ext4: move inode eio simulation behind io completeion
[linux-block.git] / fs / ext4 / inode.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
ac27a0ec 2/*
617ba13b 3 * linux/fs/ext4/inode.c
ac27a0ec
DK
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
ac27a0ec
DK
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
617ba13b 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
20 */
21
ac27a0ec 22#include <linux/fs.h>
14f3db55 23#include <linux/mount.h>
ac27a0ec 24#include <linux/time.h>
ac27a0ec
DK
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
c94c2acf 27#include <linux/dax.h>
ac27a0ec
DK
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
64769240 32#include <linux/pagevec.h>
ac27a0ec 33#include <linux/mpage.h>
e83c1397 34#include <linux/namei.h>
ac27a0ec
DK
35#include <linux/uio.h>
36#include <linux/bio.h>
4c0425ff 37#include <linux/workqueue.h>
744692dc 38#include <linux/kernel.h>
6db26ffc 39#include <linux/printk.h>
5a0e3ad6 40#include <linux/slab.h>
00a1a053 41#include <linux/bitops.h>
364443cb 42#include <linux/iomap.h>
ae5e165d 43#include <linux/iversion.h>
9bffad1e 44
3dcf5451 45#include "ext4_jbd2.h"
ac27a0ec
DK
46#include "xattr.h"
47#include "acl.h"
9f125d64 48#include "truncate.h"
ac27a0ec 49
9bffad1e
TT
50#include <trace/events/ext4.h>
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 56 __u32 csum;
b47820ed
DJ
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
814525f4 60
b47820ed
DJ
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 66
b47820ed
DJ
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
b47820ed 76 }
05ac5aa1
DJ
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
79 }
80
814525f4
DW
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 91 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
8016e29f
HS
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
814525f4
DW
107{
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 112 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
678aaf48
JK
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
7ff9c073 125 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
678aaf48
JK
137}
138
d47992f8
LC
139static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
cb20d518 141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
dec214d0
TE
142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
407cd7fb 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
ac27a0ec 148 */
f348c252 149int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 150{
fc82228a
AK
151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155 if (ext4_has_inline_data(inode))
156 return 0;
157
158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 }
407cd7fb
TE
160 return S_ISLNK(inode->i_mode) && inode->i_size &&
161 (inode->i_size < EXT4_N_BLOCKS * 4);
ac27a0ec
DK
162}
163
ac27a0ec
DK
164/*
165 * Called at the last iput() if i_nlink is zero.
166 */
0930fcc1 167void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
168{
169 handle_t *handle;
bc965ab3 170 int err;
65db869c
JK
171 /*
172 * Credits for final inode cleanup and freeing:
173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 */
176 int extra_credits = 6;
0421a189 177 struct ext4_xattr_inode_array *ea_inode_array = NULL;
46e294ef 178 bool freeze_protected = false;
ac27a0ec 179
7ff9c073 180 trace_ext4_evict_inode(inode);
2581fdc8 181
0930fcc1 182 if (inode->i_nlink) {
2d859db3
JK
183 /*
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
197 *
198 * Note that directories do not have this problem because they
199 * don't use page cache.
200 */
6a7fd522
VN
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
3abb1a0f
JK
203 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 inode->i_data.nrpages) {
2d859db3
JK
205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207
d76a3a77 208 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
209 filemap_write_and_wait(&inode->i_data);
210 }
91b0abe3 211 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 212
0930fcc1
AV
213 goto no_delete;
214 }
215
e2bfb088
TT
216 if (is_bad_inode(inode))
217 goto no_delete;
218 dquot_initialize(inode);
907f4554 219
678aaf48
JK
220 if (ext4_should_order_data(inode))
221 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 222 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 223
ceff86fd
JK
224 /*
225 * For inodes with journalled data, transaction commit could have
226 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 * flag but we still need to remove the inode from the writeback lists.
228 */
229 if (!list_empty_careful(&inode->i_io_list)) {
230 WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 inode_io_list_del(inode);
232 }
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
46e294ef
JK
236 * protection against it. When we are in a running transaction though,
237 * we are already protected against freezing and we cannot grab further
238 * protection due to lock ordering constraints.
8e8ad8a5 239 */
46e294ef
JK
240 if (!ext4_journal_current_handle()) {
241 sb_start_intwrite(inode->i_sb);
242 freeze_protected = true;
243 }
e50e5129 244
30a7eb97
TE
245 if (!IS_NOQUOTA(inode))
246 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247
65db869c
JK
248 /*
249 * Block bitmap, group descriptor, and inode are accounted in both
250 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251 */
30a7eb97 252 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
65db869c 253 ext4_blocks_for_truncate(inode) + extra_credits - 3);
ac27a0ec 254 if (IS_ERR(handle)) {
bc965ab3 255 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
256 /*
257 * If we're going to skip the normal cleanup, we still need to
258 * make sure that the in-core orphan linked list is properly
259 * cleaned up.
260 */
617ba13b 261 ext4_orphan_del(NULL, inode);
46e294ef
JK
262 if (freeze_protected)
263 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
264 goto no_delete;
265 }
30a7eb97 266
ac27a0ec 267 if (IS_SYNC(inode))
0390131b 268 ext4_handle_sync(handle);
407cd7fb
TE
269
270 /*
271 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 * special handling of symlinks here because i_size is used to
273 * determine whether ext4_inode_info->i_data contains symlink data or
274 * block mappings. Setting i_size to 0 will remove its fast symlink
275 * status. Erase i_data so that it becomes a valid empty block map.
276 */
277 if (ext4_inode_is_fast_symlink(inode))
278 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
ac27a0ec 279 inode->i_size = 0;
bc965ab3
TT
280 err = ext4_mark_inode_dirty(handle, inode);
281 if (err) {
12062ddd 282 ext4_warning(inode->i_sb,
bc965ab3
TT
283 "couldn't mark inode dirty (err %d)", err);
284 goto stop_handle;
285 }
2c98eb5e
TT
286 if (inode->i_blocks) {
287 err = ext4_truncate(inode);
288 if (err) {
54d3adbc
TT
289 ext4_error_err(inode->i_sb, -err,
290 "couldn't truncate inode %lu (err %d)",
291 inode->i_ino, err);
2c98eb5e
TT
292 goto stop_handle;
293 }
294 }
bc965ab3 295
30a7eb97
TE
296 /* Remove xattr references. */
297 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298 extra_credits);
299 if (err) {
300 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301stop_handle:
302 ext4_journal_stop(handle);
303 ext4_orphan_del(NULL, inode);
46e294ef
JK
304 if (freeze_protected)
305 sb_end_intwrite(inode->i_sb);
30a7eb97
TE
306 ext4_xattr_inode_array_free(ea_inode_array);
307 goto no_delete;
bc965ab3
TT
308 }
309
ac27a0ec 310 /*
617ba13b 311 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 312 * AKPM: I think this can be inside the above `if'.
617ba13b 313 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 314 * deletion of a non-existent orphan - this is because we don't
617ba13b 315 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
316 * (Well, we could do this if we need to, but heck - it works)
317 */
617ba13b 318 ext4_orphan_del(handle, inode);
5ffff834 319 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
ac27a0ec
DK
320
321 /*
322 * One subtle ordering requirement: if anything has gone wrong
323 * (transaction abort, IO errors, whatever), then we can still
324 * do these next steps (the fs will already have been marked as
325 * having errors), but we can't free the inode if the mark_dirty
326 * fails.
327 */
617ba13b 328 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 329 /* If that failed, just do the required in-core inode clear. */
0930fcc1 330 ext4_clear_inode(inode);
ac27a0ec 331 else
617ba13b
MC
332 ext4_free_inode(handle, inode);
333 ext4_journal_stop(handle);
46e294ef
JK
334 if (freeze_protected)
335 sb_end_intwrite(inode->i_sb);
0421a189 336 ext4_xattr_inode_array_free(ea_inode_array);
ac27a0ec
DK
337 return;
338no_delete:
b21ebf14
HS
339 if (!list_empty(&EXT4_I(inode)->i_fc_list))
340 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
0930fcc1 341 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
342}
343
a9e7f447
DM
344#ifdef CONFIG_QUOTA
345qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 346{
a9e7f447 347 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 348}
a9e7f447 349#endif
9d0be502 350
0637c6f4
TT
351/*
352 * Called with i_data_sem down, which is important since we can call
353 * ext4_discard_preallocations() from here.
354 */
5f634d06
AK
355void ext4_da_update_reserve_space(struct inode *inode,
356 int used, int quota_claim)
12219aea
AK
357{
358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 359 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
360
361 spin_lock(&ei->i_block_reservation_lock);
d8990240 362 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 363 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 364 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 365 "with only %d reserved data blocks",
0637c6f4
TT
366 __func__, inode->i_ino, used,
367 ei->i_reserved_data_blocks);
368 WARN_ON(1);
369 used = ei->i_reserved_data_blocks;
370 }
12219aea 371
0637c6f4
TT
372 /* Update per-inode reservations */
373 ei->i_reserved_data_blocks -= used;
71d4f7d0 374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 375
f9505c72 376 spin_unlock(&ei->i_block_reservation_lock);
60e58e0f 377
72b8ab9d
ES
378 /* Update quota subsystem for data blocks */
379 if (quota_claim)
7b415bf6 380 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 381 else {
5f634d06
AK
382 /*
383 * We did fallocate with an offset that is already delayed
384 * allocated. So on delayed allocated writeback we should
72b8ab9d 385 * not re-claim the quota for fallocated blocks.
5f634d06 386 */
7b415bf6 387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 388 }
d6014301
AK
389
390 /*
391 * If we have done all the pending block allocations and if
392 * there aren't any writers on the inode, we can discard the
393 * inode's preallocations.
394 */
0637c6f4 395 if ((ei->i_reserved_data_blocks == 0) &&
82dd124c 396 !inode_is_open_for_write(inode))
27bc446e 397 ext4_discard_preallocations(inode, 0);
12219aea
AK
398}
399
e29136f8 400static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
401 unsigned int line,
402 struct ext4_map_blocks *map)
6fd058f7 403{
345c0dbf
TT
404 if (ext4_has_feature_journal(inode->i_sb) &&
405 (inode->i_ino ==
406 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407 return 0;
ce9f24cc 408 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
c398eda0 409 ext4_error_inode(inode, func, line, map->m_pblk,
bdbd6ce0 410 "lblock %lu mapped to illegal pblock %llu "
c398eda0 411 "(length %d)", (unsigned long) map->m_lblk,
bdbd6ce0 412 map->m_pblk, map->m_len);
6a797d27 413 return -EFSCORRUPTED;
6fd058f7
TT
414 }
415 return 0;
416}
417
53085fac
JK
418int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419 ext4_lblk_t len)
420{
421 int ret;
422
33b4cc25 423 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
a7550b30 424 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
425
426 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427 if (ret > 0)
428 ret = 0;
429
430 return ret;
431}
432
e29136f8 433#define check_block_validity(inode, map) \
c398eda0 434 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 435
921f266b
DM
436#ifdef ES_AGGRESSIVE_TEST
437static void ext4_map_blocks_es_recheck(handle_t *handle,
438 struct inode *inode,
439 struct ext4_map_blocks *es_map,
440 struct ext4_map_blocks *map,
441 int flags)
442{
443 int retval;
444
445 map->m_flags = 0;
446 /*
447 * There is a race window that the result is not the same.
448 * e.g. xfstests #223 when dioread_nolock enables. The reason
449 * is that we lookup a block mapping in extent status tree with
450 * out taking i_data_sem. So at the time the unwritten extent
451 * could be converted.
452 */
2dcba478 453 down_read(&EXT4_I(inode)->i_data_sem);
921f266b 454 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
9e52484c 455 retval = ext4_ext_map_blocks(handle, inode, map, 0);
921f266b 456 } else {
9e52484c 457 retval = ext4_ind_map_blocks(handle, inode, map, 0);
921f266b 458 }
2dcba478 459 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
bdafe42a 468 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476}
477#endif /* ES_AGGRESSIVE_TEST */
478
f5ab0d1f 479/*
e35fd660 480 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 481 * and returns if the blocks are already mapped.
f5ab0d1f 482 *
f5ab0d1f
MC
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
e35fd660
TT
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
489 * based files
490 *
facab4d9
JK
491 * On success, it returns the number of blocks being mapped or allocated. if
492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
494 *
495 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
496 * that case, @map is returned as unmapped but we still do fill map->m_len to
497 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
498 *
499 * It returns the error in case of allocation failure.
500 */
e35fd660
TT
501int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
0e855ac8 503{
d100eef2 504 struct extent_status es;
0e855ac8 505 int retval;
b8a86845 506 int ret = 0;
921f266b
DM
507#ifdef ES_AGGRESSIVE_TEST
508 struct ext4_map_blocks orig_map;
509
510 memcpy(&orig_map, map, sizeof(*map));
511#endif
f5ab0d1f 512
e35fd660 513 map->m_flags = 0;
70aa1554
RH
514 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 flags, map->m_len, (unsigned long) map->m_lblk);
d100eef2 516
e861b5e9
TT
517 /*
518 * ext4_map_blocks returns an int, and m_len is an unsigned int
519 */
520 if (unlikely(map->m_len > INT_MAX))
521 map->m_len = INT_MAX;
522
4adb6ab3
KM
523 /* We can handle the block number less than EXT_MAX_BLOCKS */
524 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 525 return -EFSCORRUPTED;
4adb6ab3 526
d100eef2 527 /* Lookup extent status tree firstly */
8016e29f
HS
528 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
d100eef2
ZL
530 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 map->m_pblk = ext4_es_pblock(&es) +
532 map->m_lblk - es.es_lblk;
533 map->m_flags |= ext4_es_is_written(&es) ?
534 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 retval = es.es_len - (map->m_lblk - es.es_lblk);
536 if (retval > map->m_len)
537 retval = map->m_len;
538 map->m_len = retval;
539 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
540 map->m_pblk = 0;
541 retval = es.es_len - (map->m_lblk - es.es_lblk);
542 if (retval > map->m_len)
543 retval = map->m_len;
544 map->m_len = retval;
d100eef2
ZL
545 retval = 0;
546 } else {
1e83bc81 547 BUG();
d100eef2 548 }
921f266b
DM
549#ifdef ES_AGGRESSIVE_TEST
550 ext4_map_blocks_es_recheck(handle, inode, map,
551 &orig_map, flags);
552#endif
d100eef2
ZL
553 goto found;
554 }
555
4df3d265 556 /*
b920c755
TT
557 * Try to see if we can get the block without requesting a new
558 * file system block.
4df3d265 559 */
2dcba478 560 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 561 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
9e52484c 562 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 563 } else {
9e52484c 564 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 565 }
f7fec032 566 if (retval > 0) {
3be78c73 567 unsigned int status;
f7fec032 568
44fb851d
ZL
569 if (unlikely(retval != map->m_len)) {
570 ext4_warning(inode->i_sb,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode->i_ino, retval, map->m_len);
574 WARN_ON(1);
921f266b 575 }
921f266b 576
f7fec032
ZL
577 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 580 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
581 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 map->m_lblk + map->m_len - 1))
f7fec032
ZL
583 status |= EXTENT_STATUS_DELAYED;
584 ret = ext4_es_insert_extent(inode, map->m_lblk,
585 map->m_len, map->m_pblk, status);
586 if (ret < 0)
587 retval = ret;
588 }
2dcba478 589 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 590
d100eef2 591found:
e35fd660 592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 593 ret = check_block_validity(inode, map);
6fd058f7
TT
594 if (ret != 0)
595 return ret;
596 }
597
f5ab0d1f 598 /* If it is only a block(s) look up */
c2177057 599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
600 return retval;
601
602 /*
603 * Returns if the blocks have already allocated
604 *
605 * Note that if blocks have been preallocated
df3ab170 606 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
607 * with buffer head unmapped.
608 */
e35fd660 609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
610 /*
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
614 */
615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 return retval;
4df3d265 617
2a8964d6 618 /*
a25a4e1a
ZL
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
2a8964d6 621 */
a25a4e1a 622 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 623
4df3d265 624 /*
556615dc 625 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 626 * will possibly result in updating i_data, so we take
d91bd2c1 627 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 628 * with create == 1 flag.
4df3d265 629 */
c8b459f4 630 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 631
4df3d265
AK
632 /*
633 * We need to check for EXT4 here because migrate
634 * could have changed the inode type in between
635 */
12e9b892 636 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 637 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 638 } else {
e35fd660 639 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 640
e35fd660 641 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
642 /*
643 * We allocated new blocks which will result in
644 * i_data's format changing. Force the migrate
645 * to fail by clearing migrate flags
646 */
19f5fb7a 647 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 648 }
d2a17637 649
5f634d06
AK
650 /*
651 * Update reserved blocks/metadata blocks after successful
652 * block allocation which had been deferred till now. We don't
653 * support fallocate for non extent files. So we can update
654 * reserve space here.
655 */
656 if ((retval > 0) &&
1296cc85 657 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
658 ext4_da_update_reserve_space(inode, retval, 1);
659 }
2ac3b6e0 660
f7fec032 661 if (retval > 0) {
3be78c73 662 unsigned int status;
f7fec032 663
44fb851d
ZL
664 if (unlikely(retval != map->m_len)) {
665 ext4_warning(inode->i_sb,
666 "ES len assertion failed for inode "
667 "%lu: retval %d != map->m_len %d",
668 inode->i_ino, retval, map->m_len);
669 WARN_ON(1);
921f266b 670 }
921f266b 671
c86d8db3
JK
672 /*
673 * We have to zeroout blocks before inserting them into extent
674 * status tree. Otherwise someone could look them up there and
9b623df6
JK
675 * use them before they are really zeroed. We also have to
676 * unmap metadata before zeroing as otherwise writeback can
677 * overwrite zeros with stale data from block device.
c86d8db3
JK
678 */
679 if (flags & EXT4_GET_BLOCKS_ZERO &&
680 map->m_flags & EXT4_MAP_MAPPED &&
681 map->m_flags & EXT4_MAP_NEW) {
682 ret = ext4_issue_zeroout(inode, map->m_lblk,
683 map->m_pblk, map->m_len);
684 if (ret) {
685 retval = ret;
686 goto out_sem;
687 }
688 }
689
adb23551
ZL
690 /*
691 * If the extent has been zeroed out, we don't need to update
692 * extent status tree.
693 */
694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
bb5835ed 695 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
adb23551 696 if (ext4_es_is_written(&es))
c86d8db3 697 goto out_sem;
adb23551 698 }
f7fec032
ZL
699 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 702 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
703 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 map->m_lblk + map->m_len - 1))
f7fec032
ZL
705 status |= EXTENT_STATUS_DELAYED;
706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 map->m_pblk, status);
c86d8db3 708 if (ret < 0) {
f7fec032 709 retval = ret;
c86d8db3
JK
710 goto out_sem;
711 }
5356f261
AK
712 }
713
c86d8db3 714out_sem:
4df3d265 715 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 717 ret = check_block_validity(inode, map);
6fd058f7
TT
718 if (ret != 0)
719 return ret;
06bd3c36
JK
720
721 /*
722 * Inodes with freshly allocated blocks where contents will be
723 * visible after transaction commit must be on transaction's
724 * ordered data list.
725 */
726 if (map->m_flags & EXT4_MAP_NEW &&
727 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 !(flags & EXT4_GET_BLOCKS_ZERO) &&
02749a4c 729 !ext4_is_quota_file(inode) &&
06bd3c36 730 ext4_should_order_data(inode)) {
73131fbb
RZ
731 loff_t start_byte =
732 (loff_t)map->m_lblk << inode->i_blkbits;
733 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734
ee0876bc 735 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
73131fbb
RZ
736 ret = ext4_jbd2_inode_add_wait(handle, inode,
737 start_byte, length);
ee0876bc 738 else
73131fbb
RZ
739 ret = ext4_jbd2_inode_add_write(handle, inode,
740 start_byte, length);
06bd3c36
JK
741 if (ret)
742 return ret;
743 }
a80f7fcf 744 ext4_fc_track_range(handle, inode, map->m_lblk,
aa75f4d3 745 map->m_lblk + map->m_len - 1);
6fd058f7 746 }
ec8c60be
RH
747
748 if (retval < 0)
70aa1554 749 ext_debug(inode, "failed with err %d\n", retval);
0e855ac8
AK
750 return retval;
751}
752
ed8ad838
JK
753/*
754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755 * we have to be careful as someone else may be manipulating b_state as well.
756 */
757static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758{
759 unsigned long old_state;
760 unsigned long new_state;
761
762 flags &= EXT4_MAP_FLAGS;
763
764 /* Dummy buffer_head? Set non-atomically. */
765 if (!bh->b_page) {
766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767 return;
768 }
769 /*
770 * Someone else may be modifying b_state. Be careful! This is ugly but
771 * once we get rid of using bh as a container for mapping information
772 * to pass to / from get_block functions, this can go away.
773 */
774 do {
775 old_state = READ_ONCE(bh->b_state);
776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777 } while (unlikely(
778 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779}
780
2ed88685
TT
781static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 struct buffer_head *bh, int flags)
ac27a0ec 783{
2ed88685 784 struct ext4_map_blocks map;
efe70c29 785 int ret = 0;
ac27a0ec 786
46c7f254
TM
787 if (ext4_has_inline_data(inode))
788 return -ERANGE;
789
2ed88685
TT
790 map.m_lblk = iblock;
791 map.m_len = bh->b_size >> inode->i_blkbits;
792
efe70c29
JK
793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794 flags);
7fb5409d 795 if (ret > 0) {
2ed88685 796 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 797 ext4_update_bh_state(bh, map.m_flags);
2ed88685 798 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 799 ret = 0;
547edce3
RZ
800 } else if (ret == 0) {
801 /* hole case, need to fill in bh->b_size */
802 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
803 }
804 return ret;
805}
806
2ed88685
TT
807int ext4_get_block(struct inode *inode, sector_t iblock,
808 struct buffer_head *bh, int create)
809{
810 return _ext4_get_block(inode, iblock, bh,
811 create ? EXT4_GET_BLOCKS_CREATE : 0);
812}
813
705965bd
JK
814/*
815 * Get block function used when preparing for buffered write if we require
816 * creating an unwritten extent if blocks haven't been allocated. The extent
817 * will be converted to written after the IO is complete.
818 */
819int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 struct buffer_head *bh_result, int create)
821{
822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 inode->i_ino, create);
824 return _ext4_get_block(inode, iblock, bh_result,
825 EXT4_GET_BLOCKS_IO_CREATE_EXT);
826}
827
efe70c29
JK
828/* Maximum number of blocks we map for direct IO at once. */
829#define DIO_MAX_BLOCKS 4096
830
ac27a0ec
DK
831/*
832 * `handle' can be NULL if create is zero
833 */
617ba13b 834struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 835 ext4_lblk_t block, int map_flags)
ac27a0ec 836{
2ed88685
TT
837 struct ext4_map_blocks map;
838 struct buffer_head *bh;
c5e298ae 839 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 840 int err;
ac27a0ec 841
837c23fb
CX
842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 || handle != NULL || create == 0);
ac27a0ec 844
2ed88685
TT
845 map.m_lblk = block;
846 map.m_len = 1;
c5e298ae 847 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 848
10560082
TT
849 if (err == 0)
850 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 851 if (err < 0)
10560082 852 return ERR_PTR(err);
2ed88685
TT
853
854 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
855 if (unlikely(!bh))
856 return ERR_PTR(-ENOMEM);
2ed88685 857 if (map.m_flags & EXT4_MAP_NEW) {
837c23fb
CX
858 ASSERT(create != 0);
859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 || (handle != NULL));
ac27a0ec 861
2ed88685
TT
862 /*
863 * Now that we do not always journal data, we should
864 * keep in mind whether this should always journal the
865 * new buffer as metadata. For now, regular file
866 * writes use ext4_get_block instead, so it's not a
867 * problem.
868 */
869 lock_buffer(bh);
870 BUFFER_TRACE(bh, "call get_create_access");
188c299e
JK
871 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
872 EXT4_JTR_NONE);
10560082
TT
873 if (unlikely(err)) {
874 unlock_buffer(bh);
875 goto errout;
876 }
877 if (!buffer_uptodate(bh)) {
2ed88685
TT
878 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 set_buffer_uptodate(bh);
ac27a0ec 880 }
2ed88685
TT
881 unlock_buffer(bh);
882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
884 if (unlikely(err))
885 goto errout;
886 } else
2ed88685 887 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 888 return bh;
10560082
TT
889errout:
890 brelse(bh);
891 return ERR_PTR(err);
ac27a0ec
DK
892}
893
617ba13b 894struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 895 ext4_lblk_t block, int map_flags)
ac27a0ec 896{
af5bc92d 897 struct buffer_head *bh;
2d069c08 898 int ret;
ac27a0ec 899
c5e298ae 900 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 901 if (IS_ERR(bh))
ac27a0ec 902 return bh;
7963e5ac 903 if (!bh || ext4_buffer_uptodate(bh))
ac27a0ec 904 return bh;
2d069c08 905
906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 if (ret) {
908 put_bh(bh);
909 return ERR_PTR(ret);
910 }
911 return bh;
ac27a0ec
DK
912}
913
9699d4f9
TE
914/* Read a contiguous batch of blocks. */
915int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 bool wait, struct buffer_head **bhs)
917{
918 int i, err;
919
920 for (i = 0; i < bh_count; i++) {
921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 if (IS_ERR(bhs[i])) {
923 err = PTR_ERR(bhs[i]);
924 bh_count = i;
925 goto out_brelse;
926 }
927 }
928
929 for (i = 0; i < bh_count; i++)
930 /* Note that NULL bhs[i] is valid because of holes. */
2d069c08 931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
9699d4f9
TE
933
934 if (!wait)
935 return 0;
936
937 for (i = 0; i < bh_count; i++)
938 if (bhs[i])
939 wait_on_buffer(bhs[i]);
940
941 for (i = 0; i < bh_count; i++) {
942 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 err = -EIO;
944 goto out_brelse;
945 }
946 }
947 return 0;
948
949out_brelse:
950 for (i = 0; i < bh_count; i++) {
951 brelse(bhs[i]);
952 bhs[i] = NULL;
953 }
954 return err;
955}
956
188c299e 957int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
f19d5870
TM
958 struct buffer_head *head,
959 unsigned from,
960 unsigned to,
961 int *partial,
188c299e 962 int (*fn)(handle_t *handle, struct inode *inode,
f19d5870 963 struct buffer_head *bh))
ac27a0ec
DK
964{
965 struct buffer_head *bh;
966 unsigned block_start, block_end;
967 unsigned blocksize = head->b_size;
968 int err, ret = 0;
969 struct buffer_head *next;
970
af5bc92d
TT
971 for (bh = head, block_start = 0;
972 ret == 0 && (bh != head || !block_start);
de9a55b8 973 block_start = block_end, bh = next) {
ac27a0ec
DK
974 next = bh->b_this_page;
975 block_end = block_start + blocksize;
976 if (block_end <= from || block_start >= to) {
977 if (partial && !buffer_uptodate(bh))
978 *partial = 1;
979 continue;
980 }
188c299e 981 err = (*fn)(handle, inode, bh);
ac27a0ec
DK
982 if (!ret)
983 ret = err;
984 }
985 return ret;
986}
987
988/*
989 * To preserve ordering, it is essential that the hole instantiation and
990 * the data write be encapsulated in a single transaction. We cannot
617ba13b 991 * close off a transaction and start a new one between the ext4_get_block()
dab291af 992 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
993 * prepare_write() is the right place.
994 *
36ade451
JK
995 * Also, this function can nest inside ext4_writepage(). In that case, we
996 * *know* that ext4_writepage() has generated enough buffer credits to do the
997 * whole page. So we won't block on the journal in that case, which is good,
998 * because the caller may be PF_MEMALLOC.
ac27a0ec 999 *
617ba13b 1000 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1001 * quota file writes. If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1005 * violation.
1006 *
dab291af 1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated. We'll still have enough credits for the tiny quotafile
1010 * write.
1011 */
188c299e 1012int do_journal_get_write_access(handle_t *handle, struct inode *inode,
f19d5870 1013 struct buffer_head *bh)
ac27a0ec 1014{
56d35a4c
JK
1015 int dirty = buffer_dirty(bh);
1016 int ret;
1017
ac27a0ec
DK
1018 if (!buffer_mapped(bh) || buffer_freed(bh))
1019 return 0;
56d35a4c 1020 /*
ebdec241 1021 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1022 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1024 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1025 * the bit before releasing a page lock and thus writeback cannot
1026 * ever write the buffer.
1027 */
1028 if (dirty)
1029 clear_buffer_dirty(bh);
5d601255 1030 BUFFER_TRACE(bh, "get write access");
188c299e
JK
1031 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032 EXT4_JTR_NONE);
56d35a4c
JK
1033 if (!ret && dirty)
1034 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035 return ret;
ac27a0ec
DK
1036}
1037
643fa961 1038#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
1039static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040 get_block_t *get_block)
1041{
09cbfeaf 1042 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1043 unsigned to = from + len;
1044 struct inode *inode = page->mapping->host;
1045 unsigned block_start, block_end;
1046 sector_t block;
1047 int err = 0;
1048 unsigned blocksize = inode->i_sb->s_blocksize;
1049 unsigned bbits;
0b578f35
CR
1050 struct buffer_head *bh, *head, *wait[2];
1051 int nr_wait = 0;
1052 int i;
2058f83a
MH
1053
1054 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1055 BUG_ON(from > PAGE_SIZE);
1056 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1057 BUG_ON(from > to);
1058
1059 if (!page_has_buffers(page))
1060 create_empty_buffers(page, blocksize, 0);
1061 head = page_buffers(page);
1062 bbits = ilog2(blocksize);
09cbfeaf 1063 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1064
1065 for (bh = head, block_start = 0; bh != head || !block_start;
1066 block++, block_start = block_end, bh = bh->b_this_page) {
1067 block_end = block_start + blocksize;
1068 if (block_end <= from || block_start >= to) {
1069 if (PageUptodate(page)) {
3cd46171 1070 set_buffer_uptodate(bh);
2058f83a
MH
1071 }
1072 continue;
1073 }
1074 if (buffer_new(bh))
1075 clear_buffer_new(bh);
1076 if (!buffer_mapped(bh)) {
1077 WARN_ON(bh->b_size != blocksize);
1078 err = get_block(inode, block, bh, 1);
1079 if (err)
1080 break;
1081 if (buffer_new(bh)) {
2058f83a
MH
1082 if (PageUptodate(page)) {
1083 clear_buffer_new(bh);
1084 set_buffer_uptodate(bh);
1085 mark_buffer_dirty(bh);
1086 continue;
1087 }
1088 if (block_end > to || block_start < from)
1089 zero_user_segments(page, to, block_end,
1090 block_start, from);
1091 continue;
1092 }
1093 }
1094 if (PageUptodate(page)) {
3cd46171 1095 set_buffer_uptodate(bh);
2058f83a
MH
1096 continue;
1097 }
1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 !buffer_unwritten(bh) &&
1100 (block_start < from || block_end > to)) {
2d069c08 1101 ext4_read_bh_lock(bh, 0, false);
0b578f35 1102 wait[nr_wait++] = bh;
2058f83a
MH
1103 }
1104 }
1105 /*
1106 * If we issued read requests, let them complete.
1107 */
0b578f35
CR
1108 for (i = 0; i < nr_wait; i++) {
1109 wait_on_buffer(wait[i]);
1110 if (!buffer_uptodate(wait[i]))
2058f83a
MH
1111 err = -EIO;
1112 }
7e0785fc 1113 if (unlikely(err)) {
2058f83a 1114 page_zero_new_buffers(page, from, to);
4f74d15f 1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
0b578f35
CR
1116 for (i = 0; i < nr_wait; i++) {
1117 int err2;
1118
1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 bh_offset(wait[i]));
1121 if (err2) {
1122 clear_buffer_uptodate(wait[i]);
1123 err = err2;
1124 }
1125 }
7e0785fc
CR
1126 }
1127
2058f83a
MH
1128 return err;
1129}
1130#endif
1131
bfc1af65 1132static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1133 loff_t pos, unsigned len, unsigned flags,
1134 struct page **pagep, void **fsdata)
ac27a0ec 1135{
af5bc92d 1136 struct inode *inode = mapping->host;
1938a150 1137 int ret, needed_blocks;
ac27a0ec
DK
1138 handle_t *handle;
1139 int retries = 0;
af5bc92d 1140 struct page *page;
de9a55b8 1141 pgoff_t index;
af5bc92d 1142 unsigned from, to;
bfc1af65 1143
0db1ff22
TT
1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145 return -EIO;
1146
9bffad1e 1147 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1148 /*
1149 * Reserve one block more for addition to orphan list in case
1150 * we allocate blocks but write fails for some reason
1151 */
1152 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1153 index = pos >> PAGE_SHIFT;
1154 from = pos & (PAGE_SIZE - 1);
af5bc92d 1155 to = from + len;
ac27a0ec 1156
f19d5870
TM
1157 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159 flags, pagep);
1160 if (ret < 0)
47564bfb
TT
1161 return ret;
1162 if (ret == 1)
1163 return 0;
f19d5870
TM
1164 }
1165
47564bfb
TT
1166 /*
1167 * grab_cache_page_write_begin() can take a long time if the
1168 * system is thrashing due to memory pressure, or if the page
1169 * is being written back. So grab it first before we start
1170 * the transaction handle. This also allows us to allocate
1171 * the page (if needed) without using GFP_NOFS.
1172 */
1173retry_grab:
1174 page = grab_cache_page_write_begin(mapping, index, flags);
1175 if (!page)
1176 return -ENOMEM;
1177 unlock_page(page);
1178
1179retry_journal:
9924a92a 1180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1181 if (IS_ERR(handle)) {
09cbfeaf 1182 put_page(page);
47564bfb 1183 return PTR_ERR(handle);
7479d2b9 1184 }
ac27a0ec 1185
47564bfb
TT
1186 lock_page(page);
1187 if (page->mapping != mapping) {
1188 /* The page got truncated from under us */
1189 unlock_page(page);
09cbfeaf 1190 put_page(page);
cf108bca 1191 ext4_journal_stop(handle);
47564bfb 1192 goto retry_grab;
cf108bca 1193 }
7afe5aa5
DM
1194 /* In case writeback began while the page was unlocked */
1195 wait_for_stable_page(page);
cf108bca 1196
643fa961 1197#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
1198 if (ext4_should_dioread_nolock(inode))
1199 ret = ext4_block_write_begin(page, pos, len,
705965bd 1200 ext4_get_block_unwritten);
2058f83a
MH
1201 else
1202 ret = ext4_block_write_begin(page, pos, len,
1203 ext4_get_block);
1204#else
744692dc 1205 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1206 ret = __block_write_begin(page, pos, len,
1207 ext4_get_block_unwritten);
744692dc 1208 else
6e1db88d 1209 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1210#endif
bfc1af65 1211 if (!ret && ext4_should_journal_data(inode)) {
188c299e
JK
1212 ret = ext4_walk_page_buffers(handle, inode,
1213 page_buffers(page), from, to, NULL,
f19d5870 1214 do_journal_get_write_access);
ac27a0ec 1215 }
bfc1af65
NP
1216
1217 if (ret) {
c93d8f88
EB
1218 bool extended = (pos + len > inode->i_size) &&
1219 !ext4_verity_in_progress(inode);
1220
af5bc92d 1221 unlock_page(page);
ae4d5372 1222 /*
6e1db88d 1223 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1224 * outside i_size. Trim these off again. Don't need
1225 * i_size_read because we hold i_mutex.
1938a150
AK
1226 *
1227 * Add inode to orphan list in case we crash before
1228 * truncate finishes
ae4d5372 1229 */
c93d8f88 1230 if (extended && ext4_can_truncate(inode))
1938a150
AK
1231 ext4_orphan_add(handle, inode);
1232
1233 ext4_journal_stop(handle);
c93d8f88 1234 if (extended) {
b9a4207d 1235 ext4_truncate_failed_write(inode);
de9a55b8 1236 /*
ffacfa7a 1237 * If truncate failed early the inode might
1938a150
AK
1238 * still be on the orphan list; we need to
1239 * make sure the inode is removed from the
1240 * orphan list in that case.
1241 */
1242 if (inode->i_nlink)
1243 ext4_orphan_del(NULL, inode);
1244 }
bfc1af65 1245
47564bfb
TT
1246 if (ret == -ENOSPC &&
1247 ext4_should_retry_alloc(inode->i_sb, &retries))
1248 goto retry_journal;
09cbfeaf 1249 put_page(page);
47564bfb
TT
1250 return ret;
1251 }
1252 *pagep = page;
ac27a0ec
DK
1253 return ret;
1254}
1255
bfc1af65 1256/* For write_end() in data=journal mode */
188c299e
JK
1257static int write_end_fn(handle_t *handle, struct inode *inode,
1258 struct buffer_head *bh)
ac27a0ec 1259{
13fca323 1260 int ret;
ac27a0ec
DK
1261 if (!buffer_mapped(bh) || buffer_freed(bh))
1262 return 0;
1263 set_buffer_uptodate(bh);
13fca323
TT
1264 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 clear_buffer_meta(bh);
1266 clear_buffer_prio(bh);
1267 return ret;
ac27a0ec
DK
1268}
1269
eed4333f
ZL
1270/*
1271 * We need to pick up the new inode size which generic_commit_write gave us
1272 * `file' can be NULL - eg, when called from page_symlink().
1273 *
1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1275 * buffers are managed internally.
1276 */
1277static int ext4_write_end(struct file *file,
1278 struct address_space *mapping,
1279 loff_t pos, unsigned len, unsigned copied,
1280 struct page *page, void *fsdata)
f8514083 1281{
f8514083 1282 handle_t *handle = ext4_journal_current_handle();
eed4333f 1283 struct inode *inode = mapping->host;
0572639f 1284 loff_t old_size = inode->i_size;
eed4333f
ZL
1285 int ret = 0, ret2;
1286 int i_size_changed = 0;
362eca70 1287 int inline_data = ext4_has_inline_data(inode);
c93d8f88 1288 bool verity = ext4_verity_in_progress(inode);
eed4333f
ZL
1289
1290 trace_ext4_write_end(inode, pos, len, copied);
362eca70 1291 if (inline_data) {
42c832de
TT
1292 ret = ext4_write_inline_data_end(inode, pos, len,
1293 copied, page);
eb5efbcb
TT
1294 if (ret < 0) {
1295 unlock_page(page);
1296 put_page(page);
42c832de 1297 goto errout;
eb5efbcb 1298 }
42c832de
TT
1299 copied = ret;
1300 } else
f19d5870
TM
1301 copied = block_write_end(file, mapping, pos,
1302 len, copied, page, fsdata);
f8514083 1303 /*
4631dbf6 1304 * it's important to update i_size while still holding page lock:
f8514083 1305 * page writeout could otherwise come in and zero beyond i_size.
c93d8f88
EB
1306 *
1307 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1308 * blocks are being written past EOF, so skip the i_size update.
f8514083 1309 */
c93d8f88
EB
1310 if (!verity)
1311 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1312 unlock_page(page);
09cbfeaf 1313 put_page(page);
f8514083 1314
c93d8f88 1315 if (old_size < pos && !verity)
0572639f 1316 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1317 /*
1318 * Don't mark the inode dirty under page lock. First, it unnecessarily
1319 * makes the holding time of page lock longer. Second, it forces lock
1320 * ordering of page lock and transaction start for journaling
1321 * filesystems.
1322 */
362eca70 1323 if (i_size_changed || inline_data)
4209ae12 1324 ret = ext4_mark_inode_dirty(handle, inode);
f8514083 1325
c93d8f88 1326 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
f8514083
AK
1327 /* if we have allocated more blocks and copied
1328 * less. We will have blocks allocated outside
1329 * inode->i_size. So truncate them
1330 */
1331 ext4_orphan_add(handle, inode);
74d553aa 1332errout:
617ba13b 1333 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1334 if (!ret)
1335 ret = ret2;
bfc1af65 1336
c93d8f88 1337 if (pos + len > inode->i_size && !verity) {
b9a4207d 1338 ext4_truncate_failed_write(inode);
de9a55b8 1339 /*
ffacfa7a 1340 * If truncate failed early the inode might still be
f8514083
AK
1341 * on the orphan list; we need to make sure the inode
1342 * is removed from the orphan list in that case.
1343 */
1344 if (inode->i_nlink)
1345 ext4_orphan_del(NULL, inode);
1346 }
1347
bfc1af65 1348 return ret ? ret : copied;
ac27a0ec
DK
1349}
1350
b90197b6
TT
1351/*
1352 * This is a private version of page_zero_new_buffers() which doesn't
1353 * set the buffer to be dirty, since in data=journalled mode we need
1354 * to call ext4_handle_dirty_metadata() instead.
1355 */
3b136499 1356static void ext4_journalled_zero_new_buffers(handle_t *handle,
188c299e 1357 struct inode *inode,
3b136499
JK
1358 struct page *page,
1359 unsigned from, unsigned to)
b90197b6
TT
1360{
1361 unsigned int block_start = 0, block_end;
1362 struct buffer_head *head, *bh;
1363
1364 bh = head = page_buffers(page);
1365 do {
1366 block_end = block_start + bh->b_size;
1367 if (buffer_new(bh)) {
1368 if (block_end > from && block_start < to) {
1369 if (!PageUptodate(page)) {
1370 unsigned start, size;
1371
1372 start = max(from, block_start);
1373 size = min(to, block_end) - start;
1374
1375 zero_user(page, start, size);
188c299e 1376 write_end_fn(handle, inode, bh);
b90197b6
TT
1377 }
1378 clear_buffer_new(bh);
1379 }
1380 }
1381 block_start = block_end;
1382 bh = bh->b_this_page;
1383 } while (bh != head);
1384}
1385
bfc1af65 1386static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1387 struct address_space *mapping,
1388 loff_t pos, unsigned len, unsigned copied,
1389 struct page *page, void *fsdata)
ac27a0ec 1390{
617ba13b 1391 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1392 struct inode *inode = mapping->host;
0572639f 1393 loff_t old_size = inode->i_size;
ac27a0ec
DK
1394 int ret = 0, ret2;
1395 int partial = 0;
bfc1af65 1396 unsigned from, to;
4631dbf6 1397 int size_changed = 0;
362eca70 1398 int inline_data = ext4_has_inline_data(inode);
c93d8f88 1399 bool verity = ext4_verity_in_progress(inode);
ac27a0ec 1400
9bffad1e 1401 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1402 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1403 to = from + len;
1404
441c8508
CW
1405 BUG_ON(!ext4_handle_valid(handle));
1406
362eca70 1407 if (inline_data) {
eb5efbcb
TT
1408 ret = ext4_write_inline_data_end(inode, pos, len,
1409 copied, page);
1410 if (ret < 0) {
1411 unlock_page(page);
1412 put_page(page);
1413 goto errout;
1414 }
1415 copied = ret;
1416 } else if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499 1417 copied = 0;
188c299e 1418 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
3b136499
JK
1419 } else {
1420 if (unlikely(copied < len))
188c299e 1421 ext4_journalled_zero_new_buffers(handle, inode, page,
3b136499 1422 from + copied, to);
188c299e
JK
1423 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1424 from, from + copied, &partial,
3b136499 1425 write_end_fn);
3fdcfb66
TM
1426 if (!partial)
1427 SetPageUptodate(page);
1428 }
c93d8f88
EB
1429 if (!verity)
1430 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1431 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1432 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1433 unlock_page(page);
09cbfeaf 1434 put_page(page);
4631dbf6 1435
c93d8f88 1436 if (old_size < pos && !verity)
0572639f
XW
1437 pagecache_isize_extended(inode, old_size, pos);
1438
362eca70 1439 if (size_changed || inline_data) {
617ba13b 1440 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1441 if (!ret)
1442 ret = ret2;
1443 }
bfc1af65 1444
c93d8f88 1445 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
f8514083
AK
1446 /* if we have allocated more blocks and copied
1447 * less. We will have blocks allocated outside
1448 * inode->i_size. So truncate them
1449 */
1450 ext4_orphan_add(handle, inode);
1451
eb5efbcb 1452errout:
617ba13b 1453 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1454 if (!ret)
1455 ret = ret2;
c93d8f88 1456 if (pos + len > inode->i_size && !verity) {
b9a4207d 1457 ext4_truncate_failed_write(inode);
de9a55b8 1458 /*
ffacfa7a 1459 * If truncate failed early the inode might still be
f8514083
AK
1460 * on the orphan list; we need to make sure the inode
1461 * is removed from the orphan list in that case.
1462 */
1463 if (inode->i_nlink)
1464 ext4_orphan_del(NULL, inode);
1465 }
bfc1af65
NP
1466
1467 return ret ? ret : copied;
ac27a0ec 1468}
d2a17637 1469
9d0be502 1470/*
c27e43a1 1471 * Reserve space for a single cluster
9d0be502 1472 */
c27e43a1 1473static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1474{
60e58e0f 1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1476 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1477 int ret;
03179fe9
TT
1478
1479 /*
1480 * We will charge metadata quota at writeout time; this saves
1481 * us from metadata over-estimation, though we may go over by
1482 * a small amount in the end. Here we just reserve for data.
1483 */
1484 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1485 if (ret)
1486 return ret;
d2a17637 1487
0637c6f4 1488 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1489 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1490 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1491 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1492 return -ENOSPC;
1493 }
9d0be502 1494 ei->i_reserved_data_blocks++;
c27e43a1 1495 trace_ext4_da_reserve_space(inode);
0637c6f4 1496 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1497
d2a17637
MC
1498 return 0; /* success */
1499}
1500
f456767d 1501void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1502{
1503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1504 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1505
cd213226
MC
1506 if (!to_free)
1507 return; /* Nothing to release, exit */
1508
d2a17637 1509 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1510
5a58ec87 1511 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1512 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1513 /*
0637c6f4
TT
1514 * if there aren't enough reserved blocks, then the
1515 * counter is messed up somewhere. Since this
1516 * function is called from invalidate page, it's
1517 * harmless to return without any action.
cd213226 1518 */
8de5c325 1519 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1520 "ino %lu, to_free %d with only %d reserved "
1084f252 1521 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1522 ei->i_reserved_data_blocks);
1523 WARN_ON(1);
1524 to_free = ei->i_reserved_data_blocks;
cd213226 1525 }
0637c6f4 1526 ei->i_reserved_data_blocks -= to_free;
cd213226 1527
72b8ab9d 1528 /* update fs dirty data blocks counter */
57042651 1529 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1530
d2a17637 1531 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1532
7b415bf6 1533 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1534}
1535
64769240
AT
1536/*
1537 * Delayed allocation stuff
1538 */
1539
4e7ea81d
JK
1540struct mpage_da_data {
1541 struct inode *inode;
1542 struct writeback_control *wbc;
6b523df4 1543
4e7ea81d
JK
1544 pgoff_t first_page; /* The first page to write */
1545 pgoff_t next_page; /* Current page to examine */
1546 pgoff_t last_page; /* Last page to examine */
791b7f08 1547 /*
4e7ea81d
JK
1548 * Extent to map - this can be after first_page because that can be
1549 * fully mapped. We somewhat abuse m_flags to store whether the extent
1550 * is delalloc or unwritten.
791b7f08 1551 */
4e7ea81d
JK
1552 struct ext4_map_blocks map;
1553 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1554 unsigned int do_map:1;
6b8ed620 1555 unsigned int scanned_until_end:1;
4e7ea81d 1556};
64769240 1557
4e7ea81d
JK
1558static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1559 bool invalidate)
c4a0c46e
AK
1560{
1561 int nr_pages, i;
1562 pgoff_t index, end;
1563 struct pagevec pvec;
1564 struct inode *inode = mpd->inode;
1565 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1566
1567 /* This is necessary when next_page == 0. */
1568 if (mpd->first_page >= mpd->next_page)
1569 return;
c4a0c46e 1570
6b8ed620 1571 mpd->scanned_until_end = 0;
c7f5938a
CW
1572 index = mpd->first_page;
1573 end = mpd->next_page - 1;
4e7ea81d
JK
1574 if (invalidate) {
1575 ext4_lblk_t start, last;
09cbfeaf
KS
1576 start = index << (PAGE_SHIFT - inode->i_blkbits);
1577 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1578 ext4_es_remove_extent(inode, start, last - start + 1);
1579 }
51865fda 1580
86679820 1581 pagevec_init(&pvec);
c4a0c46e 1582 while (index <= end) {
397162ff 1583 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
c4a0c46e
AK
1584 if (nr_pages == 0)
1585 break;
1586 for (i = 0; i < nr_pages; i++) {
1587 struct page *page = pvec.pages[i];
2b85a617 1588
c4a0c46e
AK
1589 BUG_ON(!PageLocked(page));
1590 BUG_ON(PageWriteback(page));
4e7ea81d 1591 if (invalidate) {
4e800c03 1592 if (page_mapped(page))
1593 clear_page_dirty_for_io(page);
09cbfeaf 1594 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1595 ClearPageUptodate(page);
1596 }
c4a0c46e
AK
1597 unlock_page(page);
1598 }
9b1d0998 1599 pagevec_release(&pvec);
c4a0c46e 1600 }
c4a0c46e
AK
1601}
1602
df22291f
AK
1603static void ext4_print_free_blocks(struct inode *inode)
1604{
1605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1606 struct super_block *sb = inode->i_sb;
f78ee70d 1607 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1608
1609 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1610 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1611 ext4_count_free_clusters(sb)));
92b97816
TT
1612 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1613 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1614 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1615 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1616 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1617 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1618 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1619 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1620 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1621 ei->i_reserved_data_blocks);
df22291f
AK
1622 return;
1623}
1624
188c299e
JK
1625static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1626 struct buffer_head *bh)
29fa89d0 1627{
c364b22c 1628 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1629}
1630
0b02f4c0
EW
1631/*
1632 * ext4_insert_delayed_block - adds a delayed block to the extents status
1633 * tree, incrementing the reserved cluster/block
1634 * count or making a pending reservation
1635 * where needed
1636 *
1637 * @inode - file containing the newly added block
1638 * @lblk - logical block to be added
1639 *
1640 * Returns 0 on success, negative error code on failure.
1641 */
1642static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1643{
1644 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1645 int ret;
1646 bool allocated = false;
1647
1648 /*
1649 * If the cluster containing lblk is shared with a delayed,
1650 * written, or unwritten extent in a bigalloc file system, it's
1651 * already been accounted for and does not need to be reserved.
1652 * A pending reservation must be made for the cluster if it's
1653 * shared with a written or unwritten extent and doesn't already
1654 * have one. Written and unwritten extents can be purged from the
1655 * extents status tree if the system is under memory pressure, so
1656 * it's necessary to examine the extent tree if a search of the
1657 * extents status tree doesn't get a match.
1658 */
1659 if (sbi->s_cluster_ratio == 1) {
1660 ret = ext4_da_reserve_space(inode);
1661 if (ret != 0) /* ENOSPC */
1662 goto errout;
1663 } else { /* bigalloc */
1664 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1665 if (!ext4_es_scan_clu(inode,
1666 &ext4_es_is_mapped, lblk)) {
1667 ret = ext4_clu_mapped(inode,
1668 EXT4_B2C(sbi, lblk));
1669 if (ret < 0)
1670 goto errout;
1671 if (ret == 0) {
1672 ret = ext4_da_reserve_space(inode);
1673 if (ret != 0) /* ENOSPC */
1674 goto errout;
1675 } else {
1676 allocated = true;
1677 }
1678 } else {
1679 allocated = true;
1680 }
1681 }
1682 }
1683
1684 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1685
1686errout:
1687 return ret;
1688}
1689
5356f261
AK
1690/*
1691 * This function is grabs code from the very beginning of
1692 * ext4_map_blocks, but assumes that the caller is from delayed write
1693 * time. This function looks up the requested blocks and sets the
1694 * buffer delay bit under the protection of i_data_sem.
1695 */
1696static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1697 struct ext4_map_blocks *map,
1698 struct buffer_head *bh)
1699{
d100eef2 1700 struct extent_status es;
5356f261
AK
1701 int retval;
1702 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1703#ifdef ES_AGGRESSIVE_TEST
1704 struct ext4_map_blocks orig_map;
1705
1706 memcpy(&orig_map, map, sizeof(*map));
1707#endif
5356f261
AK
1708
1709 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1710 invalid_block = ~0;
1711
1712 map->m_flags = 0;
70aa1554 1713 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
5356f261 1714 (unsigned long) map->m_lblk);
d100eef2
ZL
1715
1716 /* Lookup extent status tree firstly */
bb5835ed 1717 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
d100eef2
ZL
1718 if (ext4_es_is_hole(&es)) {
1719 retval = 0;
c8b459f4 1720 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1721 goto add_delayed;
1722 }
1723
1724 /*
1725 * Delayed extent could be allocated by fallocate.
1726 * So we need to check it.
1727 */
1728 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1729 map_bh(bh, inode->i_sb, invalid_block);
1730 set_buffer_new(bh);
1731 set_buffer_delay(bh);
1732 return 0;
1733 }
1734
1735 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1736 retval = es.es_len - (iblock - es.es_lblk);
1737 if (retval > map->m_len)
1738 retval = map->m_len;
1739 map->m_len = retval;
1740 if (ext4_es_is_written(&es))
1741 map->m_flags |= EXT4_MAP_MAPPED;
1742 else if (ext4_es_is_unwritten(&es))
1743 map->m_flags |= EXT4_MAP_UNWRITTEN;
1744 else
1e83bc81 1745 BUG();
d100eef2 1746
921f266b
DM
1747#ifdef ES_AGGRESSIVE_TEST
1748 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1749#endif
d100eef2
ZL
1750 return retval;
1751 }
1752
5356f261
AK
1753 /*
1754 * Try to see if we can get the block without requesting a new
1755 * file system block.
1756 */
c8b459f4 1757 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1758 if (ext4_has_inline_data(inode))
9c3569b5 1759 retval = 0;
cbd7584e 1760 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1761 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1762 else
2f8e0a7c 1763 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1764
d100eef2 1765add_delayed:
5356f261 1766 if (retval == 0) {
f7fec032 1767 int ret;
ad431025 1768
5356f261
AK
1769 /*
1770 * XXX: __block_prepare_write() unmaps passed block,
1771 * is it OK?
1772 */
5356f261 1773
0b02f4c0
EW
1774 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1775 if (ret != 0) {
f7fec032 1776 retval = ret;
51865fda 1777 goto out_unlock;
f7fec032 1778 }
51865fda 1779
5356f261
AK
1780 map_bh(bh, inode->i_sb, invalid_block);
1781 set_buffer_new(bh);
1782 set_buffer_delay(bh);
f7fec032
ZL
1783 } else if (retval > 0) {
1784 int ret;
3be78c73 1785 unsigned int status;
f7fec032 1786
44fb851d
ZL
1787 if (unlikely(retval != map->m_len)) {
1788 ext4_warning(inode->i_sb,
1789 "ES len assertion failed for inode "
1790 "%lu: retval %d != map->m_len %d",
1791 inode->i_ino, retval, map->m_len);
1792 WARN_ON(1);
921f266b 1793 }
921f266b 1794
f7fec032
ZL
1795 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1796 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1797 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1798 map->m_pblk, status);
1799 if (ret != 0)
1800 retval = ret;
5356f261
AK
1801 }
1802
1803out_unlock:
1804 up_read((&EXT4_I(inode)->i_data_sem));
1805
1806 return retval;
1807}
1808
64769240 1809/*
d91bd2c1 1810 * This is a special get_block_t callback which is used by
b920c755
TT
1811 * ext4_da_write_begin(). It will either return mapped block or
1812 * reserve space for a single block.
29fa89d0
AK
1813 *
1814 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1815 * We also have b_blocknr = -1 and b_bdev initialized properly
1816 *
1817 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1818 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1819 * initialized properly.
64769240 1820 */
9c3569b5
TM
1821int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1822 struct buffer_head *bh, int create)
64769240 1823{
2ed88685 1824 struct ext4_map_blocks map;
64769240
AT
1825 int ret = 0;
1826
1827 BUG_ON(create == 0);
2ed88685
TT
1828 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1829
1830 map.m_lblk = iblock;
1831 map.m_len = 1;
64769240
AT
1832
1833 /*
1834 * first, we need to know whether the block is allocated already
1835 * preallocated blocks are unmapped but should treated
1836 * the same as allocated blocks.
1837 */
5356f261
AK
1838 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1839 if (ret <= 0)
2ed88685 1840 return ret;
64769240 1841
2ed88685 1842 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1843 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1844
1845 if (buffer_unwritten(bh)) {
1846 /* A delayed write to unwritten bh should be marked
1847 * new and mapped. Mapped ensures that we don't do
1848 * get_block multiple times when we write to the same
1849 * offset and new ensures that we do proper zero out
1850 * for partial write.
1851 */
1852 set_buffer_new(bh);
c8205636 1853 set_buffer_mapped(bh);
2ed88685
TT
1854 }
1855 return 0;
64769240 1856}
61628a3f 1857
188c299e
JK
1858static int bget_one(handle_t *handle, struct inode *inode,
1859 struct buffer_head *bh)
62e086be
AK
1860{
1861 get_bh(bh);
1862 return 0;
1863}
1864
188c299e
JK
1865static int bput_one(handle_t *handle, struct inode *inode,
1866 struct buffer_head *bh)
62e086be
AK
1867{
1868 put_bh(bh);
1869 return 0;
1870}
1871
1872static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1873 unsigned int len)
1874{
1875 struct address_space *mapping = page->mapping;
1876 struct inode *inode = mapping->host;
3fdcfb66 1877 struct buffer_head *page_bufs = NULL;
62e086be 1878 handle_t *handle = NULL;
3fdcfb66
TM
1879 int ret = 0, err = 0;
1880 int inline_data = ext4_has_inline_data(inode);
1881 struct buffer_head *inode_bh = NULL;
62e086be 1882
cb20d518 1883 ClearPageChecked(page);
3fdcfb66
TM
1884
1885 if (inline_data) {
1886 BUG_ON(page->index != 0);
1887 BUG_ON(len > ext4_get_max_inline_size(inode));
1888 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1889 if (inode_bh == NULL)
1890 goto out;
1891 } else {
1892 page_bufs = page_buffers(page);
1893 if (!page_bufs) {
1894 BUG();
1895 goto out;
1896 }
188c299e 1897 ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
3fdcfb66
TM
1898 NULL, bget_one);
1899 }
bdf96838
TT
1900 /*
1901 * We need to release the page lock before we start the
1902 * journal, so grab a reference so the page won't disappear
1903 * out from under us.
1904 */
1905 get_page(page);
62e086be
AK
1906 unlock_page(page);
1907
9924a92a
TT
1908 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1909 ext4_writepage_trans_blocks(inode));
62e086be
AK
1910 if (IS_ERR(handle)) {
1911 ret = PTR_ERR(handle);
bdf96838
TT
1912 put_page(page);
1913 goto out_no_pagelock;
62e086be 1914 }
441c8508
CW
1915 BUG_ON(!ext4_handle_valid(handle));
1916
bdf96838
TT
1917 lock_page(page);
1918 put_page(page);
1919 if (page->mapping != mapping) {
1920 /* The page got truncated from under us */
1921 ext4_journal_stop(handle);
1922 ret = 0;
1923 goto out;
1924 }
1925
3fdcfb66 1926 if (inline_data) {
362eca70 1927 ret = ext4_mark_inode_dirty(handle, inode);
3fdcfb66 1928 } else {
188c299e
JK
1929 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1930 NULL, do_journal_get_write_access);
3fdcfb66 1931
188c299e
JK
1932 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1933 NULL, write_end_fn);
3fdcfb66 1934 }
afb585a9
MFO
1935 if (ret == 0)
1936 ret = err;
b5b18160 1937 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
62e086be
AK
1938 if (ret == 0)
1939 ret = err;
2d859db3 1940 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1941 err = ext4_journal_stop(handle);
1942 if (!ret)
1943 ret = err;
1944
19f5fb7a 1945 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1946out:
bdf96838
TT
1947 unlock_page(page);
1948out_no_pagelock:
c915fb80 1949 if (!inline_data && page_bufs)
188c299e 1950 ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
c915fb80 1951 NULL, bput_one);
3fdcfb66 1952 brelse(inode_bh);
62e086be
AK
1953 return ret;
1954}
1955
61628a3f 1956/*
43ce1d23
AK
1957 * Note that we don't need to start a transaction unless we're journaling data
1958 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1959 * need to file the inode to the transaction's list in ordered mode because if
1960 * we are writing back data added by write(), the inode is already there and if
25985edc 1961 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1962 * transaction the data will hit the disk. In case we are journaling data, we
1963 * cannot start transaction directly because transaction start ranks above page
1964 * lock so we have to do some magic.
1965 *
b920c755 1966 * This function can get called via...
20970ba6 1967 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1968 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1969 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1970 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1971 *
1972 * We don't do any block allocation in this function. If we have page with
1973 * multiple blocks we need to write those buffer_heads that are mapped. This
1974 * is important for mmaped based write. So if we do with blocksize 1K
1975 * truncate(f, 1024);
1976 * a = mmap(f, 0, 4096);
1977 * a[0] = 'a';
1978 * truncate(f, 4096);
1979 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1980 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1981 * do_wp_page). So writepage should write the first block. If we modify
1982 * the mmap area beyond 1024 we will again get a page_fault and the
1983 * page_mkwrite callback will do the block allocation and mark the
1984 * buffer_heads mapped.
1985 *
1986 * We redirty the page if we have any buffer_heads that is either delay or
1987 * unwritten in the page.
1988 *
1989 * We can get recursively called as show below.
1990 *
1991 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1992 * ext4_writepage()
1993 *
1994 * But since we don't do any block allocation we should not deadlock.
1995 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1996 */
43ce1d23 1997static int ext4_writepage(struct page *page,
62e086be 1998 struct writeback_control *wbc)
64769240 1999{
f8bec370 2000 int ret = 0;
61628a3f 2001 loff_t size;
498e5f24 2002 unsigned int len;
744692dc 2003 struct buffer_head *page_bufs = NULL;
61628a3f 2004 struct inode *inode = page->mapping->host;
36ade451 2005 struct ext4_io_submit io_submit;
1c8349a1 2006 bool keep_towrite = false;
61628a3f 2007
0db1ff22 2008 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
c2a559bc 2009 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
0db1ff22
TT
2010 unlock_page(page);
2011 return -EIO;
2012 }
2013
a9c667f8 2014 trace_ext4_writepage(page);
f0e6c985 2015 size = i_size_read(inode);
c93d8f88
EB
2016 if (page->index == size >> PAGE_SHIFT &&
2017 !ext4_verity_in_progress(inode))
09cbfeaf 2018 len = size & ~PAGE_MASK;
f0e6c985 2019 else
09cbfeaf 2020 len = PAGE_SIZE;
64769240 2021
a42afc5f 2022 page_bufs = page_buffers(page);
a42afc5f 2023 /*
fe386132
JK
2024 * We cannot do block allocation or other extent handling in this
2025 * function. If there are buffers needing that, we have to redirty
2026 * the page. But we may reach here when we do a journal commit via
2027 * journal_submit_inode_data_buffers() and in that case we must write
2028 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2029 *
2030 * Also, if there is only one buffer per page (the fs block
2031 * size == the page size), if one buffer needs block
2032 * allocation or needs to modify the extent tree to clear the
2033 * unwritten flag, we know that the page can't be written at
2034 * all, so we might as well refuse the write immediately.
2035 * Unfortunately if the block size != page size, we can't as
2036 * easily detect this case using ext4_walk_page_buffers(), but
2037 * for the extremely common case, this is an optimization that
2038 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2039 */
188c299e 2040 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
f19d5870 2041 ext4_bh_delay_or_unwritten)) {
f8bec370 2042 redirty_page_for_writepage(wbc, page);
cccd147a 2043 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2044 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2045 /*
2046 * For memory cleaning there's no point in writing only
2047 * some buffers. So just bail out. Warn if we came here
2048 * from direct reclaim.
2049 */
2050 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2051 == PF_MEMALLOC);
f0e6c985
AK
2052 unlock_page(page);
2053 return 0;
2054 }
1c8349a1 2055 keep_towrite = true;
a42afc5f 2056 }
64769240 2057
cb20d518 2058 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2059 /*
2060 * It's mmapped pagecache. Add buffers and journal it. There
2061 * doesn't seem much point in redirtying the page here.
2062 */
3f0ca309 2063 return __ext4_journalled_writepage(page, len);
43ce1d23 2064
97a851ed
JK
2065 ext4_io_submit_init(&io_submit, wbc);
2066 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2067 if (!io_submit.io_end) {
2068 redirty_page_for_writepage(wbc, page);
2069 unlock_page(page);
2070 return -ENOMEM;
2071 }
be993933 2072 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
36ade451 2073 ext4_io_submit(&io_submit);
97a851ed
JK
2074 /* Drop io_end reference we got from init */
2075 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2076 return ret;
2077}
2078
5f1132b2
JK
2079static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2080{
2081 int len;
a056bdaa 2082 loff_t size;
5f1132b2
JK
2083 int err;
2084
2085 BUG_ON(page->index != mpd->first_page);
a056bdaa
JK
2086 clear_page_dirty_for_io(page);
2087 /*
2088 * We have to be very careful here! Nothing protects writeback path
2089 * against i_size changes and the page can be writeably mapped into
2090 * page tables. So an application can be growing i_size and writing
2091 * data through mmap while writeback runs. clear_page_dirty_for_io()
2092 * write-protects our page in page tables and the page cannot get
2093 * written to again until we release page lock. So only after
2094 * clear_page_dirty_for_io() we are safe to sample i_size for
2095 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2096 * on the barrier provided by TestClearPageDirty in
2097 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2098 * after page tables are updated.
2099 */
2100 size = i_size_read(mpd->inode);
c93d8f88
EB
2101 if (page->index == size >> PAGE_SHIFT &&
2102 !ext4_verity_in_progress(mpd->inode))
09cbfeaf 2103 len = size & ~PAGE_MASK;
5f1132b2 2104 else
09cbfeaf 2105 len = PAGE_SIZE;
be993933 2106 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
5f1132b2
JK
2107 if (!err)
2108 mpd->wbc->nr_to_write--;
2109 mpd->first_page++;
2110
2111 return err;
2112}
2113
6db07461 2114#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
4e7ea81d 2115
61628a3f 2116/*
fffb2739
JK
2117 * mballoc gives us at most this number of blocks...
2118 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2119 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2120 */
fffb2739 2121#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2122
4e7ea81d
JK
2123/*
2124 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2125 *
2126 * @mpd - extent of blocks
2127 * @lblk - logical number of the block in the file
09930042 2128 * @bh - buffer head we want to add to the extent
4e7ea81d 2129 *
09930042
JK
2130 * The function is used to collect contig. blocks in the same state. If the
2131 * buffer doesn't require mapping for writeback and we haven't started the
2132 * extent of buffers to map yet, the function returns 'true' immediately - the
2133 * caller can write the buffer right away. Otherwise the function returns true
2134 * if the block has been added to the extent, false if the block couldn't be
2135 * added.
4e7ea81d 2136 */
09930042
JK
2137static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2138 struct buffer_head *bh)
4e7ea81d
JK
2139{
2140 struct ext4_map_blocks *map = &mpd->map;
2141
09930042
JK
2142 /* Buffer that doesn't need mapping for writeback? */
2143 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2144 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2145 /* So far no extent to map => we write the buffer right away */
2146 if (map->m_len == 0)
2147 return true;
2148 return false;
2149 }
4e7ea81d
JK
2150
2151 /* First block in the extent? */
2152 if (map->m_len == 0) {
dddbd6ac
JK
2153 /* We cannot map unless handle is started... */
2154 if (!mpd->do_map)
2155 return false;
4e7ea81d
JK
2156 map->m_lblk = lblk;
2157 map->m_len = 1;
09930042
JK
2158 map->m_flags = bh->b_state & BH_FLAGS;
2159 return true;
4e7ea81d
JK
2160 }
2161
09930042
JK
2162 /* Don't go larger than mballoc is willing to allocate */
2163 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2164 return false;
2165
4e7ea81d
JK
2166 /* Can we merge the block to our big extent? */
2167 if (lblk == map->m_lblk + map->m_len &&
09930042 2168 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2169 map->m_len++;
09930042 2170 return true;
4e7ea81d 2171 }
09930042 2172 return false;
4e7ea81d
JK
2173}
2174
5f1132b2
JK
2175/*
2176 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2177 *
2178 * @mpd - extent of blocks for mapping
2179 * @head - the first buffer in the page
2180 * @bh - buffer we should start processing from
2181 * @lblk - logical number of the block in the file corresponding to @bh
2182 *
2183 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2184 * the page for IO if all buffers in this page were mapped and there's no
2185 * accumulated extent of buffers to map or add buffers in the page to the
2186 * extent of buffers to map. The function returns 1 if the caller can continue
2187 * by processing the next page, 0 if it should stop adding buffers to the
2188 * extent to map because we cannot extend it anymore. It can also return value
2189 * < 0 in case of error during IO submission.
2190 */
2191static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2192 struct buffer_head *head,
2193 struct buffer_head *bh,
2194 ext4_lblk_t lblk)
4e7ea81d
JK
2195{
2196 struct inode *inode = mpd->inode;
5f1132b2 2197 int err;
93407472 2198 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2199 >> inode->i_blkbits;
2200
c93d8f88
EB
2201 if (ext4_verity_in_progress(inode))
2202 blocks = EXT_MAX_BLOCKS;
2203
4e7ea81d
JK
2204 do {
2205 BUG_ON(buffer_locked(bh));
2206
09930042 2207 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2208 /* Found extent to map? */
2209 if (mpd->map.m_len)
5f1132b2 2210 return 0;
dddbd6ac
JK
2211 /* Buffer needs mapping and handle is not started? */
2212 if (!mpd->do_map)
2213 return 0;
09930042 2214 /* Everything mapped so far and we hit EOF */
5f1132b2 2215 break;
4e7ea81d 2216 }
4e7ea81d 2217 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2218 /* So far everything mapped? Submit the page for IO. */
2219 if (mpd->map.m_len == 0) {
2220 err = mpage_submit_page(mpd, head->b_page);
2221 if (err < 0)
2222 return err;
2223 }
6b8ed620
JK
2224 if (lblk >= blocks) {
2225 mpd->scanned_until_end = 1;
2226 return 0;
2227 }
2228 return 1;
4e7ea81d
JK
2229}
2230
2943fdbc
RH
2231/*
2232 * mpage_process_page - update page buffers corresponding to changed extent and
2233 * may submit fully mapped page for IO
2234 *
2235 * @mpd - description of extent to map, on return next extent to map
2236 * @m_lblk - logical block mapping.
2237 * @m_pblk - corresponding physical mapping.
2238 * @map_bh - determines on return whether this page requires any further
2239 * mapping or not.
2240 * Scan given page buffers corresponding to changed extent and update buffer
2241 * state according to new extent state.
2242 * We map delalloc buffers to their physical location, clear unwritten bits.
2243 * If the given page is not fully mapped, we update @map to the next extent in
2244 * the given page that needs mapping & return @map_bh as true.
2245 */
2246static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2247 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2248 bool *map_bh)
2249{
2250 struct buffer_head *head, *bh;
2251 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2252 ext4_lblk_t lblk = *m_lblk;
2253 ext4_fsblk_t pblock = *m_pblk;
2254 int err = 0;
c8cc8816
RH
2255 int blkbits = mpd->inode->i_blkbits;
2256 ssize_t io_end_size = 0;
2257 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2943fdbc
RH
2258
2259 bh = head = page_buffers(page);
2260 do {
2261 if (lblk < mpd->map.m_lblk)
2262 continue;
2263 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2264 /*
2265 * Buffer after end of mapped extent.
2266 * Find next buffer in the page to map.
2267 */
2268 mpd->map.m_len = 0;
2269 mpd->map.m_flags = 0;
c8cc8816
RH
2270 io_end_vec->size += io_end_size;
2271 io_end_size = 0;
2943fdbc 2272
2943fdbc
RH
2273 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2274 if (err > 0)
2275 err = 0;
c8cc8816
RH
2276 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2277 io_end_vec = ext4_alloc_io_end_vec(io_end);
4d06bfb9
RH
2278 if (IS_ERR(io_end_vec)) {
2279 err = PTR_ERR(io_end_vec);
2280 goto out;
2281 }
d1e18b88 2282 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
c8cc8816 2283 }
2943fdbc
RH
2284 *map_bh = true;
2285 goto out;
2286 }
2287 if (buffer_delay(bh)) {
2288 clear_buffer_delay(bh);
2289 bh->b_blocknr = pblock++;
2290 }
2291 clear_buffer_unwritten(bh);
c8cc8816 2292 io_end_size += (1 << blkbits);
2943fdbc 2293 } while (lblk++, (bh = bh->b_this_page) != head);
c8cc8816
RH
2294
2295 io_end_vec->size += io_end_size;
2296 io_end_size = 0;
2943fdbc
RH
2297 *map_bh = false;
2298out:
2299 *m_lblk = lblk;
2300 *m_pblk = pblock;
2301 return err;
2302}
2303
4e7ea81d
JK
2304/*
2305 * mpage_map_buffers - update buffers corresponding to changed extent and
2306 * submit fully mapped pages for IO
2307 *
2308 * @mpd - description of extent to map, on return next extent to map
2309 *
2310 * Scan buffers corresponding to changed extent (we expect corresponding pages
2311 * to be already locked) and update buffer state according to new extent state.
2312 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2313 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2314 * and do extent conversion after IO is finished. If the last page is not fully
2315 * mapped, we update @map to the next extent in the last page that needs
2316 * mapping. Otherwise we submit the page for IO.
2317 */
2318static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2319{
2320 struct pagevec pvec;
2321 int nr_pages, i;
2322 struct inode *inode = mpd->inode;
09cbfeaf 2323 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2324 pgoff_t start, end;
2325 ext4_lblk_t lblk;
2943fdbc 2326 ext4_fsblk_t pblock;
4e7ea81d 2327 int err;
2943fdbc 2328 bool map_bh = false;
4e7ea81d
JK
2329
2330 start = mpd->map.m_lblk >> bpp_bits;
2331 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2332 lblk = start << bpp_bits;
2333 pblock = mpd->map.m_pblk;
2334
86679820 2335 pagevec_init(&pvec);
4e7ea81d 2336 while (start <= end) {
2b85a617 2337 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
397162ff 2338 &start, end);
4e7ea81d
JK
2339 if (nr_pages == 0)
2340 break;
2341 for (i = 0; i < nr_pages; i++) {
2342 struct page *page = pvec.pages[i];
2343
2943fdbc
RH
2344 err = mpage_process_page(mpd, page, &lblk, &pblock,
2345 &map_bh);
4e7ea81d 2346 /*
2943fdbc
RH
2347 * If map_bh is true, means page may require further bh
2348 * mapping, or maybe the page was submitted for IO.
2349 * So we return to call further extent mapping.
4e7ea81d 2350 */
39c0ae16 2351 if (err < 0 || map_bh)
2943fdbc 2352 goto out;
4e7ea81d
JK
2353 /* Page fully mapped - let IO run! */
2354 err = mpage_submit_page(mpd, page);
2943fdbc
RH
2355 if (err < 0)
2356 goto out;
4e7ea81d
JK
2357 }
2358 pagevec_release(&pvec);
2359 }
2360 /* Extent fully mapped and matches with page boundary. We are done. */
2361 mpd->map.m_len = 0;
2362 mpd->map.m_flags = 0;
2363 return 0;
2943fdbc
RH
2364out:
2365 pagevec_release(&pvec);
2366 return err;
4e7ea81d
JK
2367}
2368
2369static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2370{
2371 struct inode *inode = mpd->inode;
2372 struct ext4_map_blocks *map = &mpd->map;
2373 int get_blocks_flags;
090f32ee 2374 int err, dioread_nolock;
4e7ea81d
JK
2375
2376 trace_ext4_da_write_pages_extent(inode, map);
2377 /*
2378 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2379 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2380 * where we have written into one or more preallocated blocks). It is
2381 * possible that we're going to need more metadata blocks than
2382 * previously reserved. However we must not fail because we're in
2383 * writeback and there is nothing we can do about it so it might result
2384 * in data loss. So use reserved blocks to allocate metadata if
2385 * possible.
2386 *
754cfed6
TT
2387 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2388 * the blocks in question are delalloc blocks. This indicates
2389 * that the blocks and quotas has already been checked when
2390 * the data was copied into the page cache.
4e7ea81d
JK
2391 */
2392 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2393 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2394 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2395 dioread_nolock = ext4_should_dioread_nolock(inode);
2396 if (dioread_nolock)
4e7ea81d 2397 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
6db07461 2398 if (map->m_flags & BIT(BH_Delay))
4e7ea81d
JK
2399 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2400
2401 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2402 if (err < 0)
2403 return err;
090f32ee 2404 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2405 if (!mpd->io_submit.io_end->handle &&
2406 ext4_handle_valid(handle)) {
2407 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2408 handle->h_rsv_handle = NULL;
2409 }
3613d228 2410 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2411 }
4e7ea81d
JK
2412
2413 BUG_ON(map->m_len == 0);
4e7ea81d
JK
2414 return 0;
2415}
2416
2417/*
2418 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2419 * mpd->len and submit pages underlying it for IO
2420 *
2421 * @handle - handle for journal operations
2422 * @mpd - extent to map
7534e854
JK
2423 * @give_up_on_write - we set this to true iff there is a fatal error and there
2424 * is no hope of writing the data. The caller should discard
2425 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2426 *
2427 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2428 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2429 * them to initialized or split the described range from larger unwritten
2430 * extent. Note that we need not map all the described range since allocation
2431 * can return less blocks or the range is covered by more unwritten extents. We
2432 * cannot map more because we are limited by reserved transaction credits. On
2433 * the other hand we always make sure that the last touched page is fully
2434 * mapped so that it can be written out (and thus forward progress is
2435 * guaranteed). After mapping we submit all mapped pages for IO.
2436 */
2437static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2438 struct mpage_da_data *mpd,
2439 bool *give_up_on_write)
4e7ea81d
JK
2440{
2441 struct inode *inode = mpd->inode;
2442 struct ext4_map_blocks *map = &mpd->map;
2443 int err;
2444 loff_t disksize;
6603120e 2445 int progress = 0;
c8cc8816 2446 ext4_io_end_t *io_end = mpd->io_submit.io_end;
4d06bfb9 2447 struct ext4_io_end_vec *io_end_vec;
4e7ea81d 2448
4d06bfb9
RH
2449 io_end_vec = ext4_alloc_io_end_vec(io_end);
2450 if (IS_ERR(io_end_vec))
2451 return PTR_ERR(io_end_vec);
c8cc8816 2452 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2453 do {
4e7ea81d
JK
2454 err = mpage_map_one_extent(handle, mpd);
2455 if (err < 0) {
2456 struct super_block *sb = inode->i_sb;
2457
0db1ff22 2458 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
9b5f6c9b 2459 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
cb530541 2460 goto invalidate_dirty_pages;
4e7ea81d 2461 /*
cb530541
TT
2462 * Let the uper layers retry transient errors.
2463 * In the case of ENOSPC, if ext4_count_free_blocks()
2464 * is non-zero, a commit should free up blocks.
4e7ea81d 2465 */
cb530541 2466 if ((err == -ENOMEM) ||
6603120e
DM
2467 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2468 if (progress)
2469 goto update_disksize;
cb530541 2470 return err;
6603120e 2471 }
cb530541
TT
2472 ext4_msg(sb, KERN_CRIT,
2473 "Delayed block allocation failed for "
2474 "inode %lu at logical offset %llu with"
2475 " max blocks %u with error %d",
2476 inode->i_ino,
2477 (unsigned long long)map->m_lblk,
2478 (unsigned)map->m_len, -err);
2479 ext4_msg(sb, KERN_CRIT,
2480 "This should not happen!! Data will "
2481 "be lost\n");
2482 if (err == -ENOSPC)
2483 ext4_print_free_blocks(inode);
2484 invalidate_dirty_pages:
2485 *give_up_on_write = true;
4e7ea81d
JK
2486 return err;
2487 }
6603120e 2488 progress = 1;
4e7ea81d
JK
2489 /*
2490 * Update buffer state, submit mapped pages, and get us new
2491 * extent to map
2492 */
2493 err = mpage_map_and_submit_buffers(mpd);
2494 if (err < 0)
6603120e 2495 goto update_disksize;
27d7c4ed 2496 } while (map->m_len);
4e7ea81d 2497
6603120e 2498update_disksize:
622cad13
TT
2499 /*
2500 * Update on-disk size after IO is submitted. Races with
2501 * truncate are avoided by checking i_size under i_data_sem.
2502 */
09cbfeaf 2503 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
35df4299 2504 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
4e7ea81d 2505 int err2;
622cad13
TT
2506 loff_t i_size;
2507
2508 down_write(&EXT4_I(inode)->i_data_sem);
2509 i_size = i_size_read(inode);
2510 if (disksize > i_size)
2511 disksize = i_size;
2512 if (disksize > EXT4_I(inode)->i_disksize)
2513 EXT4_I(inode)->i_disksize = disksize;
622cad13 2514 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2515 err2 = ext4_mark_inode_dirty(handle, inode);
878520ac 2516 if (err2) {
54d3adbc
TT
2517 ext4_error_err(inode->i_sb, -err2,
2518 "Failed to mark inode %lu dirty",
2519 inode->i_ino);
878520ac 2520 }
4e7ea81d
JK
2521 if (!err)
2522 err = err2;
2523 }
2524 return err;
2525}
2526
fffb2739
JK
2527/*
2528 * Calculate the total number of credits to reserve for one writepages
20970ba6 2529 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2530 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2531 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2532 * bpp - 1 blocks in bpp different extents.
2533 */
525f4ed8
MC
2534static int ext4_da_writepages_trans_blocks(struct inode *inode)
2535{
fffb2739 2536 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2537
fffb2739
JK
2538 return ext4_meta_trans_blocks(inode,
2539 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2540}
61628a3f 2541
8e48dcfb 2542/*
4e7ea81d
JK
2543 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2544 * and underlying extent to map
2545 *
2546 * @mpd - where to look for pages
2547 *
2548 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2549 * IO immediately. When we find a page which isn't mapped we start accumulating
2550 * extent of buffers underlying these pages that needs mapping (formed by
2551 * either delayed or unwritten buffers). We also lock the pages containing
2552 * these buffers. The extent found is returned in @mpd structure (starting at
2553 * mpd->lblk with length mpd->len blocks).
2554 *
2555 * Note that this function can attach bios to one io_end structure which are
2556 * neither logically nor physically contiguous. Although it may seem as an
2557 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2558 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2559 */
4e7ea81d 2560static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2561{
4e7ea81d
JK
2562 struct address_space *mapping = mpd->inode->i_mapping;
2563 struct pagevec pvec;
2564 unsigned int nr_pages;
aeac589a 2565 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2566 pgoff_t index = mpd->first_page;
2567 pgoff_t end = mpd->last_page;
10bbd235 2568 xa_mark_t tag;
4e7ea81d
JK
2569 int i, err = 0;
2570 int blkbits = mpd->inode->i_blkbits;
2571 ext4_lblk_t lblk;
2572 struct buffer_head *head;
8e48dcfb 2573
4e7ea81d 2574 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2575 tag = PAGECACHE_TAG_TOWRITE;
2576 else
2577 tag = PAGECACHE_TAG_DIRTY;
2578
86679820 2579 pagevec_init(&pvec);
4e7ea81d
JK
2580 mpd->map.m_len = 0;
2581 mpd->next_page = index;
4f01b02c 2582 while (index <= end) {
dc7f3e86 2583 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2584 tag);
8e48dcfb 2585 if (nr_pages == 0)
6b8ed620 2586 break;
8e48dcfb
TT
2587
2588 for (i = 0; i < nr_pages; i++) {
2589 struct page *page = pvec.pages[i];
2590
aeac589a
ML
2591 /*
2592 * Accumulated enough dirty pages? This doesn't apply
2593 * to WB_SYNC_ALL mode. For integrity sync we have to
2594 * keep going because someone may be concurrently
2595 * dirtying pages, and we might have synced a lot of
2596 * newly appeared dirty pages, but have not synced all
2597 * of the old dirty pages.
2598 */
2599 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2600 goto out;
2601
4e7ea81d
JK
2602 /* If we can't merge this page, we are done. */
2603 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2604 goto out;
78aaced3 2605
8e48dcfb 2606 lock_page(page);
8e48dcfb 2607 /*
4e7ea81d
JK
2608 * If the page is no longer dirty, or its mapping no
2609 * longer corresponds to inode we are writing (which
2610 * means it has been truncated or invalidated), or the
2611 * page is already under writeback and we are not doing
2612 * a data integrity writeback, skip the page
8e48dcfb 2613 */
4f01b02c
TT
2614 if (!PageDirty(page) ||
2615 (PageWriteback(page) &&
4e7ea81d 2616 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2617 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2618 unlock_page(page);
2619 continue;
2620 }
2621
7cb1a535 2622 wait_on_page_writeback(page);
8e48dcfb 2623 BUG_ON(PageWriteback(page));
8e48dcfb 2624
4e7ea81d 2625 if (mpd->map.m_len == 0)
8eb9e5ce 2626 mpd->first_page = page->index;
8eb9e5ce 2627 mpd->next_page = page->index + 1;
f8bec370 2628 /* Add all dirty buffers to mpd */
4e7ea81d 2629 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2630 (PAGE_SHIFT - blkbits);
f8bec370 2631 head = page_buffers(page);
5f1132b2
JK
2632 err = mpage_process_page_bufs(mpd, head, head, lblk);
2633 if (err <= 0)
4e7ea81d 2634 goto out;
5f1132b2 2635 err = 0;
aeac589a 2636 left--;
8e48dcfb
TT
2637 }
2638 pagevec_release(&pvec);
2639 cond_resched();
2640 }
6b8ed620 2641 mpd->scanned_until_end = 1;
4f01b02c 2642 return 0;
8eb9e5ce
TT
2643out:
2644 pagevec_release(&pvec);
4e7ea81d 2645 return err;
8e48dcfb
TT
2646}
2647
20970ba6
TT
2648static int ext4_writepages(struct address_space *mapping,
2649 struct writeback_control *wbc)
64769240 2650{
4e7ea81d
JK
2651 pgoff_t writeback_index = 0;
2652 long nr_to_write = wbc->nr_to_write;
22208ded 2653 int range_whole = 0;
4e7ea81d 2654 int cycled = 1;
61628a3f 2655 handle_t *handle = NULL;
df22291f 2656 struct mpage_da_data mpd;
5e745b04 2657 struct inode *inode = mapping->host;
6b523df4 2658 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2659 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
1bce63d1 2660 struct blk_plug plug;
cb530541 2661 bool give_up_on_write = false;
61628a3f 2662
0db1ff22
TT
2663 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2664 return -EIO;
2665
bbd55937 2666 percpu_down_read(&sbi->s_writepages_rwsem);
20970ba6 2667 trace_ext4_writepages(inode, wbc);
ba80b101 2668
61628a3f
MC
2669 /*
2670 * No pages to write? This is mainly a kludge to avoid starting
2671 * a transaction for special inodes like journal inode on last iput()
2672 * because that could violate lock ordering on umount
2673 */
a1d6cc56 2674 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2675 goto out_writepages;
2a21e37e 2676
20970ba6 2677 if (ext4_should_journal_data(inode)) {
043d20d1 2678 ret = generic_writepages(mapping, wbc);
bbf023c7 2679 goto out_writepages;
20970ba6
TT
2680 }
2681
2a21e37e
TT
2682 /*
2683 * If the filesystem has aborted, it is read-only, so return
2684 * right away instead of dumping stack traces later on that
2685 * will obscure the real source of the problem. We test
1751e8a6 2686 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2a21e37e 2687 * the latter could be true if the filesystem is mounted
20970ba6 2688 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2689 * *never* be called, so if that ever happens, we would want
2690 * the stack trace.
2691 */
0db1ff22 2692 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
9b5f6c9b 2693 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
bbf023c7
ML
2694 ret = -EROFS;
2695 goto out_writepages;
2696 }
2a21e37e 2697
4e7ea81d
JK
2698 /*
2699 * If we have inline data and arrive here, it means that
2700 * we will soon create the block for the 1st page, so
2701 * we'd better clear the inline data here.
2702 */
2703 if (ext4_has_inline_data(inode)) {
2704 /* Just inode will be modified... */
2705 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2706 if (IS_ERR(handle)) {
2707 ret = PTR_ERR(handle);
2708 goto out_writepages;
2709 }
2710 BUG_ON(ext4_test_inode_state(inode,
2711 EXT4_STATE_MAY_INLINE_DATA));
2712 ext4_destroy_inline_data(handle, inode);
2713 ext4_journal_stop(handle);
2714 }
2715
4e343231 2716 if (ext4_should_dioread_nolock(inode)) {
2717 /*
2718 * We may need to convert up to one extent per block in
2719 * the page and we may dirty the inode.
2720 */
2721 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2722 PAGE_SIZE >> inode->i_blkbits);
2723 }
2724
22208ded
AK
2725 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2726 range_whole = 1;
61628a3f 2727
2acf2c26 2728 if (wbc->range_cyclic) {
4e7ea81d
JK
2729 writeback_index = mapping->writeback_index;
2730 if (writeback_index)
2acf2c26 2731 cycled = 0;
4e7ea81d
JK
2732 mpd.first_page = writeback_index;
2733 mpd.last_page = -1;
5b41d924 2734 } else {
09cbfeaf
KS
2735 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2736 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2737 }
a1d6cc56 2738
4e7ea81d
JK
2739 mpd.inode = inode;
2740 mpd.wbc = wbc;
2741 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2742retry:
6e6938b6 2743 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d 2744 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
1bce63d1 2745 blk_start_plug(&plug);
dddbd6ac
JK
2746
2747 /*
2748 * First writeback pages that don't need mapping - we can avoid
2749 * starting a transaction unnecessarily and also avoid being blocked
2750 * in the block layer on device congestion while having transaction
2751 * started.
2752 */
2753 mpd.do_map = 0;
6b8ed620 2754 mpd.scanned_until_end = 0;
dddbd6ac
JK
2755 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2756 if (!mpd.io_submit.io_end) {
2757 ret = -ENOMEM;
2758 goto unplug;
2759 }
2760 ret = mpage_prepare_extent_to_map(&mpd);
a297b2fc
XW
2761 /* Unlock pages we didn't use */
2762 mpage_release_unused_pages(&mpd, false);
dddbd6ac
JK
2763 /* Submit prepared bio */
2764 ext4_io_submit(&mpd.io_submit);
2765 ext4_put_io_end_defer(mpd.io_submit.io_end);
2766 mpd.io_submit.io_end = NULL;
dddbd6ac
JK
2767 if (ret < 0)
2768 goto unplug;
2769
6b8ed620 2770 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
4e7ea81d
JK
2771 /* For each extent of pages we use new io_end */
2772 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2773 if (!mpd.io_submit.io_end) {
2774 ret = -ENOMEM;
2775 break;
2776 }
a1d6cc56
AK
2777
2778 /*
4e7ea81d
JK
2779 * We have two constraints: We find one extent to map and we
2780 * must always write out whole page (makes a difference when
2781 * blocksize < pagesize) so that we don't block on IO when we
2782 * try to write out the rest of the page. Journalled mode is
2783 * not supported by delalloc.
a1d6cc56
AK
2784 */
2785 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2786 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2787
4e7ea81d 2788 /* start a new transaction */
6b523df4
JK
2789 handle = ext4_journal_start_with_reserve(inode,
2790 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2791 if (IS_ERR(handle)) {
2792 ret = PTR_ERR(handle);
1693918e 2793 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2794 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2795 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2796 /* Release allocated io_end */
2797 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2798 mpd.io_submit.io_end = NULL;
4e7ea81d 2799 break;
61628a3f 2800 }
dddbd6ac 2801 mpd.do_map = 1;
f63e6005 2802
4e7ea81d
JK
2803 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2804 ret = mpage_prepare_extent_to_map(&mpd);
6b8ed620
JK
2805 if (!ret && mpd.map.m_len)
2806 ret = mpage_map_and_submit_extent(handle, &mpd,
cb530541 2807 &give_up_on_write);
646caa9c
JK
2808 /*
2809 * Caution: If the handle is synchronous,
2810 * ext4_journal_stop() can wait for transaction commit
2811 * to finish which may depend on writeback of pages to
2812 * complete or on page lock to be released. In that
b483bb77 2813 * case, we have to wait until after we have
646caa9c
JK
2814 * submitted all the IO, released page locks we hold,
2815 * and dropped io_end reference (for extent conversion
2816 * to be able to complete) before stopping the handle.
2817 */
2818 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2819 ext4_journal_stop(handle);
2820 handle = NULL;
dddbd6ac 2821 mpd.do_map = 0;
646caa9c 2822 }
4e7ea81d 2823 /* Unlock pages we didn't use */
cb530541 2824 mpage_release_unused_pages(&mpd, give_up_on_write);
a297b2fc
XW
2825 /* Submit prepared bio */
2826 ext4_io_submit(&mpd.io_submit);
2827
646caa9c
JK
2828 /*
2829 * Drop our io_end reference we got from init. We have
2830 * to be careful and use deferred io_end finishing if
2831 * we are still holding the transaction as we can
2832 * release the last reference to io_end which may end
2833 * up doing unwritten extent conversion.
2834 */
2835 if (handle) {
2836 ext4_put_io_end_defer(mpd.io_submit.io_end);
2837 ext4_journal_stop(handle);
2838 } else
2839 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2840 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2841
2842 if (ret == -ENOSPC && sbi->s_journal) {
2843 /*
2844 * Commit the transaction which would
22208ded
AK
2845 * free blocks released in the transaction
2846 * and try again
2847 */
df22291f 2848 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2849 ret = 0;
4e7ea81d
JK
2850 continue;
2851 }
2852 /* Fatal error - ENOMEM, EIO... */
2853 if (ret)
61628a3f 2854 break;
a1d6cc56 2855 }
dddbd6ac 2856unplug:
1bce63d1 2857 blk_finish_plug(&plug);
9c12a831 2858 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2859 cycled = 1;
4e7ea81d
JK
2860 mpd.last_page = writeback_index - 1;
2861 mpd.first_page = 0;
2acf2c26
AK
2862 goto retry;
2863 }
22208ded
AK
2864
2865 /* Update index */
22208ded
AK
2866 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2867 /*
4e7ea81d 2868 * Set the writeback_index so that range_cyclic
22208ded
AK
2869 * mode will write it back later
2870 */
4e7ea81d 2871 mapping->writeback_index = mpd.first_page;
a1d6cc56 2872
61628a3f 2873out_writepages:
20970ba6
TT
2874 trace_ext4_writepages_result(inode, wbc, ret,
2875 nr_to_write - wbc->nr_to_write);
bbd55937 2876 percpu_up_read(&sbi->s_writepages_rwsem);
61628a3f 2877 return ret;
64769240
AT
2878}
2879
5f0663bb
DW
2880static int ext4_dax_writepages(struct address_space *mapping,
2881 struct writeback_control *wbc)
2882{
2883 int ret;
2884 long nr_to_write = wbc->nr_to_write;
2885 struct inode *inode = mapping->host;
2886 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2887
2888 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2889 return -EIO;
2890
bbd55937 2891 percpu_down_read(&sbi->s_writepages_rwsem);
5f0663bb
DW
2892 trace_ext4_writepages(inode, wbc);
2893
3f666c56 2894 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
5f0663bb
DW
2895 trace_ext4_writepages_result(inode, wbc, ret,
2896 nr_to_write - wbc->nr_to_write);
bbd55937 2897 percpu_up_read(&sbi->s_writepages_rwsem);
5f0663bb
DW
2898 return ret;
2899}
2900
79f0be8d
AK
2901static int ext4_nonda_switch(struct super_block *sb)
2902{
5c1ff336 2903 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2904 struct ext4_sb_info *sbi = EXT4_SB(sb);
2905
2906 /*
2907 * switch to non delalloc mode if we are running low
2908 * on free block. The free block accounting via percpu
179f7ebf 2909 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2910 * accumulated on each CPU without updating global counters
2911 * Delalloc need an accurate free block accounting. So switch
2912 * to non delalloc when we are near to error range.
2913 */
5c1ff336
EW
2914 free_clusters =
2915 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2916 dirty_clusters =
2917 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2918 /*
2919 * Start pushing delalloc when 1/2 of free blocks are dirty.
2920 */
5c1ff336 2921 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2922 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2923
5c1ff336
EW
2924 if (2 * free_clusters < 3 * dirty_clusters ||
2925 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2926 /*
c8afb446
ES
2927 * free block count is less than 150% of dirty blocks
2928 * or free blocks is less than watermark
79f0be8d
AK
2929 */
2930 return 1;
2931 }
2932 return 0;
2933}
2934
0ff8947f
ES
2935/* We always reserve for an inode update; the superblock could be there too */
2936static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2937{
e2b911c5 2938 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2939 return 1;
2940
2941 if (pos + len <= 0x7fffffffULL)
2942 return 1;
2943
2944 /* We might need to update the superblock to set LARGE_FILE */
2945 return 2;
2946}
2947
64769240 2948static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2949 loff_t pos, unsigned len, unsigned flags,
2950 struct page **pagep, void **fsdata)
64769240 2951{
72b8ab9d 2952 int ret, retries = 0;
64769240
AT
2953 struct page *page;
2954 pgoff_t index;
64769240
AT
2955 struct inode *inode = mapping->host;
2956 handle_t *handle;
2957
0db1ff22
TT
2958 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2959 return -EIO;
2960
09cbfeaf 2961 index = pos >> PAGE_SHIFT;
79f0be8d 2962
c93d8f88
EB
2963 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2964 ext4_verity_in_progress(inode)) {
79f0be8d
AK
2965 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2966 return ext4_write_begin(file, mapping, pos,
2967 len, flags, pagep, fsdata);
2968 }
2969 *fsdata = (void *)0;
9bffad1e 2970 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2971
2972 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2973 ret = ext4_da_write_inline_data_begin(mapping, inode,
2974 pos, len, flags,
2975 pagep, fsdata);
2976 if (ret < 0)
47564bfb
TT
2977 return ret;
2978 if (ret == 1)
2979 return 0;
9c3569b5
TM
2980 }
2981
47564bfb
TT
2982 /*
2983 * grab_cache_page_write_begin() can take a long time if the
2984 * system is thrashing due to memory pressure, or if the page
2985 * is being written back. So grab it first before we start
2986 * the transaction handle. This also allows us to allocate
2987 * the page (if needed) without using GFP_NOFS.
2988 */
2989retry_grab:
2990 page = grab_cache_page_write_begin(mapping, index, flags);
2991 if (!page)
2992 return -ENOMEM;
2993 unlock_page(page);
2994
64769240
AT
2995 /*
2996 * With delayed allocation, we don't log the i_disksize update
2997 * if there is delayed block allocation. But we still need
2998 * to journalling the i_disksize update if writes to the end
2999 * of file which has an already mapped buffer.
3000 */
47564bfb 3001retry_journal:
0ff8947f
ES
3002 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3003 ext4_da_write_credits(inode, pos, len));
64769240 3004 if (IS_ERR(handle)) {
09cbfeaf 3005 put_page(page);
47564bfb 3006 return PTR_ERR(handle);
64769240
AT
3007 }
3008
47564bfb
TT
3009 lock_page(page);
3010 if (page->mapping != mapping) {
3011 /* The page got truncated from under us */
3012 unlock_page(page);
09cbfeaf 3013 put_page(page);
d5a0d4f7 3014 ext4_journal_stop(handle);
47564bfb 3015 goto retry_grab;
d5a0d4f7 3016 }
47564bfb 3017 /* In case writeback began while the page was unlocked */
7afe5aa5 3018 wait_for_stable_page(page);
64769240 3019
643fa961 3020#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
3021 ret = ext4_block_write_begin(page, pos, len,
3022 ext4_da_get_block_prep);
3023#else
6e1db88d 3024 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 3025#endif
64769240
AT
3026 if (ret < 0) {
3027 unlock_page(page);
3028 ext4_journal_stop(handle);
ae4d5372
AK
3029 /*
3030 * block_write_begin may have instantiated a few blocks
3031 * outside i_size. Trim these off again. Don't need
3032 * i_size_read because we hold i_mutex.
3033 */
3034 if (pos + len > inode->i_size)
b9a4207d 3035 ext4_truncate_failed_write(inode);
47564bfb
TT
3036
3037 if (ret == -ENOSPC &&
3038 ext4_should_retry_alloc(inode->i_sb, &retries))
3039 goto retry_journal;
3040
09cbfeaf 3041 put_page(page);
47564bfb 3042 return ret;
64769240
AT
3043 }
3044
47564bfb 3045 *pagep = page;
64769240
AT
3046 return ret;
3047}
3048
632eaeab
MC
3049/*
3050 * Check if we should update i_disksize
3051 * when write to the end of file but not require block allocation
3052 */
3053static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3054 unsigned long offset)
632eaeab
MC
3055{
3056 struct buffer_head *bh;
3057 struct inode *inode = page->mapping->host;
3058 unsigned int idx;
3059 int i;
3060
3061 bh = page_buffers(page);
3062 idx = offset >> inode->i_blkbits;
3063
af5bc92d 3064 for (i = 0; i < idx; i++)
632eaeab
MC
3065 bh = bh->b_this_page;
3066
29fa89d0 3067 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3068 return 0;
3069 return 1;
3070}
3071
64769240 3072static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3073 struct address_space *mapping,
3074 loff_t pos, unsigned len, unsigned copied,
3075 struct page *page, void *fsdata)
64769240
AT
3076{
3077 struct inode *inode = mapping->host;
3078 int ret = 0, ret2;
3079 handle_t *handle = ext4_journal_current_handle();
3080 loff_t new_i_size;
632eaeab 3081 unsigned long start, end;
79f0be8d
AK
3082 int write_mode = (int)(unsigned long)fsdata;
3083
74d553aa
TT
3084 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3085 return ext4_write_end(file, mapping, pos,
3086 len, copied, page, fsdata);
632eaeab 3087
9bffad1e 3088 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3089 start = pos & (PAGE_SIZE - 1);
af5bc92d 3090 end = start + copied - 1;
64769240
AT
3091
3092 /*
3093 * generic_write_end() will run mark_inode_dirty() if i_size
3094 * changes. So let's piggyback the i_disksize mark_inode_dirty
3095 * into that.
3096 */
64769240 3097 new_i_size = pos + copied;
ea51d132 3098 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3099 if (ext4_has_inline_data(inode) ||
3100 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3101 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3102 /* We need to mark inode dirty even if
3103 * new_i_size is less that inode->i_size
3104 * bu greater than i_disksize.(hint delalloc)
3105 */
4209ae12 3106 ret = ext4_mark_inode_dirty(handle, inode);
64769240 3107 }
632eaeab 3108 }
9c3569b5
TM
3109
3110 if (write_mode != CONVERT_INLINE_DATA &&
3111 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3112 ext4_has_inline_data(inode))
3113 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3114 page);
3115 else
3116 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3117 page, fsdata);
9c3569b5 3118
64769240
AT
3119 copied = ret2;
3120 if (ret2 < 0)
3121 ret = ret2;
3122 ret2 = ext4_journal_stop(handle);
4209ae12 3123 if (unlikely(ret2 && !ret))
64769240
AT
3124 ret = ret2;
3125
3126 return ret ? ret : copied;
3127}
3128
ccd2506b
TT
3129/*
3130 * Force all delayed allocation blocks to be allocated for a given inode.
3131 */
3132int ext4_alloc_da_blocks(struct inode *inode)
3133{
fb40ba0d
TT
3134 trace_ext4_alloc_da_blocks(inode);
3135
71d4f7d0 3136 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3137 return 0;
3138
3139 /*
3140 * We do something simple for now. The filemap_flush() will
3141 * also start triggering a write of the data blocks, which is
3142 * not strictly speaking necessary (and for users of
3143 * laptop_mode, not even desirable). However, to do otherwise
3144 * would require replicating code paths in:
de9a55b8 3145 *
20970ba6 3146 * ext4_writepages() ->
ccd2506b
TT
3147 * write_cache_pages() ---> (via passed in callback function)
3148 * __mpage_da_writepage() -->
3149 * mpage_add_bh_to_extent()
3150 * mpage_da_map_blocks()
3151 *
3152 * The problem is that write_cache_pages(), located in
3153 * mm/page-writeback.c, marks pages clean in preparation for
3154 * doing I/O, which is not desirable if we're not planning on
3155 * doing I/O at all.
3156 *
3157 * We could call write_cache_pages(), and then redirty all of
380cf090 3158 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3159 * would be ugly in the extreme. So instead we would need to
3160 * replicate parts of the code in the above functions,
25985edc 3161 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3162 * write out the pages, but rather only collect contiguous
3163 * logical block extents, call the multi-block allocator, and
3164 * then update the buffer heads with the block allocations.
de9a55b8 3165 *
ccd2506b
TT
3166 * For now, though, we'll cheat by calling filemap_flush(),
3167 * which will map the blocks, and start the I/O, but not
3168 * actually wait for the I/O to complete.
3169 */
3170 return filemap_flush(inode->i_mapping);
3171}
64769240 3172
ac27a0ec
DK
3173/*
3174 * bmap() is special. It gets used by applications such as lilo and by
3175 * the swapper to find the on-disk block of a specific piece of data.
3176 *
3177 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3178 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3179 * filesystem and enables swap, then they may get a nasty shock when the
3180 * data getting swapped to that swapfile suddenly gets overwritten by
3181 * the original zero's written out previously to the journal and
3182 * awaiting writeback in the kernel's buffer cache.
3183 *
3184 * So, if we see any bmap calls here on a modified, data-journaled file,
3185 * take extra steps to flush any blocks which might be in the cache.
3186 */
617ba13b 3187static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3188{
3189 struct inode *inode = mapping->host;
3190 journal_t *journal;
3191 int err;
3192
46c7f254
TM
3193 /*
3194 * We can get here for an inline file via the FIBMAP ioctl
3195 */
3196 if (ext4_has_inline_data(inode))
3197 return 0;
3198
64769240
AT
3199 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3200 test_opt(inode->i_sb, DELALLOC)) {
3201 /*
3202 * With delalloc we want to sync the file
3203 * so that we can make sure we allocate
3204 * blocks for file
3205 */
3206 filemap_write_and_wait(mapping);
3207 }
3208
19f5fb7a
TT
3209 if (EXT4_JOURNAL(inode) &&
3210 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3211 /*
3212 * This is a REALLY heavyweight approach, but the use of
3213 * bmap on dirty files is expected to be extremely rare:
3214 * only if we run lilo or swapon on a freshly made file
3215 * do we expect this to happen.
3216 *
3217 * (bmap requires CAP_SYS_RAWIO so this does not
3218 * represent an unprivileged user DOS attack --- we'd be
3219 * in trouble if mortal users could trigger this path at
3220 * will.)
3221 *
617ba13b 3222 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3223 * regular files. If somebody wants to bmap a directory
3224 * or symlink and gets confused because the buffer
3225 * hasn't yet been flushed to disk, they deserve
3226 * everything they get.
3227 */
3228
19f5fb7a 3229 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3230 journal = EXT4_JOURNAL(inode);
dab291af 3231 jbd2_journal_lock_updates(journal);
01d5d965 3232 err = jbd2_journal_flush(journal, 0);
dab291af 3233 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3234
3235 if (err)
3236 return 0;
3237 }
3238
ac58e4fb 3239 return iomap_bmap(mapping, block, &ext4_iomap_ops);
ac27a0ec
DK
3240}
3241
617ba13b 3242static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3243{
46c7f254
TM
3244 int ret = -EAGAIN;
3245 struct inode *inode = page->mapping->host;
3246
0562e0ba 3247 trace_ext4_readpage(page);
46c7f254
TM
3248
3249 if (ext4_has_inline_data(inode))
3250 ret = ext4_readpage_inline(inode, page);
3251
3252 if (ret == -EAGAIN)
a07f624b 3253 return ext4_mpage_readpages(inode, NULL, page);
46c7f254
TM
3254
3255 return ret;
ac27a0ec
DK
3256}
3257
6311f91f 3258static void ext4_readahead(struct readahead_control *rac)
ac27a0ec 3259{
6311f91f 3260 struct inode *inode = rac->mapping->host;
46c7f254 3261
6311f91f 3262 /* If the file has inline data, no need to do readahead. */
46c7f254 3263 if (ext4_has_inline_data(inode))
6311f91f 3264 return;
46c7f254 3265
a07f624b 3266 ext4_mpage_readpages(inode, rac, NULL);
ac27a0ec
DK
3267}
3268
d47992f8
LC
3269static void ext4_invalidatepage(struct page *page, unsigned int offset,
3270 unsigned int length)
ac27a0ec 3271{
ca99fdd2 3272 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3273
4520fb3c
JK
3274 /* No journalling happens on data buffers when this function is used */
3275 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3276
ca99fdd2 3277 block_invalidatepage(page, offset, length);
4520fb3c
JK
3278}
3279
53e87268 3280static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3281 unsigned int offset,
3282 unsigned int length)
4520fb3c
JK
3283{
3284 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3285
ca99fdd2 3286 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3287
ac27a0ec
DK
3288 /*
3289 * If it's a full truncate we just forget about the pending dirtying
3290 */
09cbfeaf 3291 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3292 ClearPageChecked(page);
3293
ca99fdd2 3294 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3295}
3296
3297/* Wrapper for aops... */
3298static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3299 unsigned int offset,
3300 unsigned int length)
53e87268 3301{
ca99fdd2 3302 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3303}
3304
617ba13b 3305static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3306{
617ba13b 3307 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3308
0562e0ba
JZ
3309 trace_ext4_releasepage(page);
3310
e1c36595
JK
3311 /* Page has dirty journalled data -> cannot release */
3312 if (PageChecked(page))
ac27a0ec 3313 return 0;
0390131b 3314 if (journal)
529a781e 3315 return jbd2_journal_try_to_free_buffers(journal, page);
0390131b
FM
3316 else
3317 return try_to_free_buffers(page);
ac27a0ec
DK
3318}
3319
b8a6176c
JK
3320static bool ext4_inode_datasync_dirty(struct inode *inode)
3321{
3322 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3323
aa75f4d3
HS
3324 if (journal) {
3325 if (jbd2_transaction_committed(journal,
d0520df7
AR
3326 EXT4_I(inode)->i_datasync_tid))
3327 return false;
3328 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
1ceecb53 3329 return !list_empty(&EXT4_I(inode)->i_fc_list);
d0520df7 3330 return true;
aa75f4d3
HS
3331 }
3332
b8a6176c
JK
3333 /* Any metadata buffers to write? */
3334 if (!list_empty(&inode->i_mapping->private_list))
3335 return true;
3336 return inode->i_state & I_DIRTY_DATASYNC;
3337}
3338
c8fdfe29
MB
3339static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3340 struct ext4_map_blocks *map, loff_t offset,
3341 loff_t length)
364443cb 3342{
c8fdfe29 3343 u8 blkbits = inode->i_blkbits;
364443cb 3344
c8fdfe29
MB
3345 /*
3346 * Writes that span EOF might trigger an I/O size update on completion,
3347 * so consider them to be dirty for the purpose of O_DSYNC, even if
3348 * there is no other metadata changes being made or are pending.
3349 */
364443cb 3350 iomap->flags = 0;
c8fdfe29
MB
3351 if (ext4_inode_datasync_dirty(inode) ||
3352 offset + length > i_size_read(inode))
b8a6176c 3353 iomap->flags |= IOMAP_F_DIRTY;
c8fdfe29
MB
3354
3355 if (map->m_flags & EXT4_MAP_NEW)
3356 iomap->flags |= IOMAP_F_NEW;
3357
5e405595 3358 iomap->bdev = inode->i_sb->s_bdev;
c8fdfe29
MB
3359 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3360 iomap->offset = (u64) map->m_lblk << blkbits;
3361 iomap->length = (u64) map->m_len << blkbits;
364443cb 3362
6386722a
RH
3363 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3364 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3365 iomap->flags |= IOMAP_F_MERGED;
3366
c8fdfe29
MB
3367 /*
3368 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3369 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3370 * set. In order for any allocated unwritten extents to be converted
3371 * into written extents correctly within the ->end_io() handler, we
3372 * need to ensure that the iomap->type is set appropriately. Hence, the
3373 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3374 * been set first.
3375 */
3376 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3377 iomap->type = IOMAP_UNWRITTEN;
3378 iomap->addr = (u64) map->m_pblk << blkbits;
3379 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3380 iomap->type = IOMAP_MAPPED;
3381 iomap->addr = (u64) map->m_pblk << blkbits;
364443cb 3382 } else {
c8fdfe29
MB
3383 iomap->type = IOMAP_HOLE;
3384 iomap->addr = IOMAP_NULL_ADDR;
364443cb 3385 }
364443cb
JK
3386}
3387
f063db5e
MB
3388static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3389 unsigned int flags)
776722e8 3390{
776722e8 3391 handle_t *handle;
378f32ba
MB
3392 u8 blkbits = inode->i_blkbits;
3393 int ret, dio_credits, m_flags = 0, retries = 0;
776722e8 3394
776722e8 3395 /*
f063db5e
MB
3396 * Trim the mapping request to the maximum value that we can map at
3397 * once for direct I/O.
776722e8 3398 */
f063db5e
MB
3399 if (map->m_len > DIO_MAX_BLOCKS)
3400 map->m_len = DIO_MAX_BLOCKS;
3401 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
776722e8 3402
f063db5e 3403retry:
776722e8 3404 /*
f063db5e
MB
3405 * Either we allocate blocks and then don't get an unwritten extent, so
3406 * in that case we have reserved enough credits. Or, the blocks are
3407 * already allocated and unwritten. In that case, the extent conversion
3408 * fits into the credits as well.
776722e8 3409 */
f063db5e
MB
3410 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3411 if (IS_ERR(handle))
3412 return PTR_ERR(handle);
4c0425ff 3413
378f32ba
MB
3414 /*
3415 * DAX and direct I/O are the only two operations that are currently
3416 * supported with IOMAP_WRITE.
3417 */
3418 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3419 if (IS_DAX(inode))
3420 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3421 /*
3422 * We use i_size instead of i_disksize here because delalloc writeback
3423 * can complete at any point during the I/O and subsequently push the
3424 * i_disksize out to i_size. This could be beyond where direct I/O is
3425 * happening and thus expose allocated blocks to direct I/O reads.
3426 */
d0b040f5 3427 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
378f32ba
MB
3428 m_flags = EXT4_GET_BLOCKS_CREATE;
3429 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3430 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
4b70df18 3431
378f32ba 3432 ret = ext4_map_blocks(handle, inode, map, m_flags);
8d5d02e6 3433
74c66bcb 3434 /*
378f32ba
MB
3435 * We cannot fill holes in indirect tree based inodes as that could
3436 * expose stale data in the case of a crash. Use the magic error code
3437 * to fallback to buffered I/O.
74c66bcb 3438 */
378f32ba
MB
3439 if (!m_flags && !ret)
3440 ret = -ENOTBLK;
187372a3 3441
f063db5e
MB
3442 ext4_journal_stop(handle);
3443 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3444 goto retry;
3445
3446 return ret;
4c0425ff 3447}
c7064ef1 3448
f063db5e 3449
364443cb 3450static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
c039b997 3451 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
4c0425ff 3452{
364443cb 3453 int ret;
09edf4d3
MB
3454 struct ext4_map_blocks map;
3455 u8 blkbits = inode->i_blkbits;
729f52c6 3456
bcd8e91f
TT
3457 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3458 return -EINVAL;
4bd809db 3459
09edf4d3
MB
3460 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3461 return -ERANGE;
4bd809db 3462
e8340395 3463 /*
09edf4d3 3464 * Calculate the first and last logical blocks respectively.
e8340395 3465 */
09edf4d3
MB
3466 map.m_lblk = offset >> blkbits;
3467 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3468 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
e8340395 3469
9faac62d
RH
3470 if (flags & IOMAP_WRITE) {
3471 /*
3472 * We check here if the blocks are already allocated, then we
3473 * don't need to start a journal txn and we can directly return
3474 * the mapping information. This could boost performance
3475 * especially in multi-threaded overwrite requests.
3476 */
3477 if (offset + length <= i_size_read(inode)) {
3478 ret = ext4_map_blocks(NULL, inode, &map, 0);
3479 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3480 goto out;
3481 }
f063db5e 3482 ret = ext4_iomap_alloc(inode, &map, flags);
9faac62d 3483 } else {
545052e9 3484 ret = ext4_map_blocks(NULL, inode, &map, 0);
9faac62d 3485 }
4bd809db 3486
f063db5e
MB
3487 if (ret < 0)
3488 return ret;
9faac62d 3489out:
c8fdfe29 3490 ext4_set_iomap(inode, iomap, &map, offset, length);
4bd809db 3491
364443cb
JK
3492 return 0;
3493}
8d5d02e6 3494
8cd115bd
JK
3495static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3496 loff_t length, unsigned flags, struct iomap *iomap,
3497 struct iomap *srcmap)
3498{
3499 int ret;
3500
3501 /*
3502 * Even for writes we don't need to allocate blocks, so just pretend
3503 * we are reading to save overhead of starting a transaction.
3504 */
3505 flags &= ~IOMAP_WRITE;
3506 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3507 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3508 return ret;
3509}
3510
776722e8
JK
3511static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3512 ssize_t written, unsigned flags, struct iomap *iomap)
3513{
69c499d1 3514 /*
378f32ba
MB
3515 * Check to see whether an error occurred while writing out the data to
3516 * the allocated blocks. If so, return the magic error code so that we
3517 * fallback to buffered I/O and attempt to complete the remainder of
3518 * the I/O. Any blocks that may have been allocated in preparation for
3519 * the direct I/O will be reused during buffered I/O.
69c499d1 3520 */
378f32ba
MB
3521 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3522 return -ENOTBLK;
69c499d1 3523
569342dc 3524 return 0;
776722e8 3525}
4bd809db 3526
8ff6daa1 3527const struct iomap_ops ext4_iomap_ops = {
364443cb 3528 .iomap_begin = ext4_iomap_begin,
776722e8 3529 .iomap_end = ext4_iomap_end,
364443cb 3530};
8d5d02e6 3531
8cd115bd
JK
3532const struct iomap_ops ext4_iomap_overwrite_ops = {
3533 .iomap_begin = ext4_iomap_overwrite_begin,
3534 .iomap_end = ext4_iomap_end,
3535};
3536
09edf4d3
MB
3537static bool ext4_iomap_is_delalloc(struct inode *inode,
3538 struct ext4_map_blocks *map)
3539{
3540 struct extent_status es;
3541 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
914f82a3 3542
09edf4d3
MB
3543 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3544 map->m_lblk, end, &es);
914f82a3 3545
09edf4d3
MB
3546 if (!es.es_len || es.es_lblk > end)
3547 return false;
914f82a3 3548
09edf4d3
MB
3549 if (es.es_lblk > map->m_lblk) {
3550 map->m_len = es.es_lblk - map->m_lblk;
3551 return false;
914f82a3 3552 }
914f82a3 3553
09edf4d3
MB
3554 offset = map->m_lblk - es.es_lblk;
3555 map->m_len = es.es_len - offset;
914f82a3 3556
09edf4d3 3557 return true;
4c0425ff
MC
3558}
3559
09edf4d3
MB
3560static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3561 loff_t length, unsigned int flags,
3562 struct iomap *iomap, struct iomap *srcmap)
4c0425ff 3563{
09edf4d3
MB
3564 int ret;
3565 bool delalloc = false;
3566 struct ext4_map_blocks map;
3567 u8 blkbits = inode->i_blkbits;
4c0425ff 3568
09edf4d3
MB
3569 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3570 return -EINVAL;
3571
3572 if (ext4_has_inline_data(inode)) {
3573 ret = ext4_inline_data_iomap(inode, iomap);
3574 if (ret != -EAGAIN) {
3575 if (ret == 0 && offset >= iomap->length)
3576 ret = -ENOENT;
3577 return ret;
3578 }
3579 }
2058f83a 3580
84ebd795 3581 /*
09edf4d3 3582 * Calculate the first and last logical block respectively.
84ebd795 3583 */
09edf4d3
MB
3584 map.m_lblk = offset >> blkbits;
3585 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3586 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
84ebd795 3587
b2c57642
RH
3588 /*
3589 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3590 * So handle it here itself instead of querying ext4_map_blocks().
3591 * Since ext4_map_blocks() will warn about it and will return
3592 * -EIO error.
3593 */
3594 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3595 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3596
3597 if (offset >= sbi->s_bitmap_maxbytes) {
3598 map.m_flags = 0;
3599 goto set_iomap;
3600 }
3601 }
3602
09edf4d3
MB
3603 ret = ext4_map_blocks(NULL, inode, &map, 0);
3604 if (ret < 0)
3605 return ret;
3606 if (ret == 0)
3607 delalloc = ext4_iomap_is_delalloc(inode, &map);
46c7f254 3608
b2c57642 3609set_iomap:
09edf4d3
MB
3610 ext4_set_iomap(inode, iomap, &map, offset, length);
3611 if (delalloc && iomap->type == IOMAP_HOLE)
3612 iomap->type = IOMAP_DELALLOC;
3613
3614 return 0;
4c0425ff
MC
3615}
3616
09edf4d3
MB
3617const struct iomap_ops ext4_iomap_report_ops = {
3618 .iomap_begin = ext4_iomap_begin_report,
3619};
3620
ac27a0ec 3621/*
617ba13b 3622 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3623 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3624 * much here because ->set_page_dirty is called under VFS locks. The page is
3625 * not necessarily locked.
3626 *
3627 * We cannot just dirty the page and leave attached buffers clean, because the
3628 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3629 * or jbddirty because all the journalling code will explode.
3630 *
3631 * So what we do is to mark the page "pending dirty" and next time writepage
3632 * is called, propagate that into the buffers appropriately.
3633 */
617ba13b 3634static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3635{
3636 SetPageChecked(page);
3637 return __set_page_dirty_nobuffers(page);
3638}
3639
6dcc693b
JK
3640static int ext4_set_page_dirty(struct page *page)
3641{
3642 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3643 WARN_ON_ONCE(!page_has_buffers(page));
3644 return __set_page_dirty_buffers(page);
3645}
3646
0e6895ba
RH
3647static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3648 struct file *file, sector_t *span)
3649{
3650 return iomap_swapfile_activate(sis, file, span,
3651 &ext4_iomap_report_ops);
3652}
3653
74d553aa 3654static const struct address_space_operations ext4_aops = {
8ab22b9a 3655 .readpage = ext4_readpage,
6311f91f 3656 .readahead = ext4_readahead,
43ce1d23 3657 .writepage = ext4_writepage,
20970ba6 3658 .writepages = ext4_writepages,
8ab22b9a 3659 .write_begin = ext4_write_begin,
74d553aa 3660 .write_end = ext4_write_end,
6dcc693b 3661 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3662 .bmap = ext4_bmap,
3663 .invalidatepage = ext4_invalidatepage,
3664 .releasepage = ext4_releasepage,
378f32ba 3665 .direct_IO = noop_direct_IO,
8ab22b9a
HH
3666 .migratepage = buffer_migrate_page,
3667 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3668 .error_remove_page = generic_error_remove_page,
0e6895ba 3669 .swap_activate = ext4_iomap_swap_activate,
ac27a0ec
DK
3670};
3671
617ba13b 3672static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a 3673 .readpage = ext4_readpage,
6311f91f 3674 .readahead = ext4_readahead,
43ce1d23 3675 .writepage = ext4_writepage,
20970ba6 3676 .writepages = ext4_writepages,
8ab22b9a
HH
3677 .write_begin = ext4_write_begin,
3678 .write_end = ext4_journalled_write_end,
3679 .set_page_dirty = ext4_journalled_set_page_dirty,
3680 .bmap = ext4_bmap,
4520fb3c 3681 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3682 .releasepage = ext4_releasepage,
378f32ba 3683 .direct_IO = noop_direct_IO,
8ab22b9a 3684 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3685 .error_remove_page = generic_error_remove_page,
0e6895ba 3686 .swap_activate = ext4_iomap_swap_activate,
ac27a0ec
DK
3687};
3688
64769240 3689static const struct address_space_operations ext4_da_aops = {
8ab22b9a 3690 .readpage = ext4_readpage,
6311f91f 3691 .readahead = ext4_readahead,
43ce1d23 3692 .writepage = ext4_writepage,
20970ba6 3693 .writepages = ext4_writepages,
8ab22b9a
HH
3694 .write_begin = ext4_da_write_begin,
3695 .write_end = ext4_da_write_end,
6dcc693b 3696 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a 3697 .bmap = ext4_bmap,
8fcc3a58 3698 .invalidatepage = ext4_invalidatepage,
8ab22b9a 3699 .releasepage = ext4_releasepage,
378f32ba 3700 .direct_IO = noop_direct_IO,
8ab22b9a
HH
3701 .migratepage = buffer_migrate_page,
3702 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3703 .error_remove_page = generic_error_remove_page,
0e6895ba 3704 .swap_activate = ext4_iomap_swap_activate,
64769240
AT
3705};
3706
5f0663bb
DW
3707static const struct address_space_operations ext4_dax_aops = {
3708 .writepages = ext4_dax_writepages,
3709 .direct_IO = noop_direct_IO,
b82a96c9 3710 .set_page_dirty = __set_page_dirty_no_writeback,
94dbb631 3711 .bmap = ext4_bmap,
5f0663bb 3712 .invalidatepage = noop_invalidatepage,
0e6895ba 3713 .swap_activate = ext4_iomap_swap_activate,
5f0663bb
DW
3714};
3715
617ba13b 3716void ext4_set_aops(struct inode *inode)
ac27a0ec 3717{
3d2b1582
LC
3718 switch (ext4_inode_journal_mode(inode)) {
3719 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3720 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3721 break;
3722 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3723 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3724 return;
3d2b1582
LC
3725 default:
3726 BUG();
3727 }
5f0663bb
DW
3728 if (IS_DAX(inode))
3729 inode->i_mapping->a_ops = &ext4_dax_aops;
3730 else if (test_opt(inode->i_sb, DELALLOC))
74d553aa
TT
3731 inode->i_mapping->a_ops = &ext4_da_aops;
3732 else
3733 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3734}
3735
923ae0ff 3736static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3737 struct address_space *mapping, loff_t from, loff_t length)
3738{
09cbfeaf
KS
3739 ext4_fsblk_t index = from >> PAGE_SHIFT;
3740 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3741 unsigned blocksize, pos;
d863dc36
LC
3742 ext4_lblk_t iblock;
3743 struct inode *inode = mapping->host;
3744 struct buffer_head *bh;
3745 struct page *page;
3746 int err = 0;
3747
09cbfeaf 3748 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3749 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3750 if (!page)
3751 return -ENOMEM;
3752
3753 blocksize = inode->i_sb->s_blocksize;
d863dc36 3754
09cbfeaf 3755 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3756
3757 if (!page_has_buffers(page))
3758 create_empty_buffers(page, blocksize, 0);
3759
3760 /* Find the buffer that contains "offset" */
3761 bh = page_buffers(page);
3762 pos = blocksize;
3763 while (offset >= pos) {
3764 bh = bh->b_this_page;
3765 iblock++;
3766 pos += blocksize;
3767 }
d863dc36
LC
3768 if (buffer_freed(bh)) {
3769 BUFFER_TRACE(bh, "freed: skip");
3770 goto unlock;
3771 }
d863dc36
LC
3772 if (!buffer_mapped(bh)) {
3773 BUFFER_TRACE(bh, "unmapped");
3774 ext4_get_block(inode, iblock, bh, 0);
3775 /* unmapped? It's a hole - nothing to do */
3776 if (!buffer_mapped(bh)) {
3777 BUFFER_TRACE(bh, "still unmapped");
3778 goto unlock;
3779 }
3780 }
3781
3782 /* Ok, it's mapped. Make sure it's up-to-date */
3783 if (PageUptodate(page))
3784 set_buffer_uptodate(bh);
3785
3786 if (!buffer_uptodate(bh)) {
2d069c08 3787 err = ext4_read_bh_lock(bh, 0, true);
3788 if (err)
d863dc36 3789 goto unlock;
4f74d15f 3790 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
c9c7429c 3791 /* We expect the key to be set. */
a7550b30 3792 BUG_ON(!fscrypt_has_encryption_key(inode));
834f1565
EB
3793 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3794 bh_offset(bh));
3795 if (err) {
3796 clear_buffer_uptodate(bh);
3797 goto unlock;
3798 }
c9c7429c 3799 }
d863dc36 3800 }
d863dc36
LC
3801 if (ext4_should_journal_data(inode)) {
3802 BUFFER_TRACE(bh, "get write access");
188c299e
JK
3803 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3804 EXT4_JTR_NONE);
d863dc36
LC
3805 if (err)
3806 goto unlock;
3807 }
d863dc36 3808 zero_user(page, offset, length);
d863dc36
LC
3809 BUFFER_TRACE(bh, "zeroed end of block");
3810
d863dc36
LC
3811 if (ext4_should_journal_data(inode)) {
3812 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3813 } else {
353eefd3 3814 err = 0;
d863dc36 3815 mark_buffer_dirty(bh);
3957ef53 3816 if (ext4_should_order_data(inode))
73131fbb
RZ
3817 err = ext4_jbd2_inode_add_write(handle, inode, from,
3818 length);
0713ed0c 3819 }
d863dc36
LC
3820
3821unlock:
3822 unlock_page(page);
09cbfeaf 3823 put_page(page);
d863dc36
LC
3824 return err;
3825}
3826
923ae0ff
RZ
3827/*
3828 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3829 * starting from file offset 'from'. The range to be zero'd must
3830 * be contained with in one block. If the specified range exceeds
3831 * the end of the block it will be shortened to end of the block
3088e5a5 3832 * that corresponds to 'from'
923ae0ff
RZ
3833 */
3834static int ext4_block_zero_page_range(handle_t *handle,
3835 struct address_space *mapping, loff_t from, loff_t length)
3836{
3837 struct inode *inode = mapping->host;
09cbfeaf 3838 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3839 unsigned blocksize = inode->i_sb->s_blocksize;
3840 unsigned max = blocksize - (offset & (blocksize - 1));
3841
3842 /*
3843 * correct length if it does not fall between
3844 * 'from' and the end of the block
3845 */
3846 if (length > max || length < 0)
3847 length = max;
3848
47e69351
JK
3849 if (IS_DAX(inode)) {
3850 return iomap_zero_range(inode, from, length, NULL,
3851 &ext4_iomap_ops);
3852 }
923ae0ff
RZ
3853 return __ext4_block_zero_page_range(handle, mapping, from, length);
3854}
3855
94350ab5
MW
3856/*
3857 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3858 * up to the end of the block which corresponds to `from'.
3859 * This required during truncate. We need to physically zero the tail end
3860 * of that block so it doesn't yield old data if the file is later grown.
3861 */
c197855e 3862static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3863 struct address_space *mapping, loff_t from)
3864{
09cbfeaf 3865 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
3866 unsigned length;
3867 unsigned blocksize;
3868 struct inode *inode = mapping->host;
3869
0d06863f 3870 /* If we are processing an encrypted inode during orphan list handling */
592ddec7 3871 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
0d06863f
TT
3872 return 0;
3873
94350ab5
MW
3874 blocksize = inode->i_sb->s_blocksize;
3875 length = blocksize - (offset & (blocksize - 1));
3876
3877 return ext4_block_zero_page_range(handle, mapping, from, length);
3878}
3879
a87dd18c
LC
3880int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3881 loff_t lstart, loff_t length)
3882{
3883 struct super_block *sb = inode->i_sb;
3884 struct address_space *mapping = inode->i_mapping;
e1be3a92 3885 unsigned partial_start, partial_end;
a87dd18c
LC
3886 ext4_fsblk_t start, end;
3887 loff_t byte_end = (lstart + length - 1);
3888 int err = 0;
3889
e1be3a92
LC
3890 partial_start = lstart & (sb->s_blocksize - 1);
3891 partial_end = byte_end & (sb->s_blocksize - 1);
3892
a87dd18c
LC
3893 start = lstart >> sb->s_blocksize_bits;
3894 end = byte_end >> sb->s_blocksize_bits;
3895
3896 /* Handle partial zero within the single block */
e1be3a92
LC
3897 if (start == end &&
3898 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3899 err = ext4_block_zero_page_range(handle, mapping,
3900 lstart, length);
3901 return err;
3902 }
3903 /* Handle partial zero out on the start of the range */
e1be3a92 3904 if (partial_start) {
a87dd18c
LC
3905 err = ext4_block_zero_page_range(handle, mapping,
3906 lstart, sb->s_blocksize);
3907 if (err)
3908 return err;
3909 }
3910 /* Handle partial zero out on the end of the range */
e1be3a92 3911 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3912 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3913 byte_end - partial_end,
3914 partial_end + 1);
a87dd18c
LC
3915 return err;
3916}
3917
91ef4caf
DG
3918int ext4_can_truncate(struct inode *inode)
3919{
91ef4caf
DG
3920 if (S_ISREG(inode->i_mode))
3921 return 1;
3922 if (S_ISDIR(inode->i_mode))
3923 return 1;
3924 if (S_ISLNK(inode->i_mode))
3925 return !ext4_inode_is_fast_symlink(inode);
3926 return 0;
3927}
3928
01127848
JK
3929/*
3930 * We have to make sure i_disksize gets properly updated before we truncate
3931 * page cache due to hole punching or zero range. Otherwise i_disksize update
3932 * can get lost as it may have been postponed to submission of writeback but
3933 * that will never happen after we truncate page cache.
3934 */
3935int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3936 loff_t len)
3937{
3938 handle_t *handle;
4209ae12
HS
3939 int ret;
3940
01127848
JK
3941 loff_t size = i_size_read(inode);
3942
5955102c 3943 WARN_ON(!inode_is_locked(inode));
01127848
JK
3944 if (offset > size || offset + len < size)
3945 return 0;
3946
3947 if (EXT4_I(inode)->i_disksize >= size)
3948 return 0;
3949
3950 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3951 if (IS_ERR(handle))
3952 return PTR_ERR(handle);
3953 ext4_update_i_disksize(inode, size);
4209ae12 3954 ret = ext4_mark_inode_dirty(handle, inode);
01127848
JK
3955 ext4_journal_stop(handle);
3956
4209ae12 3957 return ret;
01127848
JK
3958}
3959
b1f38217 3960static void ext4_wait_dax_page(struct ext4_inode_info *ei)
430657b6 3961{
430657b6
RZ
3962 up_write(&ei->i_mmap_sem);
3963 schedule();
3964 down_write(&ei->i_mmap_sem);
3965}
3966
3967int ext4_break_layouts(struct inode *inode)
3968{
3969 struct ext4_inode_info *ei = EXT4_I(inode);
3970 struct page *page;
430657b6
RZ
3971 int error;
3972
3973 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3974 return -EINVAL;
3975
3976 do {
430657b6
RZ
3977 page = dax_layout_busy_page(inode->i_mapping);
3978 if (!page)
3979 return 0;
3980
3981 error = ___wait_var_event(&page->_refcount,
3982 atomic_read(&page->_refcount) == 1,
3983 TASK_INTERRUPTIBLE, 0, 0,
b1f38217
RZ
3984 ext4_wait_dax_page(ei));
3985 } while (error == 0);
430657b6
RZ
3986
3987 return error;
3988}
3989
a4bb6b64 3990/*
cca32b7e 3991 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
3992 * associated with the given offset and length
3993 *
3994 * @inode: File inode
3995 * @offset: The offset where the hole will begin
3996 * @len: The length of the hole
3997 *
4907cb7b 3998 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3999 */
4000
aeb2817a 4001int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4002{
26a4c0c6
TT
4003 struct super_block *sb = inode->i_sb;
4004 ext4_lblk_t first_block, stop_block;
4005 struct address_space *mapping = inode->i_mapping;
a87dd18c 4006 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4007 handle_t *handle;
4008 unsigned int credits;
4209ae12 4009 int ret = 0, ret2 = 0;
26a4c0c6 4010
b8a86845 4011 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4012
c1e8220b
TT
4013 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4014 if (ext4_has_inline_data(inode)) {
4015 down_write(&EXT4_I(inode)->i_mmap_sem);
4016 ret = ext4_convert_inline_data(inode);
4017 up_write(&EXT4_I(inode)->i_mmap_sem);
4018 if (ret)
4019 return ret;
4020 }
4021
26a4c0c6
TT
4022 /*
4023 * Write out all dirty pages to avoid race conditions
4024 * Then release them.
4025 */
cca32b7e 4026 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4027 ret = filemap_write_and_wait_range(mapping, offset,
4028 offset + length - 1);
4029 if (ret)
4030 return ret;
4031 }
4032
5955102c 4033 inode_lock(inode);
9ef06cec 4034
26a4c0c6
TT
4035 /* No need to punch hole beyond i_size */
4036 if (offset >= inode->i_size)
4037 goto out_mutex;
4038
4039 /*
4040 * If the hole extends beyond i_size, set the hole
4041 * to end after the page that contains i_size
4042 */
4043 if (offset + length > inode->i_size) {
4044 length = inode->i_size +
09cbfeaf 4045 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4046 offset;
4047 }
4048
a361293f
JK
4049 if (offset & (sb->s_blocksize - 1) ||
4050 (offset + length) & (sb->s_blocksize - 1)) {
4051 /*
4052 * Attach jinode to inode for jbd2 if we do any zeroing of
4053 * partial block
4054 */
4055 ret = ext4_inode_attach_jinode(inode);
4056 if (ret < 0)
4057 goto out_mutex;
4058
4059 }
4060
ea3d7209 4061 /* Wait all existing dio workers, newcomers will block on i_mutex */
ea3d7209
JK
4062 inode_dio_wait(inode);
4063
4064 /*
4065 * Prevent page faults from reinstantiating pages we have released from
4066 * page cache.
4067 */
4068 down_write(&EXT4_I(inode)->i_mmap_sem);
430657b6
RZ
4069
4070 ret = ext4_break_layouts(inode);
4071 if (ret)
4072 goto out_dio;
4073
a87dd18c
LC
4074 first_block_offset = round_up(offset, sb->s_blocksize);
4075 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4076
a87dd18c 4077 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4078 if (last_block_offset > first_block_offset) {
4079 ret = ext4_update_disksize_before_punch(inode, offset, length);
4080 if (ret)
4081 goto out_dio;
a87dd18c
LC
4082 truncate_pagecache_range(inode, first_block_offset,
4083 last_block_offset);
01127848 4084 }
26a4c0c6
TT
4085
4086 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4087 credits = ext4_writepage_trans_blocks(inode);
4088 else
4089 credits = ext4_blocks_for_truncate(inode);
4090 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4091 if (IS_ERR(handle)) {
4092 ret = PTR_ERR(handle);
4093 ext4_std_error(sb, ret);
4094 goto out_dio;
4095 }
4096
a87dd18c
LC
4097 ret = ext4_zero_partial_blocks(handle, inode, offset,
4098 length);
4099 if (ret)
4100 goto out_stop;
26a4c0c6
TT
4101
4102 first_block = (offset + sb->s_blocksize - 1) >>
4103 EXT4_BLOCK_SIZE_BITS(sb);
4104 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4105
eee597ac
LC
4106 /* If there are blocks to remove, do it */
4107 if (stop_block > first_block) {
26a4c0c6 4108
eee597ac 4109 down_write(&EXT4_I(inode)->i_data_sem);
27bc446e 4110 ext4_discard_preallocations(inode, 0);
26a4c0c6 4111
eee597ac
LC
4112 ret = ext4_es_remove_extent(inode, first_block,
4113 stop_block - first_block);
4114 if (ret) {
4115 up_write(&EXT4_I(inode)->i_data_sem);
4116 goto out_stop;
4117 }
26a4c0c6 4118
eee597ac
LC
4119 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4120 ret = ext4_ext_remove_space(inode, first_block,
4121 stop_block - 1);
4122 else
4123 ret = ext4_ind_remove_space(handle, inode, first_block,
4124 stop_block);
26a4c0c6 4125
eee597ac
LC
4126 up_write(&EXT4_I(inode)->i_data_sem);
4127 }
a80f7fcf 4128 ext4_fc_track_range(handle, inode, first_block, stop_block);
26a4c0c6
TT
4129 if (IS_SYNC(inode))
4130 ext4_handle_sync(handle);
e251f9bc 4131
eeca7ea1 4132 inode->i_mtime = inode->i_ctime = current_time(inode);
4209ae12
HS
4133 ret2 = ext4_mark_inode_dirty(handle, inode);
4134 if (unlikely(ret2))
4135 ret = ret2;
67a7d5f5
JK
4136 if (ret >= 0)
4137 ext4_update_inode_fsync_trans(handle, inode, 1);
26a4c0c6
TT
4138out_stop:
4139 ext4_journal_stop(handle);
4140out_dio:
ea3d7209 4141 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6 4142out_mutex:
5955102c 4143 inode_unlock(inode);
26a4c0c6 4144 return ret;
a4bb6b64
AH
4145}
4146
a361293f
JK
4147int ext4_inode_attach_jinode(struct inode *inode)
4148{
4149 struct ext4_inode_info *ei = EXT4_I(inode);
4150 struct jbd2_inode *jinode;
4151
4152 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4153 return 0;
4154
4155 jinode = jbd2_alloc_inode(GFP_KERNEL);
4156 spin_lock(&inode->i_lock);
4157 if (!ei->jinode) {
4158 if (!jinode) {
4159 spin_unlock(&inode->i_lock);
4160 return -ENOMEM;
4161 }
4162 ei->jinode = jinode;
4163 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4164 jinode = NULL;
4165 }
4166 spin_unlock(&inode->i_lock);
4167 if (unlikely(jinode != NULL))
4168 jbd2_free_inode(jinode);
4169 return 0;
4170}
4171
ac27a0ec 4172/*
617ba13b 4173 * ext4_truncate()
ac27a0ec 4174 *
617ba13b
MC
4175 * We block out ext4_get_block() block instantiations across the entire
4176 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4177 * simultaneously on behalf of the same inode.
4178 *
42b2aa86 4179 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4180 * is one core, guiding principle: the file's tree must always be consistent on
4181 * disk. We must be able to restart the truncate after a crash.
4182 *
4183 * The file's tree may be transiently inconsistent in memory (although it
4184 * probably isn't), but whenever we close off and commit a journal transaction,
4185 * the contents of (the filesystem + the journal) must be consistent and
4186 * restartable. It's pretty simple, really: bottom up, right to left (although
4187 * left-to-right works OK too).
4188 *
4189 * Note that at recovery time, journal replay occurs *before* the restart of
4190 * truncate against the orphan inode list.
4191 *
4192 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4193 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4194 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4195 * ext4_truncate() to have another go. So there will be instantiated blocks
4196 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4197 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4198 * ext4_truncate() run will find them and release them.
ac27a0ec 4199 */
2c98eb5e 4200int ext4_truncate(struct inode *inode)
ac27a0ec 4201{
819c4920
TT
4202 struct ext4_inode_info *ei = EXT4_I(inode);
4203 unsigned int credits;
4209ae12 4204 int err = 0, err2;
819c4920
TT
4205 handle_t *handle;
4206 struct address_space *mapping = inode->i_mapping;
819c4920 4207
19b5ef61
TT
4208 /*
4209 * There is a possibility that we're either freeing the inode
e04027e8 4210 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4211 * have i_mutex locked because it's not necessary.
4212 */
4213 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4214 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4215 trace_ext4_truncate_enter(inode);
4216
91ef4caf 4217 if (!ext4_can_truncate(inode))
9a5d265f 4218 goto out_trace;
ac27a0ec 4219
5534fb5b 4220 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4221 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4222
aef1c851
TM
4223 if (ext4_has_inline_data(inode)) {
4224 int has_inline = 1;
4225
01daf945 4226 err = ext4_inline_data_truncate(inode, &has_inline);
9a5d265f 4227 if (err || has_inline)
4228 goto out_trace;
aef1c851
TM
4229 }
4230
a361293f
JK
4231 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4232 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4233 if (ext4_inode_attach_jinode(inode) < 0)
9a5d265f 4234 goto out_trace;
a361293f
JK
4235 }
4236
819c4920
TT
4237 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4238 credits = ext4_writepage_trans_blocks(inode);
4239 else
4240 credits = ext4_blocks_for_truncate(inode);
4241
4242 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
9a5d265f 4243 if (IS_ERR(handle)) {
4244 err = PTR_ERR(handle);
4245 goto out_trace;
4246 }
819c4920 4247
eb3544c6
LC
4248 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4249 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4250
4251 /*
4252 * We add the inode to the orphan list, so that if this
4253 * truncate spans multiple transactions, and we crash, we will
4254 * resume the truncate when the filesystem recovers. It also
4255 * marks the inode dirty, to catch the new size.
4256 *
4257 * Implication: the file must always be in a sane, consistent
4258 * truncatable state while each transaction commits.
4259 */
2c98eb5e
TT
4260 err = ext4_orphan_add(handle, inode);
4261 if (err)
819c4920
TT
4262 goto out_stop;
4263
4264 down_write(&EXT4_I(inode)->i_data_sem);
4265
27bc446e 4266 ext4_discard_preallocations(inode, 0);
819c4920 4267
ff9893dc 4268 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4269 err = ext4_ext_truncate(handle, inode);
ff9893dc 4270 else
819c4920
TT
4271 ext4_ind_truncate(handle, inode);
4272
4273 up_write(&ei->i_data_sem);
d0abb36d
TT
4274 if (err)
4275 goto out_stop;
819c4920
TT
4276
4277 if (IS_SYNC(inode))
4278 ext4_handle_sync(handle);
4279
4280out_stop:
4281 /*
4282 * If this was a simple ftruncate() and the file will remain alive,
4283 * then we need to clear up the orphan record which we created above.
4284 * However, if this was a real unlink then we were called by
58d86a50 4285 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4286 * orphan info for us.
4287 */
4288 if (inode->i_nlink)
4289 ext4_orphan_del(handle, inode);
4290
eeca7ea1 4291 inode->i_mtime = inode->i_ctime = current_time(inode);
4209ae12
HS
4292 err2 = ext4_mark_inode_dirty(handle, inode);
4293 if (unlikely(err2 && !err))
4294 err = err2;
819c4920 4295 ext4_journal_stop(handle);
ac27a0ec 4296
9a5d265f 4297out_trace:
0562e0ba 4298 trace_ext4_truncate_exit(inode);
2c98eb5e 4299 return err;
ac27a0ec
DK
4300}
4301
ac27a0ec 4302/*
617ba13b 4303 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4304 * underlying buffer_head on success. If 'in_mem' is true, we have all
4305 * data in memory that is needed to recreate the on-disk version of this
4306 * inode.
4307 */
8016e29f
HS
4308static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4309 struct ext4_iloc *iloc, int in_mem,
4310 ext4_fsblk_t *ret_block)
ac27a0ec 4311{
240799cd
TT
4312 struct ext4_group_desc *gdp;
4313 struct buffer_head *bh;
240799cd 4314 ext4_fsblk_t block;
02f03c42 4315 struct blk_plug plug;
240799cd
TT
4316 int inodes_per_block, inode_offset;
4317
3a06d778 4318 iloc->bh = NULL;
8016e29f
HS
4319 if (ino < EXT4_ROOT_INO ||
4320 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
6a797d27 4321 return -EFSCORRUPTED;
ac27a0ec 4322
8016e29f 4323 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
240799cd
TT
4324 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4325 if (!gdp)
ac27a0ec
DK
4326 return -EIO;
4327
240799cd
TT
4328 /*
4329 * Figure out the offset within the block group inode table
4330 */
00d09882 4331 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
8016e29f 4332 inode_offset = ((ino - 1) %
240799cd
TT
4333 EXT4_INODES_PER_GROUP(sb));
4334 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4335 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4336
4337 bh = sb_getblk(sb, block);
aebf0243 4338 if (unlikely(!bh))
860d21e2 4339 return -ENOMEM;
ac27a0ec
DK
4340 if (!buffer_uptodate(bh)) {
4341 lock_buffer(bh);
9c83a923 4342
60c776e5 4343 if (ext4_buffer_uptodate(bh)) {
ac27a0ec
DK
4344 /* someone brought it uptodate while we waited */
4345 unlock_buffer(bh);
4346 goto has_buffer;
4347 }
4348
4349 /*
4350 * If we have all information of the inode in memory and this
4351 * is the only valid inode in the block, we need not read the
4352 * block.
4353 */
4354 if (in_mem) {
4355 struct buffer_head *bitmap_bh;
240799cd 4356 int i, start;
ac27a0ec 4357
240799cd 4358 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4359
240799cd
TT
4360 /* Is the inode bitmap in cache? */
4361 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4362 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4363 goto make_io;
4364
4365 /*
4366 * If the inode bitmap isn't in cache then the
4367 * optimisation may end up performing two reads instead
4368 * of one, so skip it.
4369 */
4370 if (!buffer_uptodate(bitmap_bh)) {
4371 brelse(bitmap_bh);
4372 goto make_io;
4373 }
240799cd 4374 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4375 if (i == inode_offset)
4376 continue;
617ba13b 4377 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4378 break;
4379 }
4380 brelse(bitmap_bh);
240799cd 4381 if (i == start + inodes_per_block) {
ac27a0ec
DK
4382 /* all other inodes are free, so skip I/O */
4383 memset(bh->b_data, 0, bh->b_size);
4384 set_buffer_uptodate(bh);
4385 unlock_buffer(bh);
4386 goto has_buffer;
4387 }
4388 }
4389
4390make_io:
240799cd
TT
4391 /*
4392 * If we need to do any I/O, try to pre-readahead extra
4393 * blocks from the inode table.
4394 */
02f03c42 4395 blk_start_plug(&plug);
240799cd
TT
4396 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4397 ext4_fsblk_t b, end, table;
4398 unsigned num;
0d606e2c 4399 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4400
4401 table = ext4_inode_table(sb, gdp);
b713a5ec 4402 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4403 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4404 if (table > b)
4405 b = table;
0d606e2c 4406 end = b + ra_blks;
240799cd 4407 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4408 if (ext4_has_group_desc_csum(sb))
560671a0 4409 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4410 table += num / inodes_per_block;
4411 if (end > table)
4412 end = table;
4413 while (b <= end)
5df1d412 4414 ext4_sb_breadahead_unmovable(sb, b++);
240799cd
TT
4415 }
4416
ac27a0ec
DK
4417 /*
4418 * There are other valid inodes in the buffer, this inode
4419 * has in-inode xattrs, or we don't have this inode in memory.
4420 * Read the block from disk.
4421 */
8016e29f 4422 trace_ext4_load_inode(sb, ino);
2d069c08 4423 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
02f03c42 4424 blk_finish_plug(&plug);
ac27a0ec 4425 wait_on_buffer(bh);
0904c9ae 4426 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
ac27a0ec 4427 if (!buffer_uptodate(bh)) {
8016e29f
HS
4428 if (ret_block)
4429 *ret_block = block;
ac27a0ec
DK
4430 brelse(bh);
4431 return -EIO;
4432 }
4433 }
4434has_buffer:
4435 iloc->bh = bh;
4436 return 0;
4437}
4438
8016e29f
HS
4439static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4440 struct ext4_iloc *iloc)
4441{
4442 ext4_fsblk_t err_blk;
4443 int ret;
4444
4445 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4446 &err_blk);
4447
4448 if (ret == -EIO)
4449 ext4_error_inode_block(inode, err_blk, EIO,
4450 "unable to read itable block");
4451
4452 return ret;
4453}
4454
617ba13b 4455int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec 4456{
8016e29f
HS
4457 ext4_fsblk_t err_blk;
4458 int ret;
4459
ac27a0ec 4460 /* We have all inode data except xattrs in memory here. */
8016e29f
HS
4461 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4462 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4463
4464 if (ret == -EIO)
4465 ext4_error_inode_block(inode, err_blk, EIO,
4466 "unable to read itable block");
4467
4468 return ret;
4469}
4470
4471
4472int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4473 struct ext4_iloc *iloc)
4474{
4475 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
ac27a0ec
DK
4476}
4477
a8ab6d38 4478static bool ext4_should_enable_dax(struct inode *inode)
6642586b 4479{
a8ab6d38
IW
4480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4481
9cb20f94 4482 if (test_opt2(inode->i_sb, DAX_NEVER))
6642586b
RZ
4483 return false;
4484 if (!S_ISREG(inode->i_mode))
4485 return false;
4486 if (ext4_should_journal_data(inode))
4487 return false;
4488 if (ext4_has_inline_data(inode))
4489 return false;
592ddec7 4490 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
6642586b 4491 return false;
c93d8f88
EB
4492 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4493 return false;
a8ab6d38
IW
4494 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4495 return false;
4496 if (test_opt(inode->i_sb, DAX_ALWAYS))
4497 return true;
4498
b383a73f 4499 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
6642586b
RZ
4500}
4501
043546e4 4502void ext4_set_inode_flags(struct inode *inode, bool init)
ac27a0ec 4503{
617ba13b 4504 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4505 unsigned int new_fl = 0;
ac27a0ec 4506
043546e4
IW
4507 WARN_ON_ONCE(IS_DAX(inode) && init);
4508
617ba13b 4509 if (flags & EXT4_SYNC_FL)
00a1a053 4510 new_fl |= S_SYNC;
617ba13b 4511 if (flags & EXT4_APPEND_FL)
00a1a053 4512 new_fl |= S_APPEND;
617ba13b 4513 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4514 new_fl |= S_IMMUTABLE;
617ba13b 4515 if (flags & EXT4_NOATIME_FL)
00a1a053 4516 new_fl |= S_NOATIME;
617ba13b 4517 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4518 new_fl |= S_DIRSYNC;
043546e4
IW
4519
4520 /* Because of the way inode_set_flags() works we must preserve S_DAX
4521 * here if already set. */
4522 new_fl |= (inode->i_flags & S_DAX);
4523 if (init && ext4_should_enable_dax(inode))
923ae0ff 4524 new_fl |= S_DAX;
043546e4 4525
2ee6a576
EB
4526 if (flags & EXT4_ENCRYPT_FL)
4527 new_fl |= S_ENCRYPTED;
b886ee3e
GKB
4528 if (flags & EXT4_CASEFOLD_FL)
4529 new_fl |= S_CASEFOLD;
c93d8f88
EB
4530 if (flags & EXT4_VERITY_FL)
4531 new_fl |= S_VERITY;
5f16f322 4532 inode_set_flags(inode, new_fl,
2ee6a576 4533 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
c93d8f88 4534 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
ac27a0ec
DK
4535}
4536
0fc1b451 4537static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4538 struct ext4_inode_info *ei)
0fc1b451
AK
4539{
4540 blkcnt_t i_blocks ;
8180a562
AK
4541 struct inode *inode = &(ei->vfs_inode);
4542 struct super_block *sb = inode->i_sb;
0fc1b451 4543
e2b911c5 4544 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4545 /* we are using combined 48 bit field */
4546 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4547 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4548 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4549 /* i_blocks represent file system block size */
4550 return i_blocks << (inode->i_blkbits - 9);
4551 } else {
4552 return i_blocks;
4553 }
0fc1b451
AK
4554 } else {
4555 return le32_to_cpu(raw_inode->i_blocks_lo);
4556 }
4557}
ff9ddf7e 4558
eb9b5f01 4559static inline int ext4_iget_extra_inode(struct inode *inode,
152a7b0a
TM
4560 struct ext4_inode *raw_inode,
4561 struct ext4_inode_info *ei)
4562{
4563 __le32 *magic = (void *)raw_inode +
4564 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
eb9b5f01 4565
290ab230
EB
4566 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4567 EXT4_INODE_SIZE(inode->i_sb) &&
4568 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4569 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
eb9b5f01 4570 return ext4_find_inline_data_nolock(inode);
f19d5870
TM
4571 } else
4572 EXT4_I(inode)->i_inline_off = 0;
eb9b5f01 4573 return 0;
152a7b0a
TM
4574}
4575
040cb378
LX
4576int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4577{
0b7b7779 4578 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4579 return -EOPNOTSUPP;
4580 *projid = EXT4_I(inode)->i_projid;
4581 return 0;
4582}
4583
e254d1af
EG
4584/*
4585 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4586 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4587 * set.
4588 */
4589static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4590{
4591 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4592 inode_set_iversion_raw(inode, val);
4593 else
4594 inode_set_iversion_queried(inode, val);
4595}
4596static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4597{
4598 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4599 return inode_peek_iversion_raw(inode);
4600 else
4601 return inode_peek_iversion(inode);
4602}
4603
8a363970
TT
4604struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4605 ext4_iget_flags flags, const char *function,
4606 unsigned int line)
ac27a0ec 4607{
617ba13b
MC
4608 struct ext4_iloc iloc;
4609 struct ext4_inode *raw_inode;
1d1fe1ee 4610 struct ext4_inode_info *ei;
bd2c38cf 4611 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1d1fe1ee 4612 struct inode *inode;
b436b9be 4613 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4614 long ret;
7e6e1ef4 4615 loff_t size;
ac27a0ec 4616 int block;
08cefc7a
EB
4617 uid_t i_uid;
4618 gid_t i_gid;
040cb378 4619 projid_t i_projid;
ac27a0ec 4620
191ce178 4621 if ((!(flags & EXT4_IGET_SPECIAL) &&
bd2c38cf
JK
4622 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4623 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4624 ino == le32_to_cpu(es->s_grp_quota_inum) ||
02f310fc
JK
4625 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4626 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
8a363970 4627 (ino < EXT4_ROOT_INO) ||
bd2c38cf 4628 (ino > le32_to_cpu(es->s_inodes_count))) {
8a363970
TT
4629 if (flags & EXT4_IGET_HANDLE)
4630 return ERR_PTR(-ESTALE);
014c9caa 4631 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
8a363970
TT
4632 "inode #%lu: comm %s: iget: illegal inode #",
4633 ino, current->comm);
4634 return ERR_PTR(-EFSCORRUPTED);
4635 }
4636
1d1fe1ee
DH
4637 inode = iget_locked(sb, ino);
4638 if (!inode)
4639 return ERR_PTR(-ENOMEM);
4640 if (!(inode->i_state & I_NEW))
4641 return inode;
4642
4643 ei = EXT4_I(inode);
7dc57615 4644 iloc.bh = NULL;
ac27a0ec 4645
8016e29f 4646 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
1d1fe1ee 4647 if (ret < 0)
ac27a0ec 4648 goto bad_inode;
617ba13b 4649 raw_inode = ext4_raw_inode(&iloc);
814525f4 4650
8e4b5eae 4651 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
8a363970
TT
4652 ext4_error_inode(inode, function, line, 0,
4653 "iget: root inode unallocated");
8e4b5eae
TT
4654 ret = -EFSCORRUPTED;
4655 goto bad_inode;
4656 }
4657
8a363970
TT
4658 if ((flags & EXT4_IGET_HANDLE) &&
4659 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4660 ret = -ESTALE;
4661 goto bad_inode;
4662 }
4663
814525f4
DW
4664 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4665 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4666 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4667 EXT4_INODE_SIZE(inode->i_sb) ||
4668 (ei->i_extra_isize & 3)) {
8a363970
TT
4669 ext4_error_inode(inode, function, line, 0,
4670 "iget: bad extra_isize %u "
4671 "(inode size %u)",
2dc8d9e1
EB
4672 ei->i_extra_isize,
4673 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4674 ret = -EFSCORRUPTED;
814525f4
DW
4675 goto bad_inode;
4676 }
4677 } else
4678 ei->i_extra_isize = 0;
4679
4680 /* Precompute checksum seed for inode metadata */
9aa5d32b 4681 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4682 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4683 __u32 csum;
4684 __le32 inum = cpu_to_le32(inode->i_ino);
4685 __le32 gen = raw_inode->i_generation;
4686 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4687 sizeof(inum));
4688 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4689 sizeof(gen));
4690 }
4691
8016e29f
HS
4692 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4693 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4694 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4695 ext4_error_inode_err(inode, function, line, 0,
4696 EFSBADCRC, "iget: checksum invalid");
6a797d27 4697 ret = -EFSBADCRC;
814525f4
DW
4698 goto bad_inode;
4699 }
4700
ac27a0ec 4701 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4702 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4703 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4704 if (ext4_has_feature_project(sb) &&
040cb378
LX
4705 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4706 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4707 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4708 else
4709 i_projid = EXT4_DEF_PROJID;
4710
af5bc92d 4711 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4712 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4713 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4714 }
08cefc7a
EB
4715 i_uid_write(inode, i_uid);
4716 i_gid_write(inode, i_gid);
040cb378 4717 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4718 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4719
353eb83c 4720 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4721 ei->i_inline_off = 0;
ac27a0ec
DK
4722 ei->i_dir_start_lookup = 0;
4723 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4724 /* We now have enough fields to check if the inode was active or not.
4725 * This is needed because nfsd might try to access dead inodes
4726 * the test is that same one that e2fsck uses
4727 * NeilBrown 1999oct15
4728 */
4729 if (inode->i_nlink == 0) {
393d1d1d
DTB
4730 if ((inode->i_mode == 0 ||
4731 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4732 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4733 /* this inode is deleted */
1d1fe1ee 4734 ret = -ESTALE;
ac27a0ec
DK
4735 goto bad_inode;
4736 }
4737 /* The only unlinked inodes we let through here have
4738 * valid i_mode and are being read by the orphan
4739 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4740 * the process of deleting those.
4741 * OR it is the EXT4_BOOT_LOADER_INO which is
4742 * not initialized on a new filesystem. */
ac27a0ec 4743 }
ac27a0ec 4744 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
043546e4 4745 ext4_set_inode_flags(inode, true);
0fc1b451 4746 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4747 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4748 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4749 ei->i_file_acl |=
4750 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
e08ac99f 4751 inode->i_size = ext4_isize(sb, raw_inode);
7e6e1ef4 4752 if ((size = i_size_read(inode)) < 0) {
8a363970
TT
4753 ext4_error_inode(inode, function, line, 0,
4754 "iget: bad i_size value: %lld", size);
7e6e1ef4
DW
4755 ret = -EFSCORRUPTED;
4756 goto bad_inode;
4757 }
48a34311
JK
4758 /*
4759 * If dir_index is not enabled but there's dir with INDEX flag set,
4760 * we'd normally treat htree data as empty space. But with metadata
4761 * checksumming that corrupts checksums so forbid that.
4762 */
4763 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4764 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4765 ext4_error_inode(inode, function, line, 0,
4766 "iget: Dir with htree data on filesystem without dir_index feature.");
4767 ret = -EFSCORRUPTED;
4768 goto bad_inode;
4769 }
ac27a0ec 4770 ei->i_disksize = inode->i_size;
a9e7f447
DM
4771#ifdef CONFIG_QUOTA
4772 ei->i_reserved_quota = 0;
4773#endif
ac27a0ec
DK
4774 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4775 ei->i_block_group = iloc.block_group;
a4912123 4776 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4777 /*
4778 * NOTE! The in-memory inode i_data array is in little-endian order
4779 * even on big-endian machines: we do NOT byteswap the block numbers!
4780 */
617ba13b 4781 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4782 ei->i_data[block] = raw_inode->i_block[block];
4783 INIT_LIST_HEAD(&ei->i_orphan);
aa75f4d3 4784 ext4_fc_init_inode(&ei->vfs_inode);
ac27a0ec 4785
b436b9be
JK
4786 /*
4787 * Set transaction id's of transactions that have to be committed
4788 * to finish f[data]sync. We set them to currently running transaction
4789 * as we cannot be sure that the inode or some of its metadata isn't
4790 * part of the transaction - the inode could have been reclaimed and
4791 * now it is reread from disk.
4792 */
4793 if (journal) {
4794 transaction_t *transaction;
4795 tid_t tid;
4796
a931da6a 4797 read_lock(&journal->j_state_lock);
b436b9be
JK
4798 if (journal->j_running_transaction)
4799 transaction = journal->j_running_transaction;
4800 else
4801 transaction = journal->j_committing_transaction;
4802 if (transaction)
4803 tid = transaction->t_tid;
4804 else
4805 tid = journal->j_commit_sequence;
a931da6a 4806 read_unlock(&journal->j_state_lock);
b436b9be
JK
4807 ei->i_sync_tid = tid;
4808 ei->i_datasync_tid = tid;
4809 }
4810
0040d987 4811 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4812 if (ei->i_extra_isize == 0) {
4813 /* The extra space is currently unused. Use it. */
2dc8d9e1 4814 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4815 ei->i_extra_isize = sizeof(struct ext4_inode) -
4816 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4817 } else {
eb9b5f01
TT
4818 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4819 if (ret)
4820 goto bad_inode;
ac27a0ec 4821 }
814525f4 4822 }
ac27a0ec 4823
ef7f3835
KS
4824 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4825 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4826 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4827 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4828
ed3654eb 4829 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
ee73f9a5
JL
4830 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4831
c4f65706
TT
4832 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4833 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
ee73f9a5 4834 ivers |=
c4f65706
TT
4835 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4836 }
e254d1af 4837 ext4_inode_set_iversion_queried(inode, ivers);
25ec56b5
JNC
4838 }
4839
c4b5a614 4840 ret = 0;
485c26ec 4841 if (ei->i_file_acl &&
ce9f24cc 4842 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
8a363970
TT
4843 ext4_error_inode(inode, function, line, 0,
4844 "iget: bad extended attribute block %llu",
24676da4 4845 ei->i_file_acl);
6a797d27 4846 ret = -EFSCORRUPTED;
485c26ec 4847 goto bad_inode;
f19d5870 4848 } else if (!ext4_has_inline_data(inode)) {
bc716523 4849 /* validate the block references in the inode */
8016e29f
HS
4850 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4851 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4852 (S_ISLNK(inode->i_mode) &&
4853 !ext4_inode_is_fast_symlink(inode)))) {
bc716523 4854 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
f19d5870 4855 ret = ext4_ext_check_inode(inode);
bc716523
LS
4856 else
4857 ret = ext4_ind_check_inode(inode);
f19d5870 4858 }
fe2c8191 4859 }
567f3e9a 4860 if (ret)
de9a55b8 4861 goto bad_inode;
7a262f7c 4862
ac27a0ec 4863 if (S_ISREG(inode->i_mode)) {
617ba13b 4864 inode->i_op = &ext4_file_inode_operations;
be64f884 4865 inode->i_fop = &ext4_file_operations;
617ba13b 4866 ext4_set_aops(inode);
ac27a0ec 4867 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4868 inode->i_op = &ext4_dir_inode_operations;
4869 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4870 } else if (S_ISLNK(inode->i_mode)) {
6390d33b
LR
4871 /* VFS does not allow setting these so must be corruption */
4872 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
8a363970
TT
4873 ext4_error_inode(inode, function, line, 0,
4874 "iget: immutable or append flags "
4875 "not allowed on symlinks");
6390d33b
LR
4876 ret = -EFSCORRUPTED;
4877 goto bad_inode;
4878 }
592ddec7 4879 if (IS_ENCRYPTED(inode)) {
a7a67e8a
AV
4880 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4881 ext4_set_aops(inode);
4882 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4883 inode->i_link = (char *)ei->i_data;
617ba13b 4884 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4885 nd_terminate_link(ei->i_data, inode->i_size,
4886 sizeof(ei->i_data) - 1);
4887 } else {
617ba13b
MC
4888 inode->i_op = &ext4_symlink_inode_operations;
4889 ext4_set_aops(inode);
ac27a0ec 4890 }
21fc61c7 4891 inode_nohighmem(inode);
563bdd61
TT
4892 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4893 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4894 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4895 if (raw_inode->i_block[0])
4896 init_special_inode(inode, inode->i_mode,
4897 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4898 else
4899 init_special_inode(inode, inode->i_mode,
4900 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4901 } else if (ino == EXT4_BOOT_LOADER_INO) {
4902 make_bad_inode(inode);
563bdd61 4903 } else {
6a797d27 4904 ret = -EFSCORRUPTED;
8a363970
TT
4905 ext4_error_inode(inode, function, line, 0,
4906 "iget: bogus i_mode (%o)", inode->i_mode);
563bdd61 4907 goto bad_inode;
ac27a0ec 4908 }
6456ca65
TT
4909 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4910 ext4_error_inode(inode, function, line, 0,
4911 "casefold flag without casefold feature");
af5bc92d 4912 brelse(iloc.bh);
dec214d0 4913
1d1fe1ee
DH
4914 unlock_new_inode(inode);
4915 return inode;
ac27a0ec
DK
4916
4917bad_inode:
567f3e9a 4918 brelse(iloc.bh);
1d1fe1ee
DH
4919 iget_failed(inode);
4920 return ERR_PTR(ret);
ac27a0ec
DK
4921}
4922
0fc1b451
AK
4923static int ext4_inode_blocks_set(handle_t *handle,
4924 struct ext4_inode *raw_inode,
4925 struct ext4_inode_info *ei)
4926{
4927 struct inode *inode = &(ei->vfs_inode);
28936b62 4928 u64 i_blocks = READ_ONCE(inode->i_blocks);
0fc1b451 4929 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4930
4931 if (i_blocks <= ~0U) {
4932 /*
4907cb7b 4933 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4934 * as multiple of 512 bytes
4935 */
8180a562 4936 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4937 raw_inode->i_blocks_high = 0;
84a8dce2 4938 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4939 return 0;
4940 }
e2b911c5 4941 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4942 return -EFBIG;
4943
4944 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4945 /*
4946 * i_blocks can be represented in a 48 bit variable
4947 * as multiple of 512 bytes
4948 */
8180a562 4949 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4950 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4951 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4952 } else {
84a8dce2 4953 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4954 /* i_block is stored in file system block size */
4955 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4956 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4957 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4958 }
f287a1a5 4959 return 0;
0fc1b451
AK
4960}
4961
3f19b2ab
DH
4962static void __ext4_update_other_inode_time(struct super_block *sb,
4963 unsigned long orig_ino,
4964 unsigned long ino,
4965 struct ext4_inode *raw_inode)
a26f4992 4966{
3f19b2ab
DH
4967 struct inode *inode;
4968
4969 inode = find_inode_by_ino_rcu(sb, ino);
4970 if (!inode)
4971 return;
a26f4992 4972
ed296c6c 4973 if (!inode_is_dirtytime_only(inode))
3f19b2ab
DH
4974 return;
4975
a26f4992 4976 spin_lock(&inode->i_lock);
ed296c6c 4977 if (inode_is_dirtytime_only(inode)) {
a26f4992
TT
4978 struct ext4_inode_info *ei = EXT4_I(inode);
4979
5fcd5750 4980 inode->i_state &= ~I_DIRTY_TIME;
a26f4992
TT
4981 spin_unlock(&inode->i_lock);
4982
4983 spin_lock(&ei->i_raw_lock);
3f19b2ab
DH
4984 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4985 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4986 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4987 ext4_inode_csum_set(inode, raw_inode, ei);
a26f4992 4988 spin_unlock(&ei->i_raw_lock);
3f19b2ab
DH
4989 trace_ext4_other_inode_update_time(inode, orig_ino);
4990 return;
a26f4992
TT
4991 }
4992 spin_unlock(&inode->i_lock);
a26f4992
TT
4993}
4994
4995/*
4996 * Opportunistically update the other time fields for other inodes in
4997 * the same inode table block.
4998 */
4999static void ext4_update_other_inodes_time(struct super_block *sb,
5000 unsigned long orig_ino, char *buf)
5001{
a26f4992
TT
5002 unsigned long ino;
5003 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5004 int inode_size = EXT4_INODE_SIZE(sb);
5005
0f0ff9a9
TT
5006 /*
5007 * Calculate the first inode in the inode table block. Inode
5008 * numbers are one-based. That is, the first inode in a block
5009 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5010 */
5011 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
3f19b2ab 5012 rcu_read_lock();
a26f4992
TT
5013 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5014 if (ino == orig_ino)
5015 continue;
3f19b2ab
DH
5016 __ext4_update_other_inode_time(sb, orig_ino, ino,
5017 (struct ext4_inode *)buf);
a26f4992 5018 }
3f19b2ab 5019 rcu_read_unlock();
a26f4992
TT
5020}
5021
ac27a0ec
DK
5022/*
5023 * Post the struct inode info into an on-disk inode location in the
5024 * buffer-cache. This gobbles the caller's reference to the
5025 * buffer_head in the inode location struct.
5026 *
5027 * The caller must have write access to iloc->bh.
5028 */
617ba13b 5029static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5030 struct inode *inode,
830156c7 5031 struct ext4_iloc *iloc)
ac27a0ec 5032{
617ba13b
MC
5033 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5034 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 5035 struct buffer_head *bh = iloc->bh;
202ee5df 5036 struct super_block *sb = inode->i_sb;
7d8bd3c7 5037 int err = 0, block;
202ee5df 5038 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
5039 uid_t i_uid;
5040 gid_t i_gid;
040cb378 5041 projid_t i_projid;
ac27a0ec 5042
202ee5df
TT
5043 spin_lock(&ei->i_raw_lock);
5044
5045 /* For fields not tracked in the in-memory inode,
ac27a0ec 5046 * initialise them to zero for new inodes. */
19f5fb7a 5047 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5048 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5049
13221811
LM
5050 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5051 if (err) {
5052 spin_unlock(&ei->i_raw_lock);
5053 goto out_brelse;
5054 }
5055
ac27a0ec 5056 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
5057 i_uid = i_uid_read(inode);
5058 i_gid = i_gid_read(inode);
040cb378 5059 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 5060 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
5061 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5062 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
5063/*
5064 * Fix up interoperability with old kernels. Otherwise, old inodes get
5065 * re-used with the upper 16 bits of the uid/gid intact
5066 */
93e3b4e6
DJ
5067 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5068 raw_inode->i_uid_high = 0;
5069 raw_inode->i_gid_high = 0;
5070 } else {
ac27a0ec 5071 raw_inode->i_uid_high =
08cefc7a 5072 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 5073 raw_inode->i_gid_high =
08cefc7a 5074 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
5075 }
5076 } else {
08cefc7a
EB
5077 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5078 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
5079 raw_inode->i_uid_high = 0;
5080 raw_inode->i_gid_high = 0;
5081 }
5082 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5083
5084 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5085 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5086 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5087 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5088
ac27a0ec 5089 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5090 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5091 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5092 raw_inode->i_file_acl_high =
5093 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5094 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
dce8e237 5095 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
b71fc079
JK
5096 ext4_isize_set(raw_inode, ei->i_disksize);
5097 need_datasync = 1;
5098 }
a48380f7 5099 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5100 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5101 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5102 cpu_to_le32(EXT4_GOOD_OLD_REV))
5103 set_large_file = 1;
ac27a0ec
DK
5104 }
5105 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5106 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5107 if (old_valid_dev(inode->i_rdev)) {
5108 raw_inode->i_block[0] =
5109 cpu_to_le32(old_encode_dev(inode->i_rdev));
5110 raw_inode->i_block[1] = 0;
5111 } else {
5112 raw_inode->i_block[0] = 0;
5113 raw_inode->i_block[1] =
5114 cpu_to_le32(new_encode_dev(inode->i_rdev));
5115 raw_inode->i_block[2] = 0;
5116 }
f19d5870 5117 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5118 for (block = 0; block < EXT4_N_BLOCKS; block++)
5119 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5120 }
ac27a0ec 5121
ed3654eb 5122 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
e254d1af 5123 u64 ivers = ext4_inode_peek_iversion(inode);
ee73f9a5
JL
5124
5125 raw_inode->i_disk_version = cpu_to_le32(ivers);
c4f65706
TT
5126 if (ei->i_extra_isize) {
5127 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5128 raw_inode->i_version_hi =
ee73f9a5 5129 cpu_to_le32(ivers >> 32);
c4f65706
TT
5130 raw_inode->i_extra_isize =
5131 cpu_to_le16(ei->i_extra_isize);
5132 }
25ec56b5 5133 }
040cb378 5134
0b7b7779 5135 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
5136 i_projid != EXT4_DEF_PROJID);
5137
5138 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5139 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5140 raw_inode->i_projid = cpu_to_le32(i_projid);
5141
814525f4 5142 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5143 spin_unlock(&ei->i_raw_lock);
1751e8a6 5144 if (inode->i_sb->s_flags & SB_LAZYTIME)
a26f4992
TT
5145 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5146 bh->b_data);
202ee5df 5147
830156c7 5148 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
7d8bd3c7
SL
5149 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5150 if (err)
5151 goto out_brelse;
19f5fb7a 5152 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5153 if (set_large_file) {
5d601255 5154 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
188c299e
JK
5155 err = ext4_journal_get_write_access(handle, sb,
5156 EXT4_SB(sb)->s_sbh,
5157 EXT4_JTR_NONE);
202ee5df
TT
5158 if (err)
5159 goto out_brelse;
05c2c00f 5160 lock_buffer(EXT4_SB(sb)->s_sbh);
e2b911c5 5161 ext4_set_feature_large_file(sb);
05c2c00f
JK
5162 ext4_superblock_csum_set(sb);
5163 unlock_buffer(EXT4_SB(sb)->s_sbh);
202ee5df 5164 ext4_handle_sync(handle);
a3f5cf14
JK
5165 err = ext4_handle_dirty_metadata(handle, NULL,
5166 EXT4_SB(sb)->s_sbh);
202ee5df 5167 }
b71fc079 5168 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5169out_brelse:
af5bc92d 5170 brelse(bh);
617ba13b 5171 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5172 return err;
5173}
5174
5175/*
617ba13b 5176 * ext4_write_inode()
ac27a0ec
DK
5177 *
5178 * We are called from a few places:
5179 *
87f7e416 5180 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5181 * Here, there will be no transaction running. We wait for any running
4907cb7b 5182 * transaction to commit.
ac27a0ec 5183 *
87f7e416
TT
5184 * - Within flush work (sys_sync(), kupdate and such).
5185 * We wait on commit, if told to.
ac27a0ec 5186 *
87f7e416
TT
5187 * - Within iput_final() -> write_inode_now()
5188 * We wait on commit, if told to.
ac27a0ec
DK
5189 *
5190 * In all cases it is actually safe for us to return without doing anything,
5191 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5192 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5193 * writeback.
ac27a0ec
DK
5194 *
5195 * Note that we are absolutely dependent upon all inode dirtiers doing the
5196 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5197 * which we are interested.
5198 *
5199 * It would be a bug for them to not do this. The code:
5200 *
5201 * mark_inode_dirty(inode)
5202 * stuff();
5203 * inode->i_size = expr;
5204 *
87f7e416
TT
5205 * is in error because write_inode() could occur while `stuff()' is running,
5206 * and the new i_size will be lost. Plus the inode will no longer be on the
5207 * superblock's dirty inode list.
ac27a0ec 5208 */
a9185b41 5209int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5210{
91ac6f43
FM
5211 int err;
5212
18f2c4fc
TT
5213 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5214 sb_rdonly(inode->i_sb))
ac27a0ec
DK
5215 return 0;
5216
18f2c4fc
TT
5217 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5218 return -EIO;
5219
91ac6f43
FM
5220 if (EXT4_SB(inode->i_sb)->s_journal) {
5221 if (ext4_journal_current_handle()) {
5222 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5223 dump_stack();
5224 return -EIO;
5225 }
ac27a0ec 5226
10542c22
JK
5227 /*
5228 * No need to force transaction in WB_SYNC_NONE mode. Also
5229 * ext4_sync_fs() will force the commit after everything is
5230 * written.
5231 */
5232 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5233 return 0;
5234
aa75f4d3 5235 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
18f2c4fc 5236 EXT4_I(inode)->i_sync_tid);
91ac6f43
FM
5237 } else {
5238 struct ext4_iloc iloc;
ac27a0ec 5239
8016e29f 5240 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
91ac6f43
FM
5241 if (err)
5242 return err;
10542c22
JK
5243 /*
5244 * sync(2) will flush the whole buffer cache. No need to do
5245 * it here separately for each inode.
5246 */
5247 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5248 sync_dirty_buffer(iloc.bh);
5249 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
54d3adbc
TT
5250 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5251 "IO error syncing inode");
830156c7
FM
5252 err = -EIO;
5253 }
fd2dd9fb 5254 brelse(iloc.bh);
91ac6f43
FM
5255 }
5256 return err;
ac27a0ec
DK
5257}
5258
53e87268
JK
5259/*
5260 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5261 * buffers that are attached to a page stradding i_size and are undergoing
5262 * commit. In that case we have to wait for commit to finish and try again.
5263 */
5264static void ext4_wait_for_tail_page_commit(struct inode *inode)
5265{
5266 struct page *page;
5267 unsigned offset;
5268 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5269 tid_t commit_tid = 0;
5270 int ret;
5271
09cbfeaf 5272 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268 5273 /*
565333a1 5274 * If the page is fully truncated, we don't need to wait for any commit
5275 * (and we even should not as __ext4_journalled_invalidatepage() may
5276 * strip all buffers from the page but keep the page dirty which can then
5277 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5278 * buffers). Also we don't need to wait for any commit if all buffers in
5279 * the page remain valid. This is most beneficial for the common case of
5280 * blocksize == PAGESIZE.
53e87268 5281 */
565333a1 5282 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
53e87268
JK
5283 return;
5284 while (1) {
5285 page = find_lock_page(inode->i_mapping,
09cbfeaf 5286 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5287 if (!page)
5288 return;
ca99fdd2 5289 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5290 PAGE_SIZE - offset);
53e87268 5291 unlock_page(page);
09cbfeaf 5292 put_page(page);
53e87268
JK
5293 if (ret != -EBUSY)
5294 return;
5295 commit_tid = 0;
5296 read_lock(&journal->j_state_lock);
5297 if (journal->j_committing_transaction)
5298 commit_tid = journal->j_committing_transaction->t_tid;
5299 read_unlock(&journal->j_state_lock);
5300 if (commit_tid)
5301 jbd2_log_wait_commit(journal, commit_tid);
5302 }
5303}
5304
ac27a0ec 5305/*
617ba13b 5306 * ext4_setattr()
ac27a0ec
DK
5307 *
5308 * Called from notify_change.
5309 *
5310 * We want to trap VFS attempts to truncate the file as soon as
5311 * possible. In particular, we want to make sure that when the VFS
5312 * shrinks i_size, we put the inode on the orphan list and modify
5313 * i_disksize immediately, so that during the subsequent flushing of
5314 * dirty pages and freeing of disk blocks, we can guarantee that any
5315 * commit will leave the blocks being flushed in an unused state on
5316 * disk. (On recovery, the inode will get truncated and the blocks will
5317 * be freed, so we have a strong guarantee that no future commit will
5318 * leave these blocks visible to the user.)
5319 *
678aaf48
JK
5320 * Another thing we have to assure is that if we are in ordered mode
5321 * and inode is still attached to the committing transaction, we must
5322 * we start writeout of all the dirty pages which are being truncated.
5323 * This way we are sure that all the data written in the previous
5324 * transaction are already on disk (truncate waits for pages under
5325 * writeback).
5326 *
5327 * Called with inode->i_mutex down.
ac27a0ec 5328 */
549c7297
CB
5329int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5330 struct iattr *attr)
ac27a0ec 5331{
2b0143b5 5332 struct inode *inode = d_inode(dentry);
ac27a0ec 5333 int error, rc = 0;
3d287de3 5334 int orphan = 0;
ac27a0ec
DK
5335 const unsigned int ia_valid = attr->ia_valid;
5336
0db1ff22
TT
5337 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5338 return -EIO;
5339
02b016ca
TT
5340 if (unlikely(IS_IMMUTABLE(inode)))
5341 return -EPERM;
5342
5343 if (unlikely(IS_APPEND(inode) &&
5344 (ia_valid & (ATTR_MODE | ATTR_UID |
5345 ATTR_GID | ATTR_TIMES_SET))))
5346 return -EPERM;
5347
14f3db55 5348 error = setattr_prepare(mnt_userns, dentry, attr);
ac27a0ec
DK
5349 if (error)
5350 return error;
5351
3ce2b8dd
EB
5352 error = fscrypt_prepare_setattr(dentry, attr);
5353 if (error)
5354 return error;
5355
c93d8f88
EB
5356 error = fsverity_prepare_setattr(dentry, attr);
5357 if (error)
5358 return error;
5359
a7cdadee
JK
5360 if (is_quota_modification(inode, attr)) {
5361 error = dquot_initialize(inode);
5362 if (error)
5363 return error;
5364 }
aa75f4d3 5365 ext4_fc_start_update(inode);
08cefc7a
EB
5366 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5367 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5368 handle_t *handle;
5369
5370 /* (user+group)*(old+new) structure, inode write (sb,
5371 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5372 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5373 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5374 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5375 if (IS_ERR(handle)) {
5376 error = PTR_ERR(handle);
5377 goto err_out;
5378 }
7a9ca53a
TE
5379
5380 /* dquot_transfer() calls back ext4_get_inode_usage() which
5381 * counts xattr inode references.
5382 */
5383 down_read(&EXT4_I(inode)->xattr_sem);
b43fa828 5384 error = dquot_transfer(inode, attr);
7a9ca53a
TE
5385 up_read(&EXT4_I(inode)->xattr_sem);
5386
ac27a0ec 5387 if (error) {
617ba13b 5388 ext4_journal_stop(handle);
aa75f4d3 5389 ext4_fc_stop_update(inode);
ac27a0ec
DK
5390 return error;
5391 }
5392 /* Update corresponding info in inode so that everything is in
5393 * one transaction */
5394 if (attr->ia_valid & ATTR_UID)
5395 inode->i_uid = attr->ia_uid;
5396 if (attr->ia_valid & ATTR_GID)
5397 inode->i_gid = attr->ia_gid;
617ba13b
MC
5398 error = ext4_mark_inode_dirty(handle, inode);
5399 ext4_journal_stop(handle);
512c15ef
PB
5400 if (unlikely(error)) {
5401 ext4_fc_stop_update(inode);
4209ae12 5402 return error;
512c15ef 5403 }
ac27a0ec
DK
5404 }
5405
3da40c7b 5406 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5407 handle_t *handle;
3da40c7b 5408 loff_t oldsize = inode->i_size;
b9c1c267 5409 int shrink = (attr->ia_size < inode->i_size);
562c72aa 5410
12e9b892 5411 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5412 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5413
aa75f4d3
HS
5414 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5415 ext4_fc_stop_update(inode);
0c095c7f 5416 return -EFBIG;
aa75f4d3 5417 }
e2b46574 5418 }
aa75f4d3
HS
5419 if (!S_ISREG(inode->i_mode)) {
5420 ext4_fc_stop_update(inode);
3da40c7b 5421 return -EINVAL;
aa75f4d3 5422 }
dff6efc3
CH
5423
5424 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5425 inode_inc_iversion(inode);
5426
b9c1c267
JK
5427 if (shrink) {
5428 if (ext4_should_order_data(inode)) {
5429 error = ext4_begin_ordered_truncate(inode,
678aaf48 5430 attr->ia_size);
b9c1c267
JK
5431 if (error)
5432 goto err_out;
5433 }
5434 /*
5435 * Blocks are going to be removed from the inode. Wait
5436 * for dio in flight.
5437 */
5438 inode_dio_wait(inode);
5439 }
5440
5441 down_write(&EXT4_I(inode)->i_mmap_sem);
5442
5443 rc = ext4_break_layouts(inode);
5444 if (rc) {
5445 up_write(&EXT4_I(inode)->i_mmap_sem);
aa75f4d3 5446 goto err_out;
3da40c7b 5447 }
b9c1c267 5448
3da40c7b 5449 if (attr->ia_size != inode->i_size) {
5208386c
JK
5450 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5451 if (IS_ERR(handle)) {
5452 error = PTR_ERR(handle);
b9c1c267 5453 goto out_mmap_sem;
5208386c 5454 }
3da40c7b 5455 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5456 error = ext4_orphan_add(handle, inode);
5457 orphan = 1;
5458 }
911af577
EG
5459 /*
5460 * Update c/mtime on truncate up, ext4_truncate() will
5461 * update c/mtime in shrink case below
5462 */
5463 if (!shrink) {
eeca7ea1 5464 inode->i_mtime = current_time(inode);
911af577
EG
5465 inode->i_ctime = inode->i_mtime;
5466 }
aa75f4d3
HS
5467
5468 if (shrink)
a80f7fcf 5469 ext4_fc_track_range(handle, inode,
aa75f4d3
HS
5470 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5471 inode->i_sb->s_blocksize_bits,
5472 (oldsize > 0 ? oldsize - 1 : 0) >>
5473 inode->i_sb->s_blocksize_bits);
5474 else
5475 ext4_fc_track_range(
a80f7fcf 5476 handle, inode,
aa75f4d3
HS
5477 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5478 inode->i_sb->s_blocksize_bits,
5479 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5480 inode->i_sb->s_blocksize_bits);
5481
90e775b7 5482 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5483 EXT4_I(inode)->i_disksize = attr->ia_size;
5484 rc = ext4_mark_inode_dirty(handle, inode);
5485 if (!error)
5486 error = rc;
90e775b7
JK
5487 /*
5488 * We have to update i_size under i_data_sem together
5489 * with i_disksize to avoid races with writeback code
5490 * running ext4_wb_update_i_disksize().
5491 */
5492 if (!error)
5493 i_size_write(inode, attr->ia_size);
5494 up_write(&EXT4_I(inode)->i_data_sem);
5208386c 5495 ext4_journal_stop(handle);
b9c1c267
JK
5496 if (error)
5497 goto out_mmap_sem;
5498 if (!shrink) {
5499 pagecache_isize_extended(inode, oldsize,
5500 inode->i_size);
5501 } else if (ext4_should_journal_data(inode)) {
5502 ext4_wait_for_tail_page_commit(inode);
678aaf48 5503 }
d6320cbf 5504 }
430657b6 5505
5208386c
JK
5506 /*
5507 * Truncate pagecache after we've waited for commit
5508 * in data=journal mode to make pages freeable.
5509 */
923ae0ff 5510 truncate_pagecache(inode, inode->i_size);
b9c1c267
JK
5511 /*
5512 * Call ext4_truncate() even if i_size didn't change to
5513 * truncate possible preallocated blocks.
5514 */
5515 if (attr->ia_size <= oldsize) {
2c98eb5e
TT
5516 rc = ext4_truncate(inode);
5517 if (rc)
5518 error = rc;
5519 }
b9c1c267 5520out_mmap_sem:
ea3d7209 5521 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5522 }
ac27a0ec 5523
2c98eb5e 5524 if (!error) {
14f3db55 5525 setattr_copy(mnt_userns, inode, attr);
1025774c
CH
5526 mark_inode_dirty(inode);
5527 }
5528
5529 /*
5530 * If the call to ext4_truncate failed to get a transaction handle at
5531 * all, we need to clean up the in-core orphan list manually.
5532 */
3d287de3 5533 if (orphan && inode->i_nlink)
617ba13b 5534 ext4_orphan_del(NULL, inode);
ac27a0ec 5535
2c98eb5e 5536 if (!error && (ia_valid & ATTR_MODE))
14f3db55 5537 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
ac27a0ec
DK
5538
5539err_out:
aa75f4d3
HS
5540 if (error)
5541 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5542 if (!error)
5543 error = rc;
aa75f4d3 5544 ext4_fc_stop_update(inode);
ac27a0ec
DK
5545 return error;
5546}
5547
549c7297
CB
5548int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5549 struct kstat *stat, u32 request_mask, unsigned int query_flags)
3e3398a0 5550{
99652ea5
DH
5551 struct inode *inode = d_inode(path->dentry);
5552 struct ext4_inode *raw_inode;
5553 struct ext4_inode_info *ei = EXT4_I(inode);
5554 unsigned int flags;
5555
d4c5e960
TT
5556 if ((request_mask & STATX_BTIME) &&
5557 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
99652ea5
DH
5558 stat->result_mask |= STATX_BTIME;
5559 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5560 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5561 }
5562
5563 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5564 if (flags & EXT4_APPEND_FL)
5565 stat->attributes |= STATX_ATTR_APPEND;
5566 if (flags & EXT4_COMPR_FL)
5567 stat->attributes |= STATX_ATTR_COMPRESSED;
5568 if (flags & EXT4_ENCRYPT_FL)
5569 stat->attributes |= STATX_ATTR_ENCRYPTED;
5570 if (flags & EXT4_IMMUTABLE_FL)
5571 stat->attributes |= STATX_ATTR_IMMUTABLE;
5572 if (flags & EXT4_NODUMP_FL)
5573 stat->attributes |= STATX_ATTR_NODUMP;
1f607195
EB
5574 if (flags & EXT4_VERITY_FL)
5575 stat->attributes |= STATX_ATTR_VERITY;
3e3398a0 5576
3209f68b
DH
5577 stat->attributes_mask |= (STATX_ATTR_APPEND |
5578 STATX_ATTR_COMPRESSED |
5579 STATX_ATTR_ENCRYPTED |
5580 STATX_ATTR_IMMUTABLE |
1f607195
EB
5581 STATX_ATTR_NODUMP |
5582 STATX_ATTR_VERITY);
3209f68b 5583
14f3db55 5584 generic_fillattr(mnt_userns, inode, stat);
99652ea5
DH
5585 return 0;
5586}
5587
549c7297
CB
5588int ext4_file_getattr(struct user_namespace *mnt_userns,
5589 const struct path *path, struct kstat *stat,
99652ea5
DH
5590 u32 request_mask, unsigned int query_flags)
5591{
5592 struct inode *inode = d_inode(path->dentry);
5593 u64 delalloc_blocks;
5594
14f3db55 5595 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
3e3398a0 5596
9206c561
AD
5597 /*
5598 * If there is inline data in the inode, the inode will normally not
5599 * have data blocks allocated (it may have an external xattr block).
5600 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5601 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5602 */
5603 if (unlikely(ext4_has_inline_data(inode)))
5604 stat->blocks += (stat->size + 511) >> 9;
5605
3e3398a0
MC
5606 /*
5607 * We can't update i_blocks if the block allocation is delayed
5608 * otherwise in the case of system crash before the real block
5609 * allocation is done, we will have i_blocks inconsistent with
5610 * on-disk file blocks.
5611 * We always keep i_blocks updated together with real
5612 * allocation. But to not confuse with user, stat
5613 * will return the blocks that include the delayed allocation
5614 * blocks for this file.
5615 */
96607551 5616 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5617 EXT4_I(inode)->i_reserved_data_blocks);
5618 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5619 return 0;
5620}
ac27a0ec 5621
fffb2739
JK
5622static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5623 int pextents)
a02908f1 5624{
12e9b892 5625 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5626 return ext4_ind_trans_blocks(inode, lblocks);
5627 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5628}
ac51d837 5629
ac27a0ec 5630/*
a02908f1
MC
5631 * Account for index blocks, block groups bitmaps and block group
5632 * descriptor blocks if modify datablocks and index blocks
5633 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5634 *
a02908f1 5635 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5636 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5637 * they could still across block group boundary.
ac27a0ec 5638 *
a02908f1
MC
5639 * Also account for superblock, inode, quota and xattr blocks
5640 */
dec214d0 5641static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
fffb2739 5642 int pextents)
a02908f1 5643{
8df9675f
TT
5644 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5645 int gdpblocks;
a02908f1
MC
5646 int idxblocks;
5647 int ret = 0;
5648
5649 /*
fffb2739
JK
5650 * How many index blocks need to touch to map @lblocks logical blocks
5651 * to @pextents physical extents?
a02908f1 5652 */
fffb2739 5653 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5654
5655 ret = idxblocks;
5656
5657 /*
5658 * Now let's see how many group bitmaps and group descriptors need
5659 * to account
5660 */
fffb2739 5661 groups = idxblocks + pextents;
a02908f1 5662 gdpblocks = groups;
8df9675f
TT
5663 if (groups > ngroups)
5664 groups = ngroups;
a02908f1
MC
5665 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5666 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5667
5668 /* bitmaps and block group descriptor blocks */
5669 ret += groups + gdpblocks;
5670
5671 /* Blocks for super block, inode, quota and xattr blocks */
5672 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5673
5674 return ret;
5675}
5676
5677/*
25985edc 5678 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5679 * the modification of a single pages into a single transaction,
5680 * which may include multiple chunks of block allocations.
ac27a0ec 5681 *
525f4ed8 5682 * This could be called via ext4_write_begin()
ac27a0ec 5683 *
525f4ed8 5684 * We need to consider the worse case, when
a02908f1 5685 * one new block per extent.
ac27a0ec 5686 */
a86c6181 5687int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5688{
617ba13b 5689 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5690 int ret;
5691
fffb2739 5692 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5693
a02908f1 5694 /* Account for data blocks for journalled mode */
617ba13b 5695 if (ext4_should_journal_data(inode))
a02908f1 5696 ret += bpp;
ac27a0ec
DK
5697 return ret;
5698}
f3bd1f3f
MC
5699
5700/*
5701 * Calculate the journal credits for a chunk of data modification.
5702 *
5703 * This is called from DIO, fallocate or whoever calling
79e83036 5704 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5705 *
5706 * journal buffers for data blocks are not included here, as DIO
5707 * and fallocate do no need to journal data buffers.
5708 */
5709int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5710{
5711 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5712}
5713
ac27a0ec 5714/*
617ba13b 5715 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5716 * Give this, we know that the caller already has write access to iloc->bh.
5717 */
617ba13b 5718int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5719 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5720{
5721 int err = 0;
5722
a6758309
VA
5723 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5724 put_bh(iloc->bh);
0db1ff22 5725 return -EIO;
a6758309 5726 }
a80f7fcf 5727 ext4_fc_track_inode(handle, inode);
aa75f4d3 5728
c64db50e 5729 if (IS_I_VERSION(inode))
25ec56b5
JNC
5730 inode_inc_iversion(inode);
5731
ac27a0ec
DK
5732 /* the do_update_inode consumes one bh->b_count */
5733 get_bh(iloc->bh);
5734
dab291af 5735 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5736 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5737 put_bh(iloc->bh);
5738 return err;
5739}
5740
5741/*
5742 * On success, We end up with an outstanding reference count against
5743 * iloc->bh. This _must_ be cleaned up later.
5744 */
5745
5746int
617ba13b
MC
5747ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5748 struct ext4_iloc *iloc)
ac27a0ec 5749{
0390131b
FM
5750 int err;
5751
0db1ff22
TT
5752 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5753 return -EIO;
5754
0390131b
FM
5755 err = ext4_get_inode_loc(inode, iloc);
5756 if (!err) {
5757 BUFFER_TRACE(iloc->bh, "get_write_access");
188c299e
JK
5758 err = ext4_journal_get_write_access(handle, inode->i_sb,
5759 iloc->bh, EXT4_JTR_NONE);
0390131b
FM
5760 if (err) {
5761 brelse(iloc->bh);
5762 iloc->bh = NULL;
ac27a0ec
DK
5763 }
5764 }
617ba13b 5765 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5766 return err;
5767}
5768
c03b45b8
MX
5769static int __ext4_expand_extra_isize(struct inode *inode,
5770 unsigned int new_extra_isize,
5771 struct ext4_iloc *iloc,
5772 handle_t *handle, int *no_expand)
5773{
5774 struct ext4_inode *raw_inode;
5775 struct ext4_xattr_ibody_header *header;
4ea99936
TT
5776 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5777 struct ext4_inode_info *ei = EXT4_I(inode);
c03b45b8
MX
5778 int error;
5779
4ea99936
TT
5780 /* this was checked at iget time, but double check for good measure */
5781 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5782 (ei->i_extra_isize & 3)) {
5783 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5784 ei->i_extra_isize,
5785 EXT4_INODE_SIZE(inode->i_sb));
5786 return -EFSCORRUPTED;
5787 }
5788 if ((new_extra_isize < ei->i_extra_isize) ||
5789 (new_extra_isize < 4) ||
5790 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5791 return -EINVAL; /* Should never happen */
5792
c03b45b8
MX
5793 raw_inode = ext4_raw_inode(iloc);
5794
5795 header = IHDR(inode, raw_inode);
5796
5797 /* No extended attributes present */
5798 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5799 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5800 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5801 EXT4_I(inode)->i_extra_isize, 0,
5802 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5803 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5804 return 0;
5805 }
5806
5807 /* try to expand with EAs present */
5808 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5809 raw_inode, handle);
5810 if (error) {
5811 /*
5812 * Inode size expansion failed; don't try again
5813 */
5814 *no_expand = 1;
5815 }
5816
5817 return error;
5818}
5819
6dd4ee7c
KS
5820/*
5821 * Expand an inode by new_extra_isize bytes.
5822 * Returns 0 on success or negative error number on failure.
5823 */
cf0a5e81
MX
5824static int ext4_try_to_expand_extra_isize(struct inode *inode,
5825 unsigned int new_extra_isize,
5826 struct ext4_iloc iloc,
5827 handle_t *handle)
6dd4ee7c 5828{
3b10fdc6
MX
5829 int no_expand;
5830 int error;
6dd4ee7c 5831
cf0a5e81
MX
5832 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5833 return -EOVERFLOW;
5834
5835 /*
5836 * In nojournal mode, we can immediately attempt to expand
5837 * the inode. When journaled, we first need to obtain extra
5838 * buffer credits since we may write into the EA block
5839 * with this same handle. If journal_extend fails, then it will
5840 * only result in a minor loss of functionality for that inode.
5841 * If this is felt to be critical, then e2fsck should be run to
5842 * force a large enough s_min_extra_isize.
5843 */
6cb367c2 5844 if (ext4_journal_extend(handle,
83448bdf 5845 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
cf0a5e81 5846 return -ENOSPC;
6dd4ee7c 5847
3b10fdc6 5848 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
cf0a5e81 5849 return -EBUSY;
3b10fdc6 5850
c03b45b8
MX
5851 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5852 handle, &no_expand);
5853 ext4_write_unlock_xattr(inode, &no_expand);
6dd4ee7c 5854
c03b45b8
MX
5855 return error;
5856}
6dd4ee7c 5857
c03b45b8
MX
5858int ext4_expand_extra_isize(struct inode *inode,
5859 unsigned int new_extra_isize,
5860 struct ext4_iloc *iloc)
5861{
5862 handle_t *handle;
5863 int no_expand;
5864 int error, rc;
5865
5866 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5867 brelse(iloc->bh);
5868 return -EOVERFLOW;
6dd4ee7c
KS
5869 }
5870
c03b45b8
MX
5871 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5872 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5873 if (IS_ERR(handle)) {
5874 error = PTR_ERR(handle);
5875 brelse(iloc->bh);
5876 return error;
5877 }
5878
5879 ext4_write_lock_xattr(inode, &no_expand);
5880
ddccb6db 5881 BUFFER_TRACE(iloc->bh, "get_write_access");
188c299e
JK
5882 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5883 EXT4_JTR_NONE);
3b10fdc6 5884 if (error) {
c03b45b8 5885 brelse(iloc->bh);
7f420d64 5886 goto out_unlock;
3b10fdc6 5887 }
cf0a5e81 5888
c03b45b8
MX
5889 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5890 handle, &no_expand);
5891
5892 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5893 if (!error)
5894 error = rc;
5895
7f420d64 5896out_unlock:
c03b45b8 5897 ext4_write_unlock_xattr(inode, &no_expand);
c03b45b8 5898 ext4_journal_stop(handle);
3b10fdc6 5899 return error;
6dd4ee7c
KS
5900}
5901
ac27a0ec
DK
5902/*
5903 * What we do here is to mark the in-core inode as clean with respect to inode
5904 * dirtiness (it may still be data-dirty).
5905 * This means that the in-core inode may be reaped by prune_icache
5906 * without having to perform any I/O. This is a very good thing,
5907 * because *any* task may call prune_icache - even ones which
5908 * have a transaction open against a different journal.
5909 *
5910 * Is this cheating? Not really. Sure, we haven't written the
5911 * inode out, but prune_icache isn't a user-visible syncing function.
5912 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5913 * we start and wait on commits.
ac27a0ec 5914 */
4209ae12
HS
5915int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5916 const char *func, unsigned int line)
ac27a0ec 5917{
617ba13b 5918 struct ext4_iloc iloc;
6dd4ee7c 5919 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
cf0a5e81 5920 int err;
ac27a0ec
DK
5921
5922 might_sleep();
7ff9c073 5923 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5924 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2 5925 if (err)
4209ae12 5926 goto out;
cf0a5e81
MX
5927
5928 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5929 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5930 iloc, handle);
5931
4209ae12
HS
5932 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5933out:
5934 if (unlikely(err))
5935 ext4_error_inode_err(inode, func, line, 0, err,
5936 "mark_inode_dirty error");
5937 return err;
ac27a0ec
DK
5938}
5939
5940/*
617ba13b 5941 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5942 *
5943 * We're really interested in the case where a file is being extended.
5944 * i_size has been changed by generic_commit_write() and we thus need
5945 * to include the updated inode in the current transaction.
5946 *
5dd4056d 5947 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5948 * are allocated to the file.
5949 *
5950 * If the inode is marked synchronous, we don't honour that here - doing
5951 * so would cause a commit on atime updates, which we don't bother doing.
5952 * We handle synchronous inodes at the highest possible level.
5953 */
aa385729 5954void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5955{
ac27a0ec
DK
5956 handle_t *handle;
5957
9924a92a 5958 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec 5959 if (IS_ERR(handle))
e2728c56 5960 return;
f3dc272f 5961 ext4_mark_inode_dirty(handle, inode);
617ba13b 5962 ext4_journal_stop(handle);
ac27a0ec
DK
5963}
5964
617ba13b 5965int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5966{
5967 journal_t *journal;
5968 handle_t *handle;
5969 int err;
c8585c6f 5970 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5971
5972 /*
5973 * We have to be very careful here: changing a data block's
5974 * journaling status dynamically is dangerous. If we write a
5975 * data block to the journal, change the status and then delete
5976 * that block, we risk forgetting to revoke the old log record
5977 * from the journal and so a subsequent replay can corrupt data.
5978 * So, first we make sure that the journal is empty and that
5979 * nobody is changing anything.
5980 */
5981
617ba13b 5982 journal = EXT4_JOURNAL(inode);
0390131b
FM
5983 if (!journal)
5984 return 0;
d699594d 5985 if (is_journal_aborted(journal))
ac27a0ec
DK
5986 return -EROFS;
5987
17335dcc 5988 /* Wait for all existing dio workers */
17335dcc
DM
5989 inode_dio_wait(inode);
5990
4c546592
DJ
5991 /*
5992 * Before flushing the journal and switching inode's aops, we have
5993 * to flush all dirty data the inode has. There can be outstanding
5994 * delayed allocations, there can be unwritten extents created by
5995 * fallocate or buffered writes in dioread_nolock mode covered by
5996 * dirty data which can be converted only after flushing the dirty
5997 * data (and journalled aops don't know how to handle these cases).
5998 */
5999 if (val) {
6000 down_write(&EXT4_I(inode)->i_mmap_sem);
6001 err = filemap_write_and_wait(inode->i_mapping);
6002 if (err < 0) {
6003 up_write(&EXT4_I(inode)->i_mmap_sem);
4c546592
DJ
6004 return err;
6005 }
6006 }
6007
bbd55937 6008 percpu_down_write(&sbi->s_writepages_rwsem);
dab291af 6009 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
6010
6011 /*
6012 * OK, there are no updates running now, and all cached data is
6013 * synced to disk. We are now in a completely consistent state
6014 * which doesn't have anything in the journal, and we know that
6015 * no filesystem updates are running, so it is safe to modify
6016 * the inode's in-core data-journaling state flag now.
6017 */
6018
6019 if (val)
12e9b892 6020 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6021 else {
01d5d965 6022 err = jbd2_journal_flush(journal, 0);
4f879ca6
JK
6023 if (err < 0) {
6024 jbd2_journal_unlock_updates(journal);
bbd55937 6025 percpu_up_write(&sbi->s_writepages_rwsem);
4f879ca6
JK
6026 return err;
6027 }
12e9b892 6028 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6029 }
617ba13b 6030 ext4_set_aops(inode);
ac27a0ec 6031
dab291af 6032 jbd2_journal_unlock_updates(journal);
bbd55937 6033 percpu_up_write(&sbi->s_writepages_rwsem);
c8585c6f 6034
4c546592
DJ
6035 if (val)
6036 up_write(&EXT4_I(inode)->i_mmap_sem);
ac27a0ec
DK
6037
6038 /* Finally we can mark the inode as dirty. */
6039
9924a92a 6040 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
6041 if (IS_ERR(handle))
6042 return PTR_ERR(handle);
6043
aa75f4d3
HS
6044 ext4_fc_mark_ineligible(inode->i_sb,
6045 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
617ba13b 6046 err = ext4_mark_inode_dirty(handle, inode);
0390131b 6047 ext4_handle_sync(handle);
617ba13b
MC
6048 ext4_journal_stop(handle);
6049 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6050
6051 return err;
6052}
2e9ee850 6053
188c299e
JK
6054static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6055 struct buffer_head *bh)
2e9ee850
AK
6056{
6057 return !buffer_mapped(bh);
6058}
6059
401b25aa 6060vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 6061{
11bac800 6062 struct vm_area_struct *vma = vmf->vma;
c2ec175c 6063 struct page *page = vmf->page;
2e9ee850
AK
6064 loff_t size;
6065 unsigned long len;
401b25aa
SJ
6066 int err;
6067 vm_fault_t ret;
2e9ee850 6068 struct file *file = vma->vm_file;
496ad9aa 6069 struct inode *inode = file_inode(file);
2e9ee850 6070 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
6071 handle_t *handle;
6072 get_block_t *get_block;
6073 int retries = 0;
2e9ee850 6074
02b016ca
TT
6075 if (unlikely(IS_IMMUTABLE(inode)))
6076 return VM_FAULT_SIGBUS;
6077
8e8ad8a5 6078 sb_start_pagefault(inode->i_sb);
041bbb6d 6079 file_update_time(vma->vm_file);
ea3d7209
JK
6080
6081 down_read(&EXT4_I(inode)->i_mmap_sem);
7b4cc978 6082
401b25aa
SJ
6083 err = ext4_convert_inline_data(inode);
6084 if (err)
7b4cc978
EB
6085 goto out_ret;
6086
64a9f144
MFO
6087 /*
6088 * On data journalling we skip straight to the transaction handle:
6089 * there's no delalloc; page truncated will be checked later; the
6090 * early return w/ all buffers mapped (calculates size/len) can't
6091 * be used; and there's no dioread_nolock, so only ext4_get_block.
6092 */
6093 if (ext4_should_journal_data(inode))
6094 goto retry_alloc;
6095
9ea7df53
JK
6096 /* Delalloc case is easy... */
6097 if (test_opt(inode->i_sb, DELALLOC) &&
9ea7df53
JK
6098 !ext4_nonda_switch(inode->i_sb)) {
6099 do {
401b25aa 6100 err = block_page_mkwrite(vma, vmf,
9ea7df53 6101 ext4_da_get_block_prep);
401b25aa 6102 } while (err == -ENOSPC &&
9ea7df53
JK
6103 ext4_should_retry_alloc(inode->i_sb, &retries));
6104 goto out_ret;
2e9ee850 6105 }
0e499890
DW
6106
6107 lock_page(page);
9ea7df53
JK
6108 size = i_size_read(inode);
6109 /* Page got truncated from under us? */
6110 if (page->mapping != mapping || page_offset(page) > size) {
6111 unlock_page(page);
6112 ret = VM_FAULT_NOPAGE;
6113 goto out;
0e499890 6114 }
2e9ee850 6115
09cbfeaf
KS
6116 if (page->index == size >> PAGE_SHIFT)
6117 len = size & ~PAGE_MASK;
2e9ee850 6118 else
09cbfeaf 6119 len = PAGE_SIZE;
a827eaff 6120 /*
9ea7df53
JK
6121 * Return if we have all the buffers mapped. This avoids the need to do
6122 * journal_start/journal_stop which can block and take a long time
64a9f144
MFO
6123 *
6124 * This cannot be done for data journalling, as we have to add the
6125 * inode to the transaction's list to writeprotect pages on commit.
a827eaff 6126 */
2e9ee850 6127 if (page_has_buffers(page)) {
188c299e 6128 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
f19d5870
TM
6129 0, len, NULL,
6130 ext4_bh_unmapped)) {
9ea7df53 6131 /* Wait so that we don't change page under IO */
1d1d1a76 6132 wait_for_stable_page(page);
9ea7df53
JK
6133 ret = VM_FAULT_LOCKED;
6134 goto out;
a827eaff 6135 }
2e9ee850 6136 }
a827eaff 6137 unlock_page(page);
9ea7df53
JK
6138 /* OK, we need to fill the hole... */
6139 if (ext4_should_dioread_nolock(inode))
705965bd 6140 get_block = ext4_get_block_unwritten;
9ea7df53
JK
6141 else
6142 get_block = ext4_get_block;
6143retry_alloc:
9924a92a
TT
6144 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6145 ext4_writepage_trans_blocks(inode));
9ea7df53 6146 if (IS_ERR(handle)) {
c2ec175c 6147 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
6148 goto out;
6149 }
64a9f144
MFO
6150 /*
6151 * Data journalling can't use block_page_mkwrite() because it
6152 * will set_buffer_dirty() before do_journal_get_write_access()
6153 * thus might hit warning messages for dirty metadata buffers.
6154 */
6155 if (!ext4_should_journal_data(inode)) {
6156 err = block_page_mkwrite(vma, vmf, get_block);
6157 } else {
6158 lock_page(page);
6159 size = i_size_read(inode);
6160 /* Page got truncated from under us? */
6161 if (page->mapping != mapping || page_offset(page) > size) {
64a9f144 6162 ret = VM_FAULT_NOPAGE;
afb585a9 6163 goto out_error;
9ea7df53 6164 }
64a9f144
MFO
6165
6166 if (page->index == size >> PAGE_SHIFT)
6167 len = size & ~PAGE_MASK;
6168 else
6169 len = PAGE_SIZE;
6170
6171 err = __block_write_begin(page, 0, len, ext4_get_block);
6172 if (!err) {
afb585a9 6173 ret = VM_FAULT_SIGBUS;
188c299e
JK
6174 if (ext4_walk_page_buffers(handle, inode,
6175 page_buffers(page), 0, len, NULL,
6176 do_journal_get_write_access))
afb585a9 6177 goto out_error;
188c299e
JK
6178 if (ext4_walk_page_buffers(handle, inode,
6179 page_buffers(page), 0, len, NULL,
6180 write_end_fn))
afb585a9 6181 goto out_error;
b5b18160
JK
6182 if (ext4_jbd2_inode_add_write(handle, inode,
6183 page_offset(page), len))
afb585a9 6184 goto out_error;
64a9f144
MFO
6185 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6186 } else {
6187 unlock_page(page);
6188 }
9ea7df53
JK
6189 }
6190 ext4_journal_stop(handle);
401b25aa 6191 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
9ea7df53
JK
6192 goto retry_alloc;
6193out_ret:
401b25aa 6194 ret = block_page_mkwrite_return(err);
9ea7df53 6195out:
ea3d7209 6196 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 6197 sb_end_pagefault(inode->i_sb);
2e9ee850 6198 return ret;
afb585a9
MFO
6199out_error:
6200 unlock_page(page);
6201 ext4_journal_stop(handle);
6202 goto out;
2e9ee850 6203}
ea3d7209 6204
401b25aa 6205vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
ea3d7209 6206{
11bac800 6207 struct inode *inode = file_inode(vmf->vma->vm_file);
401b25aa 6208 vm_fault_t ret;
ea3d7209
JK
6209
6210 down_read(&EXT4_I(inode)->i_mmap_sem);
401b25aa 6211 ret = filemap_fault(vmf);
ea3d7209
JK
6212 up_read(&EXT4_I(inode)->i_mmap_sem);
6213
401b25aa 6214 return ret;
ea3d7209 6215}