ext4: Resolve the hang of direct i/o read in handling EXT4_IO_END_UNWRITTEN.
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
21#include <linux/module.h>
22#include <linux/fs.h>
23#include <linux/time.h>
dab291af 24#include <linux/jbd2.h>
ac27a0ec
DK
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
64769240 31#include <linux/pagevec.h>
ac27a0ec 32#include <linux/mpage.h>
e83c1397 33#include <linux/namei.h>
ac27a0ec
DK
34#include <linux/uio.h>
35#include <linux/bio.h>
4c0425ff 36#include <linux/workqueue.h>
744692dc 37#include <linux/kernel.h>
6db26ffc 38#include <linux/printk.h>
5a0e3ad6 39#include <linux/slab.h>
a8901d34 40#include <linux/ratelimit.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
d2a17637 45#include "ext4_extents.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
678aaf48
JK
52static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 loff_t new_size)
54{
7ff9c073 55 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
56 /*
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
61 */
62 if (!EXT4_I(inode)->jinode)
63 return 0;
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 EXT4_I(inode)->jinode,
66 new_size);
678aaf48
JK
67}
68
64769240 69static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
70static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 struct buffer_head *bh_result, int create);
72static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 76
ac27a0ec
DK
77/*
78 * Test whether an inode is a fast symlink.
79 */
617ba13b 80static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 81{
617ba13b 82 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
83 (inode->i_sb->s_blocksize >> 9) : 0;
84
85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86}
87
ac27a0ec
DK
88/*
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
91 * this transaction.
92 */
fa5d1113 93int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 94 int nblocks)
ac27a0ec 95{
487caeef
JK
96 int ret;
97
98 /*
e35fd660 99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
103 */
0390131b 104 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 105 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 106 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 107 ret = ext4_journal_restart(handle, nblocks);
487caeef 108 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 109 ext4_discard_preallocations(inode);
487caeef
JK
110
111 return ret;
ac27a0ec
DK
112}
113
114/*
115 * Called at the last iput() if i_nlink is zero.
116 */
0930fcc1 117void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
118{
119 handle_t *handle;
bc965ab3 120 int err;
ac27a0ec 121
7ff9c073 122 trace_ext4_evict_inode(inode);
2581fdc8
JZ
123
124 mutex_lock(&inode->i_mutex);
125 ext4_flush_completed_IO(inode);
126 mutex_unlock(&inode->i_mutex);
127 ext4_ioend_wait(inode);
128
0930fcc1 129 if (inode->i_nlink) {
2d859db3
JK
130 /*
131 * When journalling data dirty buffers are tracked only in the
132 * journal. So although mm thinks everything is clean and
133 * ready for reaping the inode might still have some pages to
134 * write in the running transaction or waiting to be
135 * checkpointed. Thus calling jbd2_journal_invalidatepage()
136 * (via truncate_inode_pages()) to discard these buffers can
137 * cause data loss. Also even if we did not discard these
138 * buffers, we would have no way to find them after the inode
139 * is reaped and thus user could see stale data if he tries to
140 * read them before the transaction is checkpointed. So be
141 * careful and force everything to disk here... We use
142 * ei->i_datasync_tid to store the newest transaction
143 * containing inode's data.
144 *
145 * Note that directories do not have this problem because they
146 * don't use page cache.
147 */
148 if (ext4_should_journal_data(inode) &&
149 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
150 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
151 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
152
153 jbd2_log_start_commit(journal, commit_tid);
154 jbd2_log_wait_commit(journal, commit_tid);
155 filemap_write_and_wait(&inode->i_data);
156 }
0930fcc1
AV
157 truncate_inode_pages(&inode->i_data, 0);
158 goto no_delete;
159 }
160
907f4554 161 if (!is_bad_inode(inode))
871a2931 162 dquot_initialize(inode);
907f4554 163
678aaf48
JK
164 if (ext4_should_order_data(inode))
165 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
166 truncate_inode_pages(&inode->i_data, 0);
167
168 if (is_bad_inode(inode))
169 goto no_delete;
170
9f125d64 171 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 172 if (IS_ERR(handle)) {
bc965ab3 173 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
174 /*
175 * If we're going to skip the normal cleanup, we still need to
176 * make sure that the in-core orphan linked list is properly
177 * cleaned up.
178 */
617ba13b 179 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
180 goto no_delete;
181 }
182
183 if (IS_SYNC(inode))
0390131b 184 ext4_handle_sync(handle);
ac27a0ec 185 inode->i_size = 0;
bc965ab3
TT
186 err = ext4_mark_inode_dirty(handle, inode);
187 if (err) {
12062ddd 188 ext4_warning(inode->i_sb,
bc965ab3
TT
189 "couldn't mark inode dirty (err %d)", err);
190 goto stop_handle;
191 }
ac27a0ec 192 if (inode->i_blocks)
617ba13b 193 ext4_truncate(inode);
bc965ab3
TT
194
195 /*
196 * ext4_ext_truncate() doesn't reserve any slop when it
197 * restarts journal transactions; therefore there may not be
198 * enough credits left in the handle to remove the inode from
199 * the orphan list and set the dtime field.
200 */
0390131b 201 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
202 err = ext4_journal_extend(handle, 3);
203 if (err > 0)
204 err = ext4_journal_restart(handle, 3);
205 if (err != 0) {
12062ddd 206 ext4_warning(inode->i_sb,
bc965ab3
TT
207 "couldn't extend journal (err %d)", err);
208 stop_handle:
209 ext4_journal_stop(handle);
45388219 210 ext4_orphan_del(NULL, inode);
bc965ab3
TT
211 goto no_delete;
212 }
213 }
214
ac27a0ec 215 /*
617ba13b 216 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 217 * AKPM: I think this can be inside the above `if'.
617ba13b 218 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 219 * deletion of a non-existent orphan - this is because we don't
617ba13b 220 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
221 * (Well, we could do this if we need to, but heck - it works)
222 */
617ba13b
MC
223 ext4_orphan_del(handle, inode);
224 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
225
226 /*
227 * One subtle ordering requirement: if anything has gone wrong
228 * (transaction abort, IO errors, whatever), then we can still
229 * do these next steps (the fs will already have been marked as
230 * having errors), but we can't free the inode if the mark_dirty
231 * fails.
232 */
617ba13b 233 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 234 /* If that failed, just do the required in-core inode clear. */
0930fcc1 235 ext4_clear_inode(inode);
ac27a0ec 236 else
617ba13b
MC
237 ext4_free_inode(handle, inode);
238 ext4_journal_stop(handle);
ac27a0ec
DK
239 return;
240no_delete:
0930fcc1 241 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
242}
243
a9e7f447
DM
244#ifdef CONFIG_QUOTA
245qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 246{
a9e7f447 247 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 248}
a9e7f447 249#endif
9d0be502 250
12219aea
AK
251/*
252 * Calculate the number of metadata blocks need to reserve
9d0be502 253 * to allocate a block located at @lblock
12219aea 254 */
01f49d0b 255static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 256{
12e9b892 257 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 258 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 259
8bb2b247 260 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
261}
262
0637c6f4
TT
263/*
264 * Called with i_data_sem down, which is important since we can call
265 * ext4_discard_preallocations() from here.
266 */
5f634d06
AK
267void ext4_da_update_reserve_space(struct inode *inode,
268 int used, int quota_claim)
12219aea
AK
269{
270 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 271 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
272
273 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 274 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
275 if (unlikely(used > ei->i_reserved_data_blocks)) {
276 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
277 "with only %d reserved data blocks\n",
278 __func__, inode->i_ino, used,
279 ei->i_reserved_data_blocks);
280 WARN_ON(1);
281 used = ei->i_reserved_data_blocks;
282 }
12219aea 283
0637c6f4
TT
284 /* Update per-inode reservations */
285 ei->i_reserved_data_blocks -= used;
0637c6f4 286 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
287 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
288 used + ei->i_allocated_meta_blocks);
0637c6f4 289 ei->i_allocated_meta_blocks = 0;
6bc6e63f 290
0637c6f4
TT
291 if (ei->i_reserved_data_blocks == 0) {
292 /*
293 * We can release all of the reserved metadata blocks
294 * only when we have written all of the delayed
295 * allocation blocks.
296 */
72b8ab9d
ES
297 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
298 ei->i_reserved_meta_blocks);
ee5f4d9c 299 ei->i_reserved_meta_blocks = 0;
9d0be502 300 ei->i_da_metadata_calc_len = 0;
6bc6e63f 301 }
12219aea 302 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 303
72b8ab9d
ES
304 /* Update quota subsystem for data blocks */
305 if (quota_claim)
5dd4056d 306 dquot_claim_block(inode, used);
72b8ab9d 307 else {
5f634d06
AK
308 /*
309 * We did fallocate with an offset that is already delayed
310 * allocated. So on delayed allocated writeback we should
72b8ab9d 311 * not re-claim the quota for fallocated blocks.
5f634d06 312 */
72b8ab9d 313 dquot_release_reservation_block(inode, used);
5f634d06 314 }
d6014301
AK
315
316 /*
317 * If we have done all the pending block allocations and if
318 * there aren't any writers on the inode, we can discard the
319 * inode's preallocations.
320 */
0637c6f4
TT
321 if ((ei->i_reserved_data_blocks == 0) &&
322 (atomic_read(&inode->i_writecount) == 0))
d6014301 323 ext4_discard_preallocations(inode);
12219aea
AK
324}
325
e29136f8 326static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
327 unsigned int line,
328 struct ext4_map_blocks *map)
6fd058f7 329{
24676da4
TT
330 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
331 map->m_len)) {
c398eda0
TT
332 ext4_error_inode(inode, func, line, map->m_pblk,
333 "lblock %lu mapped to illegal pblock "
334 "(length %d)", (unsigned long) map->m_lblk,
335 map->m_len);
6fd058f7
TT
336 return -EIO;
337 }
338 return 0;
339}
340
e29136f8 341#define check_block_validity(inode, map) \
c398eda0 342 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 343
55138e0b 344/*
1f94533d
TT
345 * Return the number of contiguous dirty pages in a given inode
346 * starting at page frame idx.
55138e0b
TT
347 */
348static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
349 unsigned int max_pages)
350{
351 struct address_space *mapping = inode->i_mapping;
352 pgoff_t index;
353 struct pagevec pvec;
354 pgoff_t num = 0;
355 int i, nr_pages, done = 0;
356
357 if (max_pages == 0)
358 return 0;
359 pagevec_init(&pvec, 0);
360 while (!done) {
361 index = idx;
362 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
363 PAGECACHE_TAG_DIRTY,
364 (pgoff_t)PAGEVEC_SIZE);
365 if (nr_pages == 0)
366 break;
367 for (i = 0; i < nr_pages; i++) {
368 struct page *page = pvec.pages[i];
369 struct buffer_head *bh, *head;
370
371 lock_page(page);
372 if (unlikely(page->mapping != mapping) ||
373 !PageDirty(page) ||
374 PageWriteback(page) ||
375 page->index != idx) {
376 done = 1;
377 unlock_page(page);
378 break;
379 }
1f94533d
TT
380 if (page_has_buffers(page)) {
381 bh = head = page_buffers(page);
382 do {
383 if (!buffer_delay(bh) &&
384 !buffer_unwritten(bh))
385 done = 1;
386 bh = bh->b_this_page;
387 } while (!done && (bh != head));
388 }
55138e0b
TT
389 unlock_page(page);
390 if (done)
391 break;
392 idx++;
393 num++;
659c6009
ES
394 if (num >= max_pages) {
395 done = 1;
55138e0b 396 break;
659c6009 397 }
55138e0b
TT
398 }
399 pagevec_release(&pvec);
400 }
401 return num;
402}
403
f5ab0d1f 404/*
e35fd660 405 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 406 * and returns if the blocks are already mapped.
f5ab0d1f 407 *
f5ab0d1f
MC
408 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
409 * and store the allocated blocks in the result buffer head and mark it
410 * mapped.
411 *
e35fd660
TT
412 * If file type is extents based, it will call ext4_ext_map_blocks(),
413 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
414 * based files
415 *
416 * On success, it returns the number of blocks being mapped or allocate.
417 * if create==0 and the blocks are pre-allocated and uninitialized block,
418 * the result buffer head is unmapped. If the create ==1, it will make sure
419 * the buffer head is mapped.
420 *
421 * It returns 0 if plain look up failed (blocks have not been allocated), in
422 * that casem, buffer head is unmapped
423 *
424 * It returns the error in case of allocation failure.
425 */
e35fd660
TT
426int ext4_map_blocks(handle_t *handle, struct inode *inode,
427 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
428{
429 int retval;
f5ab0d1f 430
e35fd660
TT
431 map->m_flags = 0;
432 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
433 "logical block %lu\n", inode->i_ino, flags, map->m_len,
434 (unsigned long) map->m_lblk);
4df3d265 435 /*
b920c755
TT
436 * Try to see if we can get the block without requesting a new
437 * file system block.
4df3d265
AK
438 */
439 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 440 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 441 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 442 } else {
e35fd660 443 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 444 }
4df3d265 445 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 446
e35fd660 447 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 448 int ret = check_block_validity(inode, map);
6fd058f7
TT
449 if (ret != 0)
450 return ret;
451 }
452
f5ab0d1f 453 /* If it is only a block(s) look up */
c2177057 454 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
455 return retval;
456
457 /*
458 * Returns if the blocks have already allocated
459 *
460 * Note that if blocks have been preallocated
461 * ext4_ext_get_block() returns th create = 0
462 * with buffer head unmapped.
463 */
e35fd660 464 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
465 return retval;
466
2a8964d6
AK
467 /*
468 * When we call get_blocks without the create flag, the
469 * BH_Unwritten flag could have gotten set if the blocks
470 * requested were part of a uninitialized extent. We need to
471 * clear this flag now that we are committed to convert all or
472 * part of the uninitialized extent to be an initialized
473 * extent. This is because we need to avoid the combination
474 * of BH_Unwritten and BH_Mapped flags being simultaneously
475 * set on the buffer_head.
476 */
e35fd660 477 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 478
4df3d265 479 /*
f5ab0d1f
MC
480 * New blocks allocate and/or writing to uninitialized extent
481 * will possibly result in updating i_data, so we take
482 * the write lock of i_data_sem, and call get_blocks()
483 * with create == 1 flag.
4df3d265
AK
484 */
485 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
486
487 /*
488 * if the caller is from delayed allocation writeout path
489 * we have already reserved fs blocks for allocation
490 * let the underlying get_block() function know to
491 * avoid double accounting
492 */
c2177057 493 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 494 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
495 /*
496 * We need to check for EXT4 here because migrate
497 * could have changed the inode type in between
498 */
12e9b892 499 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 500 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 501 } else {
e35fd660 502 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 503
e35fd660 504 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
505 /*
506 * We allocated new blocks which will result in
507 * i_data's format changing. Force the migrate
508 * to fail by clearing migrate flags
509 */
19f5fb7a 510 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 511 }
d2a17637 512
5f634d06
AK
513 /*
514 * Update reserved blocks/metadata blocks after successful
515 * block allocation which had been deferred till now. We don't
516 * support fallocate for non extent files. So we can update
517 * reserve space here.
518 */
519 if ((retval > 0) &&
1296cc85 520 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
521 ext4_da_update_reserve_space(inode, retval, 1);
522 }
2ac3b6e0 523 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 524 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 525
4df3d265 526 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 527 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 528 int ret = check_block_validity(inode, map);
6fd058f7
TT
529 if (ret != 0)
530 return ret;
531 }
0e855ac8
AK
532 return retval;
533}
534
f3bd1f3f
MC
535/* Maximum number of blocks we map for direct IO at once. */
536#define DIO_MAX_BLOCKS 4096
537
2ed88685
TT
538static int _ext4_get_block(struct inode *inode, sector_t iblock,
539 struct buffer_head *bh, int flags)
ac27a0ec 540{
3e4fdaf8 541 handle_t *handle = ext4_journal_current_handle();
2ed88685 542 struct ext4_map_blocks map;
7fb5409d 543 int ret = 0, started = 0;
f3bd1f3f 544 int dio_credits;
ac27a0ec 545
2ed88685
TT
546 map.m_lblk = iblock;
547 map.m_len = bh->b_size >> inode->i_blkbits;
548
549 if (flags && !handle) {
7fb5409d 550 /* Direct IO write... */
2ed88685
TT
551 if (map.m_len > DIO_MAX_BLOCKS)
552 map.m_len = DIO_MAX_BLOCKS;
553 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 554 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 555 if (IS_ERR(handle)) {
ac27a0ec 556 ret = PTR_ERR(handle);
2ed88685 557 return ret;
ac27a0ec 558 }
7fb5409d 559 started = 1;
ac27a0ec
DK
560 }
561
2ed88685 562 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 563 if (ret > 0) {
2ed88685
TT
564 map_bh(bh, inode->i_sb, map.m_pblk);
565 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
566 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 567 ret = 0;
ac27a0ec 568 }
7fb5409d
JK
569 if (started)
570 ext4_journal_stop(handle);
ac27a0ec
DK
571 return ret;
572}
573
2ed88685
TT
574int ext4_get_block(struct inode *inode, sector_t iblock,
575 struct buffer_head *bh, int create)
576{
577 return _ext4_get_block(inode, iblock, bh,
578 create ? EXT4_GET_BLOCKS_CREATE : 0);
579}
580
ac27a0ec
DK
581/*
582 * `handle' can be NULL if create is zero
583 */
617ba13b 584struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 585 ext4_lblk_t block, int create, int *errp)
ac27a0ec 586{
2ed88685
TT
587 struct ext4_map_blocks map;
588 struct buffer_head *bh;
ac27a0ec
DK
589 int fatal = 0, err;
590
591 J_ASSERT(handle != NULL || create == 0);
592
2ed88685
TT
593 map.m_lblk = block;
594 map.m_len = 1;
595 err = ext4_map_blocks(handle, inode, &map,
596 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 597
2ed88685
TT
598 if (err < 0)
599 *errp = err;
600 if (err <= 0)
601 return NULL;
602 *errp = 0;
603
604 bh = sb_getblk(inode->i_sb, map.m_pblk);
605 if (!bh) {
606 *errp = -EIO;
607 return NULL;
ac27a0ec 608 }
2ed88685
TT
609 if (map.m_flags & EXT4_MAP_NEW) {
610 J_ASSERT(create != 0);
611 J_ASSERT(handle != NULL);
ac27a0ec 612
2ed88685
TT
613 /*
614 * Now that we do not always journal data, we should
615 * keep in mind whether this should always journal the
616 * new buffer as metadata. For now, regular file
617 * writes use ext4_get_block instead, so it's not a
618 * problem.
619 */
620 lock_buffer(bh);
621 BUFFER_TRACE(bh, "call get_create_access");
622 fatal = ext4_journal_get_create_access(handle, bh);
623 if (!fatal && !buffer_uptodate(bh)) {
624 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
625 set_buffer_uptodate(bh);
ac27a0ec 626 }
2ed88685
TT
627 unlock_buffer(bh);
628 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
629 err = ext4_handle_dirty_metadata(handle, inode, bh);
630 if (!fatal)
631 fatal = err;
632 } else {
633 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 634 }
2ed88685
TT
635 if (fatal) {
636 *errp = fatal;
637 brelse(bh);
638 bh = NULL;
639 }
640 return bh;
ac27a0ec
DK
641}
642
617ba13b 643struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 644 ext4_lblk_t block, int create, int *err)
ac27a0ec 645{
af5bc92d 646 struct buffer_head *bh;
ac27a0ec 647
617ba13b 648 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
649 if (!bh)
650 return bh;
651 if (buffer_uptodate(bh))
652 return bh;
653 ll_rw_block(READ_META, 1, &bh);
654 wait_on_buffer(bh);
655 if (buffer_uptodate(bh))
656 return bh;
657 put_bh(bh);
658 *err = -EIO;
659 return NULL;
660}
661
af5bc92d
TT
662static int walk_page_buffers(handle_t *handle,
663 struct buffer_head *head,
664 unsigned from,
665 unsigned to,
666 int *partial,
667 int (*fn)(handle_t *handle,
668 struct buffer_head *bh))
ac27a0ec
DK
669{
670 struct buffer_head *bh;
671 unsigned block_start, block_end;
672 unsigned blocksize = head->b_size;
673 int err, ret = 0;
674 struct buffer_head *next;
675
af5bc92d
TT
676 for (bh = head, block_start = 0;
677 ret == 0 && (bh != head || !block_start);
de9a55b8 678 block_start = block_end, bh = next) {
ac27a0ec
DK
679 next = bh->b_this_page;
680 block_end = block_start + blocksize;
681 if (block_end <= from || block_start >= to) {
682 if (partial && !buffer_uptodate(bh))
683 *partial = 1;
684 continue;
685 }
686 err = (*fn)(handle, bh);
687 if (!ret)
688 ret = err;
689 }
690 return ret;
691}
692
693/*
694 * To preserve ordering, it is essential that the hole instantiation and
695 * the data write be encapsulated in a single transaction. We cannot
617ba13b 696 * close off a transaction and start a new one between the ext4_get_block()
dab291af 697 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
698 * prepare_write() is the right place.
699 *
617ba13b
MC
700 * Also, this function can nest inside ext4_writepage() ->
701 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
702 * has generated enough buffer credits to do the whole page. So we won't
703 * block on the journal in that case, which is good, because the caller may
704 * be PF_MEMALLOC.
705 *
617ba13b 706 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
707 * quota file writes. If we were to commit the transaction while thus
708 * reentered, there can be a deadlock - we would be holding a quota
709 * lock, and the commit would never complete if another thread had a
710 * transaction open and was blocking on the quota lock - a ranking
711 * violation.
712 *
dab291af 713 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
714 * will _not_ run commit under these circumstances because handle->h_ref
715 * is elevated. We'll still have enough credits for the tiny quotafile
716 * write.
717 */
718static int do_journal_get_write_access(handle_t *handle,
de9a55b8 719 struct buffer_head *bh)
ac27a0ec 720{
56d35a4c
JK
721 int dirty = buffer_dirty(bh);
722 int ret;
723
ac27a0ec
DK
724 if (!buffer_mapped(bh) || buffer_freed(bh))
725 return 0;
56d35a4c 726 /*
ebdec241 727 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
728 * the dirty bit as jbd2_journal_get_write_access() could complain
729 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 730 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
731 * the bit before releasing a page lock and thus writeback cannot
732 * ever write the buffer.
733 */
734 if (dirty)
735 clear_buffer_dirty(bh);
736 ret = ext4_journal_get_write_access(handle, bh);
737 if (!ret && dirty)
738 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
739 return ret;
ac27a0ec
DK
740}
741
744692dc
JZ
742static int ext4_get_block_write(struct inode *inode, sector_t iblock,
743 struct buffer_head *bh_result, int create);
bfc1af65 744static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
745 loff_t pos, unsigned len, unsigned flags,
746 struct page **pagep, void **fsdata)
ac27a0ec 747{
af5bc92d 748 struct inode *inode = mapping->host;
1938a150 749 int ret, needed_blocks;
ac27a0ec
DK
750 handle_t *handle;
751 int retries = 0;
af5bc92d 752 struct page *page;
de9a55b8 753 pgoff_t index;
af5bc92d 754 unsigned from, to;
bfc1af65 755
9bffad1e 756 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
757 /*
758 * Reserve one block more for addition to orphan list in case
759 * we allocate blocks but write fails for some reason
760 */
761 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 762 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
763 from = pos & (PAGE_CACHE_SIZE - 1);
764 to = from + len;
ac27a0ec
DK
765
766retry:
af5bc92d
TT
767 handle = ext4_journal_start(inode, needed_blocks);
768 if (IS_ERR(handle)) {
769 ret = PTR_ERR(handle);
770 goto out;
7479d2b9 771 }
ac27a0ec 772
ebd3610b
JK
773 /* We cannot recurse into the filesystem as the transaction is already
774 * started */
775 flags |= AOP_FLAG_NOFS;
776
54566b2c 777 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
778 if (!page) {
779 ext4_journal_stop(handle);
780 ret = -ENOMEM;
781 goto out;
782 }
783 *pagep = page;
784
744692dc 785 if (ext4_should_dioread_nolock(inode))
6e1db88d 786 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 787 else
6e1db88d 788 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
789
790 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
791 ret = walk_page_buffers(handle, page_buffers(page),
792 from, to, NULL, do_journal_get_write_access);
793 }
bfc1af65
NP
794
795 if (ret) {
af5bc92d 796 unlock_page(page);
af5bc92d 797 page_cache_release(page);
ae4d5372 798 /*
6e1db88d 799 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
800 * outside i_size. Trim these off again. Don't need
801 * i_size_read because we hold i_mutex.
1938a150
AK
802 *
803 * Add inode to orphan list in case we crash before
804 * truncate finishes
ae4d5372 805 */
ffacfa7a 806 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
807 ext4_orphan_add(handle, inode);
808
809 ext4_journal_stop(handle);
810 if (pos + len > inode->i_size) {
b9a4207d 811 ext4_truncate_failed_write(inode);
de9a55b8 812 /*
ffacfa7a 813 * If truncate failed early the inode might
1938a150
AK
814 * still be on the orphan list; we need to
815 * make sure the inode is removed from the
816 * orphan list in that case.
817 */
818 if (inode->i_nlink)
819 ext4_orphan_del(NULL, inode);
820 }
bfc1af65
NP
821 }
822
617ba13b 823 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 824 goto retry;
7479d2b9 825out:
ac27a0ec
DK
826 return ret;
827}
828
bfc1af65
NP
829/* For write_end() in data=journal mode */
830static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
831{
832 if (!buffer_mapped(bh) || buffer_freed(bh))
833 return 0;
834 set_buffer_uptodate(bh);
0390131b 835 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
836}
837
f8514083 838static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
839 struct address_space *mapping,
840 loff_t pos, unsigned len, unsigned copied,
841 struct page *page, void *fsdata)
f8514083
AK
842{
843 int i_size_changed = 0;
844 struct inode *inode = mapping->host;
845 handle_t *handle = ext4_journal_current_handle();
846
847 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
848
849 /*
850 * No need to use i_size_read() here, the i_size
851 * cannot change under us because we hold i_mutex.
852 *
853 * But it's important to update i_size while still holding page lock:
854 * page writeout could otherwise come in and zero beyond i_size.
855 */
856 if (pos + copied > inode->i_size) {
857 i_size_write(inode, pos + copied);
858 i_size_changed = 1;
859 }
860
861 if (pos + copied > EXT4_I(inode)->i_disksize) {
862 /* We need to mark inode dirty even if
863 * new_i_size is less that inode->i_size
864 * bu greater than i_disksize.(hint delalloc)
865 */
866 ext4_update_i_disksize(inode, (pos + copied));
867 i_size_changed = 1;
868 }
869 unlock_page(page);
870 page_cache_release(page);
871
872 /*
873 * Don't mark the inode dirty under page lock. First, it unnecessarily
874 * makes the holding time of page lock longer. Second, it forces lock
875 * ordering of page lock and transaction start for journaling
876 * filesystems.
877 */
878 if (i_size_changed)
879 ext4_mark_inode_dirty(handle, inode);
880
881 return copied;
882}
883
ac27a0ec
DK
884/*
885 * We need to pick up the new inode size which generic_commit_write gave us
886 * `file' can be NULL - eg, when called from page_symlink().
887 *
617ba13b 888 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
889 * buffers are managed internally.
890 */
bfc1af65 891static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
892 struct address_space *mapping,
893 loff_t pos, unsigned len, unsigned copied,
894 struct page *page, void *fsdata)
ac27a0ec 895{
617ba13b 896 handle_t *handle = ext4_journal_current_handle();
cf108bca 897 struct inode *inode = mapping->host;
ac27a0ec
DK
898 int ret = 0, ret2;
899
9bffad1e 900 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 901 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
902
903 if (ret == 0) {
f8514083 904 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 905 page, fsdata);
f8a87d89 906 copied = ret2;
ffacfa7a 907 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
908 /* if we have allocated more blocks and copied
909 * less. We will have blocks allocated outside
910 * inode->i_size. So truncate them
911 */
912 ext4_orphan_add(handle, inode);
f8a87d89
RK
913 if (ret2 < 0)
914 ret = ret2;
ac27a0ec 915 }
617ba13b 916 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
917 if (!ret)
918 ret = ret2;
bfc1af65 919
f8514083 920 if (pos + len > inode->i_size) {
b9a4207d 921 ext4_truncate_failed_write(inode);
de9a55b8 922 /*
ffacfa7a 923 * If truncate failed early the inode might still be
f8514083
AK
924 * on the orphan list; we need to make sure the inode
925 * is removed from the orphan list in that case.
926 */
927 if (inode->i_nlink)
928 ext4_orphan_del(NULL, inode);
929 }
930
931
bfc1af65 932 return ret ? ret : copied;
ac27a0ec
DK
933}
934
bfc1af65 935static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
936 struct address_space *mapping,
937 loff_t pos, unsigned len, unsigned copied,
938 struct page *page, void *fsdata)
ac27a0ec 939{
617ba13b 940 handle_t *handle = ext4_journal_current_handle();
cf108bca 941 struct inode *inode = mapping->host;
ac27a0ec 942 int ret = 0, ret2;
ac27a0ec 943
9bffad1e 944 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 945 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 946 page, fsdata);
f8a87d89 947 copied = ret2;
ffacfa7a 948 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
949 /* if we have allocated more blocks and copied
950 * less. We will have blocks allocated outside
951 * inode->i_size. So truncate them
952 */
953 ext4_orphan_add(handle, inode);
954
f8a87d89
RK
955 if (ret2 < 0)
956 ret = ret2;
ac27a0ec 957
617ba13b 958 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
959 if (!ret)
960 ret = ret2;
bfc1af65 961
f8514083 962 if (pos + len > inode->i_size) {
b9a4207d 963 ext4_truncate_failed_write(inode);
de9a55b8 964 /*
ffacfa7a 965 * If truncate failed early the inode might still be
f8514083
AK
966 * on the orphan list; we need to make sure the inode
967 * is removed from the orphan list in that case.
968 */
969 if (inode->i_nlink)
970 ext4_orphan_del(NULL, inode);
971 }
972
bfc1af65 973 return ret ? ret : copied;
ac27a0ec
DK
974}
975
bfc1af65 976static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
977 struct address_space *mapping,
978 loff_t pos, unsigned len, unsigned copied,
979 struct page *page, void *fsdata)
ac27a0ec 980{
617ba13b 981 handle_t *handle = ext4_journal_current_handle();
bfc1af65 982 struct inode *inode = mapping->host;
ac27a0ec
DK
983 int ret = 0, ret2;
984 int partial = 0;
bfc1af65 985 unsigned from, to;
cf17fea6 986 loff_t new_i_size;
ac27a0ec 987
9bffad1e 988 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
989 from = pos & (PAGE_CACHE_SIZE - 1);
990 to = from + len;
991
441c8508
CW
992 BUG_ON(!ext4_handle_valid(handle));
993
bfc1af65
NP
994 if (copied < len) {
995 if (!PageUptodate(page))
996 copied = 0;
997 page_zero_new_buffers(page, from+copied, to);
998 }
ac27a0ec
DK
999
1000 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1001 to, &partial, write_end_fn);
ac27a0ec
DK
1002 if (!partial)
1003 SetPageUptodate(page);
cf17fea6
AK
1004 new_i_size = pos + copied;
1005 if (new_i_size > inode->i_size)
bfc1af65 1006 i_size_write(inode, pos+copied);
19f5fb7a 1007 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1008 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1009 if (new_i_size > EXT4_I(inode)->i_disksize) {
1010 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1011 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1012 if (!ret)
1013 ret = ret2;
1014 }
bfc1af65 1015
cf108bca 1016 unlock_page(page);
f8514083 1017 page_cache_release(page);
ffacfa7a 1018 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1019 /* if we have allocated more blocks and copied
1020 * less. We will have blocks allocated outside
1021 * inode->i_size. So truncate them
1022 */
1023 ext4_orphan_add(handle, inode);
1024
617ba13b 1025 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1026 if (!ret)
1027 ret = ret2;
f8514083 1028 if (pos + len > inode->i_size) {
b9a4207d 1029 ext4_truncate_failed_write(inode);
de9a55b8 1030 /*
ffacfa7a 1031 * If truncate failed early the inode might still be
f8514083
AK
1032 * on the orphan list; we need to make sure the inode
1033 * is removed from the orphan list in that case.
1034 */
1035 if (inode->i_nlink)
1036 ext4_orphan_del(NULL, inode);
1037 }
bfc1af65
NP
1038
1039 return ret ? ret : copied;
ac27a0ec 1040}
d2a17637 1041
9d0be502
TT
1042/*
1043 * Reserve a single block located at lblock
1044 */
01f49d0b 1045static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1046{
030ba6bc 1047 int retries = 0;
60e58e0f 1048 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1049 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1050 unsigned long md_needed;
5dd4056d 1051 int ret;
d2a17637
MC
1052
1053 /*
1054 * recalculate the amount of metadata blocks to reserve
1055 * in order to allocate nrblocks
1056 * worse case is one extent per block
1057 */
030ba6bc 1058repeat:
0637c6f4 1059 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1060 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1061 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1062 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1063
60e58e0f 1064 /*
72b8ab9d
ES
1065 * We will charge metadata quota at writeout time; this saves
1066 * us from metadata over-estimation, though we may go over by
1067 * a small amount in the end. Here we just reserve for data.
60e58e0f 1068 */
72b8ab9d 1069 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1070 if (ret)
1071 return ret;
72b8ab9d
ES
1072 /*
1073 * We do still charge estimated metadata to the sb though;
1074 * we cannot afford to run out of free blocks.
1075 */
55f020db 1076 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
72b8ab9d 1077 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1078 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1079 yield();
1080 goto repeat;
1081 }
d2a17637
MC
1082 return -ENOSPC;
1083 }
0637c6f4 1084 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1085 ei->i_reserved_data_blocks++;
0637c6f4
TT
1086 ei->i_reserved_meta_blocks += md_needed;
1087 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1088
d2a17637
MC
1089 return 0; /* success */
1090}
1091
12219aea 1092static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1093{
1094 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1095 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1096
cd213226
MC
1097 if (!to_free)
1098 return; /* Nothing to release, exit */
1099
d2a17637 1100 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1101
5a58ec87 1102 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1103 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1104 /*
0637c6f4
TT
1105 * if there aren't enough reserved blocks, then the
1106 * counter is messed up somewhere. Since this
1107 * function is called from invalidate page, it's
1108 * harmless to return without any action.
cd213226 1109 */
0637c6f4
TT
1110 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1111 "ino %lu, to_free %d with only %d reserved "
1112 "data blocks\n", inode->i_ino, to_free,
1113 ei->i_reserved_data_blocks);
1114 WARN_ON(1);
1115 to_free = ei->i_reserved_data_blocks;
cd213226 1116 }
0637c6f4 1117 ei->i_reserved_data_blocks -= to_free;
cd213226 1118
0637c6f4
TT
1119 if (ei->i_reserved_data_blocks == 0) {
1120 /*
1121 * We can release all of the reserved metadata blocks
1122 * only when we have written all of the delayed
1123 * allocation blocks.
1124 */
72b8ab9d
ES
1125 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1126 ei->i_reserved_meta_blocks);
ee5f4d9c 1127 ei->i_reserved_meta_blocks = 0;
9d0be502 1128 ei->i_da_metadata_calc_len = 0;
0637c6f4 1129 }
d2a17637 1130
72b8ab9d 1131 /* update fs dirty data blocks counter */
0637c6f4 1132 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1133
d2a17637 1134 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1135
5dd4056d 1136 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1137}
1138
1139static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1140 unsigned long offset)
d2a17637
MC
1141{
1142 int to_release = 0;
1143 struct buffer_head *head, *bh;
1144 unsigned int curr_off = 0;
1145
1146 head = page_buffers(page);
1147 bh = head;
1148 do {
1149 unsigned int next_off = curr_off + bh->b_size;
1150
1151 if ((offset <= curr_off) && (buffer_delay(bh))) {
1152 to_release++;
1153 clear_buffer_delay(bh);
1154 }
1155 curr_off = next_off;
1156 } while ((bh = bh->b_this_page) != head);
12219aea 1157 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1158}
ac27a0ec 1159
64769240
AT
1160/*
1161 * Delayed allocation stuff
1162 */
1163
64769240
AT
1164/*
1165 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1166 * them with writepage() call back
64769240
AT
1167 *
1168 * @mpd->inode: inode
1169 * @mpd->first_page: first page of the extent
1170 * @mpd->next_page: page after the last page of the extent
64769240
AT
1171 *
1172 * By the time mpage_da_submit_io() is called we expect all blocks
1173 * to be allocated. this may be wrong if allocation failed.
1174 *
1175 * As pages are already locked by write_cache_pages(), we can't use it
1176 */
1de3e3df
TT
1177static int mpage_da_submit_io(struct mpage_da_data *mpd,
1178 struct ext4_map_blocks *map)
64769240 1179{
791b7f08
AK
1180 struct pagevec pvec;
1181 unsigned long index, end;
1182 int ret = 0, err, nr_pages, i;
1183 struct inode *inode = mpd->inode;
1184 struct address_space *mapping = inode->i_mapping;
cb20d518 1185 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1186 unsigned int len, block_start;
1187 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1188 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1189 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1190 struct ext4_io_submit io_submit;
64769240
AT
1191
1192 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1193 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1194 /*
1195 * We need to start from the first_page to the next_page - 1
1196 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1197 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1198 * at the currently mapped buffer_heads.
1199 */
64769240
AT
1200 index = mpd->first_page;
1201 end = mpd->next_page - 1;
1202
791b7f08 1203 pagevec_init(&pvec, 0);
64769240 1204 while (index <= end) {
791b7f08 1205 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1206 if (nr_pages == 0)
1207 break;
1208 for (i = 0; i < nr_pages; i++) {
97498956 1209 int commit_write = 0, skip_page = 0;
64769240
AT
1210 struct page *page = pvec.pages[i];
1211
791b7f08
AK
1212 index = page->index;
1213 if (index > end)
1214 break;
cb20d518
TT
1215
1216 if (index == size >> PAGE_CACHE_SHIFT)
1217 len = size & ~PAGE_CACHE_MASK;
1218 else
1219 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1220 if (map) {
1221 cur_logical = index << (PAGE_CACHE_SHIFT -
1222 inode->i_blkbits);
1223 pblock = map->m_pblk + (cur_logical -
1224 map->m_lblk);
1225 }
791b7f08
AK
1226 index++;
1227
1228 BUG_ON(!PageLocked(page));
1229 BUG_ON(PageWriteback(page));
1230
64769240 1231 /*
cb20d518
TT
1232 * If the page does not have buffers (for
1233 * whatever reason), try to create them using
a107e5a3 1234 * __block_write_begin. If this fails,
97498956 1235 * skip the page and move on.
64769240 1236 */
cb20d518 1237 if (!page_has_buffers(page)) {
a107e5a3 1238 if (__block_write_begin(page, 0, len,
cb20d518 1239 noalloc_get_block_write)) {
97498956 1240 skip_page:
cb20d518
TT
1241 unlock_page(page);
1242 continue;
1243 }
1244 commit_write = 1;
1245 }
64769240 1246
3ecdb3a1
TT
1247 bh = page_bufs = page_buffers(page);
1248 block_start = 0;
64769240 1249 do {
1de3e3df 1250 if (!bh)
97498956 1251 goto skip_page;
1de3e3df
TT
1252 if (map && (cur_logical >= map->m_lblk) &&
1253 (cur_logical <= (map->m_lblk +
1254 (map->m_len - 1)))) {
29fa89d0
AK
1255 if (buffer_delay(bh)) {
1256 clear_buffer_delay(bh);
1257 bh->b_blocknr = pblock;
29fa89d0 1258 }
1de3e3df
TT
1259 if (buffer_unwritten(bh) ||
1260 buffer_mapped(bh))
1261 BUG_ON(bh->b_blocknr != pblock);
1262 if (map->m_flags & EXT4_MAP_UNINIT)
1263 set_buffer_uninit(bh);
1264 clear_buffer_unwritten(bh);
1265 }
29fa89d0 1266
97498956 1267 /* skip page if block allocation undone */
1de3e3df 1268 if (buffer_delay(bh) || buffer_unwritten(bh))
97498956 1269 skip_page = 1;
3ecdb3a1
TT
1270 bh = bh->b_this_page;
1271 block_start += bh->b_size;
64769240
AT
1272 cur_logical++;
1273 pblock++;
1de3e3df
TT
1274 } while (bh != page_bufs);
1275
97498956
TT
1276 if (skip_page)
1277 goto skip_page;
cb20d518
TT
1278
1279 if (commit_write)
1280 /* mark the buffer_heads as dirty & uptodate */
1281 block_commit_write(page, 0, len);
1282
97498956 1283 clear_page_dirty_for_io(page);
bd2d0210
TT
1284 /*
1285 * Delalloc doesn't support data journalling,
1286 * but eventually maybe we'll lift this
1287 * restriction.
1288 */
1289 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1290 err = __ext4_journalled_writepage(page, len);
1449032b 1291 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1292 err = ext4_bio_write_page(&io_submit, page,
1293 len, mpd->wbc);
1449032b
TT
1294 else
1295 err = block_write_full_page(page,
1296 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1297
1298 if (!err)
a1d6cc56 1299 mpd->pages_written++;
64769240
AT
1300 /*
1301 * In error case, we have to continue because
1302 * remaining pages are still locked
64769240
AT
1303 */
1304 if (ret == 0)
1305 ret = err;
64769240
AT
1306 }
1307 pagevec_release(&pvec);
1308 }
bd2d0210 1309 ext4_io_submit(&io_submit);
64769240 1310 return ret;
64769240
AT
1311}
1312
c7f5938a 1313static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1314{
1315 int nr_pages, i;
1316 pgoff_t index, end;
1317 struct pagevec pvec;
1318 struct inode *inode = mpd->inode;
1319 struct address_space *mapping = inode->i_mapping;
1320
c7f5938a
CW
1321 index = mpd->first_page;
1322 end = mpd->next_page - 1;
c4a0c46e
AK
1323 while (index <= end) {
1324 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1325 if (nr_pages == 0)
1326 break;
1327 for (i = 0; i < nr_pages; i++) {
1328 struct page *page = pvec.pages[i];
9b1d0998 1329 if (page->index > end)
c4a0c46e 1330 break;
c4a0c46e
AK
1331 BUG_ON(!PageLocked(page));
1332 BUG_ON(PageWriteback(page));
1333 block_invalidatepage(page, 0);
1334 ClearPageUptodate(page);
1335 unlock_page(page);
1336 }
9b1d0998
JK
1337 index = pvec.pages[nr_pages - 1]->index + 1;
1338 pagevec_release(&pvec);
c4a0c46e
AK
1339 }
1340 return;
1341}
1342
df22291f
AK
1343static void ext4_print_free_blocks(struct inode *inode)
1344{
1345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
1346 printk(KERN_CRIT "Total free blocks count %lld\n",
1347 ext4_count_free_blocks(inode->i_sb));
1348 printk(KERN_CRIT "Free/Dirty block details\n");
1349 printk(KERN_CRIT "free_blocks=%lld\n",
1350 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1351 printk(KERN_CRIT "dirty_blocks=%lld\n",
1352 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1353 printk(KERN_CRIT "Block reservation details\n");
1354 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1355 EXT4_I(inode)->i_reserved_data_blocks);
1356 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1357 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1358 return;
1359}
1360
64769240 1361/*
5a87b7a5
TT
1362 * mpage_da_map_and_submit - go through given space, map them
1363 * if necessary, and then submit them for I/O
64769240 1364 *
8dc207c0 1365 * @mpd - bh describing space
64769240
AT
1366 *
1367 * The function skips space we know is already mapped to disk blocks.
1368 *
64769240 1369 */
5a87b7a5 1370static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1371{
2ac3b6e0 1372 int err, blks, get_blocks_flags;
1de3e3df 1373 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1374 sector_t next = mpd->b_blocknr;
1375 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1376 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1377 handle_t *handle = NULL;
64769240
AT
1378
1379 /*
5a87b7a5
TT
1380 * If the blocks are mapped already, or we couldn't accumulate
1381 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1382 */
5a87b7a5
TT
1383 if ((mpd->b_size == 0) ||
1384 ((mpd->b_state & (1 << BH_Mapped)) &&
1385 !(mpd->b_state & (1 << BH_Delay)) &&
1386 !(mpd->b_state & (1 << BH_Unwritten))))
1387 goto submit_io;
2fa3cdfb
TT
1388
1389 handle = ext4_journal_current_handle();
1390 BUG_ON(!handle);
1391
79ffab34 1392 /*
79e83036 1393 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1394 * blocks, or to convert an uninitialized extent to be
1395 * initialized (in the case where we have written into
1396 * one or more preallocated blocks).
1397 *
1398 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1399 * indicate that we are on the delayed allocation path. This
1400 * affects functions in many different parts of the allocation
1401 * call path. This flag exists primarily because we don't
79e83036 1402 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1403 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1404 * inode's allocation semaphore is taken.
1405 *
1406 * If the blocks in questions were delalloc blocks, set
1407 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1408 * variables are updated after the blocks have been allocated.
79ffab34 1409 */
2ed88685
TT
1410 map.m_lblk = next;
1411 map.m_len = max_blocks;
1296cc85 1412 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1413 if (ext4_should_dioread_nolock(mpd->inode))
1414 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1415 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1416 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1417
2ed88685 1418 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1419 if (blks < 0) {
e3570639
ES
1420 struct super_block *sb = mpd->inode->i_sb;
1421
2fa3cdfb 1422 err = blks;
ed5bde0b 1423 /*
5a87b7a5 1424 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1425 * appears to be free blocks we will just let
1426 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1427 */
1428 if (err == -EAGAIN)
5a87b7a5 1429 goto submit_io;
df22291f
AK
1430
1431 if (err == -ENOSPC &&
e3570639 1432 ext4_count_free_blocks(sb)) {
df22291f 1433 mpd->retval = err;
5a87b7a5 1434 goto submit_io;
df22291f
AK
1435 }
1436
c4a0c46e 1437 /*
ed5bde0b
TT
1438 * get block failure will cause us to loop in
1439 * writepages, because a_ops->writepage won't be able
1440 * to make progress. The page will be redirtied by
1441 * writepage and writepages will again try to write
1442 * the same.
c4a0c46e 1443 */
e3570639
ES
1444 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1445 ext4_msg(sb, KERN_CRIT,
1446 "delayed block allocation failed for inode %lu "
1447 "at logical offset %llu with max blocks %zd "
1448 "with error %d", mpd->inode->i_ino,
1449 (unsigned long long) next,
1450 mpd->b_size >> mpd->inode->i_blkbits, err);
1451 ext4_msg(sb, KERN_CRIT,
1452 "This should not happen!! Data will be lost\n");
1453 if (err == -ENOSPC)
1454 ext4_print_free_blocks(mpd->inode);
030ba6bc 1455 }
2fa3cdfb 1456 /* invalidate all the pages */
c7f5938a 1457 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1458
1459 /* Mark this page range as having been completed */
1460 mpd->io_done = 1;
5a87b7a5 1461 return;
c4a0c46e 1462 }
2fa3cdfb
TT
1463 BUG_ON(blks == 0);
1464
1de3e3df 1465 mapp = &map;
2ed88685
TT
1466 if (map.m_flags & EXT4_MAP_NEW) {
1467 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1468 int i;
64769240 1469
2ed88685
TT
1470 for (i = 0; i < map.m_len; i++)
1471 unmap_underlying_metadata(bdev, map.m_pblk + i);
1472 }
64769240 1473
2fa3cdfb
TT
1474 if (ext4_should_order_data(mpd->inode)) {
1475 err = ext4_jbd2_file_inode(handle, mpd->inode);
1476 if (err)
5a87b7a5
TT
1477 /* This only happens if the journal is aborted */
1478 return;
2fa3cdfb
TT
1479 }
1480
1481 /*
03f5d8bc 1482 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1483 */
1484 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1485 if (disksize > i_size_read(mpd->inode))
1486 disksize = i_size_read(mpd->inode);
1487 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1488 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1489 err = ext4_mark_inode_dirty(handle, mpd->inode);
1490 if (err)
1491 ext4_error(mpd->inode->i_sb,
1492 "Failed to mark inode %lu dirty",
1493 mpd->inode->i_ino);
2fa3cdfb
TT
1494 }
1495
5a87b7a5 1496submit_io:
1de3e3df 1497 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1498 mpd->io_done = 1;
64769240
AT
1499}
1500
bf068ee2
AK
1501#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1502 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1503
1504/*
1505 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1506 *
1507 * @mpd->lbh - extent of blocks
1508 * @logical - logical number of the block in the file
1509 * @bh - bh of the block (used to access block's state)
1510 *
1511 * the function is used to collect contig. blocks in same state
1512 */
1513static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1514 sector_t logical, size_t b_size,
1515 unsigned long b_state)
64769240 1516{
64769240 1517 sector_t next;
8dc207c0 1518 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1519
c445e3e0
ES
1520 /*
1521 * XXX Don't go larger than mballoc is willing to allocate
1522 * This is a stopgap solution. We eventually need to fold
1523 * mpage_da_submit_io() into this function and then call
79e83036 1524 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1525 */
1526 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1527 goto flush_it;
1528
525f4ed8 1529 /* check if thereserved journal credits might overflow */
12e9b892 1530 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1531 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1532 /*
1533 * With non-extent format we are limited by the journal
1534 * credit available. Total credit needed to insert
1535 * nrblocks contiguous blocks is dependent on the
1536 * nrblocks. So limit nrblocks.
1537 */
1538 goto flush_it;
1539 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1540 EXT4_MAX_TRANS_DATA) {
1541 /*
1542 * Adding the new buffer_head would make it cross the
1543 * allowed limit for which we have journal credit
1544 * reserved. So limit the new bh->b_size
1545 */
1546 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1547 mpd->inode->i_blkbits;
1548 /* we will do mpage_da_submit_io in the next loop */
1549 }
1550 }
64769240
AT
1551 /*
1552 * First block in the extent
1553 */
8dc207c0
TT
1554 if (mpd->b_size == 0) {
1555 mpd->b_blocknr = logical;
1556 mpd->b_size = b_size;
1557 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1558 return;
1559 }
1560
8dc207c0 1561 next = mpd->b_blocknr + nrblocks;
64769240
AT
1562 /*
1563 * Can we merge the block to our big extent?
1564 */
8dc207c0
TT
1565 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1566 mpd->b_size += b_size;
64769240
AT
1567 return;
1568 }
1569
525f4ed8 1570flush_it:
64769240
AT
1571 /*
1572 * We couldn't merge the block to our extent, so we
1573 * need to flush current extent and start new one
1574 */
5a87b7a5 1575 mpage_da_map_and_submit(mpd);
a1d6cc56 1576 return;
64769240
AT
1577}
1578
c364b22c 1579static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1580{
c364b22c 1581 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1582}
1583
64769240 1584/*
b920c755
TT
1585 * This is a special get_blocks_t callback which is used by
1586 * ext4_da_write_begin(). It will either return mapped block or
1587 * reserve space for a single block.
29fa89d0
AK
1588 *
1589 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1590 * We also have b_blocknr = -1 and b_bdev initialized properly
1591 *
1592 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1593 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1594 * initialized properly.
64769240
AT
1595 */
1596static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1597 struct buffer_head *bh, int create)
64769240 1598{
2ed88685 1599 struct ext4_map_blocks map;
64769240 1600 int ret = 0;
33b9817e
AK
1601 sector_t invalid_block = ~((sector_t) 0xffff);
1602
1603 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1604 invalid_block = ~0;
64769240
AT
1605
1606 BUG_ON(create == 0);
2ed88685
TT
1607 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1608
1609 map.m_lblk = iblock;
1610 map.m_len = 1;
64769240
AT
1611
1612 /*
1613 * first, we need to know whether the block is allocated already
1614 * preallocated blocks are unmapped but should treated
1615 * the same as allocated blocks.
1616 */
2ed88685
TT
1617 ret = ext4_map_blocks(NULL, inode, &map, 0);
1618 if (ret < 0)
1619 return ret;
1620 if (ret == 0) {
1621 if (buffer_delay(bh))
1622 return 0; /* Not sure this could or should happen */
64769240 1623 /*
ebdec241 1624 * XXX: __block_write_begin() unmaps passed block, is it OK?
64769240 1625 */
9d0be502 1626 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
1627 if (ret)
1628 /* not enough space to reserve */
1629 return ret;
1630
2ed88685
TT
1631 map_bh(bh, inode->i_sb, invalid_block);
1632 set_buffer_new(bh);
1633 set_buffer_delay(bh);
1634 return 0;
64769240
AT
1635 }
1636
2ed88685
TT
1637 map_bh(bh, inode->i_sb, map.m_pblk);
1638 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1639
1640 if (buffer_unwritten(bh)) {
1641 /* A delayed write to unwritten bh should be marked
1642 * new and mapped. Mapped ensures that we don't do
1643 * get_block multiple times when we write to the same
1644 * offset and new ensures that we do proper zero out
1645 * for partial write.
1646 */
1647 set_buffer_new(bh);
c8205636 1648 set_buffer_mapped(bh);
2ed88685
TT
1649 }
1650 return 0;
64769240 1651}
61628a3f 1652
b920c755
TT
1653/*
1654 * This function is used as a standard get_block_t calback function
1655 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1656 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1657 * These functions should only try to map a single block at a time.
b920c755
TT
1658 *
1659 * Since this function doesn't do block allocations even if the caller
1660 * requests it by passing in create=1, it is critically important that
1661 * any caller checks to make sure that any buffer heads are returned
1662 * by this function are either all already mapped or marked for
206f7ab4
CH
1663 * delayed allocation before calling block_write_full_page(). Otherwise,
1664 * b_blocknr could be left unitialized, and the page write functions will
1665 * be taken by surprise.
b920c755
TT
1666 */
1667static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1668 struct buffer_head *bh_result, int create)
1669{
a2dc52b5 1670 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1671 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1672}
1673
62e086be
AK
1674static int bget_one(handle_t *handle, struct buffer_head *bh)
1675{
1676 get_bh(bh);
1677 return 0;
1678}
1679
1680static int bput_one(handle_t *handle, struct buffer_head *bh)
1681{
1682 put_bh(bh);
1683 return 0;
1684}
1685
1686static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1687 unsigned int len)
1688{
1689 struct address_space *mapping = page->mapping;
1690 struct inode *inode = mapping->host;
1691 struct buffer_head *page_bufs;
1692 handle_t *handle = NULL;
1693 int ret = 0;
1694 int err;
1695
cb20d518 1696 ClearPageChecked(page);
62e086be
AK
1697 page_bufs = page_buffers(page);
1698 BUG_ON(!page_bufs);
1699 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1700 /* As soon as we unlock the page, it can go away, but we have
1701 * references to buffers so we are safe */
1702 unlock_page(page);
1703
1704 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1705 if (IS_ERR(handle)) {
1706 ret = PTR_ERR(handle);
1707 goto out;
1708 }
1709
441c8508
CW
1710 BUG_ON(!ext4_handle_valid(handle));
1711
62e086be
AK
1712 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1713 do_journal_get_write_access);
1714
1715 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1716 write_end_fn);
1717 if (ret == 0)
1718 ret = err;
2d859db3 1719 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1720 err = ext4_journal_stop(handle);
1721 if (!ret)
1722 ret = err;
1723
1724 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1725 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1726out:
1727 return ret;
1728}
1729
744692dc
JZ
1730static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1731static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1732
61628a3f 1733/*
43ce1d23
AK
1734 * Note that we don't need to start a transaction unless we're journaling data
1735 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1736 * need to file the inode to the transaction's list in ordered mode because if
1737 * we are writing back data added by write(), the inode is already there and if
25985edc 1738 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1739 * transaction the data will hit the disk. In case we are journaling data, we
1740 * cannot start transaction directly because transaction start ranks above page
1741 * lock so we have to do some magic.
1742 *
b920c755
TT
1743 * This function can get called via...
1744 * - ext4_da_writepages after taking page lock (have journal handle)
1745 * - journal_submit_inode_data_buffers (no journal handle)
1746 * - shrink_page_list via pdflush (no journal handle)
1747 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1748 *
1749 * We don't do any block allocation in this function. If we have page with
1750 * multiple blocks we need to write those buffer_heads that are mapped. This
1751 * is important for mmaped based write. So if we do with blocksize 1K
1752 * truncate(f, 1024);
1753 * a = mmap(f, 0, 4096);
1754 * a[0] = 'a';
1755 * truncate(f, 4096);
1756 * we have in the page first buffer_head mapped via page_mkwrite call back
1757 * but other bufer_heads would be unmapped but dirty(dirty done via the
1758 * do_wp_page). So writepage should write the first block. If we modify
1759 * the mmap area beyond 1024 we will again get a page_fault and the
1760 * page_mkwrite callback will do the block allocation and mark the
1761 * buffer_heads mapped.
1762 *
1763 * We redirty the page if we have any buffer_heads that is either delay or
1764 * unwritten in the page.
1765 *
1766 * We can get recursively called as show below.
1767 *
1768 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1769 * ext4_writepage()
1770 *
1771 * But since we don't do any block allocation we should not deadlock.
1772 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1773 */
43ce1d23 1774static int ext4_writepage(struct page *page,
62e086be 1775 struct writeback_control *wbc)
64769240 1776{
a42afc5f 1777 int ret = 0, commit_write = 0;
61628a3f 1778 loff_t size;
498e5f24 1779 unsigned int len;
744692dc 1780 struct buffer_head *page_bufs = NULL;
61628a3f
MC
1781 struct inode *inode = page->mapping->host;
1782
a9c667f8 1783 trace_ext4_writepage(page);
f0e6c985
AK
1784 size = i_size_read(inode);
1785 if (page->index == size >> PAGE_CACHE_SHIFT)
1786 len = size & ~PAGE_CACHE_MASK;
1787 else
1788 len = PAGE_CACHE_SIZE;
64769240 1789
a42afc5f
TT
1790 /*
1791 * If the page does not have buffers (for whatever reason),
a107e5a3 1792 * try to create them using __block_write_begin. If this
a42afc5f
TT
1793 * fails, redirty the page and move on.
1794 */
b1142e8f 1795 if (!page_has_buffers(page)) {
a107e5a3 1796 if (__block_write_begin(page, 0, len,
a42afc5f
TT
1797 noalloc_get_block_write)) {
1798 redirty_page:
f0e6c985
AK
1799 redirty_page_for_writepage(wbc, page);
1800 unlock_page(page);
1801 return 0;
1802 }
a42afc5f
TT
1803 commit_write = 1;
1804 }
1805 page_bufs = page_buffers(page);
1806 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1807 ext4_bh_delay_or_unwritten)) {
f0e6c985 1808 /*
b1142e8f
TT
1809 * We don't want to do block allocation, so redirty
1810 * the page and return. We may reach here when we do
1811 * a journal commit via journal_submit_inode_data_buffers.
1812 * We can also reach here via shrink_page_list
f0e6c985 1813 */
a42afc5f
TT
1814 goto redirty_page;
1815 }
1816 if (commit_write)
ed9b3e33 1817 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 1818 block_commit_write(page, 0, len);
64769240 1819
cb20d518 1820 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1821 /*
1822 * It's mmapped pagecache. Add buffers and journal it. There
1823 * doesn't seem much point in redirtying the page here.
1824 */
3f0ca309 1825 return __ext4_journalled_writepage(page, len);
43ce1d23 1826
a42afc5f 1827 if (buffer_uninit(page_bufs)) {
744692dc
JZ
1828 ext4_set_bh_endio(page_bufs, inode);
1829 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1830 wbc, ext4_end_io_buffer_write);
1831 } else
b920c755
TT
1832 ret = block_write_full_page(page, noalloc_get_block_write,
1833 wbc);
64769240 1834
64769240
AT
1835 return ret;
1836}
1837
61628a3f 1838/*
525f4ed8 1839 * This is called via ext4_da_writepages() to
25985edc 1840 * calculate the total number of credits to reserve to fit
525f4ed8
MC
1841 * a single extent allocation into a single transaction,
1842 * ext4_da_writpeages() will loop calling this before
1843 * the block allocation.
61628a3f 1844 */
525f4ed8
MC
1845
1846static int ext4_da_writepages_trans_blocks(struct inode *inode)
1847{
1848 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1849
1850 /*
1851 * With non-extent format the journal credit needed to
1852 * insert nrblocks contiguous block is dependent on
1853 * number of contiguous block. So we will limit
1854 * number of contiguous block to a sane value
1855 */
12e9b892 1856 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
1857 (max_blocks > EXT4_MAX_TRANS_DATA))
1858 max_blocks = EXT4_MAX_TRANS_DATA;
1859
1860 return ext4_chunk_trans_blocks(inode, max_blocks);
1861}
61628a3f 1862
8e48dcfb
TT
1863/*
1864 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 1865 * address space and accumulate pages that need writing, and call
168fc022
TT
1866 * mpage_da_map_and_submit to map a single contiguous memory region
1867 * and then write them.
8e48dcfb
TT
1868 */
1869static int write_cache_pages_da(struct address_space *mapping,
1870 struct writeback_control *wbc,
72f84e65
ES
1871 struct mpage_da_data *mpd,
1872 pgoff_t *done_index)
8e48dcfb 1873{
4f01b02c 1874 struct buffer_head *bh, *head;
168fc022 1875 struct inode *inode = mapping->host;
4f01b02c
TT
1876 struct pagevec pvec;
1877 unsigned int nr_pages;
1878 sector_t logical;
1879 pgoff_t index, end;
1880 long nr_to_write = wbc->nr_to_write;
1881 int i, tag, ret = 0;
8e48dcfb 1882
168fc022
TT
1883 memset(mpd, 0, sizeof(struct mpage_da_data));
1884 mpd->wbc = wbc;
1885 mpd->inode = inode;
8e48dcfb
TT
1886 pagevec_init(&pvec, 0);
1887 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1888 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1889
6e6938b6 1890 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
1891 tag = PAGECACHE_TAG_TOWRITE;
1892 else
1893 tag = PAGECACHE_TAG_DIRTY;
1894
72f84e65 1895 *done_index = index;
4f01b02c 1896 while (index <= end) {
5b41d924 1897 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
1898 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1899 if (nr_pages == 0)
4f01b02c 1900 return 0;
8e48dcfb
TT
1901
1902 for (i = 0; i < nr_pages; i++) {
1903 struct page *page = pvec.pages[i];
1904
1905 /*
1906 * At this point, the page may be truncated or
1907 * invalidated (changing page->mapping to NULL), or
1908 * even swizzled back from swapper_space to tmpfs file
1909 * mapping. However, page->index will not change
1910 * because we have a reference on the page.
1911 */
4f01b02c
TT
1912 if (page->index > end)
1913 goto out;
8e48dcfb 1914
72f84e65
ES
1915 *done_index = page->index + 1;
1916
78aaced3
TT
1917 /*
1918 * If we can't merge this page, and we have
1919 * accumulated an contiguous region, write it
1920 */
1921 if ((mpd->next_page != page->index) &&
1922 (mpd->next_page != mpd->first_page)) {
1923 mpage_da_map_and_submit(mpd);
1924 goto ret_extent_tail;
1925 }
1926
8e48dcfb
TT
1927 lock_page(page);
1928
1929 /*
4f01b02c
TT
1930 * If the page is no longer dirty, or its
1931 * mapping no longer corresponds to inode we
1932 * are writing (which means it has been
1933 * truncated or invalidated), or the page is
1934 * already under writeback and we are not
1935 * doing a data integrity writeback, skip the page
8e48dcfb 1936 */
4f01b02c
TT
1937 if (!PageDirty(page) ||
1938 (PageWriteback(page) &&
1939 (wbc->sync_mode == WB_SYNC_NONE)) ||
1940 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
1941 unlock_page(page);
1942 continue;
1943 }
1944
7cb1a535 1945 wait_on_page_writeback(page);
8e48dcfb 1946 BUG_ON(PageWriteback(page));
8e48dcfb 1947
168fc022 1948 if (mpd->next_page != page->index)
8eb9e5ce 1949 mpd->first_page = page->index;
8eb9e5ce
TT
1950 mpd->next_page = page->index + 1;
1951 logical = (sector_t) page->index <<
1952 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1953
1954 if (!page_has_buffers(page)) {
4f01b02c
TT
1955 mpage_add_bh_to_extent(mpd, logical,
1956 PAGE_CACHE_SIZE,
8eb9e5ce 1957 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
1958 if (mpd->io_done)
1959 goto ret_extent_tail;
8eb9e5ce
TT
1960 } else {
1961 /*
4f01b02c
TT
1962 * Page with regular buffer heads,
1963 * just add all dirty ones
8eb9e5ce
TT
1964 */
1965 head = page_buffers(page);
1966 bh = head;
1967 do {
1968 BUG_ON(buffer_locked(bh));
1969 /*
1970 * We need to try to allocate
1971 * unmapped blocks in the same page.
1972 * Otherwise we won't make progress
1973 * with the page in ext4_writepage
1974 */
1975 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1976 mpage_add_bh_to_extent(mpd, logical,
1977 bh->b_size,
1978 bh->b_state);
4f01b02c
TT
1979 if (mpd->io_done)
1980 goto ret_extent_tail;
8eb9e5ce
TT
1981 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1982 /*
4f01b02c
TT
1983 * mapped dirty buffer. We need
1984 * to update the b_state
1985 * because we look at b_state
1986 * in mpage_da_map_blocks. We
1987 * don't update b_size because
1988 * if we find an unmapped
1989 * buffer_head later we need to
1990 * use the b_state flag of that
1991 * buffer_head.
8eb9e5ce
TT
1992 */
1993 if (mpd->b_size == 0)
1994 mpd->b_state = bh->b_state & BH_FLAGS;
1995 }
1996 logical++;
1997 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
1998 }
1999
2000 if (nr_to_write > 0) {
2001 nr_to_write--;
2002 if (nr_to_write == 0 &&
4f01b02c 2003 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2004 /*
2005 * We stop writing back only if we are
2006 * not doing integrity sync. In case of
2007 * integrity sync we have to keep going
2008 * because someone may be concurrently
2009 * dirtying pages, and we might have
2010 * synced a lot of newly appeared dirty
2011 * pages, but have not synced all of the
2012 * old dirty pages.
2013 */
4f01b02c 2014 goto out;
8e48dcfb
TT
2015 }
2016 }
2017 pagevec_release(&pvec);
2018 cond_resched();
2019 }
4f01b02c
TT
2020 return 0;
2021ret_extent_tail:
2022 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2023out:
2024 pagevec_release(&pvec);
2025 cond_resched();
8e48dcfb
TT
2026 return ret;
2027}
2028
2029
64769240 2030static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2031 struct writeback_control *wbc)
64769240 2032{
22208ded
AK
2033 pgoff_t index;
2034 int range_whole = 0;
61628a3f 2035 handle_t *handle = NULL;
df22291f 2036 struct mpage_da_data mpd;
5e745b04 2037 struct inode *inode = mapping->host;
498e5f24 2038 int pages_written = 0;
55138e0b 2039 unsigned int max_pages;
2acf2c26 2040 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2041 int needed_blocks, ret = 0;
2042 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2043 loff_t range_start = wbc->range_start;
5e745b04 2044 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2045 pgoff_t done_index = 0;
5b41d924 2046 pgoff_t end;
61628a3f 2047
9bffad1e 2048 trace_ext4_da_writepages(inode, wbc);
ba80b101 2049
61628a3f
MC
2050 /*
2051 * No pages to write? This is mainly a kludge to avoid starting
2052 * a transaction for special inodes like journal inode on last iput()
2053 * because that could violate lock ordering on umount
2054 */
a1d6cc56 2055 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2056 return 0;
2a21e37e
TT
2057
2058 /*
2059 * If the filesystem has aborted, it is read-only, so return
2060 * right away instead of dumping stack traces later on that
2061 * will obscure the real source of the problem. We test
4ab2f15b 2062 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2063 * the latter could be true if the filesystem is mounted
2064 * read-only, and in that case, ext4_da_writepages should
2065 * *never* be called, so if that ever happens, we would want
2066 * the stack trace.
2067 */
4ab2f15b 2068 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2069 return -EROFS;
2070
22208ded
AK
2071 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2072 range_whole = 1;
61628a3f 2073
2acf2c26
AK
2074 range_cyclic = wbc->range_cyclic;
2075 if (wbc->range_cyclic) {
22208ded 2076 index = mapping->writeback_index;
2acf2c26
AK
2077 if (index)
2078 cycled = 0;
2079 wbc->range_start = index << PAGE_CACHE_SHIFT;
2080 wbc->range_end = LLONG_MAX;
2081 wbc->range_cyclic = 0;
5b41d924
ES
2082 end = -1;
2083 } else {
22208ded 2084 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2085 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2086 }
a1d6cc56 2087
55138e0b
TT
2088 /*
2089 * This works around two forms of stupidity. The first is in
2090 * the writeback code, which caps the maximum number of pages
2091 * written to be 1024 pages. This is wrong on multiple
2092 * levels; different architectues have a different page size,
2093 * which changes the maximum amount of data which gets
2094 * written. Secondly, 4 megabytes is way too small. XFS
2095 * forces this value to be 16 megabytes by multiplying
2096 * nr_to_write parameter by four, and then relies on its
2097 * allocator to allocate larger extents to make them
2098 * contiguous. Unfortunately this brings us to the second
2099 * stupidity, which is that ext4's mballoc code only allocates
2100 * at most 2048 blocks. So we force contiguous writes up to
2101 * the number of dirty blocks in the inode, or
2102 * sbi->max_writeback_mb_bump whichever is smaller.
2103 */
2104 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2105 if (!range_cyclic && range_whole) {
2106 if (wbc->nr_to_write == LONG_MAX)
2107 desired_nr_to_write = wbc->nr_to_write;
2108 else
2109 desired_nr_to_write = wbc->nr_to_write * 8;
2110 } else
55138e0b
TT
2111 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2112 max_pages);
2113 if (desired_nr_to_write > max_pages)
2114 desired_nr_to_write = max_pages;
2115
2116 if (wbc->nr_to_write < desired_nr_to_write) {
2117 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2118 wbc->nr_to_write = desired_nr_to_write;
2119 }
2120
2acf2c26 2121retry:
6e6938b6 2122 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2123 tag_pages_for_writeback(mapping, index, end);
2124
22208ded 2125 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2126
2127 /*
2128 * we insert one extent at a time. So we need
2129 * credit needed for single extent allocation.
2130 * journalled mode is currently not supported
2131 * by delalloc
2132 */
2133 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2134 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2135
61628a3f
MC
2136 /* start a new transaction*/
2137 handle = ext4_journal_start(inode, needed_blocks);
2138 if (IS_ERR(handle)) {
2139 ret = PTR_ERR(handle);
1693918e 2140 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2141 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2142 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2143 goto out_writepages;
2144 }
f63e6005
TT
2145
2146 /*
8eb9e5ce 2147 * Now call write_cache_pages_da() to find the next
f63e6005 2148 * contiguous region of logical blocks that need
8eb9e5ce 2149 * blocks to be allocated by ext4 and submit them.
f63e6005 2150 */
72f84e65 2151 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2152 /*
af901ca1 2153 * If we have a contiguous extent of pages and we
f63e6005
TT
2154 * haven't done the I/O yet, map the blocks and submit
2155 * them for I/O.
2156 */
2157 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2158 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2159 ret = MPAGE_DA_EXTENT_TAIL;
2160 }
b3a3ca8c 2161 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2162 wbc->nr_to_write -= mpd.pages_written;
df22291f 2163
61628a3f 2164 ext4_journal_stop(handle);
df22291f 2165
8f64b32e 2166 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2167 /* commit the transaction which would
2168 * free blocks released in the transaction
2169 * and try again
2170 */
df22291f 2171 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2172 ret = 0;
2173 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2174 /*
2175 * got one extent now try with
2176 * rest of the pages
2177 */
22208ded 2178 pages_written += mpd.pages_written;
a1d6cc56 2179 ret = 0;
2acf2c26 2180 io_done = 1;
22208ded 2181 } else if (wbc->nr_to_write)
61628a3f
MC
2182 /*
2183 * There is no more writeout needed
2184 * or we requested for a noblocking writeout
2185 * and we found the device congested
2186 */
61628a3f 2187 break;
a1d6cc56 2188 }
2acf2c26
AK
2189 if (!io_done && !cycled) {
2190 cycled = 1;
2191 index = 0;
2192 wbc->range_start = index << PAGE_CACHE_SHIFT;
2193 wbc->range_end = mapping->writeback_index - 1;
2194 goto retry;
2195 }
22208ded
AK
2196
2197 /* Update index */
2acf2c26 2198 wbc->range_cyclic = range_cyclic;
22208ded
AK
2199 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2200 /*
2201 * set the writeback_index so that range_cyclic
2202 * mode will write it back later
2203 */
72f84e65 2204 mapping->writeback_index = done_index;
a1d6cc56 2205
61628a3f 2206out_writepages:
2faf2e19 2207 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2208 wbc->range_start = range_start;
9bffad1e 2209 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2210 return ret;
64769240
AT
2211}
2212
79f0be8d
AK
2213#define FALL_BACK_TO_NONDELALLOC 1
2214static int ext4_nonda_switch(struct super_block *sb)
2215{
2216 s64 free_blocks, dirty_blocks;
2217 struct ext4_sb_info *sbi = EXT4_SB(sb);
2218
2219 /*
2220 * switch to non delalloc mode if we are running low
2221 * on free block. The free block accounting via percpu
179f7ebf 2222 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2223 * accumulated on each CPU without updating global counters
2224 * Delalloc need an accurate free block accounting. So switch
2225 * to non delalloc when we are near to error range.
2226 */
2227 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2228 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2229 if (2 * free_blocks < 3 * dirty_blocks ||
2230 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2231 /*
c8afb446
ES
2232 * free block count is less than 150% of dirty blocks
2233 * or free blocks is less than watermark
79f0be8d
AK
2234 */
2235 return 1;
2236 }
c8afb446
ES
2237 /*
2238 * Even if we don't switch but are nearing capacity,
2239 * start pushing delalloc when 1/2 of free blocks are dirty.
2240 */
2241 if (free_blocks < 2 * dirty_blocks)
2242 writeback_inodes_sb_if_idle(sb);
2243
79f0be8d
AK
2244 return 0;
2245}
2246
64769240 2247static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2248 loff_t pos, unsigned len, unsigned flags,
2249 struct page **pagep, void **fsdata)
64769240 2250{
72b8ab9d 2251 int ret, retries = 0;
64769240
AT
2252 struct page *page;
2253 pgoff_t index;
64769240
AT
2254 struct inode *inode = mapping->host;
2255 handle_t *handle;
2256
2257 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2258
2259 if (ext4_nonda_switch(inode->i_sb)) {
2260 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2261 return ext4_write_begin(file, mapping, pos,
2262 len, flags, pagep, fsdata);
2263 }
2264 *fsdata = (void *)0;
9bffad1e 2265 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2266retry:
64769240
AT
2267 /*
2268 * With delayed allocation, we don't log the i_disksize update
2269 * if there is delayed block allocation. But we still need
2270 * to journalling the i_disksize update if writes to the end
2271 * of file which has an already mapped buffer.
2272 */
2273 handle = ext4_journal_start(inode, 1);
2274 if (IS_ERR(handle)) {
2275 ret = PTR_ERR(handle);
2276 goto out;
2277 }
ebd3610b
JK
2278 /* We cannot recurse into the filesystem as the transaction is already
2279 * started */
2280 flags |= AOP_FLAG_NOFS;
64769240 2281
54566b2c 2282 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2283 if (!page) {
2284 ext4_journal_stop(handle);
2285 ret = -ENOMEM;
2286 goto out;
2287 }
64769240
AT
2288 *pagep = page;
2289
6e1db88d 2290 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2291 if (ret < 0) {
2292 unlock_page(page);
2293 ext4_journal_stop(handle);
2294 page_cache_release(page);
ae4d5372
AK
2295 /*
2296 * block_write_begin may have instantiated a few blocks
2297 * outside i_size. Trim these off again. Don't need
2298 * i_size_read because we hold i_mutex.
2299 */
2300 if (pos + len > inode->i_size)
b9a4207d 2301 ext4_truncate_failed_write(inode);
64769240
AT
2302 }
2303
d2a17637
MC
2304 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2305 goto retry;
64769240
AT
2306out:
2307 return ret;
2308}
2309
632eaeab
MC
2310/*
2311 * Check if we should update i_disksize
2312 * when write to the end of file but not require block allocation
2313 */
2314static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2315 unsigned long offset)
632eaeab
MC
2316{
2317 struct buffer_head *bh;
2318 struct inode *inode = page->mapping->host;
2319 unsigned int idx;
2320 int i;
2321
2322 bh = page_buffers(page);
2323 idx = offset >> inode->i_blkbits;
2324
af5bc92d 2325 for (i = 0; i < idx; i++)
632eaeab
MC
2326 bh = bh->b_this_page;
2327
29fa89d0 2328 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2329 return 0;
2330 return 1;
2331}
2332
64769240 2333static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2334 struct address_space *mapping,
2335 loff_t pos, unsigned len, unsigned copied,
2336 struct page *page, void *fsdata)
64769240
AT
2337{
2338 struct inode *inode = mapping->host;
2339 int ret = 0, ret2;
2340 handle_t *handle = ext4_journal_current_handle();
2341 loff_t new_i_size;
632eaeab 2342 unsigned long start, end;
79f0be8d
AK
2343 int write_mode = (int)(unsigned long)fsdata;
2344
2345 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2346 if (ext4_should_order_data(inode)) {
2347 return ext4_ordered_write_end(file, mapping, pos,
2348 len, copied, page, fsdata);
2349 } else if (ext4_should_writeback_data(inode)) {
2350 return ext4_writeback_write_end(file, mapping, pos,
2351 len, copied, page, fsdata);
2352 } else {
2353 BUG();
2354 }
2355 }
632eaeab 2356
9bffad1e 2357 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2358 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2359 end = start + copied - 1;
64769240
AT
2360
2361 /*
2362 * generic_write_end() will run mark_inode_dirty() if i_size
2363 * changes. So let's piggyback the i_disksize mark_inode_dirty
2364 * into that.
2365 */
2366
2367 new_i_size = pos + copied;
632eaeab
MC
2368 if (new_i_size > EXT4_I(inode)->i_disksize) {
2369 if (ext4_da_should_update_i_disksize(page, end)) {
2370 down_write(&EXT4_I(inode)->i_data_sem);
2371 if (new_i_size > EXT4_I(inode)->i_disksize) {
2372 /*
2373 * Updating i_disksize when extending file
2374 * without needing block allocation
2375 */
2376 if (ext4_should_order_data(inode))
2377 ret = ext4_jbd2_file_inode(handle,
2378 inode);
64769240 2379
632eaeab
MC
2380 EXT4_I(inode)->i_disksize = new_i_size;
2381 }
2382 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2383 /* We need to mark inode dirty even if
2384 * new_i_size is less that inode->i_size
2385 * bu greater than i_disksize.(hint delalloc)
2386 */
2387 ext4_mark_inode_dirty(handle, inode);
64769240 2388 }
632eaeab 2389 }
64769240
AT
2390 ret2 = generic_write_end(file, mapping, pos, len, copied,
2391 page, fsdata);
2392 copied = ret2;
2393 if (ret2 < 0)
2394 ret = ret2;
2395 ret2 = ext4_journal_stop(handle);
2396 if (!ret)
2397 ret = ret2;
2398
2399 return ret ? ret : copied;
2400}
2401
2402static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2403{
64769240
AT
2404 /*
2405 * Drop reserved blocks
2406 */
2407 BUG_ON(!PageLocked(page));
2408 if (!page_has_buffers(page))
2409 goto out;
2410
d2a17637 2411 ext4_da_page_release_reservation(page, offset);
64769240
AT
2412
2413out:
2414 ext4_invalidatepage(page, offset);
2415
2416 return;
2417}
2418
ccd2506b
TT
2419/*
2420 * Force all delayed allocation blocks to be allocated for a given inode.
2421 */
2422int ext4_alloc_da_blocks(struct inode *inode)
2423{
fb40ba0d
TT
2424 trace_ext4_alloc_da_blocks(inode);
2425
ccd2506b
TT
2426 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2427 !EXT4_I(inode)->i_reserved_meta_blocks)
2428 return 0;
2429
2430 /*
2431 * We do something simple for now. The filemap_flush() will
2432 * also start triggering a write of the data blocks, which is
2433 * not strictly speaking necessary (and for users of
2434 * laptop_mode, not even desirable). However, to do otherwise
2435 * would require replicating code paths in:
de9a55b8 2436 *
ccd2506b
TT
2437 * ext4_da_writepages() ->
2438 * write_cache_pages() ---> (via passed in callback function)
2439 * __mpage_da_writepage() -->
2440 * mpage_add_bh_to_extent()
2441 * mpage_da_map_blocks()
2442 *
2443 * The problem is that write_cache_pages(), located in
2444 * mm/page-writeback.c, marks pages clean in preparation for
2445 * doing I/O, which is not desirable if we're not planning on
2446 * doing I/O at all.
2447 *
2448 * We could call write_cache_pages(), and then redirty all of
380cf090 2449 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2450 * would be ugly in the extreme. So instead we would need to
2451 * replicate parts of the code in the above functions,
25985edc 2452 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2453 * write out the pages, but rather only collect contiguous
2454 * logical block extents, call the multi-block allocator, and
2455 * then update the buffer heads with the block allocations.
de9a55b8 2456 *
ccd2506b
TT
2457 * For now, though, we'll cheat by calling filemap_flush(),
2458 * which will map the blocks, and start the I/O, but not
2459 * actually wait for the I/O to complete.
2460 */
2461 return filemap_flush(inode->i_mapping);
2462}
64769240 2463
ac27a0ec
DK
2464/*
2465 * bmap() is special. It gets used by applications such as lilo and by
2466 * the swapper to find the on-disk block of a specific piece of data.
2467 *
2468 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2469 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2470 * filesystem and enables swap, then they may get a nasty shock when the
2471 * data getting swapped to that swapfile suddenly gets overwritten by
2472 * the original zero's written out previously to the journal and
2473 * awaiting writeback in the kernel's buffer cache.
2474 *
2475 * So, if we see any bmap calls here on a modified, data-journaled file,
2476 * take extra steps to flush any blocks which might be in the cache.
2477 */
617ba13b 2478static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2479{
2480 struct inode *inode = mapping->host;
2481 journal_t *journal;
2482 int err;
2483
64769240
AT
2484 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2485 test_opt(inode->i_sb, DELALLOC)) {
2486 /*
2487 * With delalloc we want to sync the file
2488 * so that we can make sure we allocate
2489 * blocks for file
2490 */
2491 filemap_write_and_wait(mapping);
2492 }
2493
19f5fb7a
TT
2494 if (EXT4_JOURNAL(inode) &&
2495 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2496 /*
2497 * This is a REALLY heavyweight approach, but the use of
2498 * bmap on dirty files is expected to be extremely rare:
2499 * only if we run lilo or swapon on a freshly made file
2500 * do we expect this to happen.
2501 *
2502 * (bmap requires CAP_SYS_RAWIO so this does not
2503 * represent an unprivileged user DOS attack --- we'd be
2504 * in trouble if mortal users could trigger this path at
2505 * will.)
2506 *
617ba13b 2507 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2508 * regular files. If somebody wants to bmap a directory
2509 * or symlink and gets confused because the buffer
2510 * hasn't yet been flushed to disk, they deserve
2511 * everything they get.
2512 */
2513
19f5fb7a 2514 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2515 journal = EXT4_JOURNAL(inode);
dab291af
MC
2516 jbd2_journal_lock_updates(journal);
2517 err = jbd2_journal_flush(journal);
2518 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2519
2520 if (err)
2521 return 0;
2522 }
2523
af5bc92d 2524 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2525}
2526
617ba13b 2527static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2528{
0562e0ba 2529 trace_ext4_readpage(page);
617ba13b 2530 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2531}
2532
2533static int
617ba13b 2534ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2535 struct list_head *pages, unsigned nr_pages)
2536{
617ba13b 2537 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2538}
2539
744692dc
JZ
2540static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2541{
2542 struct buffer_head *head, *bh;
2543 unsigned int curr_off = 0;
2544
2545 if (!page_has_buffers(page))
2546 return;
2547 head = bh = page_buffers(page);
2548 do {
2549 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2550 && bh->b_private) {
2551 ext4_free_io_end(bh->b_private);
2552 bh->b_private = NULL;
2553 bh->b_end_io = NULL;
2554 }
2555 curr_off = curr_off + bh->b_size;
2556 bh = bh->b_this_page;
2557 } while (bh != head);
2558}
2559
617ba13b 2560static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2561{
617ba13b 2562 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2563
0562e0ba
JZ
2564 trace_ext4_invalidatepage(page, offset);
2565
744692dc
JZ
2566 /*
2567 * free any io_end structure allocated for buffers to be discarded
2568 */
2569 if (ext4_should_dioread_nolock(page->mapping->host))
2570 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2571 /*
2572 * If it's a full truncate we just forget about the pending dirtying
2573 */
2574 if (offset == 0)
2575 ClearPageChecked(page);
2576
0390131b
FM
2577 if (journal)
2578 jbd2_journal_invalidatepage(journal, page, offset);
2579 else
2580 block_invalidatepage(page, offset);
ac27a0ec
DK
2581}
2582
617ba13b 2583static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2584{
617ba13b 2585 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2586
0562e0ba
JZ
2587 trace_ext4_releasepage(page);
2588
ac27a0ec
DK
2589 WARN_ON(PageChecked(page));
2590 if (!page_has_buffers(page))
2591 return 0;
0390131b
FM
2592 if (journal)
2593 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2594 else
2595 return try_to_free_buffers(page);
ac27a0ec
DK
2596}
2597
2ed88685
TT
2598/*
2599 * ext4_get_block used when preparing for a DIO write or buffer write.
2600 * We allocate an uinitialized extent if blocks haven't been allocated.
2601 * The extent will be converted to initialized after the IO is complete.
2602 */
c7064ef1 2603static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2604 struct buffer_head *bh_result, int create)
2605{
c7064ef1 2606 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2607 inode->i_ino, create);
2ed88685
TT
2608 return _ext4_get_block(inode, iblock, bh_result,
2609 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2610}
2611
4c0425ff 2612static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2613 ssize_t size, void *private, int ret,
2614 bool is_async)
4c0425ff 2615{
72c5052d 2616 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff
MC
2617 ext4_io_end_t *io_end = iocb->private;
2618 struct workqueue_struct *wq;
744692dc
JZ
2619 unsigned long flags;
2620 struct ext4_inode_info *ei;
4c0425ff 2621
4b70df18
M
2622 /* if not async direct IO or dio with 0 bytes write, just return */
2623 if (!io_end || !size)
552ef802 2624 goto out;
4b70df18 2625
8d5d02e6
MC
2626 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2627 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2628 iocb->private, io_end->inode->i_ino, iocb, offset,
2629 size);
8d5d02e6
MC
2630
2631 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2632 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6
MC
2633 ext4_free_io_end(io_end);
2634 iocb->private = NULL;
5b3ff237
JZ
2635out:
2636 if (is_async)
2637 aio_complete(iocb, ret, 0);
72c5052d 2638 inode_dio_done(inode);
5b3ff237 2639 return;
8d5d02e6
MC
2640 }
2641
4c0425ff
MC
2642 io_end->offset = offset;
2643 io_end->size = size;
5b3ff237
JZ
2644 if (is_async) {
2645 io_end->iocb = iocb;
2646 io_end->result = ret;
2647 }
4c0425ff
MC
2648 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2649
8d5d02e6 2650 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
2651 ei = EXT4_I(io_end->inode);
2652 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2653 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2654 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
2655
2656 /* queue the work to convert unwritten extents to written */
2657 queue_work(wq, &io_end->work);
4c0425ff 2658 iocb->private = NULL;
72c5052d
CH
2659
2660 /* XXX: probably should move into the real I/O completion handler */
2661 inode_dio_done(inode);
4c0425ff 2662}
c7064ef1 2663
744692dc
JZ
2664static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2665{
2666 ext4_io_end_t *io_end = bh->b_private;
2667 struct workqueue_struct *wq;
2668 struct inode *inode;
2669 unsigned long flags;
2670
2671 if (!test_clear_buffer_uninit(bh) || !io_end)
2672 goto out;
2673
2674 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2675 printk("sb umounted, discard end_io request for inode %lu\n",
2676 io_end->inode->i_ino);
2677 ext4_free_io_end(io_end);
2678 goto out;
2679 }
2680
32c80b32
TM
2681 /*
2682 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2683 * but being more careful is always safe for the future change.
2684 */
744692dc 2685 inode = io_end->inode;
32c80b32
TM
2686 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2687 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2688 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2689 }
744692dc
JZ
2690
2691 /* Add the io_end to per-inode completed io list*/
2692 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2693 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2694 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2695
2696 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2697 /* queue the work to convert unwritten extents to written */
2698 queue_work(wq, &io_end->work);
2699out:
2700 bh->b_private = NULL;
2701 bh->b_end_io = NULL;
2702 clear_buffer_uninit(bh);
2703 end_buffer_async_write(bh, uptodate);
2704}
2705
2706static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2707{
2708 ext4_io_end_t *io_end;
2709 struct page *page = bh->b_page;
2710 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2711 size_t size = bh->b_size;
2712
2713retry:
2714 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2715 if (!io_end) {
6db26ffc 2716 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2717 schedule();
2718 goto retry;
2719 }
2720 io_end->offset = offset;
2721 io_end->size = size;
2722 /*
2723 * We need to hold a reference to the page to make sure it
2724 * doesn't get evicted before ext4_end_io_work() has a chance
2725 * to convert the extent from written to unwritten.
2726 */
2727 io_end->page = page;
2728 get_page(io_end->page);
2729
2730 bh->b_private = io_end;
2731 bh->b_end_io = ext4_end_io_buffer_write;
2732 return 0;
2733}
2734
4c0425ff
MC
2735/*
2736 * For ext4 extent files, ext4 will do direct-io write to holes,
2737 * preallocated extents, and those write extend the file, no need to
2738 * fall back to buffered IO.
2739 *
b595076a 2740 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 2741 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 2742 * still keep the range to write as uninitialized.
4c0425ff 2743 *
8d5d02e6
MC
2744 * The unwrritten extents will be converted to written when DIO is completed.
2745 * For async direct IO, since the IO may still pending when return, we
25985edc 2746 * set up an end_io call back function, which will do the conversion
8d5d02e6 2747 * when async direct IO completed.
4c0425ff
MC
2748 *
2749 * If the O_DIRECT write will extend the file then add this inode to the
2750 * orphan list. So recovery will truncate it back to the original size
2751 * if the machine crashes during the write.
2752 *
2753 */
2754static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2755 const struct iovec *iov, loff_t offset,
2756 unsigned long nr_segs)
2757{
2758 struct file *file = iocb->ki_filp;
2759 struct inode *inode = file->f_mapping->host;
2760 ssize_t ret;
2761 size_t count = iov_length(iov, nr_segs);
2762
2763 loff_t final_size = offset + count;
2764 if (rw == WRITE && final_size <= inode->i_size) {
2765 /*
8d5d02e6
MC
2766 * We could direct write to holes and fallocate.
2767 *
2768 * Allocated blocks to fill the hole are marked as uninitialized
25985edc 2769 * to prevent parallel buffered read to expose the stale data
4c0425ff 2770 * before DIO complete the data IO.
8d5d02e6
MC
2771 *
2772 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
2773 * will just simply mark the buffer mapped but still
2774 * keep the extents uninitialized.
2775 *
8d5d02e6
MC
2776 * for non AIO case, we will convert those unwritten extents
2777 * to written after return back from blockdev_direct_IO.
2778 *
2779 * for async DIO, the conversion needs to be defered when
2780 * the IO is completed. The ext4 end_io callback function
2781 * will be called to take care of the conversion work.
2782 * Here for async case, we allocate an io_end structure to
2783 * hook to the iocb.
4c0425ff 2784 */
8d5d02e6
MC
2785 iocb->private = NULL;
2786 EXT4_I(inode)->cur_aio_dio = NULL;
2787 if (!is_sync_kiocb(iocb)) {
744692dc 2788 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
2789 if (!iocb->private)
2790 return -ENOMEM;
2791 /*
2792 * we save the io structure for current async
79e83036 2793 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
2794 * could flag the io structure whether there
2795 * is a unwritten extents needs to be converted
2796 * when IO is completed.
2797 */
2798 EXT4_I(inode)->cur_aio_dio = iocb->private;
2799 }
2800
aacfc19c 2801 ret = __blockdev_direct_IO(rw, iocb, inode,
4c0425ff
MC
2802 inode->i_sb->s_bdev, iov,
2803 offset, nr_segs,
c7064ef1 2804 ext4_get_block_write,
aacfc19c
CH
2805 ext4_end_io_dio,
2806 NULL,
2807 DIO_LOCKING | DIO_SKIP_HOLES);
8d5d02e6
MC
2808 if (iocb->private)
2809 EXT4_I(inode)->cur_aio_dio = NULL;
2810 /*
2811 * The io_end structure takes a reference to the inode,
2812 * that structure needs to be destroyed and the
2813 * reference to the inode need to be dropped, when IO is
2814 * complete, even with 0 byte write, or failed.
2815 *
2816 * In the successful AIO DIO case, the io_end structure will be
2817 * desctroyed and the reference to the inode will be dropped
2818 * after the end_io call back function is called.
2819 *
2820 * In the case there is 0 byte write, or error case, since
2821 * VFS direct IO won't invoke the end_io call back function,
2822 * we need to free the end_io structure here.
2823 */
2824 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2825 ext4_free_io_end(iocb->private);
2826 iocb->private = NULL;
19f5fb7a
TT
2827 } else if (ret > 0 && ext4_test_inode_state(inode,
2828 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 2829 int err;
8d5d02e6
MC
2830 /*
2831 * for non AIO case, since the IO is already
25985edc 2832 * completed, we could do the conversion right here
8d5d02e6 2833 */
109f5565
M
2834 err = ext4_convert_unwritten_extents(inode,
2835 offset, ret);
2836 if (err < 0)
2837 ret = err;
19f5fb7a 2838 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 2839 }
4c0425ff
MC
2840 return ret;
2841 }
8d5d02e6
MC
2842
2843 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
2844 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2845}
2846
2847static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2848 const struct iovec *iov, loff_t offset,
2849 unsigned long nr_segs)
2850{
2851 struct file *file = iocb->ki_filp;
2852 struct inode *inode = file->f_mapping->host;
0562e0ba 2853 ssize_t ret;
4c0425ff 2854
0562e0ba 2855 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 2856 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
2857 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2858 else
2859 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2860 trace_ext4_direct_IO_exit(inode, offset,
2861 iov_length(iov, nr_segs), rw, ret);
2862 return ret;
4c0425ff
MC
2863}
2864
ac27a0ec 2865/*
617ba13b 2866 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
2867 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2868 * much here because ->set_page_dirty is called under VFS locks. The page is
2869 * not necessarily locked.
2870 *
2871 * We cannot just dirty the page and leave attached buffers clean, because the
2872 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2873 * or jbddirty because all the journalling code will explode.
2874 *
2875 * So what we do is to mark the page "pending dirty" and next time writepage
2876 * is called, propagate that into the buffers appropriately.
2877 */
617ba13b 2878static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
2879{
2880 SetPageChecked(page);
2881 return __set_page_dirty_nobuffers(page);
2882}
2883
617ba13b 2884static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
2885 .readpage = ext4_readpage,
2886 .readpages = ext4_readpages,
43ce1d23 2887 .writepage = ext4_writepage,
8ab22b9a
HH
2888 .write_begin = ext4_write_begin,
2889 .write_end = ext4_ordered_write_end,
2890 .bmap = ext4_bmap,
2891 .invalidatepage = ext4_invalidatepage,
2892 .releasepage = ext4_releasepage,
2893 .direct_IO = ext4_direct_IO,
2894 .migratepage = buffer_migrate_page,
2895 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2896 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
2897};
2898
617ba13b 2899static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
2900 .readpage = ext4_readpage,
2901 .readpages = ext4_readpages,
43ce1d23 2902 .writepage = ext4_writepage,
8ab22b9a
HH
2903 .write_begin = ext4_write_begin,
2904 .write_end = ext4_writeback_write_end,
2905 .bmap = ext4_bmap,
2906 .invalidatepage = ext4_invalidatepage,
2907 .releasepage = ext4_releasepage,
2908 .direct_IO = ext4_direct_IO,
2909 .migratepage = buffer_migrate_page,
2910 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2911 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
2912};
2913
617ba13b 2914static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
2915 .readpage = ext4_readpage,
2916 .readpages = ext4_readpages,
43ce1d23 2917 .writepage = ext4_writepage,
8ab22b9a
HH
2918 .write_begin = ext4_write_begin,
2919 .write_end = ext4_journalled_write_end,
2920 .set_page_dirty = ext4_journalled_set_page_dirty,
2921 .bmap = ext4_bmap,
2922 .invalidatepage = ext4_invalidatepage,
2923 .releasepage = ext4_releasepage,
2924 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2925 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
2926};
2927
64769240 2928static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
2929 .readpage = ext4_readpage,
2930 .readpages = ext4_readpages,
43ce1d23 2931 .writepage = ext4_writepage,
8ab22b9a 2932 .writepages = ext4_da_writepages,
8ab22b9a
HH
2933 .write_begin = ext4_da_write_begin,
2934 .write_end = ext4_da_write_end,
2935 .bmap = ext4_bmap,
2936 .invalidatepage = ext4_da_invalidatepage,
2937 .releasepage = ext4_releasepage,
2938 .direct_IO = ext4_direct_IO,
2939 .migratepage = buffer_migrate_page,
2940 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2941 .error_remove_page = generic_error_remove_page,
64769240
AT
2942};
2943
617ba13b 2944void ext4_set_aops(struct inode *inode)
ac27a0ec 2945{
cd1aac32
AK
2946 if (ext4_should_order_data(inode) &&
2947 test_opt(inode->i_sb, DELALLOC))
2948 inode->i_mapping->a_ops = &ext4_da_aops;
2949 else if (ext4_should_order_data(inode))
617ba13b 2950 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
2951 else if (ext4_should_writeback_data(inode) &&
2952 test_opt(inode->i_sb, DELALLOC))
2953 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
2954 else if (ext4_should_writeback_data(inode))
2955 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 2956 else
617ba13b 2957 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
2958}
2959
2960/*
617ba13b 2961 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
2962 * up to the end of the block which corresponds to `from'.
2963 * This required during truncate. We need to physically zero the tail end
2964 * of that block so it doesn't yield old data if the file is later grown.
2965 */
cf108bca 2966int ext4_block_truncate_page(handle_t *handle,
ac27a0ec 2967 struct address_space *mapping, loff_t from)
30848851
AH
2968{
2969 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2970 unsigned length;
2971 unsigned blocksize;
2972 struct inode *inode = mapping->host;
2973
2974 blocksize = inode->i_sb->s_blocksize;
2975 length = blocksize - (offset & (blocksize - 1));
2976
2977 return ext4_block_zero_page_range(handle, mapping, from, length);
2978}
2979
2980/*
2981 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2982 * starting from file offset 'from'. The range to be zero'd must
2983 * be contained with in one block. If the specified range exceeds
2984 * the end of the block it will be shortened to end of the block
2985 * that cooresponds to 'from'
2986 */
2987int ext4_block_zero_page_range(handle_t *handle,
2988 struct address_space *mapping, loff_t from, loff_t length)
ac27a0ec 2989{
617ba13b 2990 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 2991 unsigned offset = from & (PAGE_CACHE_SIZE-1);
30848851 2992 unsigned blocksize, max, pos;
725d26d3 2993 ext4_lblk_t iblock;
ac27a0ec
DK
2994 struct inode *inode = mapping->host;
2995 struct buffer_head *bh;
cf108bca 2996 struct page *page;
ac27a0ec 2997 int err = 0;
ac27a0ec 2998
f4a01017
TT
2999 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3000 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3001 if (!page)
3002 return -EINVAL;
3003
ac27a0ec 3004 blocksize = inode->i_sb->s_blocksize;
30848851
AH
3005 max = blocksize - (offset & (blocksize - 1));
3006
3007 /*
3008 * correct length if it does not fall between
3009 * 'from' and the end of the block
3010 */
3011 if (length > max || length < 0)
3012 length = max;
3013
ac27a0ec
DK
3014 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3015
ac27a0ec
DK
3016 if (!page_has_buffers(page))
3017 create_empty_buffers(page, blocksize, 0);
3018
3019 /* Find the buffer that contains "offset" */
3020 bh = page_buffers(page);
3021 pos = blocksize;
3022 while (offset >= pos) {
3023 bh = bh->b_this_page;
3024 iblock++;
3025 pos += blocksize;
3026 }
3027
3028 err = 0;
3029 if (buffer_freed(bh)) {
3030 BUFFER_TRACE(bh, "freed: skip");
3031 goto unlock;
3032 }
3033
3034 if (!buffer_mapped(bh)) {
3035 BUFFER_TRACE(bh, "unmapped");
617ba13b 3036 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3037 /* unmapped? It's a hole - nothing to do */
3038 if (!buffer_mapped(bh)) {
3039 BUFFER_TRACE(bh, "still unmapped");
3040 goto unlock;
3041 }
3042 }
3043
3044 /* Ok, it's mapped. Make sure it's up-to-date */
3045 if (PageUptodate(page))
3046 set_buffer_uptodate(bh);
3047
3048 if (!buffer_uptodate(bh)) {
3049 err = -EIO;
3050 ll_rw_block(READ, 1, &bh);
3051 wait_on_buffer(bh);
3052 /* Uhhuh. Read error. Complain and punt. */
3053 if (!buffer_uptodate(bh))
3054 goto unlock;
3055 }
3056
617ba13b 3057 if (ext4_should_journal_data(inode)) {
ac27a0ec 3058 BUFFER_TRACE(bh, "get write access");
617ba13b 3059 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3060 if (err)
3061 goto unlock;
3062 }
3063
eebd2aa3 3064 zero_user(page, offset, length);
ac27a0ec
DK
3065
3066 BUFFER_TRACE(bh, "zeroed end of block");
3067
3068 err = 0;
617ba13b 3069 if (ext4_should_journal_data(inode)) {
0390131b 3070 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3071 } else {
8aefcd55 3072 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
678aaf48 3073 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3074 mark_buffer_dirty(bh);
3075 }
3076
3077unlock:
3078 unlock_page(page);
3079 page_cache_release(page);
3080 return err;
3081}
3082
91ef4caf
DG
3083int ext4_can_truncate(struct inode *inode)
3084{
91ef4caf
DG
3085 if (S_ISREG(inode->i_mode))
3086 return 1;
3087 if (S_ISDIR(inode->i_mode))
3088 return 1;
3089 if (S_ISLNK(inode->i_mode))
3090 return !ext4_inode_is_fast_symlink(inode);
3091 return 0;
3092}
3093
a4bb6b64
AH
3094/*
3095 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3096 * associated with the given offset and length
3097 *
3098 * @inode: File inode
3099 * @offset: The offset where the hole will begin
3100 * @len: The length of the hole
3101 *
3102 * Returns: 0 on sucess or negative on failure
3103 */
3104
3105int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3106{
3107 struct inode *inode = file->f_path.dentry->d_inode;
3108 if (!S_ISREG(inode->i_mode))
3109 return -ENOTSUPP;
3110
3111 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3112 /* TODO: Add support for non extent hole punching */
3113 return -ENOTSUPP;
3114 }
3115
3116 return ext4_ext_punch_hole(file, offset, length);
3117}
3118
ac27a0ec 3119/*
617ba13b 3120 * ext4_truncate()
ac27a0ec 3121 *
617ba13b
MC
3122 * We block out ext4_get_block() block instantiations across the entire
3123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3124 * simultaneously on behalf of the same inode.
3125 *
3126 * As we work through the truncate and commmit bits of it to the journal there
3127 * is one core, guiding principle: the file's tree must always be consistent on
3128 * disk. We must be able to restart the truncate after a crash.
3129 *
3130 * The file's tree may be transiently inconsistent in memory (although it
3131 * probably isn't), but whenever we close off and commit a journal transaction,
3132 * the contents of (the filesystem + the journal) must be consistent and
3133 * restartable. It's pretty simple, really: bottom up, right to left (although
3134 * left-to-right works OK too).
3135 *
3136 * Note that at recovery time, journal replay occurs *before* the restart of
3137 * truncate against the orphan inode list.
3138 *
3139 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3140 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3141 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3142 * ext4_truncate() to have another go. So there will be instantiated blocks
3143 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3144 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3145 * ext4_truncate() run will find them and release them.
ac27a0ec 3146 */
617ba13b 3147void ext4_truncate(struct inode *inode)
ac27a0ec 3148{
0562e0ba
JZ
3149 trace_ext4_truncate_enter(inode);
3150
91ef4caf 3151 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3152 return;
3153
12e9b892 3154 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3155
5534fb5b 3156 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3157 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3158
ff9893dc 3159 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3160 ext4_ext_truncate(inode);
ff9893dc
AG
3161 else
3162 ext4_ind_truncate(inode);
ac27a0ec 3163
0562e0ba 3164 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3165}
3166
ac27a0ec 3167/*
617ba13b 3168 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3169 * underlying buffer_head on success. If 'in_mem' is true, we have all
3170 * data in memory that is needed to recreate the on-disk version of this
3171 * inode.
3172 */
617ba13b
MC
3173static int __ext4_get_inode_loc(struct inode *inode,
3174 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3175{
240799cd
TT
3176 struct ext4_group_desc *gdp;
3177 struct buffer_head *bh;
3178 struct super_block *sb = inode->i_sb;
3179 ext4_fsblk_t block;
3180 int inodes_per_block, inode_offset;
3181
3a06d778 3182 iloc->bh = NULL;
240799cd
TT
3183 if (!ext4_valid_inum(sb, inode->i_ino))
3184 return -EIO;
ac27a0ec 3185
240799cd
TT
3186 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3187 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3188 if (!gdp)
ac27a0ec
DK
3189 return -EIO;
3190
240799cd
TT
3191 /*
3192 * Figure out the offset within the block group inode table
3193 */
00d09882 3194 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3195 inode_offset = ((inode->i_ino - 1) %
3196 EXT4_INODES_PER_GROUP(sb));
3197 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3198 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3199
3200 bh = sb_getblk(sb, block);
ac27a0ec 3201 if (!bh) {
c398eda0
TT
3202 EXT4_ERROR_INODE_BLOCK(inode, block,
3203 "unable to read itable block");
ac27a0ec
DK
3204 return -EIO;
3205 }
3206 if (!buffer_uptodate(bh)) {
3207 lock_buffer(bh);
9c83a923
HK
3208
3209 /*
3210 * If the buffer has the write error flag, we have failed
3211 * to write out another inode in the same block. In this
3212 * case, we don't have to read the block because we may
3213 * read the old inode data successfully.
3214 */
3215 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3216 set_buffer_uptodate(bh);
3217
ac27a0ec
DK
3218 if (buffer_uptodate(bh)) {
3219 /* someone brought it uptodate while we waited */
3220 unlock_buffer(bh);
3221 goto has_buffer;
3222 }
3223
3224 /*
3225 * If we have all information of the inode in memory and this
3226 * is the only valid inode in the block, we need not read the
3227 * block.
3228 */
3229 if (in_mem) {
3230 struct buffer_head *bitmap_bh;
240799cd 3231 int i, start;
ac27a0ec 3232
240799cd 3233 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3234
240799cd
TT
3235 /* Is the inode bitmap in cache? */
3236 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3237 if (!bitmap_bh)
3238 goto make_io;
3239
3240 /*
3241 * If the inode bitmap isn't in cache then the
3242 * optimisation may end up performing two reads instead
3243 * of one, so skip it.
3244 */
3245 if (!buffer_uptodate(bitmap_bh)) {
3246 brelse(bitmap_bh);
3247 goto make_io;
3248 }
240799cd 3249 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3250 if (i == inode_offset)
3251 continue;
617ba13b 3252 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3253 break;
3254 }
3255 brelse(bitmap_bh);
240799cd 3256 if (i == start + inodes_per_block) {
ac27a0ec
DK
3257 /* all other inodes are free, so skip I/O */
3258 memset(bh->b_data, 0, bh->b_size);
3259 set_buffer_uptodate(bh);
3260 unlock_buffer(bh);
3261 goto has_buffer;
3262 }
3263 }
3264
3265make_io:
240799cd
TT
3266 /*
3267 * If we need to do any I/O, try to pre-readahead extra
3268 * blocks from the inode table.
3269 */
3270 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3271 ext4_fsblk_t b, end, table;
3272 unsigned num;
3273
3274 table = ext4_inode_table(sb, gdp);
b713a5ec 3275 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3276 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3277 if (table > b)
3278 b = table;
3279 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3280 num = EXT4_INODES_PER_GROUP(sb);
3281 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3282 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 3283 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3284 table += num / inodes_per_block;
3285 if (end > table)
3286 end = table;
3287 while (b <= end)
3288 sb_breadahead(sb, b++);
3289 }
3290
ac27a0ec
DK
3291 /*
3292 * There are other valid inodes in the buffer, this inode
3293 * has in-inode xattrs, or we don't have this inode in memory.
3294 * Read the block from disk.
3295 */
0562e0ba 3296 trace_ext4_load_inode(inode);
ac27a0ec
DK
3297 get_bh(bh);
3298 bh->b_end_io = end_buffer_read_sync;
3299 submit_bh(READ_META, bh);
3300 wait_on_buffer(bh);
3301 if (!buffer_uptodate(bh)) {
c398eda0
TT
3302 EXT4_ERROR_INODE_BLOCK(inode, block,
3303 "unable to read itable block");
ac27a0ec
DK
3304 brelse(bh);
3305 return -EIO;
3306 }
3307 }
3308has_buffer:
3309 iloc->bh = bh;
3310 return 0;
3311}
3312
617ba13b 3313int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3314{
3315 /* We have all inode data except xattrs in memory here. */
617ba13b 3316 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3317 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3318}
3319
617ba13b 3320void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3321{
617ba13b 3322 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3323
3324 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3325 if (flags & EXT4_SYNC_FL)
ac27a0ec 3326 inode->i_flags |= S_SYNC;
617ba13b 3327 if (flags & EXT4_APPEND_FL)
ac27a0ec 3328 inode->i_flags |= S_APPEND;
617ba13b 3329 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3330 inode->i_flags |= S_IMMUTABLE;
617ba13b 3331 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3332 inode->i_flags |= S_NOATIME;
617ba13b 3333 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3334 inode->i_flags |= S_DIRSYNC;
3335}
3336
ff9ddf7e
JK
3337/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3338void ext4_get_inode_flags(struct ext4_inode_info *ei)
3339{
84a8dce2
DM
3340 unsigned int vfs_fl;
3341 unsigned long old_fl, new_fl;
3342
3343 do {
3344 vfs_fl = ei->vfs_inode.i_flags;
3345 old_fl = ei->i_flags;
3346 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3347 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3348 EXT4_DIRSYNC_FL);
3349 if (vfs_fl & S_SYNC)
3350 new_fl |= EXT4_SYNC_FL;
3351 if (vfs_fl & S_APPEND)
3352 new_fl |= EXT4_APPEND_FL;
3353 if (vfs_fl & S_IMMUTABLE)
3354 new_fl |= EXT4_IMMUTABLE_FL;
3355 if (vfs_fl & S_NOATIME)
3356 new_fl |= EXT4_NOATIME_FL;
3357 if (vfs_fl & S_DIRSYNC)
3358 new_fl |= EXT4_DIRSYNC_FL;
3359 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3360}
de9a55b8 3361
0fc1b451 3362static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3363 struct ext4_inode_info *ei)
0fc1b451
AK
3364{
3365 blkcnt_t i_blocks ;
8180a562
AK
3366 struct inode *inode = &(ei->vfs_inode);
3367 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3368
3369 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3370 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3371 /* we are using combined 48 bit field */
3372 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3373 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3374 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3375 /* i_blocks represent file system block size */
3376 return i_blocks << (inode->i_blkbits - 9);
3377 } else {
3378 return i_blocks;
3379 }
0fc1b451
AK
3380 } else {
3381 return le32_to_cpu(raw_inode->i_blocks_lo);
3382 }
3383}
ff9ddf7e 3384
1d1fe1ee 3385struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3386{
617ba13b
MC
3387 struct ext4_iloc iloc;
3388 struct ext4_inode *raw_inode;
1d1fe1ee 3389 struct ext4_inode_info *ei;
1d1fe1ee 3390 struct inode *inode;
b436b9be 3391 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3392 long ret;
ac27a0ec
DK
3393 int block;
3394
1d1fe1ee
DH
3395 inode = iget_locked(sb, ino);
3396 if (!inode)
3397 return ERR_PTR(-ENOMEM);
3398 if (!(inode->i_state & I_NEW))
3399 return inode;
3400
3401 ei = EXT4_I(inode);
7dc57615 3402 iloc.bh = NULL;
ac27a0ec 3403
1d1fe1ee
DH
3404 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3405 if (ret < 0)
ac27a0ec 3406 goto bad_inode;
617ba13b 3407 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3408 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3409 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3410 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3411 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
3412 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3413 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3414 }
3415 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 3416
353eb83c 3417 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
3418 ei->i_dir_start_lookup = 0;
3419 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3420 /* We now have enough fields to check if the inode was active or not.
3421 * This is needed because nfsd might try to access dead inodes
3422 * the test is that same one that e2fsck uses
3423 * NeilBrown 1999oct15
3424 */
3425 if (inode->i_nlink == 0) {
3426 if (inode->i_mode == 0 ||
617ba13b 3427 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3428 /* this inode is deleted */
1d1fe1ee 3429 ret = -ESTALE;
ac27a0ec
DK
3430 goto bad_inode;
3431 }
3432 /* The only unlinked inodes we let through here have
3433 * valid i_mode and are being read by the orphan
3434 * recovery code: that's fine, we're about to complete
3435 * the process of deleting those. */
3436 }
ac27a0ec 3437 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3438 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3439 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3440 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3441 ei->i_file_acl |=
3442 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3443 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3444 ei->i_disksize = inode->i_size;
a9e7f447
DM
3445#ifdef CONFIG_QUOTA
3446 ei->i_reserved_quota = 0;
3447#endif
ac27a0ec
DK
3448 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3449 ei->i_block_group = iloc.block_group;
a4912123 3450 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3451 /*
3452 * NOTE! The in-memory inode i_data array is in little-endian order
3453 * even on big-endian machines: we do NOT byteswap the block numbers!
3454 */
617ba13b 3455 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3456 ei->i_data[block] = raw_inode->i_block[block];
3457 INIT_LIST_HEAD(&ei->i_orphan);
3458
b436b9be
JK
3459 /*
3460 * Set transaction id's of transactions that have to be committed
3461 * to finish f[data]sync. We set them to currently running transaction
3462 * as we cannot be sure that the inode or some of its metadata isn't
3463 * part of the transaction - the inode could have been reclaimed and
3464 * now it is reread from disk.
3465 */
3466 if (journal) {
3467 transaction_t *transaction;
3468 tid_t tid;
3469
a931da6a 3470 read_lock(&journal->j_state_lock);
b436b9be
JK
3471 if (journal->j_running_transaction)
3472 transaction = journal->j_running_transaction;
3473 else
3474 transaction = journal->j_committing_transaction;
3475 if (transaction)
3476 tid = transaction->t_tid;
3477 else
3478 tid = journal->j_commit_sequence;
a931da6a 3479 read_unlock(&journal->j_state_lock);
b436b9be
JK
3480 ei->i_sync_tid = tid;
3481 ei->i_datasync_tid = tid;
3482 }
3483
0040d987 3484 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 3485 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 3486 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 3487 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 3488 ret = -EIO;
ac27a0ec 3489 goto bad_inode;
e5d2861f 3490 }
ac27a0ec
DK
3491 if (ei->i_extra_isize == 0) {
3492 /* The extra space is currently unused. Use it. */
617ba13b
MC
3493 ei->i_extra_isize = sizeof(struct ext4_inode) -
3494 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3495 } else {
3496 __le32 *magic = (void *)raw_inode +
617ba13b 3497 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3498 ei->i_extra_isize;
617ba13b 3499 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 3500 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
3501 }
3502 } else
3503 ei->i_extra_isize = 0;
3504
ef7f3835
KS
3505 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3506 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3507 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3508 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3509
25ec56b5
JNC
3510 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3511 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3512 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3513 inode->i_version |=
3514 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3515 }
3516
c4b5a614 3517 ret = 0;
485c26ec 3518 if (ei->i_file_acl &&
1032988c 3519 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3520 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3521 ei->i_file_acl);
485c26ec
TT
3522 ret = -EIO;
3523 goto bad_inode;
07a03824 3524 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
3525 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3526 (S_ISLNK(inode->i_mode) &&
3527 !ext4_inode_is_fast_symlink(inode)))
3528 /* Validate extent which is part of inode */
3529 ret = ext4_ext_check_inode(inode);
de9a55b8 3530 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
3531 (S_ISLNK(inode->i_mode) &&
3532 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 3533 /* Validate block references which are part of inode */
1f7d1e77 3534 ret = ext4_ind_check_inode(inode);
fe2c8191 3535 }
567f3e9a 3536 if (ret)
de9a55b8 3537 goto bad_inode;
7a262f7c 3538
ac27a0ec 3539 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3540 inode->i_op = &ext4_file_inode_operations;
3541 inode->i_fop = &ext4_file_operations;
3542 ext4_set_aops(inode);
ac27a0ec 3543 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3544 inode->i_op = &ext4_dir_inode_operations;
3545 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3546 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3547 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3548 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3549 nd_terminate_link(ei->i_data, inode->i_size,
3550 sizeof(ei->i_data) - 1);
3551 } else {
617ba13b
MC
3552 inode->i_op = &ext4_symlink_inode_operations;
3553 ext4_set_aops(inode);
ac27a0ec 3554 }
563bdd61
TT
3555 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3556 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3557 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3558 if (raw_inode->i_block[0])
3559 init_special_inode(inode, inode->i_mode,
3560 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3561 else
3562 init_special_inode(inode, inode->i_mode,
3563 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3564 } else {
563bdd61 3565 ret = -EIO;
24676da4 3566 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3567 goto bad_inode;
ac27a0ec 3568 }
af5bc92d 3569 brelse(iloc.bh);
617ba13b 3570 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3571 unlock_new_inode(inode);
3572 return inode;
ac27a0ec
DK
3573
3574bad_inode:
567f3e9a 3575 brelse(iloc.bh);
1d1fe1ee
DH
3576 iget_failed(inode);
3577 return ERR_PTR(ret);
ac27a0ec
DK
3578}
3579
0fc1b451
AK
3580static int ext4_inode_blocks_set(handle_t *handle,
3581 struct ext4_inode *raw_inode,
3582 struct ext4_inode_info *ei)
3583{
3584 struct inode *inode = &(ei->vfs_inode);
3585 u64 i_blocks = inode->i_blocks;
3586 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3587
3588 if (i_blocks <= ~0U) {
3589 /*
3590 * i_blocks can be represnted in a 32 bit variable
3591 * as multiple of 512 bytes
3592 */
8180a562 3593 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3594 raw_inode->i_blocks_high = 0;
84a8dce2 3595 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
3596 return 0;
3597 }
3598 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3599 return -EFBIG;
3600
3601 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
3602 /*
3603 * i_blocks can be represented in a 48 bit variable
3604 * as multiple of 512 bytes
3605 */
8180a562 3606 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3607 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 3608 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 3609 } else {
84a8dce2 3610 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
3611 /* i_block is stored in file system block size */
3612 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3613 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3614 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 3615 }
f287a1a5 3616 return 0;
0fc1b451
AK
3617}
3618
ac27a0ec
DK
3619/*
3620 * Post the struct inode info into an on-disk inode location in the
3621 * buffer-cache. This gobbles the caller's reference to the
3622 * buffer_head in the inode location struct.
3623 *
3624 * The caller must have write access to iloc->bh.
3625 */
617ba13b 3626static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 3627 struct inode *inode,
830156c7 3628 struct ext4_iloc *iloc)
ac27a0ec 3629{
617ba13b
MC
3630 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3631 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
3632 struct buffer_head *bh = iloc->bh;
3633 int err = 0, rc, block;
3634
3635 /* For fields not not tracking in the in-memory inode,
3636 * initialise them to zero for new inodes. */
19f5fb7a 3637 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 3638 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 3639
ff9ddf7e 3640 ext4_get_inode_flags(ei);
ac27a0ec 3641 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 3642 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
3643 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3644 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3645/*
3646 * Fix up interoperability with old kernels. Otherwise, old inodes get
3647 * re-used with the upper 16 bits of the uid/gid intact
3648 */
af5bc92d 3649 if (!ei->i_dtime) {
ac27a0ec
DK
3650 raw_inode->i_uid_high =
3651 cpu_to_le16(high_16_bits(inode->i_uid));
3652 raw_inode->i_gid_high =
3653 cpu_to_le16(high_16_bits(inode->i_gid));
3654 } else {
3655 raw_inode->i_uid_high = 0;
3656 raw_inode->i_gid_high = 0;
3657 }
3658 } else {
3659 raw_inode->i_uid_low =
3660 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3661 raw_inode->i_gid_low =
3662 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3663 raw_inode->i_uid_high = 0;
3664 raw_inode->i_gid_high = 0;
3665 }
3666 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
3667
3668 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3669 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3670 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3671 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3672
0fc1b451
AK
3673 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3674 goto out_brelse;
ac27a0ec 3675 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 3676 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
3677 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3678 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
3679 raw_inode->i_file_acl_high =
3680 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 3681 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
3682 ext4_isize_set(raw_inode, ei->i_disksize);
3683 if (ei->i_disksize > 0x7fffffffULL) {
3684 struct super_block *sb = inode->i_sb;
3685 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3686 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3687 EXT4_SB(sb)->s_es->s_rev_level ==
3688 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3689 /* If this is the first large file
3690 * created, add a flag to the superblock.
3691 */
3692 err = ext4_journal_get_write_access(handle,
3693 EXT4_SB(sb)->s_sbh);
3694 if (err)
3695 goto out_brelse;
3696 ext4_update_dynamic_rev(sb);
3697 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 3698 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 3699 sb->s_dirt = 1;
0390131b 3700 ext4_handle_sync(handle);
73b50c1c 3701 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 3702 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
3703 }
3704 }
3705 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3706 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3707 if (old_valid_dev(inode->i_rdev)) {
3708 raw_inode->i_block[0] =
3709 cpu_to_le32(old_encode_dev(inode->i_rdev));
3710 raw_inode->i_block[1] = 0;
3711 } else {
3712 raw_inode->i_block[0] = 0;
3713 raw_inode->i_block[1] =
3714 cpu_to_le32(new_encode_dev(inode->i_rdev));
3715 raw_inode->i_block[2] = 0;
3716 }
de9a55b8
TT
3717 } else
3718 for (block = 0; block < EXT4_N_BLOCKS; block++)
3719 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 3720
25ec56b5
JNC
3721 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3722 if (ei->i_extra_isize) {
3723 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3724 raw_inode->i_version_hi =
3725 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 3726 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
3727 }
3728
830156c7 3729 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 3730 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
3731 if (!err)
3732 err = rc;
19f5fb7a 3733 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 3734
b436b9be 3735 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 3736out_brelse:
af5bc92d 3737 brelse(bh);
617ba13b 3738 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3739 return err;
3740}
3741
3742/*
617ba13b 3743 * ext4_write_inode()
ac27a0ec
DK
3744 *
3745 * We are called from a few places:
3746 *
3747 * - Within generic_file_write() for O_SYNC files.
3748 * Here, there will be no transaction running. We wait for any running
3749 * trasnaction to commit.
3750 *
3751 * - Within sys_sync(), kupdate and such.
3752 * We wait on commit, if tol to.
3753 *
3754 * - Within prune_icache() (PF_MEMALLOC == true)
3755 * Here we simply return. We can't afford to block kswapd on the
3756 * journal commit.
3757 *
3758 * In all cases it is actually safe for us to return without doing anything,
3759 * because the inode has been copied into a raw inode buffer in
617ba13b 3760 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
3761 * knfsd.
3762 *
3763 * Note that we are absolutely dependent upon all inode dirtiers doing the
3764 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3765 * which we are interested.
3766 *
3767 * It would be a bug for them to not do this. The code:
3768 *
3769 * mark_inode_dirty(inode)
3770 * stuff();
3771 * inode->i_size = expr;
3772 *
3773 * is in error because a kswapd-driven write_inode() could occur while
3774 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3775 * will no longer be on the superblock's dirty inode list.
3776 */
a9185b41 3777int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 3778{
91ac6f43
FM
3779 int err;
3780
ac27a0ec
DK
3781 if (current->flags & PF_MEMALLOC)
3782 return 0;
3783
91ac6f43
FM
3784 if (EXT4_SB(inode->i_sb)->s_journal) {
3785 if (ext4_journal_current_handle()) {
3786 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3787 dump_stack();
3788 return -EIO;
3789 }
ac27a0ec 3790
a9185b41 3791 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
3792 return 0;
3793
3794 err = ext4_force_commit(inode->i_sb);
3795 } else {
3796 struct ext4_iloc iloc;
ac27a0ec 3797
8b472d73 3798 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
3799 if (err)
3800 return err;
a9185b41 3801 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
3802 sync_dirty_buffer(iloc.bh);
3803 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
3804 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3805 "IO error syncing inode");
830156c7
FM
3806 err = -EIO;
3807 }
fd2dd9fb 3808 brelse(iloc.bh);
91ac6f43
FM
3809 }
3810 return err;
ac27a0ec
DK
3811}
3812
3813/*
617ba13b 3814 * ext4_setattr()
ac27a0ec
DK
3815 *
3816 * Called from notify_change.
3817 *
3818 * We want to trap VFS attempts to truncate the file as soon as
3819 * possible. In particular, we want to make sure that when the VFS
3820 * shrinks i_size, we put the inode on the orphan list and modify
3821 * i_disksize immediately, so that during the subsequent flushing of
3822 * dirty pages and freeing of disk blocks, we can guarantee that any
3823 * commit will leave the blocks being flushed in an unused state on
3824 * disk. (On recovery, the inode will get truncated and the blocks will
3825 * be freed, so we have a strong guarantee that no future commit will
3826 * leave these blocks visible to the user.)
3827 *
678aaf48
JK
3828 * Another thing we have to assure is that if we are in ordered mode
3829 * and inode is still attached to the committing transaction, we must
3830 * we start writeout of all the dirty pages which are being truncated.
3831 * This way we are sure that all the data written in the previous
3832 * transaction are already on disk (truncate waits for pages under
3833 * writeback).
3834 *
3835 * Called with inode->i_mutex down.
ac27a0ec 3836 */
617ba13b 3837int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
3838{
3839 struct inode *inode = dentry->d_inode;
3840 int error, rc = 0;
3d287de3 3841 int orphan = 0;
ac27a0ec
DK
3842 const unsigned int ia_valid = attr->ia_valid;
3843
3844 error = inode_change_ok(inode, attr);
3845 if (error)
3846 return error;
3847
12755627 3848 if (is_quota_modification(inode, attr))
871a2931 3849 dquot_initialize(inode);
ac27a0ec
DK
3850 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3851 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3852 handle_t *handle;
3853
3854 /* (user+group)*(old+new) structure, inode write (sb,
3855 * inode block, ? - but truncate inode update has it) */
5aca07eb 3856 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 3857 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
3858 if (IS_ERR(handle)) {
3859 error = PTR_ERR(handle);
3860 goto err_out;
3861 }
b43fa828 3862 error = dquot_transfer(inode, attr);
ac27a0ec 3863 if (error) {
617ba13b 3864 ext4_journal_stop(handle);
ac27a0ec
DK
3865 return error;
3866 }
3867 /* Update corresponding info in inode so that everything is in
3868 * one transaction */
3869 if (attr->ia_valid & ATTR_UID)
3870 inode->i_uid = attr->ia_uid;
3871 if (attr->ia_valid & ATTR_GID)
3872 inode->i_gid = attr->ia_gid;
617ba13b
MC
3873 error = ext4_mark_inode_dirty(handle, inode);
3874 ext4_journal_stop(handle);
ac27a0ec
DK
3875 }
3876
e2b46574 3877 if (attr->ia_valid & ATTR_SIZE) {
562c72aa
CH
3878 inode_dio_wait(inode);
3879
12e9b892 3880 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
3881 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3882
0c095c7f
TT
3883 if (attr->ia_size > sbi->s_bitmap_maxbytes)
3884 return -EFBIG;
e2b46574
ES
3885 }
3886 }
3887
ac27a0ec 3888 if (S_ISREG(inode->i_mode) &&
c8d46e41 3889 attr->ia_valid & ATTR_SIZE &&
072bd7ea 3890 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
3891 handle_t *handle;
3892
617ba13b 3893 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
3894 if (IS_ERR(handle)) {
3895 error = PTR_ERR(handle);
3896 goto err_out;
3897 }
3d287de3
DM
3898 if (ext4_handle_valid(handle)) {
3899 error = ext4_orphan_add(handle, inode);
3900 orphan = 1;
3901 }
617ba13b
MC
3902 EXT4_I(inode)->i_disksize = attr->ia_size;
3903 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3904 if (!error)
3905 error = rc;
617ba13b 3906 ext4_journal_stop(handle);
678aaf48
JK
3907
3908 if (ext4_should_order_data(inode)) {
3909 error = ext4_begin_ordered_truncate(inode,
3910 attr->ia_size);
3911 if (error) {
3912 /* Do as much error cleanup as possible */
3913 handle = ext4_journal_start(inode, 3);
3914 if (IS_ERR(handle)) {
3915 ext4_orphan_del(NULL, inode);
3916 goto err_out;
3917 }
3918 ext4_orphan_del(handle, inode);
3d287de3 3919 orphan = 0;
678aaf48
JK
3920 ext4_journal_stop(handle);
3921 goto err_out;
3922 }
3923 }
ac27a0ec
DK
3924 }
3925
072bd7ea
TT
3926 if (attr->ia_valid & ATTR_SIZE) {
3927 if (attr->ia_size != i_size_read(inode)) {
3928 truncate_setsize(inode, attr->ia_size);
3929 ext4_truncate(inode);
3930 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3931 ext4_truncate(inode);
3932 }
ac27a0ec 3933
1025774c
CH
3934 if (!rc) {
3935 setattr_copy(inode, attr);
3936 mark_inode_dirty(inode);
3937 }
3938
3939 /*
3940 * If the call to ext4_truncate failed to get a transaction handle at
3941 * all, we need to clean up the in-core orphan list manually.
3942 */
3d287de3 3943 if (orphan && inode->i_nlink)
617ba13b 3944 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
3945
3946 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 3947 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
3948
3949err_out:
617ba13b 3950 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
3951 if (!error)
3952 error = rc;
3953 return error;
3954}
3955
3e3398a0
MC
3956int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3957 struct kstat *stat)
3958{
3959 struct inode *inode;
3960 unsigned long delalloc_blocks;
3961
3962 inode = dentry->d_inode;
3963 generic_fillattr(inode, stat);
3964
3965 /*
3966 * We can't update i_blocks if the block allocation is delayed
3967 * otherwise in the case of system crash before the real block
3968 * allocation is done, we will have i_blocks inconsistent with
3969 * on-disk file blocks.
3970 * We always keep i_blocks updated together with real
3971 * allocation. But to not confuse with user, stat
3972 * will return the blocks that include the delayed allocation
3973 * blocks for this file.
3974 */
3e3398a0 3975 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3e3398a0
MC
3976
3977 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3978 return 0;
3979}
ac27a0ec 3980
a02908f1
MC
3981static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3982{
12e9b892 3983 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 3984 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 3985 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 3986}
ac51d837 3987
ac27a0ec 3988/*
a02908f1
MC
3989 * Account for index blocks, block groups bitmaps and block group
3990 * descriptor blocks if modify datablocks and index blocks
3991 * worse case, the indexs blocks spread over different block groups
ac27a0ec 3992 *
a02908f1 3993 * If datablocks are discontiguous, they are possible to spread over
af901ca1 3994 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 3995 * they could still across block group boundary.
ac27a0ec 3996 *
a02908f1
MC
3997 * Also account for superblock, inode, quota and xattr blocks
3998 */
1f109d5a 3999static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4000{
8df9675f
TT
4001 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4002 int gdpblocks;
a02908f1
MC
4003 int idxblocks;
4004 int ret = 0;
4005
4006 /*
4007 * How many index blocks need to touch to modify nrblocks?
4008 * The "Chunk" flag indicating whether the nrblocks is
4009 * physically contiguous on disk
4010 *
4011 * For Direct IO and fallocate, they calls get_block to allocate
4012 * one single extent at a time, so they could set the "Chunk" flag
4013 */
4014 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4015
4016 ret = idxblocks;
4017
4018 /*
4019 * Now let's see how many group bitmaps and group descriptors need
4020 * to account
4021 */
4022 groups = idxblocks;
4023 if (chunk)
4024 groups += 1;
4025 else
4026 groups += nrblocks;
4027
4028 gdpblocks = groups;
8df9675f
TT
4029 if (groups > ngroups)
4030 groups = ngroups;
a02908f1
MC
4031 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4032 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4033
4034 /* bitmaps and block group descriptor blocks */
4035 ret += groups + gdpblocks;
4036
4037 /* Blocks for super block, inode, quota and xattr blocks */
4038 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4039
4040 return ret;
4041}
4042
4043/*
25985edc 4044 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4045 * the modification of a single pages into a single transaction,
4046 * which may include multiple chunks of block allocations.
ac27a0ec 4047 *
525f4ed8 4048 * This could be called via ext4_write_begin()
ac27a0ec 4049 *
525f4ed8 4050 * We need to consider the worse case, when
a02908f1 4051 * one new block per extent.
ac27a0ec 4052 */
a86c6181 4053int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4054{
617ba13b 4055 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4056 int ret;
4057
a02908f1 4058 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4059
a02908f1 4060 /* Account for data blocks for journalled mode */
617ba13b 4061 if (ext4_should_journal_data(inode))
a02908f1 4062 ret += bpp;
ac27a0ec
DK
4063 return ret;
4064}
f3bd1f3f
MC
4065
4066/*
4067 * Calculate the journal credits for a chunk of data modification.
4068 *
4069 * This is called from DIO, fallocate or whoever calling
79e83036 4070 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4071 *
4072 * journal buffers for data blocks are not included here, as DIO
4073 * and fallocate do no need to journal data buffers.
4074 */
4075int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4076{
4077 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4078}
4079
ac27a0ec 4080/*
617ba13b 4081 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4082 * Give this, we know that the caller already has write access to iloc->bh.
4083 */
617ba13b 4084int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4085 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4086{
4087 int err = 0;
4088
25ec56b5
JNC
4089 if (test_opt(inode->i_sb, I_VERSION))
4090 inode_inc_iversion(inode);
4091
ac27a0ec
DK
4092 /* the do_update_inode consumes one bh->b_count */
4093 get_bh(iloc->bh);
4094
dab291af 4095 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4096 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4097 put_bh(iloc->bh);
4098 return err;
4099}
4100
4101/*
4102 * On success, We end up with an outstanding reference count against
4103 * iloc->bh. This _must_ be cleaned up later.
4104 */
4105
4106int
617ba13b
MC
4107ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4108 struct ext4_iloc *iloc)
ac27a0ec 4109{
0390131b
FM
4110 int err;
4111
4112 err = ext4_get_inode_loc(inode, iloc);
4113 if (!err) {
4114 BUFFER_TRACE(iloc->bh, "get_write_access");
4115 err = ext4_journal_get_write_access(handle, iloc->bh);
4116 if (err) {
4117 brelse(iloc->bh);
4118 iloc->bh = NULL;
ac27a0ec
DK
4119 }
4120 }
617ba13b 4121 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4122 return err;
4123}
4124
6dd4ee7c
KS
4125/*
4126 * Expand an inode by new_extra_isize bytes.
4127 * Returns 0 on success or negative error number on failure.
4128 */
1d03ec98
AK
4129static int ext4_expand_extra_isize(struct inode *inode,
4130 unsigned int new_extra_isize,
4131 struct ext4_iloc iloc,
4132 handle_t *handle)
6dd4ee7c
KS
4133{
4134 struct ext4_inode *raw_inode;
4135 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4136
4137 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4138 return 0;
4139
4140 raw_inode = ext4_raw_inode(&iloc);
4141
4142 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4143
4144 /* No extended attributes present */
19f5fb7a
TT
4145 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4146 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4147 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4148 new_extra_isize);
4149 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4150 return 0;
4151 }
4152
4153 /* try to expand with EAs present */
4154 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4155 raw_inode, handle);
4156}
4157
ac27a0ec
DK
4158/*
4159 * What we do here is to mark the in-core inode as clean with respect to inode
4160 * dirtiness (it may still be data-dirty).
4161 * This means that the in-core inode may be reaped by prune_icache
4162 * without having to perform any I/O. This is a very good thing,
4163 * because *any* task may call prune_icache - even ones which
4164 * have a transaction open against a different journal.
4165 *
4166 * Is this cheating? Not really. Sure, we haven't written the
4167 * inode out, but prune_icache isn't a user-visible syncing function.
4168 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4169 * we start and wait on commits.
4170 *
4171 * Is this efficient/effective? Well, we're being nice to the system
4172 * by cleaning up our inodes proactively so they can be reaped
4173 * without I/O. But we are potentially leaving up to five seconds'
4174 * worth of inodes floating about which prune_icache wants us to
4175 * write out. One way to fix that would be to get prune_icache()
4176 * to do a write_super() to free up some memory. It has the desired
4177 * effect.
4178 */
617ba13b 4179int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4180{
617ba13b 4181 struct ext4_iloc iloc;
6dd4ee7c
KS
4182 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4183 static unsigned int mnt_count;
4184 int err, ret;
ac27a0ec
DK
4185
4186 might_sleep();
7ff9c073 4187 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4188 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4189 if (ext4_handle_valid(handle) &&
4190 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4191 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4192 /*
4193 * We need extra buffer credits since we may write into EA block
4194 * with this same handle. If journal_extend fails, then it will
4195 * only result in a minor loss of functionality for that inode.
4196 * If this is felt to be critical, then e2fsck should be run to
4197 * force a large enough s_min_extra_isize.
4198 */
4199 if ((jbd2_journal_extend(handle,
4200 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4201 ret = ext4_expand_extra_isize(inode,
4202 sbi->s_want_extra_isize,
4203 iloc, handle);
4204 if (ret) {
19f5fb7a
TT
4205 ext4_set_inode_state(inode,
4206 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4207 if (mnt_count !=
4208 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4209 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4210 "Unable to expand inode %lu. Delete"
4211 " some EAs or run e2fsck.",
4212 inode->i_ino);
c1bddad9
AK
4213 mnt_count =
4214 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4215 }
4216 }
4217 }
4218 }
ac27a0ec 4219 if (!err)
617ba13b 4220 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4221 return err;
4222}
4223
4224/*
617ba13b 4225 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4226 *
4227 * We're really interested in the case where a file is being extended.
4228 * i_size has been changed by generic_commit_write() and we thus need
4229 * to include the updated inode in the current transaction.
4230 *
5dd4056d 4231 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4232 * are allocated to the file.
4233 *
4234 * If the inode is marked synchronous, we don't honour that here - doing
4235 * so would cause a commit on atime updates, which we don't bother doing.
4236 * We handle synchronous inodes at the highest possible level.
4237 */
aa385729 4238void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4239{
ac27a0ec
DK
4240 handle_t *handle;
4241
617ba13b 4242 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4243 if (IS_ERR(handle))
4244 goto out;
f3dc272f 4245
f3dc272f
CW
4246 ext4_mark_inode_dirty(handle, inode);
4247
617ba13b 4248 ext4_journal_stop(handle);
ac27a0ec
DK
4249out:
4250 return;
4251}
4252
4253#if 0
4254/*
4255 * Bind an inode's backing buffer_head into this transaction, to prevent
4256 * it from being flushed to disk early. Unlike
617ba13b 4257 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4258 * returns no iloc structure, so the caller needs to repeat the iloc
4259 * lookup to mark the inode dirty later.
4260 */
617ba13b 4261static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4262{
617ba13b 4263 struct ext4_iloc iloc;
ac27a0ec
DK
4264
4265 int err = 0;
4266 if (handle) {
617ba13b 4267 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4268 if (!err) {
4269 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4270 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4271 if (!err)
0390131b 4272 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4273 NULL,
0390131b 4274 iloc.bh);
ac27a0ec
DK
4275 brelse(iloc.bh);
4276 }
4277 }
617ba13b 4278 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4279 return err;
4280}
4281#endif
4282
617ba13b 4283int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4284{
4285 journal_t *journal;
4286 handle_t *handle;
4287 int err;
4288
4289 /*
4290 * We have to be very careful here: changing a data block's
4291 * journaling status dynamically is dangerous. If we write a
4292 * data block to the journal, change the status and then delete
4293 * that block, we risk forgetting to revoke the old log record
4294 * from the journal and so a subsequent replay can corrupt data.
4295 * So, first we make sure that the journal is empty and that
4296 * nobody is changing anything.
4297 */
4298
617ba13b 4299 journal = EXT4_JOURNAL(inode);
0390131b
FM
4300 if (!journal)
4301 return 0;
d699594d 4302 if (is_journal_aborted(journal))
ac27a0ec
DK
4303 return -EROFS;
4304
dab291af
MC
4305 jbd2_journal_lock_updates(journal);
4306 jbd2_journal_flush(journal);
ac27a0ec
DK
4307
4308 /*
4309 * OK, there are no updates running now, and all cached data is
4310 * synced to disk. We are now in a completely consistent state
4311 * which doesn't have anything in the journal, and we know that
4312 * no filesystem updates are running, so it is safe to modify
4313 * the inode's in-core data-journaling state flag now.
4314 */
4315
4316 if (val)
12e9b892 4317 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 4318 else
12e9b892 4319 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 4320 ext4_set_aops(inode);
ac27a0ec 4321
dab291af 4322 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4323
4324 /* Finally we can mark the inode as dirty. */
4325
617ba13b 4326 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4327 if (IS_ERR(handle))
4328 return PTR_ERR(handle);
4329
617ba13b 4330 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4331 ext4_handle_sync(handle);
617ba13b
MC
4332 ext4_journal_stop(handle);
4333 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4334
4335 return err;
4336}
2e9ee850
AK
4337
4338static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4339{
4340 return !buffer_mapped(bh);
4341}
4342
c2ec175c 4343int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4344{
c2ec175c 4345 struct page *page = vmf->page;
2e9ee850
AK
4346 loff_t size;
4347 unsigned long len;
9ea7df53 4348 int ret;
2e9ee850
AK
4349 struct file *file = vma->vm_file;
4350 struct inode *inode = file->f_path.dentry->d_inode;
4351 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4352 handle_t *handle;
4353 get_block_t *get_block;
4354 int retries = 0;
2e9ee850
AK
4355
4356 /*
9ea7df53
JK
4357 * This check is racy but catches the common case. We rely on
4358 * __block_page_mkwrite() to do a reliable check.
2e9ee850 4359 */
9ea7df53
JK
4360 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4361 /* Delalloc case is easy... */
4362 if (test_opt(inode->i_sb, DELALLOC) &&
4363 !ext4_should_journal_data(inode) &&
4364 !ext4_nonda_switch(inode->i_sb)) {
4365 do {
4366 ret = __block_page_mkwrite(vma, vmf,
4367 ext4_da_get_block_prep);
4368 } while (ret == -ENOSPC &&
4369 ext4_should_retry_alloc(inode->i_sb, &retries));
4370 goto out_ret;
2e9ee850 4371 }
0e499890
DW
4372
4373 lock_page(page);
9ea7df53
JK
4374 size = i_size_read(inode);
4375 /* Page got truncated from under us? */
4376 if (page->mapping != mapping || page_offset(page) > size) {
4377 unlock_page(page);
4378 ret = VM_FAULT_NOPAGE;
4379 goto out;
0e499890 4380 }
2e9ee850
AK
4381
4382 if (page->index == size >> PAGE_CACHE_SHIFT)
4383 len = size & ~PAGE_CACHE_MASK;
4384 else
4385 len = PAGE_CACHE_SIZE;
a827eaff 4386 /*
9ea7df53
JK
4387 * Return if we have all the buffers mapped. This avoids the need to do
4388 * journal_start/journal_stop which can block and take a long time
a827eaff 4389 */
2e9ee850 4390 if (page_has_buffers(page)) {
2e9ee850 4391 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 4392 ext4_bh_unmapped)) {
9ea7df53
JK
4393 /* Wait so that we don't change page under IO */
4394 wait_on_page_writeback(page);
4395 ret = VM_FAULT_LOCKED;
4396 goto out;
a827eaff 4397 }
2e9ee850 4398 }
a827eaff 4399 unlock_page(page);
9ea7df53
JK
4400 /* OK, we need to fill the hole... */
4401 if (ext4_should_dioread_nolock(inode))
4402 get_block = ext4_get_block_write;
4403 else
4404 get_block = ext4_get_block;
4405retry_alloc:
4406 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4407 if (IS_ERR(handle)) {
c2ec175c 4408 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4409 goto out;
4410 }
4411 ret = __block_page_mkwrite(vma, vmf, get_block);
4412 if (!ret && ext4_should_journal_data(inode)) {
4413 if (walk_page_buffers(handle, page_buffers(page), 0,
4414 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4415 unlock_page(page);
4416 ret = VM_FAULT_SIGBUS;
4417 goto out;
4418 }
4419 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4420 }
4421 ext4_journal_stop(handle);
4422 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4423 goto retry_alloc;
4424out_ret:
4425 ret = block_page_mkwrite_return(ret);
4426out:
2e9ee850
AK
4427 return ret;
4428}