ext4: clear mmp sequence number when remounting read-only
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
ac27a0ec 2/*
617ba13b 3 * linux/fs/ext4/inode.c
ac27a0ec
DK
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
ac27a0ec
DK
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
617ba13b 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
20 */
21
ac27a0ec
DK
22#include <linux/fs.h>
23#include <linux/time.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
c94c2acf 26#include <linux/dax.h>
ac27a0ec
DK
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
64769240 31#include <linux/pagevec.h>
ac27a0ec 32#include <linux/mpage.h>
e83c1397 33#include <linux/namei.h>
ac27a0ec
DK
34#include <linux/uio.h>
35#include <linux/bio.h>
4c0425ff 36#include <linux/workqueue.h>
744692dc 37#include <linux/kernel.h>
6db26ffc 38#include <linux/printk.h>
5a0e3ad6 39#include <linux/slab.h>
00a1a053 40#include <linux/bitops.h>
364443cb 41#include <linux/iomap.h>
ae5e165d 42#include <linux/iversion.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
9f125d64 47#include "truncate.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
814525f4
DW
53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55{
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 57 __u32 csum;
b47820ed
DJ
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
814525f4 61
b47820ed
DJ
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 67
b47820ed
DJ
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
b47820ed 77 }
05ac5aa1
DJ
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
80 }
81
814525f4
DW
82 return csum;
83}
84
85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87{
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 92 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104}
105
106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108{
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 113 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121}
122
678aaf48
JK
123static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125{
7ff9c073 126 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
678aaf48
JK
138}
139
d47992f8
LC
140static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
cb20d518
TT
142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
dec214d0
TE
144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
64769240 146
ac27a0ec
DK
147/*
148 * Test whether an inode is a fast symlink.
407cd7fb 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
ac27a0ec 150 */
f348c252 151int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 152{
fc82228a
AK
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
407cd7fb
TE
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
ac27a0ec
DK
164}
165
ac27a0ec
DK
166/*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
fa5d1113 171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 172 int nblocks)
ac27a0ec 173{
487caeef
JK
174 int ret;
175
176 /*
e35fd660 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
181 */
0390131b 182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 183 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 184 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 185 ret = ext4_journal_restart(handle, nblocks);
487caeef 186 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 187 ext4_discard_preallocations(inode);
487caeef
JK
188
189 return ret;
ac27a0ec
DK
190}
191
192/*
193 * Called at the last iput() if i_nlink is zero.
194 */
0930fcc1 195void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
196{
197 handle_t *handle;
bc965ab3 198 int err;
e50e5129 199 int extra_credits = 3;
0421a189 200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
ac27a0ec 201
7ff9c073 202 trace_ext4_evict_inode(inode);
2581fdc8 203
0930fcc1 204 if (inode->i_nlink) {
2d859db3
JK
205 /*
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
219 *
220 * Note that directories do not have this problem because they
221 * don't use page cache.
222 */
6a7fd522
VN
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
3abb1a0f
JK
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
2d859db3
JK
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
d76a3a77 230 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
231 filemap_write_and_wait(&inode->i_data);
232 }
91b0abe3 233 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 234
0930fcc1
AV
235 goto no_delete;
236 }
237
e2bfb088
TT
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
907f4554 241
678aaf48
JK
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 244 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 245
8e8ad8a5
JK
246 /*
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
249 */
250 sb_start_intwrite(inode->i_sb);
e50e5129 251
30a7eb97
TE
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
ac27a0ec 257 if (IS_ERR(handle)) {
bc965ab3 258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
259 /*
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
263 */
617ba13b 264 ext4_orphan_del(NULL, inode);
8e8ad8a5 265 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
266 goto no_delete;
267 }
30a7eb97 268
ac27a0ec 269 if (IS_SYNC(inode))
0390131b 270 ext4_handle_sync(handle);
407cd7fb
TE
271
272 /*
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
278 */
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
ac27a0ec 281 inode->i_size = 0;
bc965ab3
TT
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
12062ddd 284 ext4_warning(inode->i_sb,
bc965ab3
TT
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
287 }
2c98eb5e
TT
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
295 }
296 }
bc965ab3 297
30a7eb97
TE
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
bc965ab3
TT
309 }
310
ac27a0ec 311 /*
617ba13b 312 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 313 * AKPM: I think this can be inside the above `if'.
617ba13b 314 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 315 * deletion of a non-existent orphan - this is because we don't
617ba13b 316 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
317 * (Well, we could do this if we need to, but heck - it works)
318 */
617ba13b
MC
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
617ba13b 329 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 330 /* If that failed, just do the required in-core inode clear. */
0930fcc1 331 ext4_clear_inode(inode);
ac27a0ec 332 else
617ba13b
MC
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
8e8ad8a5 335 sb_end_intwrite(inode->i_sb);
0421a189 336 ext4_xattr_inode_array_free(ea_inode_array);
ac27a0ec
DK
337 return;
338no_delete:
0930fcc1 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
340}
341
a9e7f447
DM
342#ifdef CONFIG_QUOTA
343qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 344{
a9e7f447 345 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 346}
a9e7f447 347#endif
9d0be502 348
0637c6f4
TT
349/*
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
352 */
5f634d06
AK
353void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
12219aea
AK
355{
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 357 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
358
359 spin_lock(&ei->i_block_reservation_lock);
d8990240 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 361 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 363 "with only %d reserved data blocks",
0637c6f4
TT
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
368 }
12219aea 369
0637c6f4
TT
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
71d4f7d0 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 373
12219aea 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 375
72b8ab9d
ES
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
7b415bf6 378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 379 else {
5f634d06
AK
380 /*
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
72b8ab9d 383 * not re-claim the quota for fallocated blocks.
5f634d06 384 */
7b415bf6 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 386 }
d6014301
AK
387
388 /*
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
392 */
0637c6f4
TT
393 if ((ei->i_reserved_data_blocks == 0) &&
394 (atomic_read(&inode->i_writecount) == 0))
d6014301 395 ext4_discard_preallocations(inode);
12219aea
AK
396}
397
e29136f8 398static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
399 unsigned int line,
400 struct ext4_map_blocks *map)
6fd058f7 401{
24676da4
TT
402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403 map->m_len)) {
c398eda0 404 ext4_error_inode(inode, func, line, map->m_pblk,
bdbd6ce0 405 "lblock %lu mapped to illegal pblock %llu "
c398eda0 406 "(length %d)", (unsigned long) map->m_lblk,
bdbd6ce0 407 map->m_pblk, map->m_len);
6a797d27 408 return -EFSCORRUPTED;
6fd058f7
TT
409 }
410 return 0;
411}
412
53085fac
JK
413int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414 ext4_lblk_t len)
415{
416 int ret;
417
418 if (ext4_encrypted_inode(inode))
a7550b30 419 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
420
421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422 if (ret > 0)
423 ret = 0;
424
425 return ret;
426}
427
e29136f8 428#define check_block_validity(inode, map) \
c398eda0 429 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 430
921f266b
DM
431#ifdef ES_AGGRESSIVE_TEST
432static void ext4_map_blocks_es_recheck(handle_t *handle,
433 struct inode *inode,
434 struct ext4_map_blocks *es_map,
435 struct ext4_map_blocks *map,
436 int flags)
437{
438 int retval;
439
440 map->m_flags = 0;
441 /*
442 * There is a race window that the result is not the same.
443 * e.g. xfstests #223 when dioread_nolock enables. The reason
444 * is that we lookup a block mapping in extent status tree with
445 * out taking i_data_sem. So at the time the unwritten extent
446 * could be converted.
447 */
2dcba478 448 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 } else {
453 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 EXT4_GET_BLOCKS_KEEP_SIZE);
455 }
2dcba478 456 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
457
458 /*
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
461 */
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
bdafe42a 465 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
471 retval, flags);
472 }
473}
474#endif /* ES_AGGRESSIVE_TEST */
475
f5ab0d1f 476/*
e35fd660 477 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 478 * and returns if the blocks are already mapped.
f5ab0d1f 479 *
f5ab0d1f
MC
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
482 * mapped.
483 *
e35fd660
TT
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
486 * based files
487 *
facab4d9
JK
488 * On success, it returns the number of blocks being mapped or allocated. if
489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
491 *
492 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
493 * that case, @map is returned as unmapped but we still do fill map->m_len to
494 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
495 *
496 * It returns the error in case of allocation failure.
497 */
e35fd660
TT
498int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
0e855ac8 500{
d100eef2 501 struct extent_status es;
0e855ac8 502 int retval;
b8a86845 503 int ret = 0;
921f266b
DM
504#ifdef ES_AGGRESSIVE_TEST
505 struct ext4_map_blocks orig_map;
506
507 memcpy(&orig_map, map, sizeof(*map));
508#endif
f5ab0d1f 509
e35fd660
TT
510 map->m_flags = 0;
511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 (unsigned long) map->m_lblk);
d100eef2 514
e861b5e9
TT
515 /*
516 * ext4_map_blocks returns an int, and m_len is an unsigned int
517 */
518 if (unlikely(map->m_len > INT_MAX))
519 map->m_len = INT_MAX;
520
4adb6ab3
KM
521 /* We can handle the block number less than EXT_MAX_BLOCKS */
522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 523 return -EFSCORRUPTED;
4adb6ab3 524
d100eef2
ZL
525 /* Lookup extent status tree firstly */
526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
534 retval = map->m_len;
535 map->m_len = retval;
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
537 map->m_pblk = 0;
538 retval = es.es_len - (map->m_lblk - es.es_lblk);
539 if (retval > map->m_len)
540 retval = map->m_len;
541 map->m_len = retval;
d100eef2
ZL
542 retval = 0;
543 } else {
544 BUG_ON(1);
545 }
921f266b
DM
546#ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549#endif
d100eef2
ZL
550 goto found;
551 }
552
4df3d265 553 /*
b920c755
TT
554 * Try to see if we can get the block without requesting a new
555 * file system block.
4df3d265 556 */
2dcba478 557 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
559 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 561 } else {
a4e5d88b
DM
562 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 564 }
f7fec032 565 if (retval > 0) {
3be78c73 566 unsigned int status;
f7fec032 567
44fb851d
ZL
568 if (unlikely(retval != map->m_len)) {
569 ext4_warning(inode->i_sb,
570 "ES len assertion failed for inode "
571 "%lu: retval %d != map->m_len %d",
572 inode->i_ino, retval, map->m_len);
573 WARN_ON(1);
921f266b 574 }
921f266b 575
f7fec032
ZL
576 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 579 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
580 ext4_find_delalloc_range(inode, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
587 }
2dcba478 588 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 589
d100eef2 590found:
e35fd660 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 592 ret = check_block_validity(inode, map);
6fd058f7
TT
593 if (ret != 0)
594 return ret;
595 }
596
f5ab0d1f 597 /* If it is only a block(s) look up */
c2177057 598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
599 return retval;
600
601 /*
602 * Returns if the blocks have already allocated
603 *
604 * Note that if blocks have been preallocated
df3ab170 605 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
606 * with buffer head unmapped.
607 */
e35fd660 608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
609 /*
610 * If we need to convert extent to unwritten
611 * we continue and do the actual work in
612 * ext4_ext_map_blocks()
613 */
614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615 return retval;
4df3d265 616
2a8964d6 617 /*
a25a4e1a
ZL
618 * Here we clear m_flags because after allocating an new extent,
619 * it will be set again.
2a8964d6 620 */
a25a4e1a 621 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 622
4df3d265 623 /*
556615dc 624 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 625 * will possibly result in updating i_data, so we take
d91bd2c1 626 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 627 * with create == 1 flag.
4df3d265 628 */
c8b459f4 629 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 630
4df3d265
AK
631 /*
632 * We need to check for EXT4 here because migrate
633 * could have changed the inode type in between
634 */
12e9b892 635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 636 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 637 } else {
e35fd660 638 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 639
e35fd660 640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
641 /*
642 * We allocated new blocks which will result in
643 * i_data's format changing. Force the migrate
644 * to fail by clearing migrate flags
645 */
19f5fb7a 646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 647 }
d2a17637 648
5f634d06
AK
649 /*
650 * Update reserved blocks/metadata blocks after successful
651 * block allocation which had been deferred till now. We don't
652 * support fallocate for non extent files. So we can update
653 * reserve space here.
654 */
655 if ((retval > 0) &&
1296cc85 656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
657 ext4_da_update_reserve_space(inode, retval, 1);
658 }
2ac3b6e0 659
f7fec032 660 if (retval > 0) {
3be78c73 661 unsigned int status;
f7fec032 662
44fb851d
ZL
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
668 WARN_ON(1);
921f266b 669 }
921f266b 670
c86d8db3
JK
671 /*
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
9b623df6
JK
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
c86d8db3
JK
677 */
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
681 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682 map->m_len);
c86d8db3
JK
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
685 if (ret) {
686 retval = ret;
687 goto out_sem;
688 }
689 }
690
adb23551
ZL
691 /*
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
694 */
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697 if (ext4_es_is_written(&es))
c86d8db3 698 goto out_sem;
adb23551 699 }
f7fec032
ZL
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 703 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
704 ext4_find_delalloc_range(inode, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
c86d8db3 709 if (ret < 0) {
f7fec032 710 retval = ret;
c86d8db3
JK
711 goto out_sem;
712 }
5356f261
AK
713 }
714
c86d8db3 715out_sem:
4df3d265 716 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 718 ret = check_block_validity(inode, map);
6fd058f7
TT
719 if (ret != 0)
720 return ret;
06bd3c36
JK
721
722 /*
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
725 * ordered data list.
726 */
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
02749a4c 730 !ext4_is_quota_file(inode) &&
06bd3c36 731 ext4_should_order_data(inode)) {
ee0876bc
JK
732 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733 ret = ext4_jbd2_inode_add_wait(handle, inode);
734 else
735 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
736 if (ret)
737 return ret;
738 }
6fd058f7 739 }
0e855ac8
AK
740 return retval;
741}
742
ed8ad838
JK
743/*
744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745 * we have to be careful as someone else may be manipulating b_state as well.
746 */
747static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748{
749 unsigned long old_state;
750 unsigned long new_state;
751
752 flags &= EXT4_MAP_FLAGS;
753
754 /* Dummy buffer_head? Set non-atomically. */
755 if (!bh->b_page) {
756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757 return;
758 }
759 /*
760 * Someone else may be modifying b_state. Be careful! This is ugly but
761 * once we get rid of using bh as a container for mapping information
762 * to pass to / from get_block functions, this can go away.
763 */
764 do {
765 old_state = READ_ONCE(bh->b_state);
766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767 } while (unlikely(
768 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769}
770
2ed88685
TT
771static int _ext4_get_block(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh, int flags)
ac27a0ec 773{
2ed88685 774 struct ext4_map_blocks map;
efe70c29 775 int ret = 0;
ac27a0ec 776
46c7f254
TM
777 if (ext4_has_inline_data(inode))
778 return -ERANGE;
779
2ed88685
TT
780 map.m_lblk = iblock;
781 map.m_len = bh->b_size >> inode->i_blkbits;
782
efe70c29
JK
783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784 flags);
7fb5409d 785 if (ret > 0) {
2ed88685 786 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 787 ext4_update_bh_state(bh, map.m_flags);
2ed88685 788 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 789 ret = 0;
547edce3
RZ
790 } else if (ret == 0) {
791 /* hole case, need to fill in bh->b_size */
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
793 }
794 return ret;
795}
796
2ed88685
TT
797int ext4_get_block(struct inode *inode, sector_t iblock,
798 struct buffer_head *bh, int create)
799{
800 return _ext4_get_block(inode, iblock, bh,
801 create ? EXT4_GET_BLOCKS_CREATE : 0);
802}
803
705965bd
JK
804/*
805 * Get block function used when preparing for buffered write if we require
806 * creating an unwritten extent if blocks haven't been allocated. The extent
807 * will be converted to written after the IO is complete.
808 */
809int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int create)
811{
812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 inode->i_ino, create);
814 return _ext4_get_block(inode, iblock, bh_result,
815 EXT4_GET_BLOCKS_IO_CREATE_EXT);
816}
817
efe70c29
JK
818/* Maximum number of blocks we map for direct IO at once. */
819#define DIO_MAX_BLOCKS 4096
820
e84dfbe2
JK
821/*
822 * Get blocks function for the cases that need to start a transaction -
823 * generally difference cases of direct IO and DAX IO. It also handles retries
824 * in case of ENOSPC.
825 */
826static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827 struct buffer_head *bh_result, int flags)
efe70c29
JK
828{
829 int dio_credits;
e84dfbe2
JK
830 handle_t *handle;
831 int retries = 0;
832 int ret;
efe70c29
JK
833
834 /* Trim mapping request to maximum we can map at once for DIO */
835 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837 dio_credits = ext4_chunk_trans_blocks(inode,
838 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
839retry:
840 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841 if (IS_ERR(handle))
842 return PTR_ERR(handle);
843
844 ret = _ext4_get_block(inode, iblock, bh_result, flags);
845 ext4_journal_stop(handle);
846
847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848 goto retry;
849 return ret;
efe70c29
JK
850}
851
705965bd
JK
852/* Get block function for DIO reads and writes to inodes without extents */
853int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh, int create)
855{
efe70c29
JK
856 /* We don't expect handle for direct IO */
857 WARN_ON_ONCE(ext4_journal_current_handle());
858
e84dfbe2
JK
859 if (!create)
860 return _ext4_get_block(inode, iblock, bh, 0);
861 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
862}
863
864/*
109811c2 865 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
866 * blocks are not allocated yet. The extent will be converted to written
867 * after IO is complete.
868 */
109811c2
JK
869static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 871{
efe70c29
JK
872 int ret;
873
efe70c29
JK
874 /* We don't expect handle for direct IO */
875 WARN_ON_ONCE(ext4_journal_current_handle());
876
e84dfbe2
JK
877 ret = ext4_get_block_trans(inode, iblock, bh_result,
878 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 879
109811c2
JK
880 /*
881 * When doing DIO using unwritten extents, we need io_end to convert
882 * unwritten extents to written on IO completion. We allocate io_end
883 * once we spot unwritten extent and store it in b_private. Generic
884 * DIO code keeps b_private set and furthermore passes the value to
885 * our completion callback in 'private' argument.
886 */
887 if (!ret && buffer_unwritten(bh_result)) {
888 if (!bh_result->b_private) {
889 ext4_io_end_t *io_end;
890
891 io_end = ext4_init_io_end(inode, GFP_KERNEL);
892 if (!io_end)
893 return -ENOMEM;
894 bh_result->b_private = io_end;
895 ext4_set_io_unwritten_flag(inode, io_end);
896 }
efe70c29 897 set_buffer_defer_completion(bh_result);
efe70c29
JK
898 }
899
900 return ret;
705965bd
JK
901}
902
109811c2
JK
903/*
904 * Get block function for non-AIO DIO writes when we create unwritten extent if
905 * blocks are not allocated yet. The extent will be converted to written
1e21196c 906 * after IO is complete by ext4_direct_IO_write().
109811c2
JK
907 */
908static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909 sector_t iblock, struct buffer_head *bh_result, int create)
910{
109811c2
JK
911 int ret;
912
913 /* We don't expect handle for direct IO */
914 WARN_ON_ONCE(ext4_journal_current_handle());
915
e84dfbe2
JK
916 ret = ext4_get_block_trans(inode, iblock, bh_result,
917 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
918
919 /*
920 * Mark inode as having pending DIO writes to unwritten extents.
1e21196c 921 * ext4_direct_IO_write() checks this flag and converts extents to
109811c2
JK
922 * written.
923 */
924 if (!ret && buffer_unwritten(bh_result))
925 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
926
927 return ret;
928}
929
705965bd
JK
930static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931 struct buffer_head *bh_result, int create)
932{
933 int ret;
934
935 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936 inode->i_ino, create);
efe70c29
JK
937 /* We don't expect handle for direct IO */
938 WARN_ON_ONCE(ext4_journal_current_handle());
939
705965bd
JK
940 ret = _ext4_get_block(inode, iblock, bh_result, 0);
941 /*
942 * Blocks should have been preallocated! ext4_file_write_iter() checks
943 * that.
944 */
efe70c29 945 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
946
947 return ret;
948}
949
950
ac27a0ec
DK
951/*
952 * `handle' can be NULL if create is zero
953 */
617ba13b 954struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 955 ext4_lblk_t block, int map_flags)
ac27a0ec 956{
2ed88685
TT
957 struct ext4_map_blocks map;
958 struct buffer_head *bh;
c5e298ae 959 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 960 int err;
ac27a0ec
DK
961
962 J_ASSERT(handle != NULL || create == 0);
963
2ed88685
TT
964 map.m_lblk = block;
965 map.m_len = 1;
c5e298ae 966 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 967
10560082
TT
968 if (err == 0)
969 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 970 if (err < 0)
10560082 971 return ERR_PTR(err);
2ed88685
TT
972
973 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
974 if (unlikely(!bh))
975 return ERR_PTR(-ENOMEM);
2ed88685
TT
976 if (map.m_flags & EXT4_MAP_NEW) {
977 J_ASSERT(create != 0);
978 J_ASSERT(handle != NULL);
ac27a0ec 979
2ed88685
TT
980 /*
981 * Now that we do not always journal data, we should
982 * keep in mind whether this should always journal the
983 * new buffer as metadata. For now, regular file
984 * writes use ext4_get_block instead, so it's not a
985 * problem.
986 */
987 lock_buffer(bh);
988 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
989 err = ext4_journal_get_create_access(handle, bh);
990 if (unlikely(err)) {
991 unlock_buffer(bh);
992 goto errout;
993 }
994 if (!buffer_uptodate(bh)) {
2ed88685
TT
995 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996 set_buffer_uptodate(bh);
ac27a0ec 997 }
2ed88685
TT
998 unlock_buffer(bh);
999 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
1001 if (unlikely(err))
1002 goto errout;
1003 } else
2ed88685 1004 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 1005 return bh;
10560082
TT
1006errout:
1007 brelse(bh);
1008 return ERR_PTR(err);
ac27a0ec
DK
1009}
1010
617ba13b 1011struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 1012 ext4_lblk_t block, int map_flags)
ac27a0ec 1013{
af5bc92d 1014 struct buffer_head *bh;
ac27a0ec 1015
c5e298ae 1016 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1017 if (IS_ERR(bh))
ac27a0ec 1018 return bh;
1c215028 1019 if (!bh || buffer_uptodate(bh))
ac27a0ec 1020 return bh;
dfec8a14 1021 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1022 wait_on_buffer(bh);
1023 if (buffer_uptodate(bh))
1024 return bh;
1025 put_bh(bh);
1c215028 1026 return ERR_PTR(-EIO);
ac27a0ec
DK
1027}
1028
9699d4f9
TE
1029/* Read a contiguous batch of blocks. */
1030int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031 bool wait, struct buffer_head **bhs)
1032{
1033 int i, err;
1034
1035 for (i = 0; i < bh_count; i++) {
1036 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037 if (IS_ERR(bhs[i])) {
1038 err = PTR_ERR(bhs[i]);
1039 bh_count = i;
1040 goto out_brelse;
1041 }
1042 }
1043
1044 for (i = 0; i < bh_count; i++)
1045 /* Note that NULL bhs[i] is valid because of holes. */
1046 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048 &bhs[i]);
1049
1050 if (!wait)
1051 return 0;
1052
1053 for (i = 0; i < bh_count; i++)
1054 if (bhs[i])
1055 wait_on_buffer(bhs[i]);
1056
1057 for (i = 0; i < bh_count; i++) {
1058 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059 err = -EIO;
1060 goto out_brelse;
1061 }
1062 }
1063 return 0;
1064
1065out_brelse:
1066 for (i = 0; i < bh_count; i++) {
1067 brelse(bhs[i]);
1068 bhs[i] = NULL;
1069 }
1070 return err;
1071}
1072
f19d5870
TM
1073int ext4_walk_page_buffers(handle_t *handle,
1074 struct buffer_head *head,
1075 unsigned from,
1076 unsigned to,
1077 int *partial,
1078 int (*fn)(handle_t *handle,
1079 struct buffer_head *bh))
ac27a0ec
DK
1080{
1081 struct buffer_head *bh;
1082 unsigned block_start, block_end;
1083 unsigned blocksize = head->b_size;
1084 int err, ret = 0;
1085 struct buffer_head *next;
1086
af5bc92d
TT
1087 for (bh = head, block_start = 0;
1088 ret == 0 && (bh != head || !block_start);
de9a55b8 1089 block_start = block_end, bh = next) {
ac27a0ec
DK
1090 next = bh->b_this_page;
1091 block_end = block_start + blocksize;
1092 if (block_end <= from || block_start >= to) {
1093 if (partial && !buffer_uptodate(bh))
1094 *partial = 1;
1095 continue;
1096 }
1097 err = (*fn)(handle, bh);
1098 if (!ret)
1099 ret = err;
1100 }
1101 return ret;
1102}
1103
1104/*
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1107 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1108 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1109 * prepare_write() is the right place.
1110 *
36ade451
JK
1111 * Also, this function can nest inside ext4_writepage(). In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page. So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
ac27a0ec 1115 *
617ba13b 1116 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1117 * quota file writes. If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1122 *
dab291af 1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated. We'll still have enough credits for the tiny quotafile
1126 * write.
1127 */
f19d5870
TM
1128int do_journal_get_write_access(handle_t *handle,
1129 struct buffer_head *bh)
ac27a0ec 1130{
56d35a4c
JK
1131 int dirty = buffer_dirty(bh);
1132 int ret;
1133
ac27a0ec
DK
1134 if (!buffer_mapped(bh) || buffer_freed(bh))
1135 return 0;
56d35a4c 1136 /*
ebdec241 1137 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1138 * the dirty bit as jbd2_journal_get_write_access() could complain
1139 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1140 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1141 * the bit before releasing a page lock and thus writeback cannot
1142 * ever write the buffer.
1143 */
1144 if (dirty)
1145 clear_buffer_dirty(bh);
5d601255 1146 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1147 ret = ext4_journal_get_write_access(handle, bh);
1148 if (!ret && dirty)
1149 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150 return ret;
ac27a0ec
DK
1151}
1152
2058f83a
MH
1153#ifdef CONFIG_EXT4_FS_ENCRYPTION
1154static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155 get_block_t *get_block)
1156{
09cbfeaf 1157 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1158 unsigned to = from + len;
1159 struct inode *inode = page->mapping->host;
1160 unsigned block_start, block_end;
1161 sector_t block;
1162 int err = 0;
1163 unsigned blocksize = inode->i_sb->s_blocksize;
1164 unsigned bbits;
1165 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166 bool decrypt = false;
1167
1168 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1169 BUG_ON(from > PAGE_SIZE);
1170 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1171 BUG_ON(from > to);
1172
1173 if (!page_has_buffers(page))
1174 create_empty_buffers(page, blocksize, 0);
1175 head = page_buffers(page);
1176 bbits = ilog2(blocksize);
09cbfeaf 1177 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1178
1179 for (bh = head, block_start = 0; bh != head || !block_start;
1180 block++, block_start = block_end, bh = bh->b_this_page) {
1181 block_end = block_start + blocksize;
1182 if (block_end <= from || block_start >= to) {
1183 if (PageUptodate(page)) {
1184 if (!buffer_uptodate(bh))
1185 set_buffer_uptodate(bh);
1186 }
1187 continue;
1188 }
1189 if (buffer_new(bh))
1190 clear_buffer_new(bh);
1191 if (!buffer_mapped(bh)) {
1192 WARN_ON(bh->b_size != blocksize);
1193 err = get_block(inode, block, bh, 1);
1194 if (err)
1195 break;
1196 if (buffer_new(bh)) {
e64855c6 1197 clean_bdev_bh_alias(bh);
2058f83a
MH
1198 if (PageUptodate(page)) {
1199 clear_buffer_new(bh);
1200 set_buffer_uptodate(bh);
1201 mark_buffer_dirty(bh);
1202 continue;
1203 }
1204 if (block_end > to || block_start < from)
1205 zero_user_segments(page, to, block_end,
1206 block_start, from);
1207 continue;
1208 }
1209 }
1210 if (PageUptodate(page)) {
1211 if (!buffer_uptodate(bh))
1212 set_buffer_uptodate(bh);
1213 continue;
1214 }
1215 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216 !buffer_unwritten(bh) &&
1217 (block_start < from || block_end > to)) {
dfec8a14 1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1219 *wait_bh++ = bh;
1220 decrypt = ext4_encrypted_inode(inode) &&
1221 S_ISREG(inode->i_mode);
1222 }
1223 }
1224 /*
1225 * If we issued read requests, let them complete.
1226 */
1227 while (wait_bh > wait) {
1228 wait_on_buffer(*--wait_bh);
1229 if (!buffer_uptodate(*wait_bh))
1230 err = -EIO;
1231 }
1232 if (unlikely(err))
1233 page_zero_new_buffers(page, from, to);
1234 else if (decrypt)
7821d4dd 1235 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1236 PAGE_SIZE, 0, page->index);
2058f83a
MH
1237 return err;
1238}
1239#endif
1240
bfc1af65 1241static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1242 loff_t pos, unsigned len, unsigned flags,
1243 struct page **pagep, void **fsdata)
ac27a0ec 1244{
af5bc92d 1245 struct inode *inode = mapping->host;
1938a150 1246 int ret, needed_blocks;
ac27a0ec
DK
1247 handle_t *handle;
1248 int retries = 0;
af5bc92d 1249 struct page *page;
de9a55b8 1250 pgoff_t index;
af5bc92d 1251 unsigned from, to;
bfc1af65 1252
0db1ff22
TT
1253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254 return -EIO;
1255
9bffad1e 1256 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1257 /*
1258 * Reserve one block more for addition to orphan list in case
1259 * we allocate blocks but write fails for some reason
1260 */
1261 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1262 index = pos >> PAGE_SHIFT;
1263 from = pos & (PAGE_SIZE - 1);
af5bc92d 1264 to = from + len;
ac27a0ec 1265
f19d5870
TM
1266 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268 flags, pagep);
1269 if (ret < 0)
47564bfb
TT
1270 return ret;
1271 if (ret == 1)
1272 return 0;
f19d5870
TM
1273 }
1274
47564bfb
TT
1275 /*
1276 * grab_cache_page_write_begin() can take a long time if the
1277 * system is thrashing due to memory pressure, or if the page
1278 * is being written back. So grab it first before we start
1279 * the transaction handle. This also allows us to allocate
1280 * the page (if needed) without using GFP_NOFS.
1281 */
1282retry_grab:
1283 page = grab_cache_page_write_begin(mapping, index, flags);
1284 if (!page)
1285 return -ENOMEM;
1286 unlock_page(page);
1287
1288retry_journal:
9924a92a 1289 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1290 if (IS_ERR(handle)) {
09cbfeaf 1291 put_page(page);
47564bfb 1292 return PTR_ERR(handle);
7479d2b9 1293 }
ac27a0ec 1294
47564bfb
TT
1295 lock_page(page);
1296 if (page->mapping != mapping) {
1297 /* The page got truncated from under us */
1298 unlock_page(page);
09cbfeaf 1299 put_page(page);
cf108bca 1300 ext4_journal_stop(handle);
47564bfb 1301 goto retry_grab;
cf108bca 1302 }
7afe5aa5
DM
1303 /* In case writeback began while the page was unlocked */
1304 wait_for_stable_page(page);
cf108bca 1305
2058f83a
MH
1306#ifdef CONFIG_EXT4_FS_ENCRYPTION
1307 if (ext4_should_dioread_nolock(inode))
1308 ret = ext4_block_write_begin(page, pos, len,
705965bd 1309 ext4_get_block_unwritten);
2058f83a
MH
1310 else
1311 ret = ext4_block_write_begin(page, pos, len,
1312 ext4_get_block);
1313#else
744692dc 1314 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1315 ret = __block_write_begin(page, pos, len,
1316 ext4_get_block_unwritten);
744692dc 1317 else
6e1db88d 1318 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1319#endif
bfc1af65 1320 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1321 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322 from, to, NULL,
1323 do_journal_get_write_access);
ac27a0ec 1324 }
bfc1af65
NP
1325
1326 if (ret) {
af5bc92d 1327 unlock_page(page);
ae4d5372 1328 /*
6e1db88d 1329 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1330 * outside i_size. Trim these off again. Don't need
1331 * i_size_read because we hold i_mutex.
1938a150
AK
1332 *
1333 * Add inode to orphan list in case we crash before
1334 * truncate finishes
ae4d5372 1335 */
ffacfa7a 1336 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1337 ext4_orphan_add(handle, inode);
1338
1339 ext4_journal_stop(handle);
1340 if (pos + len > inode->i_size) {
b9a4207d 1341 ext4_truncate_failed_write(inode);
de9a55b8 1342 /*
ffacfa7a 1343 * If truncate failed early the inode might
1938a150
AK
1344 * still be on the orphan list; we need to
1345 * make sure the inode is removed from the
1346 * orphan list in that case.
1347 */
1348 if (inode->i_nlink)
1349 ext4_orphan_del(NULL, inode);
1350 }
bfc1af65 1351
47564bfb
TT
1352 if (ret == -ENOSPC &&
1353 ext4_should_retry_alloc(inode->i_sb, &retries))
1354 goto retry_journal;
09cbfeaf 1355 put_page(page);
47564bfb
TT
1356 return ret;
1357 }
1358 *pagep = page;
ac27a0ec
DK
1359 return ret;
1360}
1361
bfc1af65
NP
1362/* For write_end() in data=journal mode */
1363static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1364{
13fca323 1365 int ret;
ac27a0ec
DK
1366 if (!buffer_mapped(bh) || buffer_freed(bh))
1367 return 0;
1368 set_buffer_uptodate(bh);
13fca323
TT
1369 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370 clear_buffer_meta(bh);
1371 clear_buffer_prio(bh);
1372 return ret;
ac27a0ec
DK
1373}
1374
eed4333f
ZL
1375/*
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1378 *
1379 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1380 * buffers are managed internally.
1381 */
1382static int ext4_write_end(struct file *file,
1383 struct address_space *mapping,
1384 loff_t pos, unsigned len, unsigned copied,
1385 struct page *page, void *fsdata)
f8514083 1386{
f8514083 1387 handle_t *handle = ext4_journal_current_handle();
eed4333f 1388 struct inode *inode = mapping->host;
0572639f 1389 loff_t old_size = inode->i_size;
eed4333f
ZL
1390 int ret = 0, ret2;
1391 int i_size_changed = 0;
1392
1393 trace_ext4_write_end(inode, pos, len, copied);
42c832de
TT
1394 if (ext4_has_inline_data(inode)) {
1395 ret = ext4_write_inline_data_end(inode, pos, len,
1396 copied, page);
eb5efbcb
TT
1397 if (ret < 0) {
1398 unlock_page(page);
1399 put_page(page);
42c832de 1400 goto errout;
eb5efbcb 1401 }
42c832de
TT
1402 copied = ret;
1403 } else
f19d5870
TM
1404 copied = block_write_end(file, mapping, pos,
1405 len, copied, page, fsdata);
f8514083 1406 /*
4631dbf6 1407 * it's important to update i_size while still holding page lock:
f8514083
AK
1408 * page writeout could otherwise come in and zero beyond i_size.
1409 */
4631dbf6 1410 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1411 unlock_page(page);
09cbfeaf 1412 put_page(page);
f8514083 1413
0572639f
XW
1414 if (old_size < pos)
1415 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1416 /*
1417 * Don't mark the inode dirty under page lock. First, it unnecessarily
1418 * makes the holding time of page lock longer. Second, it forces lock
1419 * ordering of page lock and transaction start for journaling
1420 * filesystems.
1421 */
1422 if (i_size_changed)
1423 ext4_mark_inode_dirty(handle, inode);
1424
ffacfa7a 1425 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1426 /* if we have allocated more blocks and copied
1427 * less. We will have blocks allocated outside
1428 * inode->i_size. So truncate them
1429 */
1430 ext4_orphan_add(handle, inode);
74d553aa 1431errout:
617ba13b 1432 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1433 if (!ret)
1434 ret = ret2;
bfc1af65 1435
f8514083 1436 if (pos + len > inode->i_size) {
b9a4207d 1437 ext4_truncate_failed_write(inode);
de9a55b8 1438 /*
ffacfa7a 1439 * If truncate failed early the inode might still be
f8514083
AK
1440 * on the orphan list; we need to make sure the inode
1441 * is removed from the orphan list in that case.
1442 */
1443 if (inode->i_nlink)
1444 ext4_orphan_del(NULL, inode);
1445 }
1446
bfc1af65 1447 return ret ? ret : copied;
ac27a0ec
DK
1448}
1449
b90197b6
TT
1450/*
1451 * This is a private version of page_zero_new_buffers() which doesn't
1452 * set the buffer to be dirty, since in data=journalled mode we need
1453 * to call ext4_handle_dirty_metadata() instead.
1454 */
3b136499
JK
1455static void ext4_journalled_zero_new_buffers(handle_t *handle,
1456 struct page *page,
1457 unsigned from, unsigned to)
b90197b6
TT
1458{
1459 unsigned int block_start = 0, block_end;
1460 struct buffer_head *head, *bh;
1461
1462 bh = head = page_buffers(page);
1463 do {
1464 block_end = block_start + bh->b_size;
1465 if (buffer_new(bh)) {
1466 if (block_end > from && block_start < to) {
1467 if (!PageUptodate(page)) {
1468 unsigned start, size;
1469
1470 start = max(from, block_start);
1471 size = min(to, block_end) - start;
1472
1473 zero_user(page, start, size);
3b136499 1474 write_end_fn(handle, bh);
b90197b6
TT
1475 }
1476 clear_buffer_new(bh);
1477 }
1478 }
1479 block_start = block_end;
1480 bh = bh->b_this_page;
1481 } while (bh != head);
1482}
1483
bfc1af65 1484static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1485 struct address_space *mapping,
1486 loff_t pos, unsigned len, unsigned copied,
1487 struct page *page, void *fsdata)
ac27a0ec 1488{
617ba13b 1489 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1490 struct inode *inode = mapping->host;
0572639f 1491 loff_t old_size = inode->i_size;
ac27a0ec
DK
1492 int ret = 0, ret2;
1493 int partial = 0;
bfc1af65 1494 unsigned from, to;
4631dbf6 1495 int size_changed = 0;
ac27a0ec 1496
9bffad1e 1497 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1498 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1499 to = from + len;
1500
441c8508
CW
1501 BUG_ON(!ext4_handle_valid(handle));
1502
eb5efbcb
TT
1503 if (ext4_has_inline_data(inode)) {
1504 ret = ext4_write_inline_data_end(inode, pos, len,
1505 copied, page);
1506 if (ret < 0) {
1507 unlock_page(page);
1508 put_page(page);
1509 goto errout;
1510 }
1511 copied = ret;
1512 } else if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499
JK
1513 copied = 0;
1514 ext4_journalled_zero_new_buffers(handle, page, from, to);
1515 } else {
1516 if (unlikely(copied < len))
1517 ext4_journalled_zero_new_buffers(handle, page,
1518 from + copied, to);
3fdcfb66 1519 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
3b136499
JK
1520 from + copied, &partial,
1521 write_end_fn);
3fdcfb66
TM
1522 if (!partial)
1523 SetPageUptodate(page);
1524 }
4631dbf6 1525 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1526 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1527 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1528 unlock_page(page);
09cbfeaf 1529 put_page(page);
4631dbf6 1530
0572639f
XW
1531 if (old_size < pos)
1532 pagecache_isize_extended(inode, old_size, pos);
1533
4631dbf6 1534 if (size_changed) {
617ba13b 1535 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1536 if (!ret)
1537 ret = ret2;
1538 }
bfc1af65 1539
ffacfa7a 1540 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1541 /* if we have allocated more blocks and copied
1542 * less. We will have blocks allocated outside
1543 * inode->i_size. So truncate them
1544 */
1545 ext4_orphan_add(handle, inode);
1546
eb5efbcb 1547errout:
617ba13b 1548 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1549 if (!ret)
1550 ret = ret2;
f8514083 1551 if (pos + len > inode->i_size) {
b9a4207d 1552 ext4_truncate_failed_write(inode);
de9a55b8 1553 /*
ffacfa7a 1554 * If truncate failed early the inode might still be
f8514083
AK
1555 * on the orphan list; we need to make sure the inode
1556 * is removed from the orphan list in that case.
1557 */
1558 if (inode->i_nlink)
1559 ext4_orphan_del(NULL, inode);
1560 }
bfc1af65
NP
1561
1562 return ret ? ret : copied;
ac27a0ec 1563}
d2a17637 1564
9d0be502 1565/*
c27e43a1 1566 * Reserve space for a single cluster
9d0be502 1567 */
c27e43a1 1568static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1569{
60e58e0f 1570 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1571 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1572 int ret;
03179fe9
TT
1573
1574 /*
1575 * We will charge metadata quota at writeout time; this saves
1576 * us from metadata over-estimation, though we may go over by
1577 * a small amount in the end. Here we just reserve for data.
1578 */
1579 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1580 if (ret)
1581 return ret;
d2a17637 1582
0637c6f4 1583 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1584 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1585 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1586 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1587 return -ENOSPC;
1588 }
9d0be502 1589 ei->i_reserved_data_blocks++;
c27e43a1 1590 trace_ext4_da_reserve_space(inode);
0637c6f4 1591 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1592
d2a17637
MC
1593 return 0; /* success */
1594}
1595
12219aea 1596static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1597{
1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1599 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1600
cd213226
MC
1601 if (!to_free)
1602 return; /* Nothing to release, exit */
1603
d2a17637 1604 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1605
5a58ec87 1606 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1607 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1608 /*
0637c6f4
TT
1609 * if there aren't enough reserved blocks, then the
1610 * counter is messed up somewhere. Since this
1611 * function is called from invalidate page, it's
1612 * harmless to return without any action.
cd213226 1613 */
8de5c325 1614 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1615 "ino %lu, to_free %d with only %d reserved "
1084f252 1616 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1617 ei->i_reserved_data_blocks);
1618 WARN_ON(1);
1619 to_free = ei->i_reserved_data_blocks;
cd213226 1620 }
0637c6f4 1621 ei->i_reserved_data_blocks -= to_free;
cd213226 1622
72b8ab9d 1623 /* update fs dirty data blocks counter */
57042651 1624 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1625
d2a17637 1626 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1627
7b415bf6 1628 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1629}
1630
1631static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1632 unsigned int offset,
1633 unsigned int length)
d2a17637 1634{
9705acd6 1635 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1636 struct buffer_head *head, *bh;
1637 unsigned int curr_off = 0;
7b415bf6
AK
1638 struct inode *inode = page->mapping->host;
1639 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1640 unsigned int stop = offset + length;
7b415bf6 1641 int num_clusters;
51865fda 1642 ext4_fsblk_t lblk;
d2a17637 1643
09cbfeaf 1644 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1645
d2a17637
MC
1646 head = page_buffers(page);
1647 bh = head;
1648 do {
1649 unsigned int next_off = curr_off + bh->b_size;
1650
ca99fdd2
LC
1651 if (next_off > stop)
1652 break;
1653
d2a17637
MC
1654 if ((offset <= curr_off) && (buffer_delay(bh))) {
1655 to_release++;
9705acd6 1656 contiguous_blks++;
d2a17637 1657 clear_buffer_delay(bh);
9705acd6
LC
1658 } else if (contiguous_blks) {
1659 lblk = page->index <<
09cbfeaf 1660 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1661 lblk += (curr_off >> inode->i_blkbits) -
1662 contiguous_blks;
1663 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664 contiguous_blks = 0;
d2a17637
MC
1665 }
1666 curr_off = next_off;
1667 } while ((bh = bh->b_this_page) != head);
7b415bf6 1668
9705acd6 1669 if (contiguous_blks) {
09cbfeaf 1670 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1671 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1672 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1673 }
1674
7b415bf6
AK
1675 /* If we have released all the blocks belonging to a cluster, then we
1676 * need to release the reserved space for that cluster. */
1677 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1678 while (num_clusters > 0) {
09cbfeaf 1679 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1680 ((num_clusters - 1) << sbi->s_cluster_bits);
1681 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1682 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1683 ext4_da_release_space(inode, 1);
1684
1685 num_clusters--;
1686 }
d2a17637 1687}
ac27a0ec 1688
64769240
AT
1689/*
1690 * Delayed allocation stuff
1691 */
1692
4e7ea81d
JK
1693struct mpage_da_data {
1694 struct inode *inode;
1695 struct writeback_control *wbc;
6b523df4 1696
4e7ea81d
JK
1697 pgoff_t first_page; /* The first page to write */
1698 pgoff_t next_page; /* Current page to examine */
1699 pgoff_t last_page; /* Last page to examine */
791b7f08 1700 /*
4e7ea81d
JK
1701 * Extent to map - this can be after first_page because that can be
1702 * fully mapped. We somewhat abuse m_flags to store whether the extent
1703 * is delalloc or unwritten.
791b7f08 1704 */
4e7ea81d
JK
1705 struct ext4_map_blocks map;
1706 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1707 unsigned int do_map:1;
4e7ea81d 1708};
64769240 1709
4e7ea81d
JK
1710static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1711 bool invalidate)
c4a0c46e
AK
1712{
1713 int nr_pages, i;
1714 pgoff_t index, end;
1715 struct pagevec pvec;
1716 struct inode *inode = mpd->inode;
1717 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1718
1719 /* This is necessary when next_page == 0. */
1720 if (mpd->first_page >= mpd->next_page)
1721 return;
c4a0c46e 1722
c7f5938a
CW
1723 index = mpd->first_page;
1724 end = mpd->next_page - 1;
4e7ea81d
JK
1725 if (invalidate) {
1726 ext4_lblk_t start, last;
09cbfeaf
KS
1727 start = index << (PAGE_SHIFT - inode->i_blkbits);
1728 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1729 ext4_es_remove_extent(inode, start, last - start + 1);
1730 }
51865fda 1731
86679820 1732 pagevec_init(&pvec);
c4a0c46e 1733 while (index <= end) {
397162ff 1734 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
c4a0c46e
AK
1735 if (nr_pages == 0)
1736 break;
1737 for (i = 0; i < nr_pages; i++) {
1738 struct page *page = pvec.pages[i];
2b85a617 1739
c4a0c46e
AK
1740 BUG_ON(!PageLocked(page));
1741 BUG_ON(PageWriteback(page));
4e7ea81d 1742 if (invalidate) {
4e800c03 1743 if (page_mapped(page))
1744 clear_page_dirty_for_io(page);
09cbfeaf 1745 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1746 ClearPageUptodate(page);
1747 }
c4a0c46e
AK
1748 unlock_page(page);
1749 }
9b1d0998 1750 pagevec_release(&pvec);
c4a0c46e 1751 }
c4a0c46e
AK
1752}
1753
df22291f
AK
1754static void ext4_print_free_blocks(struct inode *inode)
1755{
1756 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1757 struct super_block *sb = inode->i_sb;
f78ee70d 1758 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1759
1760 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1761 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1762 ext4_count_free_clusters(sb)));
92b97816
TT
1763 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1764 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1765 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1766 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1767 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1768 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1769 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1770 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1771 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1772 ei->i_reserved_data_blocks);
df22291f
AK
1773 return;
1774}
1775
c364b22c 1776static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1777{
c364b22c 1778 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1779}
1780
5356f261
AK
1781/*
1782 * This function is grabs code from the very beginning of
1783 * ext4_map_blocks, but assumes that the caller is from delayed write
1784 * time. This function looks up the requested blocks and sets the
1785 * buffer delay bit under the protection of i_data_sem.
1786 */
1787static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1788 struct ext4_map_blocks *map,
1789 struct buffer_head *bh)
1790{
d100eef2 1791 struct extent_status es;
5356f261
AK
1792 int retval;
1793 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1794#ifdef ES_AGGRESSIVE_TEST
1795 struct ext4_map_blocks orig_map;
1796
1797 memcpy(&orig_map, map, sizeof(*map));
1798#endif
5356f261
AK
1799
1800 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1801 invalid_block = ~0;
1802
1803 map->m_flags = 0;
1804 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1805 "logical block %lu\n", inode->i_ino, map->m_len,
1806 (unsigned long) map->m_lblk);
d100eef2
ZL
1807
1808 /* Lookup extent status tree firstly */
1809 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1810 if (ext4_es_is_hole(&es)) {
1811 retval = 0;
c8b459f4 1812 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1813 goto add_delayed;
1814 }
1815
1816 /*
1817 * Delayed extent could be allocated by fallocate.
1818 * So we need to check it.
1819 */
1820 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1821 map_bh(bh, inode->i_sb, invalid_block);
1822 set_buffer_new(bh);
1823 set_buffer_delay(bh);
1824 return 0;
1825 }
1826
1827 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1828 retval = es.es_len - (iblock - es.es_lblk);
1829 if (retval > map->m_len)
1830 retval = map->m_len;
1831 map->m_len = retval;
1832 if (ext4_es_is_written(&es))
1833 map->m_flags |= EXT4_MAP_MAPPED;
1834 else if (ext4_es_is_unwritten(&es))
1835 map->m_flags |= EXT4_MAP_UNWRITTEN;
1836 else
1837 BUG_ON(1);
1838
921f266b
DM
1839#ifdef ES_AGGRESSIVE_TEST
1840 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1841#endif
d100eef2
ZL
1842 return retval;
1843 }
1844
5356f261
AK
1845 /*
1846 * Try to see if we can get the block without requesting a new
1847 * file system block.
1848 */
c8b459f4 1849 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1850 if (ext4_has_inline_data(inode))
9c3569b5 1851 retval = 0;
cbd7584e 1852 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1853 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1854 else
2f8e0a7c 1855 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1856
d100eef2 1857add_delayed:
5356f261 1858 if (retval == 0) {
f7fec032 1859 int ret;
5356f261
AK
1860 /*
1861 * XXX: __block_prepare_write() unmaps passed block,
1862 * is it OK?
1863 */
386ad67c
LC
1864 /*
1865 * If the block was allocated from previously allocated cluster,
1866 * then we don't need to reserve it again. However we still need
1867 * to reserve metadata for every block we're going to write.
1868 */
c27e43a1 1869 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1870 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1871 ret = ext4_da_reserve_space(inode);
f7fec032 1872 if (ret) {
5356f261 1873 /* not enough space to reserve */
f7fec032 1874 retval = ret;
5356f261 1875 goto out_unlock;
f7fec032 1876 }
5356f261
AK
1877 }
1878
f7fec032
ZL
1879 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1880 ~0, EXTENT_STATUS_DELAYED);
1881 if (ret) {
1882 retval = ret;
51865fda 1883 goto out_unlock;
f7fec032 1884 }
51865fda 1885
5356f261
AK
1886 map_bh(bh, inode->i_sb, invalid_block);
1887 set_buffer_new(bh);
1888 set_buffer_delay(bh);
f7fec032
ZL
1889 } else if (retval > 0) {
1890 int ret;
3be78c73 1891 unsigned int status;
f7fec032 1892
44fb851d
ZL
1893 if (unlikely(retval != map->m_len)) {
1894 ext4_warning(inode->i_sb,
1895 "ES len assertion failed for inode "
1896 "%lu: retval %d != map->m_len %d",
1897 inode->i_ino, retval, map->m_len);
1898 WARN_ON(1);
921f266b 1899 }
921f266b 1900
f7fec032
ZL
1901 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1902 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1903 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1904 map->m_pblk, status);
1905 if (ret != 0)
1906 retval = ret;
5356f261
AK
1907 }
1908
1909out_unlock:
1910 up_read((&EXT4_I(inode)->i_data_sem));
1911
1912 return retval;
1913}
1914
64769240 1915/*
d91bd2c1 1916 * This is a special get_block_t callback which is used by
b920c755
TT
1917 * ext4_da_write_begin(). It will either return mapped block or
1918 * reserve space for a single block.
29fa89d0
AK
1919 *
1920 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1921 * We also have b_blocknr = -1 and b_bdev initialized properly
1922 *
1923 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1924 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1925 * initialized properly.
64769240 1926 */
9c3569b5
TM
1927int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1928 struct buffer_head *bh, int create)
64769240 1929{
2ed88685 1930 struct ext4_map_blocks map;
64769240
AT
1931 int ret = 0;
1932
1933 BUG_ON(create == 0);
2ed88685
TT
1934 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1935
1936 map.m_lblk = iblock;
1937 map.m_len = 1;
64769240
AT
1938
1939 /*
1940 * first, we need to know whether the block is allocated already
1941 * preallocated blocks are unmapped but should treated
1942 * the same as allocated blocks.
1943 */
5356f261
AK
1944 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1945 if (ret <= 0)
2ed88685 1946 return ret;
64769240 1947
2ed88685 1948 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1949 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1950
1951 if (buffer_unwritten(bh)) {
1952 /* A delayed write to unwritten bh should be marked
1953 * new and mapped. Mapped ensures that we don't do
1954 * get_block multiple times when we write to the same
1955 * offset and new ensures that we do proper zero out
1956 * for partial write.
1957 */
1958 set_buffer_new(bh);
c8205636 1959 set_buffer_mapped(bh);
2ed88685
TT
1960 }
1961 return 0;
64769240 1962}
61628a3f 1963
62e086be
AK
1964static int bget_one(handle_t *handle, struct buffer_head *bh)
1965{
1966 get_bh(bh);
1967 return 0;
1968}
1969
1970static int bput_one(handle_t *handle, struct buffer_head *bh)
1971{
1972 put_bh(bh);
1973 return 0;
1974}
1975
1976static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1977 unsigned int len)
1978{
1979 struct address_space *mapping = page->mapping;
1980 struct inode *inode = mapping->host;
3fdcfb66 1981 struct buffer_head *page_bufs = NULL;
62e086be 1982 handle_t *handle = NULL;
3fdcfb66
TM
1983 int ret = 0, err = 0;
1984 int inline_data = ext4_has_inline_data(inode);
1985 struct buffer_head *inode_bh = NULL;
62e086be 1986
cb20d518 1987 ClearPageChecked(page);
3fdcfb66
TM
1988
1989 if (inline_data) {
1990 BUG_ON(page->index != 0);
1991 BUG_ON(len > ext4_get_max_inline_size(inode));
1992 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1993 if (inode_bh == NULL)
1994 goto out;
1995 } else {
1996 page_bufs = page_buffers(page);
1997 if (!page_bufs) {
1998 BUG();
1999 goto out;
2000 }
2001 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2002 NULL, bget_one);
2003 }
bdf96838
TT
2004 /*
2005 * We need to release the page lock before we start the
2006 * journal, so grab a reference so the page won't disappear
2007 * out from under us.
2008 */
2009 get_page(page);
62e086be
AK
2010 unlock_page(page);
2011
9924a92a
TT
2012 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2013 ext4_writepage_trans_blocks(inode));
62e086be
AK
2014 if (IS_ERR(handle)) {
2015 ret = PTR_ERR(handle);
bdf96838
TT
2016 put_page(page);
2017 goto out_no_pagelock;
62e086be 2018 }
441c8508
CW
2019 BUG_ON(!ext4_handle_valid(handle));
2020
bdf96838
TT
2021 lock_page(page);
2022 put_page(page);
2023 if (page->mapping != mapping) {
2024 /* The page got truncated from under us */
2025 ext4_journal_stop(handle);
2026 ret = 0;
2027 goto out;
2028 }
2029
3fdcfb66 2030 if (inline_data) {
5d601255 2031 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 2032 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2033
3fdcfb66
TM
2034 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2035
2036 } else {
2037 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2038 do_journal_get_write_access);
2039
2040 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2041 write_end_fn);
2042 }
62e086be
AK
2043 if (ret == 0)
2044 ret = err;
2d859db3 2045 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2046 err = ext4_journal_stop(handle);
2047 if (!ret)
2048 ret = err;
2049
3fdcfb66 2050 if (!ext4_has_inline_data(inode))
8c9367fd 2051 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 2052 NULL, bput_one);
19f5fb7a 2053 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2054out:
bdf96838
TT
2055 unlock_page(page);
2056out_no_pagelock:
3fdcfb66 2057 brelse(inode_bh);
62e086be
AK
2058 return ret;
2059}
2060
61628a3f 2061/*
43ce1d23
AK
2062 * Note that we don't need to start a transaction unless we're journaling data
2063 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2064 * need to file the inode to the transaction's list in ordered mode because if
2065 * we are writing back data added by write(), the inode is already there and if
25985edc 2066 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2067 * transaction the data will hit the disk. In case we are journaling data, we
2068 * cannot start transaction directly because transaction start ranks above page
2069 * lock so we have to do some magic.
2070 *
b920c755 2071 * This function can get called via...
20970ba6 2072 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2073 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2074 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2075 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2076 *
2077 * We don't do any block allocation in this function. If we have page with
2078 * multiple blocks we need to write those buffer_heads that are mapped. This
2079 * is important for mmaped based write. So if we do with blocksize 1K
2080 * truncate(f, 1024);
2081 * a = mmap(f, 0, 4096);
2082 * a[0] = 'a';
2083 * truncate(f, 4096);
2084 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2085 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2086 * do_wp_page). So writepage should write the first block. If we modify
2087 * the mmap area beyond 1024 we will again get a page_fault and the
2088 * page_mkwrite callback will do the block allocation and mark the
2089 * buffer_heads mapped.
2090 *
2091 * We redirty the page if we have any buffer_heads that is either delay or
2092 * unwritten in the page.
2093 *
2094 * We can get recursively called as show below.
2095 *
2096 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2097 * ext4_writepage()
2098 *
2099 * But since we don't do any block allocation we should not deadlock.
2100 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2101 */
43ce1d23 2102static int ext4_writepage(struct page *page,
62e086be 2103 struct writeback_control *wbc)
64769240 2104{
f8bec370 2105 int ret = 0;
61628a3f 2106 loff_t size;
498e5f24 2107 unsigned int len;
744692dc 2108 struct buffer_head *page_bufs = NULL;
61628a3f 2109 struct inode *inode = page->mapping->host;
36ade451 2110 struct ext4_io_submit io_submit;
1c8349a1 2111 bool keep_towrite = false;
61628a3f 2112
0db1ff22
TT
2113 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2114 ext4_invalidatepage(page, 0, PAGE_SIZE);
2115 unlock_page(page);
2116 return -EIO;
2117 }
2118
a9c667f8 2119 trace_ext4_writepage(page);
f0e6c985 2120 size = i_size_read(inode);
09cbfeaf
KS
2121 if (page->index == size >> PAGE_SHIFT)
2122 len = size & ~PAGE_MASK;
f0e6c985 2123 else
09cbfeaf 2124 len = PAGE_SIZE;
64769240 2125
a42afc5f 2126 page_bufs = page_buffers(page);
a42afc5f 2127 /*
fe386132
JK
2128 * We cannot do block allocation or other extent handling in this
2129 * function. If there are buffers needing that, we have to redirty
2130 * the page. But we may reach here when we do a journal commit via
2131 * journal_submit_inode_data_buffers() and in that case we must write
2132 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2133 *
2134 * Also, if there is only one buffer per page (the fs block
2135 * size == the page size), if one buffer needs block
2136 * allocation or needs to modify the extent tree to clear the
2137 * unwritten flag, we know that the page can't be written at
2138 * all, so we might as well refuse the write immediately.
2139 * Unfortunately if the block size != page size, we can't as
2140 * easily detect this case using ext4_walk_page_buffers(), but
2141 * for the extremely common case, this is an optimization that
2142 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2143 */
f19d5870
TM
2144 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2145 ext4_bh_delay_or_unwritten)) {
f8bec370 2146 redirty_page_for_writepage(wbc, page);
cccd147a 2147 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2148 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2149 /*
2150 * For memory cleaning there's no point in writing only
2151 * some buffers. So just bail out. Warn if we came here
2152 * from direct reclaim.
2153 */
2154 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2155 == PF_MEMALLOC);
f0e6c985
AK
2156 unlock_page(page);
2157 return 0;
2158 }
1c8349a1 2159 keep_towrite = true;
a42afc5f 2160 }
64769240 2161
cb20d518 2162 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2163 /*
2164 * It's mmapped pagecache. Add buffers and journal it. There
2165 * doesn't seem much point in redirtying the page here.
2166 */
3f0ca309 2167 return __ext4_journalled_writepage(page, len);
43ce1d23 2168
97a851ed
JK
2169 ext4_io_submit_init(&io_submit, wbc);
2170 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2171 if (!io_submit.io_end) {
2172 redirty_page_for_writepage(wbc, page);
2173 unlock_page(page);
2174 return -ENOMEM;
2175 }
1c8349a1 2176 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2177 ext4_io_submit(&io_submit);
97a851ed
JK
2178 /* Drop io_end reference we got from init */
2179 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2180 return ret;
2181}
2182
5f1132b2
JK
2183static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2184{
2185 int len;
a056bdaa 2186 loff_t size;
5f1132b2
JK
2187 int err;
2188
2189 BUG_ON(page->index != mpd->first_page);
a056bdaa
JK
2190 clear_page_dirty_for_io(page);
2191 /*
2192 * We have to be very careful here! Nothing protects writeback path
2193 * against i_size changes and the page can be writeably mapped into
2194 * page tables. So an application can be growing i_size and writing
2195 * data through mmap while writeback runs. clear_page_dirty_for_io()
2196 * write-protects our page in page tables and the page cannot get
2197 * written to again until we release page lock. So only after
2198 * clear_page_dirty_for_io() we are safe to sample i_size for
2199 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2200 * on the barrier provided by TestClearPageDirty in
2201 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2202 * after page tables are updated.
2203 */
2204 size = i_size_read(mpd->inode);
09cbfeaf
KS
2205 if (page->index == size >> PAGE_SHIFT)
2206 len = size & ~PAGE_MASK;
5f1132b2 2207 else
09cbfeaf 2208 len = PAGE_SIZE;
1c8349a1 2209 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2210 if (!err)
2211 mpd->wbc->nr_to_write--;
2212 mpd->first_page++;
2213
2214 return err;
2215}
2216
4e7ea81d
JK
2217#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218
61628a3f 2219/*
fffb2739
JK
2220 * mballoc gives us at most this number of blocks...
2221 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2222 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2223 */
fffb2739 2224#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2225
4e7ea81d
JK
2226/*
2227 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2228 *
2229 * @mpd - extent of blocks
2230 * @lblk - logical number of the block in the file
09930042 2231 * @bh - buffer head we want to add to the extent
4e7ea81d 2232 *
09930042
JK
2233 * The function is used to collect contig. blocks in the same state. If the
2234 * buffer doesn't require mapping for writeback and we haven't started the
2235 * extent of buffers to map yet, the function returns 'true' immediately - the
2236 * caller can write the buffer right away. Otherwise the function returns true
2237 * if the block has been added to the extent, false if the block couldn't be
2238 * added.
4e7ea81d 2239 */
09930042
JK
2240static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2241 struct buffer_head *bh)
4e7ea81d
JK
2242{
2243 struct ext4_map_blocks *map = &mpd->map;
2244
09930042
JK
2245 /* Buffer that doesn't need mapping for writeback? */
2246 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2247 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2248 /* So far no extent to map => we write the buffer right away */
2249 if (map->m_len == 0)
2250 return true;
2251 return false;
2252 }
4e7ea81d
JK
2253
2254 /* First block in the extent? */
2255 if (map->m_len == 0) {
dddbd6ac
JK
2256 /* We cannot map unless handle is started... */
2257 if (!mpd->do_map)
2258 return false;
4e7ea81d
JK
2259 map->m_lblk = lblk;
2260 map->m_len = 1;
09930042
JK
2261 map->m_flags = bh->b_state & BH_FLAGS;
2262 return true;
4e7ea81d
JK
2263 }
2264
09930042
JK
2265 /* Don't go larger than mballoc is willing to allocate */
2266 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2267 return false;
2268
4e7ea81d
JK
2269 /* Can we merge the block to our big extent? */
2270 if (lblk == map->m_lblk + map->m_len &&
09930042 2271 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2272 map->m_len++;
09930042 2273 return true;
4e7ea81d 2274 }
09930042 2275 return false;
4e7ea81d
JK
2276}
2277
5f1132b2
JK
2278/*
2279 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2280 *
2281 * @mpd - extent of blocks for mapping
2282 * @head - the first buffer in the page
2283 * @bh - buffer we should start processing from
2284 * @lblk - logical number of the block in the file corresponding to @bh
2285 *
2286 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2287 * the page for IO if all buffers in this page were mapped and there's no
2288 * accumulated extent of buffers to map or add buffers in the page to the
2289 * extent of buffers to map. The function returns 1 if the caller can continue
2290 * by processing the next page, 0 if it should stop adding buffers to the
2291 * extent to map because we cannot extend it anymore. It can also return value
2292 * < 0 in case of error during IO submission.
2293 */
2294static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2295 struct buffer_head *head,
2296 struct buffer_head *bh,
2297 ext4_lblk_t lblk)
4e7ea81d
JK
2298{
2299 struct inode *inode = mpd->inode;
5f1132b2 2300 int err;
93407472 2301 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2302 >> inode->i_blkbits;
2303
2304 do {
2305 BUG_ON(buffer_locked(bh));
2306
09930042 2307 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2308 /* Found extent to map? */
2309 if (mpd->map.m_len)
5f1132b2 2310 return 0;
dddbd6ac
JK
2311 /* Buffer needs mapping and handle is not started? */
2312 if (!mpd->do_map)
2313 return 0;
09930042 2314 /* Everything mapped so far and we hit EOF */
5f1132b2 2315 break;
4e7ea81d 2316 }
4e7ea81d 2317 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2318 /* So far everything mapped? Submit the page for IO. */
2319 if (mpd->map.m_len == 0) {
2320 err = mpage_submit_page(mpd, head->b_page);
2321 if (err < 0)
2322 return err;
2323 }
2324 return lblk < blocks;
4e7ea81d
JK
2325}
2326
2327/*
2328 * mpage_map_buffers - update buffers corresponding to changed extent and
2329 * submit fully mapped pages for IO
2330 *
2331 * @mpd - description of extent to map, on return next extent to map
2332 *
2333 * Scan buffers corresponding to changed extent (we expect corresponding pages
2334 * to be already locked) and update buffer state according to new extent state.
2335 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2336 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2337 * and do extent conversion after IO is finished. If the last page is not fully
2338 * mapped, we update @map to the next extent in the last page that needs
2339 * mapping. Otherwise we submit the page for IO.
2340 */
2341static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342{
2343 struct pagevec pvec;
2344 int nr_pages, i;
2345 struct inode *inode = mpd->inode;
2346 struct buffer_head *head, *bh;
09cbfeaf 2347 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2348 pgoff_t start, end;
2349 ext4_lblk_t lblk;
2350 sector_t pblock;
2351 int err;
2352
2353 start = mpd->map.m_lblk >> bpp_bits;
2354 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355 lblk = start << bpp_bits;
2356 pblock = mpd->map.m_pblk;
2357
86679820 2358 pagevec_init(&pvec);
4e7ea81d 2359 while (start <= end) {
2b85a617 2360 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
397162ff 2361 &start, end);
4e7ea81d
JK
2362 if (nr_pages == 0)
2363 break;
2364 for (i = 0; i < nr_pages; i++) {
2365 struct page *page = pvec.pages[i];
2366
4e7ea81d
JK
2367 bh = head = page_buffers(page);
2368 do {
2369 if (lblk < mpd->map.m_lblk)
2370 continue;
2371 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2372 /*
2373 * Buffer after end of mapped extent.
2374 * Find next buffer in the page to map.
2375 */
2376 mpd->map.m_len = 0;
2377 mpd->map.m_flags = 0;
5f1132b2
JK
2378 /*
2379 * FIXME: If dioread_nolock supports
2380 * blocksize < pagesize, we need to make
2381 * sure we add size mapped so far to
2382 * io_end->size as the following call
2383 * can submit the page for IO.
2384 */
2385 err = mpage_process_page_bufs(mpd, head,
2386 bh, lblk);
4e7ea81d 2387 pagevec_release(&pvec);
5f1132b2
JK
2388 if (err > 0)
2389 err = 0;
2390 return err;
4e7ea81d
JK
2391 }
2392 if (buffer_delay(bh)) {
2393 clear_buffer_delay(bh);
2394 bh->b_blocknr = pblock++;
2395 }
4e7ea81d 2396 clear_buffer_unwritten(bh);
5f1132b2 2397 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2398
2399 /*
2400 * FIXME: This is going to break if dioread_nolock
2401 * supports blocksize < pagesize as we will try to
2402 * convert potentially unmapped parts of inode.
2403 */
09cbfeaf 2404 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2405 /* Page fully mapped - let IO run! */
2406 err = mpage_submit_page(mpd, page);
2407 if (err < 0) {
2408 pagevec_release(&pvec);
2409 return err;
2410 }
4e7ea81d
JK
2411 }
2412 pagevec_release(&pvec);
2413 }
2414 /* Extent fully mapped and matches with page boundary. We are done. */
2415 mpd->map.m_len = 0;
2416 mpd->map.m_flags = 0;
2417 return 0;
2418}
2419
2420static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2421{
2422 struct inode *inode = mpd->inode;
2423 struct ext4_map_blocks *map = &mpd->map;
2424 int get_blocks_flags;
090f32ee 2425 int err, dioread_nolock;
4e7ea81d
JK
2426
2427 trace_ext4_da_write_pages_extent(inode, map);
2428 /*
2429 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2430 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2431 * where we have written into one or more preallocated blocks). It is
2432 * possible that we're going to need more metadata blocks than
2433 * previously reserved. However we must not fail because we're in
2434 * writeback and there is nothing we can do about it so it might result
2435 * in data loss. So use reserved blocks to allocate metadata if
2436 * possible.
2437 *
754cfed6
TT
2438 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2439 * the blocks in question are delalloc blocks. This indicates
2440 * that the blocks and quotas has already been checked when
2441 * the data was copied into the page cache.
4e7ea81d
JK
2442 */
2443 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2444 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2445 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2446 dioread_nolock = ext4_should_dioread_nolock(inode);
2447 if (dioread_nolock)
4e7ea81d
JK
2448 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2449 if (map->m_flags & (1 << BH_Delay))
2450 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2451
2452 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2453 if (err < 0)
2454 return err;
090f32ee 2455 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2456 if (!mpd->io_submit.io_end->handle &&
2457 ext4_handle_valid(handle)) {
2458 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2459 handle->h_rsv_handle = NULL;
2460 }
3613d228 2461 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2462 }
4e7ea81d
JK
2463
2464 BUG_ON(map->m_len == 0);
2465 if (map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
2466 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2467 map->m_len);
4e7ea81d
JK
2468 }
2469 return 0;
2470}
2471
2472/*
2473 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2474 * mpd->len and submit pages underlying it for IO
2475 *
2476 * @handle - handle for journal operations
2477 * @mpd - extent to map
7534e854
JK
2478 * @give_up_on_write - we set this to true iff there is a fatal error and there
2479 * is no hope of writing the data. The caller should discard
2480 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2481 *
2482 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2483 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2484 * them to initialized or split the described range from larger unwritten
2485 * extent. Note that we need not map all the described range since allocation
2486 * can return less blocks or the range is covered by more unwritten extents. We
2487 * cannot map more because we are limited by reserved transaction credits. On
2488 * the other hand we always make sure that the last touched page is fully
2489 * mapped so that it can be written out (and thus forward progress is
2490 * guaranteed). After mapping we submit all mapped pages for IO.
2491 */
2492static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2493 struct mpage_da_data *mpd,
2494 bool *give_up_on_write)
4e7ea81d
JK
2495{
2496 struct inode *inode = mpd->inode;
2497 struct ext4_map_blocks *map = &mpd->map;
2498 int err;
2499 loff_t disksize;
6603120e 2500 int progress = 0;
4e7ea81d
JK
2501
2502 mpd->io_submit.io_end->offset =
2503 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2504 do {
4e7ea81d
JK
2505 err = mpage_map_one_extent(handle, mpd);
2506 if (err < 0) {
2507 struct super_block *sb = inode->i_sb;
2508
0db1ff22
TT
2509 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2510 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
cb530541 2511 goto invalidate_dirty_pages;
4e7ea81d 2512 /*
cb530541
TT
2513 * Let the uper layers retry transient errors.
2514 * In the case of ENOSPC, if ext4_count_free_blocks()
2515 * is non-zero, a commit should free up blocks.
4e7ea81d 2516 */
cb530541 2517 if ((err == -ENOMEM) ||
6603120e
DM
2518 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2519 if (progress)
2520 goto update_disksize;
cb530541 2521 return err;
6603120e 2522 }
cb530541
TT
2523 ext4_msg(sb, KERN_CRIT,
2524 "Delayed block allocation failed for "
2525 "inode %lu at logical offset %llu with"
2526 " max blocks %u with error %d",
2527 inode->i_ino,
2528 (unsigned long long)map->m_lblk,
2529 (unsigned)map->m_len, -err);
2530 ext4_msg(sb, KERN_CRIT,
2531 "This should not happen!! Data will "
2532 "be lost\n");
2533 if (err == -ENOSPC)
2534 ext4_print_free_blocks(inode);
2535 invalidate_dirty_pages:
2536 *give_up_on_write = true;
4e7ea81d
JK
2537 return err;
2538 }
6603120e 2539 progress = 1;
4e7ea81d
JK
2540 /*
2541 * Update buffer state, submit mapped pages, and get us new
2542 * extent to map
2543 */
2544 err = mpage_map_and_submit_buffers(mpd);
2545 if (err < 0)
6603120e 2546 goto update_disksize;
27d7c4ed 2547 } while (map->m_len);
4e7ea81d 2548
6603120e 2549update_disksize:
622cad13
TT
2550 /*
2551 * Update on-disk size after IO is submitted. Races with
2552 * truncate are avoided by checking i_size under i_data_sem.
2553 */
09cbfeaf 2554 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2555 if (disksize > EXT4_I(inode)->i_disksize) {
2556 int err2;
622cad13
TT
2557 loff_t i_size;
2558
2559 down_write(&EXT4_I(inode)->i_data_sem);
2560 i_size = i_size_read(inode);
2561 if (disksize > i_size)
2562 disksize = i_size;
2563 if (disksize > EXT4_I(inode)->i_disksize)
2564 EXT4_I(inode)->i_disksize = disksize;
622cad13 2565 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2566 err2 = ext4_mark_inode_dirty(handle, inode);
4e7ea81d
JK
2567 if (err2)
2568 ext4_error(inode->i_sb,
2569 "Failed to mark inode %lu dirty",
2570 inode->i_ino);
2571 if (!err)
2572 err = err2;
2573 }
2574 return err;
2575}
2576
fffb2739
JK
2577/*
2578 * Calculate the total number of credits to reserve for one writepages
20970ba6 2579 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2580 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2581 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2582 * bpp - 1 blocks in bpp different extents.
2583 */
525f4ed8
MC
2584static int ext4_da_writepages_trans_blocks(struct inode *inode)
2585{
fffb2739 2586 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2587
fffb2739
JK
2588 return ext4_meta_trans_blocks(inode,
2589 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2590}
61628a3f 2591
8e48dcfb 2592/*
4e7ea81d
JK
2593 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2594 * and underlying extent to map
2595 *
2596 * @mpd - where to look for pages
2597 *
2598 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2599 * IO immediately. When we find a page which isn't mapped we start accumulating
2600 * extent of buffers underlying these pages that needs mapping (formed by
2601 * either delayed or unwritten buffers). We also lock the pages containing
2602 * these buffers. The extent found is returned in @mpd structure (starting at
2603 * mpd->lblk with length mpd->len blocks).
2604 *
2605 * Note that this function can attach bios to one io_end structure which are
2606 * neither logically nor physically contiguous. Although it may seem as an
2607 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2608 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2609 */
4e7ea81d 2610static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2611{
4e7ea81d
JK
2612 struct address_space *mapping = mpd->inode->i_mapping;
2613 struct pagevec pvec;
2614 unsigned int nr_pages;
aeac589a 2615 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2616 pgoff_t index = mpd->first_page;
2617 pgoff_t end = mpd->last_page;
2618 int tag;
2619 int i, err = 0;
2620 int blkbits = mpd->inode->i_blkbits;
2621 ext4_lblk_t lblk;
2622 struct buffer_head *head;
8e48dcfb 2623
4e7ea81d 2624 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2625 tag = PAGECACHE_TAG_TOWRITE;
2626 else
2627 tag = PAGECACHE_TAG_DIRTY;
2628
86679820 2629 pagevec_init(&pvec);
4e7ea81d
JK
2630 mpd->map.m_len = 0;
2631 mpd->next_page = index;
4f01b02c 2632 while (index <= end) {
dc7f3e86 2633 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2634 tag);
8e48dcfb 2635 if (nr_pages == 0)
4e7ea81d 2636 goto out;
8e48dcfb
TT
2637
2638 for (i = 0; i < nr_pages; i++) {
2639 struct page *page = pvec.pages[i];
2640
aeac589a
ML
2641 /*
2642 * Accumulated enough dirty pages? This doesn't apply
2643 * to WB_SYNC_ALL mode. For integrity sync we have to
2644 * keep going because someone may be concurrently
2645 * dirtying pages, and we might have synced a lot of
2646 * newly appeared dirty pages, but have not synced all
2647 * of the old dirty pages.
2648 */
2649 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650 goto out;
2651
4e7ea81d
JK
2652 /* If we can't merge this page, we are done. */
2653 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654 goto out;
78aaced3 2655
8e48dcfb 2656 lock_page(page);
8e48dcfb 2657 /*
4e7ea81d
JK
2658 * If the page is no longer dirty, or its mapping no
2659 * longer corresponds to inode we are writing (which
2660 * means it has been truncated or invalidated), or the
2661 * page is already under writeback and we are not doing
2662 * a data integrity writeback, skip the page
8e48dcfb 2663 */
4f01b02c
TT
2664 if (!PageDirty(page) ||
2665 (PageWriteback(page) &&
4e7ea81d 2666 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2667 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2668 unlock_page(page);
2669 continue;
2670 }
2671
7cb1a535 2672 wait_on_page_writeback(page);
8e48dcfb 2673 BUG_ON(PageWriteback(page));
8e48dcfb 2674
4e7ea81d 2675 if (mpd->map.m_len == 0)
8eb9e5ce 2676 mpd->first_page = page->index;
8eb9e5ce 2677 mpd->next_page = page->index + 1;
f8bec370 2678 /* Add all dirty buffers to mpd */
4e7ea81d 2679 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2680 (PAGE_SHIFT - blkbits);
f8bec370 2681 head = page_buffers(page);
5f1132b2
JK
2682 err = mpage_process_page_bufs(mpd, head, head, lblk);
2683 if (err <= 0)
4e7ea81d 2684 goto out;
5f1132b2 2685 err = 0;
aeac589a 2686 left--;
8e48dcfb
TT
2687 }
2688 pagevec_release(&pvec);
2689 cond_resched();
2690 }
4f01b02c 2691 return 0;
8eb9e5ce
TT
2692out:
2693 pagevec_release(&pvec);
4e7ea81d 2694 return err;
8e48dcfb
TT
2695}
2696
20970ba6
TT
2697static int ext4_writepages(struct address_space *mapping,
2698 struct writeback_control *wbc)
64769240 2699{
4e7ea81d
JK
2700 pgoff_t writeback_index = 0;
2701 long nr_to_write = wbc->nr_to_write;
22208ded 2702 int range_whole = 0;
4e7ea81d 2703 int cycled = 1;
61628a3f 2704 handle_t *handle = NULL;
df22291f 2705 struct mpage_da_data mpd;
5e745b04 2706 struct inode *inode = mapping->host;
6b523df4 2707 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2708 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2709 bool done;
1bce63d1 2710 struct blk_plug plug;
cb530541 2711 bool give_up_on_write = false;
61628a3f 2712
0db1ff22
TT
2713 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2714 return -EIO;
2715
c8585c6f 2716 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2717 trace_ext4_writepages(inode, wbc);
ba80b101 2718
61628a3f
MC
2719 /*
2720 * No pages to write? This is mainly a kludge to avoid starting
2721 * a transaction for special inodes like journal inode on last iput()
2722 * because that could violate lock ordering on umount
2723 */
a1d6cc56 2724 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2725 goto out_writepages;
2a21e37e 2726
20970ba6 2727 if (ext4_should_journal_data(inode)) {
043d20d1 2728 ret = generic_writepages(mapping, wbc);
bbf023c7 2729 goto out_writepages;
20970ba6
TT
2730 }
2731
2a21e37e
TT
2732 /*
2733 * If the filesystem has aborted, it is read-only, so return
2734 * right away instead of dumping stack traces later on that
2735 * will obscure the real source of the problem. We test
1751e8a6 2736 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2a21e37e 2737 * the latter could be true if the filesystem is mounted
20970ba6 2738 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2739 * *never* be called, so if that ever happens, we would want
2740 * the stack trace.
2741 */
0db1ff22
TT
2742 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2743 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
bbf023c7
ML
2744 ret = -EROFS;
2745 goto out_writepages;
2746 }
2a21e37e 2747
6b523df4
JK
2748 if (ext4_should_dioread_nolock(inode)) {
2749 /*
70261f56 2750 * We may need to convert up to one extent per block in
6b523df4
JK
2751 * the page and we may dirty the inode.
2752 */
09cbfeaf 2753 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2754 }
2755
4e7ea81d
JK
2756 /*
2757 * If we have inline data and arrive here, it means that
2758 * we will soon create the block for the 1st page, so
2759 * we'd better clear the inline data here.
2760 */
2761 if (ext4_has_inline_data(inode)) {
2762 /* Just inode will be modified... */
2763 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2764 if (IS_ERR(handle)) {
2765 ret = PTR_ERR(handle);
2766 goto out_writepages;
2767 }
2768 BUG_ON(ext4_test_inode_state(inode,
2769 EXT4_STATE_MAY_INLINE_DATA));
2770 ext4_destroy_inline_data(handle, inode);
2771 ext4_journal_stop(handle);
2772 }
2773
22208ded
AK
2774 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775 range_whole = 1;
61628a3f 2776
2acf2c26 2777 if (wbc->range_cyclic) {
4e7ea81d
JK
2778 writeback_index = mapping->writeback_index;
2779 if (writeback_index)
2acf2c26 2780 cycled = 0;
4e7ea81d
JK
2781 mpd.first_page = writeback_index;
2782 mpd.last_page = -1;
5b41d924 2783 } else {
09cbfeaf
KS
2784 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2785 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2786 }
a1d6cc56 2787
4e7ea81d
JK
2788 mpd.inode = inode;
2789 mpd.wbc = wbc;
2790 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2791retry:
6e6938b6 2792 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2793 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2794 done = false;
1bce63d1 2795 blk_start_plug(&plug);
dddbd6ac
JK
2796
2797 /*
2798 * First writeback pages that don't need mapping - we can avoid
2799 * starting a transaction unnecessarily and also avoid being blocked
2800 * in the block layer on device congestion while having transaction
2801 * started.
2802 */
2803 mpd.do_map = 0;
2804 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2805 if (!mpd.io_submit.io_end) {
2806 ret = -ENOMEM;
2807 goto unplug;
2808 }
2809 ret = mpage_prepare_extent_to_map(&mpd);
2810 /* Submit prepared bio */
2811 ext4_io_submit(&mpd.io_submit);
2812 ext4_put_io_end_defer(mpd.io_submit.io_end);
2813 mpd.io_submit.io_end = NULL;
2814 /* Unlock pages we didn't use */
2815 mpage_release_unused_pages(&mpd, false);
2816 if (ret < 0)
2817 goto unplug;
2818
4e7ea81d
JK
2819 while (!done && mpd.first_page <= mpd.last_page) {
2820 /* For each extent of pages we use new io_end */
2821 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2822 if (!mpd.io_submit.io_end) {
2823 ret = -ENOMEM;
2824 break;
2825 }
a1d6cc56
AK
2826
2827 /*
4e7ea81d
JK
2828 * We have two constraints: We find one extent to map and we
2829 * must always write out whole page (makes a difference when
2830 * blocksize < pagesize) so that we don't block on IO when we
2831 * try to write out the rest of the page. Journalled mode is
2832 * not supported by delalloc.
a1d6cc56
AK
2833 */
2834 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2835 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2836
4e7ea81d 2837 /* start a new transaction */
6b523df4
JK
2838 handle = ext4_journal_start_with_reserve(inode,
2839 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2840 if (IS_ERR(handle)) {
2841 ret = PTR_ERR(handle);
1693918e 2842 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2843 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2844 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2845 /* Release allocated io_end */
2846 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2847 mpd.io_submit.io_end = NULL;
4e7ea81d 2848 break;
61628a3f 2849 }
dddbd6ac 2850 mpd.do_map = 1;
f63e6005 2851
4e7ea81d
JK
2852 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2853 ret = mpage_prepare_extent_to_map(&mpd);
2854 if (!ret) {
2855 if (mpd.map.m_len)
cb530541
TT
2856 ret = mpage_map_and_submit_extent(handle, &mpd,
2857 &give_up_on_write);
4e7ea81d
JK
2858 else {
2859 /*
2860 * We scanned the whole range (or exhausted
2861 * nr_to_write), submitted what was mapped and
2862 * didn't find anything needing mapping. We are
2863 * done.
2864 */
2865 done = true;
2866 }
f63e6005 2867 }
646caa9c
JK
2868 /*
2869 * Caution: If the handle is synchronous,
2870 * ext4_journal_stop() can wait for transaction commit
2871 * to finish which may depend on writeback of pages to
2872 * complete or on page lock to be released. In that
2873 * case, we have to wait until after after we have
2874 * submitted all the IO, released page locks we hold,
2875 * and dropped io_end reference (for extent conversion
2876 * to be able to complete) before stopping the handle.
2877 */
2878 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2879 ext4_journal_stop(handle);
2880 handle = NULL;
dddbd6ac 2881 mpd.do_map = 0;
646caa9c 2882 }
4e7ea81d
JK
2883 /* Submit prepared bio */
2884 ext4_io_submit(&mpd.io_submit);
2885 /* Unlock pages we didn't use */
cb530541 2886 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2887 /*
2888 * Drop our io_end reference we got from init. We have
2889 * to be careful and use deferred io_end finishing if
2890 * we are still holding the transaction as we can
2891 * release the last reference to io_end which may end
2892 * up doing unwritten extent conversion.
2893 */
2894 if (handle) {
2895 ext4_put_io_end_defer(mpd.io_submit.io_end);
2896 ext4_journal_stop(handle);
2897 } else
2898 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2899 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2900
2901 if (ret == -ENOSPC && sbi->s_journal) {
2902 /*
2903 * Commit the transaction which would
22208ded
AK
2904 * free blocks released in the transaction
2905 * and try again
2906 */
df22291f 2907 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2908 ret = 0;
4e7ea81d
JK
2909 continue;
2910 }
2911 /* Fatal error - ENOMEM, EIO... */
2912 if (ret)
61628a3f 2913 break;
a1d6cc56 2914 }
dddbd6ac 2915unplug:
1bce63d1 2916 blk_finish_plug(&plug);
9c12a831 2917 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2918 cycled = 1;
4e7ea81d
JK
2919 mpd.last_page = writeback_index - 1;
2920 mpd.first_page = 0;
2acf2c26
AK
2921 goto retry;
2922 }
22208ded
AK
2923
2924 /* Update index */
22208ded
AK
2925 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2926 /*
4e7ea81d 2927 * Set the writeback_index so that range_cyclic
22208ded
AK
2928 * mode will write it back later
2929 */
4e7ea81d 2930 mapping->writeback_index = mpd.first_page;
a1d6cc56 2931
61628a3f 2932out_writepages:
20970ba6
TT
2933 trace_ext4_writepages_result(inode, wbc, ret,
2934 nr_to_write - wbc->nr_to_write);
c8585c6f 2935 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2936 return ret;
64769240
AT
2937}
2938
5f0663bb
DW
2939static int ext4_dax_writepages(struct address_space *mapping,
2940 struct writeback_control *wbc)
2941{
2942 int ret;
2943 long nr_to_write = wbc->nr_to_write;
2944 struct inode *inode = mapping->host;
2945 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2946
2947 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2948 return -EIO;
2949
2950 percpu_down_read(&sbi->s_journal_flag_rwsem);
2951 trace_ext4_writepages(inode, wbc);
2952
2953 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2954 trace_ext4_writepages_result(inode, wbc, ret,
2955 nr_to_write - wbc->nr_to_write);
2956 percpu_up_read(&sbi->s_journal_flag_rwsem);
2957 return ret;
2958}
2959
79f0be8d
AK
2960static int ext4_nonda_switch(struct super_block *sb)
2961{
5c1ff336 2962 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2963 struct ext4_sb_info *sbi = EXT4_SB(sb);
2964
2965 /*
2966 * switch to non delalloc mode if we are running low
2967 * on free block. The free block accounting via percpu
179f7ebf 2968 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2969 * accumulated on each CPU without updating global counters
2970 * Delalloc need an accurate free block accounting. So switch
2971 * to non delalloc when we are near to error range.
2972 */
5c1ff336
EW
2973 free_clusters =
2974 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2975 dirty_clusters =
2976 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2977 /*
2978 * Start pushing delalloc when 1/2 of free blocks are dirty.
2979 */
5c1ff336 2980 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2981 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2982
5c1ff336
EW
2983 if (2 * free_clusters < 3 * dirty_clusters ||
2984 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2985 /*
c8afb446
ES
2986 * free block count is less than 150% of dirty blocks
2987 * or free blocks is less than watermark
79f0be8d
AK
2988 */
2989 return 1;
2990 }
2991 return 0;
2992}
2993
0ff8947f
ES
2994/* We always reserve for an inode update; the superblock could be there too */
2995static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2996{
e2b911c5 2997 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2998 return 1;
2999
3000 if (pos + len <= 0x7fffffffULL)
3001 return 1;
3002
3003 /* We might need to update the superblock to set LARGE_FILE */
3004 return 2;
3005}
3006
64769240 3007static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3008 loff_t pos, unsigned len, unsigned flags,
3009 struct page **pagep, void **fsdata)
64769240 3010{
72b8ab9d 3011 int ret, retries = 0;
64769240
AT
3012 struct page *page;
3013 pgoff_t index;
64769240
AT
3014 struct inode *inode = mapping->host;
3015 handle_t *handle;
3016
0db1ff22
TT
3017 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3018 return -EIO;
3019
09cbfeaf 3020 index = pos >> PAGE_SHIFT;
79f0be8d 3021
4db0d88e
TT
3022 if (ext4_nonda_switch(inode->i_sb) ||
3023 S_ISLNK(inode->i_mode)) {
79f0be8d
AK
3024 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3025 return ext4_write_begin(file, mapping, pos,
3026 len, flags, pagep, fsdata);
3027 }
3028 *fsdata = (void *)0;
9bffad1e 3029 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
3030
3031 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3032 ret = ext4_da_write_inline_data_begin(mapping, inode,
3033 pos, len, flags,
3034 pagep, fsdata);
3035 if (ret < 0)
47564bfb
TT
3036 return ret;
3037 if (ret == 1)
3038 return 0;
9c3569b5
TM
3039 }
3040
47564bfb
TT
3041 /*
3042 * grab_cache_page_write_begin() can take a long time if the
3043 * system is thrashing due to memory pressure, or if the page
3044 * is being written back. So grab it first before we start
3045 * the transaction handle. This also allows us to allocate
3046 * the page (if needed) without using GFP_NOFS.
3047 */
3048retry_grab:
3049 page = grab_cache_page_write_begin(mapping, index, flags);
3050 if (!page)
3051 return -ENOMEM;
3052 unlock_page(page);
3053
64769240
AT
3054 /*
3055 * With delayed allocation, we don't log the i_disksize update
3056 * if there is delayed block allocation. But we still need
3057 * to journalling the i_disksize update if writes to the end
3058 * of file which has an already mapped buffer.
3059 */
47564bfb 3060retry_journal:
0ff8947f
ES
3061 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3062 ext4_da_write_credits(inode, pos, len));
64769240 3063 if (IS_ERR(handle)) {
09cbfeaf 3064 put_page(page);
47564bfb 3065 return PTR_ERR(handle);
64769240
AT
3066 }
3067
47564bfb
TT
3068 lock_page(page);
3069 if (page->mapping != mapping) {
3070 /* The page got truncated from under us */
3071 unlock_page(page);
09cbfeaf 3072 put_page(page);
d5a0d4f7 3073 ext4_journal_stop(handle);
47564bfb 3074 goto retry_grab;
d5a0d4f7 3075 }
47564bfb 3076 /* In case writeback began while the page was unlocked */
7afe5aa5 3077 wait_for_stable_page(page);
64769240 3078
2058f83a
MH
3079#ifdef CONFIG_EXT4_FS_ENCRYPTION
3080 ret = ext4_block_write_begin(page, pos, len,
3081 ext4_da_get_block_prep);
3082#else
6e1db88d 3083 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 3084#endif
64769240
AT
3085 if (ret < 0) {
3086 unlock_page(page);
3087 ext4_journal_stop(handle);
ae4d5372
AK
3088 /*
3089 * block_write_begin may have instantiated a few blocks
3090 * outside i_size. Trim these off again. Don't need
3091 * i_size_read because we hold i_mutex.
3092 */
3093 if (pos + len > inode->i_size)
b9a4207d 3094 ext4_truncate_failed_write(inode);
47564bfb
TT
3095
3096 if (ret == -ENOSPC &&
3097 ext4_should_retry_alloc(inode->i_sb, &retries))
3098 goto retry_journal;
3099
09cbfeaf 3100 put_page(page);
47564bfb 3101 return ret;
64769240
AT
3102 }
3103
47564bfb 3104 *pagep = page;
64769240
AT
3105 return ret;
3106}
3107
632eaeab
MC
3108/*
3109 * Check if we should update i_disksize
3110 * when write to the end of file but not require block allocation
3111 */
3112static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3113 unsigned long offset)
632eaeab
MC
3114{
3115 struct buffer_head *bh;
3116 struct inode *inode = page->mapping->host;
3117 unsigned int idx;
3118 int i;
3119
3120 bh = page_buffers(page);
3121 idx = offset >> inode->i_blkbits;
3122
af5bc92d 3123 for (i = 0; i < idx; i++)
632eaeab
MC
3124 bh = bh->b_this_page;
3125
29fa89d0 3126 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3127 return 0;
3128 return 1;
3129}
3130
64769240 3131static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3132 struct address_space *mapping,
3133 loff_t pos, unsigned len, unsigned copied,
3134 struct page *page, void *fsdata)
64769240
AT
3135{
3136 struct inode *inode = mapping->host;
3137 int ret = 0, ret2;
3138 handle_t *handle = ext4_journal_current_handle();
3139 loff_t new_i_size;
632eaeab 3140 unsigned long start, end;
79f0be8d
AK
3141 int write_mode = (int)(unsigned long)fsdata;
3142
74d553aa
TT
3143 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3144 return ext4_write_end(file, mapping, pos,
3145 len, copied, page, fsdata);
632eaeab 3146
9bffad1e 3147 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3148 start = pos & (PAGE_SIZE - 1);
af5bc92d 3149 end = start + copied - 1;
64769240
AT
3150
3151 /*
3152 * generic_write_end() will run mark_inode_dirty() if i_size
3153 * changes. So let's piggyback the i_disksize mark_inode_dirty
3154 * into that.
3155 */
64769240 3156 new_i_size = pos + copied;
ea51d132 3157 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3158 if (ext4_has_inline_data(inode) ||
3159 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3160 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3161 /* We need to mark inode dirty even if
3162 * new_i_size is less that inode->i_size
3163 * bu greater than i_disksize.(hint delalloc)
3164 */
3165 ext4_mark_inode_dirty(handle, inode);
64769240 3166 }
632eaeab 3167 }
9c3569b5
TM
3168
3169 if (write_mode != CONVERT_INLINE_DATA &&
3170 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3171 ext4_has_inline_data(inode))
3172 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3173 page);
3174 else
3175 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3176 page, fsdata);
9c3569b5 3177
64769240
AT
3178 copied = ret2;
3179 if (ret2 < 0)
3180 ret = ret2;
3181 ret2 = ext4_journal_stop(handle);
3182 if (!ret)
3183 ret = ret2;
3184
3185 return ret ? ret : copied;
3186}
3187
d47992f8
LC
3188static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3189 unsigned int length)
64769240 3190{
64769240
AT
3191 /*
3192 * Drop reserved blocks
3193 */
3194 BUG_ON(!PageLocked(page));
3195 if (!page_has_buffers(page))
3196 goto out;
3197
ca99fdd2 3198 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3199
3200out:
d47992f8 3201 ext4_invalidatepage(page, offset, length);
64769240
AT
3202
3203 return;
3204}
3205
ccd2506b
TT
3206/*
3207 * Force all delayed allocation blocks to be allocated for a given inode.
3208 */
3209int ext4_alloc_da_blocks(struct inode *inode)
3210{
fb40ba0d
TT
3211 trace_ext4_alloc_da_blocks(inode);
3212
71d4f7d0 3213 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3214 return 0;
3215
3216 /*
3217 * We do something simple for now. The filemap_flush() will
3218 * also start triggering a write of the data blocks, which is
3219 * not strictly speaking necessary (and for users of
3220 * laptop_mode, not even desirable). However, to do otherwise
3221 * would require replicating code paths in:
de9a55b8 3222 *
20970ba6 3223 * ext4_writepages() ->
ccd2506b
TT
3224 * write_cache_pages() ---> (via passed in callback function)
3225 * __mpage_da_writepage() -->
3226 * mpage_add_bh_to_extent()
3227 * mpage_da_map_blocks()
3228 *
3229 * The problem is that write_cache_pages(), located in
3230 * mm/page-writeback.c, marks pages clean in preparation for
3231 * doing I/O, which is not desirable if we're not planning on
3232 * doing I/O at all.
3233 *
3234 * We could call write_cache_pages(), and then redirty all of
380cf090 3235 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3236 * would be ugly in the extreme. So instead we would need to
3237 * replicate parts of the code in the above functions,
25985edc 3238 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3239 * write out the pages, but rather only collect contiguous
3240 * logical block extents, call the multi-block allocator, and
3241 * then update the buffer heads with the block allocations.
de9a55b8 3242 *
ccd2506b
TT
3243 * For now, though, we'll cheat by calling filemap_flush(),
3244 * which will map the blocks, and start the I/O, but not
3245 * actually wait for the I/O to complete.
3246 */
3247 return filemap_flush(inode->i_mapping);
3248}
64769240 3249
ac27a0ec
DK
3250/*
3251 * bmap() is special. It gets used by applications such as lilo and by
3252 * the swapper to find the on-disk block of a specific piece of data.
3253 *
3254 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3255 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3256 * filesystem and enables swap, then they may get a nasty shock when the
3257 * data getting swapped to that swapfile suddenly gets overwritten by
3258 * the original zero's written out previously to the journal and
3259 * awaiting writeback in the kernel's buffer cache.
3260 *
3261 * So, if we see any bmap calls here on a modified, data-journaled file,
3262 * take extra steps to flush any blocks which might be in the cache.
3263 */
617ba13b 3264static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3265{
3266 struct inode *inode = mapping->host;
3267 journal_t *journal;
3268 int err;
3269
46c7f254
TM
3270 /*
3271 * We can get here for an inline file via the FIBMAP ioctl
3272 */
3273 if (ext4_has_inline_data(inode))
3274 return 0;
3275
64769240
AT
3276 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277 test_opt(inode->i_sb, DELALLOC)) {
3278 /*
3279 * With delalloc we want to sync the file
3280 * so that we can make sure we allocate
3281 * blocks for file
3282 */
3283 filemap_write_and_wait(mapping);
3284 }
3285
19f5fb7a
TT
3286 if (EXT4_JOURNAL(inode) &&
3287 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3288 /*
3289 * This is a REALLY heavyweight approach, but the use of
3290 * bmap on dirty files is expected to be extremely rare:
3291 * only if we run lilo or swapon on a freshly made file
3292 * do we expect this to happen.
3293 *
3294 * (bmap requires CAP_SYS_RAWIO so this does not
3295 * represent an unprivileged user DOS attack --- we'd be
3296 * in trouble if mortal users could trigger this path at
3297 * will.)
3298 *
617ba13b 3299 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3300 * regular files. If somebody wants to bmap a directory
3301 * or symlink and gets confused because the buffer
3302 * hasn't yet been flushed to disk, they deserve
3303 * everything they get.
3304 */
3305
19f5fb7a 3306 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3307 journal = EXT4_JOURNAL(inode);
dab291af
MC
3308 jbd2_journal_lock_updates(journal);
3309 err = jbd2_journal_flush(journal);
3310 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3311
3312 if (err)
3313 return 0;
3314 }
3315
af5bc92d 3316 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3317}
3318
617ba13b 3319static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3320{
46c7f254
TM
3321 int ret = -EAGAIN;
3322 struct inode *inode = page->mapping->host;
3323
0562e0ba 3324 trace_ext4_readpage(page);
46c7f254
TM
3325
3326 if (ext4_has_inline_data(inode))
3327 ret = ext4_readpage_inline(inode, page);
3328
3329 if (ret == -EAGAIN)
f64e02fe 3330 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3331
3332 return ret;
ac27a0ec
DK
3333}
3334
3335static int
617ba13b 3336ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3337 struct list_head *pages, unsigned nr_pages)
3338{
46c7f254
TM
3339 struct inode *inode = mapping->host;
3340
3341 /* If the file has inline data, no need to do readpages. */
3342 if (ext4_has_inline_data(inode))
3343 return 0;
3344
f64e02fe 3345 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3346}
3347
d47992f8
LC
3348static void ext4_invalidatepage(struct page *page, unsigned int offset,
3349 unsigned int length)
ac27a0ec 3350{
ca99fdd2 3351 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3352
4520fb3c
JK
3353 /* No journalling happens on data buffers when this function is used */
3354 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3355
ca99fdd2 3356 block_invalidatepage(page, offset, length);
4520fb3c
JK
3357}
3358
53e87268 3359static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3360 unsigned int offset,
3361 unsigned int length)
4520fb3c
JK
3362{
3363 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3364
ca99fdd2 3365 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3366
ac27a0ec
DK
3367 /*
3368 * If it's a full truncate we just forget about the pending dirtying
3369 */
09cbfeaf 3370 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3371 ClearPageChecked(page);
3372
ca99fdd2 3373 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3374}
3375
3376/* Wrapper for aops... */
3377static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3378 unsigned int offset,
3379 unsigned int length)
53e87268 3380{
ca99fdd2 3381 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3382}
3383
617ba13b 3384static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3385{
617ba13b 3386 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3387
0562e0ba
JZ
3388 trace_ext4_releasepage(page);
3389
e1c36595
JK
3390 /* Page has dirty journalled data -> cannot release */
3391 if (PageChecked(page))
ac27a0ec 3392 return 0;
0390131b
FM
3393 if (journal)
3394 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3395 else
3396 return try_to_free_buffers(page);
ac27a0ec
DK
3397}
3398
b8a6176c
JK
3399static bool ext4_inode_datasync_dirty(struct inode *inode)
3400{
3401 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3402
3403 if (journal)
3404 return !jbd2_transaction_committed(journal,
3405 EXT4_I(inode)->i_datasync_tid);
3406 /* Any metadata buffers to write? */
3407 if (!list_empty(&inode->i_mapping->private_list))
3408 return true;
3409 return inode->i_state & I_DIRTY_DATASYNC;
3410}
3411
364443cb
JK
3412static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3413 unsigned flags, struct iomap *iomap)
3414{
5e405595 3415 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364443cb
JK
3416 unsigned int blkbits = inode->i_blkbits;
3417 unsigned long first_block = offset >> blkbits;
3418 unsigned long last_block = (offset + length - 1) >> blkbits;
3419 struct ext4_map_blocks map;
545052e9 3420 bool delalloc = false;
364443cb
JK
3421 int ret;
3422
7046ae35
AG
3423
3424 if (flags & IOMAP_REPORT) {
3425 if (ext4_has_inline_data(inode)) {
3426 ret = ext4_inline_data_iomap(inode, iomap);
3427 if (ret != -EAGAIN) {
3428 if (ret == 0 && offset >= iomap->length)
3429 ret = -ENOENT;
3430 return ret;
3431 }
3432 }
3433 } else {
3434 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3435 return -ERANGE;
3436 }
364443cb
JK
3437
3438 map.m_lblk = first_block;
3439 map.m_len = last_block - first_block + 1;
3440
545052e9 3441 if (flags & IOMAP_REPORT) {
776722e8 3442 ret = ext4_map_blocks(NULL, inode, &map, 0);
545052e9
CH
3443 if (ret < 0)
3444 return ret;
3445
3446 if (ret == 0) {
3447 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3448 struct extent_status es;
3449
3450 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3451
3452 if (!es.es_len || es.es_lblk > end) {
3453 /* entire range is a hole */
3454 } else if (es.es_lblk > map.m_lblk) {
3455 /* range starts with a hole */
3456 map.m_len = es.es_lblk - map.m_lblk;
3457 } else {
3458 ext4_lblk_t offs = 0;
3459
3460 if (es.es_lblk < map.m_lblk)
3461 offs = map.m_lblk - es.es_lblk;
3462 map.m_lblk = es.es_lblk + offs;
3463 map.m_len = es.es_len - offs;
3464 delalloc = true;
3465 }
3466 }
3467 } else if (flags & IOMAP_WRITE) {
776722e8
JK
3468 int dio_credits;
3469 handle_t *handle;
3470 int retries = 0;
3471
3472 /* Trim mapping request to maximum we can map at once for DIO */
3473 if (map.m_len > DIO_MAX_BLOCKS)
3474 map.m_len = DIO_MAX_BLOCKS;
3475 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3476retry:
3477 /*
3478 * Either we allocate blocks and then we don't get unwritten
3479 * extent so we have reserved enough credits, or the blocks
3480 * are already allocated and unwritten and in that case
3481 * extent conversion fits in the credits as well.
3482 */
3483 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3484 dio_credits);
3485 if (IS_ERR(handle))
3486 return PTR_ERR(handle);
3487
3488 ret = ext4_map_blocks(handle, inode, &map,
776722e8
JK
3489 EXT4_GET_BLOCKS_CREATE_ZERO);
3490 if (ret < 0) {
3491 ext4_journal_stop(handle);
3492 if (ret == -ENOSPC &&
3493 ext4_should_retry_alloc(inode->i_sb, &retries))
3494 goto retry;
3495 return ret;
3496 }
776722e8
JK
3497
3498 /*
e2ae766c 3499 * If we added blocks beyond i_size, we need to make sure they
776722e8 3500 * will get truncated if we crash before updating i_size in
e2ae766c
JK
3501 * ext4_iomap_end(). For faults we don't need to do that (and
3502 * even cannot because for orphan list operations inode_lock is
3503 * required) - if we happen to instantiate block beyond i_size,
3504 * it is because we race with truncate which has already added
3505 * the inode to the orphan list.
776722e8 3506 */
e2ae766c
JK
3507 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3508 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
776722e8
JK
3509 int err;
3510
3511 err = ext4_orphan_add(handle, inode);
3512 if (err < 0) {
3513 ext4_journal_stop(handle);
3514 return err;
3515 }
3516 }
3517 ext4_journal_stop(handle);
545052e9
CH
3518 } else {
3519 ret = ext4_map_blocks(NULL, inode, &map, 0);
3520 if (ret < 0)
3521 return ret;
776722e8 3522 }
364443cb
JK
3523
3524 iomap->flags = 0;
aaa422c4 3525 if (ext4_inode_datasync_dirty(inode))
b8a6176c 3526 iomap->flags |= IOMAP_F_DIRTY;
5e405595
DW
3527 iomap->bdev = inode->i_sb->s_bdev;
3528 iomap->dax_dev = sbi->s_daxdev;
fe23cb65 3529 iomap->offset = (u64)first_block << blkbits;
545052e9 3530 iomap->length = (u64)map.m_len << blkbits;
364443cb
JK
3531
3532 if (ret == 0) {
545052e9 3533 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
19fe5f64 3534 iomap->addr = IOMAP_NULL_ADDR;
364443cb
JK
3535 } else {
3536 if (map.m_flags & EXT4_MAP_MAPPED) {
3537 iomap->type = IOMAP_MAPPED;
3538 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3539 iomap->type = IOMAP_UNWRITTEN;
3540 } else {
3541 WARN_ON_ONCE(1);
3542 return -EIO;
3543 }
19fe5f64 3544 iomap->addr = (u64)map.m_pblk << blkbits;
364443cb
JK
3545 }
3546
3547 if (map.m_flags & EXT4_MAP_NEW)
3548 iomap->flags |= IOMAP_F_NEW;
545052e9 3549
364443cb
JK
3550 return 0;
3551}
3552
776722e8
JK
3553static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3554 ssize_t written, unsigned flags, struct iomap *iomap)
3555{
3556 int ret = 0;
3557 handle_t *handle;
3558 int blkbits = inode->i_blkbits;
3559 bool truncate = false;
3560
e2ae766c 3561 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
776722e8
JK
3562 return 0;
3563
3564 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3565 if (IS_ERR(handle)) {
3566 ret = PTR_ERR(handle);
3567 goto orphan_del;
3568 }
3569 if (ext4_update_inode_size(inode, offset + written))
3570 ext4_mark_inode_dirty(handle, inode);
3571 /*
3572 * We may need to truncate allocated but not written blocks beyond EOF.
3573 */
3574 if (iomap->offset + iomap->length >
3575 ALIGN(inode->i_size, 1 << blkbits)) {
3576 ext4_lblk_t written_blk, end_blk;
3577
3578 written_blk = (offset + written) >> blkbits;
3579 end_blk = (offset + length) >> blkbits;
3580 if (written_blk < end_blk && ext4_can_truncate(inode))
3581 truncate = true;
3582 }
3583 /*
3584 * Remove inode from orphan list if we were extending a inode and
3585 * everything went fine.
3586 */
3587 if (!truncate && inode->i_nlink &&
3588 !list_empty(&EXT4_I(inode)->i_orphan))
3589 ext4_orphan_del(handle, inode);
3590 ext4_journal_stop(handle);
3591 if (truncate) {
3592 ext4_truncate_failed_write(inode);
3593orphan_del:
3594 /*
3595 * If truncate failed early the inode might still be on the
3596 * orphan list; we need to make sure the inode is removed from
3597 * the orphan list in that case.
3598 */
3599 if (inode->i_nlink)
3600 ext4_orphan_del(NULL, inode);
3601 }
3602 return ret;
3603}
3604
8ff6daa1 3605const struct iomap_ops ext4_iomap_ops = {
364443cb 3606 .iomap_begin = ext4_iomap_begin,
776722e8 3607 .iomap_end = ext4_iomap_end,
364443cb
JK
3608};
3609
187372a3 3610static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3611 ssize_t size, void *private)
4c0425ff 3612{
109811c2 3613 ext4_io_end_t *io_end = private;
4c0425ff 3614
97a851ed 3615 /* if not async direct IO just return */
7b7a8665 3616 if (!io_end)
187372a3 3617 return 0;
4b70df18 3618
88635ca2 3619 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3620 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3621 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3622
74c66bcb
JK
3623 /*
3624 * Error during AIO DIO. We cannot convert unwritten extents as the
3625 * data was not written. Just clear the unwritten flag and drop io_end.
3626 */
3627 if (size <= 0) {
3628 ext4_clear_io_unwritten_flag(io_end);
3629 size = 0;
3630 }
4c0425ff
MC
3631 io_end->offset = offset;
3632 io_end->size = size;
7b7a8665 3633 ext4_put_io_end(io_end);
187372a3
CH
3634
3635 return 0;
4c0425ff 3636}
c7064ef1 3637
4c0425ff 3638/*
914f82a3
JK
3639 * Handling of direct IO writes.
3640 *
3641 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3642 * preallocated extents, and those write extend the file, no need to
3643 * fall back to buffered IO.
3644 *
556615dc 3645 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3646 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3647 * still keep the range to write as unwritten.
4c0425ff 3648 *
69c499d1 3649 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3650 * For async direct IO, since the IO may still pending when return, we
25985edc 3651 * set up an end_io call back function, which will do the conversion
8d5d02e6 3652 * when async direct IO completed.
4c0425ff
MC
3653 *
3654 * If the O_DIRECT write will extend the file then add this inode to the
3655 * orphan list. So recovery will truncate it back to the original size
3656 * if the machine crashes during the write.
3657 *
3658 */
0e01df10 3659static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3660{
3661 struct file *file = iocb->ki_filp;
3662 struct inode *inode = file->f_mapping->host;
45d8ec4d 3663 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3664 ssize_t ret;
c8b8e32d 3665 loff_t offset = iocb->ki_pos;
a6cbcd4a 3666 size_t count = iov_iter_count(iter);
69c499d1
TT
3667 int overwrite = 0;
3668 get_block_t *get_block_func = NULL;
3669 int dio_flags = 0;
4c0425ff 3670 loff_t final_size = offset + count;
914f82a3
JK
3671 int orphan = 0;
3672 handle_t *handle;
729f52c6 3673
45d8ec4d 3674 if (final_size > inode->i_size || final_size > ei->i_disksize) {
914f82a3
JK
3675 /* Credits for sb + inode write */
3676 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3677 if (IS_ERR(handle)) {
3678 ret = PTR_ERR(handle);
3679 goto out;
3680 }
3681 ret = ext4_orphan_add(handle, inode);
3682 if (ret) {
3683 ext4_journal_stop(handle);
3684 goto out;
3685 }
3686 orphan = 1;
73fdad00 3687 ext4_update_i_disksize(inode, inode->i_size);
914f82a3
JK
3688 ext4_journal_stop(handle);
3689 }
4bd809db 3690
69c499d1 3691 BUG_ON(iocb->private == NULL);
4bd809db 3692
e8340395
JK
3693 /*
3694 * Make all waiters for direct IO properly wait also for extent
3695 * conversion. This also disallows race between truncate() and
3696 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3697 */
914f82a3 3698 inode_dio_begin(inode);
e8340395 3699
69c499d1
TT
3700 /* If we do a overwrite dio, i_mutex locking can be released */
3701 overwrite = *((int *)iocb->private);
4bd809db 3702
2dcba478 3703 if (overwrite)
5955102c 3704 inode_unlock(inode);
8d5d02e6 3705
69c499d1 3706 /*
914f82a3 3707 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3708 *
109811c2
JK
3709 * Allocated blocks to fill the hole are marked as unwritten to prevent
3710 * parallel buffered read to expose the stale data before DIO complete
3711 * the data IO.
69c499d1 3712 *
109811c2
JK
3713 * As to previously fallocated extents, ext4 get_block will just simply
3714 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3715 *
109811c2
JK
3716 * For non AIO case, we will convert those unwritten extents to written
3717 * after return back from blockdev_direct_IO. That way we save us from
3718 * allocating io_end structure and also the overhead of offloading
3719 * the extent convertion to a workqueue.
69c499d1
TT
3720 *
3721 * For async DIO, the conversion needs to be deferred when the
3722 * IO is completed. The ext4 end_io callback function will be
3723 * called to take care of the conversion work. Here for async
3724 * case, we allocate an io_end structure to hook to the iocb.
3725 */
3726 iocb->private = NULL;
109811c2 3727 if (overwrite)
705965bd 3728 get_block_func = ext4_dio_get_block_overwrite;
0bd2d5ec 3729 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
93407472 3730 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
914f82a3
JK
3731 get_block_func = ext4_dio_get_block;
3732 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3733 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3734 get_block_func = ext4_dio_get_block_unwritten_sync;
3735 dio_flags = DIO_LOCKING;
69c499d1 3736 } else {
109811c2 3737 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3738 dio_flags = DIO_LOCKING;
3739 }
0bd2d5ec
JK
3740 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3741 get_block_func, ext4_end_io_dio, NULL,
3742 dio_flags);
69c499d1 3743
97a851ed 3744 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3745 EXT4_STATE_DIO_UNWRITTEN)) {
3746 int err;
3747 /*
3748 * for non AIO case, since the IO is already
3749 * completed, we could do the conversion right here
3750 */
6b523df4 3751 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3752 offset, ret);
3753 if (err < 0)
3754 ret = err;
3755 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3756 }
4bd809db 3757
914f82a3 3758 inode_dio_end(inode);
69c499d1 3759 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3760 if (overwrite)
5955102c 3761 inode_lock(inode);
8d5d02e6 3762
914f82a3
JK
3763 if (ret < 0 && final_size > inode->i_size)
3764 ext4_truncate_failed_write(inode);
3765
3766 /* Handle extending of i_size after direct IO write */
3767 if (orphan) {
3768 int err;
3769
3770 /* Credits for sb + inode write */
3771 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3772 if (IS_ERR(handle)) {
abbc3f93
HS
3773 /*
3774 * We wrote the data but cannot extend
3775 * i_size. Bail out. In async io case, we do
3776 * not return error here because we have
3777 * already submmitted the corresponding
3778 * bio. Returning error here makes the caller
3779 * think that this IO is done and failed
3780 * resulting in race with bio's completion
3781 * handler.
3782 */
3783 if (!ret)
3784 ret = PTR_ERR(handle);
914f82a3
JK
3785 if (inode->i_nlink)
3786 ext4_orphan_del(NULL, inode);
3787
3788 goto out;
3789 }
3790 if (inode->i_nlink)
3791 ext4_orphan_del(handle, inode);
3792 if (ret > 0) {
3793 loff_t end = offset + ret;
45d8ec4d 3794 if (end > inode->i_size || end > ei->i_disksize) {
73fdad00 3795 ext4_update_i_disksize(inode, end);
45d8ec4d
EG
3796 if (end > inode->i_size)
3797 i_size_write(inode, end);
914f82a3
JK
3798 /*
3799 * We're going to return a positive `ret'
3800 * here due to non-zero-length I/O, so there's
3801 * no way of reporting error returns from
3802 * ext4_mark_inode_dirty() to userspace. So
3803 * ignore it.
3804 */
3805 ext4_mark_inode_dirty(handle, inode);
3806 }
3807 }
3808 err = ext4_journal_stop(handle);
3809 if (ret == 0)
3810 ret = err;
3811 }
3812out:
3813 return ret;
3814}
3815
0e01df10 3816static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3817{
16c54688
JK
3818 struct address_space *mapping = iocb->ki_filp->f_mapping;
3819 struct inode *inode = mapping->host;
0bd2d5ec 3820 size_t count = iov_iter_count(iter);
914f82a3
JK
3821 ssize_t ret;
3822
16c54688
JK
3823 /*
3824 * Shared inode_lock is enough for us - it protects against concurrent
3825 * writes & truncates and since we take care of writing back page cache,
3826 * we are protected against page writeback as well.
3827 */
3828 inode_lock_shared(inode);
0bd2d5ec 3829 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
e5465795 3830 iocb->ki_pos + count - 1);
0bd2d5ec
JK
3831 if (ret)
3832 goto out_unlock;
3833 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3834 iter, ext4_dio_get_block, NULL, NULL, 0);
16c54688
JK
3835out_unlock:
3836 inode_unlock_shared(inode);
69c499d1 3837 return ret;
4c0425ff
MC
3838}
3839
c8b8e32d 3840static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3841{
3842 struct file *file = iocb->ki_filp;
3843 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3844 size_t count = iov_iter_count(iter);
c8b8e32d 3845 loff_t offset = iocb->ki_pos;
0562e0ba 3846 ssize_t ret;
4c0425ff 3847
2058f83a
MH
3848#ifdef CONFIG_EXT4_FS_ENCRYPTION
3849 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3850 return 0;
3851#endif
3852
84ebd795
TT
3853 /*
3854 * If we are doing data journalling we don't support O_DIRECT
3855 */
3856 if (ext4_should_journal_data(inode))
3857 return 0;
3858
46c7f254
TM
3859 /* Let buffer I/O handle the inline data case. */
3860 if (ext4_has_inline_data(inode))
3861 return 0;
3862
6f673763 3863 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3864 if (iov_iter_rw(iter) == READ)
0e01df10 3865 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3866 else
0e01df10 3867 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3868 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3869 return ret;
4c0425ff
MC
3870}
3871
ac27a0ec 3872/*
617ba13b 3873 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3874 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3875 * much here because ->set_page_dirty is called under VFS locks. The page is
3876 * not necessarily locked.
3877 *
3878 * We cannot just dirty the page and leave attached buffers clean, because the
3879 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3880 * or jbddirty because all the journalling code will explode.
3881 *
3882 * So what we do is to mark the page "pending dirty" and next time writepage
3883 * is called, propagate that into the buffers appropriately.
3884 */
617ba13b 3885static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3886{
3887 SetPageChecked(page);
3888 return __set_page_dirty_nobuffers(page);
3889}
3890
6dcc693b
JK
3891static int ext4_set_page_dirty(struct page *page)
3892{
3893 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3894 WARN_ON_ONCE(!page_has_buffers(page));
3895 return __set_page_dirty_buffers(page);
3896}
3897
74d553aa 3898static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3899 .readpage = ext4_readpage,
3900 .readpages = ext4_readpages,
43ce1d23 3901 .writepage = ext4_writepage,
20970ba6 3902 .writepages = ext4_writepages,
8ab22b9a 3903 .write_begin = ext4_write_begin,
74d553aa 3904 .write_end = ext4_write_end,
6dcc693b 3905 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3906 .bmap = ext4_bmap,
3907 .invalidatepage = ext4_invalidatepage,
3908 .releasepage = ext4_releasepage,
3909 .direct_IO = ext4_direct_IO,
3910 .migratepage = buffer_migrate_page,
3911 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3912 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3913};
3914
617ba13b 3915static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3916 .readpage = ext4_readpage,
3917 .readpages = ext4_readpages,
43ce1d23 3918 .writepage = ext4_writepage,
20970ba6 3919 .writepages = ext4_writepages,
8ab22b9a
HH
3920 .write_begin = ext4_write_begin,
3921 .write_end = ext4_journalled_write_end,
3922 .set_page_dirty = ext4_journalled_set_page_dirty,
3923 .bmap = ext4_bmap,
4520fb3c 3924 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3925 .releasepage = ext4_releasepage,
84ebd795 3926 .direct_IO = ext4_direct_IO,
8ab22b9a 3927 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3928 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3929};
3930
64769240 3931static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3932 .readpage = ext4_readpage,
3933 .readpages = ext4_readpages,
43ce1d23 3934 .writepage = ext4_writepage,
20970ba6 3935 .writepages = ext4_writepages,
8ab22b9a
HH
3936 .write_begin = ext4_da_write_begin,
3937 .write_end = ext4_da_write_end,
6dcc693b 3938 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3939 .bmap = ext4_bmap,
3940 .invalidatepage = ext4_da_invalidatepage,
3941 .releasepage = ext4_releasepage,
3942 .direct_IO = ext4_direct_IO,
3943 .migratepage = buffer_migrate_page,
3944 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3945 .error_remove_page = generic_error_remove_page,
64769240
AT
3946};
3947
5f0663bb
DW
3948static const struct address_space_operations ext4_dax_aops = {
3949 .writepages = ext4_dax_writepages,
3950 .direct_IO = noop_direct_IO,
3951 .set_page_dirty = noop_set_page_dirty,
3952 .invalidatepage = noop_invalidatepage,
3953};
3954
617ba13b 3955void ext4_set_aops(struct inode *inode)
ac27a0ec 3956{
3d2b1582
LC
3957 switch (ext4_inode_journal_mode(inode)) {
3958 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3959 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3960 break;
3961 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3962 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3963 return;
3d2b1582
LC
3964 default:
3965 BUG();
3966 }
5f0663bb
DW
3967 if (IS_DAX(inode))
3968 inode->i_mapping->a_ops = &ext4_dax_aops;
3969 else if (test_opt(inode->i_sb, DELALLOC))
74d553aa
TT
3970 inode->i_mapping->a_ops = &ext4_da_aops;
3971 else
3972 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3973}
3974
923ae0ff 3975static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3976 struct address_space *mapping, loff_t from, loff_t length)
3977{
09cbfeaf
KS
3978 ext4_fsblk_t index = from >> PAGE_SHIFT;
3979 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3980 unsigned blocksize, pos;
d863dc36
LC
3981 ext4_lblk_t iblock;
3982 struct inode *inode = mapping->host;
3983 struct buffer_head *bh;
3984 struct page *page;
3985 int err = 0;
3986
09cbfeaf 3987 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3988 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3989 if (!page)
3990 return -ENOMEM;
3991
3992 blocksize = inode->i_sb->s_blocksize;
d863dc36 3993
09cbfeaf 3994 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3995
3996 if (!page_has_buffers(page))
3997 create_empty_buffers(page, blocksize, 0);
3998
3999 /* Find the buffer that contains "offset" */
4000 bh = page_buffers(page);
4001 pos = blocksize;
4002 while (offset >= pos) {
4003 bh = bh->b_this_page;
4004 iblock++;
4005 pos += blocksize;
4006 }
d863dc36
LC
4007 if (buffer_freed(bh)) {
4008 BUFFER_TRACE(bh, "freed: skip");
4009 goto unlock;
4010 }
d863dc36
LC
4011 if (!buffer_mapped(bh)) {
4012 BUFFER_TRACE(bh, "unmapped");
4013 ext4_get_block(inode, iblock, bh, 0);
4014 /* unmapped? It's a hole - nothing to do */
4015 if (!buffer_mapped(bh)) {
4016 BUFFER_TRACE(bh, "still unmapped");
4017 goto unlock;
4018 }
4019 }
4020
4021 /* Ok, it's mapped. Make sure it's up-to-date */
4022 if (PageUptodate(page))
4023 set_buffer_uptodate(bh);
4024
4025 if (!buffer_uptodate(bh)) {
4026 err = -EIO;
dfec8a14 4027 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
4028 wait_on_buffer(bh);
4029 /* Uhhuh. Read error. Complain and punt. */
4030 if (!buffer_uptodate(bh))
4031 goto unlock;
c9c7429c
MH
4032 if (S_ISREG(inode->i_mode) &&
4033 ext4_encrypted_inode(inode)) {
4034 /* We expect the key to be set. */
a7550b30 4035 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 4036 BUG_ON(blocksize != PAGE_SIZE);
b50f7b26 4037 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 4038 page, PAGE_SIZE, 0, page->index));
c9c7429c 4039 }
d863dc36 4040 }
d863dc36
LC
4041 if (ext4_should_journal_data(inode)) {
4042 BUFFER_TRACE(bh, "get write access");
4043 err = ext4_journal_get_write_access(handle, bh);
4044 if (err)
4045 goto unlock;
4046 }
d863dc36 4047 zero_user(page, offset, length);
d863dc36
LC
4048 BUFFER_TRACE(bh, "zeroed end of block");
4049
d863dc36
LC
4050 if (ext4_should_journal_data(inode)) {
4051 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 4052 } else {
353eefd3 4053 err = 0;
d863dc36 4054 mark_buffer_dirty(bh);
3957ef53 4055 if (ext4_should_order_data(inode))
ee0876bc 4056 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 4057 }
d863dc36
LC
4058
4059unlock:
4060 unlock_page(page);
09cbfeaf 4061 put_page(page);
d863dc36
LC
4062 return err;
4063}
4064
923ae0ff
RZ
4065/*
4066 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4067 * starting from file offset 'from'. The range to be zero'd must
4068 * be contained with in one block. If the specified range exceeds
4069 * the end of the block it will be shortened to end of the block
4070 * that cooresponds to 'from'
4071 */
4072static int ext4_block_zero_page_range(handle_t *handle,
4073 struct address_space *mapping, loff_t from, loff_t length)
4074{
4075 struct inode *inode = mapping->host;
09cbfeaf 4076 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
4077 unsigned blocksize = inode->i_sb->s_blocksize;
4078 unsigned max = blocksize - (offset & (blocksize - 1));
4079
4080 /*
4081 * correct length if it does not fall between
4082 * 'from' and the end of the block
4083 */
4084 if (length > max || length < 0)
4085 length = max;
4086
47e69351
JK
4087 if (IS_DAX(inode)) {
4088 return iomap_zero_range(inode, from, length, NULL,
4089 &ext4_iomap_ops);
4090 }
923ae0ff
RZ
4091 return __ext4_block_zero_page_range(handle, mapping, from, length);
4092}
4093
94350ab5
MW
4094/*
4095 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4096 * up to the end of the block which corresponds to `from'.
4097 * This required during truncate. We need to physically zero the tail end
4098 * of that block so it doesn't yield old data if the file is later grown.
4099 */
c197855e 4100static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
4101 struct address_space *mapping, loff_t from)
4102{
09cbfeaf 4103 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
4104 unsigned length;
4105 unsigned blocksize;
4106 struct inode *inode = mapping->host;
4107
0d06863f
TT
4108 /* If we are processing an encrypted inode during orphan list handling */
4109 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4110 return 0;
4111
94350ab5
MW
4112 blocksize = inode->i_sb->s_blocksize;
4113 length = blocksize - (offset & (blocksize - 1));
4114
4115 return ext4_block_zero_page_range(handle, mapping, from, length);
4116}
4117
a87dd18c
LC
4118int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4119 loff_t lstart, loff_t length)
4120{
4121 struct super_block *sb = inode->i_sb;
4122 struct address_space *mapping = inode->i_mapping;
e1be3a92 4123 unsigned partial_start, partial_end;
a87dd18c
LC
4124 ext4_fsblk_t start, end;
4125 loff_t byte_end = (lstart + length - 1);
4126 int err = 0;
4127
e1be3a92
LC
4128 partial_start = lstart & (sb->s_blocksize - 1);
4129 partial_end = byte_end & (sb->s_blocksize - 1);
4130
a87dd18c
LC
4131 start = lstart >> sb->s_blocksize_bits;
4132 end = byte_end >> sb->s_blocksize_bits;
4133
4134 /* Handle partial zero within the single block */
e1be3a92
LC
4135 if (start == end &&
4136 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
4137 err = ext4_block_zero_page_range(handle, mapping,
4138 lstart, length);
4139 return err;
4140 }
4141 /* Handle partial zero out on the start of the range */
e1be3a92 4142 if (partial_start) {
a87dd18c
LC
4143 err = ext4_block_zero_page_range(handle, mapping,
4144 lstart, sb->s_blocksize);
4145 if (err)
4146 return err;
4147 }
4148 /* Handle partial zero out on the end of the range */
e1be3a92 4149 if (partial_end != sb->s_blocksize - 1)
a87dd18c 4150 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
4151 byte_end - partial_end,
4152 partial_end + 1);
a87dd18c
LC
4153 return err;
4154}
4155
91ef4caf
DG
4156int ext4_can_truncate(struct inode *inode)
4157{
91ef4caf
DG
4158 if (S_ISREG(inode->i_mode))
4159 return 1;
4160 if (S_ISDIR(inode->i_mode))
4161 return 1;
4162 if (S_ISLNK(inode->i_mode))
4163 return !ext4_inode_is_fast_symlink(inode);
4164 return 0;
4165}
4166
01127848
JK
4167/*
4168 * We have to make sure i_disksize gets properly updated before we truncate
4169 * page cache due to hole punching or zero range. Otherwise i_disksize update
4170 * can get lost as it may have been postponed to submission of writeback but
4171 * that will never happen after we truncate page cache.
4172 */
4173int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4174 loff_t len)
4175{
4176 handle_t *handle;
4177 loff_t size = i_size_read(inode);
4178
5955102c 4179 WARN_ON(!inode_is_locked(inode));
01127848
JK
4180 if (offset > size || offset + len < size)
4181 return 0;
4182
4183 if (EXT4_I(inode)->i_disksize >= size)
4184 return 0;
4185
4186 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4187 if (IS_ERR(handle))
4188 return PTR_ERR(handle);
4189 ext4_update_i_disksize(inode, size);
4190 ext4_mark_inode_dirty(handle, inode);
4191 ext4_journal_stop(handle);
4192
4193 return 0;
4194}
4195
a4bb6b64 4196/*
cca32b7e 4197 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
4198 * associated with the given offset and length
4199 *
4200 * @inode: File inode
4201 * @offset: The offset where the hole will begin
4202 * @len: The length of the hole
4203 *
4907cb7b 4204 * Returns: 0 on success or negative on failure
a4bb6b64
AH
4205 */
4206
aeb2817a 4207int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4208{
26a4c0c6
TT
4209 struct super_block *sb = inode->i_sb;
4210 ext4_lblk_t first_block, stop_block;
4211 struct address_space *mapping = inode->i_mapping;
a87dd18c 4212 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4213 handle_t *handle;
4214 unsigned int credits;
4215 int ret = 0;
4216
a4bb6b64 4217 if (!S_ISREG(inode->i_mode))
73355192 4218 return -EOPNOTSUPP;
a4bb6b64 4219
b8a86845 4220 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4221
26a4c0c6
TT
4222 /*
4223 * Write out all dirty pages to avoid race conditions
4224 * Then release them.
4225 */
cca32b7e 4226 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4227 ret = filemap_write_and_wait_range(mapping, offset,
4228 offset + length - 1);
4229 if (ret)
4230 return ret;
4231 }
4232
5955102c 4233 inode_lock(inode);
9ef06cec 4234
26a4c0c6
TT
4235 /* No need to punch hole beyond i_size */
4236 if (offset >= inode->i_size)
4237 goto out_mutex;
4238
4239 /*
4240 * If the hole extends beyond i_size, set the hole
4241 * to end after the page that contains i_size
4242 */
4243 if (offset + length > inode->i_size) {
4244 length = inode->i_size +
09cbfeaf 4245 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4246 offset;
4247 }
4248
a361293f
JK
4249 if (offset & (sb->s_blocksize - 1) ||
4250 (offset + length) & (sb->s_blocksize - 1)) {
4251 /*
4252 * Attach jinode to inode for jbd2 if we do any zeroing of
4253 * partial block
4254 */
4255 ret = ext4_inode_attach_jinode(inode);
4256 if (ret < 0)
4257 goto out_mutex;
4258
4259 }
4260
ea3d7209 4261 /* Wait all existing dio workers, newcomers will block on i_mutex */
ea3d7209
JK
4262 inode_dio_wait(inode);
4263
4264 /*
4265 * Prevent page faults from reinstantiating pages we have released from
4266 * page cache.
4267 */
4268 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
4269 first_block_offset = round_up(offset, sb->s_blocksize);
4270 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4271
a87dd18c 4272 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4273 if (last_block_offset > first_block_offset) {
4274 ret = ext4_update_disksize_before_punch(inode, offset, length);
4275 if (ret)
4276 goto out_dio;
a87dd18c
LC
4277 truncate_pagecache_range(inode, first_block_offset,
4278 last_block_offset);
01127848 4279 }
26a4c0c6
TT
4280
4281 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4282 credits = ext4_writepage_trans_blocks(inode);
4283 else
4284 credits = ext4_blocks_for_truncate(inode);
4285 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4286 if (IS_ERR(handle)) {
4287 ret = PTR_ERR(handle);
4288 ext4_std_error(sb, ret);
4289 goto out_dio;
4290 }
4291
a87dd18c
LC
4292 ret = ext4_zero_partial_blocks(handle, inode, offset,
4293 length);
4294 if (ret)
4295 goto out_stop;
26a4c0c6
TT
4296
4297 first_block = (offset + sb->s_blocksize - 1) >>
4298 EXT4_BLOCK_SIZE_BITS(sb);
4299 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4300
eee597ac
LC
4301 /* If there are blocks to remove, do it */
4302 if (stop_block > first_block) {
26a4c0c6 4303
eee597ac
LC
4304 down_write(&EXT4_I(inode)->i_data_sem);
4305 ext4_discard_preallocations(inode);
26a4c0c6 4306
eee597ac
LC
4307 ret = ext4_es_remove_extent(inode, first_block,
4308 stop_block - first_block);
4309 if (ret) {
4310 up_write(&EXT4_I(inode)->i_data_sem);
4311 goto out_stop;
4312 }
26a4c0c6 4313
eee597ac
LC
4314 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4315 ret = ext4_ext_remove_space(inode, first_block,
4316 stop_block - 1);
4317 else
4318 ret = ext4_ind_remove_space(handle, inode, first_block,
4319 stop_block);
26a4c0c6 4320
eee597ac
LC
4321 up_write(&EXT4_I(inode)->i_data_sem);
4322 }
26a4c0c6
TT
4323 if (IS_SYNC(inode))
4324 ext4_handle_sync(handle);
e251f9bc 4325
eeca7ea1 4326 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6 4327 ext4_mark_inode_dirty(handle, inode);
67a7d5f5
JK
4328 if (ret >= 0)
4329 ext4_update_inode_fsync_trans(handle, inode, 1);
26a4c0c6
TT
4330out_stop:
4331 ext4_journal_stop(handle);
4332out_dio:
ea3d7209 4333 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6 4334out_mutex:
5955102c 4335 inode_unlock(inode);
26a4c0c6 4336 return ret;
a4bb6b64
AH
4337}
4338
a361293f
JK
4339int ext4_inode_attach_jinode(struct inode *inode)
4340{
4341 struct ext4_inode_info *ei = EXT4_I(inode);
4342 struct jbd2_inode *jinode;
4343
4344 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4345 return 0;
4346
4347 jinode = jbd2_alloc_inode(GFP_KERNEL);
4348 spin_lock(&inode->i_lock);
4349 if (!ei->jinode) {
4350 if (!jinode) {
4351 spin_unlock(&inode->i_lock);
4352 return -ENOMEM;
4353 }
4354 ei->jinode = jinode;
4355 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4356 jinode = NULL;
4357 }
4358 spin_unlock(&inode->i_lock);
4359 if (unlikely(jinode != NULL))
4360 jbd2_free_inode(jinode);
4361 return 0;
4362}
4363
ac27a0ec 4364/*
617ba13b 4365 * ext4_truncate()
ac27a0ec 4366 *
617ba13b
MC
4367 * We block out ext4_get_block() block instantiations across the entire
4368 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4369 * simultaneously on behalf of the same inode.
4370 *
42b2aa86 4371 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4372 * is one core, guiding principle: the file's tree must always be consistent on
4373 * disk. We must be able to restart the truncate after a crash.
4374 *
4375 * The file's tree may be transiently inconsistent in memory (although it
4376 * probably isn't), but whenever we close off and commit a journal transaction,
4377 * the contents of (the filesystem + the journal) must be consistent and
4378 * restartable. It's pretty simple, really: bottom up, right to left (although
4379 * left-to-right works OK too).
4380 *
4381 * Note that at recovery time, journal replay occurs *before* the restart of
4382 * truncate against the orphan inode list.
4383 *
4384 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4385 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4386 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4387 * ext4_truncate() to have another go. So there will be instantiated blocks
4388 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4389 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4390 * ext4_truncate() run will find them and release them.
ac27a0ec 4391 */
2c98eb5e 4392int ext4_truncate(struct inode *inode)
ac27a0ec 4393{
819c4920
TT
4394 struct ext4_inode_info *ei = EXT4_I(inode);
4395 unsigned int credits;
2c98eb5e 4396 int err = 0;
819c4920
TT
4397 handle_t *handle;
4398 struct address_space *mapping = inode->i_mapping;
819c4920 4399
19b5ef61
TT
4400 /*
4401 * There is a possibility that we're either freeing the inode
e04027e8 4402 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4403 * have i_mutex locked because it's not necessary.
4404 */
4405 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4406 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4407 trace_ext4_truncate_enter(inode);
4408
91ef4caf 4409 if (!ext4_can_truncate(inode))
2c98eb5e 4410 return 0;
ac27a0ec 4411
12e9b892 4412 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4413
5534fb5b 4414 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4415 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4416
aef1c851
TM
4417 if (ext4_has_inline_data(inode)) {
4418 int has_inline = 1;
4419
01daf945
TT
4420 err = ext4_inline_data_truncate(inode, &has_inline);
4421 if (err)
4422 return err;
aef1c851 4423 if (has_inline)
2c98eb5e 4424 return 0;
aef1c851
TM
4425 }
4426
a361293f
JK
4427 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4428 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4429 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4430 return 0;
a361293f
JK
4431 }
4432
819c4920
TT
4433 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4434 credits = ext4_writepage_trans_blocks(inode);
4435 else
4436 credits = ext4_blocks_for_truncate(inode);
4437
4438 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4439 if (IS_ERR(handle))
4440 return PTR_ERR(handle);
819c4920 4441
eb3544c6
LC
4442 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4443 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4444
4445 /*
4446 * We add the inode to the orphan list, so that if this
4447 * truncate spans multiple transactions, and we crash, we will
4448 * resume the truncate when the filesystem recovers. It also
4449 * marks the inode dirty, to catch the new size.
4450 *
4451 * Implication: the file must always be in a sane, consistent
4452 * truncatable state while each transaction commits.
4453 */
2c98eb5e
TT
4454 err = ext4_orphan_add(handle, inode);
4455 if (err)
819c4920
TT
4456 goto out_stop;
4457
4458 down_write(&EXT4_I(inode)->i_data_sem);
4459
4460 ext4_discard_preallocations(inode);
4461
ff9893dc 4462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4463 err = ext4_ext_truncate(handle, inode);
ff9893dc 4464 else
819c4920
TT
4465 ext4_ind_truncate(handle, inode);
4466
4467 up_write(&ei->i_data_sem);
d0abb36d
TT
4468 if (err)
4469 goto out_stop;
819c4920
TT
4470
4471 if (IS_SYNC(inode))
4472 ext4_handle_sync(handle);
4473
4474out_stop:
4475 /*
4476 * If this was a simple ftruncate() and the file will remain alive,
4477 * then we need to clear up the orphan record which we created above.
4478 * However, if this was a real unlink then we were called by
58d86a50 4479 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4480 * orphan info for us.
4481 */
4482 if (inode->i_nlink)
4483 ext4_orphan_del(handle, inode);
4484
eeca7ea1 4485 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4486 ext4_mark_inode_dirty(handle, inode);
4487 ext4_journal_stop(handle);
ac27a0ec 4488
0562e0ba 4489 trace_ext4_truncate_exit(inode);
2c98eb5e 4490 return err;
ac27a0ec
DK
4491}
4492
ac27a0ec 4493/*
617ba13b 4494 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4495 * underlying buffer_head on success. If 'in_mem' is true, we have all
4496 * data in memory that is needed to recreate the on-disk version of this
4497 * inode.
4498 */
617ba13b
MC
4499static int __ext4_get_inode_loc(struct inode *inode,
4500 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4501{
240799cd
TT
4502 struct ext4_group_desc *gdp;
4503 struct buffer_head *bh;
4504 struct super_block *sb = inode->i_sb;
4505 ext4_fsblk_t block;
4506 int inodes_per_block, inode_offset;
4507
3a06d778 4508 iloc->bh = NULL;
c37e9e01
TT
4509 if (inode->i_ino < EXT4_ROOT_INO ||
4510 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
6a797d27 4511 return -EFSCORRUPTED;
ac27a0ec 4512
240799cd
TT
4513 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4514 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4515 if (!gdp)
ac27a0ec
DK
4516 return -EIO;
4517
240799cd
TT
4518 /*
4519 * Figure out the offset within the block group inode table
4520 */
00d09882 4521 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4522 inode_offset = ((inode->i_ino - 1) %
4523 EXT4_INODES_PER_GROUP(sb));
4524 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4525 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4526
4527 bh = sb_getblk(sb, block);
aebf0243 4528 if (unlikely(!bh))
860d21e2 4529 return -ENOMEM;
ac27a0ec
DK
4530 if (!buffer_uptodate(bh)) {
4531 lock_buffer(bh);
9c83a923
HK
4532
4533 /*
4534 * If the buffer has the write error flag, we have failed
4535 * to write out another inode in the same block. In this
4536 * case, we don't have to read the block because we may
4537 * read the old inode data successfully.
4538 */
4539 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4540 set_buffer_uptodate(bh);
4541
ac27a0ec
DK
4542 if (buffer_uptodate(bh)) {
4543 /* someone brought it uptodate while we waited */
4544 unlock_buffer(bh);
4545 goto has_buffer;
4546 }
4547
4548 /*
4549 * If we have all information of the inode in memory and this
4550 * is the only valid inode in the block, we need not read the
4551 * block.
4552 */
4553 if (in_mem) {
4554 struct buffer_head *bitmap_bh;
240799cd 4555 int i, start;
ac27a0ec 4556
240799cd 4557 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4558
240799cd
TT
4559 /* Is the inode bitmap in cache? */
4560 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4561 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4562 goto make_io;
4563
4564 /*
4565 * If the inode bitmap isn't in cache then the
4566 * optimisation may end up performing two reads instead
4567 * of one, so skip it.
4568 */
4569 if (!buffer_uptodate(bitmap_bh)) {
4570 brelse(bitmap_bh);
4571 goto make_io;
4572 }
240799cd 4573 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4574 if (i == inode_offset)
4575 continue;
617ba13b 4576 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4577 break;
4578 }
4579 brelse(bitmap_bh);
240799cd 4580 if (i == start + inodes_per_block) {
ac27a0ec
DK
4581 /* all other inodes are free, so skip I/O */
4582 memset(bh->b_data, 0, bh->b_size);
4583 set_buffer_uptodate(bh);
4584 unlock_buffer(bh);
4585 goto has_buffer;
4586 }
4587 }
4588
4589make_io:
240799cd
TT
4590 /*
4591 * If we need to do any I/O, try to pre-readahead extra
4592 * blocks from the inode table.
4593 */
4594 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4595 ext4_fsblk_t b, end, table;
4596 unsigned num;
0d606e2c 4597 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4598
4599 table = ext4_inode_table(sb, gdp);
b713a5ec 4600 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4601 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4602 if (table > b)
4603 b = table;
0d606e2c 4604 end = b + ra_blks;
240799cd 4605 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4606 if (ext4_has_group_desc_csum(sb))
560671a0 4607 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4608 table += num / inodes_per_block;
4609 if (end > table)
4610 end = table;
4611 while (b <= end)
4612 sb_breadahead(sb, b++);
4613 }
4614
ac27a0ec
DK
4615 /*
4616 * There are other valid inodes in the buffer, this inode
4617 * has in-inode xattrs, or we don't have this inode in memory.
4618 * Read the block from disk.
4619 */
0562e0ba 4620 trace_ext4_load_inode(inode);
ac27a0ec
DK
4621 get_bh(bh);
4622 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4623 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4624 wait_on_buffer(bh);
4625 if (!buffer_uptodate(bh)) {
c398eda0
TT
4626 EXT4_ERROR_INODE_BLOCK(inode, block,
4627 "unable to read itable block");
ac27a0ec
DK
4628 brelse(bh);
4629 return -EIO;
4630 }
4631 }
4632has_buffer:
4633 iloc->bh = bh;
4634 return 0;
4635}
4636
617ba13b 4637int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4638{
4639 /* We have all inode data except xattrs in memory here. */
617ba13b 4640 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4641 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4642}
4643
6642586b
RZ
4644static bool ext4_should_use_dax(struct inode *inode)
4645{
4646 if (!test_opt(inode->i_sb, DAX))
4647 return false;
4648 if (!S_ISREG(inode->i_mode))
4649 return false;
4650 if (ext4_should_journal_data(inode))
4651 return false;
4652 if (ext4_has_inline_data(inode))
4653 return false;
4654 if (ext4_encrypted_inode(inode))
4655 return false;
4656 return true;
4657}
4658
617ba13b 4659void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4660{
617ba13b 4661 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4662 unsigned int new_fl = 0;
ac27a0ec 4663
617ba13b 4664 if (flags & EXT4_SYNC_FL)
00a1a053 4665 new_fl |= S_SYNC;
617ba13b 4666 if (flags & EXT4_APPEND_FL)
00a1a053 4667 new_fl |= S_APPEND;
617ba13b 4668 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4669 new_fl |= S_IMMUTABLE;
617ba13b 4670 if (flags & EXT4_NOATIME_FL)
00a1a053 4671 new_fl |= S_NOATIME;
617ba13b 4672 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4673 new_fl |= S_DIRSYNC;
6642586b 4674 if (ext4_should_use_dax(inode))
923ae0ff 4675 new_fl |= S_DAX;
2ee6a576
EB
4676 if (flags & EXT4_ENCRYPT_FL)
4677 new_fl |= S_ENCRYPTED;
5f16f322 4678 inode_set_flags(inode, new_fl,
2ee6a576
EB
4679 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4680 S_ENCRYPTED);
ac27a0ec
DK
4681}
4682
0fc1b451 4683static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4684 struct ext4_inode_info *ei)
0fc1b451
AK
4685{
4686 blkcnt_t i_blocks ;
8180a562
AK
4687 struct inode *inode = &(ei->vfs_inode);
4688 struct super_block *sb = inode->i_sb;
0fc1b451 4689
e2b911c5 4690 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4691 /* we are using combined 48 bit field */
4692 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4693 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4694 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4695 /* i_blocks represent file system block size */
4696 return i_blocks << (inode->i_blkbits - 9);
4697 } else {
4698 return i_blocks;
4699 }
0fc1b451
AK
4700 } else {
4701 return le32_to_cpu(raw_inode->i_blocks_lo);
4702 }
4703}
ff9ddf7e 4704
eb9b5f01 4705static inline int ext4_iget_extra_inode(struct inode *inode,
152a7b0a
TM
4706 struct ext4_inode *raw_inode,
4707 struct ext4_inode_info *ei)
4708{
4709 __le32 *magic = (void *)raw_inode +
4710 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
eb9b5f01 4711
290ab230
EB
4712 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4713 EXT4_INODE_SIZE(inode->i_sb) &&
4714 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4715 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
eb9b5f01 4716 return ext4_find_inline_data_nolock(inode);
f19d5870
TM
4717 } else
4718 EXT4_I(inode)->i_inline_off = 0;
eb9b5f01 4719 return 0;
152a7b0a
TM
4720}
4721
040cb378
LX
4722int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4723{
0b7b7779 4724 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4725 return -EOPNOTSUPP;
4726 *projid = EXT4_I(inode)->i_projid;
4727 return 0;
4728}
4729
e254d1af
EG
4730/*
4731 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4732 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4733 * set.
4734 */
4735static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4736{
4737 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4738 inode_set_iversion_raw(inode, val);
4739 else
4740 inode_set_iversion_queried(inode, val);
4741}
4742static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4743{
4744 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4745 return inode_peek_iversion_raw(inode);
4746 else
4747 return inode_peek_iversion(inode);
4748}
4749
1d1fe1ee 4750struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4751{
617ba13b
MC
4752 struct ext4_iloc iloc;
4753 struct ext4_inode *raw_inode;
1d1fe1ee 4754 struct ext4_inode_info *ei;
1d1fe1ee 4755 struct inode *inode;
b436b9be 4756 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4757 long ret;
7e6e1ef4 4758 loff_t size;
ac27a0ec 4759 int block;
08cefc7a
EB
4760 uid_t i_uid;
4761 gid_t i_gid;
040cb378 4762 projid_t i_projid;
ac27a0ec 4763
1d1fe1ee
DH
4764 inode = iget_locked(sb, ino);
4765 if (!inode)
4766 return ERR_PTR(-ENOMEM);
4767 if (!(inode->i_state & I_NEW))
4768 return inode;
4769
4770 ei = EXT4_I(inode);
7dc57615 4771 iloc.bh = NULL;
ac27a0ec 4772
1d1fe1ee
DH
4773 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4774 if (ret < 0)
ac27a0ec 4775 goto bad_inode;
617ba13b 4776 raw_inode = ext4_raw_inode(&iloc);
814525f4 4777
8e4b5eae
TT
4778 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4779 EXT4_ERROR_INODE(inode, "root inode unallocated");
4780 ret = -EFSCORRUPTED;
4781 goto bad_inode;
4782 }
4783
814525f4
DW
4784 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4785 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4786 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4787 EXT4_INODE_SIZE(inode->i_sb) ||
4788 (ei->i_extra_isize & 3)) {
4789 EXT4_ERROR_INODE(inode,
4790 "bad extra_isize %u (inode size %u)",
4791 ei->i_extra_isize,
4792 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4793 ret = -EFSCORRUPTED;
814525f4
DW
4794 goto bad_inode;
4795 }
4796 } else
4797 ei->i_extra_isize = 0;
4798
4799 /* Precompute checksum seed for inode metadata */
9aa5d32b 4800 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4801 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4802 __u32 csum;
4803 __le32 inum = cpu_to_le32(inode->i_ino);
4804 __le32 gen = raw_inode->i_generation;
4805 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4806 sizeof(inum));
4807 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4808 sizeof(gen));
4809 }
4810
4811 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4812 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4813 ret = -EFSBADCRC;
814525f4
DW
4814 goto bad_inode;
4815 }
4816
ac27a0ec 4817 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4818 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4819 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4820 if (ext4_has_feature_project(sb) &&
040cb378
LX
4821 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4822 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4823 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4824 else
4825 i_projid = EXT4_DEF_PROJID;
4826
af5bc92d 4827 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4828 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4829 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4830 }
08cefc7a
EB
4831 i_uid_write(inode, i_uid);
4832 i_gid_write(inode, i_gid);
040cb378 4833 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4834 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4835
353eb83c 4836 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4837 ei->i_inline_off = 0;
ac27a0ec
DK
4838 ei->i_dir_start_lookup = 0;
4839 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4840 /* We now have enough fields to check if the inode was active or not.
4841 * This is needed because nfsd might try to access dead inodes
4842 * the test is that same one that e2fsck uses
4843 * NeilBrown 1999oct15
4844 */
4845 if (inode->i_nlink == 0) {
393d1d1d
DTB
4846 if ((inode->i_mode == 0 ||
4847 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4848 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4849 /* this inode is deleted */
1d1fe1ee 4850 ret = -ESTALE;
ac27a0ec
DK
4851 goto bad_inode;
4852 }
4853 /* The only unlinked inodes we let through here have
4854 * valid i_mode and are being read by the orphan
4855 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4856 * the process of deleting those.
4857 * OR it is the EXT4_BOOT_LOADER_INO which is
4858 * not initialized on a new filesystem. */
ac27a0ec 4859 }
ac27a0ec 4860 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4861 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4862 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4863 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4864 ei->i_file_acl |=
4865 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
e08ac99f 4866 inode->i_size = ext4_isize(sb, raw_inode);
7e6e1ef4
DW
4867 if ((size = i_size_read(inode)) < 0) {
4868 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4869 ret = -EFSCORRUPTED;
4870 goto bad_inode;
4871 }
ac27a0ec 4872 ei->i_disksize = inode->i_size;
a9e7f447
DM
4873#ifdef CONFIG_QUOTA
4874 ei->i_reserved_quota = 0;
4875#endif
ac27a0ec
DK
4876 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4877 ei->i_block_group = iloc.block_group;
a4912123 4878 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4879 /*
4880 * NOTE! The in-memory inode i_data array is in little-endian order
4881 * even on big-endian machines: we do NOT byteswap the block numbers!
4882 */
617ba13b 4883 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4884 ei->i_data[block] = raw_inode->i_block[block];
4885 INIT_LIST_HEAD(&ei->i_orphan);
4886
b436b9be
JK
4887 /*
4888 * Set transaction id's of transactions that have to be committed
4889 * to finish f[data]sync. We set them to currently running transaction
4890 * as we cannot be sure that the inode or some of its metadata isn't
4891 * part of the transaction - the inode could have been reclaimed and
4892 * now it is reread from disk.
4893 */
4894 if (journal) {
4895 transaction_t *transaction;
4896 tid_t tid;
4897
a931da6a 4898 read_lock(&journal->j_state_lock);
b436b9be
JK
4899 if (journal->j_running_transaction)
4900 transaction = journal->j_running_transaction;
4901 else
4902 transaction = journal->j_committing_transaction;
4903 if (transaction)
4904 tid = transaction->t_tid;
4905 else
4906 tid = journal->j_commit_sequence;
a931da6a 4907 read_unlock(&journal->j_state_lock);
b436b9be
JK
4908 ei->i_sync_tid = tid;
4909 ei->i_datasync_tid = tid;
4910 }
4911
0040d987 4912 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4913 if (ei->i_extra_isize == 0) {
4914 /* The extra space is currently unused. Use it. */
2dc8d9e1 4915 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4916 ei->i_extra_isize = sizeof(struct ext4_inode) -
4917 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4918 } else {
eb9b5f01
TT
4919 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4920 if (ret)
4921 goto bad_inode;
ac27a0ec 4922 }
814525f4 4923 }
ac27a0ec 4924
ef7f3835
KS
4925 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4926 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4927 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4928 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4929
ed3654eb 4930 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
ee73f9a5
JL
4931 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4932
c4f65706
TT
4933 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4934 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
ee73f9a5 4935 ivers |=
c4f65706
TT
4936 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4937 }
e254d1af 4938 ext4_inode_set_iversion_queried(inode, ivers);
25ec56b5
JNC
4939 }
4940
c4b5a614 4941 ret = 0;
485c26ec 4942 if (ei->i_file_acl &&
1032988c 4943 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4944 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4945 ei->i_file_acl);
6a797d27 4946 ret = -EFSCORRUPTED;
485c26ec 4947 goto bad_inode;
f19d5870
TM
4948 } else if (!ext4_has_inline_data(inode)) {
4949 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4950 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4951 (S_ISLNK(inode->i_mode) &&
4952 !ext4_inode_is_fast_symlink(inode))))
4953 /* Validate extent which is part of inode */
4954 ret = ext4_ext_check_inode(inode);
4955 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4956 (S_ISLNK(inode->i_mode) &&
4957 !ext4_inode_is_fast_symlink(inode))) {
4958 /* Validate block references which are part of inode */
4959 ret = ext4_ind_check_inode(inode);
4960 }
fe2c8191 4961 }
567f3e9a 4962 if (ret)
de9a55b8 4963 goto bad_inode;
7a262f7c 4964
ac27a0ec 4965 if (S_ISREG(inode->i_mode)) {
617ba13b 4966 inode->i_op = &ext4_file_inode_operations;
be64f884 4967 inode->i_fop = &ext4_file_operations;
617ba13b 4968 ext4_set_aops(inode);
ac27a0ec 4969 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4970 inode->i_op = &ext4_dir_inode_operations;
4971 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4972 } else if (S_ISLNK(inode->i_mode)) {
6390d33b
LR
4973 /* VFS does not allow setting these so must be corruption */
4974 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4975 EXT4_ERROR_INODE(inode,
4976 "immutable or append flags not allowed on symlinks");
4977 ret = -EFSCORRUPTED;
4978 goto bad_inode;
4979 }
a7a67e8a
AV
4980 if (ext4_encrypted_inode(inode)) {
4981 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4982 ext4_set_aops(inode);
4983 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4984 inode->i_link = (char *)ei->i_data;
617ba13b 4985 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4986 nd_terminate_link(ei->i_data, inode->i_size,
4987 sizeof(ei->i_data) - 1);
4988 } else {
617ba13b
MC
4989 inode->i_op = &ext4_symlink_inode_operations;
4990 ext4_set_aops(inode);
ac27a0ec 4991 }
21fc61c7 4992 inode_nohighmem(inode);
563bdd61
TT
4993 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4994 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4995 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4996 if (raw_inode->i_block[0])
4997 init_special_inode(inode, inode->i_mode,
4998 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4999 else
5000 init_special_inode(inode, inode->i_mode,
5001 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
5002 } else if (ino == EXT4_BOOT_LOADER_INO) {
5003 make_bad_inode(inode);
563bdd61 5004 } else {
6a797d27 5005 ret = -EFSCORRUPTED;
24676da4 5006 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5007 goto bad_inode;
ac27a0ec 5008 }
af5bc92d 5009 brelse(iloc.bh);
617ba13b 5010 ext4_set_inode_flags(inode);
dec214d0 5011
1d1fe1ee
DH
5012 unlock_new_inode(inode);
5013 return inode;
ac27a0ec
DK
5014
5015bad_inode:
567f3e9a 5016 brelse(iloc.bh);
1d1fe1ee
DH
5017 iget_failed(inode);
5018 return ERR_PTR(ret);
ac27a0ec
DK
5019}
5020
f4bb2981
TT
5021struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
5022{
5023 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 5024 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
5025 return ext4_iget(sb, ino);
5026}
5027
0fc1b451
AK
5028static int ext4_inode_blocks_set(handle_t *handle,
5029 struct ext4_inode *raw_inode,
5030 struct ext4_inode_info *ei)
5031{
5032 struct inode *inode = &(ei->vfs_inode);
5033 u64 i_blocks = inode->i_blocks;
5034 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5035
5036 if (i_blocks <= ~0U) {
5037 /*
4907cb7b 5038 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
5039 * as multiple of 512 bytes
5040 */
8180a562 5041 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5042 raw_inode->i_blocks_high = 0;
84a8dce2 5043 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5044 return 0;
5045 }
e2b911c5 5046 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
5047 return -EFBIG;
5048
5049 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5050 /*
5051 * i_blocks can be represented in a 48 bit variable
5052 * as multiple of 512 bytes
5053 */
8180a562 5054 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5055 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5056 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5057 } else {
84a8dce2 5058 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5059 /* i_block is stored in file system block size */
5060 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5061 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5062 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5063 }
f287a1a5 5064 return 0;
0fc1b451
AK
5065}
5066
a26f4992
TT
5067struct other_inode {
5068 unsigned long orig_ino;
5069 struct ext4_inode *raw_inode;
5070};
5071
5072static int other_inode_match(struct inode * inode, unsigned long ino,
5073 void *data)
5074{
5075 struct other_inode *oi = (struct other_inode *) data;
5076
5077 if ((inode->i_ino != ino) ||
5078 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
0e11f644 5079 I_DIRTY_INODE)) ||
a26f4992
TT
5080 ((inode->i_state & I_DIRTY_TIME) == 0))
5081 return 0;
5082 spin_lock(&inode->i_lock);
5083 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
0e11f644 5084 I_DIRTY_INODE)) == 0) &&
a26f4992
TT
5085 (inode->i_state & I_DIRTY_TIME)) {
5086 struct ext4_inode_info *ei = EXT4_I(inode);
5087
5088 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5089 spin_unlock(&inode->i_lock);
5090
5091 spin_lock(&ei->i_raw_lock);
5092 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5093 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5094 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5095 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5096 spin_unlock(&ei->i_raw_lock);
5097 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5098 return -1;
5099 }
5100 spin_unlock(&inode->i_lock);
5101 return -1;
5102}
5103
5104/*
5105 * Opportunistically update the other time fields for other inodes in
5106 * the same inode table block.
5107 */
5108static void ext4_update_other_inodes_time(struct super_block *sb,
5109 unsigned long orig_ino, char *buf)
5110{
5111 struct other_inode oi;
5112 unsigned long ino;
5113 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5114 int inode_size = EXT4_INODE_SIZE(sb);
5115
5116 oi.orig_ino = orig_ino;
0f0ff9a9
TT
5117 /*
5118 * Calculate the first inode in the inode table block. Inode
5119 * numbers are one-based. That is, the first inode in a block
5120 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5121 */
5122 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
5123 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5124 if (ino == orig_ino)
5125 continue;
5126 oi.raw_inode = (struct ext4_inode *) buf;
5127 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5128 }
5129}
5130
ac27a0ec
DK
5131/*
5132 * Post the struct inode info into an on-disk inode location in the
5133 * buffer-cache. This gobbles the caller's reference to the
5134 * buffer_head in the inode location struct.
5135 *
5136 * The caller must have write access to iloc->bh.
5137 */
617ba13b 5138static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5139 struct inode *inode,
830156c7 5140 struct ext4_iloc *iloc)
ac27a0ec 5141{
617ba13b
MC
5142 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5143 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 5144 struct buffer_head *bh = iloc->bh;
202ee5df 5145 struct super_block *sb = inode->i_sb;
ac27a0ec 5146 int err = 0, rc, block;
202ee5df 5147 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
5148 uid_t i_uid;
5149 gid_t i_gid;
040cb378 5150 projid_t i_projid;
ac27a0ec 5151
202ee5df
TT
5152 spin_lock(&ei->i_raw_lock);
5153
5154 /* For fields not tracked in the in-memory inode,
ac27a0ec 5155 * initialise them to zero for new inodes. */
19f5fb7a 5156 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5157 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec
DK
5158
5159 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
5160 i_uid = i_uid_read(inode);
5161 i_gid = i_gid_read(inode);
040cb378 5162 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 5163 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
5164 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5165 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
5166/*
5167 * Fix up interoperability with old kernels. Otherwise, old inodes get
5168 * re-used with the upper 16 bits of the uid/gid intact
5169 */
93e3b4e6
DJ
5170 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5171 raw_inode->i_uid_high = 0;
5172 raw_inode->i_gid_high = 0;
5173 } else {
ac27a0ec 5174 raw_inode->i_uid_high =
08cefc7a 5175 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 5176 raw_inode->i_gid_high =
08cefc7a 5177 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
5178 }
5179 } else {
08cefc7a
EB
5180 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5181 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
5182 raw_inode->i_uid_high = 0;
5183 raw_inode->i_gid_high = 0;
5184 }
5185 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5186
5187 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5188 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5189 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5190 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5191
bce92d56
LX
5192 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5193 if (err) {
202ee5df 5194 spin_unlock(&ei->i_raw_lock);
0fc1b451 5195 goto out_brelse;
202ee5df 5196 }
ac27a0ec 5197 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5198 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5199 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5200 raw_inode->i_file_acl_high =
5201 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5202 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
e08ac99f 5203 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
b71fc079
JK
5204 ext4_isize_set(raw_inode, ei->i_disksize);
5205 need_datasync = 1;
5206 }
a48380f7 5207 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5208 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5209 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5210 cpu_to_le32(EXT4_GOOD_OLD_REV))
5211 set_large_file = 1;
ac27a0ec
DK
5212 }
5213 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5214 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5215 if (old_valid_dev(inode->i_rdev)) {
5216 raw_inode->i_block[0] =
5217 cpu_to_le32(old_encode_dev(inode->i_rdev));
5218 raw_inode->i_block[1] = 0;
5219 } else {
5220 raw_inode->i_block[0] = 0;
5221 raw_inode->i_block[1] =
5222 cpu_to_le32(new_encode_dev(inode->i_rdev));
5223 raw_inode->i_block[2] = 0;
5224 }
f19d5870 5225 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5226 for (block = 0; block < EXT4_N_BLOCKS; block++)
5227 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5228 }
ac27a0ec 5229
ed3654eb 5230 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
e254d1af 5231 u64 ivers = ext4_inode_peek_iversion(inode);
ee73f9a5
JL
5232
5233 raw_inode->i_disk_version = cpu_to_le32(ivers);
c4f65706
TT
5234 if (ei->i_extra_isize) {
5235 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5236 raw_inode->i_version_hi =
ee73f9a5 5237 cpu_to_le32(ivers >> 32);
c4f65706
TT
5238 raw_inode->i_extra_isize =
5239 cpu_to_le16(ei->i_extra_isize);
5240 }
25ec56b5 5241 }
040cb378 5242
0b7b7779 5243 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
5244 i_projid != EXT4_DEF_PROJID);
5245
5246 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5247 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5248 raw_inode->i_projid = cpu_to_le32(i_projid);
5249
814525f4 5250 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5251 spin_unlock(&ei->i_raw_lock);
1751e8a6 5252 if (inode->i_sb->s_flags & SB_LAZYTIME)
a26f4992
TT
5253 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5254 bh->b_data);
202ee5df 5255
830156c7 5256 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5257 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5258 if (!err)
5259 err = rc;
19f5fb7a 5260 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5261 if (set_large_file) {
5d601255 5262 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5263 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5264 if (err)
5265 goto out_brelse;
5266 ext4_update_dynamic_rev(sb);
e2b911c5 5267 ext4_set_feature_large_file(sb);
202ee5df
TT
5268 ext4_handle_sync(handle);
5269 err = ext4_handle_dirty_super(handle, sb);
5270 }
b71fc079 5271 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5272out_brelse:
af5bc92d 5273 brelse(bh);
617ba13b 5274 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5275 return err;
5276}
5277
5278/*
617ba13b 5279 * ext4_write_inode()
ac27a0ec
DK
5280 *
5281 * We are called from a few places:
5282 *
87f7e416 5283 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5284 * Here, there will be no transaction running. We wait for any running
4907cb7b 5285 * transaction to commit.
ac27a0ec 5286 *
87f7e416
TT
5287 * - Within flush work (sys_sync(), kupdate and such).
5288 * We wait on commit, if told to.
ac27a0ec 5289 *
87f7e416
TT
5290 * - Within iput_final() -> write_inode_now()
5291 * We wait on commit, if told to.
ac27a0ec
DK
5292 *
5293 * In all cases it is actually safe for us to return without doing anything,
5294 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5295 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5296 * writeback.
ac27a0ec
DK
5297 *
5298 * Note that we are absolutely dependent upon all inode dirtiers doing the
5299 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5300 * which we are interested.
5301 *
5302 * It would be a bug for them to not do this. The code:
5303 *
5304 * mark_inode_dirty(inode)
5305 * stuff();
5306 * inode->i_size = expr;
5307 *
87f7e416
TT
5308 * is in error because write_inode() could occur while `stuff()' is running,
5309 * and the new i_size will be lost. Plus the inode will no longer be on the
5310 * superblock's dirty inode list.
ac27a0ec 5311 */
a9185b41 5312int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5313{
91ac6f43
FM
5314 int err;
5315
87f7e416 5316 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
5317 return 0;
5318
91ac6f43
FM
5319 if (EXT4_SB(inode->i_sb)->s_journal) {
5320 if (ext4_journal_current_handle()) {
5321 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5322 dump_stack();
5323 return -EIO;
5324 }
ac27a0ec 5325
10542c22
JK
5326 /*
5327 * No need to force transaction in WB_SYNC_NONE mode. Also
5328 * ext4_sync_fs() will force the commit after everything is
5329 * written.
5330 */
5331 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5332 return 0;
5333
5334 err = ext4_force_commit(inode->i_sb);
5335 } else {
5336 struct ext4_iloc iloc;
ac27a0ec 5337
8b472d73 5338 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5339 if (err)
5340 return err;
10542c22
JK
5341 /*
5342 * sync(2) will flush the whole buffer cache. No need to do
5343 * it here separately for each inode.
5344 */
5345 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5346 sync_dirty_buffer(iloc.bh);
5347 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5348 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5349 "IO error syncing inode");
830156c7
FM
5350 err = -EIO;
5351 }
fd2dd9fb 5352 brelse(iloc.bh);
91ac6f43
FM
5353 }
5354 return err;
ac27a0ec
DK
5355}
5356
53e87268
JK
5357/*
5358 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5359 * buffers that are attached to a page stradding i_size and are undergoing
5360 * commit. In that case we have to wait for commit to finish and try again.
5361 */
5362static void ext4_wait_for_tail_page_commit(struct inode *inode)
5363{
5364 struct page *page;
5365 unsigned offset;
5366 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5367 tid_t commit_tid = 0;
5368 int ret;
5369
09cbfeaf 5370 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5371 /*
5372 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5373 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5374 * blocksize case
5375 */
93407472 5376 if (offset > PAGE_SIZE - i_blocksize(inode))
53e87268
JK
5377 return;
5378 while (1) {
5379 page = find_lock_page(inode->i_mapping,
09cbfeaf 5380 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5381 if (!page)
5382 return;
ca99fdd2 5383 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5384 PAGE_SIZE - offset);
53e87268 5385 unlock_page(page);
09cbfeaf 5386 put_page(page);
53e87268
JK
5387 if (ret != -EBUSY)
5388 return;
5389 commit_tid = 0;
5390 read_lock(&journal->j_state_lock);
5391 if (journal->j_committing_transaction)
5392 commit_tid = journal->j_committing_transaction->t_tid;
5393 read_unlock(&journal->j_state_lock);
5394 if (commit_tid)
5395 jbd2_log_wait_commit(journal, commit_tid);
5396 }
5397}
5398
ac27a0ec 5399/*
617ba13b 5400 * ext4_setattr()
ac27a0ec
DK
5401 *
5402 * Called from notify_change.
5403 *
5404 * We want to trap VFS attempts to truncate the file as soon as
5405 * possible. In particular, we want to make sure that when the VFS
5406 * shrinks i_size, we put the inode on the orphan list and modify
5407 * i_disksize immediately, so that during the subsequent flushing of
5408 * dirty pages and freeing of disk blocks, we can guarantee that any
5409 * commit will leave the blocks being flushed in an unused state on
5410 * disk. (On recovery, the inode will get truncated and the blocks will
5411 * be freed, so we have a strong guarantee that no future commit will
5412 * leave these blocks visible to the user.)
5413 *
678aaf48
JK
5414 * Another thing we have to assure is that if we are in ordered mode
5415 * and inode is still attached to the committing transaction, we must
5416 * we start writeout of all the dirty pages which are being truncated.
5417 * This way we are sure that all the data written in the previous
5418 * transaction are already on disk (truncate waits for pages under
5419 * writeback).
5420 *
5421 * Called with inode->i_mutex down.
ac27a0ec 5422 */
617ba13b 5423int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5424{
2b0143b5 5425 struct inode *inode = d_inode(dentry);
ac27a0ec 5426 int error, rc = 0;
3d287de3 5427 int orphan = 0;
ac27a0ec
DK
5428 const unsigned int ia_valid = attr->ia_valid;
5429
0db1ff22
TT
5430 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5431 return -EIO;
5432
31051c85 5433 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5434 if (error)
5435 return error;
5436
3ce2b8dd
EB
5437 error = fscrypt_prepare_setattr(dentry, attr);
5438 if (error)
5439 return error;
5440
a7cdadee
JK
5441 if (is_quota_modification(inode, attr)) {
5442 error = dquot_initialize(inode);
5443 if (error)
5444 return error;
5445 }
08cefc7a
EB
5446 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5447 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5448 handle_t *handle;
5449
5450 /* (user+group)*(old+new) structure, inode write (sb,
5451 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5452 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5453 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5454 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5455 if (IS_ERR(handle)) {
5456 error = PTR_ERR(handle);
5457 goto err_out;
5458 }
7a9ca53a
TE
5459
5460 /* dquot_transfer() calls back ext4_get_inode_usage() which
5461 * counts xattr inode references.
5462 */
5463 down_read(&EXT4_I(inode)->xattr_sem);
b43fa828 5464 error = dquot_transfer(inode, attr);
7a9ca53a
TE
5465 up_read(&EXT4_I(inode)->xattr_sem);
5466
ac27a0ec 5467 if (error) {
617ba13b 5468 ext4_journal_stop(handle);
ac27a0ec
DK
5469 return error;
5470 }
5471 /* Update corresponding info in inode so that everything is in
5472 * one transaction */
5473 if (attr->ia_valid & ATTR_UID)
5474 inode->i_uid = attr->ia_uid;
5475 if (attr->ia_valid & ATTR_GID)
5476 inode->i_gid = attr->ia_gid;
617ba13b
MC
5477 error = ext4_mark_inode_dirty(handle, inode);
5478 ext4_journal_stop(handle);
ac27a0ec
DK
5479 }
5480
3da40c7b 5481 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5482 handle_t *handle;
3da40c7b
JB
5483 loff_t oldsize = inode->i_size;
5484 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5485
12e9b892 5486 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5488
0c095c7f
TT
5489 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5490 return -EFBIG;
e2b46574 5491 }
3da40c7b
JB
5492 if (!S_ISREG(inode->i_mode))
5493 return -EINVAL;
dff6efc3
CH
5494
5495 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5496 inode_inc_iversion(inode);
5497
3da40c7b 5498 if (ext4_should_order_data(inode) &&
5208386c 5499 (attr->ia_size < inode->i_size)) {
3da40c7b 5500 error = ext4_begin_ordered_truncate(inode,
678aaf48 5501 attr->ia_size);
3da40c7b
JB
5502 if (error)
5503 goto err_out;
5504 }
5505 if (attr->ia_size != inode->i_size) {
5208386c
JK
5506 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5507 if (IS_ERR(handle)) {
5508 error = PTR_ERR(handle);
5509 goto err_out;
5510 }
3da40c7b 5511 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5512 error = ext4_orphan_add(handle, inode);
5513 orphan = 1;
5514 }
911af577
EG
5515 /*
5516 * Update c/mtime on truncate up, ext4_truncate() will
5517 * update c/mtime in shrink case below
5518 */
5519 if (!shrink) {
eeca7ea1 5520 inode->i_mtime = current_time(inode);
911af577
EG
5521 inode->i_ctime = inode->i_mtime;
5522 }
90e775b7 5523 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5524 EXT4_I(inode)->i_disksize = attr->ia_size;
5525 rc = ext4_mark_inode_dirty(handle, inode);
5526 if (!error)
5527 error = rc;
90e775b7
JK
5528 /*
5529 * We have to update i_size under i_data_sem together
5530 * with i_disksize to avoid races with writeback code
5531 * running ext4_wb_update_i_disksize().
5532 */
5533 if (!error)
5534 i_size_write(inode, attr->ia_size);
5535 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5536 ext4_journal_stop(handle);
5537 if (error) {
3da40c7b
JB
5538 if (orphan)
5539 ext4_orphan_del(NULL, inode);
678aaf48
JK
5540 goto err_out;
5541 }
d6320cbf 5542 }
3da40c7b
JB
5543 if (!shrink)
5544 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5545
5208386c
JK
5546 /*
5547 * Blocks are going to be removed from the inode. Wait
5548 * for dio in flight. Temporarily disable
5549 * dioread_nolock to prevent livelock.
5550 */
5551 if (orphan) {
5552 if (!ext4_should_journal_data(inode)) {
5208386c 5553 inode_dio_wait(inode);
5208386c
JK
5554 } else
5555 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5556 }
ea3d7209 5557 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5558 /*
5559 * Truncate pagecache after we've waited for commit
5560 * in data=journal mode to make pages freeable.
5561 */
923ae0ff 5562 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5563 if (shrink) {
5564 rc = ext4_truncate(inode);
5565 if (rc)
5566 error = rc;
5567 }
ea3d7209 5568 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5569 }
ac27a0ec 5570
2c98eb5e 5571 if (!error) {
1025774c
CH
5572 setattr_copy(inode, attr);
5573 mark_inode_dirty(inode);
5574 }
5575
5576 /*
5577 * If the call to ext4_truncate failed to get a transaction handle at
5578 * all, we need to clean up the in-core orphan list manually.
5579 */
3d287de3 5580 if (orphan && inode->i_nlink)
617ba13b 5581 ext4_orphan_del(NULL, inode);
ac27a0ec 5582
2c98eb5e 5583 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5584 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5585
5586err_out:
617ba13b 5587 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5588 if (!error)
5589 error = rc;
5590 return error;
5591}
5592
a528d35e
DH
5593int ext4_getattr(const struct path *path, struct kstat *stat,
5594 u32 request_mask, unsigned int query_flags)
3e3398a0 5595{
99652ea5
DH
5596 struct inode *inode = d_inode(path->dentry);
5597 struct ext4_inode *raw_inode;
5598 struct ext4_inode_info *ei = EXT4_I(inode);
5599 unsigned int flags;
5600
5601 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5602 stat->result_mask |= STATX_BTIME;
5603 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5604 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5605 }
5606
5607 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5608 if (flags & EXT4_APPEND_FL)
5609 stat->attributes |= STATX_ATTR_APPEND;
5610 if (flags & EXT4_COMPR_FL)
5611 stat->attributes |= STATX_ATTR_COMPRESSED;
5612 if (flags & EXT4_ENCRYPT_FL)
5613 stat->attributes |= STATX_ATTR_ENCRYPTED;
5614 if (flags & EXT4_IMMUTABLE_FL)
5615 stat->attributes |= STATX_ATTR_IMMUTABLE;
5616 if (flags & EXT4_NODUMP_FL)
5617 stat->attributes |= STATX_ATTR_NODUMP;
3e3398a0 5618
3209f68b
DH
5619 stat->attributes_mask |= (STATX_ATTR_APPEND |
5620 STATX_ATTR_COMPRESSED |
5621 STATX_ATTR_ENCRYPTED |
5622 STATX_ATTR_IMMUTABLE |
5623 STATX_ATTR_NODUMP);
5624
3e3398a0 5625 generic_fillattr(inode, stat);
99652ea5
DH
5626 return 0;
5627}
5628
5629int ext4_file_getattr(const struct path *path, struct kstat *stat,
5630 u32 request_mask, unsigned int query_flags)
5631{
5632 struct inode *inode = d_inode(path->dentry);
5633 u64 delalloc_blocks;
5634
5635 ext4_getattr(path, stat, request_mask, query_flags);
3e3398a0 5636
9206c561
AD
5637 /*
5638 * If there is inline data in the inode, the inode will normally not
5639 * have data blocks allocated (it may have an external xattr block).
5640 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5641 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5642 */
5643 if (unlikely(ext4_has_inline_data(inode)))
5644 stat->blocks += (stat->size + 511) >> 9;
5645
3e3398a0
MC
5646 /*
5647 * We can't update i_blocks if the block allocation is delayed
5648 * otherwise in the case of system crash before the real block
5649 * allocation is done, we will have i_blocks inconsistent with
5650 * on-disk file blocks.
5651 * We always keep i_blocks updated together with real
5652 * allocation. But to not confuse with user, stat
5653 * will return the blocks that include the delayed allocation
5654 * blocks for this file.
5655 */
96607551 5656 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5657 EXT4_I(inode)->i_reserved_data_blocks);
5658 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5659 return 0;
5660}
ac27a0ec 5661
fffb2739
JK
5662static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5663 int pextents)
a02908f1 5664{
12e9b892 5665 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5666 return ext4_ind_trans_blocks(inode, lblocks);
5667 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5668}
ac51d837 5669
ac27a0ec 5670/*
a02908f1
MC
5671 * Account for index blocks, block groups bitmaps and block group
5672 * descriptor blocks if modify datablocks and index blocks
5673 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5674 *
a02908f1 5675 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5676 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5677 * they could still across block group boundary.
ac27a0ec 5678 *
a02908f1
MC
5679 * Also account for superblock, inode, quota and xattr blocks
5680 */
dec214d0 5681static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
fffb2739 5682 int pextents)
a02908f1 5683{
8df9675f
TT
5684 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5685 int gdpblocks;
a02908f1
MC
5686 int idxblocks;
5687 int ret = 0;
5688
5689 /*
fffb2739
JK
5690 * How many index blocks need to touch to map @lblocks logical blocks
5691 * to @pextents physical extents?
a02908f1 5692 */
fffb2739 5693 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5694
5695 ret = idxblocks;
5696
5697 /*
5698 * Now let's see how many group bitmaps and group descriptors need
5699 * to account
5700 */
fffb2739 5701 groups = idxblocks + pextents;
a02908f1 5702 gdpblocks = groups;
8df9675f
TT
5703 if (groups > ngroups)
5704 groups = ngroups;
a02908f1
MC
5705 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5706 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5707
5708 /* bitmaps and block group descriptor blocks */
5709 ret += groups + gdpblocks;
5710
5711 /* Blocks for super block, inode, quota and xattr blocks */
5712 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5713
5714 return ret;
5715}
5716
5717/*
25985edc 5718 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5719 * the modification of a single pages into a single transaction,
5720 * which may include multiple chunks of block allocations.
ac27a0ec 5721 *
525f4ed8 5722 * This could be called via ext4_write_begin()
ac27a0ec 5723 *
525f4ed8 5724 * We need to consider the worse case, when
a02908f1 5725 * one new block per extent.
ac27a0ec 5726 */
a86c6181 5727int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5728{
617ba13b 5729 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5730 int ret;
5731
fffb2739 5732 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5733
a02908f1 5734 /* Account for data blocks for journalled mode */
617ba13b 5735 if (ext4_should_journal_data(inode))
a02908f1 5736 ret += bpp;
ac27a0ec
DK
5737 return ret;
5738}
f3bd1f3f
MC
5739
5740/*
5741 * Calculate the journal credits for a chunk of data modification.
5742 *
5743 * This is called from DIO, fallocate or whoever calling
79e83036 5744 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5745 *
5746 * journal buffers for data blocks are not included here, as DIO
5747 * and fallocate do no need to journal data buffers.
5748 */
5749int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5750{
5751 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5752}
5753
ac27a0ec 5754/*
617ba13b 5755 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5756 * Give this, we know that the caller already has write access to iloc->bh.
5757 */
617ba13b 5758int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5759 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5760{
5761 int err = 0;
5762
0db1ff22
TT
5763 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5764 return -EIO;
5765
c64db50e 5766 if (IS_I_VERSION(inode))
25ec56b5
JNC
5767 inode_inc_iversion(inode);
5768
ac27a0ec
DK
5769 /* the do_update_inode consumes one bh->b_count */
5770 get_bh(iloc->bh);
5771
dab291af 5772 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5773 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5774 put_bh(iloc->bh);
5775 return err;
5776}
5777
5778/*
5779 * On success, We end up with an outstanding reference count against
5780 * iloc->bh. This _must_ be cleaned up later.
5781 */
5782
5783int
617ba13b
MC
5784ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5785 struct ext4_iloc *iloc)
ac27a0ec 5786{
0390131b
FM
5787 int err;
5788
0db1ff22
TT
5789 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5790 return -EIO;
5791
0390131b
FM
5792 err = ext4_get_inode_loc(inode, iloc);
5793 if (!err) {
5794 BUFFER_TRACE(iloc->bh, "get_write_access");
5795 err = ext4_journal_get_write_access(handle, iloc->bh);
5796 if (err) {
5797 brelse(iloc->bh);
5798 iloc->bh = NULL;
ac27a0ec
DK
5799 }
5800 }
617ba13b 5801 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5802 return err;
5803}
5804
c03b45b8
MX
5805static int __ext4_expand_extra_isize(struct inode *inode,
5806 unsigned int new_extra_isize,
5807 struct ext4_iloc *iloc,
5808 handle_t *handle, int *no_expand)
5809{
5810 struct ext4_inode *raw_inode;
5811 struct ext4_xattr_ibody_header *header;
5812 int error;
5813
5814 raw_inode = ext4_raw_inode(iloc);
5815
5816 header = IHDR(inode, raw_inode);
5817
5818 /* No extended attributes present */
5819 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5820 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5821 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5822 EXT4_I(inode)->i_extra_isize, 0,
5823 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5824 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5825 return 0;
5826 }
5827
5828 /* try to expand with EAs present */
5829 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5830 raw_inode, handle);
5831 if (error) {
5832 /*
5833 * Inode size expansion failed; don't try again
5834 */
5835 *no_expand = 1;
5836 }
5837
5838 return error;
5839}
5840
6dd4ee7c
KS
5841/*
5842 * Expand an inode by new_extra_isize bytes.
5843 * Returns 0 on success or negative error number on failure.
5844 */
cf0a5e81
MX
5845static int ext4_try_to_expand_extra_isize(struct inode *inode,
5846 unsigned int new_extra_isize,
5847 struct ext4_iloc iloc,
5848 handle_t *handle)
6dd4ee7c 5849{
3b10fdc6
MX
5850 int no_expand;
5851 int error;
6dd4ee7c 5852
cf0a5e81
MX
5853 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5854 return -EOVERFLOW;
5855
5856 /*
5857 * In nojournal mode, we can immediately attempt to expand
5858 * the inode. When journaled, we first need to obtain extra
5859 * buffer credits since we may write into the EA block
5860 * with this same handle. If journal_extend fails, then it will
5861 * only result in a minor loss of functionality for that inode.
5862 * If this is felt to be critical, then e2fsck should be run to
5863 * force a large enough s_min_extra_isize.
5864 */
5865 if (ext4_handle_valid(handle) &&
5866 jbd2_journal_extend(handle,
5867 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5868 return -ENOSPC;
6dd4ee7c 5869
3b10fdc6 5870 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
cf0a5e81 5871 return -EBUSY;
3b10fdc6 5872
c03b45b8
MX
5873 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5874 handle, &no_expand);
5875 ext4_write_unlock_xattr(inode, &no_expand);
6dd4ee7c 5876
c03b45b8
MX
5877 return error;
5878}
6dd4ee7c 5879
c03b45b8
MX
5880int ext4_expand_extra_isize(struct inode *inode,
5881 unsigned int new_extra_isize,
5882 struct ext4_iloc *iloc)
5883{
5884 handle_t *handle;
5885 int no_expand;
5886 int error, rc;
5887
5888 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5889 brelse(iloc->bh);
5890 return -EOVERFLOW;
6dd4ee7c
KS
5891 }
5892
c03b45b8
MX
5893 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5894 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5895 if (IS_ERR(handle)) {
5896 error = PTR_ERR(handle);
5897 brelse(iloc->bh);
5898 return error;
5899 }
5900
5901 ext4_write_lock_xattr(inode, &no_expand);
5902
5903 BUFFER_TRACE(iloc.bh, "get_write_access");
5904 error = ext4_journal_get_write_access(handle, iloc->bh);
3b10fdc6 5905 if (error) {
c03b45b8
MX
5906 brelse(iloc->bh);
5907 goto out_stop;
3b10fdc6 5908 }
cf0a5e81 5909
c03b45b8
MX
5910 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5911 handle, &no_expand);
5912
5913 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5914 if (!error)
5915 error = rc;
5916
5917 ext4_write_unlock_xattr(inode, &no_expand);
5918out_stop:
5919 ext4_journal_stop(handle);
3b10fdc6 5920 return error;
6dd4ee7c
KS
5921}
5922
ac27a0ec
DK
5923/*
5924 * What we do here is to mark the in-core inode as clean with respect to inode
5925 * dirtiness (it may still be data-dirty).
5926 * This means that the in-core inode may be reaped by prune_icache
5927 * without having to perform any I/O. This is a very good thing,
5928 * because *any* task may call prune_icache - even ones which
5929 * have a transaction open against a different journal.
5930 *
5931 * Is this cheating? Not really. Sure, we haven't written the
5932 * inode out, but prune_icache isn't a user-visible syncing function.
5933 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5934 * we start and wait on commits.
ac27a0ec 5935 */
617ba13b 5936int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5937{
617ba13b 5938 struct ext4_iloc iloc;
6dd4ee7c 5939 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
cf0a5e81 5940 int err;
ac27a0ec
DK
5941
5942 might_sleep();
7ff9c073 5943 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5944 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5945 if (err)
5946 return err;
cf0a5e81
MX
5947
5948 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5949 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5950 iloc, handle);
5951
5e1021f2 5952 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5953}
5954
5955/*
617ba13b 5956 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5957 *
5958 * We're really interested in the case where a file is being extended.
5959 * i_size has been changed by generic_commit_write() and we thus need
5960 * to include the updated inode in the current transaction.
5961 *
5dd4056d 5962 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5963 * are allocated to the file.
5964 *
5965 * If the inode is marked synchronous, we don't honour that here - doing
5966 * so would cause a commit on atime updates, which we don't bother doing.
5967 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5968 *
5969 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5970 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5971 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5972 */
aa385729 5973void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5974{
ac27a0ec
DK
5975 handle_t *handle;
5976
0ae45f63
TT
5977 if (flags == I_DIRTY_TIME)
5978 return;
9924a92a 5979 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5980 if (IS_ERR(handle))
5981 goto out;
f3dc272f 5982
f3dc272f
CW
5983 ext4_mark_inode_dirty(handle, inode);
5984
617ba13b 5985 ext4_journal_stop(handle);
ac27a0ec
DK
5986out:
5987 return;
5988}
5989
5990#if 0
5991/*
5992 * Bind an inode's backing buffer_head into this transaction, to prevent
5993 * it from being flushed to disk early. Unlike
617ba13b 5994 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5995 * returns no iloc structure, so the caller needs to repeat the iloc
5996 * lookup to mark the inode dirty later.
5997 */
617ba13b 5998static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5999{
617ba13b 6000 struct ext4_iloc iloc;
ac27a0ec
DK
6001
6002 int err = 0;
6003 if (handle) {
617ba13b 6004 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
6005 if (!err) {
6006 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 6007 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 6008 if (!err)
0390131b 6009 err = ext4_handle_dirty_metadata(handle,
73b50c1c 6010 NULL,
0390131b 6011 iloc.bh);
ac27a0ec
DK
6012 brelse(iloc.bh);
6013 }
6014 }
617ba13b 6015 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6016 return err;
6017}
6018#endif
6019
617ba13b 6020int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
6021{
6022 journal_t *journal;
6023 handle_t *handle;
6024 int err;
c8585c6f 6025 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
6026
6027 /*
6028 * We have to be very careful here: changing a data block's
6029 * journaling status dynamically is dangerous. If we write a
6030 * data block to the journal, change the status and then delete
6031 * that block, we risk forgetting to revoke the old log record
6032 * from the journal and so a subsequent replay can corrupt data.
6033 * So, first we make sure that the journal is empty and that
6034 * nobody is changing anything.
6035 */
6036
617ba13b 6037 journal = EXT4_JOURNAL(inode);
0390131b
FM
6038 if (!journal)
6039 return 0;
d699594d 6040 if (is_journal_aborted(journal))
ac27a0ec
DK
6041 return -EROFS;
6042
17335dcc 6043 /* Wait for all existing dio workers */
17335dcc
DM
6044 inode_dio_wait(inode);
6045
4c546592
DJ
6046 /*
6047 * Before flushing the journal and switching inode's aops, we have
6048 * to flush all dirty data the inode has. There can be outstanding
6049 * delayed allocations, there can be unwritten extents created by
6050 * fallocate or buffered writes in dioread_nolock mode covered by
6051 * dirty data which can be converted only after flushing the dirty
6052 * data (and journalled aops don't know how to handle these cases).
6053 */
6054 if (val) {
6055 down_write(&EXT4_I(inode)->i_mmap_sem);
6056 err = filemap_write_and_wait(inode->i_mapping);
6057 if (err < 0) {
6058 up_write(&EXT4_I(inode)->i_mmap_sem);
4c546592
DJ
6059 return err;
6060 }
6061 }
6062
c8585c6f 6063 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 6064 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
6065
6066 /*
6067 * OK, there are no updates running now, and all cached data is
6068 * synced to disk. We are now in a completely consistent state
6069 * which doesn't have anything in the journal, and we know that
6070 * no filesystem updates are running, so it is safe to modify
6071 * the inode's in-core data-journaling state flag now.
6072 */
6073
6074 if (val)
12e9b892 6075 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6076 else {
4f879ca6
JK
6077 err = jbd2_journal_flush(journal);
6078 if (err < 0) {
6079 jbd2_journal_unlock_updates(journal);
c8585c6f 6080 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
6081 return err;
6082 }
12e9b892 6083 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6084 }
617ba13b 6085 ext4_set_aops(inode);
ac27a0ec 6086
dab291af 6087 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
6088 percpu_up_write(&sbi->s_journal_flag_rwsem);
6089
4c546592
DJ
6090 if (val)
6091 up_write(&EXT4_I(inode)->i_mmap_sem);
ac27a0ec
DK
6092
6093 /* Finally we can mark the inode as dirty. */
6094
9924a92a 6095 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
6096 if (IS_ERR(handle))
6097 return PTR_ERR(handle);
6098
617ba13b 6099 err = ext4_mark_inode_dirty(handle, inode);
0390131b 6100 ext4_handle_sync(handle);
617ba13b
MC
6101 ext4_journal_stop(handle);
6102 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6103
6104 return err;
6105}
2e9ee850
AK
6106
6107static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6108{
6109 return !buffer_mapped(bh);
6110}
6111
11bac800 6112int ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 6113{
11bac800 6114 struct vm_area_struct *vma = vmf->vma;
c2ec175c 6115 struct page *page = vmf->page;
2e9ee850
AK
6116 loff_t size;
6117 unsigned long len;
9ea7df53 6118 int ret;
2e9ee850 6119 struct file *file = vma->vm_file;
496ad9aa 6120 struct inode *inode = file_inode(file);
2e9ee850 6121 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
6122 handle_t *handle;
6123 get_block_t *get_block;
6124 int retries = 0;
2e9ee850 6125
8e8ad8a5 6126 sb_start_pagefault(inode->i_sb);
041bbb6d 6127 file_update_time(vma->vm_file);
ea3d7209
JK
6128
6129 down_read(&EXT4_I(inode)->i_mmap_sem);
7b4cc978
EB
6130
6131 ret = ext4_convert_inline_data(inode);
6132 if (ret)
6133 goto out_ret;
6134
9ea7df53
JK
6135 /* Delalloc case is easy... */
6136 if (test_opt(inode->i_sb, DELALLOC) &&
6137 !ext4_should_journal_data(inode) &&
6138 !ext4_nonda_switch(inode->i_sb)) {
6139 do {
5c500029 6140 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
6141 ext4_da_get_block_prep);
6142 } while (ret == -ENOSPC &&
6143 ext4_should_retry_alloc(inode->i_sb, &retries));
6144 goto out_ret;
2e9ee850 6145 }
0e499890
DW
6146
6147 lock_page(page);
9ea7df53
JK
6148 size = i_size_read(inode);
6149 /* Page got truncated from under us? */
6150 if (page->mapping != mapping || page_offset(page) > size) {
6151 unlock_page(page);
6152 ret = VM_FAULT_NOPAGE;
6153 goto out;
0e499890 6154 }
2e9ee850 6155
09cbfeaf
KS
6156 if (page->index == size >> PAGE_SHIFT)
6157 len = size & ~PAGE_MASK;
2e9ee850 6158 else
09cbfeaf 6159 len = PAGE_SIZE;
a827eaff 6160 /*
9ea7df53
JK
6161 * Return if we have all the buffers mapped. This avoids the need to do
6162 * journal_start/journal_stop which can block and take a long time
a827eaff 6163 */
2e9ee850 6164 if (page_has_buffers(page)) {
f19d5870
TM
6165 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6166 0, len, NULL,
6167 ext4_bh_unmapped)) {
9ea7df53 6168 /* Wait so that we don't change page under IO */
1d1d1a76 6169 wait_for_stable_page(page);
9ea7df53
JK
6170 ret = VM_FAULT_LOCKED;
6171 goto out;
a827eaff 6172 }
2e9ee850 6173 }
a827eaff 6174 unlock_page(page);
9ea7df53
JK
6175 /* OK, we need to fill the hole... */
6176 if (ext4_should_dioread_nolock(inode))
705965bd 6177 get_block = ext4_get_block_unwritten;
9ea7df53
JK
6178 else
6179 get_block = ext4_get_block;
6180retry_alloc:
9924a92a
TT
6181 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6182 ext4_writepage_trans_blocks(inode));
9ea7df53 6183 if (IS_ERR(handle)) {
c2ec175c 6184 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
6185 goto out;
6186 }
5c500029 6187 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 6188 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 6189 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 6190 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
6191 unlock_page(page);
6192 ret = VM_FAULT_SIGBUS;
fcbb5515 6193 ext4_journal_stop(handle);
9ea7df53
JK
6194 goto out;
6195 }
6196 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6197 }
6198 ext4_journal_stop(handle);
6199 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6200 goto retry_alloc;
6201out_ret:
6202 ret = block_page_mkwrite_return(ret);
6203out:
ea3d7209 6204 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 6205 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
6206 return ret;
6207}
ea3d7209 6208
11bac800 6209int ext4_filemap_fault(struct vm_fault *vmf)
ea3d7209 6210{
11bac800 6211 struct inode *inode = file_inode(vmf->vma->vm_file);
ea3d7209
JK
6212 int err;
6213
6214 down_read(&EXT4_I(inode)->i_mmap_sem);
11bac800 6215 err = filemap_fault(vmf);
ea3d7209
JK
6216 up_read(&EXT4_I(inode)->i_mmap_sem);
6217
6218 return err;
6219}