ALSA: hda - Fix pending unsol events at shutdown
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
ac27a0ec 2/*
617ba13b 3 * linux/fs/ext4/inode.c
ac27a0ec
DK
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
ac27a0ec
DK
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
617ba13b 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
20 */
21
ac27a0ec
DK
22#include <linux/fs.h>
23#include <linux/time.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
c94c2acf 26#include <linux/dax.h>
ac27a0ec
DK
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
64769240 31#include <linux/pagevec.h>
ac27a0ec 32#include <linux/mpage.h>
e83c1397 33#include <linux/namei.h>
ac27a0ec
DK
34#include <linux/uio.h>
35#include <linux/bio.h>
4c0425ff 36#include <linux/workqueue.h>
744692dc 37#include <linux/kernel.h>
6db26ffc 38#include <linux/printk.h>
5a0e3ad6 39#include <linux/slab.h>
00a1a053 40#include <linux/bitops.h>
364443cb 41#include <linux/iomap.h>
ae5e165d 42#include <linux/iversion.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
9f125d64 47#include "truncate.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
814525f4
DW
53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55{
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 57 __u32 csum;
b47820ed
DJ
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
814525f4 61
b47820ed
DJ
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 67
b47820ed
DJ
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
b47820ed 77 }
05ac5aa1
DJ
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
80 }
81
814525f4
DW
82 return csum;
83}
84
85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87{
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 92 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104}
105
106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108{
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 113 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121}
122
678aaf48
JK
123static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125{
7ff9c073 126 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
678aaf48
JK
138}
139
d47992f8
LC
140static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
cb20d518
TT
142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
dec214d0
TE
144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
64769240 146
ac27a0ec
DK
147/*
148 * Test whether an inode is a fast symlink.
407cd7fb 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
ac27a0ec 150 */
f348c252 151int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 152{
fc82228a
AK
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
407cd7fb
TE
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
ac27a0ec
DK
164}
165
ac27a0ec
DK
166/*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
fa5d1113 171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 172 int nblocks)
ac27a0ec 173{
487caeef
JK
174 int ret;
175
176 /*
e35fd660 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
181 */
0390131b 182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 183 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 184 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 185 ret = ext4_journal_restart(handle, nblocks);
487caeef 186 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 187 ext4_discard_preallocations(inode);
487caeef
JK
188
189 return ret;
ac27a0ec
DK
190}
191
192/*
193 * Called at the last iput() if i_nlink is zero.
194 */
0930fcc1 195void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
196{
197 handle_t *handle;
bc965ab3 198 int err;
e50e5129 199 int extra_credits = 3;
0421a189 200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
ac27a0ec 201
7ff9c073 202 trace_ext4_evict_inode(inode);
2581fdc8 203
0930fcc1 204 if (inode->i_nlink) {
2d859db3
JK
205 /*
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
219 *
220 * Note that directories do not have this problem because they
221 * don't use page cache.
222 */
6a7fd522
VN
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
3abb1a0f
JK
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
2d859db3
JK
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
d76a3a77 230 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
231 filemap_write_and_wait(&inode->i_data);
232 }
91b0abe3 233 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 234
0930fcc1
AV
235 goto no_delete;
236 }
237
e2bfb088
TT
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
907f4554 241
678aaf48
JK
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 244 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 245
8e8ad8a5
JK
246 /*
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
249 */
250 sb_start_intwrite(inode->i_sb);
e50e5129 251
30a7eb97
TE
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
ac27a0ec 257 if (IS_ERR(handle)) {
bc965ab3 258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
259 /*
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
263 */
617ba13b 264 ext4_orphan_del(NULL, inode);
8e8ad8a5 265 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
266 goto no_delete;
267 }
30a7eb97 268
ac27a0ec 269 if (IS_SYNC(inode))
0390131b 270 ext4_handle_sync(handle);
407cd7fb
TE
271
272 /*
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
278 */
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
ac27a0ec 281 inode->i_size = 0;
bc965ab3
TT
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
12062ddd 284 ext4_warning(inode->i_sb,
bc965ab3
TT
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
287 }
2c98eb5e
TT
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
295 }
296 }
bc965ab3 297
30a7eb97
TE
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
bc965ab3
TT
309 }
310
ac27a0ec 311 /*
617ba13b 312 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 313 * AKPM: I think this can be inside the above `if'.
617ba13b 314 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 315 * deletion of a non-existent orphan - this is because we don't
617ba13b 316 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
317 * (Well, we could do this if we need to, but heck - it works)
318 */
617ba13b 319 ext4_orphan_del(handle, inode);
5ffff834 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
ac27a0ec
DK
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
617ba13b 329 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 330 /* If that failed, just do the required in-core inode clear. */
0930fcc1 331 ext4_clear_inode(inode);
ac27a0ec 332 else
617ba13b
MC
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
8e8ad8a5 335 sb_end_intwrite(inode->i_sb);
0421a189 336 ext4_xattr_inode_array_free(ea_inode_array);
ac27a0ec
DK
337 return;
338no_delete:
0930fcc1 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
340}
341
a9e7f447
DM
342#ifdef CONFIG_QUOTA
343qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 344{
a9e7f447 345 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 346}
a9e7f447 347#endif
9d0be502 348
0637c6f4
TT
349/*
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
352 */
5f634d06
AK
353void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
12219aea
AK
355{
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 357 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
358
359 spin_lock(&ei->i_block_reservation_lock);
d8990240 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 361 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 363 "with only %d reserved data blocks",
0637c6f4
TT
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
368 }
12219aea 369
0637c6f4
TT
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
71d4f7d0 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 373
12219aea 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 375
72b8ab9d
ES
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
7b415bf6 378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 379 else {
5f634d06
AK
380 /*
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
72b8ab9d 383 * not re-claim the quota for fallocated blocks.
5f634d06 384 */
7b415bf6 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 386 }
d6014301
AK
387
388 /*
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
392 */
0637c6f4 393 if ((ei->i_reserved_data_blocks == 0) &&
82dd124c 394 !inode_is_open_for_write(inode))
d6014301 395 ext4_discard_preallocations(inode);
12219aea
AK
396}
397
e29136f8 398static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
399 unsigned int line,
400 struct ext4_map_blocks *map)
6fd058f7 401{
345c0dbf
TT
402 if (ext4_has_feature_journal(inode->i_sb) &&
403 (inode->i_ino ==
404 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405 return 0;
24676da4
TT
406 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407 map->m_len)) {
c398eda0 408 ext4_error_inode(inode, func, line, map->m_pblk,
bdbd6ce0 409 "lblock %lu mapped to illegal pblock %llu "
c398eda0 410 "(length %d)", (unsigned long) map->m_lblk,
bdbd6ce0 411 map->m_pblk, map->m_len);
6a797d27 412 return -EFSCORRUPTED;
6fd058f7
TT
413 }
414 return 0;
415}
416
53085fac
JK
417int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 ext4_lblk_t len)
419{
420 int ret;
421
592ddec7 422 if (IS_ENCRYPTED(inode))
a7550b30 423 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
424
425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426 if (ret > 0)
427 ret = 0;
428
429 return ret;
430}
431
e29136f8 432#define check_block_validity(inode, map) \
c398eda0 433 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 434
921f266b
DM
435#ifdef ES_AGGRESSIVE_TEST
436static void ext4_map_blocks_es_recheck(handle_t *handle,
437 struct inode *inode,
438 struct ext4_map_blocks *es_map,
439 struct ext4_map_blocks *map,
440 int flags)
441{
442 int retval;
443
444 map->m_flags = 0;
445 /*
446 * There is a race window that the result is not the same.
447 * e.g. xfstests #223 when dioread_nolock enables. The reason
448 * is that we lookup a block mapping in extent status tree with
449 * out taking i_data_sem. So at the time the unwritten extent
450 * could be converted.
451 */
2dcba478 452 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 retval = ext4_ext_map_blocks(handle, inode, map, flags &
455 EXT4_GET_BLOCKS_KEEP_SIZE);
456 } else {
457 retval = ext4_ind_map_blocks(handle, inode, map, flags &
458 EXT4_GET_BLOCKS_KEEP_SIZE);
459 }
2dcba478 460 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
bdafe42a 469 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477}
478#endif /* ES_AGGRESSIVE_TEST */
479
f5ab0d1f 480/*
e35fd660 481 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 482 * and returns if the blocks are already mapped.
f5ab0d1f 483 *
f5ab0d1f
MC
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
e35fd660
TT
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
490 * based files
491 *
facab4d9
JK
492 * On success, it returns the number of blocks being mapped or allocated. if
493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
497 * that case, @map is returned as unmapped but we still do fill map->m_len to
498 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
499 *
500 * It returns the error in case of allocation failure.
501 */
e35fd660
TT
502int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
0e855ac8 504{
d100eef2 505 struct extent_status es;
0e855ac8 506 int retval;
b8a86845 507 int ret = 0;
921f266b
DM
508#ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512#endif
f5ab0d1f 513
e35fd660
TT
514 map->m_flags = 0;
515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 (unsigned long) map->m_lblk);
d100eef2 518
e861b5e9
TT
519 /*
520 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 */
522 if (unlikely(map->m_len > INT_MAX))
523 map->m_len = INT_MAX;
524
4adb6ab3
KM
525 /* We can handle the block number less than EXT_MAX_BLOCKS */
526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 527 return -EFSCORRUPTED;
4adb6ab3 528
d100eef2 529 /* Lookup extent status tree firstly */
bb5835ed 530 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
d100eef2
ZL
531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 map->m_pblk = ext4_es_pblock(&es) +
533 map->m_lblk - es.es_lblk;
534 map->m_flags |= ext4_es_is_written(&es) ?
535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 retval = es.es_len - (map->m_lblk - es.es_lblk);
537 if (retval > map->m_len)
538 retval = map->m_len;
539 map->m_len = retval;
540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
541 map->m_pblk = 0;
542 retval = es.es_len - (map->m_lblk - es.es_lblk);
543 if (retval > map->m_len)
544 retval = map->m_len;
545 map->m_len = retval;
d100eef2
ZL
546 retval = 0;
547 } else {
1e83bc81 548 BUG();
d100eef2 549 }
921f266b
DM
550#ifdef ES_AGGRESSIVE_TEST
551 ext4_map_blocks_es_recheck(handle, inode, map,
552 &orig_map, flags);
553#endif
d100eef2
ZL
554 goto found;
555 }
556
4df3d265 557 /*
b920c755
TT
558 * Try to see if we can get the block without requesting a new
559 * file system block.
4df3d265 560 */
2dcba478 561 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
563 retval = ext4_ext_map_blocks(handle, inode, map, flags &
564 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 565 } else {
a4e5d88b
DM
566 retval = ext4_ind_map_blocks(handle, inode, map, flags &
567 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 568 }
f7fec032 569 if (retval > 0) {
3be78c73 570 unsigned int status;
f7fec032 571
44fb851d
ZL
572 if (unlikely(retval != map->m_len)) {
573 ext4_warning(inode->i_sb,
574 "ES len assertion failed for inode "
575 "%lu: retval %d != map->m_len %d",
576 inode->i_ino, retval, map->m_len);
577 WARN_ON(1);
921f266b 578 }
921f266b 579
f7fec032
ZL
580 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 583 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
584 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585 map->m_lblk + map->m_len - 1))
f7fec032
ZL
586 status |= EXTENT_STATUS_DELAYED;
587 ret = ext4_es_insert_extent(inode, map->m_lblk,
588 map->m_len, map->m_pblk, status);
589 if (ret < 0)
590 retval = ret;
591 }
2dcba478 592 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 593
d100eef2 594found:
e35fd660 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 596 ret = check_block_validity(inode, map);
6fd058f7
TT
597 if (ret != 0)
598 return ret;
599 }
600
f5ab0d1f 601 /* If it is only a block(s) look up */
c2177057 602 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
603 return retval;
604
605 /*
606 * Returns if the blocks have already allocated
607 *
608 * Note that if blocks have been preallocated
df3ab170 609 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
610 * with buffer head unmapped.
611 */
e35fd660 612 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
613 /*
614 * If we need to convert extent to unwritten
615 * we continue and do the actual work in
616 * ext4_ext_map_blocks()
617 */
618 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 return retval;
4df3d265 620
2a8964d6 621 /*
a25a4e1a
ZL
622 * Here we clear m_flags because after allocating an new extent,
623 * it will be set again.
2a8964d6 624 */
a25a4e1a 625 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 626
4df3d265 627 /*
556615dc 628 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 629 * will possibly result in updating i_data, so we take
d91bd2c1 630 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 631 * with create == 1 flag.
4df3d265 632 */
c8b459f4 633 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 634
4df3d265
AK
635 /*
636 * We need to check for EXT4 here because migrate
637 * could have changed the inode type in between
638 */
12e9b892 639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 640 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 641 } else {
e35fd660 642 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 643
e35fd660 644 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
645 /*
646 * We allocated new blocks which will result in
647 * i_data's format changing. Force the migrate
648 * to fail by clearing migrate flags
649 */
19f5fb7a 650 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 651 }
d2a17637 652
5f634d06
AK
653 /*
654 * Update reserved blocks/metadata blocks after successful
655 * block allocation which had been deferred till now. We don't
656 * support fallocate for non extent files. So we can update
657 * reserve space here.
658 */
659 if ((retval > 0) &&
1296cc85 660 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
661 ext4_da_update_reserve_space(inode, retval, 1);
662 }
2ac3b6e0 663
f7fec032 664 if (retval > 0) {
3be78c73 665 unsigned int status;
f7fec032 666
44fb851d
ZL
667 if (unlikely(retval != map->m_len)) {
668 ext4_warning(inode->i_sb,
669 "ES len assertion failed for inode "
670 "%lu: retval %d != map->m_len %d",
671 inode->i_ino, retval, map->m_len);
672 WARN_ON(1);
921f266b 673 }
921f266b 674
c86d8db3
JK
675 /*
676 * We have to zeroout blocks before inserting them into extent
677 * status tree. Otherwise someone could look them up there and
9b623df6
JK
678 * use them before they are really zeroed. We also have to
679 * unmap metadata before zeroing as otherwise writeback can
680 * overwrite zeros with stale data from block device.
c86d8db3
JK
681 */
682 if (flags & EXT4_GET_BLOCKS_ZERO &&
683 map->m_flags & EXT4_MAP_MAPPED &&
684 map->m_flags & EXT4_MAP_NEW) {
685 ret = ext4_issue_zeroout(inode, map->m_lblk,
686 map->m_pblk, map->m_len);
687 if (ret) {
688 retval = ret;
689 goto out_sem;
690 }
691 }
692
adb23551
ZL
693 /*
694 * If the extent has been zeroed out, we don't need to update
695 * extent status tree.
696 */
697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
bb5835ed 698 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
adb23551 699 if (ext4_es_is_written(&es))
c86d8db3 700 goto out_sem;
adb23551 701 }
f7fec032
ZL
702 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 705 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707 map->m_lblk + map->m_len - 1))
f7fec032
ZL
708 status |= EXTENT_STATUS_DELAYED;
709 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710 map->m_pblk, status);
c86d8db3 711 if (ret < 0) {
f7fec032 712 retval = ret;
c86d8db3
JK
713 goto out_sem;
714 }
5356f261
AK
715 }
716
c86d8db3 717out_sem:
4df3d265 718 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 719 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 720 ret = check_block_validity(inode, map);
6fd058f7
TT
721 if (ret != 0)
722 return ret;
06bd3c36
JK
723
724 /*
725 * Inodes with freshly allocated blocks where contents will be
726 * visible after transaction commit must be on transaction's
727 * ordered data list.
728 */
729 if (map->m_flags & EXT4_MAP_NEW &&
730 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731 !(flags & EXT4_GET_BLOCKS_ZERO) &&
02749a4c 732 !ext4_is_quota_file(inode) &&
06bd3c36 733 ext4_should_order_data(inode)) {
73131fbb
RZ
734 loff_t start_byte =
735 (loff_t)map->m_lblk << inode->i_blkbits;
736 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
737
ee0876bc 738 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
73131fbb
RZ
739 ret = ext4_jbd2_inode_add_wait(handle, inode,
740 start_byte, length);
ee0876bc 741 else
73131fbb
RZ
742 ret = ext4_jbd2_inode_add_write(handle, inode,
743 start_byte, length);
06bd3c36
JK
744 if (ret)
745 return ret;
746 }
6fd058f7 747 }
0e855ac8
AK
748 return retval;
749}
750
ed8ad838
JK
751/*
752 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
753 * we have to be careful as someone else may be manipulating b_state as well.
754 */
755static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
756{
757 unsigned long old_state;
758 unsigned long new_state;
759
760 flags &= EXT4_MAP_FLAGS;
761
762 /* Dummy buffer_head? Set non-atomically. */
763 if (!bh->b_page) {
764 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
765 return;
766 }
767 /*
768 * Someone else may be modifying b_state. Be careful! This is ugly but
769 * once we get rid of using bh as a container for mapping information
770 * to pass to / from get_block functions, this can go away.
771 */
772 do {
773 old_state = READ_ONCE(bh->b_state);
774 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
775 } while (unlikely(
776 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
777}
778
2ed88685
TT
779static int _ext4_get_block(struct inode *inode, sector_t iblock,
780 struct buffer_head *bh, int flags)
ac27a0ec 781{
2ed88685 782 struct ext4_map_blocks map;
efe70c29 783 int ret = 0;
ac27a0ec 784
46c7f254
TM
785 if (ext4_has_inline_data(inode))
786 return -ERANGE;
787
2ed88685
TT
788 map.m_lblk = iblock;
789 map.m_len = bh->b_size >> inode->i_blkbits;
790
efe70c29
JK
791 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
792 flags);
7fb5409d 793 if (ret > 0) {
2ed88685 794 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 795 ext4_update_bh_state(bh, map.m_flags);
2ed88685 796 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 797 ret = 0;
547edce3
RZ
798 } else if (ret == 0) {
799 /* hole case, need to fill in bh->b_size */
800 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
801 }
802 return ret;
803}
804
2ed88685
TT
805int ext4_get_block(struct inode *inode, sector_t iblock,
806 struct buffer_head *bh, int create)
807{
808 return _ext4_get_block(inode, iblock, bh,
809 create ? EXT4_GET_BLOCKS_CREATE : 0);
810}
811
705965bd
JK
812/*
813 * Get block function used when preparing for buffered write if we require
814 * creating an unwritten extent if blocks haven't been allocated. The extent
815 * will be converted to written after the IO is complete.
816 */
817int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
818 struct buffer_head *bh_result, int create)
819{
820 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
821 inode->i_ino, create);
822 return _ext4_get_block(inode, iblock, bh_result,
823 EXT4_GET_BLOCKS_IO_CREATE_EXT);
824}
825
efe70c29
JK
826/* Maximum number of blocks we map for direct IO at once. */
827#define DIO_MAX_BLOCKS 4096
828
e84dfbe2
JK
829/*
830 * Get blocks function for the cases that need to start a transaction -
831 * generally difference cases of direct IO and DAX IO. It also handles retries
832 * in case of ENOSPC.
833 */
834static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
835 struct buffer_head *bh_result, int flags)
efe70c29
JK
836{
837 int dio_credits;
e84dfbe2
JK
838 handle_t *handle;
839 int retries = 0;
840 int ret;
efe70c29
JK
841
842 /* Trim mapping request to maximum we can map at once for DIO */
843 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
844 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
845 dio_credits = ext4_chunk_trans_blocks(inode,
846 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
847retry:
848 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
849 if (IS_ERR(handle))
850 return PTR_ERR(handle);
851
852 ret = _ext4_get_block(inode, iblock, bh_result, flags);
853 ext4_journal_stop(handle);
854
855 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
856 goto retry;
857 return ret;
efe70c29
JK
858}
859
705965bd
JK
860/* Get block function for DIO reads and writes to inodes without extents */
861int ext4_dio_get_block(struct inode *inode, sector_t iblock,
862 struct buffer_head *bh, int create)
863{
efe70c29
JK
864 /* We don't expect handle for direct IO */
865 WARN_ON_ONCE(ext4_journal_current_handle());
866
e84dfbe2
JK
867 if (!create)
868 return _ext4_get_block(inode, iblock, bh, 0);
869 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
870}
871
872/*
109811c2 873 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
874 * blocks are not allocated yet. The extent will be converted to written
875 * after IO is complete.
876 */
109811c2
JK
877static int ext4_dio_get_block_unwritten_async(struct inode *inode,
878 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 879{
efe70c29
JK
880 int ret;
881
efe70c29
JK
882 /* We don't expect handle for direct IO */
883 WARN_ON_ONCE(ext4_journal_current_handle());
884
e84dfbe2
JK
885 ret = ext4_get_block_trans(inode, iblock, bh_result,
886 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 887
109811c2
JK
888 /*
889 * When doing DIO using unwritten extents, we need io_end to convert
890 * unwritten extents to written on IO completion. We allocate io_end
891 * once we spot unwritten extent and store it in b_private. Generic
892 * DIO code keeps b_private set and furthermore passes the value to
893 * our completion callback in 'private' argument.
894 */
895 if (!ret && buffer_unwritten(bh_result)) {
896 if (!bh_result->b_private) {
897 ext4_io_end_t *io_end;
898
899 io_end = ext4_init_io_end(inode, GFP_KERNEL);
900 if (!io_end)
901 return -ENOMEM;
902 bh_result->b_private = io_end;
903 ext4_set_io_unwritten_flag(inode, io_end);
904 }
efe70c29 905 set_buffer_defer_completion(bh_result);
efe70c29
JK
906 }
907
908 return ret;
705965bd
JK
909}
910
109811c2
JK
911/*
912 * Get block function for non-AIO DIO writes when we create unwritten extent if
913 * blocks are not allocated yet. The extent will be converted to written
1e21196c 914 * after IO is complete by ext4_direct_IO_write().
109811c2
JK
915 */
916static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
917 sector_t iblock, struct buffer_head *bh_result, int create)
918{
109811c2
JK
919 int ret;
920
921 /* We don't expect handle for direct IO */
922 WARN_ON_ONCE(ext4_journal_current_handle());
923
e84dfbe2
JK
924 ret = ext4_get_block_trans(inode, iblock, bh_result,
925 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
926
927 /*
928 * Mark inode as having pending DIO writes to unwritten extents.
1e21196c 929 * ext4_direct_IO_write() checks this flag and converts extents to
109811c2
JK
930 * written.
931 */
932 if (!ret && buffer_unwritten(bh_result))
933 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
934
935 return ret;
936}
937
705965bd
JK
938static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
939 struct buffer_head *bh_result, int create)
940{
941 int ret;
942
943 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
944 inode->i_ino, create);
efe70c29
JK
945 /* We don't expect handle for direct IO */
946 WARN_ON_ONCE(ext4_journal_current_handle());
947
705965bd
JK
948 ret = _ext4_get_block(inode, iblock, bh_result, 0);
949 /*
950 * Blocks should have been preallocated! ext4_file_write_iter() checks
951 * that.
952 */
efe70c29 953 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
954
955 return ret;
956}
957
958
ac27a0ec
DK
959/*
960 * `handle' can be NULL if create is zero
961 */
617ba13b 962struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 963 ext4_lblk_t block, int map_flags)
ac27a0ec 964{
2ed88685
TT
965 struct ext4_map_blocks map;
966 struct buffer_head *bh;
c5e298ae 967 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 968 int err;
ac27a0ec
DK
969
970 J_ASSERT(handle != NULL || create == 0);
971
2ed88685
TT
972 map.m_lblk = block;
973 map.m_len = 1;
c5e298ae 974 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 975
10560082
TT
976 if (err == 0)
977 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 978 if (err < 0)
10560082 979 return ERR_PTR(err);
2ed88685
TT
980
981 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
982 if (unlikely(!bh))
983 return ERR_PTR(-ENOMEM);
2ed88685
TT
984 if (map.m_flags & EXT4_MAP_NEW) {
985 J_ASSERT(create != 0);
986 J_ASSERT(handle != NULL);
ac27a0ec 987
2ed88685
TT
988 /*
989 * Now that we do not always journal data, we should
990 * keep in mind whether this should always journal the
991 * new buffer as metadata. For now, regular file
992 * writes use ext4_get_block instead, so it's not a
993 * problem.
994 */
995 lock_buffer(bh);
996 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
997 err = ext4_journal_get_create_access(handle, bh);
998 if (unlikely(err)) {
999 unlock_buffer(bh);
1000 goto errout;
1001 }
1002 if (!buffer_uptodate(bh)) {
2ed88685
TT
1003 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1004 set_buffer_uptodate(bh);
ac27a0ec 1005 }
2ed88685
TT
1006 unlock_buffer(bh);
1007 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1008 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
1009 if (unlikely(err))
1010 goto errout;
1011 } else
2ed88685 1012 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 1013 return bh;
10560082
TT
1014errout:
1015 brelse(bh);
1016 return ERR_PTR(err);
ac27a0ec
DK
1017}
1018
617ba13b 1019struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 1020 ext4_lblk_t block, int map_flags)
ac27a0ec 1021{
af5bc92d 1022 struct buffer_head *bh;
ac27a0ec 1023
c5e298ae 1024 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1025 if (IS_ERR(bh))
ac27a0ec 1026 return bh;
7963e5ac 1027 if (!bh || ext4_buffer_uptodate(bh))
ac27a0ec 1028 return bh;
dfec8a14 1029 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1030 wait_on_buffer(bh);
1031 if (buffer_uptodate(bh))
1032 return bh;
1033 put_bh(bh);
1c215028 1034 return ERR_PTR(-EIO);
ac27a0ec
DK
1035}
1036
9699d4f9
TE
1037/* Read a contiguous batch of blocks. */
1038int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039 bool wait, struct buffer_head **bhs)
1040{
1041 int i, err;
1042
1043 for (i = 0; i < bh_count; i++) {
1044 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045 if (IS_ERR(bhs[i])) {
1046 err = PTR_ERR(bhs[i]);
1047 bh_count = i;
1048 goto out_brelse;
1049 }
1050 }
1051
1052 for (i = 0; i < bh_count; i++)
1053 /* Note that NULL bhs[i] is valid because of holes. */
7963e5ac 1054 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
9699d4f9
TE
1055 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1056 &bhs[i]);
1057
1058 if (!wait)
1059 return 0;
1060
1061 for (i = 0; i < bh_count; i++)
1062 if (bhs[i])
1063 wait_on_buffer(bhs[i]);
1064
1065 for (i = 0; i < bh_count; i++) {
1066 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1067 err = -EIO;
1068 goto out_brelse;
1069 }
1070 }
1071 return 0;
1072
1073out_brelse:
1074 for (i = 0; i < bh_count; i++) {
1075 brelse(bhs[i]);
1076 bhs[i] = NULL;
1077 }
1078 return err;
1079}
1080
f19d5870
TM
1081int ext4_walk_page_buffers(handle_t *handle,
1082 struct buffer_head *head,
1083 unsigned from,
1084 unsigned to,
1085 int *partial,
1086 int (*fn)(handle_t *handle,
1087 struct buffer_head *bh))
ac27a0ec
DK
1088{
1089 struct buffer_head *bh;
1090 unsigned block_start, block_end;
1091 unsigned blocksize = head->b_size;
1092 int err, ret = 0;
1093 struct buffer_head *next;
1094
af5bc92d
TT
1095 for (bh = head, block_start = 0;
1096 ret == 0 && (bh != head || !block_start);
de9a55b8 1097 block_start = block_end, bh = next) {
ac27a0ec
DK
1098 next = bh->b_this_page;
1099 block_end = block_start + blocksize;
1100 if (block_end <= from || block_start >= to) {
1101 if (partial && !buffer_uptodate(bh))
1102 *partial = 1;
1103 continue;
1104 }
1105 err = (*fn)(handle, bh);
1106 if (!ret)
1107 ret = err;
1108 }
1109 return ret;
1110}
1111
1112/*
1113 * To preserve ordering, it is essential that the hole instantiation and
1114 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1115 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1116 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1117 * prepare_write() is the right place.
1118 *
36ade451
JK
1119 * Also, this function can nest inside ext4_writepage(). In that case, we
1120 * *know* that ext4_writepage() has generated enough buffer credits to do the
1121 * whole page. So we won't block on the journal in that case, which is good,
1122 * because the caller may be PF_MEMALLOC.
ac27a0ec 1123 *
617ba13b 1124 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1125 * quota file writes. If we were to commit the transaction while thus
1126 * reentered, there can be a deadlock - we would be holding a quota
1127 * lock, and the commit would never complete if another thread had a
1128 * transaction open and was blocking on the quota lock - a ranking
1129 * violation.
1130 *
dab291af 1131 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1132 * will _not_ run commit under these circumstances because handle->h_ref
1133 * is elevated. We'll still have enough credits for the tiny quotafile
1134 * write.
1135 */
f19d5870
TM
1136int do_journal_get_write_access(handle_t *handle,
1137 struct buffer_head *bh)
ac27a0ec 1138{
56d35a4c
JK
1139 int dirty = buffer_dirty(bh);
1140 int ret;
1141
ac27a0ec
DK
1142 if (!buffer_mapped(bh) || buffer_freed(bh))
1143 return 0;
56d35a4c 1144 /*
ebdec241 1145 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1146 * the dirty bit as jbd2_journal_get_write_access() could complain
1147 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1148 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1149 * the bit before releasing a page lock and thus writeback cannot
1150 * ever write the buffer.
1151 */
1152 if (dirty)
1153 clear_buffer_dirty(bh);
5d601255 1154 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1155 ret = ext4_journal_get_write_access(handle, bh);
1156 if (!ret && dirty)
1157 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1158 return ret;
ac27a0ec
DK
1159}
1160
643fa961 1161#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
1162static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1163 get_block_t *get_block)
1164{
09cbfeaf 1165 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1166 unsigned to = from + len;
1167 struct inode *inode = page->mapping->host;
1168 unsigned block_start, block_end;
1169 sector_t block;
1170 int err = 0;
1171 unsigned blocksize = inode->i_sb->s_blocksize;
1172 unsigned bbits;
0b578f35
CR
1173 struct buffer_head *bh, *head, *wait[2];
1174 int nr_wait = 0;
1175 int i;
2058f83a
MH
1176
1177 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1178 BUG_ON(from > PAGE_SIZE);
1179 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1180 BUG_ON(from > to);
1181
1182 if (!page_has_buffers(page))
1183 create_empty_buffers(page, blocksize, 0);
1184 head = page_buffers(page);
1185 bbits = ilog2(blocksize);
09cbfeaf 1186 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1187
1188 for (bh = head, block_start = 0; bh != head || !block_start;
1189 block++, block_start = block_end, bh = bh->b_this_page) {
1190 block_end = block_start + blocksize;
1191 if (block_end <= from || block_start >= to) {
1192 if (PageUptodate(page)) {
1193 if (!buffer_uptodate(bh))
1194 set_buffer_uptodate(bh);
1195 }
1196 continue;
1197 }
1198 if (buffer_new(bh))
1199 clear_buffer_new(bh);
1200 if (!buffer_mapped(bh)) {
1201 WARN_ON(bh->b_size != blocksize);
1202 err = get_block(inode, block, bh, 1);
1203 if (err)
1204 break;
1205 if (buffer_new(bh)) {
2058f83a
MH
1206 if (PageUptodate(page)) {
1207 clear_buffer_new(bh);
1208 set_buffer_uptodate(bh);
1209 mark_buffer_dirty(bh);
1210 continue;
1211 }
1212 if (block_end > to || block_start < from)
1213 zero_user_segments(page, to, block_end,
1214 block_start, from);
1215 continue;
1216 }
1217 }
1218 if (PageUptodate(page)) {
1219 if (!buffer_uptodate(bh))
1220 set_buffer_uptodate(bh);
1221 continue;
1222 }
1223 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1224 !buffer_unwritten(bh) &&
1225 (block_start < from || block_end > to)) {
dfec8a14 1226 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
0b578f35 1227 wait[nr_wait++] = bh;
2058f83a
MH
1228 }
1229 }
1230 /*
1231 * If we issued read requests, let them complete.
1232 */
0b578f35
CR
1233 for (i = 0; i < nr_wait; i++) {
1234 wait_on_buffer(wait[i]);
1235 if (!buffer_uptodate(wait[i]))
2058f83a
MH
1236 err = -EIO;
1237 }
7e0785fc 1238 if (unlikely(err)) {
2058f83a 1239 page_zero_new_buffers(page, from, to);
0b578f35
CR
1240 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1241 for (i = 0; i < nr_wait; i++) {
1242 int err2;
1243
1244 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1245 bh_offset(wait[i]));
1246 if (err2) {
1247 clear_buffer_uptodate(wait[i]);
1248 err = err2;
1249 }
1250 }
7e0785fc
CR
1251 }
1252
2058f83a
MH
1253 return err;
1254}
1255#endif
1256
bfc1af65 1257static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1258 loff_t pos, unsigned len, unsigned flags,
1259 struct page **pagep, void **fsdata)
ac27a0ec 1260{
af5bc92d 1261 struct inode *inode = mapping->host;
1938a150 1262 int ret, needed_blocks;
ac27a0ec
DK
1263 handle_t *handle;
1264 int retries = 0;
af5bc92d 1265 struct page *page;
de9a55b8 1266 pgoff_t index;
af5bc92d 1267 unsigned from, to;
bfc1af65 1268
0db1ff22
TT
1269 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1270 return -EIO;
1271
9bffad1e 1272 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1273 /*
1274 * Reserve one block more for addition to orphan list in case
1275 * we allocate blocks but write fails for some reason
1276 */
1277 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1278 index = pos >> PAGE_SHIFT;
1279 from = pos & (PAGE_SIZE - 1);
af5bc92d 1280 to = from + len;
ac27a0ec 1281
f19d5870
TM
1282 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1283 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1284 flags, pagep);
1285 if (ret < 0)
47564bfb
TT
1286 return ret;
1287 if (ret == 1)
1288 return 0;
f19d5870
TM
1289 }
1290
47564bfb
TT
1291 /*
1292 * grab_cache_page_write_begin() can take a long time if the
1293 * system is thrashing due to memory pressure, or if the page
1294 * is being written back. So grab it first before we start
1295 * the transaction handle. This also allows us to allocate
1296 * the page (if needed) without using GFP_NOFS.
1297 */
1298retry_grab:
1299 page = grab_cache_page_write_begin(mapping, index, flags);
1300 if (!page)
1301 return -ENOMEM;
1302 unlock_page(page);
1303
1304retry_journal:
9924a92a 1305 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1306 if (IS_ERR(handle)) {
09cbfeaf 1307 put_page(page);
47564bfb 1308 return PTR_ERR(handle);
7479d2b9 1309 }
ac27a0ec 1310
47564bfb
TT
1311 lock_page(page);
1312 if (page->mapping != mapping) {
1313 /* The page got truncated from under us */
1314 unlock_page(page);
09cbfeaf 1315 put_page(page);
cf108bca 1316 ext4_journal_stop(handle);
47564bfb 1317 goto retry_grab;
cf108bca 1318 }
7afe5aa5
DM
1319 /* In case writeback began while the page was unlocked */
1320 wait_for_stable_page(page);
cf108bca 1321
643fa961 1322#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
1323 if (ext4_should_dioread_nolock(inode))
1324 ret = ext4_block_write_begin(page, pos, len,
705965bd 1325 ext4_get_block_unwritten);
2058f83a
MH
1326 else
1327 ret = ext4_block_write_begin(page, pos, len,
1328 ext4_get_block);
1329#else
744692dc 1330 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1331 ret = __block_write_begin(page, pos, len,
1332 ext4_get_block_unwritten);
744692dc 1333 else
6e1db88d 1334 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1335#endif
bfc1af65 1336 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1337 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1338 from, to, NULL,
1339 do_journal_get_write_access);
ac27a0ec 1340 }
bfc1af65
NP
1341
1342 if (ret) {
c93d8f88
EB
1343 bool extended = (pos + len > inode->i_size) &&
1344 !ext4_verity_in_progress(inode);
1345
af5bc92d 1346 unlock_page(page);
ae4d5372 1347 /*
6e1db88d 1348 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1349 * outside i_size. Trim these off again. Don't need
1350 * i_size_read because we hold i_mutex.
1938a150
AK
1351 *
1352 * Add inode to orphan list in case we crash before
1353 * truncate finishes
ae4d5372 1354 */
c93d8f88 1355 if (extended && ext4_can_truncate(inode))
1938a150
AK
1356 ext4_orphan_add(handle, inode);
1357
1358 ext4_journal_stop(handle);
c93d8f88 1359 if (extended) {
b9a4207d 1360 ext4_truncate_failed_write(inode);
de9a55b8 1361 /*
ffacfa7a 1362 * If truncate failed early the inode might
1938a150
AK
1363 * still be on the orphan list; we need to
1364 * make sure the inode is removed from the
1365 * orphan list in that case.
1366 */
1367 if (inode->i_nlink)
1368 ext4_orphan_del(NULL, inode);
1369 }
bfc1af65 1370
47564bfb
TT
1371 if (ret == -ENOSPC &&
1372 ext4_should_retry_alloc(inode->i_sb, &retries))
1373 goto retry_journal;
09cbfeaf 1374 put_page(page);
47564bfb
TT
1375 return ret;
1376 }
1377 *pagep = page;
ac27a0ec
DK
1378 return ret;
1379}
1380
bfc1af65
NP
1381/* For write_end() in data=journal mode */
1382static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1383{
13fca323 1384 int ret;
ac27a0ec
DK
1385 if (!buffer_mapped(bh) || buffer_freed(bh))
1386 return 0;
1387 set_buffer_uptodate(bh);
13fca323
TT
1388 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1389 clear_buffer_meta(bh);
1390 clear_buffer_prio(bh);
1391 return ret;
ac27a0ec
DK
1392}
1393
eed4333f
ZL
1394/*
1395 * We need to pick up the new inode size which generic_commit_write gave us
1396 * `file' can be NULL - eg, when called from page_symlink().
1397 *
1398 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1399 * buffers are managed internally.
1400 */
1401static int ext4_write_end(struct file *file,
1402 struct address_space *mapping,
1403 loff_t pos, unsigned len, unsigned copied,
1404 struct page *page, void *fsdata)
f8514083 1405{
f8514083 1406 handle_t *handle = ext4_journal_current_handle();
eed4333f 1407 struct inode *inode = mapping->host;
0572639f 1408 loff_t old_size = inode->i_size;
eed4333f
ZL
1409 int ret = 0, ret2;
1410 int i_size_changed = 0;
362eca70 1411 int inline_data = ext4_has_inline_data(inode);
c93d8f88 1412 bool verity = ext4_verity_in_progress(inode);
eed4333f
ZL
1413
1414 trace_ext4_write_end(inode, pos, len, copied);
362eca70 1415 if (inline_data) {
42c832de
TT
1416 ret = ext4_write_inline_data_end(inode, pos, len,
1417 copied, page);
eb5efbcb
TT
1418 if (ret < 0) {
1419 unlock_page(page);
1420 put_page(page);
42c832de 1421 goto errout;
eb5efbcb 1422 }
42c832de
TT
1423 copied = ret;
1424 } else
f19d5870
TM
1425 copied = block_write_end(file, mapping, pos,
1426 len, copied, page, fsdata);
f8514083 1427 /*
4631dbf6 1428 * it's important to update i_size while still holding page lock:
f8514083 1429 * page writeout could otherwise come in and zero beyond i_size.
c93d8f88
EB
1430 *
1431 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1432 * blocks are being written past EOF, so skip the i_size update.
f8514083 1433 */
c93d8f88
EB
1434 if (!verity)
1435 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1436 unlock_page(page);
09cbfeaf 1437 put_page(page);
f8514083 1438
c93d8f88 1439 if (old_size < pos && !verity)
0572639f 1440 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1441 /*
1442 * Don't mark the inode dirty under page lock. First, it unnecessarily
1443 * makes the holding time of page lock longer. Second, it forces lock
1444 * ordering of page lock and transaction start for journaling
1445 * filesystems.
1446 */
362eca70 1447 if (i_size_changed || inline_data)
f8514083
AK
1448 ext4_mark_inode_dirty(handle, inode);
1449
c93d8f88 1450 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
f8514083
AK
1451 /* if we have allocated more blocks and copied
1452 * less. We will have blocks allocated outside
1453 * inode->i_size. So truncate them
1454 */
1455 ext4_orphan_add(handle, inode);
74d553aa 1456errout:
617ba13b 1457 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1458 if (!ret)
1459 ret = ret2;
bfc1af65 1460
c93d8f88 1461 if (pos + len > inode->i_size && !verity) {
b9a4207d 1462 ext4_truncate_failed_write(inode);
de9a55b8 1463 /*
ffacfa7a 1464 * If truncate failed early the inode might still be
f8514083
AK
1465 * on the orphan list; we need to make sure the inode
1466 * is removed from the orphan list in that case.
1467 */
1468 if (inode->i_nlink)
1469 ext4_orphan_del(NULL, inode);
1470 }
1471
bfc1af65 1472 return ret ? ret : copied;
ac27a0ec
DK
1473}
1474
b90197b6
TT
1475/*
1476 * This is a private version of page_zero_new_buffers() which doesn't
1477 * set the buffer to be dirty, since in data=journalled mode we need
1478 * to call ext4_handle_dirty_metadata() instead.
1479 */
3b136499
JK
1480static void ext4_journalled_zero_new_buffers(handle_t *handle,
1481 struct page *page,
1482 unsigned from, unsigned to)
b90197b6
TT
1483{
1484 unsigned int block_start = 0, block_end;
1485 struct buffer_head *head, *bh;
1486
1487 bh = head = page_buffers(page);
1488 do {
1489 block_end = block_start + bh->b_size;
1490 if (buffer_new(bh)) {
1491 if (block_end > from && block_start < to) {
1492 if (!PageUptodate(page)) {
1493 unsigned start, size;
1494
1495 start = max(from, block_start);
1496 size = min(to, block_end) - start;
1497
1498 zero_user(page, start, size);
3b136499 1499 write_end_fn(handle, bh);
b90197b6
TT
1500 }
1501 clear_buffer_new(bh);
1502 }
1503 }
1504 block_start = block_end;
1505 bh = bh->b_this_page;
1506 } while (bh != head);
1507}
1508
bfc1af65 1509static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1510 struct address_space *mapping,
1511 loff_t pos, unsigned len, unsigned copied,
1512 struct page *page, void *fsdata)
ac27a0ec 1513{
617ba13b 1514 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1515 struct inode *inode = mapping->host;
0572639f 1516 loff_t old_size = inode->i_size;
ac27a0ec
DK
1517 int ret = 0, ret2;
1518 int partial = 0;
bfc1af65 1519 unsigned from, to;
4631dbf6 1520 int size_changed = 0;
362eca70 1521 int inline_data = ext4_has_inline_data(inode);
c93d8f88 1522 bool verity = ext4_verity_in_progress(inode);
ac27a0ec 1523
9bffad1e 1524 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1525 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1526 to = from + len;
1527
441c8508
CW
1528 BUG_ON(!ext4_handle_valid(handle));
1529
362eca70 1530 if (inline_data) {
eb5efbcb
TT
1531 ret = ext4_write_inline_data_end(inode, pos, len,
1532 copied, page);
1533 if (ret < 0) {
1534 unlock_page(page);
1535 put_page(page);
1536 goto errout;
1537 }
1538 copied = ret;
1539 } else if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499
JK
1540 copied = 0;
1541 ext4_journalled_zero_new_buffers(handle, page, from, to);
1542 } else {
1543 if (unlikely(copied < len))
1544 ext4_journalled_zero_new_buffers(handle, page,
1545 from + copied, to);
3fdcfb66 1546 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
3b136499
JK
1547 from + copied, &partial,
1548 write_end_fn);
3fdcfb66
TM
1549 if (!partial)
1550 SetPageUptodate(page);
1551 }
c93d8f88
EB
1552 if (!verity)
1553 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1554 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1555 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1556 unlock_page(page);
09cbfeaf 1557 put_page(page);
4631dbf6 1558
c93d8f88 1559 if (old_size < pos && !verity)
0572639f
XW
1560 pagecache_isize_extended(inode, old_size, pos);
1561
362eca70 1562 if (size_changed || inline_data) {
617ba13b 1563 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1564 if (!ret)
1565 ret = ret2;
1566 }
bfc1af65 1567
c93d8f88 1568 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
f8514083
AK
1569 /* if we have allocated more blocks and copied
1570 * less. We will have blocks allocated outside
1571 * inode->i_size. So truncate them
1572 */
1573 ext4_orphan_add(handle, inode);
1574
eb5efbcb 1575errout:
617ba13b 1576 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1577 if (!ret)
1578 ret = ret2;
c93d8f88 1579 if (pos + len > inode->i_size && !verity) {
b9a4207d 1580 ext4_truncate_failed_write(inode);
de9a55b8 1581 /*
ffacfa7a 1582 * If truncate failed early the inode might still be
f8514083
AK
1583 * on the orphan list; we need to make sure the inode
1584 * is removed from the orphan list in that case.
1585 */
1586 if (inode->i_nlink)
1587 ext4_orphan_del(NULL, inode);
1588 }
bfc1af65
NP
1589
1590 return ret ? ret : copied;
ac27a0ec 1591}
d2a17637 1592
9d0be502 1593/*
c27e43a1 1594 * Reserve space for a single cluster
9d0be502 1595 */
c27e43a1 1596static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1597{
60e58e0f 1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1599 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1600 int ret;
03179fe9
TT
1601
1602 /*
1603 * We will charge metadata quota at writeout time; this saves
1604 * us from metadata over-estimation, though we may go over by
1605 * a small amount in the end. Here we just reserve for data.
1606 */
1607 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1608 if (ret)
1609 return ret;
d2a17637 1610
0637c6f4 1611 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1612 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1613 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1614 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1615 return -ENOSPC;
1616 }
9d0be502 1617 ei->i_reserved_data_blocks++;
c27e43a1 1618 trace_ext4_da_reserve_space(inode);
0637c6f4 1619 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1620
d2a17637
MC
1621 return 0; /* success */
1622}
1623
f456767d 1624void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1625{
1626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1627 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1628
cd213226
MC
1629 if (!to_free)
1630 return; /* Nothing to release, exit */
1631
d2a17637 1632 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1633
5a58ec87 1634 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1635 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1636 /*
0637c6f4
TT
1637 * if there aren't enough reserved blocks, then the
1638 * counter is messed up somewhere. Since this
1639 * function is called from invalidate page, it's
1640 * harmless to return without any action.
cd213226 1641 */
8de5c325 1642 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1643 "ino %lu, to_free %d with only %d reserved "
1084f252 1644 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1645 ei->i_reserved_data_blocks);
1646 WARN_ON(1);
1647 to_free = ei->i_reserved_data_blocks;
cd213226 1648 }
0637c6f4 1649 ei->i_reserved_data_blocks -= to_free;
cd213226 1650
72b8ab9d 1651 /* update fs dirty data blocks counter */
57042651 1652 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1653
d2a17637 1654 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1655
7b415bf6 1656 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1657}
1658
64769240
AT
1659/*
1660 * Delayed allocation stuff
1661 */
1662
4e7ea81d
JK
1663struct mpage_da_data {
1664 struct inode *inode;
1665 struct writeback_control *wbc;
6b523df4 1666
4e7ea81d
JK
1667 pgoff_t first_page; /* The first page to write */
1668 pgoff_t next_page; /* Current page to examine */
1669 pgoff_t last_page; /* Last page to examine */
791b7f08 1670 /*
4e7ea81d
JK
1671 * Extent to map - this can be after first_page because that can be
1672 * fully mapped. We somewhat abuse m_flags to store whether the extent
1673 * is delalloc or unwritten.
791b7f08 1674 */
4e7ea81d
JK
1675 struct ext4_map_blocks map;
1676 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1677 unsigned int do_map:1;
4e7ea81d 1678};
64769240 1679
4e7ea81d
JK
1680static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1681 bool invalidate)
c4a0c46e
AK
1682{
1683 int nr_pages, i;
1684 pgoff_t index, end;
1685 struct pagevec pvec;
1686 struct inode *inode = mpd->inode;
1687 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1688
1689 /* This is necessary when next_page == 0. */
1690 if (mpd->first_page >= mpd->next_page)
1691 return;
c4a0c46e 1692
c7f5938a
CW
1693 index = mpd->first_page;
1694 end = mpd->next_page - 1;
4e7ea81d
JK
1695 if (invalidate) {
1696 ext4_lblk_t start, last;
09cbfeaf
KS
1697 start = index << (PAGE_SHIFT - inode->i_blkbits);
1698 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1699 ext4_es_remove_extent(inode, start, last - start + 1);
1700 }
51865fda 1701
86679820 1702 pagevec_init(&pvec);
c4a0c46e 1703 while (index <= end) {
397162ff 1704 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
c4a0c46e
AK
1705 if (nr_pages == 0)
1706 break;
1707 for (i = 0; i < nr_pages; i++) {
1708 struct page *page = pvec.pages[i];
2b85a617 1709
c4a0c46e
AK
1710 BUG_ON(!PageLocked(page));
1711 BUG_ON(PageWriteback(page));
4e7ea81d 1712 if (invalidate) {
4e800c03 1713 if (page_mapped(page))
1714 clear_page_dirty_for_io(page);
09cbfeaf 1715 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1716 ClearPageUptodate(page);
1717 }
c4a0c46e
AK
1718 unlock_page(page);
1719 }
9b1d0998 1720 pagevec_release(&pvec);
c4a0c46e 1721 }
c4a0c46e
AK
1722}
1723
df22291f
AK
1724static void ext4_print_free_blocks(struct inode *inode)
1725{
1726 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1727 struct super_block *sb = inode->i_sb;
f78ee70d 1728 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1729
1730 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1731 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1732 ext4_count_free_clusters(sb)));
92b97816
TT
1733 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1734 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1735 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1736 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1737 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1738 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1739 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1740 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1741 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1742 ei->i_reserved_data_blocks);
df22291f
AK
1743 return;
1744}
1745
c364b22c 1746static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1747{
c364b22c 1748 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1749}
1750
0b02f4c0
EW
1751/*
1752 * ext4_insert_delayed_block - adds a delayed block to the extents status
1753 * tree, incrementing the reserved cluster/block
1754 * count or making a pending reservation
1755 * where needed
1756 *
1757 * @inode - file containing the newly added block
1758 * @lblk - logical block to be added
1759 *
1760 * Returns 0 on success, negative error code on failure.
1761 */
1762static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1763{
1764 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1765 int ret;
1766 bool allocated = false;
1767
1768 /*
1769 * If the cluster containing lblk is shared with a delayed,
1770 * written, or unwritten extent in a bigalloc file system, it's
1771 * already been accounted for and does not need to be reserved.
1772 * A pending reservation must be made for the cluster if it's
1773 * shared with a written or unwritten extent and doesn't already
1774 * have one. Written and unwritten extents can be purged from the
1775 * extents status tree if the system is under memory pressure, so
1776 * it's necessary to examine the extent tree if a search of the
1777 * extents status tree doesn't get a match.
1778 */
1779 if (sbi->s_cluster_ratio == 1) {
1780 ret = ext4_da_reserve_space(inode);
1781 if (ret != 0) /* ENOSPC */
1782 goto errout;
1783 } else { /* bigalloc */
1784 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1785 if (!ext4_es_scan_clu(inode,
1786 &ext4_es_is_mapped, lblk)) {
1787 ret = ext4_clu_mapped(inode,
1788 EXT4_B2C(sbi, lblk));
1789 if (ret < 0)
1790 goto errout;
1791 if (ret == 0) {
1792 ret = ext4_da_reserve_space(inode);
1793 if (ret != 0) /* ENOSPC */
1794 goto errout;
1795 } else {
1796 allocated = true;
1797 }
1798 } else {
1799 allocated = true;
1800 }
1801 }
1802 }
1803
1804 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1805
1806errout:
1807 return ret;
1808}
1809
5356f261
AK
1810/*
1811 * This function is grabs code from the very beginning of
1812 * ext4_map_blocks, but assumes that the caller is from delayed write
1813 * time. This function looks up the requested blocks and sets the
1814 * buffer delay bit under the protection of i_data_sem.
1815 */
1816static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1817 struct ext4_map_blocks *map,
1818 struct buffer_head *bh)
1819{
d100eef2 1820 struct extent_status es;
5356f261
AK
1821 int retval;
1822 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1823#ifdef ES_AGGRESSIVE_TEST
1824 struct ext4_map_blocks orig_map;
1825
1826 memcpy(&orig_map, map, sizeof(*map));
1827#endif
5356f261
AK
1828
1829 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1830 invalid_block = ~0;
1831
1832 map->m_flags = 0;
1833 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1834 "logical block %lu\n", inode->i_ino, map->m_len,
1835 (unsigned long) map->m_lblk);
d100eef2
ZL
1836
1837 /* Lookup extent status tree firstly */
bb5835ed 1838 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
d100eef2
ZL
1839 if (ext4_es_is_hole(&es)) {
1840 retval = 0;
c8b459f4 1841 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1842 goto add_delayed;
1843 }
1844
1845 /*
1846 * Delayed extent could be allocated by fallocate.
1847 * So we need to check it.
1848 */
1849 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1850 map_bh(bh, inode->i_sb, invalid_block);
1851 set_buffer_new(bh);
1852 set_buffer_delay(bh);
1853 return 0;
1854 }
1855
1856 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1857 retval = es.es_len - (iblock - es.es_lblk);
1858 if (retval > map->m_len)
1859 retval = map->m_len;
1860 map->m_len = retval;
1861 if (ext4_es_is_written(&es))
1862 map->m_flags |= EXT4_MAP_MAPPED;
1863 else if (ext4_es_is_unwritten(&es))
1864 map->m_flags |= EXT4_MAP_UNWRITTEN;
1865 else
1e83bc81 1866 BUG();
d100eef2 1867
921f266b
DM
1868#ifdef ES_AGGRESSIVE_TEST
1869 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1870#endif
d100eef2
ZL
1871 return retval;
1872 }
1873
5356f261
AK
1874 /*
1875 * Try to see if we can get the block without requesting a new
1876 * file system block.
1877 */
c8b459f4 1878 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1879 if (ext4_has_inline_data(inode))
9c3569b5 1880 retval = 0;
cbd7584e 1881 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1882 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1883 else
2f8e0a7c 1884 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1885
d100eef2 1886add_delayed:
5356f261 1887 if (retval == 0) {
f7fec032 1888 int ret;
ad431025 1889
5356f261
AK
1890 /*
1891 * XXX: __block_prepare_write() unmaps passed block,
1892 * is it OK?
1893 */
5356f261 1894
0b02f4c0
EW
1895 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1896 if (ret != 0) {
f7fec032 1897 retval = ret;
51865fda 1898 goto out_unlock;
f7fec032 1899 }
51865fda 1900
5356f261
AK
1901 map_bh(bh, inode->i_sb, invalid_block);
1902 set_buffer_new(bh);
1903 set_buffer_delay(bh);
f7fec032
ZL
1904 } else if (retval > 0) {
1905 int ret;
3be78c73 1906 unsigned int status;
f7fec032 1907
44fb851d
ZL
1908 if (unlikely(retval != map->m_len)) {
1909 ext4_warning(inode->i_sb,
1910 "ES len assertion failed for inode "
1911 "%lu: retval %d != map->m_len %d",
1912 inode->i_ino, retval, map->m_len);
1913 WARN_ON(1);
921f266b 1914 }
921f266b 1915
f7fec032
ZL
1916 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1917 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1918 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1919 map->m_pblk, status);
1920 if (ret != 0)
1921 retval = ret;
5356f261
AK
1922 }
1923
1924out_unlock:
1925 up_read((&EXT4_I(inode)->i_data_sem));
1926
1927 return retval;
1928}
1929
64769240 1930/*
d91bd2c1 1931 * This is a special get_block_t callback which is used by
b920c755
TT
1932 * ext4_da_write_begin(). It will either return mapped block or
1933 * reserve space for a single block.
29fa89d0
AK
1934 *
1935 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1936 * We also have b_blocknr = -1 and b_bdev initialized properly
1937 *
1938 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1939 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1940 * initialized properly.
64769240 1941 */
9c3569b5
TM
1942int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1943 struct buffer_head *bh, int create)
64769240 1944{
2ed88685 1945 struct ext4_map_blocks map;
64769240
AT
1946 int ret = 0;
1947
1948 BUG_ON(create == 0);
2ed88685
TT
1949 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1950
1951 map.m_lblk = iblock;
1952 map.m_len = 1;
64769240
AT
1953
1954 /*
1955 * first, we need to know whether the block is allocated already
1956 * preallocated blocks are unmapped but should treated
1957 * the same as allocated blocks.
1958 */
5356f261
AK
1959 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1960 if (ret <= 0)
2ed88685 1961 return ret;
64769240 1962
2ed88685 1963 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1964 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1965
1966 if (buffer_unwritten(bh)) {
1967 /* A delayed write to unwritten bh should be marked
1968 * new and mapped. Mapped ensures that we don't do
1969 * get_block multiple times when we write to the same
1970 * offset and new ensures that we do proper zero out
1971 * for partial write.
1972 */
1973 set_buffer_new(bh);
c8205636 1974 set_buffer_mapped(bh);
2ed88685
TT
1975 }
1976 return 0;
64769240 1977}
61628a3f 1978
62e086be
AK
1979static int bget_one(handle_t *handle, struct buffer_head *bh)
1980{
1981 get_bh(bh);
1982 return 0;
1983}
1984
1985static int bput_one(handle_t *handle, struct buffer_head *bh)
1986{
1987 put_bh(bh);
1988 return 0;
1989}
1990
1991static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1992 unsigned int len)
1993{
1994 struct address_space *mapping = page->mapping;
1995 struct inode *inode = mapping->host;
3fdcfb66 1996 struct buffer_head *page_bufs = NULL;
62e086be 1997 handle_t *handle = NULL;
3fdcfb66
TM
1998 int ret = 0, err = 0;
1999 int inline_data = ext4_has_inline_data(inode);
2000 struct buffer_head *inode_bh = NULL;
62e086be 2001
cb20d518 2002 ClearPageChecked(page);
3fdcfb66
TM
2003
2004 if (inline_data) {
2005 BUG_ON(page->index != 0);
2006 BUG_ON(len > ext4_get_max_inline_size(inode));
2007 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2008 if (inode_bh == NULL)
2009 goto out;
2010 } else {
2011 page_bufs = page_buffers(page);
2012 if (!page_bufs) {
2013 BUG();
2014 goto out;
2015 }
2016 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2017 NULL, bget_one);
2018 }
bdf96838
TT
2019 /*
2020 * We need to release the page lock before we start the
2021 * journal, so grab a reference so the page won't disappear
2022 * out from under us.
2023 */
2024 get_page(page);
62e086be
AK
2025 unlock_page(page);
2026
9924a92a
TT
2027 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2028 ext4_writepage_trans_blocks(inode));
62e086be
AK
2029 if (IS_ERR(handle)) {
2030 ret = PTR_ERR(handle);
bdf96838
TT
2031 put_page(page);
2032 goto out_no_pagelock;
62e086be 2033 }
441c8508
CW
2034 BUG_ON(!ext4_handle_valid(handle));
2035
bdf96838
TT
2036 lock_page(page);
2037 put_page(page);
2038 if (page->mapping != mapping) {
2039 /* The page got truncated from under us */
2040 ext4_journal_stop(handle);
2041 ret = 0;
2042 goto out;
2043 }
2044
3fdcfb66 2045 if (inline_data) {
362eca70 2046 ret = ext4_mark_inode_dirty(handle, inode);
3fdcfb66
TM
2047 } else {
2048 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2049 do_journal_get_write_access);
2050
2051 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2052 write_end_fn);
2053 }
62e086be
AK
2054 if (ret == 0)
2055 ret = err;
2d859db3 2056 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2057 err = ext4_journal_stop(handle);
2058 if (!ret)
2059 ret = err;
2060
3fdcfb66 2061 if (!ext4_has_inline_data(inode))
8c9367fd 2062 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 2063 NULL, bput_one);
19f5fb7a 2064 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2065out:
bdf96838
TT
2066 unlock_page(page);
2067out_no_pagelock:
3fdcfb66 2068 brelse(inode_bh);
62e086be
AK
2069 return ret;
2070}
2071
61628a3f 2072/*
43ce1d23
AK
2073 * Note that we don't need to start a transaction unless we're journaling data
2074 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2075 * need to file the inode to the transaction's list in ordered mode because if
2076 * we are writing back data added by write(), the inode is already there and if
25985edc 2077 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2078 * transaction the data will hit the disk. In case we are journaling data, we
2079 * cannot start transaction directly because transaction start ranks above page
2080 * lock so we have to do some magic.
2081 *
b920c755 2082 * This function can get called via...
20970ba6 2083 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2084 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2085 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2086 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2087 *
2088 * We don't do any block allocation in this function. If we have page with
2089 * multiple blocks we need to write those buffer_heads that are mapped. This
2090 * is important for mmaped based write. So if we do with blocksize 1K
2091 * truncate(f, 1024);
2092 * a = mmap(f, 0, 4096);
2093 * a[0] = 'a';
2094 * truncate(f, 4096);
2095 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2096 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2097 * do_wp_page). So writepage should write the first block. If we modify
2098 * the mmap area beyond 1024 we will again get a page_fault and the
2099 * page_mkwrite callback will do the block allocation and mark the
2100 * buffer_heads mapped.
2101 *
2102 * We redirty the page if we have any buffer_heads that is either delay or
2103 * unwritten in the page.
2104 *
2105 * We can get recursively called as show below.
2106 *
2107 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2108 * ext4_writepage()
2109 *
2110 * But since we don't do any block allocation we should not deadlock.
2111 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2112 */
43ce1d23 2113static int ext4_writepage(struct page *page,
62e086be 2114 struct writeback_control *wbc)
64769240 2115{
f8bec370 2116 int ret = 0;
61628a3f 2117 loff_t size;
498e5f24 2118 unsigned int len;
744692dc 2119 struct buffer_head *page_bufs = NULL;
61628a3f 2120 struct inode *inode = page->mapping->host;
36ade451 2121 struct ext4_io_submit io_submit;
1c8349a1 2122 bool keep_towrite = false;
61628a3f 2123
0db1ff22
TT
2124 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2125 ext4_invalidatepage(page, 0, PAGE_SIZE);
2126 unlock_page(page);
2127 return -EIO;
2128 }
2129
a9c667f8 2130 trace_ext4_writepage(page);
f0e6c985 2131 size = i_size_read(inode);
c93d8f88
EB
2132 if (page->index == size >> PAGE_SHIFT &&
2133 !ext4_verity_in_progress(inode))
09cbfeaf 2134 len = size & ~PAGE_MASK;
f0e6c985 2135 else
09cbfeaf 2136 len = PAGE_SIZE;
64769240 2137
a42afc5f 2138 page_bufs = page_buffers(page);
a42afc5f 2139 /*
fe386132
JK
2140 * We cannot do block allocation or other extent handling in this
2141 * function. If there are buffers needing that, we have to redirty
2142 * the page. But we may reach here when we do a journal commit via
2143 * journal_submit_inode_data_buffers() and in that case we must write
2144 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2145 *
2146 * Also, if there is only one buffer per page (the fs block
2147 * size == the page size), if one buffer needs block
2148 * allocation or needs to modify the extent tree to clear the
2149 * unwritten flag, we know that the page can't be written at
2150 * all, so we might as well refuse the write immediately.
2151 * Unfortunately if the block size != page size, we can't as
2152 * easily detect this case using ext4_walk_page_buffers(), but
2153 * for the extremely common case, this is an optimization that
2154 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2155 */
f19d5870
TM
2156 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2157 ext4_bh_delay_or_unwritten)) {
f8bec370 2158 redirty_page_for_writepage(wbc, page);
cccd147a 2159 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2160 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2161 /*
2162 * For memory cleaning there's no point in writing only
2163 * some buffers. So just bail out. Warn if we came here
2164 * from direct reclaim.
2165 */
2166 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2167 == PF_MEMALLOC);
f0e6c985
AK
2168 unlock_page(page);
2169 return 0;
2170 }
1c8349a1 2171 keep_towrite = true;
a42afc5f 2172 }
64769240 2173
cb20d518 2174 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2175 /*
2176 * It's mmapped pagecache. Add buffers and journal it. There
2177 * doesn't seem much point in redirtying the page here.
2178 */
3f0ca309 2179 return __ext4_journalled_writepage(page, len);
43ce1d23 2180
97a851ed
JK
2181 ext4_io_submit_init(&io_submit, wbc);
2182 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2183 if (!io_submit.io_end) {
2184 redirty_page_for_writepage(wbc, page);
2185 unlock_page(page);
2186 return -ENOMEM;
2187 }
1c8349a1 2188 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2189 ext4_io_submit(&io_submit);
97a851ed
JK
2190 /* Drop io_end reference we got from init */
2191 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2192 return ret;
2193}
2194
5f1132b2
JK
2195static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2196{
2197 int len;
a056bdaa 2198 loff_t size;
5f1132b2
JK
2199 int err;
2200
2201 BUG_ON(page->index != mpd->first_page);
a056bdaa
JK
2202 clear_page_dirty_for_io(page);
2203 /*
2204 * We have to be very careful here! Nothing protects writeback path
2205 * against i_size changes and the page can be writeably mapped into
2206 * page tables. So an application can be growing i_size and writing
2207 * data through mmap while writeback runs. clear_page_dirty_for_io()
2208 * write-protects our page in page tables and the page cannot get
2209 * written to again until we release page lock. So only after
2210 * clear_page_dirty_for_io() we are safe to sample i_size for
2211 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2212 * on the barrier provided by TestClearPageDirty in
2213 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2214 * after page tables are updated.
2215 */
2216 size = i_size_read(mpd->inode);
c93d8f88
EB
2217 if (page->index == size >> PAGE_SHIFT &&
2218 !ext4_verity_in_progress(mpd->inode))
09cbfeaf 2219 len = size & ~PAGE_MASK;
5f1132b2 2220 else
09cbfeaf 2221 len = PAGE_SIZE;
1c8349a1 2222 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2223 if (!err)
2224 mpd->wbc->nr_to_write--;
2225 mpd->first_page++;
2226
2227 return err;
2228}
2229
4e7ea81d
JK
2230#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2231
61628a3f 2232/*
fffb2739
JK
2233 * mballoc gives us at most this number of blocks...
2234 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2235 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2236 */
fffb2739 2237#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2238
4e7ea81d
JK
2239/*
2240 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2241 *
2242 * @mpd - extent of blocks
2243 * @lblk - logical number of the block in the file
09930042 2244 * @bh - buffer head we want to add to the extent
4e7ea81d 2245 *
09930042
JK
2246 * The function is used to collect contig. blocks in the same state. If the
2247 * buffer doesn't require mapping for writeback and we haven't started the
2248 * extent of buffers to map yet, the function returns 'true' immediately - the
2249 * caller can write the buffer right away. Otherwise the function returns true
2250 * if the block has been added to the extent, false if the block couldn't be
2251 * added.
4e7ea81d 2252 */
09930042
JK
2253static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2254 struct buffer_head *bh)
4e7ea81d
JK
2255{
2256 struct ext4_map_blocks *map = &mpd->map;
2257
09930042
JK
2258 /* Buffer that doesn't need mapping for writeback? */
2259 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2260 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2261 /* So far no extent to map => we write the buffer right away */
2262 if (map->m_len == 0)
2263 return true;
2264 return false;
2265 }
4e7ea81d
JK
2266
2267 /* First block in the extent? */
2268 if (map->m_len == 0) {
dddbd6ac
JK
2269 /* We cannot map unless handle is started... */
2270 if (!mpd->do_map)
2271 return false;
4e7ea81d
JK
2272 map->m_lblk = lblk;
2273 map->m_len = 1;
09930042
JK
2274 map->m_flags = bh->b_state & BH_FLAGS;
2275 return true;
4e7ea81d
JK
2276 }
2277
09930042
JK
2278 /* Don't go larger than mballoc is willing to allocate */
2279 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2280 return false;
2281
4e7ea81d
JK
2282 /* Can we merge the block to our big extent? */
2283 if (lblk == map->m_lblk + map->m_len &&
09930042 2284 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2285 map->m_len++;
09930042 2286 return true;
4e7ea81d 2287 }
09930042 2288 return false;
4e7ea81d
JK
2289}
2290
5f1132b2
JK
2291/*
2292 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2293 *
2294 * @mpd - extent of blocks for mapping
2295 * @head - the first buffer in the page
2296 * @bh - buffer we should start processing from
2297 * @lblk - logical number of the block in the file corresponding to @bh
2298 *
2299 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2300 * the page for IO if all buffers in this page were mapped and there's no
2301 * accumulated extent of buffers to map or add buffers in the page to the
2302 * extent of buffers to map. The function returns 1 if the caller can continue
2303 * by processing the next page, 0 if it should stop adding buffers to the
2304 * extent to map because we cannot extend it anymore. It can also return value
2305 * < 0 in case of error during IO submission.
2306 */
2307static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2308 struct buffer_head *head,
2309 struct buffer_head *bh,
2310 ext4_lblk_t lblk)
4e7ea81d
JK
2311{
2312 struct inode *inode = mpd->inode;
5f1132b2 2313 int err;
93407472 2314 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2315 >> inode->i_blkbits;
2316
c93d8f88
EB
2317 if (ext4_verity_in_progress(inode))
2318 blocks = EXT_MAX_BLOCKS;
2319
4e7ea81d
JK
2320 do {
2321 BUG_ON(buffer_locked(bh));
2322
09930042 2323 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2324 /* Found extent to map? */
2325 if (mpd->map.m_len)
5f1132b2 2326 return 0;
dddbd6ac
JK
2327 /* Buffer needs mapping and handle is not started? */
2328 if (!mpd->do_map)
2329 return 0;
09930042 2330 /* Everything mapped so far and we hit EOF */
5f1132b2 2331 break;
4e7ea81d 2332 }
4e7ea81d 2333 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2334 /* So far everything mapped? Submit the page for IO. */
2335 if (mpd->map.m_len == 0) {
2336 err = mpage_submit_page(mpd, head->b_page);
2337 if (err < 0)
2338 return err;
2339 }
2340 return lblk < blocks;
4e7ea81d
JK
2341}
2342
2343/*
2344 * mpage_map_buffers - update buffers corresponding to changed extent and
2345 * submit fully mapped pages for IO
2346 *
2347 * @mpd - description of extent to map, on return next extent to map
2348 *
2349 * Scan buffers corresponding to changed extent (we expect corresponding pages
2350 * to be already locked) and update buffer state according to new extent state.
2351 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2352 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2353 * and do extent conversion after IO is finished. If the last page is not fully
2354 * mapped, we update @map to the next extent in the last page that needs
2355 * mapping. Otherwise we submit the page for IO.
2356 */
2357static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2358{
2359 struct pagevec pvec;
2360 int nr_pages, i;
2361 struct inode *inode = mpd->inode;
2362 struct buffer_head *head, *bh;
09cbfeaf 2363 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2364 pgoff_t start, end;
2365 ext4_lblk_t lblk;
2366 sector_t pblock;
2367 int err;
2368
2369 start = mpd->map.m_lblk >> bpp_bits;
2370 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2371 lblk = start << bpp_bits;
2372 pblock = mpd->map.m_pblk;
2373
86679820 2374 pagevec_init(&pvec);
4e7ea81d 2375 while (start <= end) {
2b85a617 2376 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
397162ff 2377 &start, end);
4e7ea81d
JK
2378 if (nr_pages == 0)
2379 break;
2380 for (i = 0; i < nr_pages; i++) {
2381 struct page *page = pvec.pages[i];
2382
4e7ea81d
JK
2383 bh = head = page_buffers(page);
2384 do {
2385 if (lblk < mpd->map.m_lblk)
2386 continue;
2387 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2388 /*
2389 * Buffer after end of mapped extent.
2390 * Find next buffer in the page to map.
2391 */
2392 mpd->map.m_len = 0;
2393 mpd->map.m_flags = 0;
5f1132b2
JK
2394 /*
2395 * FIXME: If dioread_nolock supports
2396 * blocksize < pagesize, we need to make
2397 * sure we add size mapped so far to
2398 * io_end->size as the following call
2399 * can submit the page for IO.
2400 */
2401 err = mpage_process_page_bufs(mpd, head,
2402 bh, lblk);
4e7ea81d 2403 pagevec_release(&pvec);
5f1132b2
JK
2404 if (err > 0)
2405 err = 0;
2406 return err;
4e7ea81d
JK
2407 }
2408 if (buffer_delay(bh)) {
2409 clear_buffer_delay(bh);
2410 bh->b_blocknr = pblock++;
2411 }
4e7ea81d 2412 clear_buffer_unwritten(bh);
5f1132b2 2413 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2414
2415 /*
2416 * FIXME: This is going to break if dioread_nolock
2417 * supports blocksize < pagesize as we will try to
2418 * convert potentially unmapped parts of inode.
2419 */
09cbfeaf 2420 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2421 /* Page fully mapped - let IO run! */
2422 err = mpage_submit_page(mpd, page);
2423 if (err < 0) {
2424 pagevec_release(&pvec);
2425 return err;
2426 }
4e7ea81d
JK
2427 }
2428 pagevec_release(&pvec);
2429 }
2430 /* Extent fully mapped and matches with page boundary. We are done. */
2431 mpd->map.m_len = 0;
2432 mpd->map.m_flags = 0;
2433 return 0;
2434}
2435
2436static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2437{
2438 struct inode *inode = mpd->inode;
2439 struct ext4_map_blocks *map = &mpd->map;
2440 int get_blocks_flags;
090f32ee 2441 int err, dioread_nolock;
4e7ea81d
JK
2442
2443 trace_ext4_da_write_pages_extent(inode, map);
2444 /*
2445 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2446 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2447 * where we have written into one or more preallocated blocks). It is
2448 * possible that we're going to need more metadata blocks than
2449 * previously reserved. However we must not fail because we're in
2450 * writeback and there is nothing we can do about it so it might result
2451 * in data loss. So use reserved blocks to allocate metadata if
2452 * possible.
2453 *
754cfed6
TT
2454 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2455 * the blocks in question are delalloc blocks. This indicates
2456 * that the blocks and quotas has already been checked when
2457 * the data was copied into the page cache.
4e7ea81d
JK
2458 */
2459 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2460 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2461 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2462 dioread_nolock = ext4_should_dioread_nolock(inode);
2463 if (dioread_nolock)
4e7ea81d
JK
2464 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2465 if (map->m_flags & (1 << BH_Delay))
2466 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2467
2468 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2469 if (err < 0)
2470 return err;
090f32ee 2471 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2472 if (!mpd->io_submit.io_end->handle &&
2473 ext4_handle_valid(handle)) {
2474 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2475 handle->h_rsv_handle = NULL;
2476 }
3613d228 2477 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2478 }
4e7ea81d
JK
2479
2480 BUG_ON(map->m_len == 0);
4e7ea81d
JK
2481 return 0;
2482}
2483
2484/*
2485 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2486 * mpd->len and submit pages underlying it for IO
2487 *
2488 * @handle - handle for journal operations
2489 * @mpd - extent to map
7534e854
JK
2490 * @give_up_on_write - we set this to true iff there is a fatal error and there
2491 * is no hope of writing the data. The caller should discard
2492 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2493 *
2494 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2495 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2496 * them to initialized or split the described range from larger unwritten
2497 * extent. Note that we need not map all the described range since allocation
2498 * can return less blocks or the range is covered by more unwritten extents. We
2499 * cannot map more because we are limited by reserved transaction credits. On
2500 * the other hand we always make sure that the last touched page is fully
2501 * mapped so that it can be written out (and thus forward progress is
2502 * guaranteed). After mapping we submit all mapped pages for IO.
2503 */
2504static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2505 struct mpage_da_data *mpd,
2506 bool *give_up_on_write)
4e7ea81d
JK
2507{
2508 struct inode *inode = mpd->inode;
2509 struct ext4_map_blocks *map = &mpd->map;
2510 int err;
2511 loff_t disksize;
6603120e 2512 int progress = 0;
4e7ea81d
JK
2513
2514 mpd->io_submit.io_end->offset =
2515 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2516 do {
4e7ea81d
JK
2517 err = mpage_map_one_extent(handle, mpd);
2518 if (err < 0) {
2519 struct super_block *sb = inode->i_sb;
2520
0db1ff22
TT
2521 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2522 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
cb530541 2523 goto invalidate_dirty_pages;
4e7ea81d 2524 /*
cb530541
TT
2525 * Let the uper layers retry transient errors.
2526 * In the case of ENOSPC, if ext4_count_free_blocks()
2527 * is non-zero, a commit should free up blocks.
4e7ea81d 2528 */
cb530541 2529 if ((err == -ENOMEM) ||
6603120e
DM
2530 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2531 if (progress)
2532 goto update_disksize;
cb530541 2533 return err;
6603120e 2534 }
cb530541
TT
2535 ext4_msg(sb, KERN_CRIT,
2536 "Delayed block allocation failed for "
2537 "inode %lu at logical offset %llu with"
2538 " max blocks %u with error %d",
2539 inode->i_ino,
2540 (unsigned long long)map->m_lblk,
2541 (unsigned)map->m_len, -err);
2542 ext4_msg(sb, KERN_CRIT,
2543 "This should not happen!! Data will "
2544 "be lost\n");
2545 if (err == -ENOSPC)
2546 ext4_print_free_blocks(inode);
2547 invalidate_dirty_pages:
2548 *give_up_on_write = true;
4e7ea81d
JK
2549 return err;
2550 }
6603120e 2551 progress = 1;
4e7ea81d
JK
2552 /*
2553 * Update buffer state, submit mapped pages, and get us new
2554 * extent to map
2555 */
2556 err = mpage_map_and_submit_buffers(mpd);
2557 if (err < 0)
6603120e 2558 goto update_disksize;
27d7c4ed 2559 } while (map->m_len);
4e7ea81d 2560
6603120e 2561update_disksize:
622cad13
TT
2562 /*
2563 * Update on-disk size after IO is submitted. Races with
2564 * truncate are avoided by checking i_size under i_data_sem.
2565 */
09cbfeaf 2566 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2567 if (disksize > EXT4_I(inode)->i_disksize) {
2568 int err2;
622cad13
TT
2569 loff_t i_size;
2570
2571 down_write(&EXT4_I(inode)->i_data_sem);
2572 i_size = i_size_read(inode);
2573 if (disksize > i_size)
2574 disksize = i_size;
2575 if (disksize > EXT4_I(inode)->i_disksize)
2576 EXT4_I(inode)->i_disksize = disksize;
622cad13 2577 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2578 err2 = ext4_mark_inode_dirty(handle, inode);
4e7ea81d
JK
2579 if (err2)
2580 ext4_error(inode->i_sb,
2581 "Failed to mark inode %lu dirty",
2582 inode->i_ino);
2583 if (!err)
2584 err = err2;
2585 }
2586 return err;
2587}
2588
fffb2739
JK
2589/*
2590 * Calculate the total number of credits to reserve for one writepages
20970ba6 2591 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2592 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2593 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2594 * bpp - 1 blocks in bpp different extents.
2595 */
525f4ed8
MC
2596static int ext4_da_writepages_trans_blocks(struct inode *inode)
2597{
fffb2739 2598 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2599
fffb2739
JK
2600 return ext4_meta_trans_blocks(inode,
2601 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2602}
61628a3f 2603
8e48dcfb 2604/*
4e7ea81d
JK
2605 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2606 * and underlying extent to map
2607 *
2608 * @mpd - where to look for pages
2609 *
2610 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2611 * IO immediately. When we find a page which isn't mapped we start accumulating
2612 * extent of buffers underlying these pages that needs mapping (formed by
2613 * either delayed or unwritten buffers). We also lock the pages containing
2614 * these buffers. The extent found is returned in @mpd structure (starting at
2615 * mpd->lblk with length mpd->len blocks).
2616 *
2617 * Note that this function can attach bios to one io_end structure which are
2618 * neither logically nor physically contiguous. Although it may seem as an
2619 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2620 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2621 */
4e7ea81d 2622static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2623{
4e7ea81d
JK
2624 struct address_space *mapping = mpd->inode->i_mapping;
2625 struct pagevec pvec;
2626 unsigned int nr_pages;
aeac589a 2627 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2628 pgoff_t index = mpd->first_page;
2629 pgoff_t end = mpd->last_page;
10bbd235 2630 xa_mark_t tag;
4e7ea81d
JK
2631 int i, err = 0;
2632 int blkbits = mpd->inode->i_blkbits;
2633 ext4_lblk_t lblk;
2634 struct buffer_head *head;
8e48dcfb 2635
4e7ea81d 2636 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2637 tag = PAGECACHE_TAG_TOWRITE;
2638 else
2639 tag = PAGECACHE_TAG_DIRTY;
2640
86679820 2641 pagevec_init(&pvec);
4e7ea81d
JK
2642 mpd->map.m_len = 0;
2643 mpd->next_page = index;
4f01b02c 2644 while (index <= end) {
dc7f3e86 2645 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2646 tag);
8e48dcfb 2647 if (nr_pages == 0)
4e7ea81d 2648 goto out;
8e48dcfb
TT
2649
2650 for (i = 0; i < nr_pages; i++) {
2651 struct page *page = pvec.pages[i];
2652
aeac589a
ML
2653 /*
2654 * Accumulated enough dirty pages? This doesn't apply
2655 * to WB_SYNC_ALL mode. For integrity sync we have to
2656 * keep going because someone may be concurrently
2657 * dirtying pages, and we might have synced a lot of
2658 * newly appeared dirty pages, but have not synced all
2659 * of the old dirty pages.
2660 */
2661 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2662 goto out;
2663
4e7ea81d
JK
2664 /* If we can't merge this page, we are done. */
2665 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2666 goto out;
78aaced3 2667
8e48dcfb 2668 lock_page(page);
8e48dcfb 2669 /*
4e7ea81d
JK
2670 * If the page is no longer dirty, or its mapping no
2671 * longer corresponds to inode we are writing (which
2672 * means it has been truncated or invalidated), or the
2673 * page is already under writeback and we are not doing
2674 * a data integrity writeback, skip the page
8e48dcfb 2675 */
4f01b02c
TT
2676 if (!PageDirty(page) ||
2677 (PageWriteback(page) &&
4e7ea81d 2678 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2679 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2680 unlock_page(page);
2681 continue;
2682 }
2683
7cb1a535 2684 wait_on_page_writeback(page);
8e48dcfb 2685 BUG_ON(PageWriteback(page));
8e48dcfb 2686
4e7ea81d 2687 if (mpd->map.m_len == 0)
8eb9e5ce 2688 mpd->first_page = page->index;
8eb9e5ce 2689 mpd->next_page = page->index + 1;
f8bec370 2690 /* Add all dirty buffers to mpd */
4e7ea81d 2691 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2692 (PAGE_SHIFT - blkbits);
f8bec370 2693 head = page_buffers(page);
5f1132b2
JK
2694 err = mpage_process_page_bufs(mpd, head, head, lblk);
2695 if (err <= 0)
4e7ea81d 2696 goto out;
5f1132b2 2697 err = 0;
aeac589a 2698 left--;
8e48dcfb
TT
2699 }
2700 pagevec_release(&pvec);
2701 cond_resched();
2702 }
4f01b02c 2703 return 0;
8eb9e5ce
TT
2704out:
2705 pagevec_release(&pvec);
4e7ea81d 2706 return err;
8e48dcfb
TT
2707}
2708
20970ba6
TT
2709static int ext4_writepages(struct address_space *mapping,
2710 struct writeback_control *wbc)
64769240 2711{
4e7ea81d
JK
2712 pgoff_t writeback_index = 0;
2713 long nr_to_write = wbc->nr_to_write;
22208ded 2714 int range_whole = 0;
4e7ea81d 2715 int cycled = 1;
61628a3f 2716 handle_t *handle = NULL;
df22291f 2717 struct mpage_da_data mpd;
5e745b04 2718 struct inode *inode = mapping->host;
6b523df4 2719 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2720 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2721 bool done;
1bce63d1 2722 struct blk_plug plug;
cb530541 2723 bool give_up_on_write = false;
61628a3f 2724
0db1ff22
TT
2725 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2726 return -EIO;
2727
c8585c6f 2728 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2729 trace_ext4_writepages(inode, wbc);
ba80b101 2730
61628a3f
MC
2731 /*
2732 * No pages to write? This is mainly a kludge to avoid starting
2733 * a transaction for special inodes like journal inode on last iput()
2734 * because that could violate lock ordering on umount
2735 */
a1d6cc56 2736 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2737 goto out_writepages;
2a21e37e 2738
20970ba6 2739 if (ext4_should_journal_data(inode)) {
043d20d1 2740 ret = generic_writepages(mapping, wbc);
bbf023c7 2741 goto out_writepages;
20970ba6
TT
2742 }
2743
2a21e37e
TT
2744 /*
2745 * If the filesystem has aborted, it is read-only, so return
2746 * right away instead of dumping stack traces later on that
2747 * will obscure the real source of the problem. We test
1751e8a6 2748 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2a21e37e 2749 * the latter could be true if the filesystem is mounted
20970ba6 2750 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2751 * *never* be called, so if that ever happens, we would want
2752 * the stack trace.
2753 */
0db1ff22
TT
2754 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2755 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
bbf023c7
ML
2756 ret = -EROFS;
2757 goto out_writepages;
2758 }
2a21e37e 2759
4e7ea81d
JK
2760 /*
2761 * If we have inline data and arrive here, it means that
2762 * we will soon create the block for the 1st page, so
2763 * we'd better clear the inline data here.
2764 */
2765 if (ext4_has_inline_data(inode)) {
2766 /* Just inode will be modified... */
2767 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2768 if (IS_ERR(handle)) {
2769 ret = PTR_ERR(handle);
2770 goto out_writepages;
2771 }
2772 BUG_ON(ext4_test_inode_state(inode,
2773 EXT4_STATE_MAY_INLINE_DATA));
2774 ext4_destroy_inline_data(handle, inode);
2775 ext4_journal_stop(handle);
2776 }
2777
4e343231 2778 if (ext4_should_dioread_nolock(inode)) {
2779 /*
2780 * We may need to convert up to one extent per block in
2781 * the page and we may dirty the inode.
2782 */
2783 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2784 PAGE_SIZE >> inode->i_blkbits);
2785 }
2786
22208ded
AK
2787 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2788 range_whole = 1;
61628a3f 2789
2acf2c26 2790 if (wbc->range_cyclic) {
4e7ea81d
JK
2791 writeback_index = mapping->writeback_index;
2792 if (writeback_index)
2acf2c26 2793 cycled = 0;
4e7ea81d
JK
2794 mpd.first_page = writeback_index;
2795 mpd.last_page = -1;
5b41d924 2796 } else {
09cbfeaf
KS
2797 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2798 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2799 }
a1d6cc56 2800
4e7ea81d
JK
2801 mpd.inode = inode;
2802 mpd.wbc = wbc;
2803 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2804retry:
6e6938b6 2805 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2806 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2807 done = false;
1bce63d1 2808 blk_start_plug(&plug);
dddbd6ac
JK
2809
2810 /*
2811 * First writeback pages that don't need mapping - we can avoid
2812 * starting a transaction unnecessarily and also avoid being blocked
2813 * in the block layer on device congestion while having transaction
2814 * started.
2815 */
2816 mpd.do_map = 0;
2817 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2818 if (!mpd.io_submit.io_end) {
2819 ret = -ENOMEM;
2820 goto unplug;
2821 }
2822 ret = mpage_prepare_extent_to_map(&mpd);
a297b2fc
XW
2823 /* Unlock pages we didn't use */
2824 mpage_release_unused_pages(&mpd, false);
dddbd6ac
JK
2825 /* Submit prepared bio */
2826 ext4_io_submit(&mpd.io_submit);
2827 ext4_put_io_end_defer(mpd.io_submit.io_end);
2828 mpd.io_submit.io_end = NULL;
dddbd6ac
JK
2829 if (ret < 0)
2830 goto unplug;
2831
4e7ea81d
JK
2832 while (!done && mpd.first_page <= mpd.last_page) {
2833 /* For each extent of pages we use new io_end */
2834 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2835 if (!mpd.io_submit.io_end) {
2836 ret = -ENOMEM;
2837 break;
2838 }
a1d6cc56
AK
2839
2840 /*
4e7ea81d
JK
2841 * We have two constraints: We find one extent to map and we
2842 * must always write out whole page (makes a difference when
2843 * blocksize < pagesize) so that we don't block on IO when we
2844 * try to write out the rest of the page. Journalled mode is
2845 * not supported by delalloc.
a1d6cc56
AK
2846 */
2847 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2848 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2849
4e7ea81d 2850 /* start a new transaction */
6b523df4
JK
2851 handle = ext4_journal_start_with_reserve(inode,
2852 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2853 if (IS_ERR(handle)) {
2854 ret = PTR_ERR(handle);
1693918e 2855 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2856 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2857 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2858 /* Release allocated io_end */
2859 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2860 mpd.io_submit.io_end = NULL;
4e7ea81d 2861 break;
61628a3f 2862 }
dddbd6ac 2863 mpd.do_map = 1;
f63e6005 2864
4e7ea81d
JK
2865 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2866 ret = mpage_prepare_extent_to_map(&mpd);
2867 if (!ret) {
2868 if (mpd.map.m_len)
cb530541
TT
2869 ret = mpage_map_and_submit_extent(handle, &mpd,
2870 &give_up_on_write);
4e7ea81d
JK
2871 else {
2872 /*
2873 * We scanned the whole range (or exhausted
2874 * nr_to_write), submitted what was mapped and
2875 * didn't find anything needing mapping. We are
2876 * done.
2877 */
2878 done = true;
2879 }
f63e6005 2880 }
646caa9c
JK
2881 /*
2882 * Caution: If the handle is synchronous,
2883 * ext4_journal_stop() can wait for transaction commit
2884 * to finish which may depend on writeback of pages to
2885 * complete or on page lock to be released. In that
2886 * case, we have to wait until after after we have
2887 * submitted all the IO, released page locks we hold,
2888 * and dropped io_end reference (for extent conversion
2889 * to be able to complete) before stopping the handle.
2890 */
2891 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2892 ext4_journal_stop(handle);
2893 handle = NULL;
dddbd6ac 2894 mpd.do_map = 0;
646caa9c 2895 }
4e7ea81d 2896 /* Unlock pages we didn't use */
cb530541 2897 mpage_release_unused_pages(&mpd, give_up_on_write);
a297b2fc
XW
2898 /* Submit prepared bio */
2899 ext4_io_submit(&mpd.io_submit);
2900
646caa9c
JK
2901 /*
2902 * Drop our io_end reference we got from init. We have
2903 * to be careful and use deferred io_end finishing if
2904 * we are still holding the transaction as we can
2905 * release the last reference to io_end which may end
2906 * up doing unwritten extent conversion.
2907 */
2908 if (handle) {
2909 ext4_put_io_end_defer(mpd.io_submit.io_end);
2910 ext4_journal_stop(handle);
2911 } else
2912 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2913 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2914
2915 if (ret == -ENOSPC && sbi->s_journal) {
2916 /*
2917 * Commit the transaction which would
22208ded
AK
2918 * free blocks released in the transaction
2919 * and try again
2920 */
df22291f 2921 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2922 ret = 0;
4e7ea81d
JK
2923 continue;
2924 }
2925 /* Fatal error - ENOMEM, EIO... */
2926 if (ret)
61628a3f 2927 break;
a1d6cc56 2928 }
dddbd6ac 2929unplug:
1bce63d1 2930 blk_finish_plug(&plug);
9c12a831 2931 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2932 cycled = 1;
4e7ea81d
JK
2933 mpd.last_page = writeback_index - 1;
2934 mpd.first_page = 0;
2acf2c26
AK
2935 goto retry;
2936 }
22208ded
AK
2937
2938 /* Update index */
22208ded
AK
2939 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2940 /*
4e7ea81d 2941 * Set the writeback_index so that range_cyclic
22208ded
AK
2942 * mode will write it back later
2943 */
4e7ea81d 2944 mapping->writeback_index = mpd.first_page;
a1d6cc56 2945
61628a3f 2946out_writepages:
20970ba6
TT
2947 trace_ext4_writepages_result(inode, wbc, ret,
2948 nr_to_write - wbc->nr_to_write);
c8585c6f 2949 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2950 return ret;
64769240
AT
2951}
2952
5f0663bb
DW
2953static int ext4_dax_writepages(struct address_space *mapping,
2954 struct writeback_control *wbc)
2955{
2956 int ret;
2957 long nr_to_write = wbc->nr_to_write;
2958 struct inode *inode = mapping->host;
2959 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2960
2961 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2962 return -EIO;
2963
2964 percpu_down_read(&sbi->s_journal_flag_rwsem);
2965 trace_ext4_writepages(inode, wbc);
2966
2967 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2968 trace_ext4_writepages_result(inode, wbc, ret,
2969 nr_to_write - wbc->nr_to_write);
2970 percpu_up_read(&sbi->s_journal_flag_rwsem);
2971 return ret;
2972}
2973
79f0be8d
AK
2974static int ext4_nonda_switch(struct super_block *sb)
2975{
5c1ff336 2976 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2977 struct ext4_sb_info *sbi = EXT4_SB(sb);
2978
2979 /*
2980 * switch to non delalloc mode if we are running low
2981 * on free block. The free block accounting via percpu
179f7ebf 2982 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2983 * accumulated on each CPU without updating global counters
2984 * Delalloc need an accurate free block accounting. So switch
2985 * to non delalloc when we are near to error range.
2986 */
5c1ff336
EW
2987 free_clusters =
2988 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2989 dirty_clusters =
2990 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2991 /*
2992 * Start pushing delalloc when 1/2 of free blocks are dirty.
2993 */
5c1ff336 2994 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2995 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2996
5c1ff336
EW
2997 if (2 * free_clusters < 3 * dirty_clusters ||
2998 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2999 /*
c8afb446
ES
3000 * free block count is less than 150% of dirty blocks
3001 * or free blocks is less than watermark
79f0be8d
AK
3002 */
3003 return 1;
3004 }
3005 return 0;
3006}
3007
0ff8947f
ES
3008/* We always reserve for an inode update; the superblock could be there too */
3009static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3010{
e2b911c5 3011 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
3012 return 1;
3013
3014 if (pos + len <= 0x7fffffffULL)
3015 return 1;
3016
3017 /* We might need to update the superblock to set LARGE_FILE */
3018 return 2;
3019}
3020
64769240 3021static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3022 loff_t pos, unsigned len, unsigned flags,
3023 struct page **pagep, void **fsdata)
64769240 3024{
72b8ab9d 3025 int ret, retries = 0;
64769240
AT
3026 struct page *page;
3027 pgoff_t index;
64769240
AT
3028 struct inode *inode = mapping->host;
3029 handle_t *handle;
3030
0db1ff22
TT
3031 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3032 return -EIO;
3033
09cbfeaf 3034 index = pos >> PAGE_SHIFT;
79f0be8d 3035
c93d8f88
EB
3036 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3037 ext4_verity_in_progress(inode)) {
79f0be8d
AK
3038 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3039 return ext4_write_begin(file, mapping, pos,
3040 len, flags, pagep, fsdata);
3041 }
3042 *fsdata = (void *)0;
9bffad1e 3043 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
3044
3045 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3046 ret = ext4_da_write_inline_data_begin(mapping, inode,
3047 pos, len, flags,
3048 pagep, fsdata);
3049 if (ret < 0)
47564bfb
TT
3050 return ret;
3051 if (ret == 1)
3052 return 0;
9c3569b5
TM
3053 }
3054
47564bfb
TT
3055 /*
3056 * grab_cache_page_write_begin() can take a long time if the
3057 * system is thrashing due to memory pressure, or if the page
3058 * is being written back. So grab it first before we start
3059 * the transaction handle. This also allows us to allocate
3060 * the page (if needed) without using GFP_NOFS.
3061 */
3062retry_grab:
3063 page = grab_cache_page_write_begin(mapping, index, flags);
3064 if (!page)
3065 return -ENOMEM;
3066 unlock_page(page);
3067
64769240
AT
3068 /*
3069 * With delayed allocation, we don't log the i_disksize update
3070 * if there is delayed block allocation. But we still need
3071 * to journalling the i_disksize update if writes to the end
3072 * of file which has an already mapped buffer.
3073 */
47564bfb 3074retry_journal:
0ff8947f
ES
3075 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3076 ext4_da_write_credits(inode, pos, len));
64769240 3077 if (IS_ERR(handle)) {
09cbfeaf 3078 put_page(page);
47564bfb 3079 return PTR_ERR(handle);
64769240
AT
3080 }
3081
47564bfb
TT
3082 lock_page(page);
3083 if (page->mapping != mapping) {
3084 /* The page got truncated from under us */
3085 unlock_page(page);
09cbfeaf 3086 put_page(page);
d5a0d4f7 3087 ext4_journal_stop(handle);
47564bfb 3088 goto retry_grab;
d5a0d4f7 3089 }
47564bfb 3090 /* In case writeback began while the page was unlocked */
7afe5aa5 3091 wait_for_stable_page(page);
64769240 3092
643fa961 3093#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
3094 ret = ext4_block_write_begin(page, pos, len,
3095 ext4_da_get_block_prep);
3096#else
6e1db88d 3097 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 3098#endif
64769240
AT
3099 if (ret < 0) {
3100 unlock_page(page);
3101 ext4_journal_stop(handle);
ae4d5372
AK
3102 /*
3103 * block_write_begin may have instantiated a few blocks
3104 * outside i_size. Trim these off again. Don't need
3105 * i_size_read because we hold i_mutex.
3106 */
3107 if (pos + len > inode->i_size)
b9a4207d 3108 ext4_truncate_failed_write(inode);
47564bfb
TT
3109
3110 if (ret == -ENOSPC &&
3111 ext4_should_retry_alloc(inode->i_sb, &retries))
3112 goto retry_journal;
3113
09cbfeaf 3114 put_page(page);
47564bfb 3115 return ret;
64769240
AT
3116 }
3117
47564bfb 3118 *pagep = page;
64769240
AT
3119 return ret;
3120}
3121
632eaeab
MC
3122/*
3123 * Check if we should update i_disksize
3124 * when write to the end of file but not require block allocation
3125 */
3126static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3127 unsigned long offset)
632eaeab
MC
3128{
3129 struct buffer_head *bh;
3130 struct inode *inode = page->mapping->host;
3131 unsigned int idx;
3132 int i;
3133
3134 bh = page_buffers(page);
3135 idx = offset >> inode->i_blkbits;
3136
af5bc92d 3137 for (i = 0; i < idx; i++)
632eaeab
MC
3138 bh = bh->b_this_page;
3139
29fa89d0 3140 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3141 return 0;
3142 return 1;
3143}
3144
64769240 3145static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3146 struct address_space *mapping,
3147 loff_t pos, unsigned len, unsigned copied,
3148 struct page *page, void *fsdata)
64769240
AT
3149{
3150 struct inode *inode = mapping->host;
3151 int ret = 0, ret2;
3152 handle_t *handle = ext4_journal_current_handle();
3153 loff_t new_i_size;
632eaeab 3154 unsigned long start, end;
79f0be8d
AK
3155 int write_mode = (int)(unsigned long)fsdata;
3156
74d553aa
TT
3157 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3158 return ext4_write_end(file, mapping, pos,
3159 len, copied, page, fsdata);
632eaeab 3160
9bffad1e 3161 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3162 start = pos & (PAGE_SIZE - 1);
af5bc92d 3163 end = start + copied - 1;
64769240
AT
3164
3165 /*
3166 * generic_write_end() will run mark_inode_dirty() if i_size
3167 * changes. So let's piggyback the i_disksize mark_inode_dirty
3168 * into that.
3169 */
64769240 3170 new_i_size = pos + copied;
ea51d132 3171 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3172 if (ext4_has_inline_data(inode) ||
3173 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3174 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3175 /* We need to mark inode dirty even if
3176 * new_i_size is less that inode->i_size
3177 * bu greater than i_disksize.(hint delalloc)
3178 */
3179 ext4_mark_inode_dirty(handle, inode);
64769240 3180 }
632eaeab 3181 }
9c3569b5
TM
3182
3183 if (write_mode != CONVERT_INLINE_DATA &&
3184 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3185 ext4_has_inline_data(inode))
3186 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3187 page);
3188 else
3189 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3190 page, fsdata);
9c3569b5 3191
64769240
AT
3192 copied = ret2;
3193 if (ret2 < 0)
3194 ret = ret2;
3195 ret2 = ext4_journal_stop(handle);
3196 if (!ret)
3197 ret = ret2;
3198
3199 return ret ? ret : copied;
3200}
3201
ccd2506b
TT
3202/*
3203 * Force all delayed allocation blocks to be allocated for a given inode.
3204 */
3205int ext4_alloc_da_blocks(struct inode *inode)
3206{
fb40ba0d
TT
3207 trace_ext4_alloc_da_blocks(inode);
3208
71d4f7d0 3209 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3210 return 0;
3211
3212 /*
3213 * We do something simple for now. The filemap_flush() will
3214 * also start triggering a write of the data blocks, which is
3215 * not strictly speaking necessary (and for users of
3216 * laptop_mode, not even desirable). However, to do otherwise
3217 * would require replicating code paths in:
de9a55b8 3218 *
20970ba6 3219 * ext4_writepages() ->
ccd2506b
TT
3220 * write_cache_pages() ---> (via passed in callback function)
3221 * __mpage_da_writepage() -->
3222 * mpage_add_bh_to_extent()
3223 * mpage_da_map_blocks()
3224 *
3225 * The problem is that write_cache_pages(), located in
3226 * mm/page-writeback.c, marks pages clean in preparation for
3227 * doing I/O, which is not desirable if we're not planning on
3228 * doing I/O at all.
3229 *
3230 * We could call write_cache_pages(), and then redirty all of
380cf090 3231 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3232 * would be ugly in the extreme. So instead we would need to
3233 * replicate parts of the code in the above functions,
25985edc 3234 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3235 * write out the pages, but rather only collect contiguous
3236 * logical block extents, call the multi-block allocator, and
3237 * then update the buffer heads with the block allocations.
de9a55b8 3238 *
ccd2506b
TT
3239 * For now, though, we'll cheat by calling filemap_flush(),
3240 * which will map the blocks, and start the I/O, but not
3241 * actually wait for the I/O to complete.
3242 */
3243 return filemap_flush(inode->i_mapping);
3244}
64769240 3245
ac27a0ec
DK
3246/*
3247 * bmap() is special. It gets used by applications such as lilo and by
3248 * the swapper to find the on-disk block of a specific piece of data.
3249 *
3250 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3251 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3252 * filesystem and enables swap, then they may get a nasty shock when the
3253 * data getting swapped to that swapfile suddenly gets overwritten by
3254 * the original zero's written out previously to the journal and
3255 * awaiting writeback in the kernel's buffer cache.
3256 *
3257 * So, if we see any bmap calls here on a modified, data-journaled file,
3258 * take extra steps to flush any blocks which might be in the cache.
3259 */
617ba13b 3260static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3261{
3262 struct inode *inode = mapping->host;
3263 journal_t *journal;
3264 int err;
3265
46c7f254
TM
3266 /*
3267 * We can get here for an inline file via the FIBMAP ioctl
3268 */
3269 if (ext4_has_inline_data(inode))
3270 return 0;
3271
64769240
AT
3272 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3273 test_opt(inode->i_sb, DELALLOC)) {
3274 /*
3275 * With delalloc we want to sync the file
3276 * so that we can make sure we allocate
3277 * blocks for file
3278 */
3279 filemap_write_and_wait(mapping);
3280 }
3281
19f5fb7a
TT
3282 if (EXT4_JOURNAL(inode) &&
3283 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3284 /*
3285 * This is a REALLY heavyweight approach, but the use of
3286 * bmap on dirty files is expected to be extremely rare:
3287 * only if we run lilo or swapon on a freshly made file
3288 * do we expect this to happen.
3289 *
3290 * (bmap requires CAP_SYS_RAWIO so this does not
3291 * represent an unprivileged user DOS attack --- we'd be
3292 * in trouble if mortal users could trigger this path at
3293 * will.)
3294 *
617ba13b 3295 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3296 * regular files. If somebody wants to bmap a directory
3297 * or symlink and gets confused because the buffer
3298 * hasn't yet been flushed to disk, they deserve
3299 * everything they get.
3300 */
3301
19f5fb7a 3302 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3303 journal = EXT4_JOURNAL(inode);
dab291af
MC
3304 jbd2_journal_lock_updates(journal);
3305 err = jbd2_journal_flush(journal);
3306 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3307
3308 if (err)
3309 return 0;
3310 }
3311
af5bc92d 3312 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3313}
3314
617ba13b 3315static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3316{
46c7f254
TM
3317 int ret = -EAGAIN;
3318 struct inode *inode = page->mapping->host;
3319
0562e0ba 3320 trace_ext4_readpage(page);
46c7f254
TM
3321
3322 if (ext4_has_inline_data(inode))
3323 ret = ext4_readpage_inline(inode, page);
3324
3325 if (ret == -EAGAIN)
ac22b46a
JA
3326 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3327 false);
46c7f254
TM
3328
3329 return ret;
ac27a0ec
DK
3330}
3331
3332static int
617ba13b 3333ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3334 struct list_head *pages, unsigned nr_pages)
3335{
46c7f254
TM
3336 struct inode *inode = mapping->host;
3337
3338 /* If the file has inline data, no need to do readpages. */
3339 if (ext4_has_inline_data(inode))
3340 return 0;
3341
ac22b46a 3342 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
ac27a0ec
DK
3343}
3344
d47992f8
LC
3345static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346 unsigned int length)
ac27a0ec 3347{
ca99fdd2 3348 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3349
4520fb3c
JK
3350 /* No journalling happens on data buffers when this function is used */
3351 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352
ca99fdd2 3353 block_invalidatepage(page, offset, length);
4520fb3c
JK
3354}
3355
53e87268 3356static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3357 unsigned int offset,
3358 unsigned int length)
4520fb3c
JK
3359{
3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361
ca99fdd2 3362 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3363
ac27a0ec
DK
3364 /*
3365 * If it's a full truncate we just forget about the pending dirtying
3366 */
09cbfeaf 3367 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3368 ClearPageChecked(page);
3369
ca99fdd2 3370 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3371}
3372
3373/* Wrapper for aops... */
3374static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3375 unsigned int offset,
3376 unsigned int length)
53e87268 3377{
ca99fdd2 3378 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3379}
3380
617ba13b 3381static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3382{
617ba13b 3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3384
0562e0ba
JZ
3385 trace_ext4_releasepage(page);
3386
e1c36595
JK
3387 /* Page has dirty journalled data -> cannot release */
3388 if (PageChecked(page))
ac27a0ec 3389 return 0;
0390131b
FM
3390 if (journal)
3391 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392 else
3393 return try_to_free_buffers(page);
ac27a0ec
DK
3394}
3395
b8a6176c
JK
3396static bool ext4_inode_datasync_dirty(struct inode *inode)
3397{
3398 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3399
3400 if (journal)
3401 return !jbd2_transaction_committed(journal,
3402 EXT4_I(inode)->i_datasync_tid);
3403 /* Any metadata buffers to write? */
3404 if (!list_empty(&inode->i_mapping->private_list))
3405 return true;
3406 return inode->i_state & I_DIRTY_DATASYNC;
3407}
3408
364443cb
JK
3409static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3410 unsigned flags, struct iomap *iomap)
3411{
5e405595 3412 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364443cb 3413 unsigned int blkbits = inode->i_blkbits;
bcd8e91f 3414 unsigned long first_block, last_block;
364443cb 3415 struct ext4_map_blocks map;
545052e9 3416 bool delalloc = false;
364443cb
JK
3417 int ret;
3418
bcd8e91f
TT
3419 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3420 return -EINVAL;
3421 first_block = offset >> blkbits;
3422 last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3423 EXT4_MAX_LOGICAL_BLOCK);
7046ae35
AG
3424
3425 if (flags & IOMAP_REPORT) {
3426 if (ext4_has_inline_data(inode)) {
3427 ret = ext4_inline_data_iomap(inode, iomap);
3428 if (ret != -EAGAIN) {
3429 if (ret == 0 && offset >= iomap->length)
3430 ret = -ENOENT;
3431 return ret;
3432 }
3433 }
3434 } else {
3435 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3436 return -ERANGE;
3437 }
364443cb
JK
3438
3439 map.m_lblk = first_block;
3440 map.m_len = last_block - first_block + 1;
3441
545052e9 3442 if (flags & IOMAP_REPORT) {
776722e8 3443 ret = ext4_map_blocks(NULL, inode, &map, 0);
545052e9
CH
3444 if (ret < 0)
3445 return ret;
3446
3447 if (ret == 0) {
3448 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3449 struct extent_status es;
3450
ad431025
EW
3451 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3452 map.m_lblk, end, &es);
545052e9
CH
3453
3454 if (!es.es_len || es.es_lblk > end) {
3455 /* entire range is a hole */
3456 } else if (es.es_lblk > map.m_lblk) {
3457 /* range starts with a hole */
3458 map.m_len = es.es_lblk - map.m_lblk;
3459 } else {
3460 ext4_lblk_t offs = 0;
3461
3462 if (es.es_lblk < map.m_lblk)
3463 offs = map.m_lblk - es.es_lblk;
3464 map.m_lblk = es.es_lblk + offs;
3465 map.m_len = es.es_len - offs;
3466 delalloc = true;
3467 }
3468 }
3469 } else if (flags & IOMAP_WRITE) {
776722e8
JK
3470 int dio_credits;
3471 handle_t *handle;
3472 int retries = 0;
3473
3474 /* Trim mapping request to maximum we can map at once for DIO */
3475 if (map.m_len > DIO_MAX_BLOCKS)
3476 map.m_len = DIO_MAX_BLOCKS;
3477 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3478retry:
3479 /*
3480 * Either we allocate blocks and then we don't get unwritten
3481 * extent so we have reserved enough credits, or the blocks
3482 * are already allocated and unwritten and in that case
3483 * extent conversion fits in the credits as well.
3484 */
3485 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3486 dio_credits);
3487 if (IS_ERR(handle))
3488 return PTR_ERR(handle);
3489
3490 ret = ext4_map_blocks(handle, inode, &map,
776722e8
JK
3491 EXT4_GET_BLOCKS_CREATE_ZERO);
3492 if (ret < 0) {
3493 ext4_journal_stop(handle);
3494 if (ret == -ENOSPC &&
3495 ext4_should_retry_alloc(inode->i_sb, &retries))
3496 goto retry;
3497 return ret;
3498 }
776722e8
JK
3499
3500 /*
e2ae766c 3501 * If we added blocks beyond i_size, we need to make sure they
776722e8 3502 * will get truncated if we crash before updating i_size in
e2ae766c
JK
3503 * ext4_iomap_end(). For faults we don't need to do that (and
3504 * even cannot because for orphan list operations inode_lock is
3505 * required) - if we happen to instantiate block beyond i_size,
3506 * it is because we race with truncate which has already added
3507 * the inode to the orphan list.
776722e8 3508 */
e2ae766c
JK
3509 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3510 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
776722e8
JK
3511 int err;
3512
3513 err = ext4_orphan_add(handle, inode);
3514 if (err < 0) {
3515 ext4_journal_stop(handle);
3516 return err;
3517 }
3518 }
3519 ext4_journal_stop(handle);
545052e9
CH
3520 } else {
3521 ret = ext4_map_blocks(NULL, inode, &map, 0);
3522 if (ret < 0)
3523 return ret;
776722e8 3524 }
364443cb
JK
3525
3526 iomap->flags = 0;
aaa422c4 3527 if (ext4_inode_datasync_dirty(inode))
b8a6176c 3528 iomap->flags |= IOMAP_F_DIRTY;
5e405595
DW
3529 iomap->bdev = inode->i_sb->s_bdev;
3530 iomap->dax_dev = sbi->s_daxdev;
fe23cb65 3531 iomap->offset = (u64)first_block << blkbits;
545052e9 3532 iomap->length = (u64)map.m_len << blkbits;
364443cb
JK
3533
3534 if (ret == 0) {
545052e9 3535 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
19fe5f64 3536 iomap->addr = IOMAP_NULL_ADDR;
364443cb
JK
3537 } else {
3538 if (map.m_flags & EXT4_MAP_MAPPED) {
3539 iomap->type = IOMAP_MAPPED;
3540 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3541 iomap->type = IOMAP_UNWRITTEN;
3542 } else {
3543 WARN_ON_ONCE(1);
3544 return -EIO;
3545 }
19fe5f64 3546 iomap->addr = (u64)map.m_pblk << blkbits;
364443cb
JK
3547 }
3548
3549 if (map.m_flags & EXT4_MAP_NEW)
3550 iomap->flags |= IOMAP_F_NEW;
545052e9 3551
364443cb
JK
3552 return 0;
3553}
3554
776722e8
JK
3555static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3556 ssize_t written, unsigned flags, struct iomap *iomap)
3557{
3558 int ret = 0;
3559 handle_t *handle;
3560 int blkbits = inode->i_blkbits;
3561 bool truncate = false;
3562
e2ae766c 3563 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
776722e8
JK
3564 return 0;
3565
3566 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3567 if (IS_ERR(handle)) {
3568 ret = PTR_ERR(handle);
3569 goto orphan_del;
3570 }
3571 if (ext4_update_inode_size(inode, offset + written))
3572 ext4_mark_inode_dirty(handle, inode);
3573 /*
3574 * We may need to truncate allocated but not written blocks beyond EOF.
3575 */
3576 if (iomap->offset + iomap->length >
3577 ALIGN(inode->i_size, 1 << blkbits)) {
3578 ext4_lblk_t written_blk, end_blk;
3579
3580 written_blk = (offset + written) >> blkbits;
3581 end_blk = (offset + length) >> blkbits;
3582 if (written_blk < end_blk && ext4_can_truncate(inode))
3583 truncate = true;
3584 }
3585 /*
3586 * Remove inode from orphan list if we were extending a inode and
3587 * everything went fine.
3588 */
3589 if (!truncate && inode->i_nlink &&
3590 !list_empty(&EXT4_I(inode)->i_orphan))
3591 ext4_orphan_del(handle, inode);
3592 ext4_journal_stop(handle);
3593 if (truncate) {
3594 ext4_truncate_failed_write(inode);
3595orphan_del:
3596 /*
3597 * If truncate failed early the inode might still be on the
3598 * orphan list; we need to make sure the inode is removed from
3599 * the orphan list in that case.
3600 */
3601 if (inode->i_nlink)
3602 ext4_orphan_del(NULL, inode);
3603 }
3604 return ret;
3605}
3606
8ff6daa1 3607const struct iomap_ops ext4_iomap_ops = {
364443cb 3608 .iomap_begin = ext4_iomap_begin,
776722e8 3609 .iomap_end = ext4_iomap_end,
364443cb
JK
3610};
3611
187372a3 3612static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3613 ssize_t size, void *private)
4c0425ff 3614{
109811c2 3615 ext4_io_end_t *io_end = private;
4c0425ff 3616
97a851ed 3617 /* if not async direct IO just return */
7b7a8665 3618 if (!io_end)
187372a3 3619 return 0;
4b70df18 3620
88635ca2 3621 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3622 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3623 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3624
74c66bcb
JK
3625 /*
3626 * Error during AIO DIO. We cannot convert unwritten extents as the
3627 * data was not written. Just clear the unwritten flag and drop io_end.
3628 */
3629 if (size <= 0) {
3630 ext4_clear_io_unwritten_flag(io_end);
3631 size = 0;
3632 }
4c0425ff
MC
3633 io_end->offset = offset;
3634 io_end->size = size;
7b7a8665 3635 ext4_put_io_end(io_end);
187372a3
CH
3636
3637 return 0;
4c0425ff 3638}
c7064ef1 3639
4c0425ff 3640/*
914f82a3
JK
3641 * Handling of direct IO writes.
3642 *
3643 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3644 * preallocated extents, and those write extend the file, no need to
3645 * fall back to buffered IO.
3646 *
556615dc 3647 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3648 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3649 * still keep the range to write as unwritten.
4c0425ff 3650 *
69c499d1 3651 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3652 * For async direct IO, since the IO may still pending when return, we
25985edc 3653 * set up an end_io call back function, which will do the conversion
8d5d02e6 3654 * when async direct IO completed.
4c0425ff
MC
3655 *
3656 * If the O_DIRECT write will extend the file then add this inode to the
3657 * orphan list. So recovery will truncate it back to the original size
3658 * if the machine crashes during the write.
3659 *
3660 */
0e01df10 3661static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3662{
3663 struct file *file = iocb->ki_filp;
3664 struct inode *inode = file->f_mapping->host;
45d8ec4d 3665 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3666 ssize_t ret;
c8b8e32d 3667 loff_t offset = iocb->ki_pos;
a6cbcd4a 3668 size_t count = iov_iter_count(iter);
69c499d1
TT
3669 int overwrite = 0;
3670 get_block_t *get_block_func = NULL;
3671 int dio_flags = 0;
4c0425ff 3672 loff_t final_size = offset + count;
914f82a3
JK
3673 int orphan = 0;
3674 handle_t *handle;
729f52c6 3675
45d8ec4d 3676 if (final_size > inode->i_size || final_size > ei->i_disksize) {
914f82a3
JK
3677 /* Credits for sb + inode write */
3678 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3679 if (IS_ERR(handle)) {
3680 ret = PTR_ERR(handle);
3681 goto out;
3682 }
3683 ret = ext4_orphan_add(handle, inode);
3684 if (ret) {
3685 ext4_journal_stop(handle);
3686 goto out;
3687 }
3688 orphan = 1;
73fdad00 3689 ext4_update_i_disksize(inode, inode->i_size);
914f82a3
JK
3690 ext4_journal_stop(handle);
3691 }
4bd809db 3692
69c499d1 3693 BUG_ON(iocb->private == NULL);
4bd809db 3694
e8340395
JK
3695 /*
3696 * Make all waiters for direct IO properly wait also for extent
3697 * conversion. This also disallows race between truncate() and
3698 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3699 */
914f82a3 3700 inode_dio_begin(inode);
e8340395 3701
69c499d1
TT
3702 /* If we do a overwrite dio, i_mutex locking can be released */
3703 overwrite = *((int *)iocb->private);
4bd809db 3704
2dcba478 3705 if (overwrite)
5955102c 3706 inode_unlock(inode);
8d5d02e6 3707
69c499d1 3708 /*
914f82a3 3709 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3710 *
109811c2
JK
3711 * Allocated blocks to fill the hole are marked as unwritten to prevent
3712 * parallel buffered read to expose the stale data before DIO complete
3713 * the data IO.
69c499d1 3714 *
109811c2
JK
3715 * As to previously fallocated extents, ext4 get_block will just simply
3716 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3717 *
109811c2
JK
3718 * For non AIO case, we will convert those unwritten extents to written
3719 * after return back from blockdev_direct_IO. That way we save us from
3720 * allocating io_end structure and also the overhead of offloading
3721 * the extent convertion to a workqueue.
69c499d1
TT
3722 *
3723 * For async DIO, the conversion needs to be deferred when the
3724 * IO is completed. The ext4 end_io callback function will be
3725 * called to take care of the conversion work. Here for async
3726 * case, we allocate an io_end structure to hook to the iocb.
3727 */
3728 iocb->private = NULL;
109811c2 3729 if (overwrite)
705965bd 3730 get_block_func = ext4_dio_get_block_overwrite;
0bd2d5ec 3731 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
93407472 3732 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
914f82a3
JK
3733 get_block_func = ext4_dio_get_block;
3734 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3735 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3736 get_block_func = ext4_dio_get_block_unwritten_sync;
3737 dio_flags = DIO_LOCKING;
69c499d1 3738 } else {
109811c2 3739 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3740 dio_flags = DIO_LOCKING;
3741 }
0bd2d5ec
JK
3742 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3743 get_block_func, ext4_end_io_dio, NULL,
3744 dio_flags);
69c499d1 3745
97a851ed 3746 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3747 EXT4_STATE_DIO_UNWRITTEN)) {
3748 int err;
3749 /*
3750 * for non AIO case, since the IO is already
3751 * completed, we could do the conversion right here
3752 */
6b523df4 3753 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3754 offset, ret);
3755 if (err < 0)
3756 ret = err;
3757 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3758 }
4bd809db 3759
914f82a3 3760 inode_dio_end(inode);
69c499d1 3761 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3762 if (overwrite)
5955102c 3763 inode_lock(inode);
8d5d02e6 3764
914f82a3
JK
3765 if (ret < 0 && final_size > inode->i_size)
3766 ext4_truncate_failed_write(inode);
3767
3768 /* Handle extending of i_size after direct IO write */
3769 if (orphan) {
3770 int err;
3771
3772 /* Credits for sb + inode write */
3773 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3774 if (IS_ERR(handle)) {
abbc3f93
HS
3775 /*
3776 * We wrote the data but cannot extend
3777 * i_size. Bail out. In async io case, we do
3778 * not return error here because we have
3779 * already submmitted the corresponding
3780 * bio. Returning error here makes the caller
3781 * think that this IO is done and failed
3782 * resulting in race with bio's completion
3783 * handler.
3784 */
3785 if (!ret)
3786 ret = PTR_ERR(handle);
914f82a3
JK
3787 if (inode->i_nlink)
3788 ext4_orphan_del(NULL, inode);
3789
3790 goto out;
3791 }
3792 if (inode->i_nlink)
3793 ext4_orphan_del(handle, inode);
3794 if (ret > 0) {
3795 loff_t end = offset + ret;
45d8ec4d 3796 if (end > inode->i_size || end > ei->i_disksize) {
73fdad00 3797 ext4_update_i_disksize(inode, end);
45d8ec4d
EG
3798 if (end > inode->i_size)
3799 i_size_write(inode, end);
914f82a3
JK
3800 /*
3801 * We're going to return a positive `ret'
3802 * here due to non-zero-length I/O, so there's
3803 * no way of reporting error returns from
3804 * ext4_mark_inode_dirty() to userspace. So
3805 * ignore it.
3806 */
3807 ext4_mark_inode_dirty(handle, inode);
3808 }
3809 }
3810 err = ext4_journal_stop(handle);
3811 if (ret == 0)
3812 ret = err;
3813 }
3814out:
3815 return ret;
3816}
3817
0e01df10 3818static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3819{
16c54688
JK
3820 struct address_space *mapping = iocb->ki_filp->f_mapping;
3821 struct inode *inode = mapping->host;
0bd2d5ec 3822 size_t count = iov_iter_count(iter);
914f82a3
JK
3823 ssize_t ret;
3824
16c54688
JK
3825 /*
3826 * Shared inode_lock is enough for us - it protects against concurrent
3827 * writes & truncates and since we take care of writing back page cache,
3828 * we are protected against page writeback as well.
3829 */
3830 inode_lock_shared(inode);
0bd2d5ec 3831 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
e5465795 3832 iocb->ki_pos + count - 1);
0bd2d5ec
JK
3833 if (ret)
3834 goto out_unlock;
3835 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3836 iter, ext4_dio_get_block, NULL, NULL, 0);
16c54688
JK
3837out_unlock:
3838 inode_unlock_shared(inode);
69c499d1 3839 return ret;
4c0425ff
MC
3840}
3841
c8b8e32d 3842static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3843{
3844 struct file *file = iocb->ki_filp;
3845 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3846 size_t count = iov_iter_count(iter);
c8b8e32d 3847 loff_t offset = iocb->ki_pos;
0562e0ba 3848 ssize_t ret;
4c0425ff 3849
643fa961 3850#ifdef CONFIG_FS_ENCRYPTION
592ddec7 3851 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
2058f83a
MH
3852 return 0;
3853#endif
22cfe4b4
EB
3854 if (fsverity_active(inode))
3855 return 0;
2058f83a 3856
84ebd795
TT
3857 /*
3858 * If we are doing data journalling we don't support O_DIRECT
3859 */
3860 if (ext4_should_journal_data(inode))
3861 return 0;
3862
46c7f254
TM
3863 /* Let buffer I/O handle the inline data case. */
3864 if (ext4_has_inline_data(inode))
3865 return 0;
3866
6f673763 3867 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3868 if (iov_iter_rw(iter) == READ)
0e01df10 3869 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3870 else
0e01df10 3871 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3872 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3873 return ret;
4c0425ff
MC
3874}
3875
ac27a0ec 3876/*
617ba13b 3877 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3878 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3879 * much here because ->set_page_dirty is called under VFS locks. The page is
3880 * not necessarily locked.
3881 *
3882 * We cannot just dirty the page and leave attached buffers clean, because the
3883 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3884 * or jbddirty because all the journalling code will explode.
3885 *
3886 * So what we do is to mark the page "pending dirty" and next time writepage
3887 * is called, propagate that into the buffers appropriately.
3888 */
617ba13b 3889static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3890{
3891 SetPageChecked(page);
3892 return __set_page_dirty_nobuffers(page);
3893}
3894
6dcc693b
JK
3895static int ext4_set_page_dirty(struct page *page)
3896{
3897 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3898 WARN_ON_ONCE(!page_has_buffers(page));
3899 return __set_page_dirty_buffers(page);
3900}
3901
74d553aa 3902static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3903 .readpage = ext4_readpage,
3904 .readpages = ext4_readpages,
43ce1d23 3905 .writepage = ext4_writepage,
20970ba6 3906 .writepages = ext4_writepages,
8ab22b9a 3907 .write_begin = ext4_write_begin,
74d553aa 3908 .write_end = ext4_write_end,
6dcc693b 3909 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3910 .bmap = ext4_bmap,
3911 .invalidatepage = ext4_invalidatepage,
3912 .releasepage = ext4_releasepage,
3913 .direct_IO = ext4_direct_IO,
3914 .migratepage = buffer_migrate_page,
3915 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3916 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3917};
3918
617ba13b 3919static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3920 .readpage = ext4_readpage,
3921 .readpages = ext4_readpages,
43ce1d23 3922 .writepage = ext4_writepage,
20970ba6 3923 .writepages = ext4_writepages,
8ab22b9a
HH
3924 .write_begin = ext4_write_begin,
3925 .write_end = ext4_journalled_write_end,
3926 .set_page_dirty = ext4_journalled_set_page_dirty,
3927 .bmap = ext4_bmap,
4520fb3c 3928 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3929 .releasepage = ext4_releasepage,
84ebd795 3930 .direct_IO = ext4_direct_IO,
8ab22b9a 3931 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3932 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3933};
3934
64769240 3935static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3936 .readpage = ext4_readpage,
3937 .readpages = ext4_readpages,
43ce1d23 3938 .writepage = ext4_writepage,
20970ba6 3939 .writepages = ext4_writepages,
8ab22b9a
HH
3940 .write_begin = ext4_da_write_begin,
3941 .write_end = ext4_da_write_end,
6dcc693b 3942 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a 3943 .bmap = ext4_bmap,
8fcc3a58 3944 .invalidatepage = ext4_invalidatepage,
8ab22b9a
HH
3945 .releasepage = ext4_releasepage,
3946 .direct_IO = ext4_direct_IO,
3947 .migratepage = buffer_migrate_page,
3948 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3949 .error_remove_page = generic_error_remove_page,
64769240
AT
3950};
3951
5f0663bb
DW
3952static const struct address_space_operations ext4_dax_aops = {
3953 .writepages = ext4_dax_writepages,
3954 .direct_IO = noop_direct_IO,
3955 .set_page_dirty = noop_set_page_dirty,
94dbb631 3956 .bmap = ext4_bmap,
5f0663bb
DW
3957 .invalidatepage = noop_invalidatepage,
3958};
3959
617ba13b 3960void ext4_set_aops(struct inode *inode)
ac27a0ec 3961{
3d2b1582
LC
3962 switch (ext4_inode_journal_mode(inode)) {
3963 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3964 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3965 break;
3966 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3967 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3968 return;
3d2b1582
LC
3969 default:
3970 BUG();
3971 }
5f0663bb
DW
3972 if (IS_DAX(inode))
3973 inode->i_mapping->a_ops = &ext4_dax_aops;
3974 else if (test_opt(inode->i_sb, DELALLOC))
74d553aa
TT
3975 inode->i_mapping->a_ops = &ext4_da_aops;
3976 else
3977 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3978}
3979
923ae0ff 3980static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3981 struct address_space *mapping, loff_t from, loff_t length)
3982{
09cbfeaf
KS
3983 ext4_fsblk_t index = from >> PAGE_SHIFT;
3984 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3985 unsigned blocksize, pos;
d863dc36
LC
3986 ext4_lblk_t iblock;
3987 struct inode *inode = mapping->host;
3988 struct buffer_head *bh;
3989 struct page *page;
3990 int err = 0;
3991
09cbfeaf 3992 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3993 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3994 if (!page)
3995 return -ENOMEM;
3996
3997 blocksize = inode->i_sb->s_blocksize;
d863dc36 3998
09cbfeaf 3999 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
4000
4001 if (!page_has_buffers(page))
4002 create_empty_buffers(page, blocksize, 0);
4003
4004 /* Find the buffer that contains "offset" */
4005 bh = page_buffers(page);
4006 pos = blocksize;
4007 while (offset >= pos) {
4008 bh = bh->b_this_page;
4009 iblock++;
4010 pos += blocksize;
4011 }
d863dc36
LC
4012 if (buffer_freed(bh)) {
4013 BUFFER_TRACE(bh, "freed: skip");
4014 goto unlock;
4015 }
d863dc36
LC
4016 if (!buffer_mapped(bh)) {
4017 BUFFER_TRACE(bh, "unmapped");
4018 ext4_get_block(inode, iblock, bh, 0);
4019 /* unmapped? It's a hole - nothing to do */
4020 if (!buffer_mapped(bh)) {
4021 BUFFER_TRACE(bh, "still unmapped");
4022 goto unlock;
4023 }
4024 }
4025
4026 /* Ok, it's mapped. Make sure it's up-to-date */
4027 if (PageUptodate(page))
4028 set_buffer_uptodate(bh);
4029
4030 if (!buffer_uptodate(bh)) {
4031 err = -EIO;
dfec8a14 4032 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
4033 wait_on_buffer(bh);
4034 /* Uhhuh. Read error. Complain and punt. */
4035 if (!buffer_uptodate(bh))
4036 goto unlock;
592ddec7 4037 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
c9c7429c 4038 /* We expect the key to be set. */
a7550b30 4039 BUG_ON(!fscrypt_has_encryption_key(inode));
aa8bc1ac 4040 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
ec39a368 4041 page, blocksize, bh_offset(bh)));
c9c7429c 4042 }
d863dc36 4043 }
d863dc36
LC
4044 if (ext4_should_journal_data(inode)) {
4045 BUFFER_TRACE(bh, "get write access");
4046 err = ext4_journal_get_write_access(handle, bh);
4047 if (err)
4048 goto unlock;
4049 }
d863dc36 4050 zero_user(page, offset, length);
d863dc36
LC
4051 BUFFER_TRACE(bh, "zeroed end of block");
4052
d863dc36
LC
4053 if (ext4_should_journal_data(inode)) {
4054 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 4055 } else {
353eefd3 4056 err = 0;
d863dc36 4057 mark_buffer_dirty(bh);
3957ef53 4058 if (ext4_should_order_data(inode))
73131fbb
RZ
4059 err = ext4_jbd2_inode_add_write(handle, inode, from,
4060 length);
0713ed0c 4061 }
d863dc36
LC
4062
4063unlock:
4064 unlock_page(page);
09cbfeaf 4065 put_page(page);
d863dc36
LC
4066 return err;
4067}
4068
923ae0ff
RZ
4069/*
4070 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4071 * starting from file offset 'from'. The range to be zero'd must
4072 * be contained with in one block. If the specified range exceeds
4073 * the end of the block it will be shortened to end of the block
4074 * that cooresponds to 'from'
4075 */
4076static int ext4_block_zero_page_range(handle_t *handle,
4077 struct address_space *mapping, loff_t from, loff_t length)
4078{
4079 struct inode *inode = mapping->host;
09cbfeaf 4080 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
4081 unsigned blocksize = inode->i_sb->s_blocksize;
4082 unsigned max = blocksize - (offset & (blocksize - 1));
4083
4084 /*
4085 * correct length if it does not fall between
4086 * 'from' and the end of the block
4087 */
4088 if (length > max || length < 0)
4089 length = max;
4090
47e69351
JK
4091 if (IS_DAX(inode)) {
4092 return iomap_zero_range(inode, from, length, NULL,
4093 &ext4_iomap_ops);
4094 }
923ae0ff
RZ
4095 return __ext4_block_zero_page_range(handle, mapping, from, length);
4096}
4097
94350ab5
MW
4098/*
4099 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4100 * up to the end of the block which corresponds to `from'.
4101 * This required during truncate. We need to physically zero the tail end
4102 * of that block so it doesn't yield old data if the file is later grown.
4103 */
c197855e 4104static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
4105 struct address_space *mapping, loff_t from)
4106{
09cbfeaf 4107 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
4108 unsigned length;
4109 unsigned blocksize;
4110 struct inode *inode = mapping->host;
4111
0d06863f 4112 /* If we are processing an encrypted inode during orphan list handling */
592ddec7 4113 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
0d06863f
TT
4114 return 0;
4115
94350ab5
MW
4116 blocksize = inode->i_sb->s_blocksize;
4117 length = blocksize - (offset & (blocksize - 1));
4118
4119 return ext4_block_zero_page_range(handle, mapping, from, length);
4120}
4121
a87dd18c
LC
4122int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4123 loff_t lstart, loff_t length)
4124{
4125 struct super_block *sb = inode->i_sb;
4126 struct address_space *mapping = inode->i_mapping;
e1be3a92 4127 unsigned partial_start, partial_end;
a87dd18c
LC
4128 ext4_fsblk_t start, end;
4129 loff_t byte_end = (lstart + length - 1);
4130 int err = 0;
4131
e1be3a92
LC
4132 partial_start = lstart & (sb->s_blocksize - 1);
4133 partial_end = byte_end & (sb->s_blocksize - 1);
4134
a87dd18c
LC
4135 start = lstart >> sb->s_blocksize_bits;
4136 end = byte_end >> sb->s_blocksize_bits;
4137
4138 /* Handle partial zero within the single block */
e1be3a92
LC
4139 if (start == end &&
4140 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
4141 err = ext4_block_zero_page_range(handle, mapping,
4142 lstart, length);
4143 return err;
4144 }
4145 /* Handle partial zero out on the start of the range */
e1be3a92 4146 if (partial_start) {
a87dd18c
LC
4147 err = ext4_block_zero_page_range(handle, mapping,
4148 lstart, sb->s_blocksize);
4149 if (err)
4150 return err;
4151 }
4152 /* Handle partial zero out on the end of the range */
e1be3a92 4153 if (partial_end != sb->s_blocksize - 1)
a87dd18c 4154 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
4155 byte_end - partial_end,
4156 partial_end + 1);
a87dd18c
LC
4157 return err;
4158}
4159
91ef4caf
DG
4160int ext4_can_truncate(struct inode *inode)
4161{
91ef4caf
DG
4162 if (S_ISREG(inode->i_mode))
4163 return 1;
4164 if (S_ISDIR(inode->i_mode))
4165 return 1;
4166 if (S_ISLNK(inode->i_mode))
4167 return !ext4_inode_is_fast_symlink(inode);
4168 return 0;
4169}
4170
01127848
JK
4171/*
4172 * We have to make sure i_disksize gets properly updated before we truncate
4173 * page cache due to hole punching or zero range. Otherwise i_disksize update
4174 * can get lost as it may have been postponed to submission of writeback but
4175 * that will never happen after we truncate page cache.
4176 */
4177int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4178 loff_t len)
4179{
4180 handle_t *handle;
4181 loff_t size = i_size_read(inode);
4182
5955102c 4183 WARN_ON(!inode_is_locked(inode));
01127848
JK
4184 if (offset > size || offset + len < size)
4185 return 0;
4186
4187 if (EXT4_I(inode)->i_disksize >= size)
4188 return 0;
4189
4190 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4191 if (IS_ERR(handle))
4192 return PTR_ERR(handle);
4193 ext4_update_i_disksize(inode, size);
4194 ext4_mark_inode_dirty(handle, inode);
4195 ext4_journal_stop(handle);
4196
4197 return 0;
4198}
4199
b1f38217 4200static void ext4_wait_dax_page(struct ext4_inode_info *ei)
430657b6 4201{
430657b6
RZ
4202 up_write(&ei->i_mmap_sem);
4203 schedule();
4204 down_write(&ei->i_mmap_sem);
4205}
4206
4207int ext4_break_layouts(struct inode *inode)
4208{
4209 struct ext4_inode_info *ei = EXT4_I(inode);
4210 struct page *page;
430657b6
RZ
4211 int error;
4212
4213 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4214 return -EINVAL;
4215
4216 do {
430657b6
RZ
4217 page = dax_layout_busy_page(inode->i_mapping);
4218 if (!page)
4219 return 0;
4220
4221 error = ___wait_var_event(&page->_refcount,
4222 atomic_read(&page->_refcount) == 1,
4223 TASK_INTERRUPTIBLE, 0, 0,
b1f38217
RZ
4224 ext4_wait_dax_page(ei));
4225 } while (error == 0);
430657b6
RZ
4226
4227 return error;
4228}
4229
a4bb6b64 4230/*
cca32b7e 4231 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
4232 * associated with the given offset and length
4233 *
4234 * @inode: File inode
4235 * @offset: The offset where the hole will begin
4236 * @len: The length of the hole
4237 *
4907cb7b 4238 * Returns: 0 on success or negative on failure
a4bb6b64
AH
4239 */
4240
aeb2817a 4241int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4242{
26a4c0c6
TT
4243 struct super_block *sb = inode->i_sb;
4244 ext4_lblk_t first_block, stop_block;
4245 struct address_space *mapping = inode->i_mapping;
a87dd18c 4246 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4247 handle_t *handle;
4248 unsigned int credits;
4249 int ret = 0;
4250
a4bb6b64 4251 if (!S_ISREG(inode->i_mode))
73355192 4252 return -EOPNOTSUPP;
a4bb6b64 4253
b8a86845 4254 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4255
c1e8220b
TT
4256 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4257 if (ext4_has_inline_data(inode)) {
4258 down_write(&EXT4_I(inode)->i_mmap_sem);
4259 ret = ext4_convert_inline_data(inode);
4260 up_write(&EXT4_I(inode)->i_mmap_sem);
4261 if (ret)
4262 return ret;
4263 }
4264
26a4c0c6
TT
4265 /*
4266 * Write out all dirty pages to avoid race conditions
4267 * Then release them.
4268 */
cca32b7e 4269 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4270 ret = filemap_write_and_wait_range(mapping, offset,
4271 offset + length - 1);
4272 if (ret)
4273 return ret;
4274 }
4275
5955102c 4276 inode_lock(inode);
9ef06cec 4277
26a4c0c6
TT
4278 /* No need to punch hole beyond i_size */
4279 if (offset >= inode->i_size)
4280 goto out_mutex;
4281
4282 /*
4283 * If the hole extends beyond i_size, set the hole
4284 * to end after the page that contains i_size
4285 */
4286 if (offset + length > inode->i_size) {
4287 length = inode->i_size +
09cbfeaf 4288 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4289 offset;
4290 }
4291
a361293f
JK
4292 if (offset & (sb->s_blocksize - 1) ||
4293 (offset + length) & (sb->s_blocksize - 1)) {
4294 /*
4295 * Attach jinode to inode for jbd2 if we do any zeroing of
4296 * partial block
4297 */
4298 ret = ext4_inode_attach_jinode(inode);
4299 if (ret < 0)
4300 goto out_mutex;
4301
4302 }
4303
ea3d7209 4304 /* Wait all existing dio workers, newcomers will block on i_mutex */
ea3d7209
JK
4305 inode_dio_wait(inode);
4306
4307 /*
4308 * Prevent page faults from reinstantiating pages we have released from
4309 * page cache.
4310 */
4311 down_write(&EXT4_I(inode)->i_mmap_sem);
430657b6
RZ
4312
4313 ret = ext4_break_layouts(inode);
4314 if (ret)
4315 goto out_dio;
4316
a87dd18c
LC
4317 first_block_offset = round_up(offset, sb->s_blocksize);
4318 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4319
a87dd18c 4320 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4321 if (last_block_offset > first_block_offset) {
4322 ret = ext4_update_disksize_before_punch(inode, offset, length);
4323 if (ret)
4324 goto out_dio;
a87dd18c
LC
4325 truncate_pagecache_range(inode, first_block_offset,
4326 last_block_offset);
01127848 4327 }
26a4c0c6
TT
4328
4329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4330 credits = ext4_writepage_trans_blocks(inode);
4331 else
4332 credits = ext4_blocks_for_truncate(inode);
4333 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4334 if (IS_ERR(handle)) {
4335 ret = PTR_ERR(handle);
4336 ext4_std_error(sb, ret);
4337 goto out_dio;
4338 }
4339
a87dd18c
LC
4340 ret = ext4_zero_partial_blocks(handle, inode, offset,
4341 length);
4342 if (ret)
4343 goto out_stop;
26a4c0c6
TT
4344
4345 first_block = (offset + sb->s_blocksize - 1) >>
4346 EXT4_BLOCK_SIZE_BITS(sb);
4347 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4348
eee597ac
LC
4349 /* If there are blocks to remove, do it */
4350 if (stop_block > first_block) {
26a4c0c6 4351
eee597ac
LC
4352 down_write(&EXT4_I(inode)->i_data_sem);
4353 ext4_discard_preallocations(inode);
26a4c0c6 4354
eee597ac
LC
4355 ret = ext4_es_remove_extent(inode, first_block,
4356 stop_block - first_block);
4357 if (ret) {
4358 up_write(&EXT4_I(inode)->i_data_sem);
4359 goto out_stop;
4360 }
26a4c0c6 4361
eee597ac
LC
4362 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4363 ret = ext4_ext_remove_space(inode, first_block,
4364 stop_block - 1);
4365 else
4366 ret = ext4_ind_remove_space(handle, inode, first_block,
4367 stop_block);
26a4c0c6 4368
eee597ac
LC
4369 up_write(&EXT4_I(inode)->i_data_sem);
4370 }
26a4c0c6
TT
4371 if (IS_SYNC(inode))
4372 ext4_handle_sync(handle);
e251f9bc 4373
eeca7ea1 4374 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6 4375 ext4_mark_inode_dirty(handle, inode);
67a7d5f5
JK
4376 if (ret >= 0)
4377 ext4_update_inode_fsync_trans(handle, inode, 1);
26a4c0c6
TT
4378out_stop:
4379 ext4_journal_stop(handle);
4380out_dio:
ea3d7209 4381 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6 4382out_mutex:
5955102c 4383 inode_unlock(inode);
26a4c0c6 4384 return ret;
a4bb6b64
AH
4385}
4386
a361293f
JK
4387int ext4_inode_attach_jinode(struct inode *inode)
4388{
4389 struct ext4_inode_info *ei = EXT4_I(inode);
4390 struct jbd2_inode *jinode;
4391
4392 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4393 return 0;
4394
4395 jinode = jbd2_alloc_inode(GFP_KERNEL);
4396 spin_lock(&inode->i_lock);
4397 if (!ei->jinode) {
4398 if (!jinode) {
4399 spin_unlock(&inode->i_lock);
4400 return -ENOMEM;
4401 }
4402 ei->jinode = jinode;
4403 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4404 jinode = NULL;
4405 }
4406 spin_unlock(&inode->i_lock);
4407 if (unlikely(jinode != NULL))
4408 jbd2_free_inode(jinode);
4409 return 0;
4410}
4411
ac27a0ec 4412/*
617ba13b 4413 * ext4_truncate()
ac27a0ec 4414 *
617ba13b
MC
4415 * We block out ext4_get_block() block instantiations across the entire
4416 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4417 * simultaneously on behalf of the same inode.
4418 *
42b2aa86 4419 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4420 * is one core, guiding principle: the file's tree must always be consistent on
4421 * disk. We must be able to restart the truncate after a crash.
4422 *
4423 * The file's tree may be transiently inconsistent in memory (although it
4424 * probably isn't), but whenever we close off and commit a journal transaction,
4425 * the contents of (the filesystem + the journal) must be consistent and
4426 * restartable. It's pretty simple, really: bottom up, right to left (although
4427 * left-to-right works OK too).
4428 *
4429 * Note that at recovery time, journal replay occurs *before* the restart of
4430 * truncate against the orphan inode list.
4431 *
4432 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4433 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4434 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4435 * ext4_truncate() to have another go. So there will be instantiated blocks
4436 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4437 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4438 * ext4_truncate() run will find them and release them.
ac27a0ec 4439 */
2c98eb5e 4440int ext4_truncate(struct inode *inode)
ac27a0ec 4441{
819c4920
TT
4442 struct ext4_inode_info *ei = EXT4_I(inode);
4443 unsigned int credits;
2c98eb5e 4444 int err = 0;
819c4920
TT
4445 handle_t *handle;
4446 struct address_space *mapping = inode->i_mapping;
819c4920 4447
19b5ef61
TT
4448 /*
4449 * There is a possibility that we're either freeing the inode
e04027e8 4450 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4451 * have i_mutex locked because it's not necessary.
4452 */
4453 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4454 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4455 trace_ext4_truncate_enter(inode);
4456
91ef4caf 4457 if (!ext4_can_truncate(inode))
2c98eb5e 4458 return 0;
ac27a0ec 4459
12e9b892 4460 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4461
5534fb5b 4462 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4463 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4464
aef1c851
TM
4465 if (ext4_has_inline_data(inode)) {
4466 int has_inline = 1;
4467
01daf945
TT
4468 err = ext4_inline_data_truncate(inode, &has_inline);
4469 if (err)
4470 return err;
aef1c851 4471 if (has_inline)
2c98eb5e 4472 return 0;
aef1c851
TM
4473 }
4474
a361293f
JK
4475 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4476 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4477 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4478 return 0;
a361293f
JK
4479 }
4480
819c4920
TT
4481 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4482 credits = ext4_writepage_trans_blocks(inode);
4483 else
4484 credits = ext4_blocks_for_truncate(inode);
4485
4486 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4487 if (IS_ERR(handle))
4488 return PTR_ERR(handle);
819c4920 4489
eb3544c6
LC
4490 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4491 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4492
4493 /*
4494 * We add the inode to the orphan list, so that if this
4495 * truncate spans multiple transactions, and we crash, we will
4496 * resume the truncate when the filesystem recovers. It also
4497 * marks the inode dirty, to catch the new size.
4498 *
4499 * Implication: the file must always be in a sane, consistent
4500 * truncatable state while each transaction commits.
4501 */
2c98eb5e
TT
4502 err = ext4_orphan_add(handle, inode);
4503 if (err)
819c4920
TT
4504 goto out_stop;
4505
4506 down_write(&EXT4_I(inode)->i_data_sem);
4507
4508 ext4_discard_preallocations(inode);
4509
ff9893dc 4510 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4511 err = ext4_ext_truncate(handle, inode);
ff9893dc 4512 else
819c4920
TT
4513 ext4_ind_truncate(handle, inode);
4514
4515 up_write(&ei->i_data_sem);
d0abb36d
TT
4516 if (err)
4517 goto out_stop;
819c4920
TT
4518
4519 if (IS_SYNC(inode))
4520 ext4_handle_sync(handle);
4521
4522out_stop:
4523 /*
4524 * If this was a simple ftruncate() and the file will remain alive,
4525 * then we need to clear up the orphan record which we created above.
4526 * However, if this was a real unlink then we were called by
58d86a50 4527 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4528 * orphan info for us.
4529 */
4530 if (inode->i_nlink)
4531 ext4_orphan_del(handle, inode);
4532
eeca7ea1 4533 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4534 ext4_mark_inode_dirty(handle, inode);
4535 ext4_journal_stop(handle);
ac27a0ec 4536
0562e0ba 4537 trace_ext4_truncate_exit(inode);
2c98eb5e 4538 return err;
ac27a0ec
DK
4539}
4540
ac27a0ec 4541/*
617ba13b 4542 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4543 * underlying buffer_head on success. If 'in_mem' is true, we have all
4544 * data in memory that is needed to recreate the on-disk version of this
4545 * inode.
4546 */
617ba13b
MC
4547static int __ext4_get_inode_loc(struct inode *inode,
4548 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4549{
240799cd
TT
4550 struct ext4_group_desc *gdp;
4551 struct buffer_head *bh;
4552 struct super_block *sb = inode->i_sb;
4553 ext4_fsblk_t block;
02f03c42 4554 struct blk_plug plug;
240799cd
TT
4555 int inodes_per_block, inode_offset;
4556
3a06d778 4557 iloc->bh = NULL;
c37e9e01
TT
4558 if (inode->i_ino < EXT4_ROOT_INO ||
4559 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
6a797d27 4560 return -EFSCORRUPTED;
ac27a0ec 4561
240799cd
TT
4562 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4563 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4564 if (!gdp)
ac27a0ec
DK
4565 return -EIO;
4566
240799cd
TT
4567 /*
4568 * Figure out the offset within the block group inode table
4569 */
00d09882 4570 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4571 inode_offset = ((inode->i_ino - 1) %
4572 EXT4_INODES_PER_GROUP(sb));
4573 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4574 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4575
4576 bh = sb_getblk(sb, block);
aebf0243 4577 if (unlikely(!bh))
860d21e2 4578 return -ENOMEM;
ac27a0ec
DK
4579 if (!buffer_uptodate(bh)) {
4580 lock_buffer(bh);
9c83a923
HK
4581
4582 /*
4583 * If the buffer has the write error flag, we have failed
4584 * to write out another inode in the same block. In this
4585 * case, we don't have to read the block because we may
4586 * read the old inode data successfully.
4587 */
4588 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4589 set_buffer_uptodate(bh);
4590
ac27a0ec
DK
4591 if (buffer_uptodate(bh)) {
4592 /* someone brought it uptodate while we waited */
4593 unlock_buffer(bh);
4594 goto has_buffer;
4595 }
4596
4597 /*
4598 * If we have all information of the inode in memory and this
4599 * is the only valid inode in the block, we need not read the
4600 * block.
4601 */
4602 if (in_mem) {
4603 struct buffer_head *bitmap_bh;
240799cd 4604 int i, start;
ac27a0ec 4605
240799cd 4606 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4607
240799cd
TT
4608 /* Is the inode bitmap in cache? */
4609 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4610 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4611 goto make_io;
4612
4613 /*
4614 * If the inode bitmap isn't in cache then the
4615 * optimisation may end up performing two reads instead
4616 * of one, so skip it.
4617 */
4618 if (!buffer_uptodate(bitmap_bh)) {
4619 brelse(bitmap_bh);
4620 goto make_io;
4621 }
240799cd 4622 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4623 if (i == inode_offset)
4624 continue;
617ba13b 4625 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4626 break;
4627 }
4628 brelse(bitmap_bh);
240799cd 4629 if (i == start + inodes_per_block) {
ac27a0ec
DK
4630 /* all other inodes are free, so skip I/O */
4631 memset(bh->b_data, 0, bh->b_size);
4632 set_buffer_uptodate(bh);
4633 unlock_buffer(bh);
4634 goto has_buffer;
4635 }
4636 }
4637
4638make_io:
240799cd
TT
4639 /*
4640 * If we need to do any I/O, try to pre-readahead extra
4641 * blocks from the inode table.
4642 */
02f03c42 4643 blk_start_plug(&plug);
240799cd
TT
4644 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4645 ext4_fsblk_t b, end, table;
4646 unsigned num;
0d606e2c 4647 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4648
4649 table = ext4_inode_table(sb, gdp);
b713a5ec 4650 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4651 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4652 if (table > b)
4653 b = table;
0d606e2c 4654 end = b + ra_blks;
240799cd 4655 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4656 if (ext4_has_group_desc_csum(sb))
560671a0 4657 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4658 table += num / inodes_per_block;
4659 if (end > table)
4660 end = table;
4661 while (b <= end)
4662 sb_breadahead(sb, b++);
4663 }
4664
ac27a0ec
DK
4665 /*
4666 * There are other valid inodes in the buffer, this inode
4667 * has in-inode xattrs, or we don't have this inode in memory.
4668 * Read the block from disk.
4669 */
0562e0ba 4670 trace_ext4_load_inode(inode);
ac27a0ec
DK
4671 get_bh(bh);
4672 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4673 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
02f03c42 4674 blk_finish_plug(&plug);
ac27a0ec
DK
4675 wait_on_buffer(bh);
4676 if (!buffer_uptodate(bh)) {
c398eda0
TT
4677 EXT4_ERROR_INODE_BLOCK(inode, block,
4678 "unable to read itable block");
ac27a0ec
DK
4679 brelse(bh);
4680 return -EIO;
4681 }
4682 }
4683has_buffer:
4684 iloc->bh = bh;
4685 return 0;
4686}
4687
617ba13b 4688int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4689{
4690 /* We have all inode data except xattrs in memory here. */
617ba13b 4691 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4692 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4693}
4694
6642586b
RZ
4695static bool ext4_should_use_dax(struct inode *inode)
4696{
4697 if (!test_opt(inode->i_sb, DAX))
4698 return false;
4699 if (!S_ISREG(inode->i_mode))
4700 return false;
4701 if (ext4_should_journal_data(inode))
4702 return false;
4703 if (ext4_has_inline_data(inode))
4704 return false;
592ddec7 4705 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
6642586b 4706 return false;
c93d8f88
EB
4707 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4708 return false;
6642586b
RZ
4709 return true;
4710}
4711
617ba13b 4712void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4713{
617ba13b 4714 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4715 unsigned int new_fl = 0;
ac27a0ec 4716
617ba13b 4717 if (flags & EXT4_SYNC_FL)
00a1a053 4718 new_fl |= S_SYNC;
617ba13b 4719 if (flags & EXT4_APPEND_FL)
00a1a053 4720 new_fl |= S_APPEND;
617ba13b 4721 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4722 new_fl |= S_IMMUTABLE;
617ba13b 4723 if (flags & EXT4_NOATIME_FL)
00a1a053 4724 new_fl |= S_NOATIME;
617ba13b 4725 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4726 new_fl |= S_DIRSYNC;
6642586b 4727 if (ext4_should_use_dax(inode))
923ae0ff 4728 new_fl |= S_DAX;
2ee6a576
EB
4729 if (flags & EXT4_ENCRYPT_FL)
4730 new_fl |= S_ENCRYPTED;
b886ee3e
GKB
4731 if (flags & EXT4_CASEFOLD_FL)
4732 new_fl |= S_CASEFOLD;
c93d8f88
EB
4733 if (flags & EXT4_VERITY_FL)
4734 new_fl |= S_VERITY;
5f16f322 4735 inode_set_flags(inode, new_fl,
2ee6a576 4736 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
c93d8f88 4737 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
ac27a0ec
DK
4738}
4739
0fc1b451 4740static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4741 struct ext4_inode_info *ei)
0fc1b451
AK
4742{
4743 blkcnt_t i_blocks ;
8180a562
AK
4744 struct inode *inode = &(ei->vfs_inode);
4745 struct super_block *sb = inode->i_sb;
0fc1b451 4746
e2b911c5 4747 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4748 /* we are using combined 48 bit field */
4749 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4750 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4751 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4752 /* i_blocks represent file system block size */
4753 return i_blocks << (inode->i_blkbits - 9);
4754 } else {
4755 return i_blocks;
4756 }
0fc1b451
AK
4757 } else {
4758 return le32_to_cpu(raw_inode->i_blocks_lo);
4759 }
4760}
ff9ddf7e 4761
eb9b5f01 4762static inline int ext4_iget_extra_inode(struct inode *inode,
152a7b0a
TM
4763 struct ext4_inode *raw_inode,
4764 struct ext4_inode_info *ei)
4765{
4766 __le32 *magic = (void *)raw_inode +
4767 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
eb9b5f01 4768
290ab230
EB
4769 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4770 EXT4_INODE_SIZE(inode->i_sb) &&
4771 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4772 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
eb9b5f01 4773 return ext4_find_inline_data_nolock(inode);
f19d5870
TM
4774 } else
4775 EXT4_I(inode)->i_inline_off = 0;
eb9b5f01 4776 return 0;
152a7b0a
TM
4777}
4778
040cb378
LX
4779int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4780{
0b7b7779 4781 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4782 return -EOPNOTSUPP;
4783 *projid = EXT4_I(inode)->i_projid;
4784 return 0;
4785}
4786
e254d1af
EG
4787/*
4788 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4789 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4790 * set.
4791 */
4792static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4793{
4794 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4795 inode_set_iversion_raw(inode, val);
4796 else
4797 inode_set_iversion_queried(inode, val);
4798}
4799static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4800{
4801 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4802 return inode_peek_iversion_raw(inode);
4803 else
4804 return inode_peek_iversion(inode);
4805}
4806
8a363970
TT
4807struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4808 ext4_iget_flags flags, const char *function,
4809 unsigned int line)
ac27a0ec 4810{
617ba13b
MC
4811 struct ext4_iloc iloc;
4812 struct ext4_inode *raw_inode;
1d1fe1ee 4813 struct ext4_inode_info *ei;
1d1fe1ee 4814 struct inode *inode;
b436b9be 4815 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4816 long ret;
7e6e1ef4 4817 loff_t size;
ac27a0ec 4818 int block;
08cefc7a
EB
4819 uid_t i_uid;
4820 gid_t i_gid;
040cb378 4821 projid_t i_projid;
ac27a0ec 4822
191ce178 4823 if ((!(flags & EXT4_IGET_SPECIAL) &&
8a363970
TT
4824 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4825 (ino < EXT4_ROOT_INO) ||
4826 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4827 if (flags & EXT4_IGET_HANDLE)
4828 return ERR_PTR(-ESTALE);
4829 __ext4_error(sb, function, line,
4830 "inode #%lu: comm %s: iget: illegal inode #",
4831 ino, current->comm);
4832 return ERR_PTR(-EFSCORRUPTED);
4833 }
4834
1d1fe1ee
DH
4835 inode = iget_locked(sb, ino);
4836 if (!inode)
4837 return ERR_PTR(-ENOMEM);
4838 if (!(inode->i_state & I_NEW))
4839 return inode;
4840
4841 ei = EXT4_I(inode);
7dc57615 4842 iloc.bh = NULL;
ac27a0ec 4843
1d1fe1ee
DH
4844 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4845 if (ret < 0)
ac27a0ec 4846 goto bad_inode;
617ba13b 4847 raw_inode = ext4_raw_inode(&iloc);
814525f4 4848
8e4b5eae 4849 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
8a363970
TT
4850 ext4_error_inode(inode, function, line, 0,
4851 "iget: root inode unallocated");
8e4b5eae
TT
4852 ret = -EFSCORRUPTED;
4853 goto bad_inode;
4854 }
4855
8a363970
TT
4856 if ((flags & EXT4_IGET_HANDLE) &&
4857 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4858 ret = -ESTALE;
4859 goto bad_inode;
4860 }
4861
814525f4
DW
4862 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4864 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4865 EXT4_INODE_SIZE(inode->i_sb) ||
4866 (ei->i_extra_isize & 3)) {
8a363970
TT
4867 ext4_error_inode(inode, function, line, 0,
4868 "iget: bad extra_isize %u "
4869 "(inode size %u)",
2dc8d9e1
EB
4870 ei->i_extra_isize,
4871 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4872 ret = -EFSCORRUPTED;
814525f4
DW
4873 goto bad_inode;
4874 }
4875 } else
4876 ei->i_extra_isize = 0;
4877
4878 /* Precompute checksum seed for inode metadata */
9aa5d32b 4879 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4880 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4881 __u32 csum;
4882 __le32 inum = cpu_to_le32(inode->i_ino);
4883 __le32 gen = raw_inode->i_generation;
4884 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4885 sizeof(inum));
4886 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4887 sizeof(gen));
4888 }
4889
4890 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
8a363970
TT
4891 ext4_error_inode(inode, function, line, 0,
4892 "iget: checksum invalid");
6a797d27 4893 ret = -EFSBADCRC;
814525f4
DW
4894 goto bad_inode;
4895 }
4896
ac27a0ec 4897 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4898 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4899 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4900 if (ext4_has_feature_project(sb) &&
040cb378
LX
4901 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4902 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4903 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4904 else
4905 i_projid = EXT4_DEF_PROJID;
4906
af5bc92d 4907 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4908 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4909 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4910 }
08cefc7a
EB
4911 i_uid_write(inode, i_uid);
4912 i_gid_write(inode, i_gid);
040cb378 4913 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4914 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4915
353eb83c 4916 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4917 ei->i_inline_off = 0;
ac27a0ec
DK
4918 ei->i_dir_start_lookup = 0;
4919 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4920 /* We now have enough fields to check if the inode was active or not.
4921 * This is needed because nfsd might try to access dead inodes
4922 * the test is that same one that e2fsck uses
4923 * NeilBrown 1999oct15
4924 */
4925 if (inode->i_nlink == 0) {
393d1d1d
DTB
4926 if ((inode->i_mode == 0 ||
4927 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4928 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4929 /* this inode is deleted */
1d1fe1ee 4930 ret = -ESTALE;
ac27a0ec
DK
4931 goto bad_inode;
4932 }
4933 /* The only unlinked inodes we let through here have
4934 * valid i_mode and are being read by the orphan
4935 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4936 * the process of deleting those.
4937 * OR it is the EXT4_BOOT_LOADER_INO which is
4938 * not initialized on a new filesystem. */
ac27a0ec 4939 }
ac27a0ec 4940 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
cce6c9f7 4941 ext4_set_inode_flags(inode);
0fc1b451 4942 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4943 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4944 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4945 ei->i_file_acl |=
4946 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
e08ac99f 4947 inode->i_size = ext4_isize(sb, raw_inode);
7e6e1ef4 4948 if ((size = i_size_read(inode)) < 0) {
8a363970
TT
4949 ext4_error_inode(inode, function, line, 0,
4950 "iget: bad i_size value: %lld", size);
7e6e1ef4
DW
4951 ret = -EFSCORRUPTED;
4952 goto bad_inode;
4953 }
ac27a0ec 4954 ei->i_disksize = inode->i_size;
a9e7f447
DM
4955#ifdef CONFIG_QUOTA
4956 ei->i_reserved_quota = 0;
4957#endif
ac27a0ec
DK
4958 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4959 ei->i_block_group = iloc.block_group;
a4912123 4960 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4961 /*
4962 * NOTE! The in-memory inode i_data array is in little-endian order
4963 * even on big-endian machines: we do NOT byteswap the block numbers!
4964 */
617ba13b 4965 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4966 ei->i_data[block] = raw_inode->i_block[block];
4967 INIT_LIST_HEAD(&ei->i_orphan);
4968
b436b9be
JK
4969 /*
4970 * Set transaction id's of transactions that have to be committed
4971 * to finish f[data]sync. We set them to currently running transaction
4972 * as we cannot be sure that the inode or some of its metadata isn't
4973 * part of the transaction - the inode could have been reclaimed and
4974 * now it is reread from disk.
4975 */
4976 if (journal) {
4977 transaction_t *transaction;
4978 tid_t tid;
4979
a931da6a 4980 read_lock(&journal->j_state_lock);
b436b9be
JK
4981 if (journal->j_running_transaction)
4982 transaction = journal->j_running_transaction;
4983 else
4984 transaction = journal->j_committing_transaction;
4985 if (transaction)
4986 tid = transaction->t_tid;
4987 else
4988 tid = journal->j_commit_sequence;
a931da6a 4989 read_unlock(&journal->j_state_lock);
b436b9be
JK
4990 ei->i_sync_tid = tid;
4991 ei->i_datasync_tid = tid;
4992 }
4993
0040d987 4994 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4995 if (ei->i_extra_isize == 0) {
4996 /* The extra space is currently unused. Use it. */
2dc8d9e1 4997 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4998 ei->i_extra_isize = sizeof(struct ext4_inode) -
4999 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 5000 } else {
eb9b5f01
TT
5001 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5002 if (ret)
5003 goto bad_inode;
ac27a0ec 5004 }
814525f4 5005 }
ac27a0ec 5006
ef7f3835
KS
5007 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5008 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5009 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5010 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5011
ed3654eb 5012 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
ee73f9a5
JL
5013 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5014
c4f65706
TT
5015 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5016 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
ee73f9a5 5017 ivers |=
c4f65706
TT
5018 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5019 }
e254d1af 5020 ext4_inode_set_iversion_queried(inode, ivers);
25ec56b5
JNC
5021 }
5022
c4b5a614 5023 ret = 0;
485c26ec 5024 if (ei->i_file_acl &&
1032988c 5025 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
8a363970
TT
5026 ext4_error_inode(inode, function, line, 0,
5027 "iget: bad extended attribute block %llu",
24676da4 5028 ei->i_file_acl);
6a797d27 5029 ret = -EFSCORRUPTED;
485c26ec 5030 goto bad_inode;
f19d5870 5031 } else if (!ext4_has_inline_data(inode)) {
bc716523
LS
5032 /* validate the block references in the inode */
5033 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5034 (S_ISLNK(inode->i_mode) &&
5035 !ext4_inode_is_fast_symlink(inode))) {
5036 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
f19d5870 5037 ret = ext4_ext_check_inode(inode);
bc716523
LS
5038 else
5039 ret = ext4_ind_check_inode(inode);
f19d5870 5040 }
fe2c8191 5041 }
567f3e9a 5042 if (ret)
de9a55b8 5043 goto bad_inode;
7a262f7c 5044
ac27a0ec 5045 if (S_ISREG(inode->i_mode)) {
617ba13b 5046 inode->i_op = &ext4_file_inode_operations;
be64f884 5047 inode->i_fop = &ext4_file_operations;
617ba13b 5048 ext4_set_aops(inode);
ac27a0ec 5049 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5050 inode->i_op = &ext4_dir_inode_operations;
5051 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5052 } else if (S_ISLNK(inode->i_mode)) {
6390d33b
LR
5053 /* VFS does not allow setting these so must be corruption */
5054 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
8a363970
TT
5055 ext4_error_inode(inode, function, line, 0,
5056 "iget: immutable or append flags "
5057 "not allowed on symlinks");
6390d33b
LR
5058 ret = -EFSCORRUPTED;
5059 goto bad_inode;
5060 }
592ddec7 5061 if (IS_ENCRYPTED(inode)) {
a7a67e8a
AV
5062 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5063 ext4_set_aops(inode);
5064 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 5065 inode->i_link = (char *)ei->i_data;
617ba13b 5066 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5067 nd_terminate_link(ei->i_data, inode->i_size,
5068 sizeof(ei->i_data) - 1);
5069 } else {
617ba13b
MC
5070 inode->i_op = &ext4_symlink_inode_operations;
5071 ext4_set_aops(inode);
ac27a0ec 5072 }
21fc61c7 5073 inode_nohighmem(inode);
563bdd61
TT
5074 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5075 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5076 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5077 if (raw_inode->i_block[0])
5078 init_special_inode(inode, inode->i_mode,
5079 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5080 else
5081 init_special_inode(inode, inode->i_mode,
5082 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
5083 } else if (ino == EXT4_BOOT_LOADER_INO) {
5084 make_bad_inode(inode);
563bdd61 5085 } else {
6a797d27 5086 ret = -EFSCORRUPTED;
8a363970
TT
5087 ext4_error_inode(inode, function, line, 0,
5088 "iget: bogus i_mode (%o)", inode->i_mode);
563bdd61 5089 goto bad_inode;
ac27a0ec 5090 }
6456ca65
TT
5091 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5092 ext4_error_inode(inode, function, line, 0,
5093 "casefold flag without casefold feature");
af5bc92d 5094 brelse(iloc.bh);
dec214d0 5095
1d1fe1ee
DH
5096 unlock_new_inode(inode);
5097 return inode;
ac27a0ec
DK
5098
5099bad_inode:
567f3e9a 5100 brelse(iloc.bh);
1d1fe1ee
DH
5101 iget_failed(inode);
5102 return ERR_PTR(ret);
ac27a0ec
DK
5103}
5104
0fc1b451
AK
5105static int ext4_inode_blocks_set(handle_t *handle,
5106 struct ext4_inode *raw_inode,
5107 struct ext4_inode_info *ei)
5108{
5109 struct inode *inode = &(ei->vfs_inode);
5110 u64 i_blocks = inode->i_blocks;
5111 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5112
5113 if (i_blocks <= ~0U) {
5114 /*
4907cb7b 5115 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
5116 * as multiple of 512 bytes
5117 */
8180a562 5118 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5119 raw_inode->i_blocks_high = 0;
84a8dce2 5120 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5121 return 0;
5122 }
e2b911c5 5123 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
5124 return -EFBIG;
5125
5126 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5127 /*
5128 * i_blocks can be represented in a 48 bit variable
5129 * as multiple of 512 bytes
5130 */
8180a562 5131 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5132 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5133 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5134 } else {
84a8dce2 5135 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5136 /* i_block is stored in file system block size */
5137 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5138 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5139 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5140 }
f287a1a5 5141 return 0;
0fc1b451
AK
5142}
5143
a26f4992
TT
5144struct other_inode {
5145 unsigned long orig_ino;
5146 struct ext4_inode *raw_inode;
5147};
5148
5149static int other_inode_match(struct inode * inode, unsigned long ino,
5150 void *data)
5151{
5152 struct other_inode *oi = (struct other_inode *) data;
5153
5154 if ((inode->i_ino != ino) ||
5155 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
0e11f644 5156 I_DIRTY_INODE)) ||
a26f4992
TT
5157 ((inode->i_state & I_DIRTY_TIME) == 0))
5158 return 0;
5159 spin_lock(&inode->i_lock);
5160 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
0e11f644 5161 I_DIRTY_INODE)) == 0) &&
a26f4992
TT
5162 (inode->i_state & I_DIRTY_TIME)) {
5163 struct ext4_inode_info *ei = EXT4_I(inode);
5164
5165 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5166 spin_unlock(&inode->i_lock);
5167
5168 spin_lock(&ei->i_raw_lock);
5169 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5170 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5171 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5172 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5173 spin_unlock(&ei->i_raw_lock);
5174 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5175 return -1;
5176 }
5177 spin_unlock(&inode->i_lock);
5178 return -1;
5179}
5180
5181/*
5182 * Opportunistically update the other time fields for other inodes in
5183 * the same inode table block.
5184 */
5185static void ext4_update_other_inodes_time(struct super_block *sb,
5186 unsigned long orig_ino, char *buf)
5187{
5188 struct other_inode oi;
5189 unsigned long ino;
5190 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5191 int inode_size = EXT4_INODE_SIZE(sb);
5192
5193 oi.orig_ino = orig_ino;
0f0ff9a9
TT
5194 /*
5195 * Calculate the first inode in the inode table block. Inode
5196 * numbers are one-based. That is, the first inode in a block
5197 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5198 */
5199 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
5200 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5201 if (ino == orig_ino)
5202 continue;
5203 oi.raw_inode = (struct ext4_inode *) buf;
5204 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5205 }
5206}
5207
ac27a0ec
DK
5208/*
5209 * Post the struct inode info into an on-disk inode location in the
5210 * buffer-cache. This gobbles the caller's reference to the
5211 * buffer_head in the inode location struct.
5212 *
5213 * The caller must have write access to iloc->bh.
5214 */
617ba13b 5215static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5216 struct inode *inode,
830156c7 5217 struct ext4_iloc *iloc)
ac27a0ec 5218{
617ba13b
MC
5219 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5220 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 5221 struct buffer_head *bh = iloc->bh;
202ee5df 5222 struct super_block *sb = inode->i_sb;
ac27a0ec 5223 int err = 0, rc, block;
202ee5df 5224 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
5225 uid_t i_uid;
5226 gid_t i_gid;
040cb378 5227 projid_t i_projid;
ac27a0ec 5228
202ee5df
TT
5229 spin_lock(&ei->i_raw_lock);
5230
5231 /* For fields not tracked in the in-memory inode,
ac27a0ec 5232 * initialise them to zero for new inodes. */
19f5fb7a 5233 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5234 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec
DK
5235
5236 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
5237 i_uid = i_uid_read(inode);
5238 i_gid = i_gid_read(inode);
040cb378 5239 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 5240 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
5241 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5242 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
5243/*
5244 * Fix up interoperability with old kernels. Otherwise, old inodes get
5245 * re-used with the upper 16 bits of the uid/gid intact
5246 */
93e3b4e6
DJ
5247 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5248 raw_inode->i_uid_high = 0;
5249 raw_inode->i_gid_high = 0;
5250 } else {
ac27a0ec 5251 raw_inode->i_uid_high =
08cefc7a 5252 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 5253 raw_inode->i_gid_high =
08cefc7a 5254 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
5255 }
5256 } else {
08cefc7a
EB
5257 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5258 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
5259 raw_inode->i_uid_high = 0;
5260 raw_inode->i_gid_high = 0;
5261 }
5262 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5263
5264 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5265 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5266 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5267 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5268
bce92d56
LX
5269 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5270 if (err) {
202ee5df 5271 spin_unlock(&ei->i_raw_lock);
0fc1b451 5272 goto out_brelse;
202ee5df 5273 }
ac27a0ec 5274 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5275 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5276 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5277 raw_inode->i_file_acl_high =
5278 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5279 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
e08ac99f 5280 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
b71fc079
JK
5281 ext4_isize_set(raw_inode, ei->i_disksize);
5282 need_datasync = 1;
5283 }
a48380f7 5284 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5285 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5286 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5287 cpu_to_le32(EXT4_GOOD_OLD_REV))
5288 set_large_file = 1;
ac27a0ec
DK
5289 }
5290 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5291 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5292 if (old_valid_dev(inode->i_rdev)) {
5293 raw_inode->i_block[0] =
5294 cpu_to_le32(old_encode_dev(inode->i_rdev));
5295 raw_inode->i_block[1] = 0;
5296 } else {
5297 raw_inode->i_block[0] = 0;
5298 raw_inode->i_block[1] =
5299 cpu_to_le32(new_encode_dev(inode->i_rdev));
5300 raw_inode->i_block[2] = 0;
5301 }
f19d5870 5302 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5303 for (block = 0; block < EXT4_N_BLOCKS; block++)
5304 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5305 }
ac27a0ec 5306
ed3654eb 5307 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
e254d1af 5308 u64 ivers = ext4_inode_peek_iversion(inode);
ee73f9a5
JL
5309
5310 raw_inode->i_disk_version = cpu_to_le32(ivers);
c4f65706
TT
5311 if (ei->i_extra_isize) {
5312 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5313 raw_inode->i_version_hi =
ee73f9a5 5314 cpu_to_le32(ivers >> 32);
c4f65706
TT
5315 raw_inode->i_extra_isize =
5316 cpu_to_le16(ei->i_extra_isize);
5317 }
25ec56b5 5318 }
040cb378 5319
0b7b7779 5320 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
5321 i_projid != EXT4_DEF_PROJID);
5322
5323 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5324 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5325 raw_inode->i_projid = cpu_to_le32(i_projid);
5326
814525f4 5327 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5328 spin_unlock(&ei->i_raw_lock);
1751e8a6 5329 if (inode->i_sb->s_flags & SB_LAZYTIME)
a26f4992
TT
5330 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5331 bh->b_data);
202ee5df 5332
830156c7 5333 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5334 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5335 if (!err)
5336 err = rc;
19f5fb7a 5337 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5338 if (set_large_file) {
5d601255 5339 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5340 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5341 if (err)
5342 goto out_brelse;
e2b911c5 5343 ext4_set_feature_large_file(sb);
202ee5df
TT
5344 ext4_handle_sync(handle);
5345 err = ext4_handle_dirty_super(handle, sb);
5346 }
b71fc079 5347 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5348out_brelse:
af5bc92d 5349 brelse(bh);
617ba13b 5350 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5351 return err;
5352}
5353
5354/*
617ba13b 5355 * ext4_write_inode()
ac27a0ec
DK
5356 *
5357 * We are called from a few places:
5358 *
87f7e416 5359 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5360 * Here, there will be no transaction running. We wait for any running
4907cb7b 5361 * transaction to commit.
ac27a0ec 5362 *
87f7e416
TT
5363 * - Within flush work (sys_sync(), kupdate and such).
5364 * We wait on commit, if told to.
ac27a0ec 5365 *
87f7e416
TT
5366 * - Within iput_final() -> write_inode_now()
5367 * We wait on commit, if told to.
ac27a0ec
DK
5368 *
5369 * In all cases it is actually safe for us to return without doing anything,
5370 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5371 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5372 * writeback.
ac27a0ec
DK
5373 *
5374 * Note that we are absolutely dependent upon all inode dirtiers doing the
5375 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5376 * which we are interested.
5377 *
5378 * It would be a bug for them to not do this. The code:
5379 *
5380 * mark_inode_dirty(inode)
5381 * stuff();
5382 * inode->i_size = expr;
5383 *
87f7e416
TT
5384 * is in error because write_inode() could occur while `stuff()' is running,
5385 * and the new i_size will be lost. Plus the inode will no longer be on the
5386 * superblock's dirty inode list.
ac27a0ec 5387 */
a9185b41 5388int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5389{
91ac6f43
FM
5390 int err;
5391
18f2c4fc
TT
5392 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5393 sb_rdonly(inode->i_sb))
ac27a0ec
DK
5394 return 0;
5395
18f2c4fc
TT
5396 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5397 return -EIO;
5398
91ac6f43
FM
5399 if (EXT4_SB(inode->i_sb)->s_journal) {
5400 if (ext4_journal_current_handle()) {
5401 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5402 dump_stack();
5403 return -EIO;
5404 }
ac27a0ec 5405
10542c22
JK
5406 /*
5407 * No need to force transaction in WB_SYNC_NONE mode. Also
5408 * ext4_sync_fs() will force the commit after everything is
5409 * written.
5410 */
5411 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5412 return 0;
5413
18f2c4fc
TT
5414 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5415 EXT4_I(inode)->i_sync_tid);
91ac6f43
FM
5416 } else {
5417 struct ext4_iloc iloc;
ac27a0ec 5418
8b472d73 5419 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5420 if (err)
5421 return err;
10542c22
JK
5422 /*
5423 * sync(2) will flush the whole buffer cache. No need to do
5424 * it here separately for each inode.
5425 */
5426 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5427 sync_dirty_buffer(iloc.bh);
5428 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5429 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5430 "IO error syncing inode");
830156c7
FM
5431 err = -EIO;
5432 }
fd2dd9fb 5433 brelse(iloc.bh);
91ac6f43
FM
5434 }
5435 return err;
ac27a0ec
DK
5436}
5437
53e87268
JK
5438/*
5439 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5440 * buffers that are attached to a page stradding i_size and are undergoing
5441 * commit. In that case we have to wait for commit to finish and try again.
5442 */
5443static void ext4_wait_for_tail_page_commit(struct inode *inode)
5444{
5445 struct page *page;
5446 unsigned offset;
5447 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5448 tid_t commit_tid = 0;
5449 int ret;
5450
09cbfeaf 5451 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5452 /*
5453 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5454 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5455 * blocksize case
5456 */
93407472 5457 if (offset > PAGE_SIZE - i_blocksize(inode))
53e87268
JK
5458 return;
5459 while (1) {
5460 page = find_lock_page(inode->i_mapping,
09cbfeaf 5461 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5462 if (!page)
5463 return;
ca99fdd2 5464 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5465 PAGE_SIZE - offset);
53e87268 5466 unlock_page(page);
09cbfeaf 5467 put_page(page);
53e87268
JK
5468 if (ret != -EBUSY)
5469 return;
5470 commit_tid = 0;
5471 read_lock(&journal->j_state_lock);
5472 if (journal->j_committing_transaction)
5473 commit_tid = journal->j_committing_transaction->t_tid;
5474 read_unlock(&journal->j_state_lock);
5475 if (commit_tid)
5476 jbd2_log_wait_commit(journal, commit_tid);
5477 }
5478}
5479
ac27a0ec 5480/*
617ba13b 5481 * ext4_setattr()
ac27a0ec
DK
5482 *
5483 * Called from notify_change.
5484 *
5485 * We want to trap VFS attempts to truncate the file as soon as
5486 * possible. In particular, we want to make sure that when the VFS
5487 * shrinks i_size, we put the inode on the orphan list and modify
5488 * i_disksize immediately, so that during the subsequent flushing of
5489 * dirty pages and freeing of disk blocks, we can guarantee that any
5490 * commit will leave the blocks being flushed in an unused state on
5491 * disk. (On recovery, the inode will get truncated and the blocks will
5492 * be freed, so we have a strong guarantee that no future commit will
5493 * leave these blocks visible to the user.)
5494 *
678aaf48
JK
5495 * Another thing we have to assure is that if we are in ordered mode
5496 * and inode is still attached to the committing transaction, we must
5497 * we start writeout of all the dirty pages which are being truncated.
5498 * This way we are sure that all the data written in the previous
5499 * transaction are already on disk (truncate waits for pages under
5500 * writeback).
5501 *
5502 * Called with inode->i_mutex down.
ac27a0ec 5503 */
617ba13b 5504int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5505{
2b0143b5 5506 struct inode *inode = d_inode(dentry);
ac27a0ec 5507 int error, rc = 0;
3d287de3 5508 int orphan = 0;
ac27a0ec
DK
5509 const unsigned int ia_valid = attr->ia_valid;
5510
0db1ff22
TT
5511 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5512 return -EIO;
5513
02b016ca
TT
5514 if (unlikely(IS_IMMUTABLE(inode)))
5515 return -EPERM;
5516
5517 if (unlikely(IS_APPEND(inode) &&
5518 (ia_valid & (ATTR_MODE | ATTR_UID |
5519 ATTR_GID | ATTR_TIMES_SET))))
5520 return -EPERM;
5521
31051c85 5522 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5523 if (error)
5524 return error;
5525
3ce2b8dd
EB
5526 error = fscrypt_prepare_setattr(dentry, attr);
5527 if (error)
5528 return error;
5529
c93d8f88
EB
5530 error = fsverity_prepare_setattr(dentry, attr);
5531 if (error)
5532 return error;
5533
a7cdadee
JK
5534 if (is_quota_modification(inode, attr)) {
5535 error = dquot_initialize(inode);
5536 if (error)
5537 return error;
5538 }
08cefc7a
EB
5539 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5540 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5541 handle_t *handle;
5542
5543 /* (user+group)*(old+new) structure, inode write (sb,
5544 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5545 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5546 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5547 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5548 if (IS_ERR(handle)) {
5549 error = PTR_ERR(handle);
5550 goto err_out;
5551 }
7a9ca53a
TE
5552
5553 /* dquot_transfer() calls back ext4_get_inode_usage() which
5554 * counts xattr inode references.
5555 */
5556 down_read(&EXT4_I(inode)->xattr_sem);
b43fa828 5557 error = dquot_transfer(inode, attr);
7a9ca53a
TE
5558 up_read(&EXT4_I(inode)->xattr_sem);
5559
ac27a0ec 5560 if (error) {
617ba13b 5561 ext4_journal_stop(handle);
ac27a0ec
DK
5562 return error;
5563 }
5564 /* Update corresponding info in inode so that everything is in
5565 * one transaction */
5566 if (attr->ia_valid & ATTR_UID)
5567 inode->i_uid = attr->ia_uid;
5568 if (attr->ia_valid & ATTR_GID)
5569 inode->i_gid = attr->ia_gid;
617ba13b
MC
5570 error = ext4_mark_inode_dirty(handle, inode);
5571 ext4_journal_stop(handle);
ac27a0ec
DK
5572 }
5573
3da40c7b 5574 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5575 handle_t *handle;
3da40c7b 5576 loff_t oldsize = inode->i_size;
b9c1c267 5577 int shrink = (attr->ia_size < inode->i_size);
562c72aa 5578
12e9b892 5579 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5580 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5581
0c095c7f
TT
5582 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5583 return -EFBIG;
e2b46574 5584 }
3da40c7b
JB
5585 if (!S_ISREG(inode->i_mode))
5586 return -EINVAL;
dff6efc3
CH
5587
5588 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5589 inode_inc_iversion(inode);
5590
b9c1c267
JK
5591 if (shrink) {
5592 if (ext4_should_order_data(inode)) {
5593 error = ext4_begin_ordered_truncate(inode,
678aaf48 5594 attr->ia_size);
b9c1c267
JK
5595 if (error)
5596 goto err_out;
5597 }
5598 /*
5599 * Blocks are going to be removed from the inode. Wait
5600 * for dio in flight.
5601 */
5602 inode_dio_wait(inode);
5603 }
5604
5605 down_write(&EXT4_I(inode)->i_mmap_sem);
5606
5607 rc = ext4_break_layouts(inode);
5608 if (rc) {
5609 up_write(&EXT4_I(inode)->i_mmap_sem);
5610 return rc;
3da40c7b 5611 }
b9c1c267 5612
3da40c7b 5613 if (attr->ia_size != inode->i_size) {
5208386c
JK
5614 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5615 if (IS_ERR(handle)) {
5616 error = PTR_ERR(handle);
b9c1c267 5617 goto out_mmap_sem;
5208386c 5618 }
3da40c7b 5619 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5620 error = ext4_orphan_add(handle, inode);
5621 orphan = 1;
5622 }
911af577
EG
5623 /*
5624 * Update c/mtime on truncate up, ext4_truncate() will
5625 * update c/mtime in shrink case below
5626 */
5627 if (!shrink) {
eeca7ea1 5628 inode->i_mtime = current_time(inode);
911af577
EG
5629 inode->i_ctime = inode->i_mtime;
5630 }
90e775b7 5631 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5632 EXT4_I(inode)->i_disksize = attr->ia_size;
5633 rc = ext4_mark_inode_dirty(handle, inode);
5634 if (!error)
5635 error = rc;
90e775b7
JK
5636 /*
5637 * We have to update i_size under i_data_sem together
5638 * with i_disksize to avoid races with writeback code
5639 * running ext4_wb_update_i_disksize().
5640 */
5641 if (!error)
5642 i_size_write(inode, attr->ia_size);
5643 up_write(&EXT4_I(inode)->i_data_sem);
5208386c 5644 ext4_journal_stop(handle);
b9c1c267
JK
5645 if (error)
5646 goto out_mmap_sem;
5647 if (!shrink) {
5648 pagecache_isize_extended(inode, oldsize,
5649 inode->i_size);
5650 } else if (ext4_should_journal_data(inode)) {
5651 ext4_wait_for_tail_page_commit(inode);
678aaf48 5652 }
d6320cbf 5653 }
430657b6 5654
5208386c
JK
5655 /*
5656 * Truncate pagecache after we've waited for commit
5657 * in data=journal mode to make pages freeable.
5658 */
923ae0ff 5659 truncate_pagecache(inode, inode->i_size);
b9c1c267
JK
5660 /*
5661 * Call ext4_truncate() even if i_size didn't change to
5662 * truncate possible preallocated blocks.
5663 */
5664 if (attr->ia_size <= oldsize) {
2c98eb5e
TT
5665 rc = ext4_truncate(inode);
5666 if (rc)
5667 error = rc;
5668 }
b9c1c267 5669out_mmap_sem:
ea3d7209 5670 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5671 }
ac27a0ec 5672
2c98eb5e 5673 if (!error) {
1025774c
CH
5674 setattr_copy(inode, attr);
5675 mark_inode_dirty(inode);
5676 }
5677
5678 /*
5679 * If the call to ext4_truncate failed to get a transaction handle at
5680 * all, we need to clean up the in-core orphan list manually.
5681 */
3d287de3 5682 if (orphan && inode->i_nlink)
617ba13b 5683 ext4_orphan_del(NULL, inode);
ac27a0ec 5684
2c98eb5e 5685 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5686 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5687
5688err_out:
617ba13b 5689 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5690 if (!error)
5691 error = rc;
5692 return error;
5693}
5694
a528d35e
DH
5695int ext4_getattr(const struct path *path, struct kstat *stat,
5696 u32 request_mask, unsigned int query_flags)
3e3398a0 5697{
99652ea5
DH
5698 struct inode *inode = d_inode(path->dentry);
5699 struct ext4_inode *raw_inode;
5700 struct ext4_inode_info *ei = EXT4_I(inode);
5701 unsigned int flags;
5702
5703 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5704 stat->result_mask |= STATX_BTIME;
5705 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5706 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5707 }
5708
5709 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5710 if (flags & EXT4_APPEND_FL)
5711 stat->attributes |= STATX_ATTR_APPEND;
5712 if (flags & EXT4_COMPR_FL)
5713 stat->attributes |= STATX_ATTR_COMPRESSED;
5714 if (flags & EXT4_ENCRYPT_FL)
5715 stat->attributes |= STATX_ATTR_ENCRYPTED;
5716 if (flags & EXT4_IMMUTABLE_FL)
5717 stat->attributes |= STATX_ATTR_IMMUTABLE;
5718 if (flags & EXT4_NODUMP_FL)
5719 stat->attributes |= STATX_ATTR_NODUMP;
3e3398a0 5720
3209f68b
DH
5721 stat->attributes_mask |= (STATX_ATTR_APPEND |
5722 STATX_ATTR_COMPRESSED |
5723 STATX_ATTR_ENCRYPTED |
5724 STATX_ATTR_IMMUTABLE |
5725 STATX_ATTR_NODUMP);
5726
3e3398a0 5727 generic_fillattr(inode, stat);
99652ea5
DH
5728 return 0;
5729}
5730
5731int ext4_file_getattr(const struct path *path, struct kstat *stat,
5732 u32 request_mask, unsigned int query_flags)
5733{
5734 struct inode *inode = d_inode(path->dentry);
5735 u64 delalloc_blocks;
5736
5737 ext4_getattr(path, stat, request_mask, query_flags);
3e3398a0 5738
9206c561
AD
5739 /*
5740 * If there is inline data in the inode, the inode will normally not
5741 * have data blocks allocated (it may have an external xattr block).
5742 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5743 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5744 */
5745 if (unlikely(ext4_has_inline_data(inode)))
5746 stat->blocks += (stat->size + 511) >> 9;
5747
3e3398a0
MC
5748 /*
5749 * We can't update i_blocks if the block allocation is delayed
5750 * otherwise in the case of system crash before the real block
5751 * allocation is done, we will have i_blocks inconsistent with
5752 * on-disk file blocks.
5753 * We always keep i_blocks updated together with real
5754 * allocation. But to not confuse with user, stat
5755 * will return the blocks that include the delayed allocation
5756 * blocks for this file.
5757 */
96607551 5758 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5759 EXT4_I(inode)->i_reserved_data_blocks);
5760 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5761 return 0;
5762}
ac27a0ec 5763
fffb2739
JK
5764static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5765 int pextents)
a02908f1 5766{
12e9b892 5767 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5768 return ext4_ind_trans_blocks(inode, lblocks);
5769 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5770}
ac51d837 5771
ac27a0ec 5772/*
a02908f1
MC
5773 * Account for index blocks, block groups bitmaps and block group
5774 * descriptor blocks if modify datablocks and index blocks
5775 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5776 *
a02908f1 5777 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5778 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5779 * they could still across block group boundary.
ac27a0ec 5780 *
a02908f1
MC
5781 * Also account for superblock, inode, quota and xattr blocks
5782 */
dec214d0 5783static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
fffb2739 5784 int pextents)
a02908f1 5785{
8df9675f
TT
5786 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5787 int gdpblocks;
a02908f1
MC
5788 int idxblocks;
5789 int ret = 0;
5790
5791 /*
fffb2739
JK
5792 * How many index blocks need to touch to map @lblocks logical blocks
5793 * to @pextents physical extents?
a02908f1 5794 */
fffb2739 5795 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5796
5797 ret = idxblocks;
5798
5799 /*
5800 * Now let's see how many group bitmaps and group descriptors need
5801 * to account
5802 */
fffb2739 5803 groups = idxblocks + pextents;
a02908f1 5804 gdpblocks = groups;
8df9675f
TT
5805 if (groups > ngroups)
5806 groups = ngroups;
a02908f1
MC
5807 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5808 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5809
5810 /* bitmaps and block group descriptor blocks */
5811 ret += groups + gdpblocks;
5812
5813 /* Blocks for super block, inode, quota and xattr blocks */
5814 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5815
5816 return ret;
5817}
5818
5819/*
25985edc 5820 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5821 * the modification of a single pages into a single transaction,
5822 * which may include multiple chunks of block allocations.
ac27a0ec 5823 *
525f4ed8 5824 * This could be called via ext4_write_begin()
ac27a0ec 5825 *
525f4ed8 5826 * We need to consider the worse case, when
a02908f1 5827 * one new block per extent.
ac27a0ec 5828 */
a86c6181 5829int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5830{
617ba13b 5831 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5832 int ret;
5833
fffb2739 5834 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5835
a02908f1 5836 /* Account for data blocks for journalled mode */
617ba13b 5837 if (ext4_should_journal_data(inode))
a02908f1 5838 ret += bpp;
ac27a0ec
DK
5839 return ret;
5840}
f3bd1f3f
MC
5841
5842/*
5843 * Calculate the journal credits for a chunk of data modification.
5844 *
5845 * This is called from DIO, fallocate or whoever calling
79e83036 5846 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5847 *
5848 * journal buffers for data blocks are not included here, as DIO
5849 * and fallocate do no need to journal data buffers.
5850 */
5851int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5852{
5853 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5854}
5855
ac27a0ec 5856/*
617ba13b 5857 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5858 * Give this, we know that the caller already has write access to iloc->bh.
5859 */
617ba13b 5860int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5861 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5862{
5863 int err = 0;
5864
a6758309
VA
5865 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5866 put_bh(iloc->bh);
0db1ff22 5867 return -EIO;
a6758309 5868 }
c64db50e 5869 if (IS_I_VERSION(inode))
25ec56b5
JNC
5870 inode_inc_iversion(inode);
5871
ac27a0ec
DK
5872 /* the do_update_inode consumes one bh->b_count */
5873 get_bh(iloc->bh);
5874
dab291af 5875 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5876 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5877 put_bh(iloc->bh);
5878 return err;
5879}
5880
5881/*
5882 * On success, We end up with an outstanding reference count against
5883 * iloc->bh. This _must_ be cleaned up later.
5884 */
5885
5886int
617ba13b
MC
5887ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5888 struct ext4_iloc *iloc)
ac27a0ec 5889{
0390131b
FM
5890 int err;
5891
0db1ff22
TT
5892 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5893 return -EIO;
5894
0390131b
FM
5895 err = ext4_get_inode_loc(inode, iloc);
5896 if (!err) {
5897 BUFFER_TRACE(iloc->bh, "get_write_access");
5898 err = ext4_journal_get_write_access(handle, iloc->bh);
5899 if (err) {
5900 brelse(iloc->bh);
5901 iloc->bh = NULL;
ac27a0ec
DK
5902 }
5903 }
617ba13b 5904 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5905 return err;
5906}
5907
c03b45b8
MX
5908static int __ext4_expand_extra_isize(struct inode *inode,
5909 unsigned int new_extra_isize,
5910 struct ext4_iloc *iloc,
5911 handle_t *handle, int *no_expand)
5912{
5913 struct ext4_inode *raw_inode;
5914 struct ext4_xattr_ibody_header *header;
5915 int error;
5916
5917 raw_inode = ext4_raw_inode(iloc);
5918
5919 header = IHDR(inode, raw_inode);
5920
5921 /* No extended attributes present */
5922 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5923 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5924 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5925 EXT4_I(inode)->i_extra_isize, 0,
5926 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5927 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5928 return 0;
5929 }
5930
5931 /* try to expand with EAs present */
5932 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5933 raw_inode, handle);
5934 if (error) {
5935 /*
5936 * Inode size expansion failed; don't try again
5937 */
5938 *no_expand = 1;
5939 }
5940
5941 return error;
5942}
5943
6dd4ee7c
KS
5944/*
5945 * Expand an inode by new_extra_isize bytes.
5946 * Returns 0 on success or negative error number on failure.
5947 */
cf0a5e81
MX
5948static int ext4_try_to_expand_extra_isize(struct inode *inode,
5949 unsigned int new_extra_isize,
5950 struct ext4_iloc iloc,
5951 handle_t *handle)
6dd4ee7c 5952{
3b10fdc6
MX
5953 int no_expand;
5954 int error;
6dd4ee7c 5955
cf0a5e81
MX
5956 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5957 return -EOVERFLOW;
5958
5959 /*
5960 * In nojournal mode, we can immediately attempt to expand
5961 * the inode. When journaled, we first need to obtain extra
5962 * buffer credits since we may write into the EA block
5963 * with this same handle. If journal_extend fails, then it will
5964 * only result in a minor loss of functionality for that inode.
5965 * If this is felt to be critical, then e2fsck should be run to
5966 * force a large enough s_min_extra_isize.
5967 */
5968 if (ext4_handle_valid(handle) &&
5969 jbd2_journal_extend(handle,
5970 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5971 return -ENOSPC;
6dd4ee7c 5972
3b10fdc6 5973 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
cf0a5e81 5974 return -EBUSY;
3b10fdc6 5975
c03b45b8
MX
5976 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5977 handle, &no_expand);
5978 ext4_write_unlock_xattr(inode, &no_expand);
6dd4ee7c 5979
c03b45b8
MX
5980 return error;
5981}
6dd4ee7c 5982
c03b45b8
MX
5983int ext4_expand_extra_isize(struct inode *inode,
5984 unsigned int new_extra_isize,
5985 struct ext4_iloc *iloc)
5986{
5987 handle_t *handle;
5988 int no_expand;
5989 int error, rc;
5990
5991 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5992 brelse(iloc->bh);
5993 return -EOVERFLOW;
6dd4ee7c
KS
5994 }
5995
c03b45b8
MX
5996 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5997 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5998 if (IS_ERR(handle)) {
5999 error = PTR_ERR(handle);
6000 brelse(iloc->bh);
6001 return error;
6002 }
6003
6004 ext4_write_lock_xattr(inode, &no_expand);
6005
ddccb6db 6006 BUFFER_TRACE(iloc->bh, "get_write_access");
c03b45b8 6007 error = ext4_journal_get_write_access(handle, iloc->bh);
3b10fdc6 6008 if (error) {
c03b45b8
MX
6009 brelse(iloc->bh);
6010 goto out_stop;
3b10fdc6 6011 }
cf0a5e81 6012
c03b45b8
MX
6013 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6014 handle, &no_expand);
6015
6016 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6017 if (!error)
6018 error = rc;
6019
6020 ext4_write_unlock_xattr(inode, &no_expand);
6021out_stop:
6022 ext4_journal_stop(handle);
3b10fdc6 6023 return error;
6dd4ee7c
KS
6024}
6025
ac27a0ec
DK
6026/*
6027 * What we do here is to mark the in-core inode as clean with respect to inode
6028 * dirtiness (it may still be data-dirty).
6029 * This means that the in-core inode may be reaped by prune_icache
6030 * without having to perform any I/O. This is a very good thing,
6031 * because *any* task may call prune_icache - even ones which
6032 * have a transaction open against a different journal.
6033 *
6034 * Is this cheating? Not really. Sure, we haven't written the
6035 * inode out, but prune_icache isn't a user-visible syncing function.
6036 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6037 * we start and wait on commits.
ac27a0ec 6038 */
617ba13b 6039int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 6040{
617ba13b 6041 struct ext4_iloc iloc;
6dd4ee7c 6042 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
cf0a5e81 6043 int err;
ac27a0ec
DK
6044
6045 might_sleep();
7ff9c073 6046 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 6047 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
6048 if (err)
6049 return err;
cf0a5e81
MX
6050
6051 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6052 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6053 iloc, handle);
6054
5e1021f2 6055 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
6056}
6057
6058/*
617ba13b 6059 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
6060 *
6061 * We're really interested in the case where a file is being extended.
6062 * i_size has been changed by generic_commit_write() and we thus need
6063 * to include the updated inode in the current transaction.
6064 *
5dd4056d 6065 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
6066 * are allocated to the file.
6067 *
6068 * If the inode is marked synchronous, we don't honour that here - doing
6069 * so would cause a commit on atime updates, which we don't bother doing.
6070 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
6071 *
6072 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6073 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6074 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 6075 */
aa385729 6076void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 6077{
ac27a0ec
DK
6078 handle_t *handle;
6079
0ae45f63
TT
6080 if (flags == I_DIRTY_TIME)
6081 return;
9924a92a 6082 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
6083 if (IS_ERR(handle))
6084 goto out;
f3dc272f 6085
f3dc272f
CW
6086 ext4_mark_inode_dirty(handle, inode);
6087
617ba13b 6088 ext4_journal_stop(handle);
ac27a0ec
DK
6089out:
6090 return;
6091}
6092
617ba13b 6093int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
6094{
6095 journal_t *journal;
6096 handle_t *handle;
6097 int err;
c8585c6f 6098 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
6099
6100 /*
6101 * We have to be very careful here: changing a data block's
6102 * journaling status dynamically is dangerous. If we write a
6103 * data block to the journal, change the status and then delete
6104 * that block, we risk forgetting to revoke the old log record
6105 * from the journal and so a subsequent replay can corrupt data.
6106 * So, first we make sure that the journal is empty and that
6107 * nobody is changing anything.
6108 */
6109
617ba13b 6110 journal = EXT4_JOURNAL(inode);
0390131b
FM
6111 if (!journal)
6112 return 0;
d699594d 6113 if (is_journal_aborted(journal))
ac27a0ec
DK
6114 return -EROFS;
6115
17335dcc 6116 /* Wait for all existing dio workers */
17335dcc
DM
6117 inode_dio_wait(inode);
6118
4c546592
DJ
6119 /*
6120 * Before flushing the journal and switching inode's aops, we have
6121 * to flush all dirty data the inode has. There can be outstanding
6122 * delayed allocations, there can be unwritten extents created by
6123 * fallocate or buffered writes in dioread_nolock mode covered by
6124 * dirty data which can be converted only after flushing the dirty
6125 * data (and journalled aops don't know how to handle these cases).
6126 */
6127 if (val) {
6128 down_write(&EXT4_I(inode)->i_mmap_sem);
6129 err = filemap_write_and_wait(inode->i_mapping);
6130 if (err < 0) {
6131 up_write(&EXT4_I(inode)->i_mmap_sem);
4c546592
DJ
6132 return err;
6133 }
6134 }
6135
c8585c6f 6136 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 6137 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
6138
6139 /*
6140 * OK, there are no updates running now, and all cached data is
6141 * synced to disk. We are now in a completely consistent state
6142 * which doesn't have anything in the journal, and we know that
6143 * no filesystem updates are running, so it is safe to modify
6144 * the inode's in-core data-journaling state flag now.
6145 */
6146
6147 if (val)
12e9b892 6148 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6149 else {
4f879ca6
JK
6150 err = jbd2_journal_flush(journal);
6151 if (err < 0) {
6152 jbd2_journal_unlock_updates(journal);
c8585c6f 6153 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
6154 return err;
6155 }
12e9b892 6156 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6157 }
617ba13b 6158 ext4_set_aops(inode);
ac27a0ec 6159
dab291af 6160 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
6161 percpu_up_write(&sbi->s_journal_flag_rwsem);
6162
4c546592
DJ
6163 if (val)
6164 up_write(&EXT4_I(inode)->i_mmap_sem);
ac27a0ec
DK
6165
6166 /* Finally we can mark the inode as dirty. */
6167
9924a92a 6168 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
6169 if (IS_ERR(handle))
6170 return PTR_ERR(handle);
6171
617ba13b 6172 err = ext4_mark_inode_dirty(handle, inode);
0390131b 6173 ext4_handle_sync(handle);
617ba13b
MC
6174 ext4_journal_stop(handle);
6175 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6176
6177 return err;
6178}
2e9ee850
AK
6179
6180static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6181{
6182 return !buffer_mapped(bh);
6183}
6184
401b25aa 6185vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 6186{
11bac800 6187 struct vm_area_struct *vma = vmf->vma;
c2ec175c 6188 struct page *page = vmf->page;
2e9ee850
AK
6189 loff_t size;
6190 unsigned long len;
401b25aa
SJ
6191 int err;
6192 vm_fault_t ret;
2e9ee850 6193 struct file *file = vma->vm_file;
496ad9aa 6194 struct inode *inode = file_inode(file);
2e9ee850 6195 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
6196 handle_t *handle;
6197 get_block_t *get_block;
6198 int retries = 0;
2e9ee850 6199
02b016ca
TT
6200 if (unlikely(IS_IMMUTABLE(inode)))
6201 return VM_FAULT_SIGBUS;
6202
8e8ad8a5 6203 sb_start_pagefault(inode->i_sb);
041bbb6d 6204 file_update_time(vma->vm_file);
ea3d7209
JK
6205
6206 down_read(&EXT4_I(inode)->i_mmap_sem);
7b4cc978 6207
401b25aa
SJ
6208 err = ext4_convert_inline_data(inode);
6209 if (err)
7b4cc978
EB
6210 goto out_ret;
6211
9ea7df53
JK
6212 /* Delalloc case is easy... */
6213 if (test_opt(inode->i_sb, DELALLOC) &&
6214 !ext4_should_journal_data(inode) &&
6215 !ext4_nonda_switch(inode->i_sb)) {
6216 do {
401b25aa 6217 err = block_page_mkwrite(vma, vmf,
9ea7df53 6218 ext4_da_get_block_prep);
401b25aa 6219 } while (err == -ENOSPC &&
9ea7df53
JK
6220 ext4_should_retry_alloc(inode->i_sb, &retries));
6221 goto out_ret;
2e9ee850 6222 }
0e499890
DW
6223
6224 lock_page(page);
9ea7df53
JK
6225 size = i_size_read(inode);
6226 /* Page got truncated from under us? */
6227 if (page->mapping != mapping || page_offset(page) > size) {
6228 unlock_page(page);
6229 ret = VM_FAULT_NOPAGE;
6230 goto out;
0e499890 6231 }
2e9ee850 6232
09cbfeaf
KS
6233 if (page->index == size >> PAGE_SHIFT)
6234 len = size & ~PAGE_MASK;
2e9ee850 6235 else
09cbfeaf 6236 len = PAGE_SIZE;
a827eaff 6237 /*
9ea7df53
JK
6238 * Return if we have all the buffers mapped. This avoids the need to do
6239 * journal_start/journal_stop which can block and take a long time
a827eaff 6240 */
2e9ee850 6241 if (page_has_buffers(page)) {
f19d5870
TM
6242 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6243 0, len, NULL,
6244 ext4_bh_unmapped)) {
9ea7df53 6245 /* Wait so that we don't change page under IO */
1d1d1a76 6246 wait_for_stable_page(page);
9ea7df53
JK
6247 ret = VM_FAULT_LOCKED;
6248 goto out;
a827eaff 6249 }
2e9ee850 6250 }
a827eaff 6251 unlock_page(page);
9ea7df53
JK
6252 /* OK, we need to fill the hole... */
6253 if (ext4_should_dioread_nolock(inode))
705965bd 6254 get_block = ext4_get_block_unwritten;
9ea7df53
JK
6255 else
6256 get_block = ext4_get_block;
6257retry_alloc:
9924a92a
TT
6258 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6259 ext4_writepage_trans_blocks(inode));
9ea7df53 6260 if (IS_ERR(handle)) {
c2ec175c 6261 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
6262 goto out;
6263 }
401b25aa
SJ
6264 err = block_page_mkwrite(vma, vmf, get_block);
6265 if (!err && ext4_should_journal_data(inode)) {
f19d5870 6266 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 6267 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
6268 unlock_page(page);
6269 ret = VM_FAULT_SIGBUS;
fcbb5515 6270 ext4_journal_stop(handle);
9ea7df53
JK
6271 goto out;
6272 }
6273 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6274 }
6275 ext4_journal_stop(handle);
401b25aa 6276 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
9ea7df53
JK
6277 goto retry_alloc;
6278out_ret:
401b25aa 6279 ret = block_page_mkwrite_return(err);
9ea7df53 6280out:
ea3d7209 6281 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 6282 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
6283 return ret;
6284}
ea3d7209 6285
401b25aa 6286vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
ea3d7209 6287{
11bac800 6288 struct inode *inode = file_inode(vmf->vma->vm_file);
401b25aa 6289 vm_fault_t ret;
ea3d7209
JK
6290
6291 down_read(&EXT4_I(inode)->i_mmap_sem);
401b25aa 6292 ret = filemap_fault(vmf);
ea3d7209
JK
6293 up_read(&EXT4_I(inode)->i_mmap_sem);
6294
401b25aa 6295 return ret;
ea3d7209 6296}