Merge tag 'nfsd-4.21' of git://linux-nfs.org/~bfields/linux
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
ac27a0ec 2/*
617ba13b 3 * linux/fs/ext4/inode.c
ac27a0ec
DK
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
ac27a0ec
DK
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
617ba13b 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
20 */
21
ac27a0ec
DK
22#include <linux/fs.h>
23#include <linux/time.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
c94c2acf 26#include <linux/dax.h>
ac27a0ec
DK
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
64769240 31#include <linux/pagevec.h>
ac27a0ec 32#include <linux/mpage.h>
e83c1397 33#include <linux/namei.h>
ac27a0ec
DK
34#include <linux/uio.h>
35#include <linux/bio.h>
4c0425ff 36#include <linux/workqueue.h>
744692dc 37#include <linux/kernel.h>
6db26ffc 38#include <linux/printk.h>
5a0e3ad6 39#include <linux/slab.h>
00a1a053 40#include <linux/bitops.h>
364443cb 41#include <linux/iomap.h>
ae5e165d 42#include <linux/iversion.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
9f125d64 47#include "truncate.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
814525f4
DW
53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55{
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 57 __u32 csum;
b47820ed
DJ
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
814525f4 61
b47820ed
DJ
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 67
b47820ed
DJ
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
b47820ed 77 }
05ac5aa1
DJ
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
80 }
81
814525f4
DW
82 return csum;
83}
84
85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87{
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 92 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104}
105
106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108{
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 113 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121}
122
678aaf48
JK
123static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125{
7ff9c073 126 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
678aaf48
JK
138}
139
d47992f8
LC
140static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
cb20d518
TT
142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
dec214d0
TE
144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
64769240 146
ac27a0ec
DK
147/*
148 * Test whether an inode is a fast symlink.
407cd7fb 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
ac27a0ec 150 */
f348c252 151int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 152{
fc82228a
AK
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
407cd7fb
TE
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
ac27a0ec
DK
164}
165
ac27a0ec
DK
166/*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
fa5d1113 171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 172 int nblocks)
ac27a0ec 173{
487caeef
JK
174 int ret;
175
176 /*
e35fd660 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
181 */
0390131b 182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 183 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 184 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 185 ret = ext4_journal_restart(handle, nblocks);
487caeef 186 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 187 ext4_discard_preallocations(inode);
487caeef
JK
188
189 return ret;
ac27a0ec
DK
190}
191
192/*
193 * Called at the last iput() if i_nlink is zero.
194 */
0930fcc1 195void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
196{
197 handle_t *handle;
bc965ab3 198 int err;
e50e5129 199 int extra_credits = 3;
0421a189 200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
ac27a0ec 201
7ff9c073 202 trace_ext4_evict_inode(inode);
2581fdc8 203
0930fcc1 204 if (inode->i_nlink) {
2d859db3
JK
205 /*
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
219 *
220 * Note that directories do not have this problem because they
221 * don't use page cache.
222 */
6a7fd522
VN
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
3abb1a0f
JK
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
2d859db3
JK
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
d76a3a77 230 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
231 filemap_write_and_wait(&inode->i_data);
232 }
91b0abe3 233 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 234
0930fcc1
AV
235 goto no_delete;
236 }
237
e2bfb088
TT
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
907f4554 241
678aaf48
JK
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 244 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 245
8e8ad8a5
JK
246 /*
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
249 */
250 sb_start_intwrite(inode->i_sb);
e50e5129 251
30a7eb97
TE
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
ac27a0ec 257 if (IS_ERR(handle)) {
bc965ab3 258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
259 /*
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
263 */
617ba13b 264 ext4_orphan_del(NULL, inode);
8e8ad8a5 265 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
266 goto no_delete;
267 }
30a7eb97 268
ac27a0ec 269 if (IS_SYNC(inode))
0390131b 270 ext4_handle_sync(handle);
407cd7fb
TE
271
272 /*
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
278 */
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
ac27a0ec 281 inode->i_size = 0;
bc965ab3
TT
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
12062ddd 284 ext4_warning(inode->i_sb,
bc965ab3
TT
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
287 }
2c98eb5e
TT
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
295 }
296 }
bc965ab3 297
30a7eb97
TE
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
bc965ab3
TT
309 }
310
ac27a0ec 311 /*
617ba13b 312 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 313 * AKPM: I think this can be inside the above `if'.
617ba13b 314 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 315 * deletion of a non-existent orphan - this is because we don't
617ba13b 316 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
317 * (Well, we could do this if we need to, but heck - it works)
318 */
617ba13b 319 ext4_orphan_del(handle, inode);
5ffff834 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
ac27a0ec
DK
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
617ba13b 329 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 330 /* If that failed, just do the required in-core inode clear. */
0930fcc1 331 ext4_clear_inode(inode);
ac27a0ec 332 else
617ba13b
MC
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
8e8ad8a5 335 sb_end_intwrite(inode->i_sb);
0421a189 336 ext4_xattr_inode_array_free(ea_inode_array);
ac27a0ec
DK
337 return;
338no_delete:
0930fcc1 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
340}
341
a9e7f447
DM
342#ifdef CONFIG_QUOTA
343qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 344{
a9e7f447 345 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 346}
a9e7f447 347#endif
9d0be502 348
0637c6f4
TT
349/*
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
352 */
5f634d06
AK
353void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
12219aea
AK
355{
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 357 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
358
359 spin_lock(&ei->i_block_reservation_lock);
d8990240 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 361 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 363 "with only %d reserved data blocks",
0637c6f4
TT
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
368 }
12219aea 369
0637c6f4
TT
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
71d4f7d0 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 373
12219aea 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 375
72b8ab9d
ES
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
7b415bf6 378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 379 else {
5f634d06
AK
380 /*
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
72b8ab9d 383 * not re-claim the quota for fallocated blocks.
5f634d06 384 */
7b415bf6 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 386 }
d6014301
AK
387
388 /*
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
392 */
0637c6f4
TT
393 if ((ei->i_reserved_data_blocks == 0) &&
394 (atomic_read(&inode->i_writecount) == 0))
d6014301 395 ext4_discard_preallocations(inode);
12219aea
AK
396}
397
e29136f8 398static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
399 unsigned int line,
400 struct ext4_map_blocks *map)
6fd058f7 401{
24676da4
TT
402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403 map->m_len)) {
c398eda0 404 ext4_error_inode(inode, func, line, map->m_pblk,
bdbd6ce0 405 "lblock %lu mapped to illegal pblock %llu "
c398eda0 406 "(length %d)", (unsigned long) map->m_lblk,
bdbd6ce0 407 map->m_pblk, map->m_len);
6a797d27 408 return -EFSCORRUPTED;
6fd058f7
TT
409 }
410 return 0;
411}
412
53085fac
JK
413int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414 ext4_lblk_t len)
415{
416 int ret;
417
418 if (ext4_encrypted_inode(inode))
a7550b30 419 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
420
421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422 if (ret > 0)
423 ret = 0;
424
425 return ret;
426}
427
e29136f8 428#define check_block_validity(inode, map) \
c398eda0 429 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 430
921f266b
DM
431#ifdef ES_AGGRESSIVE_TEST
432static void ext4_map_blocks_es_recheck(handle_t *handle,
433 struct inode *inode,
434 struct ext4_map_blocks *es_map,
435 struct ext4_map_blocks *map,
436 int flags)
437{
438 int retval;
439
440 map->m_flags = 0;
441 /*
442 * There is a race window that the result is not the same.
443 * e.g. xfstests #223 when dioread_nolock enables. The reason
444 * is that we lookup a block mapping in extent status tree with
445 * out taking i_data_sem. So at the time the unwritten extent
446 * could be converted.
447 */
2dcba478 448 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 } else {
453 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 EXT4_GET_BLOCKS_KEEP_SIZE);
455 }
2dcba478 456 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
457
458 /*
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
461 */
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
bdafe42a 465 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
471 retval, flags);
472 }
473}
474#endif /* ES_AGGRESSIVE_TEST */
475
f5ab0d1f 476/*
e35fd660 477 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 478 * and returns if the blocks are already mapped.
f5ab0d1f 479 *
f5ab0d1f
MC
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
482 * mapped.
483 *
e35fd660
TT
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
486 * based files
487 *
facab4d9
JK
488 * On success, it returns the number of blocks being mapped or allocated. if
489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
491 *
492 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
493 * that case, @map is returned as unmapped but we still do fill map->m_len to
494 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
495 *
496 * It returns the error in case of allocation failure.
497 */
e35fd660
TT
498int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
0e855ac8 500{
d100eef2 501 struct extent_status es;
0e855ac8 502 int retval;
b8a86845 503 int ret = 0;
921f266b
DM
504#ifdef ES_AGGRESSIVE_TEST
505 struct ext4_map_blocks orig_map;
506
507 memcpy(&orig_map, map, sizeof(*map));
508#endif
f5ab0d1f 509
e35fd660
TT
510 map->m_flags = 0;
511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 (unsigned long) map->m_lblk);
d100eef2 514
e861b5e9
TT
515 /*
516 * ext4_map_blocks returns an int, and m_len is an unsigned int
517 */
518 if (unlikely(map->m_len > INT_MAX))
519 map->m_len = INT_MAX;
520
4adb6ab3
KM
521 /* We can handle the block number less than EXT_MAX_BLOCKS */
522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 523 return -EFSCORRUPTED;
4adb6ab3 524
d100eef2
ZL
525 /* Lookup extent status tree firstly */
526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
534 retval = map->m_len;
535 map->m_len = retval;
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
537 map->m_pblk = 0;
538 retval = es.es_len - (map->m_lblk - es.es_lblk);
539 if (retval > map->m_len)
540 retval = map->m_len;
541 map->m_len = retval;
d100eef2
ZL
542 retval = 0;
543 } else {
544 BUG_ON(1);
545 }
921f266b
DM
546#ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549#endif
d100eef2
ZL
550 goto found;
551 }
552
4df3d265 553 /*
b920c755
TT
554 * Try to see if we can get the block without requesting a new
555 * file system block.
4df3d265 556 */
2dcba478 557 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
559 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 561 } else {
a4e5d88b
DM
562 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 564 }
f7fec032 565 if (retval > 0) {
3be78c73 566 unsigned int status;
f7fec032 567
44fb851d
ZL
568 if (unlikely(retval != map->m_len)) {
569 ext4_warning(inode->i_sb,
570 "ES len assertion failed for inode "
571 "%lu: retval %d != map->m_len %d",
572 inode->i_ino, retval, map->m_len);
573 WARN_ON(1);
921f266b 574 }
921f266b 575
f7fec032
ZL
576 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 579 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
580 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
f7fec032
ZL
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
587 }
2dcba478 588 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 589
d100eef2 590found:
e35fd660 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 592 ret = check_block_validity(inode, map);
6fd058f7
TT
593 if (ret != 0)
594 return ret;
595 }
596
f5ab0d1f 597 /* If it is only a block(s) look up */
c2177057 598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
599 return retval;
600
601 /*
602 * Returns if the blocks have already allocated
603 *
604 * Note that if blocks have been preallocated
df3ab170 605 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
606 * with buffer head unmapped.
607 */
e35fd660 608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
609 /*
610 * If we need to convert extent to unwritten
611 * we continue and do the actual work in
612 * ext4_ext_map_blocks()
613 */
614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615 return retval;
4df3d265 616
2a8964d6 617 /*
a25a4e1a
ZL
618 * Here we clear m_flags because after allocating an new extent,
619 * it will be set again.
2a8964d6 620 */
a25a4e1a 621 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 622
4df3d265 623 /*
556615dc 624 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 625 * will possibly result in updating i_data, so we take
d91bd2c1 626 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 627 * with create == 1 flag.
4df3d265 628 */
c8b459f4 629 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 630
4df3d265
AK
631 /*
632 * We need to check for EXT4 here because migrate
633 * could have changed the inode type in between
634 */
12e9b892 635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 636 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 637 } else {
e35fd660 638 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 639
e35fd660 640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
641 /*
642 * We allocated new blocks which will result in
643 * i_data's format changing. Force the migrate
644 * to fail by clearing migrate flags
645 */
19f5fb7a 646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 647 }
d2a17637 648
5f634d06
AK
649 /*
650 * Update reserved blocks/metadata blocks after successful
651 * block allocation which had been deferred till now. We don't
652 * support fallocate for non extent files. So we can update
653 * reserve space here.
654 */
655 if ((retval > 0) &&
1296cc85 656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
657 ext4_da_update_reserve_space(inode, retval, 1);
658 }
2ac3b6e0 659
f7fec032 660 if (retval > 0) {
3be78c73 661 unsigned int status;
f7fec032 662
44fb851d
ZL
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
668 WARN_ON(1);
921f266b 669 }
921f266b 670
c86d8db3
JK
671 /*
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
9b623df6
JK
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
c86d8db3
JK
677 */
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
681 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682 map->m_len);
c86d8db3
JK
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
685 if (ret) {
686 retval = ret;
687 goto out_sem;
688 }
689 }
690
adb23551
ZL
691 /*
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
694 */
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697 if (ext4_es_is_written(&es))
c86d8db3 698 goto out_sem;
adb23551 699 }
f7fec032
ZL
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 703 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
704 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
f7fec032
ZL
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
c86d8db3 709 if (ret < 0) {
f7fec032 710 retval = ret;
c86d8db3
JK
711 goto out_sem;
712 }
5356f261
AK
713 }
714
c86d8db3 715out_sem:
4df3d265 716 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 718 ret = check_block_validity(inode, map);
6fd058f7
TT
719 if (ret != 0)
720 return ret;
06bd3c36
JK
721
722 /*
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
725 * ordered data list.
726 */
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
02749a4c 730 !ext4_is_quota_file(inode) &&
06bd3c36 731 ext4_should_order_data(inode)) {
ee0876bc
JK
732 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733 ret = ext4_jbd2_inode_add_wait(handle, inode);
734 else
735 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
736 if (ret)
737 return ret;
738 }
6fd058f7 739 }
0e855ac8
AK
740 return retval;
741}
742
ed8ad838
JK
743/*
744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745 * we have to be careful as someone else may be manipulating b_state as well.
746 */
747static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748{
749 unsigned long old_state;
750 unsigned long new_state;
751
752 flags &= EXT4_MAP_FLAGS;
753
754 /* Dummy buffer_head? Set non-atomically. */
755 if (!bh->b_page) {
756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757 return;
758 }
759 /*
760 * Someone else may be modifying b_state. Be careful! This is ugly but
761 * once we get rid of using bh as a container for mapping information
762 * to pass to / from get_block functions, this can go away.
763 */
764 do {
765 old_state = READ_ONCE(bh->b_state);
766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767 } while (unlikely(
768 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769}
770
2ed88685
TT
771static int _ext4_get_block(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh, int flags)
ac27a0ec 773{
2ed88685 774 struct ext4_map_blocks map;
efe70c29 775 int ret = 0;
ac27a0ec 776
46c7f254
TM
777 if (ext4_has_inline_data(inode))
778 return -ERANGE;
779
2ed88685
TT
780 map.m_lblk = iblock;
781 map.m_len = bh->b_size >> inode->i_blkbits;
782
efe70c29
JK
783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784 flags);
7fb5409d 785 if (ret > 0) {
2ed88685 786 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 787 ext4_update_bh_state(bh, map.m_flags);
2ed88685 788 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 789 ret = 0;
547edce3
RZ
790 } else if (ret == 0) {
791 /* hole case, need to fill in bh->b_size */
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
793 }
794 return ret;
795}
796
2ed88685
TT
797int ext4_get_block(struct inode *inode, sector_t iblock,
798 struct buffer_head *bh, int create)
799{
800 return _ext4_get_block(inode, iblock, bh,
801 create ? EXT4_GET_BLOCKS_CREATE : 0);
802}
803
705965bd
JK
804/*
805 * Get block function used when preparing for buffered write if we require
806 * creating an unwritten extent if blocks haven't been allocated. The extent
807 * will be converted to written after the IO is complete.
808 */
809int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int create)
811{
812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 inode->i_ino, create);
814 return _ext4_get_block(inode, iblock, bh_result,
815 EXT4_GET_BLOCKS_IO_CREATE_EXT);
816}
817
efe70c29
JK
818/* Maximum number of blocks we map for direct IO at once. */
819#define DIO_MAX_BLOCKS 4096
820
e84dfbe2
JK
821/*
822 * Get blocks function for the cases that need to start a transaction -
823 * generally difference cases of direct IO and DAX IO. It also handles retries
824 * in case of ENOSPC.
825 */
826static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827 struct buffer_head *bh_result, int flags)
efe70c29
JK
828{
829 int dio_credits;
e84dfbe2
JK
830 handle_t *handle;
831 int retries = 0;
832 int ret;
efe70c29
JK
833
834 /* Trim mapping request to maximum we can map at once for DIO */
835 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837 dio_credits = ext4_chunk_trans_blocks(inode,
838 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
839retry:
840 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841 if (IS_ERR(handle))
842 return PTR_ERR(handle);
843
844 ret = _ext4_get_block(inode, iblock, bh_result, flags);
845 ext4_journal_stop(handle);
846
847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848 goto retry;
849 return ret;
efe70c29
JK
850}
851
705965bd
JK
852/* Get block function for DIO reads and writes to inodes without extents */
853int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh, int create)
855{
efe70c29
JK
856 /* We don't expect handle for direct IO */
857 WARN_ON_ONCE(ext4_journal_current_handle());
858
e84dfbe2
JK
859 if (!create)
860 return _ext4_get_block(inode, iblock, bh, 0);
861 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
862}
863
864/*
109811c2 865 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
866 * blocks are not allocated yet. The extent will be converted to written
867 * after IO is complete.
868 */
109811c2
JK
869static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 871{
efe70c29
JK
872 int ret;
873
efe70c29
JK
874 /* We don't expect handle for direct IO */
875 WARN_ON_ONCE(ext4_journal_current_handle());
876
e84dfbe2
JK
877 ret = ext4_get_block_trans(inode, iblock, bh_result,
878 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 879
109811c2
JK
880 /*
881 * When doing DIO using unwritten extents, we need io_end to convert
882 * unwritten extents to written on IO completion. We allocate io_end
883 * once we spot unwritten extent and store it in b_private. Generic
884 * DIO code keeps b_private set and furthermore passes the value to
885 * our completion callback in 'private' argument.
886 */
887 if (!ret && buffer_unwritten(bh_result)) {
888 if (!bh_result->b_private) {
889 ext4_io_end_t *io_end;
890
891 io_end = ext4_init_io_end(inode, GFP_KERNEL);
892 if (!io_end)
893 return -ENOMEM;
894 bh_result->b_private = io_end;
895 ext4_set_io_unwritten_flag(inode, io_end);
896 }
efe70c29 897 set_buffer_defer_completion(bh_result);
efe70c29
JK
898 }
899
900 return ret;
705965bd
JK
901}
902
109811c2
JK
903/*
904 * Get block function for non-AIO DIO writes when we create unwritten extent if
905 * blocks are not allocated yet. The extent will be converted to written
1e21196c 906 * after IO is complete by ext4_direct_IO_write().
109811c2
JK
907 */
908static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909 sector_t iblock, struct buffer_head *bh_result, int create)
910{
109811c2
JK
911 int ret;
912
913 /* We don't expect handle for direct IO */
914 WARN_ON_ONCE(ext4_journal_current_handle());
915
e84dfbe2
JK
916 ret = ext4_get_block_trans(inode, iblock, bh_result,
917 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
918
919 /*
920 * Mark inode as having pending DIO writes to unwritten extents.
1e21196c 921 * ext4_direct_IO_write() checks this flag and converts extents to
109811c2
JK
922 * written.
923 */
924 if (!ret && buffer_unwritten(bh_result))
925 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
926
927 return ret;
928}
929
705965bd
JK
930static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931 struct buffer_head *bh_result, int create)
932{
933 int ret;
934
935 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936 inode->i_ino, create);
efe70c29
JK
937 /* We don't expect handle for direct IO */
938 WARN_ON_ONCE(ext4_journal_current_handle());
939
705965bd
JK
940 ret = _ext4_get_block(inode, iblock, bh_result, 0);
941 /*
942 * Blocks should have been preallocated! ext4_file_write_iter() checks
943 * that.
944 */
efe70c29 945 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
946
947 return ret;
948}
949
950
ac27a0ec
DK
951/*
952 * `handle' can be NULL if create is zero
953 */
617ba13b 954struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 955 ext4_lblk_t block, int map_flags)
ac27a0ec 956{
2ed88685
TT
957 struct ext4_map_blocks map;
958 struct buffer_head *bh;
c5e298ae 959 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 960 int err;
ac27a0ec
DK
961
962 J_ASSERT(handle != NULL || create == 0);
963
2ed88685
TT
964 map.m_lblk = block;
965 map.m_len = 1;
c5e298ae 966 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 967
10560082
TT
968 if (err == 0)
969 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 970 if (err < 0)
10560082 971 return ERR_PTR(err);
2ed88685
TT
972
973 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
974 if (unlikely(!bh))
975 return ERR_PTR(-ENOMEM);
2ed88685
TT
976 if (map.m_flags & EXT4_MAP_NEW) {
977 J_ASSERT(create != 0);
978 J_ASSERT(handle != NULL);
ac27a0ec 979
2ed88685
TT
980 /*
981 * Now that we do not always journal data, we should
982 * keep in mind whether this should always journal the
983 * new buffer as metadata. For now, regular file
984 * writes use ext4_get_block instead, so it's not a
985 * problem.
986 */
987 lock_buffer(bh);
988 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
989 err = ext4_journal_get_create_access(handle, bh);
990 if (unlikely(err)) {
991 unlock_buffer(bh);
992 goto errout;
993 }
994 if (!buffer_uptodate(bh)) {
2ed88685
TT
995 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996 set_buffer_uptodate(bh);
ac27a0ec 997 }
2ed88685
TT
998 unlock_buffer(bh);
999 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
1001 if (unlikely(err))
1002 goto errout;
1003 } else
2ed88685 1004 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 1005 return bh;
10560082
TT
1006errout:
1007 brelse(bh);
1008 return ERR_PTR(err);
ac27a0ec
DK
1009}
1010
617ba13b 1011struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 1012 ext4_lblk_t block, int map_flags)
ac27a0ec 1013{
af5bc92d 1014 struct buffer_head *bh;
ac27a0ec 1015
c5e298ae 1016 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1017 if (IS_ERR(bh))
ac27a0ec 1018 return bh;
1c215028 1019 if (!bh || buffer_uptodate(bh))
ac27a0ec 1020 return bh;
dfec8a14 1021 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1022 wait_on_buffer(bh);
1023 if (buffer_uptodate(bh))
1024 return bh;
1025 put_bh(bh);
1c215028 1026 return ERR_PTR(-EIO);
ac27a0ec
DK
1027}
1028
9699d4f9
TE
1029/* Read a contiguous batch of blocks. */
1030int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031 bool wait, struct buffer_head **bhs)
1032{
1033 int i, err;
1034
1035 for (i = 0; i < bh_count; i++) {
1036 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037 if (IS_ERR(bhs[i])) {
1038 err = PTR_ERR(bhs[i]);
1039 bh_count = i;
1040 goto out_brelse;
1041 }
1042 }
1043
1044 for (i = 0; i < bh_count; i++)
1045 /* Note that NULL bhs[i] is valid because of holes. */
1046 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048 &bhs[i]);
1049
1050 if (!wait)
1051 return 0;
1052
1053 for (i = 0; i < bh_count; i++)
1054 if (bhs[i])
1055 wait_on_buffer(bhs[i]);
1056
1057 for (i = 0; i < bh_count; i++) {
1058 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059 err = -EIO;
1060 goto out_brelse;
1061 }
1062 }
1063 return 0;
1064
1065out_brelse:
1066 for (i = 0; i < bh_count; i++) {
1067 brelse(bhs[i]);
1068 bhs[i] = NULL;
1069 }
1070 return err;
1071}
1072
f19d5870
TM
1073int ext4_walk_page_buffers(handle_t *handle,
1074 struct buffer_head *head,
1075 unsigned from,
1076 unsigned to,
1077 int *partial,
1078 int (*fn)(handle_t *handle,
1079 struct buffer_head *bh))
ac27a0ec
DK
1080{
1081 struct buffer_head *bh;
1082 unsigned block_start, block_end;
1083 unsigned blocksize = head->b_size;
1084 int err, ret = 0;
1085 struct buffer_head *next;
1086
af5bc92d
TT
1087 for (bh = head, block_start = 0;
1088 ret == 0 && (bh != head || !block_start);
de9a55b8 1089 block_start = block_end, bh = next) {
ac27a0ec
DK
1090 next = bh->b_this_page;
1091 block_end = block_start + blocksize;
1092 if (block_end <= from || block_start >= to) {
1093 if (partial && !buffer_uptodate(bh))
1094 *partial = 1;
1095 continue;
1096 }
1097 err = (*fn)(handle, bh);
1098 if (!ret)
1099 ret = err;
1100 }
1101 return ret;
1102}
1103
1104/*
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1107 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1108 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1109 * prepare_write() is the right place.
1110 *
36ade451
JK
1111 * Also, this function can nest inside ext4_writepage(). In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page. So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
ac27a0ec 1115 *
617ba13b 1116 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1117 * quota file writes. If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1122 *
dab291af 1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated. We'll still have enough credits for the tiny quotafile
1126 * write.
1127 */
f19d5870
TM
1128int do_journal_get_write_access(handle_t *handle,
1129 struct buffer_head *bh)
ac27a0ec 1130{
56d35a4c
JK
1131 int dirty = buffer_dirty(bh);
1132 int ret;
1133
ac27a0ec
DK
1134 if (!buffer_mapped(bh) || buffer_freed(bh))
1135 return 0;
56d35a4c 1136 /*
ebdec241 1137 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1138 * the dirty bit as jbd2_journal_get_write_access() could complain
1139 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1140 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1141 * the bit before releasing a page lock and thus writeback cannot
1142 * ever write the buffer.
1143 */
1144 if (dirty)
1145 clear_buffer_dirty(bh);
5d601255 1146 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1147 ret = ext4_journal_get_write_access(handle, bh);
1148 if (!ret && dirty)
1149 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150 return ret;
ac27a0ec
DK
1151}
1152
2058f83a
MH
1153#ifdef CONFIG_EXT4_FS_ENCRYPTION
1154static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155 get_block_t *get_block)
1156{
09cbfeaf 1157 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1158 unsigned to = from + len;
1159 struct inode *inode = page->mapping->host;
1160 unsigned block_start, block_end;
1161 sector_t block;
1162 int err = 0;
1163 unsigned blocksize = inode->i_sb->s_blocksize;
1164 unsigned bbits;
1165 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166 bool decrypt = false;
1167
1168 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1169 BUG_ON(from > PAGE_SIZE);
1170 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1171 BUG_ON(from > to);
1172
1173 if (!page_has_buffers(page))
1174 create_empty_buffers(page, blocksize, 0);
1175 head = page_buffers(page);
1176 bbits = ilog2(blocksize);
09cbfeaf 1177 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1178
1179 for (bh = head, block_start = 0; bh != head || !block_start;
1180 block++, block_start = block_end, bh = bh->b_this_page) {
1181 block_end = block_start + blocksize;
1182 if (block_end <= from || block_start >= to) {
1183 if (PageUptodate(page)) {
1184 if (!buffer_uptodate(bh))
1185 set_buffer_uptodate(bh);
1186 }
1187 continue;
1188 }
1189 if (buffer_new(bh))
1190 clear_buffer_new(bh);
1191 if (!buffer_mapped(bh)) {
1192 WARN_ON(bh->b_size != blocksize);
1193 err = get_block(inode, block, bh, 1);
1194 if (err)
1195 break;
1196 if (buffer_new(bh)) {
e64855c6 1197 clean_bdev_bh_alias(bh);
2058f83a
MH
1198 if (PageUptodate(page)) {
1199 clear_buffer_new(bh);
1200 set_buffer_uptodate(bh);
1201 mark_buffer_dirty(bh);
1202 continue;
1203 }
1204 if (block_end > to || block_start < from)
1205 zero_user_segments(page, to, block_end,
1206 block_start, from);
1207 continue;
1208 }
1209 }
1210 if (PageUptodate(page)) {
1211 if (!buffer_uptodate(bh))
1212 set_buffer_uptodate(bh);
1213 continue;
1214 }
1215 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216 !buffer_unwritten(bh) &&
1217 (block_start < from || block_end > to)) {
dfec8a14 1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1219 *wait_bh++ = bh;
1220 decrypt = ext4_encrypted_inode(inode) &&
1221 S_ISREG(inode->i_mode);
1222 }
1223 }
1224 /*
1225 * If we issued read requests, let them complete.
1226 */
1227 while (wait_bh > wait) {
1228 wait_on_buffer(*--wait_bh);
1229 if (!buffer_uptodate(*wait_bh))
1230 err = -EIO;
1231 }
1232 if (unlikely(err))
1233 page_zero_new_buffers(page, from, to);
1234 else if (decrypt)
7821d4dd 1235 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1236 PAGE_SIZE, 0, page->index);
2058f83a
MH
1237 return err;
1238}
1239#endif
1240
bfc1af65 1241static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1242 loff_t pos, unsigned len, unsigned flags,
1243 struct page **pagep, void **fsdata)
ac27a0ec 1244{
af5bc92d 1245 struct inode *inode = mapping->host;
1938a150 1246 int ret, needed_blocks;
ac27a0ec
DK
1247 handle_t *handle;
1248 int retries = 0;
af5bc92d 1249 struct page *page;
de9a55b8 1250 pgoff_t index;
af5bc92d 1251 unsigned from, to;
bfc1af65 1252
0db1ff22
TT
1253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254 return -EIO;
1255
9bffad1e 1256 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1257 /*
1258 * Reserve one block more for addition to orphan list in case
1259 * we allocate blocks but write fails for some reason
1260 */
1261 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1262 index = pos >> PAGE_SHIFT;
1263 from = pos & (PAGE_SIZE - 1);
af5bc92d 1264 to = from + len;
ac27a0ec 1265
f19d5870
TM
1266 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268 flags, pagep);
1269 if (ret < 0)
47564bfb
TT
1270 return ret;
1271 if (ret == 1)
1272 return 0;
f19d5870
TM
1273 }
1274
47564bfb
TT
1275 /*
1276 * grab_cache_page_write_begin() can take a long time if the
1277 * system is thrashing due to memory pressure, or if the page
1278 * is being written back. So grab it first before we start
1279 * the transaction handle. This also allows us to allocate
1280 * the page (if needed) without using GFP_NOFS.
1281 */
1282retry_grab:
1283 page = grab_cache_page_write_begin(mapping, index, flags);
1284 if (!page)
1285 return -ENOMEM;
1286 unlock_page(page);
1287
1288retry_journal:
9924a92a 1289 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1290 if (IS_ERR(handle)) {
09cbfeaf 1291 put_page(page);
47564bfb 1292 return PTR_ERR(handle);
7479d2b9 1293 }
ac27a0ec 1294
47564bfb
TT
1295 lock_page(page);
1296 if (page->mapping != mapping) {
1297 /* The page got truncated from under us */
1298 unlock_page(page);
09cbfeaf 1299 put_page(page);
cf108bca 1300 ext4_journal_stop(handle);
47564bfb 1301 goto retry_grab;
cf108bca 1302 }
7afe5aa5
DM
1303 /* In case writeback began while the page was unlocked */
1304 wait_for_stable_page(page);
cf108bca 1305
2058f83a
MH
1306#ifdef CONFIG_EXT4_FS_ENCRYPTION
1307 if (ext4_should_dioread_nolock(inode))
1308 ret = ext4_block_write_begin(page, pos, len,
705965bd 1309 ext4_get_block_unwritten);
2058f83a
MH
1310 else
1311 ret = ext4_block_write_begin(page, pos, len,
1312 ext4_get_block);
1313#else
744692dc 1314 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1315 ret = __block_write_begin(page, pos, len,
1316 ext4_get_block_unwritten);
744692dc 1317 else
6e1db88d 1318 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1319#endif
bfc1af65 1320 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1321 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322 from, to, NULL,
1323 do_journal_get_write_access);
ac27a0ec 1324 }
bfc1af65
NP
1325
1326 if (ret) {
af5bc92d 1327 unlock_page(page);
ae4d5372 1328 /*
6e1db88d 1329 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1330 * outside i_size. Trim these off again. Don't need
1331 * i_size_read because we hold i_mutex.
1938a150
AK
1332 *
1333 * Add inode to orphan list in case we crash before
1334 * truncate finishes
ae4d5372 1335 */
ffacfa7a 1336 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1337 ext4_orphan_add(handle, inode);
1338
1339 ext4_journal_stop(handle);
1340 if (pos + len > inode->i_size) {
b9a4207d 1341 ext4_truncate_failed_write(inode);
de9a55b8 1342 /*
ffacfa7a 1343 * If truncate failed early the inode might
1938a150
AK
1344 * still be on the orphan list; we need to
1345 * make sure the inode is removed from the
1346 * orphan list in that case.
1347 */
1348 if (inode->i_nlink)
1349 ext4_orphan_del(NULL, inode);
1350 }
bfc1af65 1351
47564bfb
TT
1352 if (ret == -ENOSPC &&
1353 ext4_should_retry_alloc(inode->i_sb, &retries))
1354 goto retry_journal;
09cbfeaf 1355 put_page(page);
47564bfb
TT
1356 return ret;
1357 }
1358 *pagep = page;
ac27a0ec
DK
1359 return ret;
1360}
1361
bfc1af65
NP
1362/* For write_end() in data=journal mode */
1363static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1364{
13fca323 1365 int ret;
ac27a0ec
DK
1366 if (!buffer_mapped(bh) || buffer_freed(bh))
1367 return 0;
1368 set_buffer_uptodate(bh);
13fca323
TT
1369 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370 clear_buffer_meta(bh);
1371 clear_buffer_prio(bh);
1372 return ret;
ac27a0ec
DK
1373}
1374
eed4333f
ZL
1375/*
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1378 *
1379 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1380 * buffers are managed internally.
1381 */
1382static int ext4_write_end(struct file *file,
1383 struct address_space *mapping,
1384 loff_t pos, unsigned len, unsigned copied,
1385 struct page *page, void *fsdata)
f8514083 1386{
f8514083 1387 handle_t *handle = ext4_journal_current_handle();
eed4333f 1388 struct inode *inode = mapping->host;
0572639f 1389 loff_t old_size = inode->i_size;
eed4333f
ZL
1390 int ret = 0, ret2;
1391 int i_size_changed = 0;
362eca70 1392 int inline_data = ext4_has_inline_data(inode);
eed4333f
ZL
1393
1394 trace_ext4_write_end(inode, pos, len, copied);
362eca70 1395 if (inline_data) {
42c832de
TT
1396 ret = ext4_write_inline_data_end(inode, pos, len,
1397 copied, page);
eb5efbcb
TT
1398 if (ret < 0) {
1399 unlock_page(page);
1400 put_page(page);
42c832de 1401 goto errout;
eb5efbcb 1402 }
42c832de
TT
1403 copied = ret;
1404 } else
f19d5870
TM
1405 copied = block_write_end(file, mapping, pos,
1406 len, copied, page, fsdata);
f8514083 1407 /*
4631dbf6 1408 * it's important to update i_size while still holding page lock:
f8514083
AK
1409 * page writeout could otherwise come in and zero beyond i_size.
1410 */
4631dbf6 1411 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1412 unlock_page(page);
09cbfeaf 1413 put_page(page);
f8514083 1414
0572639f
XW
1415 if (old_size < pos)
1416 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1417 /*
1418 * Don't mark the inode dirty under page lock. First, it unnecessarily
1419 * makes the holding time of page lock longer. Second, it forces lock
1420 * ordering of page lock and transaction start for journaling
1421 * filesystems.
1422 */
362eca70 1423 if (i_size_changed || inline_data)
f8514083
AK
1424 ext4_mark_inode_dirty(handle, inode);
1425
ffacfa7a 1426 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1427 /* if we have allocated more blocks and copied
1428 * less. We will have blocks allocated outside
1429 * inode->i_size. So truncate them
1430 */
1431 ext4_orphan_add(handle, inode);
74d553aa 1432errout:
617ba13b 1433 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1434 if (!ret)
1435 ret = ret2;
bfc1af65 1436
f8514083 1437 if (pos + len > inode->i_size) {
b9a4207d 1438 ext4_truncate_failed_write(inode);
de9a55b8 1439 /*
ffacfa7a 1440 * If truncate failed early the inode might still be
f8514083
AK
1441 * on the orphan list; we need to make sure the inode
1442 * is removed from the orphan list in that case.
1443 */
1444 if (inode->i_nlink)
1445 ext4_orphan_del(NULL, inode);
1446 }
1447
bfc1af65 1448 return ret ? ret : copied;
ac27a0ec
DK
1449}
1450
b90197b6
TT
1451/*
1452 * This is a private version of page_zero_new_buffers() which doesn't
1453 * set the buffer to be dirty, since in data=journalled mode we need
1454 * to call ext4_handle_dirty_metadata() instead.
1455 */
3b136499
JK
1456static void ext4_journalled_zero_new_buffers(handle_t *handle,
1457 struct page *page,
1458 unsigned from, unsigned to)
b90197b6
TT
1459{
1460 unsigned int block_start = 0, block_end;
1461 struct buffer_head *head, *bh;
1462
1463 bh = head = page_buffers(page);
1464 do {
1465 block_end = block_start + bh->b_size;
1466 if (buffer_new(bh)) {
1467 if (block_end > from && block_start < to) {
1468 if (!PageUptodate(page)) {
1469 unsigned start, size;
1470
1471 start = max(from, block_start);
1472 size = min(to, block_end) - start;
1473
1474 zero_user(page, start, size);
3b136499 1475 write_end_fn(handle, bh);
b90197b6
TT
1476 }
1477 clear_buffer_new(bh);
1478 }
1479 }
1480 block_start = block_end;
1481 bh = bh->b_this_page;
1482 } while (bh != head);
1483}
1484
bfc1af65 1485static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1486 struct address_space *mapping,
1487 loff_t pos, unsigned len, unsigned copied,
1488 struct page *page, void *fsdata)
ac27a0ec 1489{
617ba13b 1490 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1491 struct inode *inode = mapping->host;
0572639f 1492 loff_t old_size = inode->i_size;
ac27a0ec
DK
1493 int ret = 0, ret2;
1494 int partial = 0;
bfc1af65 1495 unsigned from, to;
4631dbf6 1496 int size_changed = 0;
362eca70 1497 int inline_data = ext4_has_inline_data(inode);
ac27a0ec 1498
9bffad1e 1499 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1500 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1501 to = from + len;
1502
441c8508
CW
1503 BUG_ON(!ext4_handle_valid(handle));
1504
362eca70 1505 if (inline_data) {
eb5efbcb
TT
1506 ret = ext4_write_inline_data_end(inode, pos, len,
1507 copied, page);
1508 if (ret < 0) {
1509 unlock_page(page);
1510 put_page(page);
1511 goto errout;
1512 }
1513 copied = ret;
1514 } else if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499
JK
1515 copied = 0;
1516 ext4_journalled_zero_new_buffers(handle, page, from, to);
1517 } else {
1518 if (unlikely(copied < len))
1519 ext4_journalled_zero_new_buffers(handle, page,
1520 from + copied, to);
3fdcfb66 1521 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
3b136499
JK
1522 from + copied, &partial,
1523 write_end_fn);
3fdcfb66
TM
1524 if (!partial)
1525 SetPageUptodate(page);
1526 }
4631dbf6 1527 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1528 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1529 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1530 unlock_page(page);
09cbfeaf 1531 put_page(page);
4631dbf6 1532
0572639f
XW
1533 if (old_size < pos)
1534 pagecache_isize_extended(inode, old_size, pos);
1535
362eca70 1536 if (size_changed || inline_data) {
617ba13b 1537 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1538 if (!ret)
1539 ret = ret2;
1540 }
bfc1af65 1541
ffacfa7a 1542 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1543 /* if we have allocated more blocks and copied
1544 * less. We will have blocks allocated outside
1545 * inode->i_size. So truncate them
1546 */
1547 ext4_orphan_add(handle, inode);
1548
eb5efbcb 1549errout:
617ba13b 1550 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1551 if (!ret)
1552 ret = ret2;
f8514083 1553 if (pos + len > inode->i_size) {
b9a4207d 1554 ext4_truncate_failed_write(inode);
de9a55b8 1555 /*
ffacfa7a 1556 * If truncate failed early the inode might still be
f8514083
AK
1557 * on the orphan list; we need to make sure the inode
1558 * is removed from the orphan list in that case.
1559 */
1560 if (inode->i_nlink)
1561 ext4_orphan_del(NULL, inode);
1562 }
bfc1af65
NP
1563
1564 return ret ? ret : copied;
ac27a0ec 1565}
d2a17637 1566
9d0be502 1567/*
c27e43a1 1568 * Reserve space for a single cluster
9d0be502 1569 */
c27e43a1 1570static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1571{
60e58e0f 1572 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1573 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1574 int ret;
03179fe9
TT
1575
1576 /*
1577 * We will charge metadata quota at writeout time; this saves
1578 * us from metadata over-estimation, though we may go over by
1579 * a small amount in the end. Here we just reserve for data.
1580 */
1581 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1582 if (ret)
1583 return ret;
d2a17637 1584
0637c6f4 1585 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1586 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1587 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1588 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1589 return -ENOSPC;
1590 }
9d0be502 1591 ei->i_reserved_data_blocks++;
c27e43a1 1592 trace_ext4_da_reserve_space(inode);
0637c6f4 1593 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1594
d2a17637
MC
1595 return 0; /* success */
1596}
1597
f456767d 1598void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1599{
1600 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1601 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1602
cd213226
MC
1603 if (!to_free)
1604 return; /* Nothing to release, exit */
1605
d2a17637 1606 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1607
5a58ec87 1608 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1609 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1610 /*
0637c6f4
TT
1611 * if there aren't enough reserved blocks, then the
1612 * counter is messed up somewhere. Since this
1613 * function is called from invalidate page, it's
1614 * harmless to return without any action.
cd213226 1615 */
8de5c325 1616 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1617 "ino %lu, to_free %d with only %d reserved "
1084f252 1618 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1619 ei->i_reserved_data_blocks);
1620 WARN_ON(1);
1621 to_free = ei->i_reserved_data_blocks;
cd213226 1622 }
0637c6f4 1623 ei->i_reserved_data_blocks -= to_free;
cd213226 1624
72b8ab9d 1625 /* update fs dirty data blocks counter */
57042651 1626 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1627
d2a17637 1628 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1629
7b415bf6 1630 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1631}
1632
1633static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1634 unsigned int offset,
1635 unsigned int length)
d2a17637 1636{
f456767d 1637 int contiguous_blks = 0;
d2a17637
MC
1638 struct buffer_head *head, *bh;
1639 unsigned int curr_off = 0;
7b415bf6 1640 struct inode *inode = page->mapping->host;
ca99fdd2 1641 unsigned int stop = offset + length;
51865fda 1642 ext4_fsblk_t lblk;
d2a17637 1643
09cbfeaf 1644 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1645
d2a17637
MC
1646 head = page_buffers(page);
1647 bh = head;
1648 do {
1649 unsigned int next_off = curr_off + bh->b_size;
1650
ca99fdd2
LC
1651 if (next_off > stop)
1652 break;
1653
d2a17637 1654 if ((offset <= curr_off) && (buffer_delay(bh))) {
9705acd6 1655 contiguous_blks++;
d2a17637 1656 clear_buffer_delay(bh);
9705acd6
LC
1657 } else if (contiguous_blks) {
1658 lblk = page->index <<
09cbfeaf 1659 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1660 lblk += (curr_off >> inode->i_blkbits) -
1661 contiguous_blks;
f456767d 1662 ext4_es_remove_blks(inode, lblk, contiguous_blks);
9705acd6 1663 contiguous_blks = 0;
d2a17637
MC
1664 }
1665 curr_off = next_off;
1666 } while ((bh = bh->b_this_page) != head);
7b415bf6 1667
9705acd6 1668 if (contiguous_blks) {
09cbfeaf 1669 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6 1670 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
f456767d 1671 ext4_es_remove_blks(inode, lblk, contiguous_blks);
51865fda
ZL
1672 }
1673
d2a17637 1674}
ac27a0ec 1675
64769240
AT
1676/*
1677 * Delayed allocation stuff
1678 */
1679
4e7ea81d
JK
1680struct mpage_da_data {
1681 struct inode *inode;
1682 struct writeback_control *wbc;
6b523df4 1683
4e7ea81d
JK
1684 pgoff_t first_page; /* The first page to write */
1685 pgoff_t next_page; /* Current page to examine */
1686 pgoff_t last_page; /* Last page to examine */
791b7f08 1687 /*
4e7ea81d
JK
1688 * Extent to map - this can be after first_page because that can be
1689 * fully mapped. We somewhat abuse m_flags to store whether the extent
1690 * is delalloc or unwritten.
791b7f08 1691 */
4e7ea81d
JK
1692 struct ext4_map_blocks map;
1693 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1694 unsigned int do_map:1;
4e7ea81d 1695};
64769240 1696
4e7ea81d
JK
1697static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1698 bool invalidate)
c4a0c46e
AK
1699{
1700 int nr_pages, i;
1701 pgoff_t index, end;
1702 struct pagevec pvec;
1703 struct inode *inode = mpd->inode;
1704 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1705
1706 /* This is necessary when next_page == 0. */
1707 if (mpd->first_page >= mpd->next_page)
1708 return;
c4a0c46e 1709
c7f5938a
CW
1710 index = mpd->first_page;
1711 end = mpd->next_page - 1;
4e7ea81d
JK
1712 if (invalidate) {
1713 ext4_lblk_t start, last;
09cbfeaf
KS
1714 start = index << (PAGE_SHIFT - inode->i_blkbits);
1715 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1716 ext4_es_remove_extent(inode, start, last - start + 1);
1717 }
51865fda 1718
86679820 1719 pagevec_init(&pvec);
c4a0c46e 1720 while (index <= end) {
397162ff 1721 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
c4a0c46e
AK
1722 if (nr_pages == 0)
1723 break;
1724 for (i = 0; i < nr_pages; i++) {
1725 struct page *page = pvec.pages[i];
2b85a617 1726
c4a0c46e
AK
1727 BUG_ON(!PageLocked(page));
1728 BUG_ON(PageWriteback(page));
4e7ea81d 1729 if (invalidate) {
4e800c03 1730 if (page_mapped(page))
1731 clear_page_dirty_for_io(page);
09cbfeaf 1732 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1733 ClearPageUptodate(page);
1734 }
c4a0c46e
AK
1735 unlock_page(page);
1736 }
9b1d0998 1737 pagevec_release(&pvec);
c4a0c46e 1738 }
c4a0c46e
AK
1739}
1740
df22291f
AK
1741static void ext4_print_free_blocks(struct inode *inode)
1742{
1743 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1744 struct super_block *sb = inode->i_sb;
f78ee70d 1745 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1746
1747 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1748 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1749 ext4_count_free_clusters(sb)));
92b97816
TT
1750 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1751 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1752 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1753 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1754 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1755 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1756 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1757 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1758 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1759 ei->i_reserved_data_blocks);
df22291f
AK
1760 return;
1761}
1762
c364b22c 1763static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1764{
c364b22c 1765 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1766}
1767
0b02f4c0
EW
1768/*
1769 * ext4_insert_delayed_block - adds a delayed block to the extents status
1770 * tree, incrementing the reserved cluster/block
1771 * count or making a pending reservation
1772 * where needed
1773 *
1774 * @inode - file containing the newly added block
1775 * @lblk - logical block to be added
1776 *
1777 * Returns 0 on success, negative error code on failure.
1778 */
1779static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1780{
1781 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1782 int ret;
1783 bool allocated = false;
1784
1785 /*
1786 * If the cluster containing lblk is shared with a delayed,
1787 * written, or unwritten extent in a bigalloc file system, it's
1788 * already been accounted for and does not need to be reserved.
1789 * A pending reservation must be made for the cluster if it's
1790 * shared with a written or unwritten extent and doesn't already
1791 * have one. Written and unwritten extents can be purged from the
1792 * extents status tree if the system is under memory pressure, so
1793 * it's necessary to examine the extent tree if a search of the
1794 * extents status tree doesn't get a match.
1795 */
1796 if (sbi->s_cluster_ratio == 1) {
1797 ret = ext4_da_reserve_space(inode);
1798 if (ret != 0) /* ENOSPC */
1799 goto errout;
1800 } else { /* bigalloc */
1801 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1802 if (!ext4_es_scan_clu(inode,
1803 &ext4_es_is_mapped, lblk)) {
1804 ret = ext4_clu_mapped(inode,
1805 EXT4_B2C(sbi, lblk));
1806 if (ret < 0)
1807 goto errout;
1808 if (ret == 0) {
1809 ret = ext4_da_reserve_space(inode);
1810 if (ret != 0) /* ENOSPC */
1811 goto errout;
1812 } else {
1813 allocated = true;
1814 }
1815 } else {
1816 allocated = true;
1817 }
1818 }
1819 }
1820
1821 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1822
1823errout:
1824 return ret;
1825}
1826
5356f261
AK
1827/*
1828 * This function is grabs code from the very beginning of
1829 * ext4_map_blocks, but assumes that the caller is from delayed write
1830 * time. This function looks up the requested blocks and sets the
1831 * buffer delay bit under the protection of i_data_sem.
1832 */
1833static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1834 struct ext4_map_blocks *map,
1835 struct buffer_head *bh)
1836{
d100eef2 1837 struct extent_status es;
5356f261
AK
1838 int retval;
1839 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1840#ifdef ES_AGGRESSIVE_TEST
1841 struct ext4_map_blocks orig_map;
1842
1843 memcpy(&orig_map, map, sizeof(*map));
1844#endif
5356f261
AK
1845
1846 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1847 invalid_block = ~0;
1848
1849 map->m_flags = 0;
1850 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1851 "logical block %lu\n", inode->i_ino, map->m_len,
1852 (unsigned long) map->m_lblk);
d100eef2
ZL
1853
1854 /* Lookup extent status tree firstly */
1855 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1856 if (ext4_es_is_hole(&es)) {
1857 retval = 0;
c8b459f4 1858 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1859 goto add_delayed;
1860 }
1861
1862 /*
1863 * Delayed extent could be allocated by fallocate.
1864 * So we need to check it.
1865 */
1866 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1867 map_bh(bh, inode->i_sb, invalid_block);
1868 set_buffer_new(bh);
1869 set_buffer_delay(bh);
1870 return 0;
1871 }
1872
1873 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1874 retval = es.es_len - (iblock - es.es_lblk);
1875 if (retval > map->m_len)
1876 retval = map->m_len;
1877 map->m_len = retval;
1878 if (ext4_es_is_written(&es))
1879 map->m_flags |= EXT4_MAP_MAPPED;
1880 else if (ext4_es_is_unwritten(&es))
1881 map->m_flags |= EXT4_MAP_UNWRITTEN;
1882 else
1883 BUG_ON(1);
1884
921f266b
DM
1885#ifdef ES_AGGRESSIVE_TEST
1886 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1887#endif
d100eef2
ZL
1888 return retval;
1889 }
1890
5356f261
AK
1891 /*
1892 * Try to see if we can get the block without requesting a new
1893 * file system block.
1894 */
c8b459f4 1895 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1896 if (ext4_has_inline_data(inode))
9c3569b5 1897 retval = 0;
cbd7584e 1898 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1899 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1900 else
2f8e0a7c 1901 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1902
d100eef2 1903add_delayed:
5356f261 1904 if (retval == 0) {
f7fec032 1905 int ret;
ad431025 1906
5356f261
AK
1907 /*
1908 * XXX: __block_prepare_write() unmaps passed block,
1909 * is it OK?
1910 */
5356f261 1911
0b02f4c0
EW
1912 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1913 if (ret != 0) {
f7fec032 1914 retval = ret;
51865fda 1915 goto out_unlock;
f7fec032 1916 }
51865fda 1917
5356f261
AK
1918 map_bh(bh, inode->i_sb, invalid_block);
1919 set_buffer_new(bh);
1920 set_buffer_delay(bh);
f7fec032
ZL
1921 } else if (retval > 0) {
1922 int ret;
3be78c73 1923 unsigned int status;
f7fec032 1924
44fb851d
ZL
1925 if (unlikely(retval != map->m_len)) {
1926 ext4_warning(inode->i_sb,
1927 "ES len assertion failed for inode "
1928 "%lu: retval %d != map->m_len %d",
1929 inode->i_ino, retval, map->m_len);
1930 WARN_ON(1);
921f266b 1931 }
921f266b 1932
f7fec032
ZL
1933 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1934 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1935 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1936 map->m_pblk, status);
1937 if (ret != 0)
1938 retval = ret;
5356f261
AK
1939 }
1940
1941out_unlock:
1942 up_read((&EXT4_I(inode)->i_data_sem));
1943
1944 return retval;
1945}
1946
64769240 1947/*
d91bd2c1 1948 * This is a special get_block_t callback which is used by
b920c755
TT
1949 * ext4_da_write_begin(). It will either return mapped block or
1950 * reserve space for a single block.
29fa89d0
AK
1951 *
1952 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1953 * We also have b_blocknr = -1 and b_bdev initialized properly
1954 *
1955 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1956 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1957 * initialized properly.
64769240 1958 */
9c3569b5
TM
1959int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1960 struct buffer_head *bh, int create)
64769240 1961{
2ed88685 1962 struct ext4_map_blocks map;
64769240
AT
1963 int ret = 0;
1964
1965 BUG_ON(create == 0);
2ed88685
TT
1966 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1967
1968 map.m_lblk = iblock;
1969 map.m_len = 1;
64769240
AT
1970
1971 /*
1972 * first, we need to know whether the block is allocated already
1973 * preallocated blocks are unmapped but should treated
1974 * the same as allocated blocks.
1975 */
5356f261
AK
1976 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1977 if (ret <= 0)
2ed88685 1978 return ret;
64769240 1979
2ed88685 1980 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1981 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1982
1983 if (buffer_unwritten(bh)) {
1984 /* A delayed write to unwritten bh should be marked
1985 * new and mapped. Mapped ensures that we don't do
1986 * get_block multiple times when we write to the same
1987 * offset and new ensures that we do proper zero out
1988 * for partial write.
1989 */
1990 set_buffer_new(bh);
c8205636 1991 set_buffer_mapped(bh);
2ed88685
TT
1992 }
1993 return 0;
64769240 1994}
61628a3f 1995
62e086be
AK
1996static int bget_one(handle_t *handle, struct buffer_head *bh)
1997{
1998 get_bh(bh);
1999 return 0;
2000}
2001
2002static int bput_one(handle_t *handle, struct buffer_head *bh)
2003{
2004 put_bh(bh);
2005 return 0;
2006}
2007
2008static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2009 unsigned int len)
2010{
2011 struct address_space *mapping = page->mapping;
2012 struct inode *inode = mapping->host;
3fdcfb66 2013 struct buffer_head *page_bufs = NULL;
62e086be 2014 handle_t *handle = NULL;
3fdcfb66
TM
2015 int ret = 0, err = 0;
2016 int inline_data = ext4_has_inline_data(inode);
2017 struct buffer_head *inode_bh = NULL;
62e086be 2018
cb20d518 2019 ClearPageChecked(page);
3fdcfb66
TM
2020
2021 if (inline_data) {
2022 BUG_ON(page->index != 0);
2023 BUG_ON(len > ext4_get_max_inline_size(inode));
2024 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2025 if (inode_bh == NULL)
2026 goto out;
2027 } else {
2028 page_bufs = page_buffers(page);
2029 if (!page_bufs) {
2030 BUG();
2031 goto out;
2032 }
2033 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2034 NULL, bget_one);
2035 }
bdf96838
TT
2036 /*
2037 * We need to release the page lock before we start the
2038 * journal, so grab a reference so the page won't disappear
2039 * out from under us.
2040 */
2041 get_page(page);
62e086be
AK
2042 unlock_page(page);
2043
9924a92a
TT
2044 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2045 ext4_writepage_trans_blocks(inode));
62e086be
AK
2046 if (IS_ERR(handle)) {
2047 ret = PTR_ERR(handle);
bdf96838
TT
2048 put_page(page);
2049 goto out_no_pagelock;
62e086be 2050 }
441c8508
CW
2051 BUG_ON(!ext4_handle_valid(handle));
2052
bdf96838
TT
2053 lock_page(page);
2054 put_page(page);
2055 if (page->mapping != mapping) {
2056 /* The page got truncated from under us */
2057 ext4_journal_stop(handle);
2058 ret = 0;
2059 goto out;
2060 }
2061
3fdcfb66 2062 if (inline_data) {
362eca70 2063 ret = ext4_mark_inode_dirty(handle, inode);
3fdcfb66
TM
2064 } else {
2065 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2066 do_journal_get_write_access);
2067
2068 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2069 write_end_fn);
2070 }
62e086be
AK
2071 if (ret == 0)
2072 ret = err;
2d859db3 2073 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2074 err = ext4_journal_stop(handle);
2075 if (!ret)
2076 ret = err;
2077
3fdcfb66 2078 if (!ext4_has_inline_data(inode))
8c9367fd 2079 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 2080 NULL, bput_one);
19f5fb7a 2081 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2082out:
bdf96838
TT
2083 unlock_page(page);
2084out_no_pagelock:
3fdcfb66 2085 brelse(inode_bh);
62e086be
AK
2086 return ret;
2087}
2088
61628a3f 2089/*
43ce1d23
AK
2090 * Note that we don't need to start a transaction unless we're journaling data
2091 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2092 * need to file the inode to the transaction's list in ordered mode because if
2093 * we are writing back data added by write(), the inode is already there and if
25985edc 2094 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2095 * transaction the data will hit the disk. In case we are journaling data, we
2096 * cannot start transaction directly because transaction start ranks above page
2097 * lock so we have to do some magic.
2098 *
b920c755 2099 * This function can get called via...
20970ba6 2100 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2101 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2102 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2103 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2104 *
2105 * We don't do any block allocation in this function. If we have page with
2106 * multiple blocks we need to write those buffer_heads that are mapped. This
2107 * is important for mmaped based write. So if we do with blocksize 1K
2108 * truncate(f, 1024);
2109 * a = mmap(f, 0, 4096);
2110 * a[0] = 'a';
2111 * truncate(f, 4096);
2112 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2113 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2114 * do_wp_page). So writepage should write the first block. If we modify
2115 * the mmap area beyond 1024 we will again get a page_fault and the
2116 * page_mkwrite callback will do the block allocation and mark the
2117 * buffer_heads mapped.
2118 *
2119 * We redirty the page if we have any buffer_heads that is either delay or
2120 * unwritten in the page.
2121 *
2122 * We can get recursively called as show below.
2123 *
2124 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2125 * ext4_writepage()
2126 *
2127 * But since we don't do any block allocation we should not deadlock.
2128 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2129 */
43ce1d23 2130static int ext4_writepage(struct page *page,
62e086be 2131 struct writeback_control *wbc)
64769240 2132{
f8bec370 2133 int ret = 0;
61628a3f 2134 loff_t size;
498e5f24 2135 unsigned int len;
744692dc 2136 struct buffer_head *page_bufs = NULL;
61628a3f 2137 struct inode *inode = page->mapping->host;
36ade451 2138 struct ext4_io_submit io_submit;
1c8349a1 2139 bool keep_towrite = false;
61628a3f 2140
0db1ff22
TT
2141 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2142 ext4_invalidatepage(page, 0, PAGE_SIZE);
2143 unlock_page(page);
2144 return -EIO;
2145 }
2146
a9c667f8 2147 trace_ext4_writepage(page);
f0e6c985 2148 size = i_size_read(inode);
09cbfeaf
KS
2149 if (page->index == size >> PAGE_SHIFT)
2150 len = size & ~PAGE_MASK;
f0e6c985 2151 else
09cbfeaf 2152 len = PAGE_SIZE;
64769240 2153
a42afc5f 2154 page_bufs = page_buffers(page);
a42afc5f 2155 /*
fe386132
JK
2156 * We cannot do block allocation or other extent handling in this
2157 * function. If there are buffers needing that, we have to redirty
2158 * the page. But we may reach here when we do a journal commit via
2159 * journal_submit_inode_data_buffers() and in that case we must write
2160 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2161 *
2162 * Also, if there is only one buffer per page (the fs block
2163 * size == the page size), if one buffer needs block
2164 * allocation or needs to modify the extent tree to clear the
2165 * unwritten flag, we know that the page can't be written at
2166 * all, so we might as well refuse the write immediately.
2167 * Unfortunately if the block size != page size, we can't as
2168 * easily detect this case using ext4_walk_page_buffers(), but
2169 * for the extremely common case, this is an optimization that
2170 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2171 */
f19d5870
TM
2172 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2173 ext4_bh_delay_or_unwritten)) {
f8bec370 2174 redirty_page_for_writepage(wbc, page);
cccd147a 2175 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2176 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2177 /*
2178 * For memory cleaning there's no point in writing only
2179 * some buffers. So just bail out. Warn if we came here
2180 * from direct reclaim.
2181 */
2182 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2183 == PF_MEMALLOC);
f0e6c985
AK
2184 unlock_page(page);
2185 return 0;
2186 }
1c8349a1 2187 keep_towrite = true;
a42afc5f 2188 }
64769240 2189
cb20d518 2190 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2191 /*
2192 * It's mmapped pagecache. Add buffers and journal it. There
2193 * doesn't seem much point in redirtying the page here.
2194 */
3f0ca309 2195 return __ext4_journalled_writepage(page, len);
43ce1d23 2196
97a851ed
JK
2197 ext4_io_submit_init(&io_submit, wbc);
2198 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2199 if (!io_submit.io_end) {
2200 redirty_page_for_writepage(wbc, page);
2201 unlock_page(page);
2202 return -ENOMEM;
2203 }
1c8349a1 2204 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2205 ext4_io_submit(&io_submit);
97a851ed
JK
2206 /* Drop io_end reference we got from init */
2207 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2208 return ret;
2209}
2210
5f1132b2
JK
2211static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2212{
2213 int len;
a056bdaa 2214 loff_t size;
5f1132b2
JK
2215 int err;
2216
2217 BUG_ON(page->index != mpd->first_page);
a056bdaa
JK
2218 clear_page_dirty_for_io(page);
2219 /*
2220 * We have to be very careful here! Nothing protects writeback path
2221 * against i_size changes and the page can be writeably mapped into
2222 * page tables. So an application can be growing i_size and writing
2223 * data through mmap while writeback runs. clear_page_dirty_for_io()
2224 * write-protects our page in page tables and the page cannot get
2225 * written to again until we release page lock. So only after
2226 * clear_page_dirty_for_io() we are safe to sample i_size for
2227 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2228 * on the barrier provided by TestClearPageDirty in
2229 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2230 * after page tables are updated.
2231 */
2232 size = i_size_read(mpd->inode);
09cbfeaf
KS
2233 if (page->index == size >> PAGE_SHIFT)
2234 len = size & ~PAGE_MASK;
5f1132b2 2235 else
09cbfeaf 2236 len = PAGE_SIZE;
1c8349a1 2237 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2238 if (!err)
2239 mpd->wbc->nr_to_write--;
2240 mpd->first_page++;
2241
2242 return err;
2243}
2244
4e7ea81d
JK
2245#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2246
61628a3f 2247/*
fffb2739
JK
2248 * mballoc gives us at most this number of blocks...
2249 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2250 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2251 */
fffb2739 2252#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2253
4e7ea81d
JK
2254/*
2255 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2256 *
2257 * @mpd - extent of blocks
2258 * @lblk - logical number of the block in the file
09930042 2259 * @bh - buffer head we want to add to the extent
4e7ea81d 2260 *
09930042
JK
2261 * The function is used to collect contig. blocks in the same state. If the
2262 * buffer doesn't require mapping for writeback and we haven't started the
2263 * extent of buffers to map yet, the function returns 'true' immediately - the
2264 * caller can write the buffer right away. Otherwise the function returns true
2265 * if the block has been added to the extent, false if the block couldn't be
2266 * added.
4e7ea81d 2267 */
09930042
JK
2268static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2269 struct buffer_head *bh)
4e7ea81d
JK
2270{
2271 struct ext4_map_blocks *map = &mpd->map;
2272
09930042
JK
2273 /* Buffer that doesn't need mapping for writeback? */
2274 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2275 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2276 /* So far no extent to map => we write the buffer right away */
2277 if (map->m_len == 0)
2278 return true;
2279 return false;
2280 }
4e7ea81d
JK
2281
2282 /* First block in the extent? */
2283 if (map->m_len == 0) {
dddbd6ac
JK
2284 /* We cannot map unless handle is started... */
2285 if (!mpd->do_map)
2286 return false;
4e7ea81d
JK
2287 map->m_lblk = lblk;
2288 map->m_len = 1;
09930042
JK
2289 map->m_flags = bh->b_state & BH_FLAGS;
2290 return true;
4e7ea81d
JK
2291 }
2292
09930042
JK
2293 /* Don't go larger than mballoc is willing to allocate */
2294 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2295 return false;
2296
4e7ea81d
JK
2297 /* Can we merge the block to our big extent? */
2298 if (lblk == map->m_lblk + map->m_len &&
09930042 2299 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2300 map->m_len++;
09930042 2301 return true;
4e7ea81d 2302 }
09930042 2303 return false;
4e7ea81d
JK
2304}
2305
5f1132b2
JK
2306/*
2307 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2308 *
2309 * @mpd - extent of blocks for mapping
2310 * @head - the first buffer in the page
2311 * @bh - buffer we should start processing from
2312 * @lblk - logical number of the block in the file corresponding to @bh
2313 *
2314 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2315 * the page for IO if all buffers in this page were mapped and there's no
2316 * accumulated extent of buffers to map or add buffers in the page to the
2317 * extent of buffers to map. The function returns 1 if the caller can continue
2318 * by processing the next page, 0 if it should stop adding buffers to the
2319 * extent to map because we cannot extend it anymore. It can also return value
2320 * < 0 in case of error during IO submission.
2321 */
2322static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2323 struct buffer_head *head,
2324 struct buffer_head *bh,
2325 ext4_lblk_t lblk)
4e7ea81d
JK
2326{
2327 struct inode *inode = mpd->inode;
5f1132b2 2328 int err;
93407472 2329 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2330 >> inode->i_blkbits;
2331
2332 do {
2333 BUG_ON(buffer_locked(bh));
2334
09930042 2335 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2336 /* Found extent to map? */
2337 if (mpd->map.m_len)
5f1132b2 2338 return 0;
dddbd6ac
JK
2339 /* Buffer needs mapping and handle is not started? */
2340 if (!mpd->do_map)
2341 return 0;
09930042 2342 /* Everything mapped so far and we hit EOF */
5f1132b2 2343 break;
4e7ea81d 2344 }
4e7ea81d 2345 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2346 /* So far everything mapped? Submit the page for IO. */
2347 if (mpd->map.m_len == 0) {
2348 err = mpage_submit_page(mpd, head->b_page);
2349 if (err < 0)
2350 return err;
2351 }
2352 return lblk < blocks;
4e7ea81d
JK
2353}
2354
2355/*
2356 * mpage_map_buffers - update buffers corresponding to changed extent and
2357 * submit fully mapped pages for IO
2358 *
2359 * @mpd - description of extent to map, on return next extent to map
2360 *
2361 * Scan buffers corresponding to changed extent (we expect corresponding pages
2362 * to be already locked) and update buffer state according to new extent state.
2363 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2364 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2365 * and do extent conversion after IO is finished. If the last page is not fully
2366 * mapped, we update @map to the next extent in the last page that needs
2367 * mapping. Otherwise we submit the page for IO.
2368 */
2369static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2370{
2371 struct pagevec pvec;
2372 int nr_pages, i;
2373 struct inode *inode = mpd->inode;
2374 struct buffer_head *head, *bh;
09cbfeaf 2375 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2376 pgoff_t start, end;
2377 ext4_lblk_t lblk;
2378 sector_t pblock;
2379 int err;
2380
2381 start = mpd->map.m_lblk >> bpp_bits;
2382 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2383 lblk = start << bpp_bits;
2384 pblock = mpd->map.m_pblk;
2385
86679820 2386 pagevec_init(&pvec);
4e7ea81d 2387 while (start <= end) {
2b85a617 2388 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
397162ff 2389 &start, end);
4e7ea81d
JK
2390 if (nr_pages == 0)
2391 break;
2392 for (i = 0; i < nr_pages; i++) {
2393 struct page *page = pvec.pages[i];
2394
4e7ea81d
JK
2395 bh = head = page_buffers(page);
2396 do {
2397 if (lblk < mpd->map.m_lblk)
2398 continue;
2399 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2400 /*
2401 * Buffer after end of mapped extent.
2402 * Find next buffer in the page to map.
2403 */
2404 mpd->map.m_len = 0;
2405 mpd->map.m_flags = 0;
5f1132b2
JK
2406 /*
2407 * FIXME: If dioread_nolock supports
2408 * blocksize < pagesize, we need to make
2409 * sure we add size mapped so far to
2410 * io_end->size as the following call
2411 * can submit the page for IO.
2412 */
2413 err = mpage_process_page_bufs(mpd, head,
2414 bh, lblk);
4e7ea81d 2415 pagevec_release(&pvec);
5f1132b2
JK
2416 if (err > 0)
2417 err = 0;
2418 return err;
4e7ea81d
JK
2419 }
2420 if (buffer_delay(bh)) {
2421 clear_buffer_delay(bh);
2422 bh->b_blocknr = pblock++;
2423 }
4e7ea81d 2424 clear_buffer_unwritten(bh);
5f1132b2 2425 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2426
2427 /*
2428 * FIXME: This is going to break if dioread_nolock
2429 * supports blocksize < pagesize as we will try to
2430 * convert potentially unmapped parts of inode.
2431 */
09cbfeaf 2432 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2433 /* Page fully mapped - let IO run! */
2434 err = mpage_submit_page(mpd, page);
2435 if (err < 0) {
2436 pagevec_release(&pvec);
2437 return err;
2438 }
4e7ea81d
JK
2439 }
2440 pagevec_release(&pvec);
2441 }
2442 /* Extent fully mapped and matches with page boundary. We are done. */
2443 mpd->map.m_len = 0;
2444 mpd->map.m_flags = 0;
2445 return 0;
2446}
2447
2448static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2449{
2450 struct inode *inode = mpd->inode;
2451 struct ext4_map_blocks *map = &mpd->map;
2452 int get_blocks_flags;
090f32ee 2453 int err, dioread_nolock;
4e7ea81d
JK
2454
2455 trace_ext4_da_write_pages_extent(inode, map);
2456 /*
2457 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2458 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2459 * where we have written into one or more preallocated blocks). It is
2460 * possible that we're going to need more metadata blocks than
2461 * previously reserved. However we must not fail because we're in
2462 * writeback and there is nothing we can do about it so it might result
2463 * in data loss. So use reserved blocks to allocate metadata if
2464 * possible.
2465 *
754cfed6
TT
2466 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2467 * the blocks in question are delalloc blocks. This indicates
2468 * that the blocks and quotas has already been checked when
2469 * the data was copied into the page cache.
4e7ea81d
JK
2470 */
2471 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2472 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2473 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2474 dioread_nolock = ext4_should_dioread_nolock(inode);
2475 if (dioread_nolock)
4e7ea81d
JK
2476 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2477 if (map->m_flags & (1 << BH_Delay))
2478 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2479
2480 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2481 if (err < 0)
2482 return err;
090f32ee 2483 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2484 if (!mpd->io_submit.io_end->handle &&
2485 ext4_handle_valid(handle)) {
2486 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2487 handle->h_rsv_handle = NULL;
2488 }
3613d228 2489 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2490 }
4e7ea81d
JK
2491
2492 BUG_ON(map->m_len == 0);
2493 if (map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
2494 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2495 map->m_len);
4e7ea81d
JK
2496 }
2497 return 0;
2498}
2499
2500/*
2501 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2502 * mpd->len and submit pages underlying it for IO
2503 *
2504 * @handle - handle for journal operations
2505 * @mpd - extent to map
7534e854
JK
2506 * @give_up_on_write - we set this to true iff there is a fatal error and there
2507 * is no hope of writing the data. The caller should discard
2508 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2509 *
2510 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2511 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2512 * them to initialized or split the described range from larger unwritten
2513 * extent. Note that we need not map all the described range since allocation
2514 * can return less blocks or the range is covered by more unwritten extents. We
2515 * cannot map more because we are limited by reserved transaction credits. On
2516 * the other hand we always make sure that the last touched page is fully
2517 * mapped so that it can be written out (and thus forward progress is
2518 * guaranteed). After mapping we submit all mapped pages for IO.
2519 */
2520static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2521 struct mpage_da_data *mpd,
2522 bool *give_up_on_write)
4e7ea81d
JK
2523{
2524 struct inode *inode = mpd->inode;
2525 struct ext4_map_blocks *map = &mpd->map;
2526 int err;
2527 loff_t disksize;
6603120e 2528 int progress = 0;
4e7ea81d
JK
2529
2530 mpd->io_submit.io_end->offset =
2531 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2532 do {
4e7ea81d
JK
2533 err = mpage_map_one_extent(handle, mpd);
2534 if (err < 0) {
2535 struct super_block *sb = inode->i_sb;
2536
0db1ff22
TT
2537 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2538 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
cb530541 2539 goto invalidate_dirty_pages;
4e7ea81d 2540 /*
cb530541
TT
2541 * Let the uper layers retry transient errors.
2542 * In the case of ENOSPC, if ext4_count_free_blocks()
2543 * is non-zero, a commit should free up blocks.
4e7ea81d 2544 */
cb530541 2545 if ((err == -ENOMEM) ||
6603120e
DM
2546 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2547 if (progress)
2548 goto update_disksize;
cb530541 2549 return err;
6603120e 2550 }
cb530541
TT
2551 ext4_msg(sb, KERN_CRIT,
2552 "Delayed block allocation failed for "
2553 "inode %lu at logical offset %llu with"
2554 " max blocks %u with error %d",
2555 inode->i_ino,
2556 (unsigned long long)map->m_lblk,
2557 (unsigned)map->m_len, -err);
2558 ext4_msg(sb, KERN_CRIT,
2559 "This should not happen!! Data will "
2560 "be lost\n");
2561 if (err == -ENOSPC)
2562 ext4_print_free_blocks(inode);
2563 invalidate_dirty_pages:
2564 *give_up_on_write = true;
4e7ea81d
JK
2565 return err;
2566 }
6603120e 2567 progress = 1;
4e7ea81d
JK
2568 /*
2569 * Update buffer state, submit mapped pages, and get us new
2570 * extent to map
2571 */
2572 err = mpage_map_and_submit_buffers(mpd);
2573 if (err < 0)
6603120e 2574 goto update_disksize;
27d7c4ed 2575 } while (map->m_len);
4e7ea81d 2576
6603120e 2577update_disksize:
622cad13
TT
2578 /*
2579 * Update on-disk size after IO is submitted. Races with
2580 * truncate are avoided by checking i_size under i_data_sem.
2581 */
09cbfeaf 2582 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2583 if (disksize > EXT4_I(inode)->i_disksize) {
2584 int err2;
622cad13
TT
2585 loff_t i_size;
2586
2587 down_write(&EXT4_I(inode)->i_data_sem);
2588 i_size = i_size_read(inode);
2589 if (disksize > i_size)
2590 disksize = i_size;
2591 if (disksize > EXT4_I(inode)->i_disksize)
2592 EXT4_I(inode)->i_disksize = disksize;
622cad13 2593 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2594 err2 = ext4_mark_inode_dirty(handle, inode);
4e7ea81d
JK
2595 if (err2)
2596 ext4_error(inode->i_sb,
2597 "Failed to mark inode %lu dirty",
2598 inode->i_ino);
2599 if (!err)
2600 err = err2;
2601 }
2602 return err;
2603}
2604
fffb2739
JK
2605/*
2606 * Calculate the total number of credits to reserve for one writepages
20970ba6 2607 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2608 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2609 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2610 * bpp - 1 blocks in bpp different extents.
2611 */
525f4ed8
MC
2612static int ext4_da_writepages_trans_blocks(struct inode *inode)
2613{
fffb2739 2614 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2615
fffb2739
JK
2616 return ext4_meta_trans_blocks(inode,
2617 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2618}
61628a3f 2619
8e48dcfb 2620/*
4e7ea81d
JK
2621 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2622 * and underlying extent to map
2623 *
2624 * @mpd - where to look for pages
2625 *
2626 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2627 * IO immediately. When we find a page which isn't mapped we start accumulating
2628 * extent of buffers underlying these pages that needs mapping (formed by
2629 * either delayed or unwritten buffers). We also lock the pages containing
2630 * these buffers. The extent found is returned in @mpd structure (starting at
2631 * mpd->lblk with length mpd->len blocks).
2632 *
2633 * Note that this function can attach bios to one io_end structure which are
2634 * neither logically nor physically contiguous. Although it may seem as an
2635 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2636 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2637 */
4e7ea81d 2638static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2639{
4e7ea81d
JK
2640 struct address_space *mapping = mpd->inode->i_mapping;
2641 struct pagevec pvec;
2642 unsigned int nr_pages;
aeac589a 2643 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2644 pgoff_t index = mpd->first_page;
2645 pgoff_t end = mpd->last_page;
10bbd235 2646 xa_mark_t tag;
4e7ea81d
JK
2647 int i, err = 0;
2648 int blkbits = mpd->inode->i_blkbits;
2649 ext4_lblk_t lblk;
2650 struct buffer_head *head;
8e48dcfb 2651
4e7ea81d 2652 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2653 tag = PAGECACHE_TAG_TOWRITE;
2654 else
2655 tag = PAGECACHE_TAG_DIRTY;
2656
86679820 2657 pagevec_init(&pvec);
4e7ea81d
JK
2658 mpd->map.m_len = 0;
2659 mpd->next_page = index;
4f01b02c 2660 while (index <= end) {
dc7f3e86 2661 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2662 tag);
8e48dcfb 2663 if (nr_pages == 0)
4e7ea81d 2664 goto out;
8e48dcfb
TT
2665
2666 for (i = 0; i < nr_pages; i++) {
2667 struct page *page = pvec.pages[i];
2668
aeac589a
ML
2669 /*
2670 * Accumulated enough dirty pages? This doesn't apply
2671 * to WB_SYNC_ALL mode. For integrity sync we have to
2672 * keep going because someone may be concurrently
2673 * dirtying pages, and we might have synced a lot of
2674 * newly appeared dirty pages, but have not synced all
2675 * of the old dirty pages.
2676 */
2677 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2678 goto out;
2679
4e7ea81d
JK
2680 /* If we can't merge this page, we are done. */
2681 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2682 goto out;
78aaced3 2683
8e48dcfb 2684 lock_page(page);
8e48dcfb 2685 /*
4e7ea81d
JK
2686 * If the page is no longer dirty, or its mapping no
2687 * longer corresponds to inode we are writing (which
2688 * means it has been truncated or invalidated), or the
2689 * page is already under writeback and we are not doing
2690 * a data integrity writeback, skip the page
8e48dcfb 2691 */
4f01b02c
TT
2692 if (!PageDirty(page) ||
2693 (PageWriteback(page) &&
4e7ea81d 2694 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2695 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2696 unlock_page(page);
2697 continue;
2698 }
2699
7cb1a535 2700 wait_on_page_writeback(page);
8e48dcfb 2701 BUG_ON(PageWriteback(page));
8e48dcfb 2702
4e7ea81d 2703 if (mpd->map.m_len == 0)
8eb9e5ce 2704 mpd->first_page = page->index;
8eb9e5ce 2705 mpd->next_page = page->index + 1;
f8bec370 2706 /* Add all dirty buffers to mpd */
4e7ea81d 2707 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2708 (PAGE_SHIFT - blkbits);
f8bec370 2709 head = page_buffers(page);
5f1132b2
JK
2710 err = mpage_process_page_bufs(mpd, head, head, lblk);
2711 if (err <= 0)
4e7ea81d 2712 goto out;
5f1132b2 2713 err = 0;
aeac589a 2714 left--;
8e48dcfb
TT
2715 }
2716 pagevec_release(&pvec);
2717 cond_resched();
2718 }
4f01b02c 2719 return 0;
8eb9e5ce
TT
2720out:
2721 pagevec_release(&pvec);
4e7ea81d 2722 return err;
8e48dcfb
TT
2723}
2724
20970ba6
TT
2725static int ext4_writepages(struct address_space *mapping,
2726 struct writeback_control *wbc)
64769240 2727{
4e7ea81d
JK
2728 pgoff_t writeback_index = 0;
2729 long nr_to_write = wbc->nr_to_write;
22208ded 2730 int range_whole = 0;
4e7ea81d 2731 int cycled = 1;
61628a3f 2732 handle_t *handle = NULL;
df22291f 2733 struct mpage_da_data mpd;
5e745b04 2734 struct inode *inode = mapping->host;
6b523df4 2735 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2736 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2737 bool done;
1bce63d1 2738 struct blk_plug plug;
cb530541 2739 bool give_up_on_write = false;
61628a3f 2740
0db1ff22
TT
2741 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2742 return -EIO;
2743
c8585c6f 2744 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2745 trace_ext4_writepages(inode, wbc);
ba80b101 2746
61628a3f
MC
2747 /*
2748 * No pages to write? This is mainly a kludge to avoid starting
2749 * a transaction for special inodes like journal inode on last iput()
2750 * because that could violate lock ordering on umount
2751 */
a1d6cc56 2752 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2753 goto out_writepages;
2a21e37e 2754
20970ba6 2755 if (ext4_should_journal_data(inode)) {
043d20d1 2756 ret = generic_writepages(mapping, wbc);
bbf023c7 2757 goto out_writepages;
20970ba6
TT
2758 }
2759
2a21e37e
TT
2760 /*
2761 * If the filesystem has aborted, it is read-only, so return
2762 * right away instead of dumping stack traces later on that
2763 * will obscure the real source of the problem. We test
1751e8a6 2764 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2a21e37e 2765 * the latter could be true if the filesystem is mounted
20970ba6 2766 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2767 * *never* be called, so if that ever happens, we would want
2768 * the stack trace.
2769 */
0db1ff22
TT
2770 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2771 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
bbf023c7
ML
2772 ret = -EROFS;
2773 goto out_writepages;
2774 }
2a21e37e 2775
6b523df4
JK
2776 if (ext4_should_dioread_nolock(inode)) {
2777 /*
70261f56 2778 * We may need to convert up to one extent per block in
6b523df4
JK
2779 * the page and we may dirty the inode.
2780 */
09cbfeaf 2781 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2782 }
2783
4e7ea81d
JK
2784 /*
2785 * If we have inline data and arrive here, it means that
2786 * we will soon create the block for the 1st page, so
2787 * we'd better clear the inline data here.
2788 */
2789 if (ext4_has_inline_data(inode)) {
2790 /* Just inode will be modified... */
2791 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2792 if (IS_ERR(handle)) {
2793 ret = PTR_ERR(handle);
2794 goto out_writepages;
2795 }
2796 BUG_ON(ext4_test_inode_state(inode,
2797 EXT4_STATE_MAY_INLINE_DATA));
2798 ext4_destroy_inline_data(handle, inode);
2799 ext4_journal_stop(handle);
2800 }
2801
22208ded
AK
2802 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2803 range_whole = 1;
61628a3f 2804
2acf2c26 2805 if (wbc->range_cyclic) {
4e7ea81d
JK
2806 writeback_index = mapping->writeback_index;
2807 if (writeback_index)
2acf2c26 2808 cycled = 0;
4e7ea81d
JK
2809 mpd.first_page = writeback_index;
2810 mpd.last_page = -1;
5b41d924 2811 } else {
09cbfeaf
KS
2812 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2813 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2814 }
a1d6cc56 2815
4e7ea81d
JK
2816 mpd.inode = inode;
2817 mpd.wbc = wbc;
2818 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2819retry:
6e6938b6 2820 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2821 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2822 done = false;
1bce63d1 2823 blk_start_plug(&plug);
dddbd6ac
JK
2824
2825 /*
2826 * First writeback pages that don't need mapping - we can avoid
2827 * starting a transaction unnecessarily and also avoid being blocked
2828 * in the block layer on device congestion while having transaction
2829 * started.
2830 */
2831 mpd.do_map = 0;
2832 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2833 if (!mpd.io_submit.io_end) {
2834 ret = -ENOMEM;
2835 goto unplug;
2836 }
2837 ret = mpage_prepare_extent_to_map(&mpd);
2838 /* Submit prepared bio */
2839 ext4_io_submit(&mpd.io_submit);
2840 ext4_put_io_end_defer(mpd.io_submit.io_end);
2841 mpd.io_submit.io_end = NULL;
2842 /* Unlock pages we didn't use */
2843 mpage_release_unused_pages(&mpd, false);
2844 if (ret < 0)
2845 goto unplug;
2846
4e7ea81d
JK
2847 while (!done && mpd.first_page <= mpd.last_page) {
2848 /* For each extent of pages we use new io_end */
2849 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2850 if (!mpd.io_submit.io_end) {
2851 ret = -ENOMEM;
2852 break;
2853 }
a1d6cc56
AK
2854
2855 /*
4e7ea81d
JK
2856 * We have two constraints: We find one extent to map and we
2857 * must always write out whole page (makes a difference when
2858 * blocksize < pagesize) so that we don't block on IO when we
2859 * try to write out the rest of the page. Journalled mode is
2860 * not supported by delalloc.
a1d6cc56
AK
2861 */
2862 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2863 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2864
4e7ea81d 2865 /* start a new transaction */
6b523df4
JK
2866 handle = ext4_journal_start_with_reserve(inode,
2867 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2868 if (IS_ERR(handle)) {
2869 ret = PTR_ERR(handle);
1693918e 2870 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2871 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2872 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2873 /* Release allocated io_end */
2874 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2875 mpd.io_submit.io_end = NULL;
4e7ea81d 2876 break;
61628a3f 2877 }
dddbd6ac 2878 mpd.do_map = 1;
f63e6005 2879
4e7ea81d
JK
2880 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2881 ret = mpage_prepare_extent_to_map(&mpd);
2882 if (!ret) {
2883 if (mpd.map.m_len)
cb530541
TT
2884 ret = mpage_map_and_submit_extent(handle, &mpd,
2885 &give_up_on_write);
4e7ea81d
JK
2886 else {
2887 /*
2888 * We scanned the whole range (or exhausted
2889 * nr_to_write), submitted what was mapped and
2890 * didn't find anything needing mapping. We are
2891 * done.
2892 */
2893 done = true;
2894 }
f63e6005 2895 }
646caa9c
JK
2896 /*
2897 * Caution: If the handle is synchronous,
2898 * ext4_journal_stop() can wait for transaction commit
2899 * to finish which may depend on writeback of pages to
2900 * complete or on page lock to be released. In that
2901 * case, we have to wait until after after we have
2902 * submitted all the IO, released page locks we hold,
2903 * and dropped io_end reference (for extent conversion
2904 * to be able to complete) before stopping the handle.
2905 */
2906 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2907 ext4_journal_stop(handle);
2908 handle = NULL;
dddbd6ac 2909 mpd.do_map = 0;
646caa9c 2910 }
4e7ea81d
JK
2911 /* Submit prepared bio */
2912 ext4_io_submit(&mpd.io_submit);
2913 /* Unlock pages we didn't use */
cb530541 2914 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2915 /*
2916 * Drop our io_end reference we got from init. We have
2917 * to be careful and use deferred io_end finishing if
2918 * we are still holding the transaction as we can
2919 * release the last reference to io_end which may end
2920 * up doing unwritten extent conversion.
2921 */
2922 if (handle) {
2923 ext4_put_io_end_defer(mpd.io_submit.io_end);
2924 ext4_journal_stop(handle);
2925 } else
2926 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2927 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2928
2929 if (ret == -ENOSPC && sbi->s_journal) {
2930 /*
2931 * Commit the transaction which would
22208ded
AK
2932 * free blocks released in the transaction
2933 * and try again
2934 */
df22291f 2935 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2936 ret = 0;
4e7ea81d
JK
2937 continue;
2938 }
2939 /* Fatal error - ENOMEM, EIO... */
2940 if (ret)
61628a3f 2941 break;
a1d6cc56 2942 }
dddbd6ac 2943unplug:
1bce63d1 2944 blk_finish_plug(&plug);
9c12a831 2945 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2946 cycled = 1;
4e7ea81d
JK
2947 mpd.last_page = writeback_index - 1;
2948 mpd.first_page = 0;
2acf2c26
AK
2949 goto retry;
2950 }
22208ded
AK
2951
2952 /* Update index */
22208ded
AK
2953 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2954 /*
4e7ea81d 2955 * Set the writeback_index so that range_cyclic
22208ded
AK
2956 * mode will write it back later
2957 */
4e7ea81d 2958 mapping->writeback_index = mpd.first_page;
a1d6cc56 2959
61628a3f 2960out_writepages:
20970ba6
TT
2961 trace_ext4_writepages_result(inode, wbc, ret,
2962 nr_to_write - wbc->nr_to_write);
c8585c6f 2963 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2964 return ret;
64769240
AT
2965}
2966
5f0663bb
DW
2967static int ext4_dax_writepages(struct address_space *mapping,
2968 struct writeback_control *wbc)
2969{
2970 int ret;
2971 long nr_to_write = wbc->nr_to_write;
2972 struct inode *inode = mapping->host;
2973 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2974
2975 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2976 return -EIO;
2977
2978 percpu_down_read(&sbi->s_journal_flag_rwsem);
2979 trace_ext4_writepages(inode, wbc);
2980
2981 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2982 trace_ext4_writepages_result(inode, wbc, ret,
2983 nr_to_write - wbc->nr_to_write);
2984 percpu_up_read(&sbi->s_journal_flag_rwsem);
2985 return ret;
2986}
2987
79f0be8d
AK
2988static int ext4_nonda_switch(struct super_block *sb)
2989{
5c1ff336 2990 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2991 struct ext4_sb_info *sbi = EXT4_SB(sb);
2992
2993 /*
2994 * switch to non delalloc mode if we are running low
2995 * on free block. The free block accounting via percpu
179f7ebf 2996 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2997 * accumulated on each CPU without updating global counters
2998 * Delalloc need an accurate free block accounting. So switch
2999 * to non delalloc when we are near to error range.
3000 */
5c1ff336
EW
3001 free_clusters =
3002 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3003 dirty_clusters =
3004 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
3005 /*
3006 * Start pushing delalloc when 1/2 of free blocks are dirty.
3007 */
5c1ff336 3008 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 3009 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 3010
5c1ff336
EW
3011 if (2 * free_clusters < 3 * dirty_clusters ||
3012 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 3013 /*
c8afb446
ES
3014 * free block count is less than 150% of dirty blocks
3015 * or free blocks is less than watermark
79f0be8d
AK
3016 */
3017 return 1;
3018 }
3019 return 0;
3020}
3021
0ff8947f
ES
3022/* We always reserve for an inode update; the superblock could be there too */
3023static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3024{
e2b911c5 3025 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
3026 return 1;
3027
3028 if (pos + len <= 0x7fffffffULL)
3029 return 1;
3030
3031 /* We might need to update the superblock to set LARGE_FILE */
3032 return 2;
3033}
3034
64769240 3035static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3036 loff_t pos, unsigned len, unsigned flags,
3037 struct page **pagep, void **fsdata)
64769240 3038{
72b8ab9d 3039 int ret, retries = 0;
64769240
AT
3040 struct page *page;
3041 pgoff_t index;
64769240
AT
3042 struct inode *inode = mapping->host;
3043 handle_t *handle;
3044
0db1ff22
TT
3045 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3046 return -EIO;
3047
09cbfeaf 3048 index = pos >> PAGE_SHIFT;
79f0be8d 3049
4db0d88e
TT
3050 if (ext4_nonda_switch(inode->i_sb) ||
3051 S_ISLNK(inode->i_mode)) {
79f0be8d
AK
3052 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3053 return ext4_write_begin(file, mapping, pos,
3054 len, flags, pagep, fsdata);
3055 }
3056 *fsdata = (void *)0;
9bffad1e 3057 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
3058
3059 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3060 ret = ext4_da_write_inline_data_begin(mapping, inode,
3061 pos, len, flags,
3062 pagep, fsdata);
3063 if (ret < 0)
47564bfb
TT
3064 return ret;
3065 if (ret == 1)
3066 return 0;
9c3569b5
TM
3067 }
3068
47564bfb
TT
3069 /*
3070 * grab_cache_page_write_begin() can take a long time if the
3071 * system is thrashing due to memory pressure, or if the page
3072 * is being written back. So grab it first before we start
3073 * the transaction handle. This also allows us to allocate
3074 * the page (if needed) without using GFP_NOFS.
3075 */
3076retry_grab:
3077 page = grab_cache_page_write_begin(mapping, index, flags);
3078 if (!page)
3079 return -ENOMEM;
3080 unlock_page(page);
3081
64769240
AT
3082 /*
3083 * With delayed allocation, we don't log the i_disksize update
3084 * if there is delayed block allocation. But we still need
3085 * to journalling the i_disksize update if writes to the end
3086 * of file which has an already mapped buffer.
3087 */
47564bfb 3088retry_journal:
0ff8947f
ES
3089 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3090 ext4_da_write_credits(inode, pos, len));
64769240 3091 if (IS_ERR(handle)) {
09cbfeaf 3092 put_page(page);
47564bfb 3093 return PTR_ERR(handle);
64769240
AT
3094 }
3095
47564bfb
TT
3096 lock_page(page);
3097 if (page->mapping != mapping) {
3098 /* The page got truncated from under us */
3099 unlock_page(page);
09cbfeaf 3100 put_page(page);
d5a0d4f7 3101 ext4_journal_stop(handle);
47564bfb 3102 goto retry_grab;
d5a0d4f7 3103 }
47564bfb 3104 /* In case writeback began while the page was unlocked */
7afe5aa5 3105 wait_for_stable_page(page);
64769240 3106
2058f83a
MH
3107#ifdef CONFIG_EXT4_FS_ENCRYPTION
3108 ret = ext4_block_write_begin(page, pos, len,
3109 ext4_da_get_block_prep);
3110#else
6e1db88d 3111 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 3112#endif
64769240
AT
3113 if (ret < 0) {
3114 unlock_page(page);
3115 ext4_journal_stop(handle);
ae4d5372
AK
3116 /*
3117 * block_write_begin may have instantiated a few blocks
3118 * outside i_size. Trim these off again. Don't need
3119 * i_size_read because we hold i_mutex.
3120 */
3121 if (pos + len > inode->i_size)
b9a4207d 3122 ext4_truncate_failed_write(inode);
47564bfb
TT
3123
3124 if (ret == -ENOSPC &&
3125 ext4_should_retry_alloc(inode->i_sb, &retries))
3126 goto retry_journal;
3127
09cbfeaf 3128 put_page(page);
47564bfb 3129 return ret;
64769240
AT
3130 }
3131
47564bfb 3132 *pagep = page;
64769240
AT
3133 return ret;
3134}
3135
632eaeab
MC
3136/*
3137 * Check if we should update i_disksize
3138 * when write to the end of file but not require block allocation
3139 */
3140static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3141 unsigned long offset)
632eaeab
MC
3142{
3143 struct buffer_head *bh;
3144 struct inode *inode = page->mapping->host;
3145 unsigned int idx;
3146 int i;
3147
3148 bh = page_buffers(page);
3149 idx = offset >> inode->i_blkbits;
3150
af5bc92d 3151 for (i = 0; i < idx; i++)
632eaeab
MC
3152 bh = bh->b_this_page;
3153
29fa89d0 3154 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3155 return 0;
3156 return 1;
3157}
3158
64769240 3159static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3160 struct address_space *mapping,
3161 loff_t pos, unsigned len, unsigned copied,
3162 struct page *page, void *fsdata)
64769240
AT
3163{
3164 struct inode *inode = mapping->host;
3165 int ret = 0, ret2;
3166 handle_t *handle = ext4_journal_current_handle();
3167 loff_t new_i_size;
632eaeab 3168 unsigned long start, end;
79f0be8d
AK
3169 int write_mode = (int)(unsigned long)fsdata;
3170
74d553aa
TT
3171 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3172 return ext4_write_end(file, mapping, pos,
3173 len, copied, page, fsdata);
632eaeab 3174
9bffad1e 3175 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3176 start = pos & (PAGE_SIZE - 1);
af5bc92d 3177 end = start + copied - 1;
64769240
AT
3178
3179 /*
3180 * generic_write_end() will run mark_inode_dirty() if i_size
3181 * changes. So let's piggyback the i_disksize mark_inode_dirty
3182 * into that.
3183 */
64769240 3184 new_i_size = pos + copied;
ea51d132 3185 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3186 if (ext4_has_inline_data(inode) ||
3187 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3188 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3189 /* We need to mark inode dirty even if
3190 * new_i_size is less that inode->i_size
3191 * bu greater than i_disksize.(hint delalloc)
3192 */
3193 ext4_mark_inode_dirty(handle, inode);
64769240 3194 }
632eaeab 3195 }
9c3569b5
TM
3196
3197 if (write_mode != CONVERT_INLINE_DATA &&
3198 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3199 ext4_has_inline_data(inode))
3200 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3201 page);
3202 else
3203 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3204 page, fsdata);
9c3569b5 3205
64769240
AT
3206 copied = ret2;
3207 if (ret2 < 0)
3208 ret = ret2;
3209 ret2 = ext4_journal_stop(handle);
3210 if (!ret)
3211 ret = ret2;
3212
3213 return ret ? ret : copied;
3214}
3215
d47992f8
LC
3216static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3217 unsigned int length)
64769240 3218{
64769240
AT
3219 /*
3220 * Drop reserved blocks
3221 */
3222 BUG_ON(!PageLocked(page));
3223 if (!page_has_buffers(page))
3224 goto out;
3225
ca99fdd2 3226 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3227
3228out:
d47992f8 3229 ext4_invalidatepage(page, offset, length);
64769240
AT
3230
3231 return;
3232}
3233
ccd2506b
TT
3234/*
3235 * Force all delayed allocation blocks to be allocated for a given inode.
3236 */
3237int ext4_alloc_da_blocks(struct inode *inode)
3238{
fb40ba0d
TT
3239 trace_ext4_alloc_da_blocks(inode);
3240
71d4f7d0 3241 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3242 return 0;
3243
3244 /*
3245 * We do something simple for now. The filemap_flush() will
3246 * also start triggering a write of the data blocks, which is
3247 * not strictly speaking necessary (and for users of
3248 * laptop_mode, not even desirable). However, to do otherwise
3249 * would require replicating code paths in:
de9a55b8 3250 *
20970ba6 3251 * ext4_writepages() ->
ccd2506b
TT
3252 * write_cache_pages() ---> (via passed in callback function)
3253 * __mpage_da_writepage() -->
3254 * mpage_add_bh_to_extent()
3255 * mpage_da_map_blocks()
3256 *
3257 * The problem is that write_cache_pages(), located in
3258 * mm/page-writeback.c, marks pages clean in preparation for
3259 * doing I/O, which is not desirable if we're not planning on
3260 * doing I/O at all.
3261 *
3262 * We could call write_cache_pages(), and then redirty all of
380cf090 3263 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3264 * would be ugly in the extreme. So instead we would need to
3265 * replicate parts of the code in the above functions,
25985edc 3266 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3267 * write out the pages, but rather only collect contiguous
3268 * logical block extents, call the multi-block allocator, and
3269 * then update the buffer heads with the block allocations.
de9a55b8 3270 *
ccd2506b
TT
3271 * For now, though, we'll cheat by calling filemap_flush(),
3272 * which will map the blocks, and start the I/O, but not
3273 * actually wait for the I/O to complete.
3274 */
3275 return filemap_flush(inode->i_mapping);
3276}
64769240 3277
ac27a0ec
DK
3278/*
3279 * bmap() is special. It gets used by applications such as lilo and by
3280 * the swapper to find the on-disk block of a specific piece of data.
3281 *
3282 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3283 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3284 * filesystem and enables swap, then they may get a nasty shock when the
3285 * data getting swapped to that swapfile suddenly gets overwritten by
3286 * the original zero's written out previously to the journal and
3287 * awaiting writeback in the kernel's buffer cache.
3288 *
3289 * So, if we see any bmap calls here on a modified, data-journaled file,
3290 * take extra steps to flush any blocks which might be in the cache.
3291 */
617ba13b 3292static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3293{
3294 struct inode *inode = mapping->host;
3295 journal_t *journal;
3296 int err;
3297
46c7f254
TM
3298 /*
3299 * We can get here for an inline file via the FIBMAP ioctl
3300 */
3301 if (ext4_has_inline_data(inode))
3302 return 0;
3303
64769240
AT
3304 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3305 test_opt(inode->i_sb, DELALLOC)) {
3306 /*
3307 * With delalloc we want to sync the file
3308 * so that we can make sure we allocate
3309 * blocks for file
3310 */
3311 filemap_write_and_wait(mapping);
3312 }
3313
19f5fb7a
TT
3314 if (EXT4_JOURNAL(inode) &&
3315 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3316 /*
3317 * This is a REALLY heavyweight approach, but the use of
3318 * bmap on dirty files is expected to be extremely rare:
3319 * only if we run lilo or swapon on a freshly made file
3320 * do we expect this to happen.
3321 *
3322 * (bmap requires CAP_SYS_RAWIO so this does not
3323 * represent an unprivileged user DOS attack --- we'd be
3324 * in trouble if mortal users could trigger this path at
3325 * will.)
3326 *
617ba13b 3327 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3328 * regular files. If somebody wants to bmap a directory
3329 * or symlink and gets confused because the buffer
3330 * hasn't yet been flushed to disk, they deserve
3331 * everything they get.
3332 */
3333
19f5fb7a 3334 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3335 journal = EXT4_JOURNAL(inode);
dab291af
MC
3336 jbd2_journal_lock_updates(journal);
3337 err = jbd2_journal_flush(journal);
3338 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3339
3340 if (err)
3341 return 0;
3342 }
3343
af5bc92d 3344 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3345}
3346
617ba13b 3347static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3348{
46c7f254
TM
3349 int ret = -EAGAIN;
3350 struct inode *inode = page->mapping->host;
3351
0562e0ba 3352 trace_ext4_readpage(page);
46c7f254
TM
3353
3354 if (ext4_has_inline_data(inode))
3355 ret = ext4_readpage_inline(inode, page);
3356
3357 if (ret == -EAGAIN)
ac22b46a
JA
3358 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3359 false);
46c7f254
TM
3360
3361 return ret;
ac27a0ec
DK
3362}
3363
3364static int
617ba13b 3365ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3366 struct list_head *pages, unsigned nr_pages)
3367{
46c7f254
TM
3368 struct inode *inode = mapping->host;
3369
3370 /* If the file has inline data, no need to do readpages. */
3371 if (ext4_has_inline_data(inode))
3372 return 0;
3373
ac22b46a 3374 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
ac27a0ec
DK
3375}
3376
d47992f8
LC
3377static void ext4_invalidatepage(struct page *page, unsigned int offset,
3378 unsigned int length)
ac27a0ec 3379{
ca99fdd2 3380 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3381
4520fb3c
JK
3382 /* No journalling happens on data buffers when this function is used */
3383 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3384
ca99fdd2 3385 block_invalidatepage(page, offset, length);
4520fb3c
JK
3386}
3387
53e87268 3388static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3389 unsigned int offset,
3390 unsigned int length)
4520fb3c
JK
3391{
3392 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3393
ca99fdd2 3394 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3395
ac27a0ec
DK
3396 /*
3397 * If it's a full truncate we just forget about the pending dirtying
3398 */
09cbfeaf 3399 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3400 ClearPageChecked(page);
3401
ca99fdd2 3402 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3403}
3404
3405/* Wrapper for aops... */
3406static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3407 unsigned int offset,
3408 unsigned int length)
53e87268 3409{
ca99fdd2 3410 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3411}
3412
617ba13b 3413static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3414{
617ba13b 3415 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3416
0562e0ba
JZ
3417 trace_ext4_releasepage(page);
3418
e1c36595
JK
3419 /* Page has dirty journalled data -> cannot release */
3420 if (PageChecked(page))
ac27a0ec 3421 return 0;
0390131b
FM
3422 if (journal)
3423 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3424 else
3425 return try_to_free_buffers(page);
ac27a0ec
DK
3426}
3427
b8a6176c
JK
3428static bool ext4_inode_datasync_dirty(struct inode *inode)
3429{
3430 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3431
3432 if (journal)
3433 return !jbd2_transaction_committed(journal,
3434 EXT4_I(inode)->i_datasync_tid);
3435 /* Any metadata buffers to write? */
3436 if (!list_empty(&inode->i_mapping->private_list))
3437 return true;
3438 return inode->i_state & I_DIRTY_DATASYNC;
3439}
3440
364443cb
JK
3441static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3442 unsigned flags, struct iomap *iomap)
3443{
5e405595 3444 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364443cb 3445 unsigned int blkbits = inode->i_blkbits;
bcd8e91f 3446 unsigned long first_block, last_block;
364443cb 3447 struct ext4_map_blocks map;
545052e9 3448 bool delalloc = false;
364443cb
JK
3449 int ret;
3450
bcd8e91f
TT
3451 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3452 return -EINVAL;
3453 first_block = offset >> blkbits;
3454 last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3455 EXT4_MAX_LOGICAL_BLOCK);
7046ae35
AG
3456
3457 if (flags & IOMAP_REPORT) {
3458 if (ext4_has_inline_data(inode)) {
3459 ret = ext4_inline_data_iomap(inode, iomap);
3460 if (ret != -EAGAIN) {
3461 if (ret == 0 && offset >= iomap->length)
3462 ret = -ENOENT;
3463 return ret;
3464 }
3465 }
3466 } else {
3467 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3468 return -ERANGE;
3469 }
364443cb
JK
3470
3471 map.m_lblk = first_block;
3472 map.m_len = last_block - first_block + 1;
3473
545052e9 3474 if (flags & IOMAP_REPORT) {
776722e8 3475 ret = ext4_map_blocks(NULL, inode, &map, 0);
545052e9
CH
3476 if (ret < 0)
3477 return ret;
3478
3479 if (ret == 0) {
3480 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3481 struct extent_status es;
3482
ad431025
EW
3483 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3484 map.m_lblk, end, &es);
545052e9
CH
3485
3486 if (!es.es_len || es.es_lblk > end) {
3487 /* entire range is a hole */
3488 } else if (es.es_lblk > map.m_lblk) {
3489 /* range starts with a hole */
3490 map.m_len = es.es_lblk - map.m_lblk;
3491 } else {
3492 ext4_lblk_t offs = 0;
3493
3494 if (es.es_lblk < map.m_lblk)
3495 offs = map.m_lblk - es.es_lblk;
3496 map.m_lblk = es.es_lblk + offs;
3497 map.m_len = es.es_len - offs;
3498 delalloc = true;
3499 }
3500 }
3501 } else if (flags & IOMAP_WRITE) {
776722e8
JK
3502 int dio_credits;
3503 handle_t *handle;
3504 int retries = 0;
3505
3506 /* Trim mapping request to maximum we can map at once for DIO */
3507 if (map.m_len > DIO_MAX_BLOCKS)
3508 map.m_len = DIO_MAX_BLOCKS;
3509 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3510retry:
3511 /*
3512 * Either we allocate blocks and then we don't get unwritten
3513 * extent so we have reserved enough credits, or the blocks
3514 * are already allocated and unwritten and in that case
3515 * extent conversion fits in the credits as well.
3516 */
3517 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3518 dio_credits);
3519 if (IS_ERR(handle))
3520 return PTR_ERR(handle);
3521
3522 ret = ext4_map_blocks(handle, inode, &map,
776722e8
JK
3523 EXT4_GET_BLOCKS_CREATE_ZERO);
3524 if (ret < 0) {
3525 ext4_journal_stop(handle);
3526 if (ret == -ENOSPC &&
3527 ext4_should_retry_alloc(inode->i_sb, &retries))
3528 goto retry;
3529 return ret;
3530 }
776722e8
JK
3531
3532 /*
e2ae766c 3533 * If we added blocks beyond i_size, we need to make sure they
776722e8 3534 * will get truncated if we crash before updating i_size in
e2ae766c
JK
3535 * ext4_iomap_end(). For faults we don't need to do that (and
3536 * even cannot because for orphan list operations inode_lock is
3537 * required) - if we happen to instantiate block beyond i_size,
3538 * it is because we race with truncate which has already added
3539 * the inode to the orphan list.
776722e8 3540 */
e2ae766c
JK
3541 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3542 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
776722e8
JK
3543 int err;
3544
3545 err = ext4_orphan_add(handle, inode);
3546 if (err < 0) {
3547 ext4_journal_stop(handle);
3548 return err;
3549 }
3550 }
3551 ext4_journal_stop(handle);
545052e9
CH
3552 } else {
3553 ret = ext4_map_blocks(NULL, inode, &map, 0);
3554 if (ret < 0)
3555 return ret;
776722e8 3556 }
364443cb
JK
3557
3558 iomap->flags = 0;
aaa422c4 3559 if (ext4_inode_datasync_dirty(inode))
b8a6176c 3560 iomap->flags |= IOMAP_F_DIRTY;
5e405595
DW
3561 iomap->bdev = inode->i_sb->s_bdev;
3562 iomap->dax_dev = sbi->s_daxdev;
fe23cb65 3563 iomap->offset = (u64)first_block << blkbits;
545052e9 3564 iomap->length = (u64)map.m_len << blkbits;
364443cb
JK
3565
3566 if (ret == 0) {
545052e9 3567 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
19fe5f64 3568 iomap->addr = IOMAP_NULL_ADDR;
364443cb
JK
3569 } else {
3570 if (map.m_flags & EXT4_MAP_MAPPED) {
3571 iomap->type = IOMAP_MAPPED;
3572 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3573 iomap->type = IOMAP_UNWRITTEN;
3574 } else {
3575 WARN_ON_ONCE(1);
3576 return -EIO;
3577 }
19fe5f64 3578 iomap->addr = (u64)map.m_pblk << blkbits;
364443cb
JK
3579 }
3580
3581 if (map.m_flags & EXT4_MAP_NEW)
3582 iomap->flags |= IOMAP_F_NEW;
545052e9 3583
364443cb
JK
3584 return 0;
3585}
3586
776722e8
JK
3587static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3588 ssize_t written, unsigned flags, struct iomap *iomap)
3589{
3590 int ret = 0;
3591 handle_t *handle;
3592 int blkbits = inode->i_blkbits;
3593 bool truncate = false;
3594
e2ae766c 3595 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
776722e8
JK
3596 return 0;
3597
3598 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3599 if (IS_ERR(handle)) {
3600 ret = PTR_ERR(handle);
3601 goto orphan_del;
3602 }
3603 if (ext4_update_inode_size(inode, offset + written))
3604 ext4_mark_inode_dirty(handle, inode);
3605 /*
3606 * We may need to truncate allocated but not written blocks beyond EOF.
3607 */
3608 if (iomap->offset + iomap->length >
3609 ALIGN(inode->i_size, 1 << blkbits)) {
3610 ext4_lblk_t written_blk, end_blk;
3611
3612 written_blk = (offset + written) >> blkbits;
3613 end_blk = (offset + length) >> blkbits;
3614 if (written_blk < end_blk && ext4_can_truncate(inode))
3615 truncate = true;
3616 }
3617 /*
3618 * Remove inode from orphan list if we were extending a inode and
3619 * everything went fine.
3620 */
3621 if (!truncate && inode->i_nlink &&
3622 !list_empty(&EXT4_I(inode)->i_orphan))
3623 ext4_orphan_del(handle, inode);
3624 ext4_journal_stop(handle);
3625 if (truncate) {
3626 ext4_truncate_failed_write(inode);
3627orphan_del:
3628 /*
3629 * If truncate failed early the inode might still be on the
3630 * orphan list; we need to make sure the inode is removed from
3631 * the orphan list in that case.
3632 */
3633 if (inode->i_nlink)
3634 ext4_orphan_del(NULL, inode);
3635 }
3636 return ret;
3637}
3638
8ff6daa1 3639const struct iomap_ops ext4_iomap_ops = {
364443cb 3640 .iomap_begin = ext4_iomap_begin,
776722e8 3641 .iomap_end = ext4_iomap_end,
364443cb
JK
3642};
3643
187372a3 3644static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3645 ssize_t size, void *private)
4c0425ff 3646{
109811c2 3647 ext4_io_end_t *io_end = private;
4c0425ff 3648
97a851ed 3649 /* if not async direct IO just return */
7b7a8665 3650 if (!io_end)
187372a3 3651 return 0;
4b70df18 3652
88635ca2 3653 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3654 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3655 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3656
74c66bcb
JK
3657 /*
3658 * Error during AIO DIO. We cannot convert unwritten extents as the
3659 * data was not written. Just clear the unwritten flag and drop io_end.
3660 */
3661 if (size <= 0) {
3662 ext4_clear_io_unwritten_flag(io_end);
3663 size = 0;
3664 }
4c0425ff
MC
3665 io_end->offset = offset;
3666 io_end->size = size;
7b7a8665 3667 ext4_put_io_end(io_end);
187372a3
CH
3668
3669 return 0;
4c0425ff 3670}
c7064ef1 3671
4c0425ff 3672/*
914f82a3
JK
3673 * Handling of direct IO writes.
3674 *
3675 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3676 * preallocated extents, and those write extend the file, no need to
3677 * fall back to buffered IO.
3678 *
556615dc 3679 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3680 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3681 * still keep the range to write as unwritten.
4c0425ff 3682 *
69c499d1 3683 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3684 * For async direct IO, since the IO may still pending when return, we
25985edc 3685 * set up an end_io call back function, which will do the conversion
8d5d02e6 3686 * when async direct IO completed.
4c0425ff
MC
3687 *
3688 * If the O_DIRECT write will extend the file then add this inode to the
3689 * orphan list. So recovery will truncate it back to the original size
3690 * if the machine crashes during the write.
3691 *
3692 */
0e01df10 3693static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3694{
3695 struct file *file = iocb->ki_filp;
3696 struct inode *inode = file->f_mapping->host;
45d8ec4d 3697 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3698 ssize_t ret;
c8b8e32d 3699 loff_t offset = iocb->ki_pos;
a6cbcd4a 3700 size_t count = iov_iter_count(iter);
69c499d1
TT
3701 int overwrite = 0;
3702 get_block_t *get_block_func = NULL;
3703 int dio_flags = 0;
4c0425ff 3704 loff_t final_size = offset + count;
914f82a3
JK
3705 int orphan = 0;
3706 handle_t *handle;
729f52c6 3707
45d8ec4d 3708 if (final_size > inode->i_size || final_size > ei->i_disksize) {
914f82a3
JK
3709 /* Credits for sb + inode write */
3710 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3711 if (IS_ERR(handle)) {
3712 ret = PTR_ERR(handle);
3713 goto out;
3714 }
3715 ret = ext4_orphan_add(handle, inode);
3716 if (ret) {
3717 ext4_journal_stop(handle);
3718 goto out;
3719 }
3720 orphan = 1;
73fdad00 3721 ext4_update_i_disksize(inode, inode->i_size);
914f82a3
JK
3722 ext4_journal_stop(handle);
3723 }
4bd809db 3724
69c499d1 3725 BUG_ON(iocb->private == NULL);
4bd809db 3726
e8340395
JK
3727 /*
3728 * Make all waiters for direct IO properly wait also for extent
3729 * conversion. This also disallows race between truncate() and
3730 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3731 */
914f82a3 3732 inode_dio_begin(inode);
e8340395 3733
69c499d1
TT
3734 /* If we do a overwrite dio, i_mutex locking can be released */
3735 overwrite = *((int *)iocb->private);
4bd809db 3736
2dcba478 3737 if (overwrite)
5955102c 3738 inode_unlock(inode);
8d5d02e6 3739
69c499d1 3740 /*
914f82a3 3741 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3742 *
109811c2
JK
3743 * Allocated blocks to fill the hole are marked as unwritten to prevent
3744 * parallel buffered read to expose the stale data before DIO complete
3745 * the data IO.
69c499d1 3746 *
109811c2
JK
3747 * As to previously fallocated extents, ext4 get_block will just simply
3748 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3749 *
109811c2
JK
3750 * For non AIO case, we will convert those unwritten extents to written
3751 * after return back from blockdev_direct_IO. That way we save us from
3752 * allocating io_end structure and also the overhead of offloading
3753 * the extent convertion to a workqueue.
69c499d1
TT
3754 *
3755 * For async DIO, the conversion needs to be deferred when the
3756 * IO is completed. The ext4 end_io callback function will be
3757 * called to take care of the conversion work. Here for async
3758 * case, we allocate an io_end structure to hook to the iocb.
3759 */
3760 iocb->private = NULL;
109811c2 3761 if (overwrite)
705965bd 3762 get_block_func = ext4_dio_get_block_overwrite;
0bd2d5ec 3763 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
93407472 3764 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
914f82a3
JK
3765 get_block_func = ext4_dio_get_block;
3766 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3767 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3768 get_block_func = ext4_dio_get_block_unwritten_sync;
3769 dio_flags = DIO_LOCKING;
69c499d1 3770 } else {
109811c2 3771 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3772 dio_flags = DIO_LOCKING;
3773 }
0bd2d5ec
JK
3774 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3775 get_block_func, ext4_end_io_dio, NULL,
3776 dio_flags);
69c499d1 3777
97a851ed 3778 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3779 EXT4_STATE_DIO_UNWRITTEN)) {
3780 int err;
3781 /*
3782 * for non AIO case, since the IO is already
3783 * completed, we could do the conversion right here
3784 */
6b523df4 3785 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3786 offset, ret);
3787 if (err < 0)
3788 ret = err;
3789 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3790 }
4bd809db 3791
914f82a3 3792 inode_dio_end(inode);
69c499d1 3793 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3794 if (overwrite)
5955102c 3795 inode_lock(inode);
8d5d02e6 3796
914f82a3
JK
3797 if (ret < 0 && final_size > inode->i_size)
3798 ext4_truncate_failed_write(inode);
3799
3800 /* Handle extending of i_size after direct IO write */
3801 if (orphan) {
3802 int err;
3803
3804 /* Credits for sb + inode write */
3805 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3806 if (IS_ERR(handle)) {
abbc3f93
HS
3807 /*
3808 * We wrote the data but cannot extend
3809 * i_size. Bail out. In async io case, we do
3810 * not return error here because we have
3811 * already submmitted the corresponding
3812 * bio. Returning error here makes the caller
3813 * think that this IO is done and failed
3814 * resulting in race with bio's completion
3815 * handler.
3816 */
3817 if (!ret)
3818 ret = PTR_ERR(handle);
914f82a3
JK
3819 if (inode->i_nlink)
3820 ext4_orphan_del(NULL, inode);
3821
3822 goto out;
3823 }
3824 if (inode->i_nlink)
3825 ext4_orphan_del(handle, inode);
3826 if (ret > 0) {
3827 loff_t end = offset + ret;
45d8ec4d 3828 if (end > inode->i_size || end > ei->i_disksize) {
73fdad00 3829 ext4_update_i_disksize(inode, end);
45d8ec4d
EG
3830 if (end > inode->i_size)
3831 i_size_write(inode, end);
914f82a3
JK
3832 /*
3833 * We're going to return a positive `ret'
3834 * here due to non-zero-length I/O, so there's
3835 * no way of reporting error returns from
3836 * ext4_mark_inode_dirty() to userspace. So
3837 * ignore it.
3838 */
3839 ext4_mark_inode_dirty(handle, inode);
3840 }
3841 }
3842 err = ext4_journal_stop(handle);
3843 if (ret == 0)
3844 ret = err;
3845 }
3846out:
3847 return ret;
3848}
3849
0e01df10 3850static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3851{
16c54688
JK
3852 struct address_space *mapping = iocb->ki_filp->f_mapping;
3853 struct inode *inode = mapping->host;
0bd2d5ec 3854 size_t count = iov_iter_count(iter);
914f82a3
JK
3855 ssize_t ret;
3856
16c54688
JK
3857 /*
3858 * Shared inode_lock is enough for us - it protects against concurrent
3859 * writes & truncates and since we take care of writing back page cache,
3860 * we are protected against page writeback as well.
3861 */
3862 inode_lock_shared(inode);
0bd2d5ec 3863 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
e5465795 3864 iocb->ki_pos + count - 1);
0bd2d5ec
JK
3865 if (ret)
3866 goto out_unlock;
3867 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3868 iter, ext4_dio_get_block, NULL, NULL, 0);
16c54688
JK
3869out_unlock:
3870 inode_unlock_shared(inode);
69c499d1 3871 return ret;
4c0425ff
MC
3872}
3873
c8b8e32d 3874static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3875{
3876 struct file *file = iocb->ki_filp;
3877 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3878 size_t count = iov_iter_count(iter);
c8b8e32d 3879 loff_t offset = iocb->ki_pos;
0562e0ba 3880 ssize_t ret;
4c0425ff 3881
2058f83a
MH
3882#ifdef CONFIG_EXT4_FS_ENCRYPTION
3883 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3884 return 0;
3885#endif
3886
84ebd795
TT
3887 /*
3888 * If we are doing data journalling we don't support O_DIRECT
3889 */
3890 if (ext4_should_journal_data(inode))
3891 return 0;
3892
46c7f254
TM
3893 /* Let buffer I/O handle the inline data case. */
3894 if (ext4_has_inline_data(inode))
3895 return 0;
3896
6f673763 3897 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3898 if (iov_iter_rw(iter) == READ)
0e01df10 3899 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3900 else
0e01df10 3901 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3902 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3903 return ret;
4c0425ff
MC
3904}
3905
ac27a0ec 3906/*
617ba13b 3907 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3908 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3909 * much here because ->set_page_dirty is called under VFS locks. The page is
3910 * not necessarily locked.
3911 *
3912 * We cannot just dirty the page and leave attached buffers clean, because the
3913 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3914 * or jbddirty because all the journalling code will explode.
3915 *
3916 * So what we do is to mark the page "pending dirty" and next time writepage
3917 * is called, propagate that into the buffers appropriately.
3918 */
617ba13b 3919static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3920{
3921 SetPageChecked(page);
3922 return __set_page_dirty_nobuffers(page);
3923}
3924
6dcc693b
JK
3925static int ext4_set_page_dirty(struct page *page)
3926{
3927 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3928 WARN_ON_ONCE(!page_has_buffers(page));
3929 return __set_page_dirty_buffers(page);
3930}
3931
74d553aa 3932static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3933 .readpage = ext4_readpage,
3934 .readpages = ext4_readpages,
43ce1d23 3935 .writepage = ext4_writepage,
20970ba6 3936 .writepages = ext4_writepages,
8ab22b9a 3937 .write_begin = ext4_write_begin,
74d553aa 3938 .write_end = ext4_write_end,
6dcc693b 3939 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3940 .bmap = ext4_bmap,
3941 .invalidatepage = ext4_invalidatepage,
3942 .releasepage = ext4_releasepage,
3943 .direct_IO = ext4_direct_IO,
3944 .migratepage = buffer_migrate_page,
3945 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3946 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3947};
3948
617ba13b 3949static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3950 .readpage = ext4_readpage,
3951 .readpages = ext4_readpages,
43ce1d23 3952 .writepage = ext4_writepage,
20970ba6 3953 .writepages = ext4_writepages,
8ab22b9a
HH
3954 .write_begin = ext4_write_begin,
3955 .write_end = ext4_journalled_write_end,
3956 .set_page_dirty = ext4_journalled_set_page_dirty,
3957 .bmap = ext4_bmap,
4520fb3c 3958 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3959 .releasepage = ext4_releasepage,
84ebd795 3960 .direct_IO = ext4_direct_IO,
8ab22b9a 3961 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3962 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3963};
3964
64769240 3965static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3966 .readpage = ext4_readpage,
3967 .readpages = ext4_readpages,
43ce1d23 3968 .writepage = ext4_writepage,
20970ba6 3969 .writepages = ext4_writepages,
8ab22b9a
HH
3970 .write_begin = ext4_da_write_begin,
3971 .write_end = ext4_da_write_end,
6dcc693b 3972 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3973 .bmap = ext4_bmap,
3974 .invalidatepage = ext4_da_invalidatepage,
3975 .releasepage = ext4_releasepage,
3976 .direct_IO = ext4_direct_IO,
3977 .migratepage = buffer_migrate_page,
3978 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3979 .error_remove_page = generic_error_remove_page,
64769240
AT
3980};
3981
5f0663bb
DW
3982static const struct address_space_operations ext4_dax_aops = {
3983 .writepages = ext4_dax_writepages,
3984 .direct_IO = noop_direct_IO,
3985 .set_page_dirty = noop_set_page_dirty,
94dbb631 3986 .bmap = ext4_bmap,
5f0663bb
DW
3987 .invalidatepage = noop_invalidatepage,
3988};
3989
617ba13b 3990void ext4_set_aops(struct inode *inode)
ac27a0ec 3991{
3d2b1582
LC
3992 switch (ext4_inode_journal_mode(inode)) {
3993 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3994 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3995 break;
3996 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3997 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3998 return;
3d2b1582
LC
3999 default:
4000 BUG();
4001 }
5f0663bb
DW
4002 if (IS_DAX(inode))
4003 inode->i_mapping->a_ops = &ext4_dax_aops;
4004 else if (test_opt(inode->i_sb, DELALLOC))
74d553aa
TT
4005 inode->i_mapping->a_ops = &ext4_da_aops;
4006 else
4007 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
4008}
4009
923ae0ff 4010static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
4011 struct address_space *mapping, loff_t from, loff_t length)
4012{
09cbfeaf
KS
4013 ext4_fsblk_t index = from >> PAGE_SHIFT;
4014 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 4015 unsigned blocksize, pos;
d863dc36
LC
4016 ext4_lblk_t iblock;
4017 struct inode *inode = mapping->host;
4018 struct buffer_head *bh;
4019 struct page *page;
4020 int err = 0;
4021
09cbfeaf 4022 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 4023 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
4024 if (!page)
4025 return -ENOMEM;
4026
4027 blocksize = inode->i_sb->s_blocksize;
d863dc36 4028
09cbfeaf 4029 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
4030
4031 if (!page_has_buffers(page))
4032 create_empty_buffers(page, blocksize, 0);
4033
4034 /* Find the buffer that contains "offset" */
4035 bh = page_buffers(page);
4036 pos = blocksize;
4037 while (offset >= pos) {
4038 bh = bh->b_this_page;
4039 iblock++;
4040 pos += blocksize;
4041 }
d863dc36
LC
4042 if (buffer_freed(bh)) {
4043 BUFFER_TRACE(bh, "freed: skip");
4044 goto unlock;
4045 }
d863dc36
LC
4046 if (!buffer_mapped(bh)) {
4047 BUFFER_TRACE(bh, "unmapped");
4048 ext4_get_block(inode, iblock, bh, 0);
4049 /* unmapped? It's a hole - nothing to do */
4050 if (!buffer_mapped(bh)) {
4051 BUFFER_TRACE(bh, "still unmapped");
4052 goto unlock;
4053 }
4054 }
4055
4056 /* Ok, it's mapped. Make sure it's up-to-date */
4057 if (PageUptodate(page))
4058 set_buffer_uptodate(bh);
4059
4060 if (!buffer_uptodate(bh)) {
4061 err = -EIO;
dfec8a14 4062 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
4063 wait_on_buffer(bh);
4064 /* Uhhuh. Read error. Complain and punt. */
4065 if (!buffer_uptodate(bh))
4066 goto unlock;
c9c7429c
MH
4067 if (S_ISREG(inode->i_mode) &&
4068 ext4_encrypted_inode(inode)) {
4069 /* We expect the key to be set. */
a7550b30 4070 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 4071 BUG_ON(blocksize != PAGE_SIZE);
b50f7b26 4072 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 4073 page, PAGE_SIZE, 0, page->index));
c9c7429c 4074 }
d863dc36 4075 }
d863dc36
LC
4076 if (ext4_should_journal_data(inode)) {
4077 BUFFER_TRACE(bh, "get write access");
4078 err = ext4_journal_get_write_access(handle, bh);
4079 if (err)
4080 goto unlock;
4081 }
d863dc36 4082 zero_user(page, offset, length);
d863dc36
LC
4083 BUFFER_TRACE(bh, "zeroed end of block");
4084
d863dc36
LC
4085 if (ext4_should_journal_data(inode)) {
4086 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 4087 } else {
353eefd3 4088 err = 0;
d863dc36 4089 mark_buffer_dirty(bh);
3957ef53 4090 if (ext4_should_order_data(inode))
ee0876bc 4091 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 4092 }
d863dc36
LC
4093
4094unlock:
4095 unlock_page(page);
09cbfeaf 4096 put_page(page);
d863dc36
LC
4097 return err;
4098}
4099
923ae0ff
RZ
4100/*
4101 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4102 * starting from file offset 'from'. The range to be zero'd must
4103 * be contained with in one block. If the specified range exceeds
4104 * the end of the block it will be shortened to end of the block
4105 * that cooresponds to 'from'
4106 */
4107static int ext4_block_zero_page_range(handle_t *handle,
4108 struct address_space *mapping, loff_t from, loff_t length)
4109{
4110 struct inode *inode = mapping->host;
09cbfeaf 4111 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
4112 unsigned blocksize = inode->i_sb->s_blocksize;
4113 unsigned max = blocksize - (offset & (blocksize - 1));
4114
4115 /*
4116 * correct length if it does not fall between
4117 * 'from' and the end of the block
4118 */
4119 if (length > max || length < 0)
4120 length = max;
4121
47e69351
JK
4122 if (IS_DAX(inode)) {
4123 return iomap_zero_range(inode, from, length, NULL,
4124 &ext4_iomap_ops);
4125 }
923ae0ff
RZ
4126 return __ext4_block_zero_page_range(handle, mapping, from, length);
4127}
4128
94350ab5
MW
4129/*
4130 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4131 * up to the end of the block which corresponds to `from'.
4132 * This required during truncate. We need to physically zero the tail end
4133 * of that block so it doesn't yield old data if the file is later grown.
4134 */
c197855e 4135static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
4136 struct address_space *mapping, loff_t from)
4137{
09cbfeaf 4138 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
4139 unsigned length;
4140 unsigned blocksize;
4141 struct inode *inode = mapping->host;
4142
0d06863f
TT
4143 /* If we are processing an encrypted inode during orphan list handling */
4144 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4145 return 0;
4146
94350ab5
MW
4147 blocksize = inode->i_sb->s_blocksize;
4148 length = blocksize - (offset & (blocksize - 1));
4149
4150 return ext4_block_zero_page_range(handle, mapping, from, length);
4151}
4152
a87dd18c
LC
4153int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4154 loff_t lstart, loff_t length)
4155{
4156 struct super_block *sb = inode->i_sb;
4157 struct address_space *mapping = inode->i_mapping;
e1be3a92 4158 unsigned partial_start, partial_end;
a87dd18c
LC
4159 ext4_fsblk_t start, end;
4160 loff_t byte_end = (lstart + length - 1);
4161 int err = 0;
4162
e1be3a92
LC
4163 partial_start = lstart & (sb->s_blocksize - 1);
4164 partial_end = byte_end & (sb->s_blocksize - 1);
4165
a87dd18c
LC
4166 start = lstart >> sb->s_blocksize_bits;
4167 end = byte_end >> sb->s_blocksize_bits;
4168
4169 /* Handle partial zero within the single block */
e1be3a92
LC
4170 if (start == end &&
4171 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
4172 err = ext4_block_zero_page_range(handle, mapping,
4173 lstart, length);
4174 return err;
4175 }
4176 /* Handle partial zero out on the start of the range */
e1be3a92 4177 if (partial_start) {
a87dd18c
LC
4178 err = ext4_block_zero_page_range(handle, mapping,
4179 lstart, sb->s_blocksize);
4180 if (err)
4181 return err;
4182 }
4183 /* Handle partial zero out on the end of the range */
e1be3a92 4184 if (partial_end != sb->s_blocksize - 1)
a87dd18c 4185 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
4186 byte_end - partial_end,
4187 partial_end + 1);
a87dd18c
LC
4188 return err;
4189}
4190
91ef4caf
DG
4191int ext4_can_truncate(struct inode *inode)
4192{
91ef4caf
DG
4193 if (S_ISREG(inode->i_mode))
4194 return 1;
4195 if (S_ISDIR(inode->i_mode))
4196 return 1;
4197 if (S_ISLNK(inode->i_mode))
4198 return !ext4_inode_is_fast_symlink(inode);
4199 return 0;
4200}
4201
01127848
JK
4202/*
4203 * We have to make sure i_disksize gets properly updated before we truncate
4204 * page cache due to hole punching or zero range. Otherwise i_disksize update
4205 * can get lost as it may have been postponed to submission of writeback but
4206 * that will never happen after we truncate page cache.
4207 */
4208int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4209 loff_t len)
4210{
4211 handle_t *handle;
4212 loff_t size = i_size_read(inode);
4213
5955102c 4214 WARN_ON(!inode_is_locked(inode));
01127848
JK
4215 if (offset > size || offset + len < size)
4216 return 0;
4217
4218 if (EXT4_I(inode)->i_disksize >= size)
4219 return 0;
4220
4221 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4222 if (IS_ERR(handle))
4223 return PTR_ERR(handle);
4224 ext4_update_i_disksize(inode, size);
4225 ext4_mark_inode_dirty(handle, inode);
4226 ext4_journal_stop(handle);
4227
4228 return 0;
4229}
4230
b1f38217 4231static void ext4_wait_dax_page(struct ext4_inode_info *ei)
430657b6 4232{
430657b6
RZ
4233 up_write(&ei->i_mmap_sem);
4234 schedule();
4235 down_write(&ei->i_mmap_sem);
4236}
4237
4238int ext4_break_layouts(struct inode *inode)
4239{
4240 struct ext4_inode_info *ei = EXT4_I(inode);
4241 struct page *page;
430657b6
RZ
4242 int error;
4243
4244 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4245 return -EINVAL;
4246
4247 do {
430657b6
RZ
4248 page = dax_layout_busy_page(inode->i_mapping);
4249 if (!page)
4250 return 0;
4251
4252 error = ___wait_var_event(&page->_refcount,
4253 atomic_read(&page->_refcount) == 1,
4254 TASK_INTERRUPTIBLE, 0, 0,
b1f38217
RZ
4255 ext4_wait_dax_page(ei));
4256 } while (error == 0);
430657b6
RZ
4257
4258 return error;
4259}
4260
a4bb6b64 4261/*
cca32b7e 4262 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
4263 * associated with the given offset and length
4264 *
4265 * @inode: File inode
4266 * @offset: The offset where the hole will begin
4267 * @len: The length of the hole
4268 *
4907cb7b 4269 * Returns: 0 on success or negative on failure
a4bb6b64
AH
4270 */
4271
aeb2817a 4272int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4273{
26a4c0c6
TT
4274 struct super_block *sb = inode->i_sb;
4275 ext4_lblk_t first_block, stop_block;
4276 struct address_space *mapping = inode->i_mapping;
a87dd18c 4277 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4278 handle_t *handle;
4279 unsigned int credits;
4280 int ret = 0;
4281
a4bb6b64 4282 if (!S_ISREG(inode->i_mode))
73355192 4283 return -EOPNOTSUPP;
a4bb6b64 4284
b8a86845 4285 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4286
26a4c0c6
TT
4287 /*
4288 * Write out all dirty pages to avoid race conditions
4289 * Then release them.
4290 */
cca32b7e 4291 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4292 ret = filemap_write_and_wait_range(mapping, offset,
4293 offset + length - 1);
4294 if (ret)
4295 return ret;
4296 }
4297
5955102c 4298 inode_lock(inode);
9ef06cec 4299
26a4c0c6
TT
4300 /* No need to punch hole beyond i_size */
4301 if (offset >= inode->i_size)
4302 goto out_mutex;
4303
4304 /*
4305 * If the hole extends beyond i_size, set the hole
4306 * to end after the page that contains i_size
4307 */
4308 if (offset + length > inode->i_size) {
4309 length = inode->i_size +
09cbfeaf 4310 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4311 offset;
4312 }
4313
a361293f
JK
4314 if (offset & (sb->s_blocksize - 1) ||
4315 (offset + length) & (sb->s_blocksize - 1)) {
4316 /*
4317 * Attach jinode to inode for jbd2 if we do any zeroing of
4318 * partial block
4319 */
4320 ret = ext4_inode_attach_jinode(inode);
4321 if (ret < 0)
4322 goto out_mutex;
4323
4324 }
4325
ea3d7209 4326 /* Wait all existing dio workers, newcomers will block on i_mutex */
ea3d7209
JK
4327 inode_dio_wait(inode);
4328
4329 /*
4330 * Prevent page faults from reinstantiating pages we have released from
4331 * page cache.
4332 */
4333 down_write(&EXT4_I(inode)->i_mmap_sem);
430657b6
RZ
4334
4335 ret = ext4_break_layouts(inode);
4336 if (ret)
4337 goto out_dio;
4338
a87dd18c
LC
4339 first_block_offset = round_up(offset, sb->s_blocksize);
4340 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4341
a87dd18c 4342 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4343 if (last_block_offset > first_block_offset) {
4344 ret = ext4_update_disksize_before_punch(inode, offset, length);
4345 if (ret)
4346 goto out_dio;
a87dd18c
LC
4347 truncate_pagecache_range(inode, first_block_offset,
4348 last_block_offset);
01127848 4349 }
26a4c0c6
TT
4350
4351 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4352 credits = ext4_writepage_trans_blocks(inode);
4353 else
4354 credits = ext4_blocks_for_truncate(inode);
4355 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4356 if (IS_ERR(handle)) {
4357 ret = PTR_ERR(handle);
4358 ext4_std_error(sb, ret);
4359 goto out_dio;
4360 }
4361
a87dd18c
LC
4362 ret = ext4_zero_partial_blocks(handle, inode, offset,
4363 length);
4364 if (ret)
4365 goto out_stop;
26a4c0c6
TT
4366
4367 first_block = (offset + sb->s_blocksize - 1) >>
4368 EXT4_BLOCK_SIZE_BITS(sb);
4369 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4370
eee597ac
LC
4371 /* If there are blocks to remove, do it */
4372 if (stop_block > first_block) {
26a4c0c6 4373
eee597ac
LC
4374 down_write(&EXT4_I(inode)->i_data_sem);
4375 ext4_discard_preallocations(inode);
26a4c0c6 4376
eee597ac
LC
4377 ret = ext4_es_remove_extent(inode, first_block,
4378 stop_block - first_block);
4379 if (ret) {
4380 up_write(&EXT4_I(inode)->i_data_sem);
4381 goto out_stop;
4382 }
26a4c0c6 4383
eee597ac
LC
4384 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4385 ret = ext4_ext_remove_space(inode, first_block,
4386 stop_block - 1);
4387 else
4388 ret = ext4_ind_remove_space(handle, inode, first_block,
4389 stop_block);
26a4c0c6 4390
eee597ac
LC
4391 up_write(&EXT4_I(inode)->i_data_sem);
4392 }
26a4c0c6
TT
4393 if (IS_SYNC(inode))
4394 ext4_handle_sync(handle);
e251f9bc 4395
eeca7ea1 4396 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6 4397 ext4_mark_inode_dirty(handle, inode);
67a7d5f5
JK
4398 if (ret >= 0)
4399 ext4_update_inode_fsync_trans(handle, inode, 1);
26a4c0c6
TT
4400out_stop:
4401 ext4_journal_stop(handle);
4402out_dio:
ea3d7209 4403 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6 4404out_mutex:
5955102c 4405 inode_unlock(inode);
26a4c0c6 4406 return ret;
a4bb6b64
AH
4407}
4408
a361293f
JK
4409int ext4_inode_attach_jinode(struct inode *inode)
4410{
4411 struct ext4_inode_info *ei = EXT4_I(inode);
4412 struct jbd2_inode *jinode;
4413
4414 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4415 return 0;
4416
4417 jinode = jbd2_alloc_inode(GFP_KERNEL);
4418 spin_lock(&inode->i_lock);
4419 if (!ei->jinode) {
4420 if (!jinode) {
4421 spin_unlock(&inode->i_lock);
4422 return -ENOMEM;
4423 }
4424 ei->jinode = jinode;
4425 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4426 jinode = NULL;
4427 }
4428 spin_unlock(&inode->i_lock);
4429 if (unlikely(jinode != NULL))
4430 jbd2_free_inode(jinode);
4431 return 0;
4432}
4433
ac27a0ec 4434/*
617ba13b 4435 * ext4_truncate()
ac27a0ec 4436 *
617ba13b
MC
4437 * We block out ext4_get_block() block instantiations across the entire
4438 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4439 * simultaneously on behalf of the same inode.
4440 *
42b2aa86 4441 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4442 * is one core, guiding principle: the file's tree must always be consistent on
4443 * disk. We must be able to restart the truncate after a crash.
4444 *
4445 * The file's tree may be transiently inconsistent in memory (although it
4446 * probably isn't), but whenever we close off and commit a journal transaction,
4447 * the contents of (the filesystem + the journal) must be consistent and
4448 * restartable. It's pretty simple, really: bottom up, right to left (although
4449 * left-to-right works OK too).
4450 *
4451 * Note that at recovery time, journal replay occurs *before* the restart of
4452 * truncate against the orphan inode list.
4453 *
4454 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4455 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4456 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4457 * ext4_truncate() to have another go. So there will be instantiated blocks
4458 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4459 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4460 * ext4_truncate() run will find them and release them.
ac27a0ec 4461 */
2c98eb5e 4462int ext4_truncate(struct inode *inode)
ac27a0ec 4463{
819c4920
TT
4464 struct ext4_inode_info *ei = EXT4_I(inode);
4465 unsigned int credits;
2c98eb5e 4466 int err = 0;
819c4920
TT
4467 handle_t *handle;
4468 struct address_space *mapping = inode->i_mapping;
819c4920 4469
19b5ef61
TT
4470 /*
4471 * There is a possibility that we're either freeing the inode
e04027e8 4472 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4473 * have i_mutex locked because it's not necessary.
4474 */
4475 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4476 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4477 trace_ext4_truncate_enter(inode);
4478
91ef4caf 4479 if (!ext4_can_truncate(inode))
2c98eb5e 4480 return 0;
ac27a0ec 4481
12e9b892 4482 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4483
5534fb5b 4484 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4485 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4486
aef1c851
TM
4487 if (ext4_has_inline_data(inode)) {
4488 int has_inline = 1;
4489
01daf945
TT
4490 err = ext4_inline_data_truncate(inode, &has_inline);
4491 if (err)
4492 return err;
aef1c851 4493 if (has_inline)
2c98eb5e 4494 return 0;
aef1c851
TM
4495 }
4496
a361293f
JK
4497 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4498 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4499 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4500 return 0;
a361293f
JK
4501 }
4502
819c4920
TT
4503 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4504 credits = ext4_writepage_trans_blocks(inode);
4505 else
4506 credits = ext4_blocks_for_truncate(inode);
4507
4508 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4509 if (IS_ERR(handle))
4510 return PTR_ERR(handle);
819c4920 4511
eb3544c6
LC
4512 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4513 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4514
4515 /*
4516 * We add the inode to the orphan list, so that if this
4517 * truncate spans multiple transactions, and we crash, we will
4518 * resume the truncate when the filesystem recovers. It also
4519 * marks the inode dirty, to catch the new size.
4520 *
4521 * Implication: the file must always be in a sane, consistent
4522 * truncatable state while each transaction commits.
4523 */
2c98eb5e
TT
4524 err = ext4_orphan_add(handle, inode);
4525 if (err)
819c4920
TT
4526 goto out_stop;
4527
4528 down_write(&EXT4_I(inode)->i_data_sem);
4529
4530 ext4_discard_preallocations(inode);
4531
ff9893dc 4532 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4533 err = ext4_ext_truncate(handle, inode);
ff9893dc 4534 else
819c4920
TT
4535 ext4_ind_truncate(handle, inode);
4536
4537 up_write(&ei->i_data_sem);
d0abb36d
TT
4538 if (err)
4539 goto out_stop;
819c4920
TT
4540
4541 if (IS_SYNC(inode))
4542 ext4_handle_sync(handle);
4543
4544out_stop:
4545 /*
4546 * If this was a simple ftruncate() and the file will remain alive,
4547 * then we need to clear up the orphan record which we created above.
4548 * However, if this was a real unlink then we were called by
58d86a50 4549 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4550 * orphan info for us.
4551 */
4552 if (inode->i_nlink)
4553 ext4_orphan_del(handle, inode);
4554
eeca7ea1 4555 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4556 ext4_mark_inode_dirty(handle, inode);
4557 ext4_journal_stop(handle);
ac27a0ec 4558
0562e0ba 4559 trace_ext4_truncate_exit(inode);
2c98eb5e 4560 return err;
ac27a0ec
DK
4561}
4562
ac27a0ec 4563/*
617ba13b 4564 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4565 * underlying buffer_head on success. If 'in_mem' is true, we have all
4566 * data in memory that is needed to recreate the on-disk version of this
4567 * inode.
4568 */
617ba13b
MC
4569static int __ext4_get_inode_loc(struct inode *inode,
4570 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4571{
240799cd
TT
4572 struct ext4_group_desc *gdp;
4573 struct buffer_head *bh;
4574 struct super_block *sb = inode->i_sb;
4575 ext4_fsblk_t block;
4576 int inodes_per_block, inode_offset;
4577
3a06d778 4578 iloc->bh = NULL;
c37e9e01
TT
4579 if (inode->i_ino < EXT4_ROOT_INO ||
4580 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
6a797d27 4581 return -EFSCORRUPTED;
ac27a0ec 4582
240799cd
TT
4583 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4584 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4585 if (!gdp)
ac27a0ec
DK
4586 return -EIO;
4587
240799cd
TT
4588 /*
4589 * Figure out the offset within the block group inode table
4590 */
00d09882 4591 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4592 inode_offset = ((inode->i_ino - 1) %
4593 EXT4_INODES_PER_GROUP(sb));
4594 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4595 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4596
4597 bh = sb_getblk(sb, block);
aebf0243 4598 if (unlikely(!bh))
860d21e2 4599 return -ENOMEM;
ac27a0ec
DK
4600 if (!buffer_uptodate(bh)) {
4601 lock_buffer(bh);
9c83a923
HK
4602
4603 /*
4604 * If the buffer has the write error flag, we have failed
4605 * to write out another inode in the same block. In this
4606 * case, we don't have to read the block because we may
4607 * read the old inode data successfully.
4608 */
4609 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4610 set_buffer_uptodate(bh);
4611
ac27a0ec
DK
4612 if (buffer_uptodate(bh)) {
4613 /* someone brought it uptodate while we waited */
4614 unlock_buffer(bh);
4615 goto has_buffer;
4616 }
4617
4618 /*
4619 * If we have all information of the inode in memory and this
4620 * is the only valid inode in the block, we need not read the
4621 * block.
4622 */
4623 if (in_mem) {
4624 struct buffer_head *bitmap_bh;
240799cd 4625 int i, start;
ac27a0ec 4626
240799cd 4627 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4628
240799cd
TT
4629 /* Is the inode bitmap in cache? */
4630 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4631 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4632 goto make_io;
4633
4634 /*
4635 * If the inode bitmap isn't in cache then the
4636 * optimisation may end up performing two reads instead
4637 * of one, so skip it.
4638 */
4639 if (!buffer_uptodate(bitmap_bh)) {
4640 brelse(bitmap_bh);
4641 goto make_io;
4642 }
240799cd 4643 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4644 if (i == inode_offset)
4645 continue;
617ba13b 4646 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4647 break;
4648 }
4649 brelse(bitmap_bh);
240799cd 4650 if (i == start + inodes_per_block) {
ac27a0ec
DK
4651 /* all other inodes are free, so skip I/O */
4652 memset(bh->b_data, 0, bh->b_size);
4653 set_buffer_uptodate(bh);
4654 unlock_buffer(bh);
4655 goto has_buffer;
4656 }
4657 }
4658
4659make_io:
240799cd
TT
4660 /*
4661 * If we need to do any I/O, try to pre-readahead extra
4662 * blocks from the inode table.
4663 */
4664 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4665 ext4_fsblk_t b, end, table;
4666 unsigned num;
0d606e2c 4667 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4668
4669 table = ext4_inode_table(sb, gdp);
b713a5ec 4670 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4671 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4672 if (table > b)
4673 b = table;
0d606e2c 4674 end = b + ra_blks;
240799cd 4675 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4676 if (ext4_has_group_desc_csum(sb))
560671a0 4677 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4678 table += num / inodes_per_block;
4679 if (end > table)
4680 end = table;
4681 while (b <= end)
4682 sb_breadahead(sb, b++);
4683 }
4684
ac27a0ec
DK
4685 /*
4686 * There are other valid inodes in the buffer, this inode
4687 * has in-inode xattrs, or we don't have this inode in memory.
4688 * Read the block from disk.
4689 */
0562e0ba 4690 trace_ext4_load_inode(inode);
ac27a0ec
DK
4691 get_bh(bh);
4692 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4693 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4694 wait_on_buffer(bh);
4695 if (!buffer_uptodate(bh)) {
c398eda0
TT
4696 EXT4_ERROR_INODE_BLOCK(inode, block,
4697 "unable to read itable block");
ac27a0ec
DK
4698 brelse(bh);
4699 return -EIO;
4700 }
4701 }
4702has_buffer:
4703 iloc->bh = bh;
4704 return 0;
4705}
4706
617ba13b 4707int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4708{
4709 /* We have all inode data except xattrs in memory here. */
617ba13b 4710 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4711 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4712}
4713
6642586b
RZ
4714static bool ext4_should_use_dax(struct inode *inode)
4715{
4716 if (!test_opt(inode->i_sb, DAX))
4717 return false;
4718 if (!S_ISREG(inode->i_mode))
4719 return false;
4720 if (ext4_should_journal_data(inode))
4721 return false;
4722 if (ext4_has_inline_data(inode))
4723 return false;
4724 if (ext4_encrypted_inode(inode))
4725 return false;
4726 return true;
4727}
4728
617ba13b 4729void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4730{
617ba13b 4731 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4732 unsigned int new_fl = 0;
ac27a0ec 4733
617ba13b 4734 if (flags & EXT4_SYNC_FL)
00a1a053 4735 new_fl |= S_SYNC;
617ba13b 4736 if (flags & EXT4_APPEND_FL)
00a1a053 4737 new_fl |= S_APPEND;
617ba13b 4738 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4739 new_fl |= S_IMMUTABLE;
617ba13b 4740 if (flags & EXT4_NOATIME_FL)
00a1a053 4741 new_fl |= S_NOATIME;
617ba13b 4742 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4743 new_fl |= S_DIRSYNC;
6642586b 4744 if (ext4_should_use_dax(inode))
923ae0ff 4745 new_fl |= S_DAX;
2ee6a576
EB
4746 if (flags & EXT4_ENCRYPT_FL)
4747 new_fl |= S_ENCRYPTED;
5f16f322 4748 inode_set_flags(inode, new_fl,
2ee6a576
EB
4749 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4750 S_ENCRYPTED);
ac27a0ec
DK
4751}
4752
0fc1b451 4753static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4754 struct ext4_inode_info *ei)
0fc1b451
AK
4755{
4756 blkcnt_t i_blocks ;
8180a562
AK
4757 struct inode *inode = &(ei->vfs_inode);
4758 struct super_block *sb = inode->i_sb;
0fc1b451 4759
e2b911c5 4760 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4761 /* we are using combined 48 bit field */
4762 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4763 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4764 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4765 /* i_blocks represent file system block size */
4766 return i_blocks << (inode->i_blkbits - 9);
4767 } else {
4768 return i_blocks;
4769 }
0fc1b451
AK
4770 } else {
4771 return le32_to_cpu(raw_inode->i_blocks_lo);
4772 }
4773}
ff9ddf7e 4774
eb9b5f01 4775static inline int ext4_iget_extra_inode(struct inode *inode,
152a7b0a
TM
4776 struct ext4_inode *raw_inode,
4777 struct ext4_inode_info *ei)
4778{
4779 __le32 *magic = (void *)raw_inode +
4780 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
eb9b5f01 4781
290ab230
EB
4782 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4783 EXT4_INODE_SIZE(inode->i_sb) &&
4784 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4785 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
eb9b5f01 4786 return ext4_find_inline_data_nolock(inode);
f19d5870
TM
4787 } else
4788 EXT4_I(inode)->i_inline_off = 0;
eb9b5f01 4789 return 0;
152a7b0a
TM
4790}
4791
040cb378
LX
4792int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4793{
0b7b7779 4794 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4795 return -EOPNOTSUPP;
4796 *projid = EXT4_I(inode)->i_projid;
4797 return 0;
4798}
4799
e254d1af
EG
4800/*
4801 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4802 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4803 * set.
4804 */
4805static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4806{
4807 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4808 inode_set_iversion_raw(inode, val);
4809 else
4810 inode_set_iversion_queried(inode, val);
4811}
4812static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4813{
4814 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4815 return inode_peek_iversion_raw(inode);
4816 else
4817 return inode_peek_iversion(inode);
4818}
4819
8a363970
TT
4820struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4821 ext4_iget_flags flags, const char *function,
4822 unsigned int line)
ac27a0ec 4823{
617ba13b
MC
4824 struct ext4_iloc iloc;
4825 struct ext4_inode *raw_inode;
1d1fe1ee 4826 struct ext4_inode_info *ei;
1d1fe1ee 4827 struct inode *inode;
b436b9be 4828 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4829 long ret;
7e6e1ef4 4830 loff_t size;
ac27a0ec 4831 int block;
08cefc7a
EB
4832 uid_t i_uid;
4833 gid_t i_gid;
040cb378 4834 projid_t i_projid;
ac27a0ec 4835
8a363970
TT
4836 if (((flags & EXT4_IGET_NORMAL) &&
4837 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4838 (ino < EXT4_ROOT_INO) ||
4839 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4840 if (flags & EXT4_IGET_HANDLE)
4841 return ERR_PTR(-ESTALE);
4842 __ext4_error(sb, function, line,
4843 "inode #%lu: comm %s: iget: illegal inode #",
4844 ino, current->comm);
4845 return ERR_PTR(-EFSCORRUPTED);
4846 }
4847
1d1fe1ee
DH
4848 inode = iget_locked(sb, ino);
4849 if (!inode)
4850 return ERR_PTR(-ENOMEM);
4851 if (!(inode->i_state & I_NEW))
4852 return inode;
4853
4854 ei = EXT4_I(inode);
7dc57615 4855 iloc.bh = NULL;
ac27a0ec 4856
1d1fe1ee
DH
4857 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4858 if (ret < 0)
ac27a0ec 4859 goto bad_inode;
617ba13b 4860 raw_inode = ext4_raw_inode(&iloc);
814525f4 4861
8e4b5eae 4862 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
8a363970
TT
4863 ext4_error_inode(inode, function, line, 0,
4864 "iget: root inode unallocated");
8e4b5eae
TT
4865 ret = -EFSCORRUPTED;
4866 goto bad_inode;
4867 }
4868
8a363970
TT
4869 if ((flags & EXT4_IGET_HANDLE) &&
4870 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4871 ret = -ESTALE;
4872 goto bad_inode;
4873 }
4874
814525f4
DW
4875 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4876 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4877 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4878 EXT4_INODE_SIZE(inode->i_sb) ||
4879 (ei->i_extra_isize & 3)) {
8a363970
TT
4880 ext4_error_inode(inode, function, line, 0,
4881 "iget: bad extra_isize %u "
4882 "(inode size %u)",
2dc8d9e1
EB
4883 ei->i_extra_isize,
4884 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4885 ret = -EFSCORRUPTED;
814525f4
DW
4886 goto bad_inode;
4887 }
4888 } else
4889 ei->i_extra_isize = 0;
4890
4891 /* Precompute checksum seed for inode metadata */
9aa5d32b 4892 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4893 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4894 __u32 csum;
4895 __le32 inum = cpu_to_le32(inode->i_ino);
4896 __le32 gen = raw_inode->i_generation;
4897 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4898 sizeof(inum));
4899 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4900 sizeof(gen));
4901 }
4902
4903 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
8a363970
TT
4904 ext4_error_inode(inode, function, line, 0,
4905 "iget: checksum invalid");
6a797d27 4906 ret = -EFSBADCRC;
814525f4
DW
4907 goto bad_inode;
4908 }
4909
ac27a0ec 4910 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4911 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4912 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4913 if (ext4_has_feature_project(sb) &&
040cb378
LX
4914 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4915 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4916 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4917 else
4918 i_projid = EXT4_DEF_PROJID;
4919
af5bc92d 4920 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4921 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4922 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4923 }
08cefc7a
EB
4924 i_uid_write(inode, i_uid);
4925 i_gid_write(inode, i_gid);
040cb378 4926 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4927 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4928
353eb83c 4929 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4930 ei->i_inline_off = 0;
ac27a0ec
DK
4931 ei->i_dir_start_lookup = 0;
4932 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4933 /* We now have enough fields to check if the inode was active or not.
4934 * This is needed because nfsd might try to access dead inodes
4935 * the test is that same one that e2fsck uses
4936 * NeilBrown 1999oct15
4937 */
4938 if (inode->i_nlink == 0) {
393d1d1d
DTB
4939 if ((inode->i_mode == 0 ||
4940 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4941 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4942 /* this inode is deleted */
1d1fe1ee 4943 ret = -ESTALE;
ac27a0ec
DK
4944 goto bad_inode;
4945 }
4946 /* The only unlinked inodes we let through here have
4947 * valid i_mode and are being read by the orphan
4948 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4949 * the process of deleting those.
4950 * OR it is the EXT4_BOOT_LOADER_INO which is
4951 * not initialized on a new filesystem. */
ac27a0ec 4952 }
ac27a0ec 4953 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
cce6c9f7 4954 ext4_set_inode_flags(inode);
0fc1b451 4955 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4956 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4957 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4958 ei->i_file_acl |=
4959 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
e08ac99f 4960 inode->i_size = ext4_isize(sb, raw_inode);
7e6e1ef4 4961 if ((size = i_size_read(inode)) < 0) {
8a363970
TT
4962 ext4_error_inode(inode, function, line, 0,
4963 "iget: bad i_size value: %lld", size);
7e6e1ef4
DW
4964 ret = -EFSCORRUPTED;
4965 goto bad_inode;
4966 }
ac27a0ec 4967 ei->i_disksize = inode->i_size;
a9e7f447
DM
4968#ifdef CONFIG_QUOTA
4969 ei->i_reserved_quota = 0;
4970#endif
ac27a0ec
DK
4971 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4972 ei->i_block_group = iloc.block_group;
a4912123 4973 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4974 /*
4975 * NOTE! The in-memory inode i_data array is in little-endian order
4976 * even on big-endian machines: we do NOT byteswap the block numbers!
4977 */
617ba13b 4978 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4979 ei->i_data[block] = raw_inode->i_block[block];
4980 INIT_LIST_HEAD(&ei->i_orphan);
4981
b436b9be
JK
4982 /*
4983 * Set transaction id's of transactions that have to be committed
4984 * to finish f[data]sync. We set them to currently running transaction
4985 * as we cannot be sure that the inode or some of its metadata isn't
4986 * part of the transaction - the inode could have been reclaimed and
4987 * now it is reread from disk.
4988 */
4989 if (journal) {
4990 transaction_t *transaction;
4991 tid_t tid;
4992
a931da6a 4993 read_lock(&journal->j_state_lock);
b436b9be
JK
4994 if (journal->j_running_transaction)
4995 transaction = journal->j_running_transaction;
4996 else
4997 transaction = journal->j_committing_transaction;
4998 if (transaction)
4999 tid = transaction->t_tid;
5000 else
5001 tid = journal->j_commit_sequence;
a931da6a 5002 read_unlock(&journal->j_state_lock);
b436b9be
JK
5003 ei->i_sync_tid = tid;
5004 ei->i_datasync_tid = tid;
5005 }
5006
0040d987 5007 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
5008 if (ei->i_extra_isize == 0) {
5009 /* The extra space is currently unused. Use it. */
2dc8d9e1 5010 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
5011 ei->i_extra_isize = sizeof(struct ext4_inode) -
5012 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 5013 } else {
eb9b5f01
TT
5014 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5015 if (ret)
5016 goto bad_inode;
ac27a0ec 5017 }
814525f4 5018 }
ac27a0ec 5019
ef7f3835
KS
5020 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5021 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5022 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5023 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5024
ed3654eb 5025 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
ee73f9a5
JL
5026 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5027
c4f65706
TT
5028 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5029 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
ee73f9a5 5030 ivers |=
c4f65706
TT
5031 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5032 }
e254d1af 5033 ext4_inode_set_iversion_queried(inode, ivers);
25ec56b5
JNC
5034 }
5035
c4b5a614 5036 ret = 0;
485c26ec 5037 if (ei->i_file_acl &&
1032988c 5038 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
8a363970
TT
5039 ext4_error_inode(inode, function, line, 0,
5040 "iget: bad extended attribute block %llu",
24676da4 5041 ei->i_file_acl);
6a797d27 5042 ret = -EFSCORRUPTED;
485c26ec 5043 goto bad_inode;
f19d5870 5044 } else if (!ext4_has_inline_data(inode)) {
bc716523
LS
5045 /* validate the block references in the inode */
5046 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5047 (S_ISLNK(inode->i_mode) &&
5048 !ext4_inode_is_fast_symlink(inode))) {
5049 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
f19d5870 5050 ret = ext4_ext_check_inode(inode);
bc716523
LS
5051 else
5052 ret = ext4_ind_check_inode(inode);
f19d5870 5053 }
fe2c8191 5054 }
567f3e9a 5055 if (ret)
de9a55b8 5056 goto bad_inode;
7a262f7c 5057
ac27a0ec 5058 if (S_ISREG(inode->i_mode)) {
617ba13b 5059 inode->i_op = &ext4_file_inode_operations;
be64f884 5060 inode->i_fop = &ext4_file_operations;
617ba13b 5061 ext4_set_aops(inode);
ac27a0ec 5062 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5063 inode->i_op = &ext4_dir_inode_operations;
5064 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5065 } else if (S_ISLNK(inode->i_mode)) {
6390d33b
LR
5066 /* VFS does not allow setting these so must be corruption */
5067 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
8a363970
TT
5068 ext4_error_inode(inode, function, line, 0,
5069 "iget: immutable or append flags "
5070 "not allowed on symlinks");
6390d33b
LR
5071 ret = -EFSCORRUPTED;
5072 goto bad_inode;
5073 }
a7a67e8a
AV
5074 if (ext4_encrypted_inode(inode)) {
5075 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5076 ext4_set_aops(inode);
5077 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 5078 inode->i_link = (char *)ei->i_data;
617ba13b 5079 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5080 nd_terminate_link(ei->i_data, inode->i_size,
5081 sizeof(ei->i_data) - 1);
5082 } else {
617ba13b
MC
5083 inode->i_op = &ext4_symlink_inode_operations;
5084 ext4_set_aops(inode);
ac27a0ec 5085 }
21fc61c7 5086 inode_nohighmem(inode);
563bdd61
TT
5087 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5088 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5089 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5090 if (raw_inode->i_block[0])
5091 init_special_inode(inode, inode->i_mode,
5092 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5093 else
5094 init_special_inode(inode, inode->i_mode,
5095 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
5096 } else if (ino == EXT4_BOOT_LOADER_INO) {
5097 make_bad_inode(inode);
563bdd61 5098 } else {
6a797d27 5099 ret = -EFSCORRUPTED;
8a363970
TT
5100 ext4_error_inode(inode, function, line, 0,
5101 "iget: bogus i_mode (%o)", inode->i_mode);
563bdd61 5102 goto bad_inode;
ac27a0ec 5103 }
af5bc92d 5104 brelse(iloc.bh);
dec214d0 5105
1d1fe1ee
DH
5106 unlock_new_inode(inode);
5107 return inode;
ac27a0ec
DK
5108
5109bad_inode:
567f3e9a 5110 brelse(iloc.bh);
1d1fe1ee
DH
5111 iget_failed(inode);
5112 return ERR_PTR(ret);
ac27a0ec
DK
5113}
5114
0fc1b451
AK
5115static int ext4_inode_blocks_set(handle_t *handle,
5116 struct ext4_inode *raw_inode,
5117 struct ext4_inode_info *ei)
5118{
5119 struct inode *inode = &(ei->vfs_inode);
5120 u64 i_blocks = inode->i_blocks;
5121 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5122
5123 if (i_blocks <= ~0U) {
5124 /*
4907cb7b 5125 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
5126 * as multiple of 512 bytes
5127 */
8180a562 5128 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5129 raw_inode->i_blocks_high = 0;
84a8dce2 5130 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5131 return 0;
5132 }
e2b911c5 5133 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
5134 return -EFBIG;
5135
5136 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5137 /*
5138 * i_blocks can be represented in a 48 bit variable
5139 * as multiple of 512 bytes
5140 */
8180a562 5141 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5142 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5143 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5144 } else {
84a8dce2 5145 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5146 /* i_block is stored in file system block size */
5147 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5148 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5149 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5150 }
f287a1a5 5151 return 0;
0fc1b451
AK
5152}
5153
a26f4992
TT
5154struct other_inode {
5155 unsigned long orig_ino;
5156 struct ext4_inode *raw_inode;
5157};
5158
5159static int other_inode_match(struct inode * inode, unsigned long ino,
5160 void *data)
5161{
5162 struct other_inode *oi = (struct other_inode *) data;
5163
5164 if ((inode->i_ino != ino) ||
5165 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
0e11f644 5166 I_DIRTY_INODE)) ||
a26f4992
TT
5167 ((inode->i_state & I_DIRTY_TIME) == 0))
5168 return 0;
5169 spin_lock(&inode->i_lock);
5170 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
0e11f644 5171 I_DIRTY_INODE)) == 0) &&
a26f4992
TT
5172 (inode->i_state & I_DIRTY_TIME)) {
5173 struct ext4_inode_info *ei = EXT4_I(inode);
5174
5175 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5176 spin_unlock(&inode->i_lock);
5177
5178 spin_lock(&ei->i_raw_lock);
5179 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5180 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5181 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5182 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5183 spin_unlock(&ei->i_raw_lock);
5184 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5185 return -1;
5186 }
5187 spin_unlock(&inode->i_lock);
5188 return -1;
5189}
5190
5191/*
5192 * Opportunistically update the other time fields for other inodes in
5193 * the same inode table block.
5194 */
5195static void ext4_update_other_inodes_time(struct super_block *sb,
5196 unsigned long orig_ino, char *buf)
5197{
5198 struct other_inode oi;
5199 unsigned long ino;
5200 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5201 int inode_size = EXT4_INODE_SIZE(sb);
5202
5203 oi.orig_ino = orig_ino;
0f0ff9a9
TT
5204 /*
5205 * Calculate the first inode in the inode table block. Inode
5206 * numbers are one-based. That is, the first inode in a block
5207 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5208 */
5209 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
5210 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5211 if (ino == orig_ino)
5212 continue;
5213 oi.raw_inode = (struct ext4_inode *) buf;
5214 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5215 }
5216}
5217
ac27a0ec
DK
5218/*
5219 * Post the struct inode info into an on-disk inode location in the
5220 * buffer-cache. This gobbles the caller's reference to the
5221 * buffer_head in the inode location struct.
5222 *
5223 * The caller must have write access to iloc->bh.
5224 */
617ba13b 5225static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5226 struct inode *inode,
830156c7 5227 struct ext4_iloc *iloc)
ac27a0ec 5228{
617ba13b
MC
5229 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5230 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 5231 struct buffer_head *bh = iloc->bh;
202ee5df 5232 struct super_block *sb = inode->i_sb;
ac27a0ec 5233 int err = 0, rc, block;
202ee5df 5234 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
5235 uid_t i_uid;
5236 gid_t i_gid;
040cb378 5237 projid_t i_projid;
ac27a0ec 5238
202ee5df
TT
5239 spin_lock(&ei->i_raw_lock);
5240
5241 /* For fields not tracked in the in-memory inode,
ac27a0ec 5242 * initialise them to zero for new inodes. */
19f5fb7a 5243 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5244 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec
DK
5245
5246 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
5247 i_uid = i_uid_read(inode);
5248 i_gid = i_gid_read(inode);
040cb378 5249 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 5250 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
5251 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5252 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
5253/*
5254 * Fix up interoperability with old kernels. Otherwise, old inodes get
5255 * re-used with the upper 16 bits of the uid/gid intact
5256 */
93e3b4e6
DJ
5257 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5258 raw_inode->i_uid_high = 0;
5259 raw_inode->i_gid_high = 0;
5260 } else {
ac27a0ec 5261 raw_inode->i_uid_high =
08cefc7a 5262 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 5263 raw_inode->i_gid_high =
08cefc7a 5264 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
5265 }
5266 } else {
08cefc7a
EB
5267 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5268 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
5269 raw_inode->i_uid_high = 0;
5270 raw_inode->i_gid_high = 0;
5271 }
5272 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5273
5274 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5275 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5276 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5277 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5278
bce92d56
LX
5279 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5280 if (err) {
202ee5df 5281 spin_unlock(&ei->i_raw_lock);
0fc1b451 5282 goto out_brelse;
202ee5df 5283 }
ac27a0ec 5284 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5285 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5286 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5287 raw_inode->i_file_acl_high =
5288 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5289 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
e08ac99f 5290 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
b71fc079
JK
5291 ext4_isize_set(raw_inode, ei->i_disksize);
5292 need_datasync = 1;
5293 }
a48380f7 5294 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5295 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5296 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5297 cpu_to_le32(EXT4_GOOD_OLD_REV))
5298 set_large_file = 1;
ac27a0ec
DK
5299 }
5300 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5301 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5302 if (old_valid_dev(inode->i_rdev)) {
5303 raw_inode->i_block[0] =
5304 cpu_to_le32(old_encode_dev(inode->i_rdev));
5305 raw_inode->i_block[1] = 0;
5306 } else {
5307 raw_inode->i_block[0] = 0;
5308 raw_inode->i_block[1] =
5309 cpu_to_le32(new_encode_dev(inode->i_rdev));
5310 raw_inode->i_block[2] = 0;
5311 }
f19d5870 5312 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5313 for (block = 0; block < EXT4_N_BLOCKS; block++)
5314 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5315 }
ac27a0ec 5316
ed3654eb 5317 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
e254d1af 5318 u64 ivers = ext4_inode_peek_iversion(inode);
ee73f9a5
JL
5319
5320 raw_inode->i_disk_version = cpu_to_le32(ivers);
c4f65706
TT
5321 if (ei->i_extra_isize) {
5322 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5323 raw_inode->i_version_hi =
ee73f9a5 5324 cpu_to_le32(ivers >> 32);
c4f65706
TT
5325 raw_inode->i_extra_isize =
5326 cpu_to_le16(ei->i_extra_isize);
5327 }
25ec56b5 5328 }
040cb378 5329
0b7b7779 5330 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
5331 i_projid != EXT4_DEF_PROJID);
5332
5333 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5334 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5335 raw_inode->i_projid = cpu_to_le32(i_projid);
5336
814525f4 5337 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5338 spin_unlock(&ei->i_raw_lock);
1751e8a6 5339 if (inode->i_sb->s_flags & SB_LAZYTIME)
a26f4992
TT
5340 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5341 bh->b_data);
202ee5df 5342
830156c7 5343 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5344 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5345 if (!err)
5346 err = rc;
19f5fb7a 5347 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5348 if (set_large_file) {
5d601255 5349 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5350 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5351 if (err)
5352 goto out_brelse;
5353 ext4_update_dynamic_rev(sb);
e2b911c5 5354 ext4_set_feature_large_file(sb);
202ee5df
TT
5355 ext4_handle_sync(handle);
5356 err = ext4_handle_dirty_super(handle, sb);
5357 }
b71fc079 5358 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5359out_brelse:
af5bc92d 5360 brelse(bh);
617ba13b 5361 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5362 return err;
5363}
5364
5365/*
617ba13b 5366 * ext4_write_inode()
ac27a0ec
DK
5367 *
5368 * We are called from a few places:
5369 *
87f7e416 5370 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5371 * Here, there will be no transaction running. We wait for any running
4907cb7b 5372 * transaction to commit.
ac27a0ec 5373 *
87f7e416
TT
5374 * - Within flush work (sys_sync(), kupdate and such).
5375 * We wait on commit, if told to.
ac27a0ec 5376 *
87f7e416
TT
5377 * - Within iput_final() -> write_inode_now()
5378 * We wait on commit, if told to.
ac27a0ec
DK
5379 *
5380 * In all cases it is actually safe for us to return without doing anything,
5381 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5382 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5383 * writeback.
ac27a0ec
DK
5384 *
5385 * Note that we are absolutely dependent upon all inode dirtiers doing the
5386 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5387 * which we are interested.
5388 *
5389 * It would be a bug for them to not do this. The code:
5390 *
5391 * mark_inode_dirty(inode)
5392 * stuff();
5393 * inode->i_size = expr;
5394 *
87f7e416
TT
5395 * is in error because write_inode() could occur while `stuff()' is running,
5396 * and the new i_size will be lost. Plus the inode will no longer be on the
5397 * superblock's dirty inode list.
ac27a0ec 5398 */
a9185b41 5399int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5400{
91ac6f43
FM
5401 int err;
5402
18f2c4fc
TT
5403 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5404 sb_rdonly(inode->i_sb))
ac27a0ec
DK
5405 return 0;
5406
18f2c4fc
TT
5407 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5408 return -EIO;
5409
91ac6f43
FM
5410 if (EXT4_SB(inode->i_sb)->s_journal) {
5411 if (ext4_journal_current_handle()) {
5412 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5413 dump_stack();
5414 return -EIO;
5415 }
ac27a0ec 5416
10542c22
JK
5417 /*
5418 * No need to force transaction in WB_SYNC_NONE mode. Also
5419 * ext4_sync_fs() will force the commit after everything is
5420 * written.
5421 */
5422 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5423 return 0;
5424
18f2c4fc
TT
5425 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5426 EXT4_I(inode)->i_sync_tid);
91ac6f43
FM
5427 } else {
5428 struct ext4_iloc iloc;
ac27a0ec 5429
8b472d73 5430 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5431 if (err)
5432 return err;
10542c22
JK
5433 /*
5434 * sync(2) will flush the whole buffer cache. No need to do
5435 * it here separately for each inode.
5436 */
5437 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5438 sync_dirty_buffer(iloc.bh);
5439 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5440 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5441 "IO error syncing inode");
830156c7
FM
5442 err = -EIO;
5443 }
fd2dd9fb 5444 brelse(iloc.bh);
91ac6f43
FM
5445 }
5446 return err;
ac27a0ec
DK
5447}
5448
53e87268
JK
5449/*
5450 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5451 * buffers that are attached to a page stradding i_size and are undergoing
5452 * commit. In that case we have to wait for commit to finish and try again.
5453 */
5454static void ext4_wait_for_tail_page_commit(struct inode *inode)
5455{
5456 struct page *page;
5457 unsigned offset;
5458 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5459 tid_t commit_tid = 0;
5460 int ret;
5461
09cbfeaf 5462 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5463 /*
5464 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5465 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5466 * blocksize case
5467 */
93407472 5468 if (offset > PAGE_SIZE - i_blocksize(inode))
53e87268
JK
5469 return;
5470 while (1) {
5471 page = find_lock_page(inode->i_mapping,
09cbfeaf 5472 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5473 if (!page)
5474 return;
ca99fdd2 5475 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5476 PAGE_SIZE - offset);
53e87268 5477 unlock_page(page);
09cbfeaf 5478 put_page(page);
53e87268
JK
5479 if (ret != -EBUSY)
5480 return;
5481 commit_tid = 0;
5482 read_lock(&journal->j_state_lock);
5483 if (journal->j_committing_transaction)
5484 commit_tid = journal->j_committing_transaction->t_tid;
5485 read_unlock(&journal->j_state_lock);
5486 if (commit_tid)
5487 jbd2_log_wait_commit(journal, commit_tid);
5488 }
5489}
5490
ac27a0ec 5491/*
617ba13b 5492 * ext4_setattr()
ac27a0ec
DK
5493 *
5494 * Called from notify_change.
5495 *
5496 * We want to trap VFS attempts to truncate the file as soon as
5497 * possible. In particular, we want to make sure that when the VFS
5498 * shrinks i_size, we put the inode on the orphan list and modify
5499 * i_disksize immediately, so that during the subsequent flushing of
5500 * dirty pages and freeing of disk blocks, we can guarantee that any
5501 * commit will leave the blocks being flushed in an unused state on
5502 * disk. (On recovery, the inode will get truncated and the blocks will
5503 * be freed, so we have a strong guarantee that no future commit will
5504 * leave these blocks visible to the user.)
5505 *
678aaf48
JK
5506 * Another thing we have to assure is that if we are in ordered mode
5507 * and inode is still attached to the committing transaction, we must
5508 * we start writeout of all the dirty pages which are being truncated.
5509 * This way we are sure that all the data written in the previous
5510 * transaction are already on disk (truncate waits for pages under
5511 * writeback).
5512 *
5513 * Called with inode->i_mutex down.
ac27a0ec 5514 */
617ba13b 5515int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5516{
2b0143b5 5517 struct inode *inode = d_inode(dentry);
ac27a0ec 5518 int error, rc = 0;
3d287de3 5519 int orphan = 0;
ac27a0ec
DK
5520 const unsigned int ia_valid = attr->ia_valid;
5521
0db1ff22
TT
5522 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5523 return -EIO;
5524
31051c85 5525 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5526 if (error)
5527 return error;
5528
3ce2b8dd
EB
5529 error = fscrypt_prepare_setattr(dentry, attr);
5530 if (error)
5531 return error;
5532
a7cdadee
JK
5533 if (is_quota_modification(inode, attr)) {
5534 error = dquot_initialize(inode);
5535 if (error)
5536 return error;
5537 }
08cefc7a
EB
5538 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5539 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5540 handle_t *handle;
5541
5542 /* (user+group)*(old+new) structure, inode write (sb,
5543 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5544 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5545 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5546 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5547 if (IS_ERR(handle)) {
5548 error = PTR_ERR(handle);
5549 goto err_out;
5550 }
7a9ca53a
TE
5551
5552 /* dquot_transfer() calls back ext4_get_inode_usage() which
5553 * counts xattr inode references.
5554 */
5555 down_read(&EXT4_I(inode)->xattr_sem);
b43fa828 5556 error = dquot_transfer(inode, attr);
7a9ca53a
TE
5557 up_read(&EXT4_I(inode)->xattr_sem);
5558
ac27a0ec 5559 if (error) {
617ba13b 5560 ext4_journal_stop(handle);
ac27a0ec
DK
5561 return error;
5562 }
5563 /* Update corresponding info in inode so that everything is in
5564 * one transaction */
5565 if (attr->ia_valid & ATTR_UID)
5566 inode->i_uid = attr->ia_uid;
5567 if (attr->ia_valid & ATTR_GID)
5568 inode->i_gid = attr->ia_gid;
617ba13b
MC
5569 error = ext4_mark_inode_dirty(handle, inode);
5570 ext4_journal_stop(handle);
ac27a0ec
DK
5571 }
5572
3da40c7b 5573 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5574 handle_t *handle;
3da40c7b
JB
5575 loff_t oldsize = inode->i_size;
5576 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5577
12e9b892 5578 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5580
0c095c7f
TT
5581 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5582 return -EFBIG;
e2b46574 5583 }
3da40c7b
JB
5584 if (!S_ISREG(inode->i_mode))
5585 return -EINVAL;
dff6efc3
CH
5586
5587 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5588 inode_inc_iversion(inode);
5589
3da40c7b 5590 if (ext4_should_order_data(inode) &&
5208386c 5591 (attr->ia_size < inode->i_size)) {
3da40c7b 5592 error = ext4_begin_ordered_truncate(inode,
678aaf48 5593 attr->ia_size);
3da40c7b
JB
5594 if (error)
5595 goto err_out;
5596 }
5597 if (attr->ia_size != inode->i_size) {
5208386c
JK
5598 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5599 if (IS_ERR(handle)) {
5600 error = PTR_ERR(handle);
5601 goto err_out;
5602 }
3da40c7b 5603 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5604 error = ext4_orphan_add(handle, inode);
5605 orphan = 1;
5606 }
911af577
EG
5607 /*
5608 * Update c/mtime on truncate up, ext4_truncate() will
5609 * update c/mtime in shrink case below
5610 */
5611 if (!shrink) {
eeca7ea1 5612 inode->i_mtime = current_time(inode);
911af577
EG
5613 inode->i_ctime = inode->i_mtime;
5614 }
90e775b7 5615 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5616 EXT4_I(inode)->i_disksize = attr->ia_size;
5617 rc = ext4_mark_inode_dirty(handle, inode);
5618 if (!error)
5619 error = rc;
90e775b7
JK
5620 /*
5621 * We have to update i_size under i_data_sem together
5622 * with i_disksize to avoid races with writeback code
5623 * running ext4_wb_update_i_disksize().
5624 */
5625 if (!error)
5626 i_size_write(inode, attr->ia_size);
5627 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5628 ext4_journal_stop(handle);
5629 if (error) {
3da40c7b
JB
5630 if (orphan)
5631 ext4_orphan_del(NULL, inode);
678aaf48
JK
5632 goto err_out;
5633 }
d6320cbf 5634 }
3da40c7b
JB
5635 if (!shrink)
5636 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5637
5208386c
JK
5638 /*
5639 * Blocks are going to be removed from the inode. Wait
5640 * for dio in flight. Temporarily disable
5641 * dioread_nolock to prevent livelock.
5642 */
5643 if (orphan) {
5644 if (!ext4_should_journal_data(inode)) {
5208386c 5645 inode_dio_wait(inode);
5208386c
JK
5646 } else
5647 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5648 }
ea3d7209 5649 down_write(&EXT4_I(inode)->i_mmap_sem);
430657b6
RZ
5650
5651 rc = ext4_break_layouts(inode);
5652 if (rc) {
5653 up_write(&EXT4_I(inode)->i_mmap_sem);
5654 error = rc;
5655 goto err_out;
5656 }
5657
5208386c
JK
5658 /*
5659 * Truncate pagecache after we've waited for commit
5660 * in data=journal mode to make pages freeable.
5661 */
923ae0ff 5662 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5663 if (shrink) {
5664 rc = ext4_truncate(inode);
5665 if (rc)
5666 error = rc;
5667 }
ea3d7209 5668 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5669 }
ac27a0ec 5670
2c98eb5e 5671 if (!error) {
1025774c
CH
5672 setattr_copy(inode, attr);
5673 mark_inode_dirty(inode);
5674 }
5675
5676 /*
5677 * If the call to ext4_truncate failed to get a transaction handle at
5678 * all, we need to clean up the in-core orphan list manually.
5679 */
3d287de3 5680 if (orphan && inode->i_nlink)
617ba13b 5681 ext4_orphan_del(NULL, inode);
ac27a0ec 5682
2c98eb5e 5683 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5684 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5685
5686err_out:
617ba13b 5687 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5688 if (!error)
5689 error = rc;
5690 return error;
5691}
5692
a528d35e
DH
5693int ext4_getattr(const struct path *path, struct kstat *stat,
5694 u32 request_mask, unsigned int query_flags)
3e3398a0 5695{
99652ea5
DH
5696 struct inode *inode = d_inode(path->dentry);
5697 struct ext4_inode *raw_inode;
5698 struct ext4_inode_info *ei = EXT4_I(inode);
5699 unsigned int flags;
5700
5701 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5702 stat->result_mask |= STATX_BTIME;
5703 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5704 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5705 }
5706
5707 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5708 if (flags & EXT4_APPEND_FL)
5709 stat->attributes |= STATX_ATTR_APPEND;
5710 if (flags & EXT4_COMPR_FL)
5711 stat->attributes |= STATX_ATTR_COMPRESSED;
5712 if (flags & EXT4_ENCRYPT_FL)
5713 stat->attributes |= STATX_ATTR_ENCRYPTED;
5714 if (flags & EXT4_IMMUTABLE_FL)
5715 stat->attributes |= STATX_ATTR_IMMUTABLE;
5716 if (flags & EXT4_NODUMP_FL)
5717 stat->attributes |= STATX_ATTR_NODUMP;
3e3398a0 5718
3209f68b
DH
5719 stat->attributes_mask |= (STATX_ATTR_APPEND |
5720 STATX_ATTR_COMPRESSED |
5721 STATX_ATTR_ENCRYPTED |
5722 STATX_ATTR_IMMUTABLE |
5723 STATX_ATTR_NODUMP);
5724
3e3398a0 5725 generic_fillattr(inode, stat);
99652ea5
DH
5726 return 0;
5727}
5728
5729int ext4_file_getattr(const struct path *path, struct kstat *stat,
5730 u32 request_mask, unsigned int query_flags)
5731{
5732 struct inode *inode = d_inode(path->dentry);
5733 u64 delalloc_blocks;
5734
5735 ext4_getattr(path, stat, request_mask, query_flags);
3e3398a0 5736
9206c561
AD
5737 /*
5738 * If there is inline data in the inode, the inode will normally not
5739 * have data blocks allocated (it may have an external xattr block).
5740 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5741 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5742 */
5743 if (unlikely(ext4_has_inline_data(inode)))
5744 stat->blocks += (stat->size + 511) >> 9;
5745
3e3398a0
MC
5746 /*
5747 * We can't update i_blocks if the block allocation is delayed
5748 * otherwise in the case of system crash before the real block
5749 * allocation is done, we will have i_blocks inconsistent with
5750 * on-disk file blocks.
5751 * We always keep i_blocks updated together with real
5752 * allocation. But to not confuse with user, stat
5753 * will return the blocks that include the delayed allocation
5754 * blocks for this file.
5755 */
96607551 5756 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5757 EXT4_I(inode)->i_reserved_data_blocks);
5758 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5759 return 0;
5760}
ac27a0ec 5761
fffb2739
JK
5762static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5763 int pextents)
a02908f1 5764{
12e9b892 5765 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5766 return ext4_ind_trans_blocks(inode, lblocks);
5767 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5768}
ac51d837 5769
ac27a0ec 5770/*
a02908f1
MC
5771 * Account for index blocks, block groups bitmaps and block group
5772 * descriptor blocks if modify datablocks and index blocks
5773 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5774 *
a02908f1 5775 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5776 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5777 * they could still across block group boundary.
ac27a0ec 5778 *
a02908f1
MC
5779 * Also account for superblock, inode, quota and xattr blocks
5780 */
dec214d0 5781static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
fffb2739 5782 int pextents)
a02908f1 5783{
8df9675f
TT
5784 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5785 int gdpblocks;
a02908f1
MC
5786 int idxblocks;
5787 int ret = 0;
5788
5789 /*
fffb2739
JK
5790 * How many index blocks need to touch to map @lblocks logical blocks
5791 * to @pextents physical extents?
a02908f1 5792 */
fffb2739 5793 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5794
5795 ret = idxblocks;
5796
5797 /*
5798 * Now let's see how many group bitmaps and group descriptors need
5799 * to account
5800 */
fffb2739 5801 groups = idxblocks + pextents;
a02908f1 5802 gdpblocks = groups;
8df9675f
TT
5803 if (groups > ngroups)
5804 groups = ngroups;
a02908f1
MC
5805 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5806 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5807
5808 /* bitmaps and block group descriptor blocks */
5809 ret += groups + gdpblocks;
5810
5811 /* Blocks for super block, inode, quota and xattr blocks */
5812 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5813
5814 return ret;
5815}
5816
5817/*
25985edc 5818 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5819 * the modification of a single pages into a single transaction,
5820 * which may include multiple chunks of block allocations.
ac27a0ec 5821 *
525f4ed8 5822 * This could be called via ext4_write_begin()
ac27a0ec 5823 *
525f4ed8 5824 * We need to consider the worse case, when
a02908f1 5825 * one new block per extent.
ac27a0ec 5826 */
a86c6181 5827int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5828{
617ba13b 5829 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5830 int ret;
5831
fffb2739 5832 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5833
a02908f1 5834 /* Account for data blocks for journalled mode */
617ba13b 5835 if (ext4_should_journal_data(inode))
a02908f1 5836 ret += bpp;
ac27a0ec
DK
5837 return ret;
5838}
f3bd1f3f
MC
5839
5840/*
5841 * Calculate the journal credits for a chunk of data modification.
5842 *
5843 * This is called from DIO, fallocate or whoever calling
79e83036 5844 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5845 *
5846 * journal buffers for data blocks are not included here, as DIO
5847 * and fallocate do no need to journal data buffers.
5848 */
5849int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5850{
5851 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5852}
5853
ac27a0ec 5854/*
617ba13b 5855 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5856 * Give this, we know that the caller already has write access to iloc->bh.
5857 */
617ba13b 5858int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5859 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5860{
5861 int err = 0;
5862
a6758309
VA
5863 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5864 put_bh(iloc->bh);
0db1ff22 5865 return -EIO;
a6758309 5866 }
c64db50e 5867 if (IS_I_VERSION(inode))
25ec56b5
JNC
5868 inode_inc_iversion(inode);
5869
ac27a0ec
DK
5870 /* the do_update_inode consumes one bh->b_count */
5871 get_bh(iloc->bh);
5872
dab291af 5873 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5874 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5875 put_bh(iloc->bh);
5876 return err;
5877}
5878
5879/*
5880 * On success, We end up with an outstanding reference count against
5881 * iloc->bh. This _must_ be cleaned up later.
5882 */
5883
5884int
617ba13b
MC
5885ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5886 struct ext4_iloc *iloc)
ac27a0ec 5887{
0390131b
FM
5888 int err;
5889
0db1ff22
TT
5890 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5891 return -EIO;
5892
0390131b
FM
5893 err = ext4_get_inode_loc(inode, iloc);
5894 if (!err) {
5895 BUFFER_TRACE(iloc->bh, "get_write_access");
5896 err = ext4_journal_get_write_access(handle, iloc->bh);
5897 if (err) {
5898 brelse(iloc->bh);
5899 iloc->bh = NULL;
ac27a0ec
DK
5900 }
5901 }
617ba13b 5902 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5903 return err;
5904}
5905
c03b45b8
MX
5906static int __ext4_expand_extra_isize(struct inode *inode,
5907 unsigned int new_extra_isize,
5908 struct ext4_iloc *iloc,
5909 handle_t *handle, int *no_expand)
5910{
5911 struct ext4_inode *raw_inode;
5912 struct ext4_xattr_ibody_header *header;
5913 int error;
5914
5915 raw_inode = ext4_raw_inode(iloc);
5916
5917 header = IHDR(inode, raw_inode);
5918
5919 /* No extended attributes present */
5920 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5921 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5922 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5923 EXT4_I(inode)->i_extra_isize, 0,
5924 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5925 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5926 return 0;
5927 }
5928
5929 /* try to expand with EAs present */
5930 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5931 raw_inode, handle);
5932 if (error) {
5933 /*
5934 * Inode size expansion failed; don't try again
5935 */
5936 *no_expand = 1;
5937 }
5938
5939 return error;
5940}
5941
6dd4ee7c
KS
5942/*
5943 * Expand an inode by new_extra_isize bytes.
5944 * Returns 0 on success or negative error number on failure.
5945 */
cf0a5e81
MX
5946static int ext4_try_to_expand_extra_isize(struct inode *inode,
5947 unsigned int new_extra_isize,
5948 struct ext4_iloc iloc,
5949 handle_t *handle)
6dd4ee7c 5950{
3b10fdc6
MX
5951 int no_expand;
5952 int error;
6dd4ee7c 5953
cf0a5e81
MX
5954 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5955 return -EOVERFLOW;
5956
5957 /*
5958 * In nojournal mode, we can immediately attempt to expand
5959 * the inode. When journaled, we first need to obtain extra
5960 * buffer credits since we may write into the EA block
5961 * with this same handle. If journal_extend fails, then it will
5962 * only result in a minor loss of functionality for that inode.
5963 * If this is felt to be critical, then e2fsck should be run to
5964 * force a large enough s_min_extra_isize.
5965 */
5966 if (ext4_handle_valid(handle) &&
5967 jbd2_journal_extend(handle,
5968 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5969 return -ENOSPC;
6dd4ee7c 5970
3b10fdc6 5971 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
cf0a5e81 5972 return -EBUSY;
3b10fdc6 5973
c03b45b8
MX
5974 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5975 handle, &no_expand);
5976 ext4_write_unlock_xattr(inode, &no_expand);
6dd4ee7c 5977
c03b45b8
MX
5978 return error;
5979}
6dd4ee7c 5980
c03b45b8
MX
5981int ext4_expand_extra_isize(struct inode *inode,
5982 unsigned int new_extra_isize,
5983 struct ext4_iloc *iloc)
5984{
5985 handle_t *handle;
5986 int no_expand;
5987 int error, rc;
5988
5989 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5990 brelse(iloc->bh);
5991 return -EOVERFLOW;
6dd4ee7c
KS
5992 }
5993
c03b45b8
MX
5994 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5995 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5996 if (IS_ERR(handle)) {
5997 error = PTR_ERR(handle);
5998 brelse(iloc->bh);
5999 return error;
6000 }
6001
6002 ext4_write_lock_xattr(inode, &no_expand);
6003
6004 BUFFER_TRACE(iloc.bh, "get_write_access");
6005 error = ext4_journal_get_write_access(handle, iloc->bh);
3b10fdc6 6006 if (error) {
c03b45b8
MX
6007 brelse(iloc->bh);
6008 goto out_stop;
3b10fdc6 6009 }
cf0a5e81 6010
c03b45b8
MX
6011 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6012 handle, &no_expand);
6013
6014 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6015 if (!error)
6016 error = rc;
6017
6018 ext4_write_unlock_xattr(inode, &no_expand);
6019out_stop:
6020 ext4_journal_stop(handle);
3b10fdc6 6021 return error;
6dd4ee7c
KS
6022}
6023
ac27a0ec
DK
6024/*
6025 * What we do here is to mark the in-core inode as clean with respect to inode
6026 * dirtiness (it may still be data-dirty).
6027 * This means that the in-core inode may be reaped by prune_icache
6028 * without having to perform any I/O. This is a very good thing,
6029 * because *any* task may call prune_icache - even ones which
6030 * have a transaction open against a different journal.
6031 *
6032 * Is this cheating? Not really. Sure, we haven't written the
6033 * inode out, but prune_icache isn't a user-visible syncing function.
6034 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6035 * we start and wait on commits.
ac27a0ec 6036 */
617ba13b 6037int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 6038{
617ba13b 6039 struct ext4_iloc iloc;
6dd4ee7c 6040 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
cf0a5e81 6041 int err;
ac27a0ec
DK
6042
6043 might_sleep();
7ff9c073 6044 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 6045 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
6046 if (err)
6047 return err;
cf0a5e81
MX
6048
6049 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6050 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6051 iloc, handle);
6052
5e1021f2 6053 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
6054}
6055
6056/*
617ba13b 6057 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
6058 *
6059 * We're really interested in the case where a file is being extended.
6060 * i_size has been changed by generic_commit_write() and we thus need
6061 * to include the updated inode in the current transaction.
6062 *
5dd4056d 6063 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
6064 * are allocated to the file.
6065 *
6066 * If the inode is marked synchronous, we don't honour that here - doing
6067 * so would cause a commit on atime updates, which we don't bother doing.
6068 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
6069 *
6070 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6071 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6072 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 6073 */
aa385729 6074void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 6075{
ac27a0ec
DK
6076 handle_t *handle;
6077
0ae45f63
TT
6078 if (flags == I_DIRTY_TIME)
6079 return;
9924a92a 6080 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
6081 if (IS_ERR(handle))
6082 goto out;
f3dc272f 6083
f3dc272f
CW
6084 ext4_mark_inode_dirty(handle, inode);
6085
617ba13b 6086 ext4_journal_stop(handle);
ac27a0ec
DK
6087out:
6088 return;
6089}
6090
6091#if 0
6092/*
6093 * Bind an inode's backing buffer_head into this transaction, to prevent
6094 * it from being flushed to disk early. Unlike
617ba13b 6095 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
6096 * returns no iloc structure, so the caller needs to repeat the iloc
6097 * lookup to mark the inode dirty later.
6098 */
617ba13b 6099static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 6100{
617ba13b 6101 struct ext4_iloc iloc;
ac27a0ec
DK
6102
6103 int err = 0;
6104 if (handle) {
617ba13b 6105 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
6106 if (!err) {
6107 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 6108 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 6109 if (!err)
0390131b 6110 err = ext4_handle_dirty_metadata(handle,
73b50c1c 6111 NULL,
0390131b 6112 iloc.bh);
ac27a0ec
DK
6113 brelse(iloc.bh);
6114 }
6115 }
617ba13b 6116 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6117 return err;
6118}
6119#endif
6120
617ba13b 6121int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
6122{
6123 journal_t *journal;
6124 handle_t *handle;
6125 int err;
c8585c6f 6126 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
6127
6128 /*
6129 * We have to be very careful here: changing a data block's
6130 * journaling status dynamically is dangerous. If we write a
6131 * data block to the journal, change the status and then delete
6132 * that block, we risk forgetting to revoke the old log record
6133 * from the journal and so a subsequent replay can corrupt data.
6134 * So, first we make sure that the journal is empty and that
6135 * nobody is changing anything.
6136 */
6137
617ba13b 6138 journal = EXT4_JOURNAL(inode);
0390131b
FM
6139 if (!journal)
6140 return 0;
d699594d 6141 if (is_journal_aborted(journal))
ac27a0ec
DK
6142 return -EROFS;
6143
17335dcc 6144 /* Wait for all existing dio workers */
17335dcc
DM
6145 inode_dio_wait(inode);
6146
4c546592
DJ
6147 /*
6148 * Before flushing the journal and switching inode's aops, we have
6149 * to flush all dirty data the inode has. There can be outstanding
6150 * delayed allocations, there can be unwritten extents created by
6151 * fallocate or buffered writes in dioread_nolock mode covered by
6152 * dirty data which can be converted only after flushing the dirty
6153 * data (and journalled aops don't know how to handle these cases).
6154 */
6155 if (val) {
6156 down_write(&EXT4_I(inode)->i_mmap_sem);
6157 err = filemap_write_and_wait(inode->i_mapping);
6158 if (err < 0) {
6159 up_write(&EXT4_I(inode)->i_mmap_sem);
4c546592
DJ
6160 return err;
6161 }
6162 }
6163
c8585c6f 6164 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 6165 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
6166
6167 /*
6168 * OK, there are no updates running now, and all cached data is
6169 * synced to disk. We are now in a completely consistent state
6170 * which doesn't have anything in the journal, and we know that
6171 * no filesystem updates are running, so it is safe to modify
6172 * the inode's in-core data-journaling state flag now.
6173 */
6174
6175 if (val)
12e9b892 6176 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6177 else {
4f879ca6
JK
6178 err = jbd2_journal_flush(journal);
6179 if (err < 0) {
6180 jbd2_journal_unlock_updates(journal);
c8585c6f 6181 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
6182 return err;
6183 }
12e9b892 6184 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6185 }
617ba13b 6186 ext4_set_aops(inode);
ac27a0ec 6187
dab291af 6188 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
6189 percpu_up_write(&sbi->s_journal_flag_rwsem);
6190
4c546592
DJ
6191 if (val)
6192 up_write(&EXT4_I(inode)->i_mmap_sem);
ac27a0ec
DK
6193
6194 /* Finally we can mark the inode as dirty. */
6195
9924a92a 6196 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
6197 if (IS_ERR(handle))
6198 return PTR_ERR(handle);
6199
617ba13b 6200 err = ext4_mark_inode_dirty(handle, inode);
0390131b 6201 ext4_handle_sync(handle);
617ba13b
MC
6202 ext4_journal_stop(handle);
6203 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6204
6205 return err;
6206}
2e9ee850
AK
6207
6208static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6209{
6210 return !buffer_mapped(bh);
6211}
6212
401b25aa 6213vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 6214{
11bac800 6215 struct vm_area_struct *vma = vmf->vma;
c2ec175c 6216 struct page *page = vmf->page;
2e9ee850
AK
6217 loff_t size;
6218 unsigned long len;
401b25aa
SJ
6219 int err;
6220 vm_fault_t ret;
2e9ee850 6221 struct file *file = vma->vm_file;
496ad9aa 6222 struct inode *inode = file_inode(file);
2e9ee850 6223 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
6224 handle_t *handle;
6225 get_block_t *get_block;
6226 int retries = 0;
2e9ee850 6227
8e8ad8a5 6228 sb_start_pagefault(inode->i_sb);
041bbb6d 6229 file_update_time(vma->vm_file);
ea3d7209
JK
6230
6231 down_read(&EXT4_I(inode)->i_mmap_sem);
7b4cc978 6232
401b25aa
SJ
6233 err = ext4_convert_inline_data(inode);
6234 if (err)
7b4cc978
EB
6235 goto out_ret;
6236
9ea7df53
JK
6237 /* Delalloc case is easy... */
6238 if (test_opt(inode->i_sb, DELALLOC) &&
6239 !ext4_should_journal_data(inode) &&
6240 !ext4_nonda_switch(inode->i_sb)) {
6241 do {
401b25aa 6242 err = block_page_mkwrite(vma, vmf,
9ea7df53 6243 ext4_da_get_block_prep);
401b25aa 6244 } while (err == -ENOSPC &&
9ea7df53
JK
6245 ext4_should_retry_alloc(inode->i_sb, &retries));
6246 goto out_ret;
2e9ee850 6247 }
0e499890
DW
6248
6249 lock_page(page);
9ea7df53
JK
6250 size = i_size_read(inode);
6251 /* Page got truncated from under us? */
6252 if (page->mapping != mapping || page_offset(page) > size) {
6253 unlock_page(page);
6254 ret = VM_FAULT_NOPAGE;
6255 goto out;
0e499890 6256 }
2e9ee850 6257
09cbfeaf
KS
6258 if (page->index == size >> PAGE_SHIFT)
6259 len = size & ~PAGE_MASK;
2e9ee850 6260 else
09cbfeaf 6261 len = PAGE_SIZE;
a827eaff 6262 /*
9ea7df53
JK
6263 * Return if we have all the buffers mapped. This avoids the need to do
6264 * journal_start/journal_stop which can block and take a long time
a827eaff 6265 */
2e9ee850 6266 if (page_has_buffers(page)) {
f19d5870
TM
6267 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6268 0, len, NULL,
6269 ext4_bh_unmapped)) {
9ea7df53 6270 /* Wait so that we don't change page under IO */
1d1d1a76 6271 wait_for_stable_page(page);
9ea7df53
JK
6272 ret = VM_FAULT_LOCKED;
6273 goto out;
a827eaff 6274 }
2e9ee850 6275 }
a827eaff 6276 unlock_page(page);
9ea7df53
JK
6277 /* OK, we need to fill the hole... */
6278 if (ext4_should_dioread_nolock(inode))
705965bd 6279 get_block = ext4_get_block_unwritten;
9ea7df53
JK
6280 else
6281 get_block = ext4_get_block;
6282retry_alloc:
9924a92a
TT
6283 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6284 ext4_writepage_trans_blocks(inode));
9ea7df53 6285 if (IS_ERR(handle)) {
c2ec175c 6286 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
6287 goto out;
6288 }
401b25aa
SJ
6289 err = block_page_mkwrite(vma, vmf, get_block);
6290 if (!err && ext4_should_journal_data(inode)) {
f19d5870 6291 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 6292 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
6293 unlock_page(page);
6294 ret = VM_FAULT_SIGBUS;
fcbb5515 6295 ext4_journal_stop(handle);
9ea7df53
JK
6296 goto out;
6297 }
6298 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6299 }
6300 ext4_journal_stop(handle);
401b25aa 6301 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
9ea7df53
JK
6302 goto retry_alloc;
6303out_ret:
401b25aa 6304 ret = block_page_mkwrite_return(err);
9ea7df53 6305out:
ea3d7209 6306 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 6307 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
6308 return ret;
6309}
ea3d7209 6310
401b25aa 6311vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
ea3d7209 6312{
11bac800 6313 struct inode *inode = file_inode(vmf->vma->vm_file);
401b25aa 6314 vm_fault_t ret;
ea3d7209
JK
6315
6316 down_read(&EXT4_I(inode)->i_mmap_sem);
401b25aa 6317 ret = filemap_fault(vmf);
ea3d7209
JK
6318 up_read(&EXT4_I(inode)->i_mmap_sem);
6319
401b25aa 6320 return ret;
ea3d7209 6321}