits))
c445e3e0
ES
1820 goto flush_it;
1821
b6a8e62f
JK
1822 /* check if the reserved journal credits might overflow */
1823 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
525f4ed8
MC
1824 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1825 /*
1826 * With non-extent format we are limited by the journal
1827 * credit available. Total credit needed to insert
1828 * nrblocks contiguous blocks is dependent on the
1829 * nrblocks. So limit nrblocks.
1830 */
1831 goto flush_it;
525f4ed8
MC
1832 }
1833 }
64769240
AT
1834 /*
1835 * First block in the extent
1836 */
8dc207c0
TT
1837 if (mpd->b_size == 0) {
1838 mpd->b_blocknr = logical;
b6a8e62f 1839 mpd->b_size = 1 << blkbits;
8dc207c0 1840 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1841 return;
1842 }
1843
8dc207c0 1844 next = mpd->b_blocknr + nrblocks;
64769240
AT
1845 /*
1846 * Can we merge the block to our big extent?
1847 */
8dc207c0 1848 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
b6a8e62f 1849 mpd->b_size += 1 << blkbits;
64769240
AT
1850 return;
1851 }
1852
525f4ed8 1853flush_it:
64769240
AT
1854 /*
1855 * We couldn't merge the block to our extent, so we
1856 * need to flush current extent and start new one
1857 */
5a87b7a5 1858 mpage_da_map_and_submit(mpd);
a1d6cc56 1859 return;
64769240
AT
1860}
1861
c364b22c 1862static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1863{
c364b22c 1864 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1865}
1866
5356f261
AK
1867/*
1868 * This function is grabs code from the very beginning of
1869 * ext4_map_blocks, but assumes that the caller is from delayed write
1870 * time. This function looks up the requested blocks and sets the
1871 * buffer delay bit under the protection of i_data_sem.
1872 */
1873static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1874 struct ext4_map_blocks *map,
1875 struct buffer_head *bh)
1876{
d100eef2 1877 struct extent_status es;
5356f261
AK
1878 int retval;
1879 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1880#ifdef ES_AGGRESSIVE_TEST
1881 struct ext4_map_blocks orig_map;
1882
1883 memcpy(&orig_map, map, sizeof(*map));
1884#endif
5356f261
AK
1885
1886 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1887 invalid_block = ~0;
1888
1889 map->m_flags = 0;
1890 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1891 "logical block %lu\n", inode->i_ino, map->m_len,
1892 (unsigned long) map->m_lblk);
d100eef2
ZL
1893
1894 /* Lookup extent status tree firstly */
1895 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1896
1897 if (ext4_es_is_hole(&es)) {
1898 retval = 0;
1899 down_read((&EXT4_I(inode)->i_data_sem));
1900 goto add_delayed;
1901 }
1902
1903 /*
1904 * Delayed extent could be allocated by fallocate.
1905 * So we need to check it.
1906 */
1907 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1908 map_bh(bh, inode->i_sb, invalid_block);
1909 set_buffer_new(bh);
1910 set_buffer_delay(bh);
1911 return 0;
1912 }
1913
1914 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1915 retval = es.es_len - (iblock - es.es_lblk);
1916 if (retval > map->m_len)
1917 retval = map->m_len;
1918 map->m_len = retval;
1919 if (ext4_es_is_written(&es))
1920 map->m_flags |= EXT4_MAP_MAPPED;
1921 else if (ext4_es_is_unwritten(&es))
1922 map->m_flags |= EXT4_MAP_UNWRITTEN;
1923 else
1924 BUG_ON(1);
1925
921f266b
DM
1926#ifdef ES_AGGRESSIVE_TEST
1927 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1928#endif
d100eef2
ZL
1929 return retval;
1930 }
1931
5356f261
AK
1932 /*
1933 * Try to see if we can get the block without requesting a new
1934 * file system block.
1935 */
1936 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1937 if (ext4_has_inline_data(inode)) {
1938 /*
1939 * We will soon create blocks for this page, and let
1940 * us pretend as if the blocks aren't allocated yet.
1941 * In case of clusters, we have to handle the work
1942 * of mapping from cluster so that the reserved space
1943 * is calculated properly.
1944 */
1945 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1946 ext4_find_delalloc_cluster(inode, map->m_lblk))
1947 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1948 retval = 0;
1949 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1950 retval = ext4_ext_map_blocks(NULL, inode, map,
1951 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1952 else
d100eef2
ZL
1953 retval = ext4_ind_map_blocks(NULL, inode, map,
1954 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1955
d100eef2 1956add_delayed:
5356f261 1957 if (retval == 0) {
f7fec032 1958 int ret;
5356f261
AK
1959 /*
1960 * XXX: __block_prepare_write() unmaps passed block,
1961 * is it OK?
1962 */
386ad67c
LC
1963 /*
1964 * If the block was allocated from previously allocated cluster,
1965 * then we don't need to reserve it again. However we still need
1966 * to reserve metadata for every block we're going to write.
1967 */
5356f261 1968 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1969 ret = ext4_da_reserve_space(inode, iblock);
1970 if (ret) {
5356f261 1971 /* not enough space to reserve */
f7fec032 1972 retval = ret;
5356f261 1973 goto out_unlock;
f7fec032 1974 }
386ad67c
LC
1975 } else {
1976 ret = ext4_da_reserve_metadata(inode, iblock);
1977 if (ret) {
1978 /* not enough space to reserve */
1979 retval = ret;
1980 goto out_unlock;
1981 }
5356f261
AK
1982 }
1983
f7fec032
ZL
1984 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1985 ~0, EXTENT_STATUS_DELAYED);
1986 if (ret) {
1987 retval = ret;
51865fda 1988 goto out_unlock;
f7fec032 1989 }
51865fda 1990
5356f261
AK
1991 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1992 * and it should not appear on the bh->b_state.
1993 */
1994 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1995
1996 map_bh(bh, inode->i_sb, invalid_block);
1997 set_buffer_new(bh);
1998 set_buffer_delay(bh);
f7fec032
ZL
1999 } else if (retval > 0) {
2000 int ret;
2001 unsigned long long status;
2002
921f266b
DM
2003#ifdef ES_AGGRESSIVE_TEST
2004 if (retval != map->m_len) {
2005 printk("ES len assertation failed for inode: %lu "
2006 "retval %d != map->m_len %d "
2007 "in %s (lookup)\n", inode->i_ino, retval,
2008 map->m_len, __func__);
2009 }
2010#endif
2011
f7fec032
ZL
2012 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2013 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2014 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2015 map->m_pblk, status);
2016 if (ret != 0)
2017 retval = ret;
5356f261
AK
2018 }
2019
2020out_unlock:
2021 up_read((&EXT4_I(inode)->i_data_sem));
2022
2023 return retval;
2024}
2025
64769240 2026/*
b920c755
TT
2027 * This is a special get_blocks_t callback which is used by
2028 * ext4_da_write_begin(). It will either return mapped block or
2029 * reserve space for a single block.
29fa89d0
AK
2030 *
2031 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2032 * We also have b_blocknr = -1 and b_bdev initialized properly
2033 *
2034 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2035 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2036 * initialized properly.
64769240 2037 */
9c3569b5
TM
2038int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2039 struct buffer_head *bh, int create)
64769240 2040{
2ed88685 2041 struct ext4_map_blocks map;
64769240
AT
2042 int ret = 0;
2043
2044 BUG_ON(create == 0);
2ed88685
TT
2045 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2046
2047 map.m_lblk = iblock;
2048 map.m_len = 1;
64769240
AT
2049
2050 /*
2051 * first, we need to know whether the block is allocated already
2052 * preallocated blocks are unmapped but should treated
2053 * the same as allocated blocks.
2054 */
5356f261
AK
2055 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2056 if (ret <= 0)
2ed88685 2057 return ret;
64769240 2058
2ed88685
TT
2059 map_bh(bh, inode->i_sb, map.m_pblk);
2060 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2061
2062 if (buffer_unwritten(bh)) {
2063 /* A delayed write to unwritten bh should be marked
2064 * new and mapped. Mapped ensures that we don't do
2065 * get_block multiple times when we write to the same
2066 * offset and new ensures that we do proper zero out
2067 * for partial write.
2068 */
2069 set_buffer_new(bh);
c8205636 2070 set_buffer_mapped(bh);
2ed88685
TT
2071 }
2072 return 0;
64769240 2073}
61628a3f 2074
62e086be
AK
2075static int bget_one(handle_t *handle, struct buffer_head *bh)
2076{
2077 get_bh(bh);
2078 return 0;
2079}
2080
2081static int bput_one(handle_t *handle, struct buffer_head *bh)
2082{
2083 put_bh(bh);
2084 return 0;
2085}
2086
2087static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2088 unsigned int len)
2089{
2090 struct address_space *mapping = page->mapping;
2091 struct inode *inode = mapping->host;
3fdcfb66 2092 struct buffer_head *page_bufs = NULL;
62e086be 2093 handle_t *handle = NULL;
3fdcfb66
TM
2094 int ret = 0, err = 0;
2095 int inline_data = ext4_has_inline_data(inode);
2096 struct buffer_head *inode_bh = NULL;
62e086be 2097
cb20d518 2098 ClearPageChecked(page);
3fdcfb66
TM
2099
2100 if (inline_data) {
2101 BUG_ON(page->index != 0);
2102 BUG_ON(len > ext4_get_max_inline_size(inode));
2103 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2104 if (inode_bh == NULL)
2105 goto out;
2106 } else {
2107 page_bufs = page_buffers(page);
2108 if (!page_bufs) {
2109 BUG();
2110 goto out;
2111 }
2112 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2113 NULL, bget_one);
2114 }
62e086be
AK
2115 /* As soon as we unlock the page, it can go away, but we have
2116 * references to buffers so we are safe */
2117 unlock_page(page);
2118
9924a92a
TT
2119 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2120 ext4_writepage_trans_blocks(inode));
62e086be
AK
2121 if (IS_ERR(handle)) {
2122 ret = PTR_ERR(handle);
2123 goto out;
2124 }
2125
441c8508
CW
2126 BUG_ON(!ext4_handle_valid(handle));
2127
3fdcfb66
TM
2128 if (inline_data) {
2129 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2130
3fdcfb66
TM
2131 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2132
2133 } else {
2134 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2135 do_journal_get_write_access);
2136
2137 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2138 write_end_fn);
2139 }
62e086be
AK
2140 if (ret == 0)
2141 ret = err;
2d859db3 2142 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2143 err = ext4_journal_stop(handle);
2144 if (!ret)
2145 ret = err;
2146
3fdcfb66
TM
2147 if (!ext4_has_inline_data(inode))
2148 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2149 NULL, bput_one);
19f5fb7a 2150 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2151out:
3fdcfb66 2152 brelse(inode_bh);
62e086be
AK
2153 return ret;
2154}
2155
61628a3f 2156/*
43ce1d23
AK
2157 * Note that we don't need to start a transaction unless we're journaling data
2158 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2159 * need to file the inode to the transaction's list in ordered mode because if
2160 * we are writing back data added by write(), the inode is already there and if
25985edc 2161 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2162 * transaction the data will hit the disk. In case we are journaling data, we
2163 * cannot start transaction directly because transaction start ranks above page
2164 * lock so we have to do some magic.
2165 *
b920c755
TT
2166 * This function can get called via...
2167 * - ext4_da_writepages after taking page lock (have journal handle)
2168 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2169 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2170 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2171 *
2172 * We don't do any block allocation in this function. If we have page with
2173 * multiple blocks we need to write those buffer_heads that are mapped. This
2174 * is important for mmaped based write. So if we do with blocksize 1K
2175 * truncate(f, 1024);
2176 * a = mmap(f, 0, 4096);
2177 * a[0] = 'a';
2178 * truncate(f, 4096);
2179 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2180 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2181 * do_wp_page). So writepage should write the first block. If we modify
2182 * the mmap area beyond 1024 we will again get a page_fault and the
2183 * page_mkwrite callback will do the block allocation and mark the
2184 * buffer_heads mapped.
2185 *
2186 * We redirty the page if we have any buffer_heads that is either delay or
2187 * unwritten in the page.
2188 *
2189 * We can get recursively called as show below.
2190 *
2191 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2192 * ext4_writepage()
2193 *
2194 * But since we don't do any block allocation we should not deadlock.
2195 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2196 */
43ce1d23 2197static int ext4_writepage(struct page *page,
62e086be 2198 struct writeback_control *wbc)
64769240 2199{
f8bec370 2200 int ret = 0;
61628a3f 2201 loff_t size;
498e5f24 2202 unsigned int len;
744692dc 2203 struct buffer_head *page_bufs = NULL;
61628a3f 2204 struct inode *inode = page->mapping->host;
36ade451 2205 struct ext4_io_submit io_submit;
61628a3f 2206
a9c667f8 2207 trace_ext4_writepage(page);
f0e6c985
AK
2208 size = i_size_read(inode);
2209 if (page->index == size >> PAGE_CACHE_SHIFT)
2210 len = size & ~PAGE_CACHE_MASK;
2211 else
2212 len = PAGE_CACHE_SIZE;
64769240 2213
a42afc5f 2214 page_bufs = page_buffers(page);
a42afc5f 2215 /*
fe386132
JK
2216 * We cannot do block allocation or other extent handling in this
2217 * function. If there are buffers needing that, we have to redirty
2218 * the page. But we may reach here when we do a journal commit via
2219 * journal_submit_inode_data_buffers() and in that case we must write
2220 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 2221 */
f19d5870
TM
2222 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2223 ext4_bh_delay_or_unwritten)) {
f8bec370 2224 redirty_page_for_writepage(wbc, page);
fe386132
JK
2225 if (current->flags & PF_MEMALLOC) {
2226 /*
2227 * For memory cleaning there's no point in writing only
2228 * some buffers. So just bail out. Warn if we came here
2229 * from direct reclaim.
2230 */
2231 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2232 == PF_MEMALLOC);
f0e6c985
AK
2233 unlock_page(page);
2234 return 0;
2235 }
a42afc5f 2236 }
64769240 2237
cb20d518 2238 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2239 /*
2240 * It's mmapped pagecache. Add buffers and journal it. There
2241 * doesn't seem much point in redirtying the page here.
2242 */
3f0ca309 2243 return __ext4_journalled_writepage(page, len);
43ce1d23 2244
a549984b 2245 memset(&io_submit, 0, sizeof(io_submit));
36ade451
JK
2246 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2247 ext4_io_submit(&io_submit);
64769240
AT
2248 return ret;
2249}
2250
61628a3f 2251/*
525f4ed8 2252 * This is called via ext4_da_writepages() to
25985edc 2253 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2254 * a single extent allocation into a single transaction,
2255 * ext4_da_writpeages() will loop calling this before
2256 * the block allocation.
61628a3f 2257 */
525f4ed8
MC
2258
2259static int ext4_da_writepages_trans_blocks(struct inode *inode)
2260{
2261 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2262
2263 /*
2264 * With non-extent format the journal credit needed to
2265 * insert nrblocks contiguous block is dependent on
2266 * number of contiguous block. So we will limit
2267 * number of contiguous block to a sane value
2268 */
12e9b892 2269 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2270 (max_blocks > EXT4_MAX_TRANS_DATA))
2271 max_blocks = EXT4_MAX_TRANS_DATA;
2272
2273 return ext4_chunk_trans_blocks(inode, max_blocks);
2274}
61628a3f 2275
8e48dcfb
TT
2276/*
2277 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2278 * address space and accumulate pages that need writing, and call
168fc022
TT
2279 * mpage_da_map_and_submit to map a single contiguous memory region
2280 * and then write them.
8e48dcfb 2281 */
9c3569b5
TM
2282static int write_cache_pages_da(handle_t *handle,
2283 struct address_space *mapping,
8e48dcfb 2284 struct writeback_control *wbc,
72f84e65
ES
2285 struct mpage_da_data *mpd,
2286 pgoff_t *done_index)
8e48dcfb 2287{
4f01b02c 2288 struct buffer_head *bh, *head;
168fc022 2289 struct inode *inode = mapping->host;
4f01b02c
TT
2290 struct pagevec pvec;
2291 unsigned int nr_pages;
2292 sector_t logical;
2293 pgoff_t index, end;
2294 long nr_to_write = wbc->nr_to_write;
2295 int i, tag, ret = 0;
8e48dcfb 2296
168fc022
TT
2297 memset(mpd, 0, sizeof(struct mpage_da_data));
2298 mpd->wbc = wbc;
2299 mpd->inode = inode;
8e48dcfb
TT
2300 pagevec_init(&pvec, 0);
2301 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2302 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2303
6e6938b6 2304 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2305 tag = PAGECACHE_TAG_TOWRITE;
2306 else
2307 tag = PAGECACHE_TAG_DIRTY;
2308
72f84e65 2309 *done_index = index;
4f01b02c 2310 while (index <= end) {
5b41d924 2311 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2312 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2313 if (nr_pages == 0)
4f01b02c 2314 return 0;
8e48dcfb
TT
2315
2316 for (i = 0; i < nr_pages; i++) {
2317 struct page *page = pvec.pages[i];
2318
2319 /*
2320 * At this point, the page may be truncated or
2321 * invalidated (changing page->mapping to NULL), or
2322 * even swizzled back from swapper_space to tmpfs file
2323 * mapping. However, page->index will not change
2324 * because we have a reference on the page.
2325 */
4f01b02c
TT
2326 if (page->index > end)
2327 goto out;
8e48dcfb 2328
72f84e65
ES
2329 *done_index = page->index + 1;
2330
78aaced3
TT
2331 /*
2332 * If we can't merge this page, and we have
2333 * accumulated an contiguous region, write it
2334 */
2335 if ((mpd->next_page != page->index) &&
2336 (mpd->next_page != mpd->first_page)) {
2337 mpage_da_map_and_submit(mpd);
2338 goto ret_extent_tail;
2339 }
2340
8e48dcfb
TT
2341 lock_page(page);
2342
2343 /*
4f01b02c
TT
2344 * If the page is no longer dirty, or its
2345 * mapping no longer corresponds to inode we
2346 * are writing (which means it has been
2347 * truncated or invalidated), or the page is
2348 * already under writeback and we are not
2349 * doing a data integrity writeback, skip the page
8e48dcfb 2350 */
4f01b02c
TT
2351 if (!PageDirty(page) ||
2352 (PageWriteback(page) &&
2353 (wbc->sync_mode == WB_SYNC_NONE)) ||
2354 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2355 unlock_page(page);
2356 continue;
2357 }
2358
7cb1a535 2359 wait_on_page_writeback(page);
8e48dcfb 2360 BUG_ON(PageWriteback(page));
8e48dcfb 2361
9c3569b5
TM
2362 /*
2363 * If we have inline data and arrive here, it means that
2364 * we will soon create the block for the 1st page, so
2365 * we'd better clear the inline data here.
2366 */
2367 if (ext4_has_inline_data(inode)) {
2368 BUG_ON(ext4_test_inode_state(inode,
2369 EXT4_STATE_MAY_INLINE_DATA));
2370 ext4_destroy_inline_data(handle, inode);
2371 }
2372
168fc022 2373 if (mpd->next_page != page->index)
8eb9e5ce 2374 mpd->first_page = page->index;
8eb9e5ce
TT
2375 mpd->next_page = page->index + 1;
2376 logical = (sector_t) page->index <<
2377 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2378
f8bec370
JK
2379 /* Add all dirty buffers to mpd */
2380 head = page_buffers(page);
2381 bh = head;
2382 do {
2383 BUG_ON(buffer_locked(bh));
8eb9e5ce 2384 /*
f8bec370
JK
2385 * We need to try to allocate unmapped blocks
2386 * in the same page. Otherwise we won't make
2387 * progress with the page in ext4_writepage
8eb9e5ce 2388 */
f8bec370
JK
2389 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2390 mpage_add_bh_to_extent(mpd, logical,
f8bec370
JK
2391 bh->b_state);
2392 if (mpd->io_done)
2393 goto ret_extent_tail;
2394 } else if (buffer_dirty(bh) &&
2395 buffer_mapped(bh)) {
8eb9e5ce 2396 /*
f8bec370
JK
2397 * mapped dirty buffer. We need to
2398 * update the b_state because we look
2399 * at b_state in mpage_da_map_blocks.
2400 * We don't update b_size because if we
2401 * find an unmapped buffer_head later
2402 * we need to use the b_state flag of
2403 * that buffer_head.
8eb9e5ce 2404 */
f8bec370
JK
2405 if (mpd->b_size == 0)
2406 mpd->b_state =
2407 bh->b_state & BH_FLAGS;
2408 }
2409 logical++;
2410 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2411
2412 if (nr_to_write > 0) {
2413 nr_to_write--;
2414 if (nr_to_write == 0 &&
4f01b02c 2415 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2416 /*
2417 * We stop writing back only if we are
2418 * not doing integrity sync. In case of
2419 * integrity sync we have to keep going
2420 * because someone may be concurrently
2421 * dirtying pages, and we might have
2422 * synced a lot of newly appeared dirty
2423 * pages, but have not synced all of the
2424 * old dirty pages.
2425 */
4f01b02c 2426 goto out;
8e48dcfb
TT
2427 }
2428 }
2429 pagevec_release(&pvec);
2430 cond_resched();
2431 }
4f01b02c
TT
2432 return 0;
2433ret_extent_tail:
2434 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2435out:
2436 pagevec_release(&pvec);
2437 cond_resched();
8e48dcfb
TT
2438 return ret;
2439}
2440
2441
64769240 2442static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2443 struct writeback_control *wbc)
64769240 2444{
22208ded
AK
2445 pgoff_t index;
2446 int range_whole = 0;
61628a3f 2447 handle_t *handle = NULL;
df22291f 2448 struct mpage_da_data mpd;
5e745b04 2449 struct inode *inode = mapping->host;
498e5f24 2450 int pages_written = 0;
55138e0b 2451 unsigned int max_pages;
2acf2c26 2452 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2453 int needed_blocks, ret = 0;
2454 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2455 loff_t range_start = wbc->range_start;
5e745b04 2456 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2457 pgoff_t done_index = 0;
5b41d924 2458 pgoff_t end;
1bce63d1 2459 struct blk_plug plug;
61628a3f 2460
9bffad1e 2461 trace_ext4_da_writepages(inode, wbc);
ba80b101 2462
61628a3f
MC
2463 /*
2464 * No pages to write? This is mainly a kludge to avoid starting
2465 * a transaction for special inodes like journal inode on last iput()
2466 * because that could violate lock ordering on umount
2467 */
a1d6cc56 2468 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2469 return 0;
2a21e37e
TT
2470
2471 /*
2472 * If the filesystem has aborted, it is read-only, so return
2473 * right away instead of dumping stack traces later on that
2474 * will obscure the real source of the problem. We test
4ab2f15b 2475 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2476 * the latter could be true if the filesystem is mounted
2477 * read-only, and in that case, ext4_da_writepages should
2478 * *never* be called, so if that ever happens, we would want
2479 * the stack trace.
2480 */
4ab2f15b 2481 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2482 return -EROFS;
2483
22208ded
AK
2484 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2485 range_whole = 1;
61628a3f 2486
2acf2c26
AK
2487 range_cyclic = wbc->range_cyclic;
2488 if (wbc->range_cyclic) {
22208ded 2489 index = mapping->writeback_index;
2acf2c26
AK
2490 if (index)
2491 cycled = 0;
2492 wbc->range_start = index << PAGE_CACHE_SHIFT;
2493 wbc->range_end = LLONG_MAX;
2494 wbc->range_cyclic = 0;
5b41d924
ES
2495 end = -1;
2496 } else {
22208ded 2497 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2498 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2499 }
a1d6cc56 2500
55138e0b
TT
2501 /*
2502 * This works around two forms of stupidity. The first is in
2503 * the writeback code, which caps the maximum number of pages
2504 * written to be 1024 pages. This is wrong on multiple
2505 * levels; different architectues have a different page size,
2506 * which changes the maximum amount of data which gets
2507 * written. Secondly, 4 megabytes is way too small. XFS
2508 * forces this value to be 16 megabytes by multiplying
2509 * nr_to_write parameter by four, and then relies on its
2510 * allocator to allocate larger extents to make them
2511 * contiguous. Unfortunately this brings us to the second
2512 * stupidity, which is that ext4's mballoc code only allocates
2513 * at most 2048 blocks. So we force contiguous writes up to
2514 * the number of dirty blocks in the inode, or
2515 * sbi->max_writeback_mb_bump whichever is smaller.
2516 */
2517 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2518 if (!range_cyclic && range_whole) {
2519 if (wbc->nr_to_write == LONG_MAX)
2520 desired_nr_to_write = wbc->nr_to_write;
2521 else
2522 desired_nr_to_write = wbc->nr_to_write * 8;
2523 } else
55138e0b
TT
2524 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2525 max_pages);
2526 if (desired_nr_to_write > max_pages)
2527 desired_nr_to_write = max_pages;
2528
2529 if (wbc->nr_to_write < desired_nr_to_write) {
2530 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2531 wbc->nr_to_write = desired_nr_to_write;
2532 }
2533
2acf2c26 2534retry:
6e6938b6 2535 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2536 tag_pages_for_writeback(mapping, index, end);
2537
1bce63d1 2538 blk_start_plug(&plug);
22208ded 2539 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2540
2541 /*
2542 * we insert one extent at a time. So we need
2543 * credit needed for single extent allocation.
2544 * journalled mode is currently not supported
2545 * by delalloc
2546 */
2547 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2548 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2549
61628a3f 2550 /* start a new transaction*/
9924a92a
TT
2551 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2552 needed_blocks);
61628a3f
MC
2553 if (IS_ERR(handle)) {
2554 ret = PTR_ERR(handle);
1693918e 2555 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2556 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2557 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2558 blk_finish_plug(&plug);
61628a3f
MC
2559 goto out_writepages;
2560 }
f63e6005
TT
2561
2562 /*
8eb9e5ce 2563 * Now call write_cache_pages_da() to find the next
f63e6005 2564 * contiguous region of logical blocks that need
8eb9e5ce 2565 * blocks to be allocated by ext4 and submit them.
f63e6005 2566 */
9c3569b5
TM
2567 ret = write_cache_pages_da(handle, mapping,
2568 wbc, &mpd, &done_index);
f63e6005 2569 /*
af901ca1 2570 * If we have a contiguous extent of pages and we
f63e6005
TT
2571 * haven't done the I/O yet, map the blocks and submit
2572 * them for I/O.
2573 */
2574 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2575 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2576 ret = MPAGE_DA_EXTENT_TAIL;
2577 }
b3a3ca8c 2578 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2579 wbc->nr_to_write -= mpd.pages_written;
df22291f 2580
61628a3f 2581 ext4_journal_stop(handle);
df22291f 2582
8f64b32e 2583 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2584 /* commit the transaction which would
2585 * free blocks released in the transaction
2586 * and try again
2587 */
df22291f 2588 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2589 ret = 0;
2590 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2591 /*
8de49e67
KM
2592 * Got one extent now try with rest of the pages.
2593 * If mpd.retval is set -EIO, journal is aborted.
2594 * So we don't need to write any more.
a1d6cc56 2595 */
22208ded 2596 pages_written += mpd.pages_written;
8de49e67 2597 ret = mpd.retval;
2acf2c26 2598 io_done = 1;
22208ded 2599 } else if (wbc->nr_to_write)
61628a3f
MC
2600 /*
2601 * There is no more writeout needed
2602 * or we requested for a noblocking writeout
2603 * and we found the device congested
2604 */
61628a3f 2605 break;
a1d6cc56 2606 }
1bce63d1 2607 blk_finish_plug(&plug);
2acf2c26
AK
2608 if (!io_done && !cycled) {
2609 cycled = 1;
2610 index = 0;
2611 wbc->range_start = index << PAGE_CACHE_SHIFT;
2612 wbc->range_end = mapping->writeback_index - 1;
2613 goto retry;
2614 }
22208ded
AK
2615
2616 /* Update index */
2acf2c26 2617 wbc->range_cyclic = range_cyclic;
22208ded
AK
2618 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2619 /*
2620 * set the writeback_index so that range_cyclic
2621 * mode will write it back later
2622 */
72f84e65 2623 mapping->writeback_index = done_index;
a1d6cc56 2624
61628a3f 2625out_writepages:
2faf2e19 2626 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2627 wbc->range_start = range_start;
9bffad1e 2628 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2629 return ret;
64769240
AT
2630}
2631
79f0be8d
AK
2632static int ext4_nonda_switch(struct super_block *sb)
2633{
5c1ff336 2634 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2635 struct ext4_sb_info *sbi = EXT4_SB(sb);
2636
2637 /*
2638 * switch to non delalloc mode if we are running low
2639 * on free block. The free block accounting via percpu
179f7ebf 2640 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2641 * accumulated on each CPU without updating global counters
2642 * Delalloc need an accurate free block accounting. So switch
2643 * to non delalloc when we are near to error range.
2644 */
5c1ff336
EW
2645 free_clusters =
2646 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2647 dirty_clusters =
2648 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2649 /*
2650 * Start pushing delalloc when 1/2 of free blocks are dirty.
2651 */
5c1ff336 2652 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2653 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2654
5c1ff336
EW
2655 if (2 * free_clusters < 3 * dirty_clusters ||
2656 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2657 /*
c8afb446
ES
2658 * free block count is less than 150% of dirty blocks
2659 * or free blocks is less than watermark
79f0be8d
AK
2660 */
2661 return 1;
2662 }
2663 return 0;
2664}
2665
64769240 2666static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2667 loff_t pos, unsigned len, unsigned flags,
2668 struct page **pagep, void **fsdata)
64769240 2669{
72b8ab9d 2670 int ret, retries = 0;
64769240
AT
2671 struct page *page;
2672 pgoff_t index;
64769240
AT
2673 struct inode *inode = mapping->host;
2674 handle_t *handle;
2675
2676 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2677
2678 if (ext4_nonda_switch(inode->i_sb)) {
2679 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2680 return ext4_write_begin(file, mapping, pos,
2681 len, flags, pagep, fsdata);
2682 }
2683 *fsdata = (void *)0;
9bffad1e 2684 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2685
2686 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2687 ret = ext4_da_write_inline_data_begin(mapping, inode,
2688 pos, len, flags,
2689 pagep, fsdata);
2690 if (ret < 0)
47564bfb
TT
2691 return ret;
2692 if (ret == 1)
2693 return 0;
9c3569b5
TM
2694 }
2695
47564bfb
TT
2696 /*
2697 * grab_cache_page_write_begin() can take a long time if the
2698 * system is thrashing due to memory pressure, or if the page
2699 * is being written back. So grab it first before we start
2700 * the transaction handle. This also allows us to allocate
2701 * the page (if needed) without using GFP_NOFS.
2702 */
2703retry_grab:
2704 page = grab_cache_page_write_begin(mapping, index, flags);
2705 if (!page)
2706 return -ENOMEM;
2707 unlock_page(page);
2708
64769240
AT
2709 /*
2710 * With delayed allocation, we don't log the i_disksize update
2711 * if there is delayed block allocation. But we still need
2712 * to journalling the i_disksize update if writes to the end
2713 * of file which has an already mapped buffer.
2714 */
47564bfb 2715retry_journal:
9924a92a 2716 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2717 if (IS_ERR(handle)) {
47564bfb
TT
2718 page_cache_release(page);
2719 return PTR_ERR(handle);
64769240
AT
2720 }
2721
47564bfb
TT
2722 lock_page(page);
2723 if (page->mapping != mapping) {
2724 /* The page got truncated from under us */
2725 unlock_page(page);
2726 page_cache_release(page);
d5a0d4f7 2727 ext4_journal_stop(handle);
47564bfb 2728 goto retry_grab;
d5a0d4f7 2729 }
47564bfb
TT
2730 /* In case writeback began while the page was unlocked */
2731 wait_on_page_writeback(page);
64769240 2732
6e1db88d 2733 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2734 if (ret < 0) {
2735 unlock_page(page);
2736 ext4_journal_stop(handle);
ae4d5372
AK
2737 /*
2738 * block_write_begin may have instantiated a few blocks
2739 * outside i_size. Trim these off again. Don't need
2740 * i_size_read because we hold i_mutex.
2741 */
2742 if (pos + len > inode->i_size)
b9a4207d 2743 ext4_truncate_failed_write(inode);
47564bfb
TT
2744
2745 if (ret == -ENOSPC &&
2746 ext4_should_retry_alloc(inode->i_sb, &retries))
2747 goto retry_journal;
2748
2749 page_cache_release(page);
2750 return ret;
64769240
AT
2751 }
2752
47564bfb 2753 *pagep = page;
64769240
AT
2754 return ret;
2755}
2756
632eaeab
MC
2757/*
2758 * Check if we should update i_disksize
2759 * when write to the end of file but not require block allocation
2760 */
2761static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2762 unsigned long offset)
632eaeab
MC
2763{
2764 struct buffer_head *bh;
2765 struct inode *inode = page->mapping->host;
2766 unsigned int idx;
2767 int i;
2768
2769 bh = page_buffers(page);
2770 idx = offset >> inode->i_blkbits;
2771
af5bc92d 2772 for (i = 0; i < idx; i++)
632eaeab
MC
2773 bh = bh->b_this_page;
2774
29fa89d0 2775 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2776 return 0;
2777 return 1;
2778}
2779
64769240 2780static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2781 struct address_space *mapping,
2782 loff_t pos, unsigned len, unsigned copied,
2783 struct page *page, void *fsdata)
64769240
AT
2784{
2785 struct inode *inode = mapping->host;
2786 int ret = 0, ret2;
2787 handle_t *handle = ext4_journal_current_handle();
2788 loff_t new_i_size;
632eaeab 2789 unsigned long start, end;
79f0be8d
AK
2790 int write_mode = (int)(unsigned long)fsdata;
2791
74d553aa
TT
2792 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2793 return ext4_write_end(file, mapping, pos,
2794 len, copied, page, fsdata);
632eaeab 2795
9bffad1e 2796 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2797 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2798 end = start + copied - 1;
64769240
AT
2799
2800 /*
2801 * generic_write_end() will run mark_inode_dirty() if i_size
2802 * changes. So let's piggyback the i_disksize mark_inode_dirty
2803 * into that.
2804 */
64769240 2805 new_i_size = pos + copied;
ea51d132 2806 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2807 if (ext4_has_inline_data(inode) ||
2808 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2809 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2810 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2811 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2812 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2813 /* We need to mark inode dirty even if
2814 * new_i_size is less that inode->i_size
2815 * bu greater than i_disksize.(hint delalloc)
2816 */
2817 ext4_mark_inode_dirty(handle, inode);
64769240 2818 }
632eaeab 2819 }
9c3569b5
TM
2820
2821 if (write_mode != CONVERT_INLINE_DATA &&
2822 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2823 ext4_has_inline_data(inode))
2824 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2825 page);
2826 else
2827 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2828 page, fsdata);
9c3569b5 2829
64769240
AT
2830 copied = ret2;
2831 if (ret2 < 0)
2832 ret = ret2;
2833 ret2 = ext4_journal_stop(handle);
2834 if (!ret)
2835 ret = ret2;
2836
2837 return ret ? ret : copied;
2838}
2839
d47992f8
LC
2840static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2841 unsigned int length)
64769240 2842{
64769240
AT
2843 /*
2844 * Drop reserved blocks
2845 */
2846 BUG_ON(!PageLocked(page));
2847 if (!page_has_buffers(page))
2848 goto out;
2849
ca99fdd2 2850 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2851
2852out:
d47992f8 2853 ext4_invalidatepage(page, offset, length);
64769240
AT
2854
2855 return;
2856}
2857
ccd2506b
TT
2858/*
2859 * Force all delayed allocation blocks to be allocated for a given inode.
2860 */
2861int ext4_alloc_da_blocks(struct inode *inode)
2862{
fb40ba0d
TT
2863 trace_ext4_alloc_da_blocks(inode);
2864
ccd2506b
TT
2865 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2866 !EXT4_I(inode)->i_reserved_meta_blocks)
2867 return 0;
2868
2869 /*
2870 * We do something simple for now. The filemap_flush() will
2871 * also start triggering a write of the data blocks, which is
2872 * not strictly speaking necessary (and for users of
2873 * laptop_mode, not even desirable). However, to do otherwise
2874 * would require replicating code paths in:
de9a55b8 2875 *
ccd2506b
TT
2876 * ext4_da_writepages() ->
2877 * write_cache_pages() ---> (via passed in callback function)
2878 * __mpage_da_writepage() -->
2879 * mpage_add_bh_to_extent()
2880 * mpage_da_map_blocks()
2881 *
2882 * The problem is that write_cache_pages(), located in
2883 * mm/page-writeback.c, marks pages clean in preparation for
2884 * doing I/O, which is not desirable if we're not planning on
2885 * doing I/O at all.
2886 *
2887 * We could call write_cache_pages(), and then redirty all of
380cf090 2888 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2889 * would be ugly in the extreme. So instead we would need to
2890 * replicate parts of the code in the above functions,
25985edc 2891 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2892 * write out the pages, but rather only collect contiguous
2893 * logical block extents, call the multi-block allocator, and
2894 * then update the buffer heads with the block allocations.
de9a55b8 2895 *
ccd2506b
TT
2896 * For now, though, we'll cheat by calling filemap_flush(),
2897 * which will map the blocks, and start the I/O, but not
2898 * actually wait for the I/O to complete.
2899 */
2900 return filemap_flush(inode->i_mapping);
2901}
64769240 2902
ac27a0ec
DK
2903/*
2904 * bmap() is special. It gets used by applications such as lilo and by
2905 * the swapper to find the on-disk block of a specific piece of data.
2906 *
2907 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2908 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2909 * filesystem and enables swap, then they may get a nasty shock when the
2910 * data getting swapped to that swapfile suddenly gets overwritten by
2911 * the original zero's written out previously to the journal and
2912 * awaiting writeback in the kernel's buffer cache.
2913 *
2914 * So, if we see any bmap calls here on a modified, data-journaled file,
2915 * take extra steps to flush any blocks which might be in the cache.
2916 */
617ba13b 2917static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2918{
2919 struct inode *inode = mapping->host;
2920 journal_t *journal;
2921 int err;
2922
46c7f254
TM
2923 /*
2924 * We can get here for an inline file via the FIBMAP ioctl
2925 */
2926 if (ext4_has_inline_data(inode))
2927 return 0;
2928
64769240
AT
2929 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2930 test_opt(inode->i_sb, DELALLOC)) {
2931 /*
2932 * With delalloc we want to sync the file
2933 * so that we can make sure we allocate
2934 * blocks for file
2935 */
2936 filemap_write_and_wait(mapping);
2937 }
2938
19f5fb7a
TT
2939 if (EXT4_JOURNAL(inode) &&
2940 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2941 /*
2942 * This is a REALLY heavyweight approach, but the use of
2943 * bmap on dirty files is expected to be extremely rare:
2944 * only if we run lilo or swapon on a freshly made file
2945 * do we expect this to happen.
2946 *
2947 * (bmap requires CAP_SYS_RAWIO so this does not
2948 * represent an unprivileged user DOS attack --- we'd be
2949 * in trouble if mortal users could trigger this path at
2950 * will.)
2951 *
617ba13b 2952 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2953 * regular files. If somebody wants to bmap a directory
2954 * or symlink and gets confused because the buffer
2955 * hasn't yet been flushed to disk, they deserve
2956 * everything they get.
2957 */
2958
19f5fb7a 2959 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2960 journal = EXT4_JOURNAL(inode);
dab291af
MC
2961 jbd2_journal_lock_updates(journal);
2962 err = jbd2_journal_flush(journal);
2963 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2964
2965 if (err)
2966 return 0;
2967 }
2968
af5bc92d 2969 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2970}
2971
617ba13b 2972static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2973{
46c7f254
TM
2974 int ret = -EAGAIN;
2975 struct inode *inode = page->mapping->host;
2976
0562e0ba 2977 trace_ext4_readpage(page);
46c7f254
TM
2978
2979 if (ext4_has_inline_data(inode))
2980 ret = ext4_readpage_inline(inode, page);
2981
2982 if (ret == -EAGAIN)
2983 return mpage_readpage(page, ext4_get_block);
2984
2985 return ret;
ac27a0ec
DK
2986}
2987
2988static int
617ba13b 2989ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2990 struct list_head *pages, unsigned nr_pages)
2991{
46c7f254
TM
2992 struct inode *inode = mapping->host;
2993
2994 /* If the file has inline data, no need to do readpages. */
2995 if (ext4_has_inline_data(inode))
2996 return 0;
2997
617ba13b 2998 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2999}
3000
d47992f8
LC
3001static void ext4_invalidatepage(struct page *page, unsigned int offset,
3002 unsigned int length)
ac27a0ec 3003{
ca99fdd2 3004 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3005
4520fb3c
JK
3006 /* No journalling happens on data buffers when this function is used */
3007 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3008
ca99fdd2 3009 block_invalidatepage(page, offset, length);
4520fb3c
JK
3010}
3011
53e87268 3012static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3013 unsigned int offset,
3014 unsigned int length)
4520fb3c
JK
3015{
3016 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3017
ca99fdd2 3018 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3019
ac27a0ec
DK
3020 /*
3021 * If it's a full truncate we just forget about the pending dirtying
3022 */
ca99fdd2 3023 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
3024 ClearPageChecked(page);
3025
ca99fdd2 3026 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3027}
3028
3029/* Wrapper for aops... */
3030static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3031 unsigned int offset,
3032 unsigned int length)
53e87268 3033{
ca99fdd2 3034 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3035}
3036
617ba13b 3037static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3038{
617ba13b 3039 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3040
0562e0ba
JZ
3041 trace_ext4_releasepage(page);
3042
e1c36595
JK
3043 /* Page has dirty journalled data -> cannot release */
3044 if (PageChecked(page))
ac27a0ec 3045 return 0;
0390131b
FM
3046 if (journal)
3047 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3048 else
3049 return try_to_free_buffers(page);
ac27a0ec
DK
3050}
3051
2ed88685
TT
3052/*
3053 * ext4_get_block used when preparing for a DIO write or buffer write.
3054 * We allocate an uinitialized extent if blocks haven't been allocated.
3055 * The extent will be converted to initialized after the IO is complete.
3056 */
f19d5870 3057int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3058 struct buffer_head *bh_result, int create)
3059{
c7064ef1 3060 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3061 inode->i_ino, create);
2ed88685
TT
3062 return _ext4_get_block(inode, iblock, bh_result,
3063 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3064}
3065
729f52c6 3066static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3067 struct buffer_head *bh_result, int create)
729f52c6 3068{
8b0f165f
AP
3069 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3070 inode->i_ino, create);
3071 return _ext4_get_block(inode, iblock, bh_result,
3072 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3073}
3074
4c0425ff 3075static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3076 ssize_t size, void *private, int ret,
3077 bool is_async)
4c0425ff 3078{
496ad9aa 3079 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 3080 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3081
a549984b
TT
3082 /* if not async direct IO or dio with 0 bytes write, just return */
3083 if (!io_end || !size)
3084 goto out;
4b70df18 3085
88635ca2 3086 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3087 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3088 iocb->private, io_end->inode->i_ino, iocb, offset,
3089 size);
8d5d02e6 3090
b5a7e970 3091 iocb->private = NULL;
a549984b
TT
3092
3093 /* if not aio dio with unwritten extents, just free io and return */
3094 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3095 ext4_free_io_end(io_end);
3096out:
3097 inode_dio_done(inode);
3098 if (is_async)
3099 aio_complete(iocb, ret, 0);
3100 return;
3101 }
3102
4c0425ff
MC
3103 io_end->offset = offset;
3104 io_end->size = size;
5b3ff237
JZ
3105 if (is_async) {
3106 io_end->iocb = iocb;
3107 io_end->result = ret;
3108 }
a549984b
TT
3109
3110 ext4_add_complete_io(io_end);
4c0425ff 3111}
c7064ef1 3112
4c0425ff
MC
3113/*
3114 * For ext4 extent files, ext4 will do direct-io write to holes,
3115 * preallocated extents, and those write extend the file, no need to
3116 * fall back to buffered IO.
3117 *
b595076a 3118 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3119 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3120 * still keep the range to write as uninitialized.
4c0425ff 3121 *
69c499d1 3122 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3123 * For async direct IO, since the IO may still pending when return, we
25985edc 3124 * set up an end_io call back function, which will do the conversion
8d5d02e6 3125 * when async direct IO completed.
4c0425ff
MC
3126 *
3127 * If the O_DIRECT write will extend the file then add this inode to the
3128 * orphan list. So recovery will truncate it back to the original size
3129 * if the machine crashes during the write.
3130 *
3131 */
3132static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3133 const struct iovec *iov, loff_t offset,
3134 unsigned long nr_segs)
3135{
3136 struct file *file = iocb->ki_filp;
3137 struct inode *inode = file->f_mapping->host;
3138 ssize_t ret;
3139 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3140 int overwrite = 0;
3141 get_block_t *get_block_func = NULL;
3142 int dio_flags = 0;
4c0425ff 3143 loff_t final_size = offset + count;
729f52c6 3144
69c499d1
TT
3145 /* Use the old path for reads and writes beyond i_size. */
3146 if (rw != WRITE || final_size > inode->i_size)
3147 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3148
69c499d1 3149 BUG_ON(iocb->private == NULL);
4bd809db 3150
69c499d1
TT
3151 /* If we do a overwrite dio, i_mutex locking can be released */
3152 overwrite = *((int *)iocb->private);
4bd809db 3153
69c499d1
TT
3154 if (overwrite) {
3155 atomic_inc(&inode->i_dio_count);
3156 down_read(&EXT4_I(inode)->i_data_sem);
3157 mutex_unlock(&inode->i_mutex);
3158 }
8d5d02e6 3159
69c499d1
TT
3160 /*
3161 * We could direct write to holes and fallocate.
3162 *
3163 * Allocated blocks to fill the hole are marked as
3164 * uninitialized to prevent parallel buffered read to expose
3165 * the stale data before DIO complete the data IO.
3166 *
3167 * As to previously fallocated extents, ext4 get_block will
3168 * just simply mark the buffer mapped but still keep the
3169 * extents uninitialized.
3170 *
3171 * For non AIO case, we will convert those unwritten extents
3172 * to written after return back from blockdev_direct_IO.
3173 *
3174 * For async DIO, the conversion needs to be deferred when the
3175 * IO is completed. The ext4 end_io callback function will be
3176 * called to take care of the conversion work. Here for async
3177 * case, we allocate an io_end structure to hook to the iocb.
3178 */
3179 iocb->private = NULL;
3180 ext4_inode_aio_set(inode, NULL);
3181 if (!is_sync_kiocb(iocb)) {
a549984b 3182 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3183 if (!io_end) {
3184 ret = -ENOMEM;
3185 goto retake_lock;
8b0f165f 3186 }
69c499d1 3187 io_end->flag |= EXT4_IO_END_DIRECT;
a549984b 3188 iocb->private = io_end;
8d5d02e6 3189 /*
69c499d1
TT
3190 * we save the io structure for current async direct
3191 * IO, so that later ext4_map_blocks() could flag the
3192 * io structure whether there is a unwritten extents
3193 * needs to be converted when IO is completed.
8d5d02e6 3194 */
69c499d1
TT
3195 ext4_inode_aio_set(inode, io_end);
3196 }
4bd809db 3197
69c499d1
TT
3198 if (overwrite) {
3199 get_block_func = ext4_get_block_write_nolock;
3200 } else {
3201 get_block_func = ext4_get_block_write;
3202 dio_flags = DIO_LOCKING;
3203 }
3204 ret = __blockdev_direct_IO(rw, iocb, inode,
3205 inode->i_sb->s_bdev, iov,
3206 offset, nr_segs,
3207 get_block_func,
3208 ext4_end_io_dio,
3209 NULL,
3210 dio_flags);
3211
a549984b
TT
3212 if (iocb->private)
3213 ext4_inode_aio_set(inode, NULL);
69c499d1 3214 /*
a549984b
TT
3215 * The io_end structure takes a reference to the inode, that
3216 * structure needs to be destroyed and the reference to the
3217 * inode need to be dropped, when IO is complete, even with 0
3218 * byte write, or failed.
3219 *
3220 * In the successful AIO DIO case, the io_end structure will
3221 * be destroyed and the reference to the inode will be dropped
3222 * after the end_io call back function is called.
3223 *
3224 * In the case there is 0 byte write, or error case, since VFS
3225 * direct IO won't invoke the end_io call back function, we
3226 * need to free the end_io structure here.
69c499d1 3227 */
a549984b
TT
3228 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3229 ext4_free_io_end(iocb->private);
3230 iocb->private = NULL;
3231 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3232 EXT4_STATE_DIO_UNWRITTEN)) {
3233 int err;
3234 /*
3235 * for non AIO case, since the IO is already
3236 * completed, we could do the conversion right here
3237 */
3238 err = ext4_convert_unwritten_extents(inode,
3239 offset, ret);
3240 if (err < 0)
3241 ret = err;
3242 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3243 }
4bd809db 3244
69c499d1
TT
3245retake_lock:
3246 /* take i_mutex locking again if we do a ovewrite dio */
3247 if (overwrite) {
3248 inode_dio_done(inode);
3249 up_read(&EXT4_I(inode)->i_data_sem);
3250 mutex_lock(&inode->i_mutex);
4c0425ff 3251 }
8d5d02e6 3252
69c499d1 3253 return ret;
4c0425ff
MC
3254}
3255
3256static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3257 const struct iovec *iov, loff_t offset,
3258 unsigned long nr_segs)
3259{
3260 struct file *file = iocb->ki_filp;
3261 struct inode *inode = file->f_mapping->host;
0562e0ba 3262 ssize_t ret;
4c0425ff 3263
84ebd795
TT
3264 /*
3265 * If we are doing data journalling we don't support O_DIRECT
3266 */
3267 if (ext4_should_journal_data(inode))
3268 return 0;
3269
46c7f254
TM
3270 /* Let buffer I/O handle the inline data case. */
3271 if (ext4_has_inline_data(inode))
3272 return 0;
3273
0562e0ba 3274 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3275 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3276 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3277 else
3278 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3279 trace_ext4_direct_IO_exit(inode, offset,
3280 iov_length(iov, nr_segs), rw, ret);
3281 return ret;
4c0425ff
MC
3282}
3283
ac27a0ec 3284/*
617ba13b 3285 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3286 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3287 * much here because ->set_page_dirty is called under VFS locks. The page is
3288 * not necessarily locked.
3289 *
3290 * We cannot just dirty the page and leave attached buffers clean, because the
3291 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3292 * or jbddirty because all the journalling code will explode.
3293 *
3294 * So what we do is to mark the page "pending dirty" and next time writepage
3295 * is called, propagate that into the buffers appropriately.
3296 */
617ba13b 3297static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3298{
3299 SetPageChecked(page);
3300 return __set_page_dirty_nobuffers(page);
3301}
3302
74d553aa 3303static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3304 .readpage = ext4_readpage,
3305 .readpages = ext4_readpages,
43ce1d23 3306 .writepage = ext4_writepage,
8ab22b9a 3307 .write_begin = ext4_write_begin,
74d553aa 3308 .write_end = ext4_write_end,
8ab22b9a
HH
3309 .bmap = ext4_bmap,
3310 .invalidatepage = ext4_invalidatepage,
3311 .releasepage = ext4_releasepage,
3312 .direct_IO = ext4_direct_IO,
3313 .migratepage = buffer_migrate_page,
3314 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3315 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3316};
3317
617ba13b 3318static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3319 .readpage = ext4_readpage,
3320 .readpages = ext4_readpages,
43ce1d23 3321 .writepage = ext4_writepage,
8ab22b9a
HH
3322 .write_begin = ext4_write_begin,
3323 .write_end = ext4_journalled_write_end,
3324 .set_page_dirty = ext4_journalled_set_page_dirty,
3325 .bmap = ext4_bmap,
4520fb3c 3326 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3327 .releasepage = ext4_releasepage,
84ebd795 3328 .direct_IO = ext4_direct_IO,
8ab22b9a 3329 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3330 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3331};
3332
64769240 3333static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3334 .readpage = ext4_readpage,
3335 .readpages = ext4_readpages,
43ce1d23 3336 .writepage = ext4_writepage,
8ab22b9a 3337 .writepages = ext4_da_writepages,
8ab22b9a
HH
3338 .write_begin = ext4_da_write_begin,
3339 .write_end = ext4_da_write_end,
3340 .bmap = ext4_bmap,
3341 .invalidatepage = ext4_da_invalidatepage,
3342 .releasepage = ext4_releasepage,
3343 .direct_IO = ext4_direct_IO,
3344 .migratepage = buffer_migrate_page,
3345 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3346 .error_remove_page = generic_error_remove_page,
64769240
AT
3347};
3348
617ba13b 3349void ext4_set_aops(struct inode *inode)
ac27a0ec 3350{
3d2b1582
LC
3351 switch (ext4_inode_journal_mode(inode)) {
3352 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3353 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3354 break;
3355 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3356 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3357 break;
3358 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3359 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3360 return;
3d2b1582
LC
3361 default:
3362 BUG();
3363 }
74d553aa
TT
3364 if (test_opt(inode->i_sb, DELALLOC))
3365 inode->i_mapping->a_ops = &ext4_da_aops;
3366 else
3367 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3368}
3369
4e96b2db
AH
3370
3371/*
3372 * ext4_discard_partial_page_buffers()
3373 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3374 * This function finds and locks the page containing the offset
3375 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3376 * Calling functions that already have the page locked should call
3377 * ext4_discard_partial_page_buffers_no_lock directly.
3378 */
3379int ext4_discard_partial_page_buffers(handle_t *handle,
3380 struct address_space *mapping, loff_t from,
3381 loff_t length, int flags)
3382{
3383 struct inode *inode = mapping->host;
3384 struct page *page;
3385 int err = 0;
3386
3387 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3388 mapping_gfp_mask(mapping) & ~__GFP_FS);
3389 if (!page)
5129d05f 3390 return -ENOMEM;
4e96b2db
AH
3391
3392 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3393 from, length, flags);
3394
3395 unlock_page(page);
3396 page_cache_release(page);
3397 return err;
3398}
3399
3400/*
3401 * ext4_discard_partial_page_buffers_no_lock()
3402 * Zeros a page range of length 'length' starting from offset 'from'.
3403 * Buffer heads that correspond to the block aligned regions of the
3404 * zeroed range will be unmapped. Unblock aligned regions
3405 * will have the corresponding buffer head mapped if needed so that
3406 * that region of the page can be updated with the partial zero out.
3407 *
3408 * This function assumes that the page has already been locked. The
3409 * The range to be discarded must be contained with in the given page.
3410 * If the specified range exceeds the end of the page it will be shortened
3411 * to the end of the page that corresponds to 'from'. This function is
3412 * appropriate for updating a page and it buffer heads to be unmapped and
3413 * zeroed for blocks that have been either released, or are going to be
3414 * released.
3415 *
3416 * handle: The journal handle
3417 * inode: The files inode
3418 * page: A locked page that contains the offset "from"
4907cb7b 3419 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3420 * to begin discarding
3421 * len: The length of bytes to discard
3422 * flags: Optional flags that may be used:
3423 *
3424 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3425 * Only zero the regions of the page whose buffer heads
3426 * have already been unmapped. This flag is appropriate
4907cb7b 3427 * for updating the contents of a page whose blocks may
4e96b2db
AH
3428 * have already been released, and we only want to zero
3429 * out the regions that correspond to those released blocks.
3430 *
4907cb7b 3431 * Returns zero on success or negative on failure.
4e96b2db 3432 */
5f163cc7 3433static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3434 struct inode *inode, struct page *page, loff_t from,
3435 loff_t length, int flags)
3436{
3437 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3438 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3439 unsigned int blocksize, max, pos;
4e96b2db
AH
3440 ext4_lblk_t iblock;
3441 struct buffer_head *bh;
3442 int err = 0;
3443
3444 blocksize = inode->i_sb->s_blocksize;
3445 max = PAGE_CACHE_SIZE - offset;
3446
3447 if (index != page->index)
3448 return -EINVAL;
3449
3450 /*
3451 * correct length if it does not fall between
3452 * 'from' and the end of the page
3453 */
3454 if (length > max || length < 0)
3455 length = max;
3456
3457 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3458
093e6e36
YY
3459 if (!page_has_buffers(page))
3460 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3461
3462 /* Find the buffer that contains "offset" */
3463 bh = page_buffers(page);
3464 pos = blocksize;
3465 while (offset >= pos) {
3466 bh = bh->b_this_page;
3467 iblock++;
3468 pos += blocksize;
3469 }
3470
3471 pos = offset;
3472 while (pos < offset + length) {
e260daf2
YY
3473 unsigned int end_of_block, range_to_discard;
3474
4e96b2db
AH
3475 err = 0;
3476
3477 /* The length of space left to zero and unmap */
3478 range_to_discard = offset + length - pos;
3479
3480 /* The length of space until the end of the block */
3481 end_of_block = blocksize - (pos & (blocksize-1));
3482
3483 /*
3484 * Do not unmap or zero past end of block
3485 * for this buffer head
3486 */
3487 if (range_to_discard > end_of_block)
3488 range_to_discard = end_of_block;
3489
3490
3491 /*
3492 * Skip this buffer head if we are only zeroing unampped
3493 * regions of the page
3494 */
3495 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3496 buffer_mapped(bh))
3497 goto next;
3498
3499 /* If the range is block aligned, unmap */
3500 if (range_to_discard == blocksize) {
3501 clear_buffer_dirty(bh);
3502 bh->b_bdev = NULL;
3503 clear_buffer_mapped(bh);
3504 clear_buffer_req(bh);
3505 clear_buffer_new(bh);
3506 clear_buffer_delay(bh);
3507 clear_buffer_unwritten(bh);
3508 clear_buffer_uptodate(bh);
3509 zero_user(page, pos, range_to_discard);
3510 BUFFER_TRACE(bh, "Buffer discarded");
3511 goto next;
3512 }
3513
3514 /*
3515 * If this block is not completely contained in the range
3516 * to be discarded, then it is not going to be released. Because
3517 * we need to keep this block, we need to make sure this part
3518 * of the page is uptodate before we modify it by writeing
3519 * partial zeros on it.
3520 */
3521 if (!buffer_mapped(bh)) {
3522 /*
3523 * Buffer head must be mapped before we can read
3524 * from the block
3525 */
3526 BUFFER_TRACE(bh, "unmapped");
3527 ext4_get_block(inode, iblock, bh, 0);
3528 /* unmapped? It's a hole - nothing to do */
3529 if (!buffer_mapped(bh)) {
3530 BUFFER_TRACE(bh, "still unmapped");
3531 goto next;
3532 }
3533 }
3534
3535 /* Ok, it's mapped. Make sure it's up-to-date */
3536 if (PageUptodate(page))
3537 set_buffer_uptodate(bh);
3538
3539 if (!buffer_uptodate(bh)) {
3540 err = -EIO;
3541 ll_rw_block(READ, 1, &bh);
3542 wait_on_buffer(bh);
3543 /* Uhhuh. Read error. Complain and punt.*/
3544 if (!buffer_uptodate(bh))
3545 goto next;
3546 }
3547
3548 if (ext4_should_journal_data(inode)) {
3549 BUFFER_TRACE(bh, "get write access");
3550 err = ext4_journal_get_write_access(handle, bh);
3551 if (err)
3552 goto next;
3553 }
3554
3555 zero_user(page, pos, range_to_discard);
3556
3557 err = 0;
3558 if (ext4_should_journal_data(inode)) {
3559 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3560 } else
4e96b2db 3561 mark_buffer_dirty(bh);
4e96b2db
AH
3562
3563 BUFFER_TRACE(bh, "Partial buffer zeroed");
3564next:
3565 bh = bh->b_this_page;
3566 iblock++;
3567 pos += range_to_discard;
3568 }
3569
3570 return err;
3571}
3572
91ef4caf
DG
3573int ext4_can_truncate(struct inode *inode)
3574{
91ef4caf
DG
3575 if (S_ISREG(inode->i_mode))
3576 return 1;
3577 if (S_ISDIR(inode->i_mode))
3578 return 1;
3579 if (S_ISLNK(inode->i_mode))
3580 return !ext4_inode_is_fast_symlink(inode);
3581 return 0;
3582}
3583
a4bb6b64
AH
3584/*
3585 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3586 * associated with the given offset and length
3587 *
3588 * @inode: File inode
3589 * @offset: The offset where the hole will begin
3590 * @len: The length of the hole
3591 *
4907cb7b 3592 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3593 */
3594
3595int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3596{
496ad9aa 3597 struct inode *inode = file_inode(file);
26a4c0c6
TT
3598 struct super_block *sb = inode->i_sb;
3599 ext4_lblk_t first_block, stop_block;
3600 struct address_space *mapping = inode->i_mapping;
3601 loff_t first_page, last_page, page_len;
3602 loff_t first_page_offset, last_page_offset;
3603 handle_t *handle;
3604 unsigned int credits;
3605 int ret = 0;
3606
a4bb6b64 3607 if (!S_ISREG(inode->i_mode))
73355192 3608 return -EOPNOTSUPP;
a4bb6b64 3609
26a4c0c6 3610 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3611 /* TODO: Add support for bigalloc file systems */
73355192 3612 return -EOPNOTSUPP;
bab08ab9
TT
3613 }
3614
aaddea81
ZL
3615 trace_ext4_punch_hole(inode, offset, length);
3616
26a4c0c6
TT
3617 /*
3618 * Write out all dirty pages to avoid race conditions
3619 * Then release them.
3620 */
3621 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3622 ret = filemap_write_and_wait_range(mapping, offset,
3623 offset + length - 1);
3624 if (ret)
3625 return ret;
3626 }
3627
3628 mutex_lock(&inode->i_mutex);
3629 /* It's not possible punch hole on append only file */
3630 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3631 ret = -EPERM;
3632 goto out_mutex;
3633 }
3634 if (IS_SWAPFILE(inode)) {
3635 ret = -ETXTBSY;
3636 goto out_mutex;
3637 }
3638
3639 /* No need to punch hole beyond i_size */
3640 if (offset >= inode->i_size)
3641 goto out_mutex;
3642
3643 /*
3644 * If the hole extends beyond i_size, set the hole
3645 * to end after the page that contains i_size
3646 */
3647 if (offset + length > inode->i_size) {
3648 length = inode->i_size +
3649 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3650 offset;
3651 }
3652
3653 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3654 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3655
3656 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3657 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3658
3659 /* Now release the pages */
3660 if (last_page_offset > first_page_offset) {
3661 truncate_pagecache_range(inode, first_page_offset,
3662 last_page_offset - 1);
3663 }
3664
3665 /* Wait all existing dio workers, newcomers will block on i_mutex */
3666 ext4_inode_block_unlocked_dio(inode);
3667 ret = ext4_flush_unwritten_io(inode);
3668 if (ret)
3669 goto out_dio;
3670 inode_dio_wait(inode);
3671
3672 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3673 credits = ext4_writepage_trans_blocks(inode);
3674 else
3675 credits = ext4_blocks_for_truncate(inode);
3676 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3677 if (IS_ERR(handle)) {
3678 ret = PTR_ERR(handle);
3679 ext4_std_error(sb, ret);
3680 goto out_dio;
3681 }
3682
3683 /*
3684 * Now we need to zero out the non-page-aligned data in the
3685 * pages at the start and tail of the hole, and unmap the
3686 * buffer heads for the block aligned regions of the page that
3687 * were completely zeroed.
3688 */
3689 if (first_page > last_page) {
3690 /*
3691 * If the file space being truncated is contained
3692 * within a page just zero out and unmap the middle of
3693 * that page
3694 */
3695 ret = ext4_discard_partial_page_buffers(handle,
3696 mapping, offset, length, 0);
3697
3698 if (ret)
3699 goto out_stop;
3700 } else {
3701 /*
3702 * zero out and unmap the partial page that contains
3703 * the start of the hole
3704 */
3705 page_len = first_page_offset - offset;
3706 if (page_len > 0) {
3707 ret = ext4_discard_partial_page_buffers(handle, mapping,
3708 offset, page_len, 0);
3709 if (ret)
3710 goto out_stop;
3711 }
3712
3713 /*
3714 * zero out and unmap the partial page that contains
3715 * the end of the hole
3716 */
3717 page_len = offset + length - last_page_offset;
3718 if (page_len > 0) {
3719 ret = ext4_discard_partial_page_buffers(handle, mapping,
3720 last_page_offset, page_len, 0);
3721 if (ret)
3722 goto out_stop;
3723 }
3724 }
3725
3726 /*
3727 * If i_size is contained in the last page, we need to
3728 * unmap and zero the partial page after i_size
3729 */
3730 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3731 inode->i_size % PAGE_CACHE_SIZE != 0) {
3732 page_len = PAGE_CACHE_SIZE -
3733 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3734
3735 if (page_len > 0) {
3736 ret = ext4_discard_partial_page_buffers(handle,
3737 mapping, inode->i_size, page_len, 0);
3738
3739 if (ret)
3740 goto out_stop;
3741 }
3742 }
3743
3744 first_block = (offset + sb->s_blocksize - 1) >>
3745 EXT4_BLOCK_SIZE_BITS(sb);
3746 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3747
3748 /* If there are no blocks to remove, return now */
3749 if (first_block >= stop_block)
3750 goto out_stop;
3751
3752 down_write(&EXT4_I(inode)->i_data_sem);
3753 ext4_discard_preallocations(inode);
3754
3755 ret = ext4_es_remove_extent(inode, first_block,
3756 stop_block - first_block);
3757 if (ret) {
3758 up_write(&EXT4_I(inode)->i_data_sem);
3759 goto out_stop;
3760 }
3761
3762 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3763 ret = ext4_ext_remove_space(inode, first_block,
3764 stop_block - 1);
3765 else
3766 ret = ext4_free_hole_blocks(handle, inode, first_block,
3767 stop_block);
3768
3769 ext4_discard_preallocations(inode);
819c4920 3770 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3771 if (IS_SYNC(inode))
3772 ext4_handle_sync(handle);
26a4c0c6
TT
3773 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3774 ext4_mark_inode_dirty(handle, inode);
3775out_stop:
3776 ext4_journal_stop(handle);
3777out_dio:
3778 ext4_inode_resume_unlocked_dio(inode);
3779out_mutex:
3780 mutex_unlock(&inode->i_mutex);
3781 return ret;
a4bb6b64
AH
3782}
3783
ac27a0ec 3784/*
617ba13b 3785 * ext4_truncate()
ac27a0ec 3786 *
617ba13b
MC
3787 * We block out ext4_get_block() block instantiations across the entire
3788 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3789 * simultaneously on behalf of the same inode.
3790 *
42b2aa86 3791 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3792 * is one core, guiding principle: the file's tree must always be consistent on
3793 * disk. We must be able to restart the truncate after a crash.
3794 *
3795 * The file's tree may be transiently inconsistent in memory (although it
3796 * probably isn't), but whenever we close off and commit a journal transaction,
3797 * the contents of (the filesystem + the journal) must be consistent and
3798 * restartable. It's pretty simple, really: bottom up, right to left (although
3799 * left-to-right works OK too).
3800 *
3801 * Note that at recovery time, journal replay occurs *before* the restart of
3802 * truncate against the orphan inode list.
3803 *
3804 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3805 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3806 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3807 * ext4_truncate() to have another go. So there will be instantiated blocks
3808 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3809 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3810 * ext4_truncate() run will find them and release them.
ac27a0ec 3811 */
617ba13b 3812void ext4_truncate(struct inode *inode)
ac27a0ec 3813{
819c4920
TT
3814 struct ext4_inode_info *ei = EXT4_I(inode);
3815 unsigned int credits;
3816 handle_t *handle;
3817 struct address_space *mapping = inode->i_mapping;
3818 loff_t page_len;
3819
19b5ef61
TT
3820 /*
3821 * There is a possibility that we're either freeing the inode
3822 * or it completely new indode. In those cases we might not
3823 * have i_mutex locked because it's not necessary.
3824 */
3825 if (!(inode->i_state & (I_NEW|I_FREEING)))
3826 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3827 trace_ext4_truncate_enter(inode);
3828
91ef4caf 3829 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3830 return;
3831
12e9b892 3832 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3833
5534fb5b 3834 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3835 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3836
aef1c851
TM
3837 if (ext4_has_inline_data(inode)) {
3838 int has_inline = 1;
3839
3840 ext4_inline_data_truncate(inode, &has_inline);
3841 if (has_inline)
3842 return;
3843 }
3844
819c4920
TT
3845 /*
3846 * finish any pending end_io work so we won't run the risk of
3847 * converting any truncated blocks to initialized later
3848 */
3849 ext4_flush_unwritten_io(inode);
3850
3851 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3852 credits = ext4_writepage_trans_blocks(inode);
3853 else
3854 credits = ext4_blocks_for_truncate(inode);
3855
3856 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3857 if (IS_ERR(handle)) {
3858 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3859 return;
3860 }
3861
3862 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3863 page_len = PAGE_CACHE_SIZE -
3864 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3865
3866 if (ext4_discard_partial_page_buffers(handle,
3867 mapping, inode->i_size, page_len, 0))
3868 goto out_stop;
3869 }
3870
3871 /*
3872 * We add the inode to the orphan list, so that if this
3873 * truncate spans multiple transactions, and we crash, we will
3874 * resume the truncate when the filesystem recovers. It also
3875 * marks the inode dirty, to catch the new size.
3876 *
3877 * Implication: the file must always be in a sane, consistent
3878 * truncatable state while each transaction commits.
3879 */
3880 if (ext4_orphan_add(handle, inode))
3881 goto out_stop;
3882
3883 down_write(&EXT4_I(inode)->i_data_sem);
3884
3885 ext4_discard_preallocations(inode);
3886
ff9893dc 3887 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3888 ext4_ext_truncate(handle, inode);
ff9893dc 3889 else
819c4920
TT
3890 ext4_ind_truncate(handle, inode);
3891
3892 up_write(&ei->i_data_sem);
3893
3894 if (IS_SYNC(inode))
3895 ext4_handle_sync(handle);
3896
3897out_stop:
3898 /*
3899 * If this was a simple ftruncate() and the file will remain alive,
3900 * then we need to clear up the orphan record which we created above.
3901 * However, if this was a real unlink then we were called by
3902 * ext4_delete_inode(), and we allow that function to clean up the
3903 * orphan info for us.
3904 */
3905 if (inode->i_nlink)
3906 ext4_orphan_del(handle, inode);
3907
3908 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3909 ext4_mark_inode_dirty(handle, inode);
3910 ext4_journal_stop(handle);
ac27a0ec 3911
0562e0ba 3912 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3913}
3914
ac27a0ec 3915/*
617ba13b 3916 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3917 * underlying buffer_head on success. If 'in_mem' is true, we have all
3918 * data in memory that is needed to recreate the on-disk version of this
3919 * inode.
3920 */
617ba13b
MC
3921static int __ext4_get_inode_loc(struct inode *inode,
3922 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3923{
240799cd
TT
3924 struct ext4_group_desc *gdp;
3925 struct buffer_head *bh;
3926 struct super_block *sb = inode->i_sb;
3927 ext4_fsblk_t block;
3928 int inodes_per_block, inode_offset;
3929
3a06d778 3930 iloc->bh = NULL;
240799cd
TT
3931 if (!ext4_valid_inum(sb, inode->i_ino))
3932 return -EIO;
ac27a0ec 3933
240799cd
TT
3934 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3935 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3936 if (!gdp)
ac27a0ec
DK
3937 return -EIO;
3938
240799cd
TT
3939 /*
3940 * Figure out the offset within the block group inode table
3941 */
00d09882 3942 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3943 inode_offset = ((inode->i_ino - 1) %
3944 EXT4_INODES_PER_GROUP(sb));
3945 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3946 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3947
3948 bh = sb_getblk(sb, block);
aebf0243 3949 if (unlikely(!bh))
860d21e2 3950 return -ENOMEM;
ac27a0ec
DK
3951 if (!buffer_uptodate(bh)) {
3952 lock_buffer(bh);
9c83a923
HK
3953
3954 /*
3955 * If the buffer has the write error flag, we have failed
3956 * to write out another inode in the same block. In this
3957 * case, we don't have to read the block because we may
3958 * read the old inode data successfully.
3959 */
3960 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3961 set_buffer_uptodate(bh);
3962
ac27a0ec
DK
3963 if (buffer_uptodate(bh)) {
3964 /* someone brought it uptodate while we waited */
3965 unlock_buffer(bh);
3966 goto has_buffer;
3967 }
3968
3969 /*
3970 * If we have all information of the inode in memory and this
3971 * is the only valid inode in the block, we need not read the
3972 * block.
3973 */
3974 if (in_mem) {
3975 struct buffer_head *bitmap_bh;
240799cd 3976 int i, start;
ac27a0ec 3977
240799cd 3978 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3979
240799cd
TT
3980 /* Is the inode bitmap in cache? */
3981 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3982 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3983 goto make_io;
3984
3985 /*
3986 * If the inode bitmap isn't in cache then the
3987 * optimisation may end up performing two reads instead
3988 * of one, so skip it.
3989 */
3990 if (!buffer_uptodate(bitmap_bh)) {
3991 brelse(bitmap_bh);
3992 goto make_io;
3993 }
240799cd 3994 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3995 if (i == inode_offset)
3996 continue;
617ba13b 3997 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3998 break;
3999 }
4000 brelse(bitmap_bh);
240799cd 4001 if (i == start + inodes_per_block) {
ac27a0ec
DK
4002 /* all other inodes are free, so skip I/O */
4003 memset(bh->b_data, 0, bh->b_size);
4004 set_buffer_uptodate(bh);
4005 unlock_buffer(bh);
4006 goto has_buffer;
4007 }
4008 }
4009
4010make_io:
240799cd
TT
4011 /*
4012 * If we need to do any I/O, try to pre-readahead extra
4013 * blocks from the inode table.
4014 */
4015 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4016 ext4_fsblk_t b, end, table;
4017 unsigned num;
0d606e2c 4018 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4019
4020 table = ext4_inode_table(sb, gdp);
b713a5ec 4021 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4022 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4023 if (table > b)
4024 b = table;
0d606e2c 4025 end = b + ra_blks;
240799cd 4026 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4027 if (ext4_has_group_desc_csum(sb))
560671a0 4028 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4029 table += num / inodes_per_block;
4030 if (end > table)
4031 end = table;
4032 while (b <= end)
4033 sb_breadahead(sb, b++);
4034 }
4035
ac27a0ec
DK
4036 /*
4037 * There are other valid inodes in the buffer, this inode
4038 * has in-inode xattrs, or we don't have this inode in memory.
4039 * Read the block from disk.
4040 */
0562e0ba 4041 trace_ext4_load_inode(inode);
ac27a0ec
DK
4042 get_bh(bh);
4043 bh->b_end_io = end_buffer_read_sync;
65299a3b 4044 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4045 wait_on_buffer(bh);
4046 if (!buffer_uptodate(bh)) {
c398eda0
TT
4047 EXT4_ERROR_INODE_BLOCK(inode, block,
4048 "unable to read itable block");
ac27a0ec
DK
4049 brelse(bh);
4050 return -EIO;
4051 }
4052 }
4053has_buffer:
4054 iloc->bh = bh;
4055 return 0;
4056}
4057
617ba13b 4058int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4059{
4060 /* We have all inode data except xattrs in memory here. */
617ba13b 4061 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4062 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4063}
4064
617ba13b 4065void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4066{
617ba13b 4067 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4068
4069 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4070 if (flags & EXT4_SYNC_FL)
ac27a0ec 4071 inode->i_flags |= S_SYNC;
617ba13b 4072 if (flags & EXT4_APPEND_FL)
ac27a0ec 4073 inode->i_flags |= S_APPEND;
617ba13b 4074 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4075 inode->i_flags |= S_IMMUTABLE;
617ba13b 4076 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4077 inode->i_flags |= S_NOATIME;
617ba13b 4078 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4079 inode->i_flags |= S_DIRSYNC;
4080}
4081
ff9ddf7e
JK
4082/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4083void ext4_get_inode_flags(struct ext4_inode_info *ei)
4084{
84a8dce2
DM
4085 unsigned int vfs_fl;
4086 unsigned long old_fl, new_fl;
4087
4088 do {
4089 vfs_fl = ei->vfs_inode.i_flags;
4090 old_fl = ei->i_flags;
4091 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4092 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4093 EXT4_DIRSYNC_FL);
4094 if (vfs_fl & S_SYNC)
4095 new_fl |= EXT4_SYNC_FL;
4096 if (vfs_fl & S_APPEND)
4097 new_fl |= EXT4_APPEND_FL;
4098 if (vfs_fl & S_IMMUTABLE)
4099 new_fl |= EXT4_IMMUTABLE_FL;
4100 if (vfs_fl & S_NOATIME)
4101 new_fl |= EXT4_NOATIME_FL;
4102 if (vfs_fl & S_DIRSYNC)
4103 new_fl |= EXT4_DIRSYNC_FL;
4104 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4105}
de9a55b8 4106
0fc1b451 4107static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4108 struct ext4_inode_info *ei)
0fc1b451
AK
4109{
4110 blkcnt_t i_blocks ;
8180a562
AK
4111 struct inode *inode = &(ei->vfs_inode);
4112 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4113
4114 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4115 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4116 /* we are using combined 48 bit field */
4117 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4118 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4119 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4120 /* i_blocks represent file system block size */
4121 return i_blocks << (inode->i_blkbits - 9);
4122 } else {
4123 return i_blocks;
4124 }
0fc1b451
AK
4125 } else {
4126 return le32_to_cpu(raw_inode->i_blocks_lo);
4127 }
4128}
ff9ddf7e 4129
152a7b0a
TM
4130static inline void ext4_iget_extra_inode(struct inode *inode,
4131 struct ext4_inode *raw_inode,
4132 struct ext4_inode_info *ei)
4133{
4134 __le32 *magic = (void *)raw_inode +
4135 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4136 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4137 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4138 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4139 } else
4140 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4141}
4142
1d1fe1ee 4143struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4144{
617ba13b
MC
4145 struct ext4_iloc iloc;
4146 struct ext4_inode *raw_inode;
1d1fe1ee 4147 struct ext4_inode_info *ei;
1d1fe1ee 4148 struct inode *inode;
b436b9be 4149 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4150 long ret;
ac27a0ec 4151 int block;
08cefc7a
EB
4152 uid_t i_uid;
4153 gid_t i_gid;
ac27a0ec 4154
1d1fe1ee
DH
4155 inode = iget_locked(sb, ino);
4156 if (!inode)
4157 return ERR_PTR(-ENOMEM);
4158 if (!(inode->i_state & I_NEW))
4159 return inode;
4160
4161 ei = EXT4_I(inode);
7dc57615 4162 iloc.bh = NULL;
ac27a0ec 4163
1d1fe1ee
DH
4164 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4165 if (ret < 0)
ac27a0ec 4166 goto bad_inode;
617ba13b 4167 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4168
4169 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4170 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4171 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4172 EXT4_INODE_SIZE(inode->i_sb)) {
4173 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4174 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4175 EXT4_INODE_SIZE(inode->i_sb));
4176 ret = -EIO;
4177 goto bad_inode;
4178 }
4179 } else
4180 ei->i_extra_isize = 0;
4181
4182 /* Precompute checksum seed for inode metadata */
4183 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4184 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4185 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4186 __u32 csum;
4187 __le32 inum = cpu_to_le32(inode->i_ino);
4188 __le32 gen = raw_inode->i_generation;
4189 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4190 sizeof(inum));
4191 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4192 sizeof(gen));
4193 }
4194
4195 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4196 EXT4_ERROR_INODE(inode, "checksum invalid");
4197 ret = -EIO;
4198 goto bad_inode;
4199 }
4200
ac27a0ec 4201 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4202 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4203 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4204 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4205 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4206 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4207 }
08cefc7a
EB
4208 i_uid_write(inode, i_uid);
4209 i_gid_write(inode, i_gid);
bfe86848 4210 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4211
353eb83c 4212 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4213 ei->i_inline_off = 0;
ac27a0ec
DK
4214 ei->i_dir_start_lookup = 0;
4215 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4216 /* We now have enough fields to check if the inode was active or not.
4217 * This is needed because nfsd might try to access dead inodes
4218 * the test is that same one that e2fsck uses
4219 * NeilBrown 1999oct15
4220 */
4221 if (inode->i_nlink == 0) {
393d1d1d
DTB
4222 if ((inode->i_mode == 0 ||
4223 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4224 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4225 /* this inode is deleted */
1d1fe1ee 4226 ret = -ESTALE;
ac27a0ec
DK
4227 goto bad_inode;
4228 }
4229 /* The only unlinked inodes we let through here have
4230 * valid i_mode and are being read by the orphan
4231 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4232 * the process of deleting those.
4233 * OR it is the EXT4_BOOT_LOADER_INO which is
4234 * not initialized on a new filesystem. */
ac27a0ec 4235 }
ac27a0ec 4236 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4237 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4238 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4239 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4240 ei->i_file_acl |=
4241 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4242 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4243 ei->i_disksize = inode->i_size;
a9e7f447
DM
4244#ifdef CONFIG_QUOTA
4245 ei->i_reserved_quota = 0;
4246#endif
ac27a0ec
DK
4247 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4248 ei->i_block_group = iloc.block_group;
a4912123 4249 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4250 /*
4251 * NOTE! The in-memory inode i_data array is in little-endian order
4252 * even on big-endian machines: we do NOT byteswap the block numbers!
4253 */
617ba13b 4254 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4255 ei->i_data[block] = raw_inode->i_block[block];
4256 INIT_LIST_HEAD(&ei->i_orphan);
4257
b436b9be
JK
4258 /*
4259 * Set transaction id's of transactions that have to be committed
4260 * to finish f[data]sync. We set them to currently running transaction
4261 * as we cannot be sure that the inode or some of its metadata isn't
4262 * part of the transaction - the inode could have been reclaimed and
4263 * now it is reread from disk.
4264 */
4265 if (journal) {
4266 transaction_t *transaction;
4267 tid_t tid;
4268
a931da6a 4269 read_lock(&journal->j_state_lock);
b436b9be
JK
4270 if (journal->j_running_transaction)
4271 transaction = journal->j_running_transaction;
4272 else
4273 transaction = journal->j_committing_transaction;
4274 if (transaction)
4275 tid = transaction->t_tid;
4276 else
4277 tid = journal->j_commit_sequence;
a931da6a 4278 read_unlock(&journal->j_state_lock);
b436b9be
JK
4279 ei->i_sync_tid = tid;
4280 ei->i_datasync_tid = tid;
4281 }
4282
0040d987 4283 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4284 if (ei->i_extra_isize == 0) {
4285 /* The extra space is currently unused. Use it. */
617ba13b
MC
4286 ei->i_extra_isize = sizeof(struct ext4_inode) -
4287 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4288 } else {
152a7b0a 4289 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4290 }
814525f4 4291 }
ac27a0ec 4292
ef7f3835
KS
4293 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4294 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4295 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4296 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4297
25ec56b5
JNC
4298 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4299 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4300 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4301 inode->i_version |=
4302 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4303 }
4304
c4b5a614 4305 ret = 0;
485c26ec 4306 if (ei->i_file_acl &&
1032988c 4307 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4308 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4309 ei->i_file_acl);
485c26ec
TT
4310 ret = -EIO;
4311 goto bad_inode;
f19d5870
TM
4312 } else if (!ext4_has_inline_data(inode)) {
4313 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4314 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4315 (S_ISLNK(inode->i_mode) &&
4316 !ext4_inode_is_fast_symlink(inode))))
4317 /* Validate extent which is part of inode */
4318 ret = ext4_ext_check_inode(inode);
4319 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4320 (S_ISLNK(inode->i_mode) &&
4321 !ext4_inode_is_fast_symlink(inode))) {
4322 /* Validate block references which are part of inode */
4323 ret = ext4_ind_check_inode(inode);
4324 }
fe2c8191 4325 }
567f3e9a 4326 if (ret)
de9a55b8 4327 goto bad_inode;
7a262f7c 4328
ac27a0ec 4329 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4330 inode->i_op = &ext4_file_inode_operations;
4331 inode->i_fop = &ext4_file_operations;
4332 ext4_set_aops(inode);
ac27a0ec 4333 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4334 inode->i_op = &ext4_dir_inode_operations;
4335 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4336 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4337 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4338 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4339 nd_terminate_link(ei->i_data, inode->i_size,
4340 sizeof(ei->i_data) - 1);
4341 } else {
617ba13b
MC
4342 inode->i_op = &ext4_symlink_inode_operations;
4343 ext4_set_aops(inode);
ac27a0ec 4344 }
563bdd61
TT
4345 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4346 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4347 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4348 if (raw_inode->i_block[0])
4349 init_special_inode(inode, inode->i_mode,
4350 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4351 else
4352 init_special_inode(inode, inode->i_mode,
4353 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4354 } else if (ino == EXT4_BOOT_LOADER_INO) {
4355 make_bad_inode(inode);
563bdd61 4356 } else {
563bdd61 4357 ret = -EIO;
24676da4 4358 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4359 goto bad_inode;
ac27a0ec 4360 }
af5bc92d 4361 brelse(iloc.bh);
617ba13b 4362 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4363 unlock_new_inode(inode);
4364 return inode;
ac27a0ec
DK
4365
4366bad_inode:
567f3e9a 4367 brelse(iloc.bh);
1d1fe1ee
DH
4368 iget_failed(inode);
4369 return ERR_PTR(ret);
ac27a0ec
DK
4370}
4371
0fc1b451
AK
4372static int ext4_inode_blocks_set(handle_t *handle,
4373 struct ext4_inode *raw_inode,
4374 struct ext4_inode_info *ei)
4375{
4376 struct inode *inode = &(ei->vfs_inode);
4377 u64 i_blocks = inode->i_blocks;
4378 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4379
4380 if (i_blocks <= ~0U) {
4381 /*
4907cb7b 4382 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4383 * as multiple of 512 bytes
4384 */
8180a562 4385 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4386 raw_inode->i_blocks_high = 0;
84a8dce2 4387 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4388 return 0;
4389 }
4390 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4391 return -EFBIG;
4392
4393 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4394 /*
4395 * i_blocks can be represented in a 48 bit variable
4396 * as multiple of 512 bytes
4397 */
8180a562 4398 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4399 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4400 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4401 } else {
84a8dce2 4402 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4403 /* i_block is stored in file system block size */
4404 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4405 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4406 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4407 }
f287a1a5 4408 return 0;
0fc1b451
AK
4409}
4410
ac27a0ec
DK
4411/*
4412 * Post the struct inode info into an on-disk inode location in the
4413 * buffer-cache. This gobbles the caller's reference to the
4414 * buffer_head in the inode location struct.
4415 *
4416 * The caller must have write access to iloc->bh.
4417 */
617ba13b 4418static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4419 struct inode *inode,
830156c7 4420 struct ext4_iloc *iloc)
ac27a0ec 4421{
617ba13b
MC
4422 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4423 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4424 struct buffer_head *bh = iloc->bh;
4425 int err = 0, rc, block;
b71fc079 4426 int need_datasync = 0;
08cefc7a
EB
4427 uid_t i_uid;
4428 gid_t i_gid;
ac27a0ec
DK
4429
4430 /* For fields not not tracking in the in-memory inode,
4431 * initialise them to zero for new inodes. */
19f5fb7a 4432 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4433 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4434
ff9ddf7e 4435 ext4_get_inode_flags(ei);
ac27a0ec 4436 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4437 i_uid = i_uid_read(inode);
4438 i_gid = i_gid_read(inode);
af5bc92d 4439 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4440 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4441 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4442/*
4443 * Fix up interoperability with old kernels. Otherwise, old inodes get
4444 * re-used with the upper 16 bits of the uid/gid intact
4445 */
af5bc92d 4446 if (!ei->i_dtime) {
ac27a0ec 4447 raw_inode->i_uid_high =
08cefc7a 4448 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4449 raw_inode->i_gid_high =
08cefc7a 4450 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4451 } else {
4452 raw_inode->i_uid_high = 0;
4453 raw_inode->i_gid_high = 0;
4454 }
4455 } else {
08cefc7a
EB
4456 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4457 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4458 raw_inode->i_uid_high = 0;
4459 raw_inode->i_gid_high = 0;
4460 }
4461 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4462
4463 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4464 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4465 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4466 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4467
0fc1b451
AK
4468 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4469 goto out_brelse;
ac27a0ec 4470 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4471 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4472 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4473 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4474 raw_inode->i_file_acl_high =
4475 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4476 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4477 if (ei->i_disksize != ext4_isize(raw_inode)) {
4478 ext4_isize_set(raw_inode, ei->i_disksize);
4479 need_datasync = 1;
4480 }
a48380f7
AK
4481 if (ei->i_disksize > 0x7fffffffULL) {
4482 struct super_block *sb = inode->i_sb;
4483 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4484 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4485 EXT4_SB(sb)->s_es->s_rev_level ==
4486 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4487 /* If this is the first large file
4488 * created, add a flag to the superblock.
4489 */
4490 err = ext4_journal_get_write_access(handle,
4491 EXT4_SB(sb)->s_sbh);
4492 if (err)
4493 goto out_brelse;
4494 ext4_update_dynamic_rev(sb);
4495 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4496 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4497 ext4_handle_sync(handle);
b50924c2 4498 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4499 }
4500 }
4501 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4502 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4503 if (old_valid_dev(inode->i_rdev)) {
4504 raw_inode->i_block[0] =
4505 cpu_to_le32(old_encode_dev(inode->i_rdev));
4506 raw_inode->i_block[1] = 0;
4507 } else {
4508 raw_inode->i_block[0] = 0;
4509 raw_inode->i_block[1] =
4510 cpu_to_le32(new_encode_dev(inode->i_rdev));
4511 raw_inode->i_block[2] = 0;
4512 }
f19d5870 4513 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4514 for (block = 0; block < EXT4_N_BLOCKS; block++)
4515 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4516 }
ac27a0ec 4517
25ec56b5
JNC
4518 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4519 if (ei->i_extra_isize) {
4520 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4521 raw_inode->i_version_hi =
4522 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4523 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4524 }
4525
814525f4
DW
4526 ext4_inode_csum_set(inode, raw_inode, ei);
4527
830156c7 4528 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4529 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4530 if (!err)
4531 err = rc;
19f5fb7a 4532 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4533
b71fc079 4534 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4535out_brelse:
af5bc92d 4536 brelse(bh);
617ba13b 4537 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4538 return err;
4539}
4540
4541/*
617ba13b 4542 * ext4_write_inode()
ac27a0ec
DK
4543 *
4544 * We are called from a few places:
4545 *
4546 * - Within generic_file_write() for O_SYNC files.
4547 * Here, there will be no transaction running. We wait for any running
4907cb7b 4548 * transaction to commit.
ac27a0ec
DK
4549 *
4550 * - Within sys_sync(), kupdate and such.
4551 * We wait on commit, if tol to.
4552 *
4553 * - Within prune_icache() (PF_MEMALLOC == true)
4554 * Here we simply return. We can't afford to block kswapd on the
4555 * journal commit.
4556 *
4557 * In all cases it is actually safe for us to return without doing anything,
4558 * because the inode has been copied into a raw inode buffer in
617ba13b 4559 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4560 * knfsd.
4561 *
4562 * Note that we are absolutely dependent upon all inode dirtiers doing the
4563 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4564 * which we are interested.
4565 *
4566 * It would be a bug for them to not do this. The code:
4567 *
4568 * mark_inode_dirty(inode)
4569 * stuff();
4570 * inode->i_size = expr;
4571 *
4572 * is in error because a kswapd-driven write_inode() could occur while
4573 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4574 * will no longer be on the superblock's dirty inode list.
4575 */
a9185b41 4576int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4577{
91ac6f43
FM
4578 int err;
4579
ac27a0ec
DK
4580 if (current->flags & PF_MEMALLOC)
4581 return 0;
4582
91ac6f43
FM
4583 if (EXT4_SB(inode->i_sb)->s_journal) {
4584 if (ext4_journal_current_handle()) {
4585 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4586 dump_stack();
4587 return -EIO;
4588 }
ac27a0ec 4589
a9185b41 4590 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4591 return 0;
4592
4593 err = ext4_force_commit(inode->i_sb);
4594 } else {
4595 struct ext4_iloc iloc;
ac27a0ec 4596
8b472d73 4597 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4598 if (err)
4599 return err;
a9185b41 4600 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4601 sync_dirty_buffer(iloc.bh);
4602 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4603 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4604 "IO error syncing inode");
830156c7
FM
4605 err = -EIO;
4606 }
fd2dd9fb 4607 brelse(iloc.bh);
91ac6f43
FM
4608 }
4609 return err;
ac27a0ec
DK
4610}
4611
53e87268
JK
4612/*
4613 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4614 * buffers that are attached to a page stradding i_size and are undergoing
4615 * commit. In that case we have to wait for commit to finish and try again.
4616 */
4617static void ext4_wait_for_tail_page_commit(struct inode *inode)
4618{
4619 struct page *page;
4620 unsigned offset;
4621 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4622 tid_t commit_tid = 0;
4623 int ret;
4624
4625 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4626 /*
4627 * All buffers in the last page remain valid? Then there's nothing to
4628 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4629 * blocksize case
4630 */
4631 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4632 return;
4633 while (1) {
4634 page = find_lock_page(inode->i_mapping,
4635 inode->i_size >> PAGE_CACHE_SHIFT);
4636 if (!page)
4637 return;
ca99fdd2
LC
4638 ret = __ext4_journalled_invalidatepage(page, offset,
4639 PAGE_CACHE_SIZE - offset);
53e87268
JK
4640 unlock_page(page);
4641 page_cache_release(page);
4642 if (ret != -EBUSY)
4643 return;
4644 commit_tid = 0;
4645 read_lock(&journal->j_state_lock);
4646 if (journal->j_committing_transaction)
4647 commit_tid = journal->j_committing_transaction->t_tid;
4648 read_unlock(&journal->j_state_lock);
4649 if (commit_tid)
4650 jbd2_log_wait_commit(journal, commit_tid);
4651 }
4652}
4653
ac27a0ec 4654/*
617ba13b 4655 * ext4_setattr()
ac27a0ec
DK
4656 *
4657 * Called from notify_change.
4658 *
4659 * We want to trap VFS attempts to truncate the file as soon as
4660 * possible. In particular, we want to make sure that when the VFS
4661 * shrinks i_size, we put the inode on the orphan list and modify
4662 * i_disksize immediately, so that during the subsequent flushing of
4663 * dirty pages and freeing of disk blocks, we can guarantee that any
4664 * commit will leave the blocks being flushed in an unused state on
4665 * disk. (On recovery, the inode will get truncated and the blocks will
4666 * be freed, so we have a strong guarantee that no future commit will
4667 * leave these blocks visible to the user.)
4668 *
678aaf48
JK
4669 * Another thing we have to assure is that if we are in ordered mode
4670 * and inode is still attached to the committing transaction, we must
4671 * we start writeout of all the dirty pages which are being truncated.
4672 * This way we are sure that all the data written in the previous
4673 * transaction are already on disk (truncate waits for pages under
4674 * writeback).
4675 *
4676 * Called with inode->i_mutex down.
ac27a0ec 4677 */
617ba13b 4678int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4679{
4680 struct inode *inode = dentry->d_inode;
4681 int error, rc = 0;
3d287de3 4682 int orphan = 0;
ac27a0ec
DK
4683 const unsigned int ia_valid = attr->ia_valid;
4684
4685 error = inode_change_ok(inode, attr);
4686 if (error)
4687 return error;
4688
12755627 4689 if (is_quota_modification(inode, attr))
871a2931 4690 dquot_initialize(inode);
08cefc7a
EB
4691 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4692 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4693 handle_t *handle;
4694
4695 /* (user+group)*(old+new) structure, inode write (sb,
4696 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4697 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4698 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4699 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4700 if (IS_ERR(handle)) {
4701 error = PTR_ERR(handle);
4702 goto err_out;
4703 }
b43fa828 4704 error = dquot_transfer(inode, attr);
ac27a0ec 4705 if (error) {
617ba13b 4706 ext4_journal_stop(handle);
ac27a0ec
DK
4707 return error;
4708 }
4709 /* Update corresponding info in inode so that everything is in
4710 * one transaction */
4711 if (attr->ia_valid & ATTR_UID)
4712 inode->i_uid = attr->ia_uid;
4713 if (attr->ia_valid & ATTR_GID)
4714 inode->i_gid = attr->ia_gid;
617ba13b
MC
4715 error = ext4_mark_inode_dirty(handle, inode);
4716 ext4_journal_stop(handle);
ac27a0ec
DK
4717 }
4718
e2b46574 4719 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4720
12e9b892 4721 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4722 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4723
0c095c7f
TT
4724 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4725 return -EFBIG;
e2b46574
ES
4726 }
4727 }
4728
ac27a0ec 4729 if (S_ISREG(inode->i_mode) &&
c8d46e41 4730 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4731 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4732 handle_t *handle;
4733
9924a92a 4734 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4735 if (IS_ERR(handle)) {
4736 error = PTR_ERR(handle);
4737 goto err_out;
4738 }
3d287de3
DM
4739 if (ext4_handle_valid(handle)) {
4740 error = ext4_orphan_add(handle, inode);
4741 orphan = 1;
4742 }
617ba13b
MC
4743 EXT4_I(inode)->i_disksize = attr->ia_size;
4744 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4745 if (!error)
4746 error = rc;
617ba13b 4747 ext4_journal_stop(handle);
678aaf48
JK
4748
4749 if (ext4_should_order_data(inode)) {
4750 error = ext4_begin_ordered_truncate(inode,
4751 attr->ia_size);
4752 if (error) {
4753 /* Do as much error cleanup as possible */
9924a92a
TT
4754 handle = ext4_journal_start(inode,
4755 EXT4_HT_INODE, 3);
678aaf48
JK
4756 if (IS_ERR(handle)) {
4757 ext4_orphan_del(NULL, inode);
4758 goto err_out;
4759 }
4760 ext4_orphan_del(handle, inode);
3d287de3 4761 orphan = 0;
678aaf48
JK
4762 ext4_journal_stop(handle);
4763 goto err_out;
4764 }
4765 }
ac27a0ec
DK
4766 }
4767
072bd7ea 4768 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4769 if (attr->ia_size != inode->i_size) {
4770 loff_t oldsize = inode->i_size;
4771
4772 i_size_write(inode, attr->ia_size);
4773 /*
4774 * Blocks are going to be removed from the inode. Wait
4775 * for dio in flight. Temporarily disable
4776 * dioread_nolock to prevent livelock.
4777 */
1b65007e 4778 if (orphan) {
53e87268
JK
4779 if (!ext4_should_journal_data(inode)) {
4780 ext4_inode_block_unlocked_dio(inode);
4781 inode_dio_wait(inode);
4782 ext4_inode_resume_unlocked_dio(inode);
4783 } else
4784 ext4_wait_for_tail_page_commit(inode);
1b65007e 4785 }
53e87268
JK
4786 /*
4787 * Truncate pagecache after we've waited for commit
4788 * in data=journal mode to make pages freeable.
4789 */
4790 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4791 }
afcff5d8 4792 ext4_truncate(inode);
072bd7ea 4793 }
ac27a0ec 4794
1025774c
CH
4795 if (!rc) {
4796 setattr_copy(inode, attr);
4797 mark_inode_dirty(inode);
4798 }
4799
4800 /*
4801 * If the call to ext4_truncate failed to get a transaction handle at
4802 * all, we need to clean up the in-core orphan list manually.
4803 */
3d287de3 4804 if (orphan && inode->i_nlink)
617ba13b 4805 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4806
4807 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4808 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4809
4810err_out:
617ba13b 4811 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4812 if (!error)
4813 error = rc;
4814 return error;
4815}
4816
3e3398a0
MC
4817int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4818 struct kstat *stat)
4819{
4820 struct inode *inode;
4821 unsigned long delalloc_blocks;
4822
4823 inode = dentry->d_inode;
4824 generic_fillattr(inode, stat);
4825
4826 /*
4827 * We can't update i_blocks if the block allocation is delayed
4828 * otherwise in the case of system crash before the real block
4829 * allocation is done, we will have i_blocks inconsistent with
4830 * on-disk file blocks.
4831 * We always keep i_blocks updated together with real
4832 * allocation. But to not confuse with user, stat
4833 * will return the blocks that include the delayed allocation
4834 * blocks for this file.
4835 */
96607551
TM
4836 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4837 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4838
4839 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4840 return 0;
4841}
ac27a0ec 4842
a02908f1
MC
4843static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4844{
12e9b892 4845 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4846 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4847 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4848}
ac51d837 4849
ac27a0ec 4850/*
a02908f1
MC
4851 * Account for index blocks, block groups bitmaps and block group
4852 * descriptor blocks if modify datablocks and index blocks
4853 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4854 *
a02908f1 4855 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4856 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4857 * they could still across block group boundary.
ac27a0ec 4858 *
a02908f1
MC
4859 * Also account for superblock, inode, quota and xattr blocks
4860 */
1f109d5a 4861static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4862{
8df9675f
TT
4863 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4864 int gdpblocks;
a02908f1
MC
4865 int idxblocks;
4866 int ret = 0;
4867
4868 /*
4869 * How many index blocks need to touch to modify nrblocks?
4870 * The "Chunk" flag indicating whether the nrblocks is
4871 * physically contiguous on disk
4872 *
4873 * For Direct IO and fallocate, they calls get_block to allocate
4874 * one single extent at a time, so they could set the "Chunk" flag
4875 */
4876 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4877
4878 ret = idxblocks;
4879
4880 /*
4881 * Now let's see how many group bitmaps and group descriptors need
4882 * to account
4883 */
4884 groups = idxblocks;
4885 if (chunk)
4886 groups += 1;
4887 else
4888 groups += nrblocks;
4889
4890 gdpblocks = groups;
8df9675f
TT
4891 if (groups > ngroups)
4892 groups = ngroups;
a02908f1
MC
4893 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4894 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4895
4896 /* bitmaps and block group descriptor blocks */
4897 ret += groups + gdpblocks;
4898
4899 /* Blocks for super block, inode, quota and xattr blocks */
4900 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4901
4902 return ret;
4903}
4904
4905/*
25985edc 4906 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4907 * the modification of a single pages into a single transaction,
4908 * which may include multiple chunks of block allocations.
ac27a0ec 4909 *
525f4ed8 4910 * This could be called via ext4_write_begin()
ac27a0ec 4911 *
525f4ed8 4912 * We need to consider the worse case, when
a02908f1 4913 * one new block per extent.
ac27a0ec 4914 */
a86c6181 4915int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4916{
617ba13b 4917 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4918 int ret;
4919
a02908f1 4920 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4921
a02908f1 4922 /* Account for data blocks for journalled mode */
617ba13b 4923 if (ext4_should_journal_data(inode))
a02908f1 4924 ret += bpp;
ac27a0ec
DK
4925 return ret;
4926}
f3bd1f3f
MC
4927
4928/*
4929 * Calculate the journal credits for a chunk of data modification.
4930 *
4931 * This is called from DIO, fallocate or whoever calling
79e83036 4932 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4933 *
4934 * journal buffers for data blocks are not included here, as DIO
4935 * and fallocate do no need to journal data buffers.
4936 */
4937int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4938{
4939 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4940}
4941
ac27a0ec 4942/*
617ba13b 4943 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4944 * Give this, we know that the caller already has write access to iloc->bh.
4945 */
617ba13b 4946int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4947 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4948{
4949 int err = 0;
4950
c64db50e 4951 if (IS_I_VERSION(inode))
25ec56b5
JNC
4952 inode_inc_iversion(inode);
4953
ac27a0ec
DK
4954 /* the do_update_inode consumes one bh->b_count */
4955 get_bh(iloc->bh);
4956
dab291af 4957 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4958 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4959 put_bh(iloc->bh);
4960 return err;
4961}
4962
4963/*
4964 * On success, We end up with an outstanding reference count against
4965 * iloc->bh. This _must_ be cleaned up later.
4966 */
4967
4968int
617ba13b
MC
4969ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4970 struct ext4_iloc *iloc)
ac27a0ec 4971{
0390131b
FM
4972 int err;
4973
4974 err = ext4_get_inode_loc(inode, iloc);
4975 if (!err) {
4976 BUFFER_TRACE(iloc->bh, "get_write_access");
4977 err = ext4_journal_get_write_access(handle, iloc->bh);
4978 if (err) {
4979 brelse(iloc->bh);
4980 iloc->bh = NULL;
ac27a0ec
DK
4981 }
4982 }
617ba13b 4983 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4984 return err;
4985}
4986
6dd4ee7c
KS
4987/*
4988 * Expand an inode by new_extra_isize bytes.
4989 * Returns 0 on success or negative error number on failure.
4990 */
1d03ec98
AK
4991static int ext4_expand_extra_isize(struct inode *inode,
4992 unsigned int new_extra_isize,
4993 struct ext4_iloc iloc,
4994 handle_t *handle)
6dd4ee7c
KS
4995{
4996 struct ext4_inode *raw_inode;
4997 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4998
4999 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5000 return 0;
5001
5002 raw_inode = ext4_raw_inode(&iloc);
5003
5004 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5005
5006 /* No extended attributes present */
19f5fb7a
TT
5007 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5008 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5009 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5010 new_extra_isize);
5011 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5012 return 0;
5013 }
5014
5015 /* try to expand with EAs present */
5016 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5017 raw_inode, handle);
5018}
5019
ac27a0ec
DK
5020/*
5021 * What we do here is to mark the in-core inode as clean with respect to inode
5022 * dirtiness (it may still be data-dirty).
5023 * This means that the in-core inode may be reaped by prune_icache
5024 * without having to perform any I/O. This is a very good thing,
5025 * because *any* task may call prune_icache - even ones which
5026 * have a transaction open against a different journal.
5027 *
5028 * Is this cheating? Not really. Sure, we haven't written the
5029 * inode out, but prune_icache isn't a user-visible syncing function.
5030 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5031 * we start and wait on commits.
ac27a0ec 5032 */
617ba13b 5033int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5034{
617ba13b 5035 struct ext4_iloc iloc;
6dd4ee7c
KS
5036 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5037 static unsigned int mnt_count;
5038 int err, ret;
ac27a0ec
DK
5039
5040 might_sleep();
7ff9c073 5041 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5042 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5043 if (ext4_handle_valid(handle) &&
5044 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5045 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5046 /*
5047 * We need extra buffer credits since we may write into EA block
5048 * with this same handle. If journal_extend fails, then it will
5049 * only result in a minor loss of functionality for that inode.
5050 * If this is felt to be critical, then e2fsck should be run to
5051 * force a large enough s_min_extra_isize.
5052 */
5053 if ((jbd2_journal_extend(handle,
5054 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5055 ret = ext4_expand_extra_isize(inode,
5056 sbi->s_want_extra_isize,
5057 iloc, handle);
5058 if (ret) {
19f5fb7a
TT
5059 ext4_set_inode_state(inode,
5060 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5061 if (mnt_count !=
5062 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5063 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5064 "Unable to expand inode %lu. Delete"
5065 " some EAs or run e2fsck.",
5066 inode->i_ino);
c1bddad9
AK
5067 mnt_count =
5068 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5069 }
5070 }
5071 }
5072 }
ac27a0ec 5073 if (!err)
617ba13b 5074 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5075 return err;
5076}
5077
5078/*
617ba13b 5079 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5080 *
5081 * We're really interested in the case where a file is being extended.
5082 * i_size has been changed by generic_commit_write() and we thus need
5083 * to include the updated inode in the current transaction.
5084 *
5dd4056d 5085 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5086 * are allocated to the file.
5087 *
5088 * If the inode is marked synchronous, we don't honour that here - doing
5089 * so would cause a commit on atime updates, which we don't bother doing.
5090 * We handle synchronous inodes at the highest possible level.
5091 */
aa385729 5092void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5093{
ac27a0ec
DK
5094 handle_t *handle;
5095
9924a92a 5096 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5097 if (IS_ERR(handle))
5098 goto out;
f3dc272f 5099
f3dc272f
CW
5100 ext4_mark_inode_dirty(handle, inode);
5101
617ba13b 5102 ext4_journal_stop(handle);
ac27a0ec
DK
5103out:
5104 return;
5105}
5106
5107#if 0
5108/*
5109 * Bind an inode's backing buffer_head into this transaction, to prevent
5110 * it from being flushed to disk early. Unlike
617ba13b 5111 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5112 * returns no iloc structure, so the caller needs to repeat the iloc
5113 * lookup to mark the inode dirty later.
5114 */
617ba13b 5115static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5116{
617ba13b 5117 struct ext4_iloc iloc;
ac27a0ec
DK
5118
5119 int err = 0;
5120 if (handle) {
617ba13b 5121 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5122 if (!err) {
5123 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5124 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5125 if (!err)
0390131b 5126 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5127 NULL,
0390131b 5128 iloc.bh);
ac27a0ec
DK
5129 brelse(iloc.bh);
5130 }
5131 }
617ba13b 5132 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5133 return err;
5134}
5135#endif
5136
617ba13b 5137int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5138{
5139 journal_t *journal;
5140 handle_t *handle;
5141 int err;
5142
5143 /*
5144 * We have to be very careful here: changing a data block's
5145 * journaling status dynamically is dangerous. If we write a
5146 * data block to the journal, change the status and then delete
5147 * that block, we risk forgetting to revoke the old log record
5148 * from the journal and so a subsequent replay can corrupt data.
5149 * So, first we make sure that the journal is empty and that
5150 * nobody is changing anything.
5151 */
5152
617ba13b 5153 journal = EXT4_JOURNAL(inode);
0390131b
FM
5154 if (!journal)
5155 return 0;
d699594d 5156 if (is_journal_aborted(journal))
ac27a0ec 5157 return -EROFS;
2aff57b0
YY
5158 /* We have to allocate physical blocks for delalloc blocks
5159 * before flushing journal. otherwise delalloc blocks can not
5160 * be allocated any more. even more truncate on delalloc blocks
5161 * could trigger BUG by flushing delalloc blocks in journal.
5162 * There is no delalloc block in non-journal data mode.
5163 */
5164 if (val && test_opt(inode->i_sb, DELALLOC)) {
5165 err = ext4_alloc_da_blocks(inode);
5166 if (err < 0)
5167 return err;
5168 }
ac27a0ec 5169
17335dcc
DM
5170 /* Wait for all existing dio workers */
5171 ext4_inode_block_unlocked_dio(inode);
5172 inode_dio_wait(inode);
5173
dab291af 5174 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5175
5176 /*
5177 * OK, there are no updates running now, and all cached data is
5178 * synced to disk. We are now in a completely consistent state
5179 * which doesn't have anything in the journal, and we know that
5180 * no filesystem updates are running, so it is safe to modify
5181 * the inode's in-core data-journaling state flag now.
5182 */
5183
5184 if (val)
12e9b892 5185 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5186 else {
5187 jbd2_journal_flush(journal);
12e9b892 5188 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5189 }
617ba13b 5190 ext4_set_aops(inode);
ac27a0ec 5191
dab291af 5192 jbd2_journal_unlock_updates(journal);
17335dcc 5193 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5194
5195 /* Finally we can mark the inode as dirty. */
5196
9924a92a 5197 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5198 if (IS_ERR(handle))
5199 return PTR_ERR(handle);
5200
617ba13b 5201 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5202 ext4_handle_sync(handle);
617ba13b
MC
5203 ext4_journal_stop(handle);
5204 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5205
5206 return err;
5207}
2e9ee850
AK
5208
5209static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5210{
5211 return !buffer_mapped(bh);
5212}
5213
c2ec175c 5214int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5215{
c2ec175c 5216 struct page *page = vmf->page;
2e9ee850
AK
5217 loff_t size;
5218 unsigned long len;
9ea7df53 5219 int ret;
2e9ee850 5220 struct file *file = vma->vm_file;
496ad9aa 5221 struct inode *inode = file_inode(file);
2e9ee850 5222 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5223 handle_t *handle;
5224 get_block_t *get_block;
5225 int retries = 0;
2e9ee850 5226
8e8ad8a5 5227 sb_start_pagefault(inode->i_sb);
041bbb6d 5228 file_update_time(vma->vm_file);
9ea7df53
JK
5229 /* Delalloc case is easy... */
5230 if (test_opt(inode->i_sb, DELALLOC) &&
5231 !ext4_should_journal_data(inode) &&
5232 !ext4_nonda_switch(inode->i_sb)) {
5233 do {
5234 ret = __block_page_mkwrite(vma, vmf,
5235 ext4_da_get_block_prep);
5236 } while (ret == -ENOSPC &&
5237 ext4_should_retry_alloc(inode->i_sb, &retries));
5238 goto out_ret;
2e9ee850 5239 }
0e499890
DW
5240
5241 lock_page(page);
9ea7df53
JK
5242 size = i_size_read(inode);
5243 /* Page got truncated from under us? */
5244 if (page->mapping != mapping || page_offset(page) > size) {
5245 unlock_page(page);
5246 ret = VM_FAULT_NOPAGE;
5247 goto out;
0e499890 5248 }
2e9ee850
AK
5249
5250 if (page->index == size >> PAGE_CACHE_SHIFT)
5251 len = size & ~PAGE_CACHE_MASK;
5252 else
5253 len = PAGE_CACHE_SIZE;
a827eaff 5254 /*
9ea7df53
JK
5255 * Return if we have all the buffers mapped. This avoids the need to do
5256 * journal_start/journal_stop which can block and take a long time
a827eaff 5257 */
2e9ee850 5258 if (page_has_buffers(page)) {
f19d5870
TM
5259 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5260 0, len, NULL,
5261 ext4_bh_unmapped)) {
9ea7df53 5262 /* Wait so that we don't change page under IO */
1d1d1a76 5263 wait_for_stable_page(page);
9ea7df53
JK
5264 ret = VM_FAULT_LOCKED;
5265 goto out;
a827eaff 5266 }
2e9ee850 5267 }
a827eaff 5268 unlock_page(page);
9ea7df53
JK
5269 /* OK, we need to fill the hole... */
5270 if (ext4_should_dioread_nolock(inode))
5271 get_block = ext4_get_block_write;
5272 else
5273 get_block = ext4_get_block;
5274retry_alloc:
9924a92a
TT
5275 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5276 ext4_writepage_trans_blocks(inode));
9ea7df53 5277 if (IS_ERR(handle)) {
c2ec175c 5278 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5279 goto out;
5280 }
5281 ret = __block_page_mkwrite(vma, vmf, get_block);
5282 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5283 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5284 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5285 unlock_page(page);
5286 ret = VM_FAULT_SIGBUS;
fcbb5515 5287 ext4_journal_stop(handle);
9ea7df53
JK
5288 goto out;
5289 }
5290 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5291 }
5292 ext4_journal_stop(handle);
5293 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5294 goto retry_alloc;
5295out_ret:
5296 ret = block_page_mkwrite_return(ret);
5297out:
8e8ad8a5 5298 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5299 return ret;
5300}