jbd2: fast commit recovery path
[linux-2.6-block.git] / fs / ext4 / fast_commit.c
CommitLineData
6866d7b3
HS
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
aa75f4d3 10#include "ext4.h"
6866d7b3 11#include "ext4_jbd2.h"
aa75f4d3
HS
12#include "ext4_extents.h"
13#include "mballoc.h"
14
15/*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 * Not all operations are supported by fast commits today (e.g extended
69 * attributes). Fast commit ineligiblity is marked by calling one of the
70 * two following functions:
71 *
72 * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73 * back to full commit. This is useful in case of transient errors.
74 *
75 * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76 * the fast commits happening between ext4_fc_start_ineligible() and
77 * ext4_fc_stop_ineligible() and one fast commit after the call to
78 * ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79 * make one more fast commit to fall back to full commit after stop call so
80 * that it guaranteed that the fast commit ineligible operation contained
81 * within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82 * followed by at least 1 full commit.
83 *
84 * Atomicity of commits
85 * --------------------
86 * In order to gaurantee atomicity during the commit operation, fast commit
87 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88 * tag contains CRC of the contents and TID of the transaction after which
89 * this fast commit should be applied. Recovery code replays fast commit
90 * logs only if there's at least 1 valid tail present. For every fast commit
91 * operation, there is 1 tail. This means, we may end up with multiple tails
92 * in the fast commit space. Here's an example:
93 *
94 * - Create a new file A and remove existing file B
95 * - fsync()
96 * - Append contents to file A
97 * - Truncate file A
98 * - fsync()
99 *
100 * The fast commit space at the end of above operations would look like this:
101 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
103 *
104 * Replay code should thus check for all the valid tails in the FC area.
105 *
106 * TODOs
107 * -----
108 * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
109 * eligible update must be protected within ext4_fc_start_update() and
110 * ext4_fc_stop_update(). These routines are called at much higher
111 * routines. This can be made more fine grained by combining with
112 * ext4_journal_start().
113 *
114 * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
115 *
116 * 3) Handle more ineligible cases.
117 */
118
119#include <trace/events/ext4.h>
120static struct kmem_cache *ext4_fc_dentry_cachep;
121
122static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
123{
124 BUFFER_TRACE(bh, "");
125 if (uptodate) {
126 ext4_debug("%s: Block %lld up-to-date",
127 __func__, bh->b_blocknr);
128 set_buffer_uptodate(bh);
129 } else {
130 ext4_debug("%s: Block %lld not up-to-date",
131 __func__, bh->b_blocknr);
132 clear_buffer_uptodate(bh);
133 }
134
135 unlock_buffer(bh);
136}
137
138static inline void ext4_fc_reset_inode(struct inode *inode)
139{
140 struct ext4_inode_info *ei = EXT4_I(inode);
141
142 ei->i_fc_lblk_start = 0;
143 ei->i_fc_lblk_len = 0;
144}
145
146void ext4_fc_init_inode(struct inode *inode)
147{
148 struct ext4_inode_info *ei = EXT4_I(inode);
149
150 ext4_fc_reset_inode(inode);
151 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
152 INIT_LIST_HEAD(&ei->i_fc_list);
153 init_waitqueue_head(&ei->i_fc_wait);
154 atomic_set(&ei->i_fc_updates, 0);
155 ei->i_fc_committed_subtid = 0;
156}
157
158/*
159 * Inform Ext4's fast about start of an inode update
160 *
161 * This function is called by the high level call VFS callbacks before
162 * performing any inode update. This function blocks if there's an ongoing
163 * fast commit on the inode in question.
164 */
165void ext4_fc_start_update(struct inode *inode)
166{
167 struct ext4_inode_info *ei = EXT4_I(inode);
168
169 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
170 return;
171
172restart:
173 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
174 if (list_empty(&ei->i_fc_list))
175 goto out;
176
177 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
178 wait_queue_head_t *wq;
179#if (BITS_PER_LONG < 64)
180 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
181 EXT4_STATE_FC_COMMITTING);
182 wq = bit_waitqueue(&ei->i_state_flags,
183 EXT4_STATE_FC_COMMITTING);
184#else
185 DEFINE_WAIT_BIT(wait, &ei->i_flags,
186 EXT4_STATE_FC_COMMITTING);
187 wq = bit_waitqueue(&ei->i_flags,
188 EXT4_STATE_FC_COMMITTING);
189#endif
190 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
191 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
192 schedule();
193 finish_wait(wq, &wait.wq_entry);
194 goto restart;
195 }
196out:
197 atomic_inc(&ei->i_fc_updates);
198 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
199}
200
201/*
202 * Stop inode update and wake up waiting fast commits if any.
203 */
204void ext4_fc_stop_update(struct inode *inode)
205{
206 struct ext4_inode_info *ei = EXT4_I(inode);
207
208 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
209 return;
210
211 if (atomic_dec_and_test(&ei->i_fc_updates))
212 wake_up_all(&ei->i_fc_wait);
213}
214
215/*
216 * Remove inode from fast commit list. If the inode is being committed
217 * we wait until inode commit is done.
218 */
219void ext4_fc_del(struct inode *inode)
220{
221 struct ext4_inode_info *ei = EXT4_I(inode);
222
223 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
224 return;
225
226
227 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
228 return;
229
230restart:
231 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
232 if (list_empty(&ei->i_fc_list)) {
233 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
234 return;
235 }
236
237 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
238 wait_queue_head_t *wq;
239#if (BITS_PER_LONG < 64)
240 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
241 EXT4_STATE_FC_COMMITTING);
242 wq = bit_waitqueue(&ei->i_state_flags,
243 EXT4_STATE_FC_COMMITTING);
244#else
245 DEFINE_WAIT_BIT(wait, &ei->i_flags,
246 EXT4_STATE_FC_COMMITTING);
247 wq = bit_waitqueue(&ei->i_flags,
248 EXT4_STATE_FC_COMMITTING);
249#endif
250 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
251 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
252 schedule();
253 finish_wait(wq, &wait.wq_entry);
254 goto restart;
255 }
256 if (!list_empty(&ei->i_fc_list))
257 list_del_init(&ei->i_fc_list);
258 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
259}
260
261/*
262 * Mark file system as fast commit ineligible. This means that next commit
263 * operation would result in a full jbd2 commit.
264 */
265void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
266{
267 struct ext4_sb_info *sbi = EXT4_SB(sb);
268
269 sbi->s_mount_state |= EXT4_FC_INELIGIBLE;
270 WARN_ON(reason >= EXT4_FC_REASON_MAX);
271 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
272}
273
274/*
275 * Start a fast commit ineligible update. Any commits that happen while
276 * such an operation is in progress fall back to full commits.
277 */
278void ext4_fc_start_ineligible(struct super_block *sb, int reason)
279{
280 struct ext4_sb_info *sbi = EXT4_SB(sb);
281
282 WARN_ON(reason >= EXT4_FC_REASON_MAX);
283 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
284 atomic_inc(&sbi->s_fc_ineligible_updates);
285}
286
287/*
288 * Stop a fast commit ineligible update. We set EXT4_FC_INELIGIBLE flag here
289 * to ensure that after stopping the ineligible update, at least one full
290 * commit takes place.
291 */
292void ext4_fc_stop_ineligible(struct super_block *sb)
293{
294 EXT4_SB(sb)->s_mount_state |= EXT4_FC_INELIGIBLE;
295 atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
296}
297
298static inline int ext4_fc_is_ineligible(struct super_block *sb)
299{
300 return (EXT4_SB(sb)->s_mount_state & EXT4_FC_INELIGIBLE) ||
301 atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates);
302}
303
304/*
305 * Generic fast commit tracking function. If this is the first time this we are
306 * called after a full commit, we initialize fast commit fields and then call
307 * __fc_track_fn() with update = 0. If we have already been called after a full
308 * commit, we pass update = 1. Based on that, the track function can determine
309 * if it needs to track a field for the first time or if it needs to just
310 * update the previously tracked value.
311 *
312 * If enqueue is set, this function enqueues the inode in fast commit list.
313 */
314static int ext4_fc_track_template(
315 struct inode *inode, int (*__fc_track_fn)(struct inode *, void *, bool),
316 void *args, int enqueue)
317{
318 tid_t running_txn_tid;
319 bool update = false;
320 struct ext4_inode_info *ei = EXT4_I(inode);
321 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
322 int ret;
323
324 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
325 return -EOPNOTSUPP;
326
327 if (ext4_fc_is_ineligible(inode->i_sb))
328 return -EINVAL;
329
330 running_txn_tid = sbi->s_journal ?
331 sbi->s_journal->j_commit_sequence + 1 : 0;
332
333 mutex_lock(&ei->i_fc_lock);
334 if (running_txn_tid == ei->i_sync_tid) {
335 update = true;
336 } else {
337 ext4_fc_reset_inode(inode);
338 ei->i_sync_tid = running_txn_tid;
339 }
340 ret = __fc_track_fn(inode, args, update);
341 mutex_unlock(&ei->i_fc_lock);
342
343 if (!enqueue)
344 return ret;
345
346 spin_lock(&sbi->s_fc_lock);
347 if (list_empty(&EXT4_I(inode)->i_fc_list))
348 list_add_tail(&EXT4_I(inode)->i_fc_list,
349 (sbi->s_mount_state & EXT4_FC_COMMITTING) ?
350 &sbi->s_fc_q[FC_Q_STAGING] :
351 &sbi->s_fc_q[FC_Q_MAIN]);
352 spin_unlock(&sbi->s_fc_lock);
353
354 return ret;
355}
356
357struct __track_dentry_update_args {
358 struct dentry *dentry;
359 int op;
360};
361
362/* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
363static int __track_dentry_update(struct inode *inode, void *arg, bool update)
364{
365 struct ext4_fc_dentry_update *node;
366 struct ext4_inode_info *ei = EXT4_I(inode);
367 struct __track_dentry_update_args *dentry_update =
368 (struct __track_dentry_update_args *)arg;
369 struct dentry *dentry = dentry_update->dentry;
370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
371
372 mutex_unlock(&ei->i_fc_lock);
373 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
374 if (!node) {
375 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_MEM);
376 mutex_lock(&ei->i_fc_lock);
377 return -ENOMEM;
378 }
379
380 node->fcd_op = dentry_update->op;
381 node->fcd_parent = dentry->d_parent->d_inode->i_ino;
382 node->fcd_ino = inode->i_ino;
383 if (dentry->d_name.len > DNAME_INLINE_LEN) {
384 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
385 if (!node->fcd_name.name) {
386 kmem_cache_free(ext4_fc_dentry_cachep, node);
387 ext4_fc_mark_ineligible(inode->i_sb,
388 EXT4_FC_REASON_MEM);
389 mutex_lock(&ei->i_fc_lock);
390 return -ENOMEM;
391 }
392 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
393 dentry->d_name.len);
394 } else {
395 memcpy(node->fcd_iname, dentry->d_name.name,
396 dentry->d_name.len);
397 node->fcd_name.name = node->fcd_iname;
398 }
399 node->fcd_name.len = dentry->d_name.len;
400
401 spin_lock(&sbi->s_fc_lock);
402 if (sbi->s_mount_state & EXT4_FC_COMMITTING)
403 list_add_tail(&node->fcd_list,
404 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
405 else
406 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
407 spin_unlock(&sbi->s_fc_lock);
408 mutex_lock(&ei->i_fc_lock);
409
410 return 0;
411}
412
413void ext4_fc_track_unlink(struct inode *inode, struct dentry *dentry)
414{
415 struct __track_dentry_update_args args;
416 int ret;
417
418 args.dentry = dentry;
419 args.op = EXT4_FC_TAG_UNLINK;
420
421 ret = ext4_fc_track_template(inode, __track_dentry_update,
422 (void *)&args, 0);
423 trace_ext4_fc_track_unlink(inode, dentry, ret);
424}
425
426void ext4_fc_track_link(struct inode *inode, struct dentry *dentry)
427{
428 struct __track_dentry_update_args args;
429 int ret;
430
431 args.dentry = dentry;
432 args.op = EXT4_FC_TAG_LINK;
433
434 ret = ext4_fc_track_template(inode, __track_dentry_update,
435 (void *)&args, 0);
436 trace_ext4_fc_track_link(inode, dentry, ret);
437}
438
439void ext4_fc_track_create(struct inode *inode, struct dentry *dentry)
440{
441 struct __track_dentry_update_args args;
442 int ret;
443
444 args.dentry = dentry;
445 args.op = EXT4_FC_TAG_CREAT;
446
447 ret = ext4_fc_track_template(inode, __track_dentry_update,
448 (void *)&args, 0);
449 trace_ext4_fc_track_create(inode, dentry, ret);
450}
451
452/* __track_fn for inode tracking */
453static int __track_inode(struct inode *inode, void *arg, bool update)
454{
455 if (update)
456 return -EEXIST;
457
458 EXT4_I(inode)->i_fc_lblk_len = 0;
459
460 return 0;
461}
462
463void ext4_fc_track_inode(struct inode *inode)
464{
465 int ret;
466
467 if (S_ISDIR(inode->i_mode))
468 return;
469
470 ret = ext4_fc_track_template(inode, __track_inode, NULL, 1);
471 trace_ext4_fc_track_inode(inode, ret);
472}
473
474struct __track_range_args {
475 ext4_lblk_t start, end;
476};
477
478/* __track_fn for tracking data updates */
479static int __track_range(struct inode *inode, void *arg, bool update)
480{
481 struct ext4_inode_info *ei = EXT4_I(inode);
482 ext4_lblk_t oldstart;
483 struct __track_range_args *__arg =
484 (struct __track_range_args *)arg;
485
486 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
487 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
488 return -ECANCELED;
489 }
490
491 oldstart = ei->i_fc_lblk_start;
492
493 if (update && ei->i_fc_lblk_len > 0) {
494 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
495 ei->i_fc_lblk_len =
496 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
497 ei->i_fc_lblk_start + 1;
498 } else {
499 ei->i_fc_lblk_start = __arg->start;
500 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
501 }
502
503 return 0;
504}
505
506void ext4_fc_track_range(struct inode *inode, ext4_lblk_t start,
507 ext4_lblk_t end)
508{
509 struct __track_range_args args;
510 int ret;
511
512 if (S_ISDIR(inode->i_mode))
513 return;
514
515 args.start = start;
516 args.end = end;
517
518 ret = ext4_fc_track_template(inode, __track_range, &args, 1);
519
520 trace_ext4_fc_track_range(inode, start, end, ret);
521}
522
523static void ext4_fc_submit_bh(struct super_block *sb)
524{
525 int write_flags = REQ_SYNC;
526 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
527
528 if (test_opt(sb, BARRIER))
529 write_flags |= REQ_FUA | REQ_PREFLUSH;
530 lock_buffer(bh);
531 clear_buffer_dirty(bh);
532 set_buffer_uptodate(bh);
533 bh->b_end_io = ext4_end_buffer_io_sync;
534 submit_bh(REQ_OP_WRITE, write_flags, bh);
535 EXT4_SB(sb)->s_fc_bh = NULL;
536}
537
538/* Ext4 commit path routines */
539
540/* memzero and update CRC */
541static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
542 u32 *crc)
543{
544 void *ret;
545
546 ret = memset(dst, 0, len);
547 if (crc)
548 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
549 return ret;
550}
551
552/*
553 * Allocate len bytes on a fast commit buffer.
554 *
555 * During the commit time this function is used to manage fast commit
556 * block space. We don't split a fast commit log onto different
557 * blocks. So this function makes sure that if there's not enough space
558 * on the current block, the remaining space in the current block is
559 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
560 * new block is from jbd2 and CRC is updated to reflect the padding
561 * we added.
562 */
563static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
564{
565 struct ext4_fc_tl *tl;
566 struct ext4_sb_info *sbi = EXT4_SB(sb);
567 struct buffer_head *bh;
568 int bsize = sbi->s_journal->j_blocksize;
569 int ret, off = sbi->s_fc_bytes % bsize;
570 int pad_len;
571
572 /*
573 * After allocating len, we should have space at least for a 0 byte
574 * padding.
575 */
576 if (len + sizeof(struct ext4_fc_tl) > bsize)
577 return NULL;
578
579 if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
580 /*
581 * Only allocate from current buffer if we have enough space for
582 * this request AND we have space to add a zero byte padding.
583 */
584 if (!sbi->s_fc_bh) {
585 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
586 if (ret)
587 return NULL;
588 sbi->s_fc_bh = bh;
589 }
590 sbi->s_fc_bytes += len;
591 return sbi->s_fc_bh->b_data + off;
592 }
593 /* Need to add PAD tag */
594 tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
595 tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
596 pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
597 tl->fc_len = cpu_to_le16(pad_len);
598 if (crc)
599 *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
600 if (pad_len > 0)
601 ext4_fc_memzero(sb, tl + 1, pad_len, crc);
602 ext4_fc_submit_bh(sb);
603
604 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
605 if (ret)
606 return NULL;
607 sbi->s_fc_bh = bh;
608 sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
609 return sbi->s_fc_bh->b_data;
610}
611
612/* memcpy to fc reserved space and update CRC */
613static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
614 int len, u32 *crc)
615{
616 if (crc)
617 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
618 return memcpy(dst, src, len);
619}
620
621/*
622 * Complete a fast commit by writing tail tag.
623 *
624 * Writing tail tag marks the end of a fast commit. In order to guarantee
625 * atomicity, after writing tail tag, even if there's space remaining
626 * in the block, next commit shouldn't use it. That's why tail tag
627 * has the length as that of the remaining space on the block.
628 */
629static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
630{
631 struct ext4_sb_info *sbi = EXT4_SB(sb);
632 struct ext4_fc_tl tl;
633 struct ext4_fc_tail tail;
634 int off, bsize = sbi->s_journal->j_blocksize;
635 u8 *dst;
636
637 /*
638 * ext4_fc_reserve_space takes care of allocating an extra block if
639 * there's no enough space on this block for accommodating this tail.
640 */
641 dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
642 if (!dst)
643 return -ENOSPC;
644
645 off = sbi->s_fc_bytes % bsize;
646
647 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
648 tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
649 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
650
651 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
652 dst += sizeof(tl);
653 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
654 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
655 dst += sizeof(tail.fc_tid);
656 tail.fc_crc = cpu_to_le32(crc);
657 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
658
659 ext4_fc_submit_bh(sb);
660
661 return 0;
662}
663
664/*
665 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
666 * Returns false if there's not enough space.
667 */
668static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
669 u32 *crc)
670{
671 struct ext4_fc_tl tl;
672 u8 *dst;
673
674 dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
675 if (!dst)
676 return false;
677
678 tl.fc_tag = cpu_to_le16(tag);
679 tl.fc_len = cpu_to_le16(len);
680
681 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
682 ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
683
684 return true;
685}
686
687/* Same as above, but adds dentry tlv. */
688static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
689 int parent_ino, int ino, int dlen,
690 const unsigned char *dname,
691 u32 *crc)
692{
693 struct ext4_fc_dentry_info fcd;
694 struct ext4_fc_tl tl;
695 u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
696 crc);
697
698 if (!dst)
699 return false;
700
701 fcd.fc_parent_ino = cpu_to_le32(parent_ino);
702 fcd.fc_ino = cpu_to_le32(ino);
703 tl.fc_tag = cpu_to_le16(tag);
704 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
705 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
706 dst += sizeof(tl);
707 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
708 dst += sizeof(fcd);
709 ext4_fc_memcpy(sb, dst, dname, dlen, crc);
710 dst += dlen;
711
712 return true;
713}
714
715/*
716 * Writes inode in the fast commit space under TLV with tag @tag.
717 * Returns 0 on success, error on failure.
718 */
719static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
720{
721 struct ext4_inode_info *ei = EXT4_I(inode);
722 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
723 int ret;
724 struct ext4_iloc iloc;
725 struct ext4_fc_inode fc_inode;
726 struct ext4_fc_tl tl;
727 u8 *dst;
728
729 ret = ext4_get_inode_loc(inode, &iloc);
730 if (ret)
731 return ret;
732
733 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
734 inode_len += ei->i_extra_isize;
735
736 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
737 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
738 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
739
740 dst = ext4_fc_reserve_space(inode->i_sb,
741 sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
742 if (!dst)
743 return -ECANCELED;
744
745 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
746 return -ECANCELED;
747 dst += sizeof(tl);
748 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
749 return -ECANCELED;
750 dst += sizeof(fc_inode);
751 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
752 inode_len, crc))
753 return -ECANCELED;
754
755 return 0;
756}
757
758/*
759 * Writes updated data ranges for the inode in question. Updates CRC.
760 * Returns 0 on success, error otherwise.
761 */
762static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
763{
764 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
765 struct ext4_inode_info *ei = EXT4_I(inode);
766 struct ext4_map_blocks map;
767 struct ext4_fc_add_range fc_ext;
768 struct ext4_fc_del_range lrange;
769 struct ext4_extent *ex;
770 int ret;
771
772 mutex_lock(&ei->i_fc_lock);
773 if (ei->i_fc_lblk_len == 0) {
774 mutex_unlock(&ei->i_fc_lock);
775 return 0;
776 }
777 old_blk_size = ei->i_fc_lblk_start;
778 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
779 ei->i_fc_lblk_len = 0;
780 mutex_unlock(&ei->i_fc_lock);
781
782 cur_lblk_off = old_blk_size;
783 jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
784 __func__, cur_lblk_off, new_blk_size, inode->i_ino);
785
786 while (cur_lblk_off <= new_blk_size) {
787 map.m_lblk = cur_lblk_off;
788 map.m_len = new_blk_size - cur_lblk_off + 1;
789 ret = ext4_map_blocks(NULL, inode, &map, 0);
790 if (ret < 0)
791 return -ECANCELED;
792
793 if (map.m_len == 0) {
794 cur_lblk_off++;
795 continue;
796 }
797
798 if (ret == 0) {
799 lrange.fc_ino = cpu_to_le32(inode->i_ino);
800 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
801 lrange.fc_len = cpu_to_le32(map.m_len);
802 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
803 sizeof(lrange), (u8 *)&lrange, crc))
804 return -ENOSPC;
805 } else {
806 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
807 ex = (struct ext4_extent *)&fc_ext.fc_ex;
808 ex->ee_block = cpu_to_le32(map.m_lblk);
809 ex->ee_len = cpu_to_le16(map.m_len);
810 ext4_ext_store_pblock(ex, map.m_pblk);
811 if (map.m_flags & EXT4_MAP_UNWRITTEN)
812 ext4_ext_mark_unwritten(ex);
813 else
814 ext4_ext_mark_initialized(ex);
815 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
816 sizeof(fc_ext), (u8 *)&fc_ext, crc))
817 return -ENOSPC;
818 }
819
820 cur_lblk_off += map.m_len;
821 }
822
823 return 0;
824}
825
826
827/* Submit data for all the fast commit inodes */
828static int ext4_fc_submit_inode_data_all(journal_t *journal)
829{
830 struct super_block *sb = (struct super_block *)(journal->j_private);
831 struct ext4_sb_info *sbi = EXT4_SB(sb);
832 struct ext4_inode_info *ei;
833 struct list_head *pos;
834 int ret = 0;
835
836 spin_lock(&sbi->s_fc_lock);
837 sbi->s_mount_state |= EXT4_FC_COMMITTING;
838 list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
839 ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
840 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
841 while (atomic_read(&ei->i_fc_updates)) {
842 DEFINE_WAIT(wait);
843
844 prepare_to_wait(&ei->i_fc_wait, &wait,
845 TASK_UNINTERRUPTIBLE);
846 if (atomic_read(&ei->i_fc_updates)) {
847 spin_unlock(&sbi->s_fc_lock);
848 schedule();
849 spin_lock(&sbi->s_fc_lock);
850 }
851 finish_wait(&ei->i_fc_wait, &wait);
852 }
853 spin_unlock(&sbi->s_fc_lock);
854 ret = jbd2_submit_inode_data(ei->jinode);
855 if (ret)
856 return ret;
857 spin_lock(&sbi->s_fc_lock);
858 }
859 spin_unlock(&sbi->s_fc_lock);
860
861 return ret;
862}
863
864/* Wait for completion of data for all the fast commit inodes */
865static int ext4_fc_wait_inode_data_all(journal_t *journal)
866{
867 struct super_block *sb = (struct super_block *)(journal->j_private);
868 struct ext4_sb_info *sbi = EXT4_SB(sb);
869 struct ext4_inode_info *pos, *n;
870 int ret = 0;
871
872 spin_lock(&sbi->s_fc_lock);
873 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
874 if (!ext4_test_inode_state(&pos->vfs_inode,
875 EXT4_STATE_FC_COMMITTING))
876 continue;
877 spin_unlock(&sbi->s_fc_lock);
878
879 ret = jbd2_wait_inode_data(journal, pos->jinode);
880 if (ret)
881 return ret;
882 spin_lock(&sbi->s_fc_lock);
883 }
884 spin_unlock(&sbi->s_fc_lock);
885
886 return 0;
887}
888
889/* Commit all the directory entry updates */
890static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
891{
892 struct super_block *sb = (struct super_block *)(journal->j_private);
893 struct ext4_sb_info *sbi = EXT4_SB(sb);
894 struct ext4_fc_dentry_update *fc_dentry;
895 struct inode *inode;
896 struct list_head *pos, *n, *fcd_pos, *fcd_n;
897 struct ext4_inode_info *ei;
898 int ret;
899
900 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
901 return 0;
902 list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) {
903 fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update,
904 fcd_list);
905 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
906 spin_unlock(&sbi->s_fc_lock);
907 if (!ext4_fc_add_dentry_tlv(
908 sb, fc_dentry->fcd_op,
909 fc_dentry->fcd_parent, fc_dentry->fcd_ino,
910 fc_dentry->fcd_name.len,
911 fc_dentry->fcd_name.name, crc)) {
912 ret = -ENOSPC;
913 goto lock_and_exit;
914 }
915 spin_lock(&sbi->s_fc_lock);
916 continue;
917 }
918
919 inode = NULL;
920 list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
921 ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
922 if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
923 inode = &ei->vfs_inode;
924 break;
925 }
926 }
927 /*
928 * If we don't find inode in our list, then it was deleted,
929 * in which case, we don't need to record it's create tag.
930 */
931 if (!inode)
932 continue;
933 spin_unlock(&sbi->s_fc_lock);
934
935 /*
936 * We first write the inode and then the create dirent. This
937 * allows the recovery code to create an unnamed inode first
938 * and then link it to a directory entry. This allows us
939 * to use namei.c routines almost as is and simplifies
940 * the recovery code.
941 */
942 ret = ext4_fc_write_inode(inode, crc);
943 if (ret)
944 goto lock_and_exit;
945
946 ret = ext4_fc_write_inode_data(inode, crc);
947 if (ret)
948 goto lock_and_exit;
949
950 if (!ext4_fc_add_dentry_tlv(
951 sb, fc_dentry->fcd_op,
952 fc_dentry->fcd_parent, fc_dentry->fcd_ino,
953 fc_dentry->fcd_name.len,
954 fc_dentry->fcd_name.name, crc)) {
955 spin_lock(&sbi->s_fc_lock);
956 ret = -ENOSPC;
957 goto lock_and_exit;
958 }
959
960 spin_lock(&sbi->s_fc_lock);
961 }
962 return 0;
963lock_and_exit:
964 spin_lock(&sbi->s_fc_lock);
965 return ret;
966}
967
968static int ext4_fc_perform_commit(journal_t *journal)
969{
970 struct super_block *sb = (struct super_block *)(journal->j_private);
971 struct ext4_sb_info *sbi = EXT4_SB(sb);
972 struct ext4_inode_info *iter;
973 struct ext4_fc_head head;
974 struct list_head *pos;
975 struct inode *inode;
976 struct blk_plug plug;
977 int ret = 0;
978 u32 crc = 0;
979
980 ret = ext4_fc_submit_inode_data_all(journal);
981 if (ret)
982 return ret;
983
984 ret = ext4_fc_wait_inode_data_all(journal);
985 if (ret)
986 return ret;
987
988 blk_start_plug(&plug);
989 if (sbi->s_fc_bytes == 0) {
990 /*
991 * Add a head tag only if this is the first fast commit
992 * in this TID.
993 */
994 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
995 head.fc_tid = cpu_to_le32(
996 sbi->s_journal->j_running_transaction->t_tid);
997 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
998 (u8 *)&head, &crc))
999 goto out;
1000 }
1001
1002 spin_lock(&sbi->s_fc_lock);
1003 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1004 if (ret) {
1005 spin_unlock(&sbi->s_fc_lock);
1006 goto out;
1007 }
1008
1009 list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
1010 iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1011 inode = &iter->vfs_inode;
1012 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1013 continue;
1014
1015 spin_unlock(&sbi->s_fc_lock);
1016 ret = ext4_fc_write_inode_data(inode, &crc);
1017 if (ret)
1018 goto out;
1019 ret = ext4_fc_write_inode(inode, &crc);
1020 if (ret)
1021 goto out;
1022 spin_lock(&sbi->s_fc_lock);
1023 EXT4_I(inode)->i_fc_committed_subtid =
1024 atomic_read(&sbi->s_fc_subtid);
1025 }
1026 spin_unlock(&sbi->s_fc_lock);
1027
1028 ret = ext4_fc_write_tail(sb, crc);
1029
1030out:
1031 blk_finish_plug(&plug);
1032 return ret;
1033}
1034
1035/*
1036 * The main commit entry point. Performs a fast commit for transaction
1037 * commit_tid if needed. If it's not possible to perform a fast commit
1038 * due to various reasons, we fall back to full commit. Returns 0
1039 * on success, error otherwise.
1040 */
1041int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1042{
1043 struct super_block *sb = (struct super_block *)(journal->j_private);
1044 struct ext4_sb_info *sbi = EXT4_SB(sb);
1045 int nblks = 0, ret, bsize = journal->j_blocksize;
1046 int subtid = atomic_read(&sbi->s_fc_subtid);
1047 int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1048 ktime_t start_time, commit_time;
1049
1050 trace_ext4_fc_commit_start(sb);
1051
1052 start_time = ktime_get();
1053
1054 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1055 (ext4_fc_is_ineligible(sb))) {
1056 reason = EXT4_FC_REASON_INELIGIBLE;
1057 goto out;
1058 }
1059
1060restart_fc:
1061 ret = jbd2_fc_begin_commit(journal, commit_tid);
1062 if (ret == -EALREADY) {
1063 /* There was an ongoing commit, check if we need to restart */
1064 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1065 commit_tid > journal->j_commit_sequence)
1066 goto restart_fc;
1067 reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1068 goto out;
1069 } else if (ret) {
1070 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1071 reason = EXT4_FC_REASON_FC_START_FAILED;
1072 goto out;
1073 }
1074
1075 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1076 ret = ext4_fc_perform_commit(journal);
1077 if (ret < 0) {
1078 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1079 reason = EXT4_FC_REASON_FC_FAILED;
1080 goto out;
1081 }
1082 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1083 ret = jbd2_fc_wait_bufs(journal, nblks);
1084 if (ret < 0) {
1085 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1086 reason = EXT4_FC_REASON_FC_FAILED;
1087 goto out;
1088 }
1089 atomic_inc(&sbi->s_fc_subtid);
1090 jbd2_fc_end_commit(journal);
1091out:
1092 /* Has any ineligible update happened since we started? */
1093 if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1094 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1095 reason = EXT4_FC_REASON_INELIGIBLE;
1096 }
1097
1098 spin_lock(&sbi->s_fc_lock);
1099 if (reason != EXT4_FC_REASON_OK &&
1100 reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1101 sbi->s_fc_stats.fc_ineligible_commits++;
1102 } else {
1103 sbi->s_fc_stats.fc_num_commits++;
1104 sbi->s_fc_stats.fc_numblks += nblks;
1105 }
1106 spin_unlock(&sbi->s_fc_lock);
1107 nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1108 trace_ext4_fc_commit_stop(sb, nblks, reason);
1109 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1110 /*
1111 * weight the commit time higher than the average time so we don't
1112 * react too strongly to vast changes in the commit time
1113 */
1114 if (likely(sbi->s_fc_avg_commit_time))
1115 sbi->s_fc_avg_commit_time = (commit_time +
1116 sbi->s_fc_avg_commit_time * 3) / 4;
1117 else
1118 sbi->s_fc_avg_commit_time = commit_time;
1119 jbd_debug(1,
1120 "Fast commit ended with blks = %d, reason = %d, subtid - %d",
1121 nblks, reason, subtid);
1122 if (reason == EXT4_FC_REASON_FC_FAILED)
1123 return jbd2_fc_end_commit_fallback(journal, commit_tid);
1124 if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1125 reason == EXT4_FC_REASON_INELIGIBLE)
1126 return jbd2_complete_transaction(journal, commit_tid);
1127 return 0;
1128}
1129
ff780b91
HS
1130/*
1131 * Fast commit cleanup routine. This is called after every fast commit and
1132 * full commit. full is true if we are called after a full commit.
1133 */
1134static void ext4_fc_cleanup(journal_t *journal, int full)
1135{
aa75f4d3
HS
1136 struct super_block *sb = journal->j_private;
1137 struct ext4_sb_info *sbi = EXT4_SB(sb);
1138 struct ext4_inode_info *iter;
1139 struct ext4_fc_dentry_update *fc_dentry;
1140 struct list_head *pos, *n;
1141
1142 if (full && sbi->s_fc_bh)
1143 sbi->s_fc_bh = NULL;
1144
1145 jbd2_fc_release_bufs(journal);
1146
1147 spin_lock(&sbi->s_fc_lock);
1148 list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1149 iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1150 list_del_init(&iter->i_fc_list);
1151 ext4_clear_inode_state(&iter->vfs_inode,
1152 EXT4_STATE_FC_COMMITTING);
1153 ext4_fc_reset_inode(&iter->vfs_inode);
1154 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1155 smp_mb();
1156#if (BITS_PER_LONG < 64)
1157 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1158#else
1159 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1160#endif
1161 }
1162
1163 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1164 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1165 struct ext4_fc_dentry_update,
1166 fcd_list);
1167 list_del_init(&fc_dentry->fcd_list);
1168 spin_unlock(&sbi->s_fc_lock);
1169
1170 if (fc_dentry->fcd_name.name &&
1171 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1172 kfree(fc_dentry->fcd_name.name);
1173 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1174 spin_lock(&sbi->s_fc_lock);
1175 }
1176
1177 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1178 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1179 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1180 &sbi->s_fc_q[FC_Q_STAGING]);
1181
1182 sbi->s_mount_state &= ~EXT4_FC_COMMITTING;
1183 sbi->s_mount_state &= ~EXT4_FC_INELIGIBLE;
1184
1185 if (full)
1186 sbi->s_fc_bytes = 0;
1187 spin_unlock(&sbi->s_fc_lock);
1188 trace_ext4_fc_stats(sb);
ff780b91 1189}
6866d7b3 1190
5b849b5f
HS
1191/*
1192 * Main recovery path entry point.
1193 */
1194static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
1195 enum passtype pass, int off, tid_t expected_tid)
1196{
1197 return 0;
1198}
1199
6866d7b3
HS
1200void ext4_fc_init(struct super_block *sb, journal_t *journal)
1201{
5b849b5f
HS
1202 /*
1203 * We set replay callback even if fast commit disabled because we may
1204 * could still have fast commit blocks that need to be replayed even if
1205 * fast commit has now been turned off.
1206 */
1207 journal->j_fc_replay_callback = ext4_fc_replay;
6866d7b3
HS
1208 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1209 return;
ff780b91 1210 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
6866d7b3
HS
1211 if (jbd2_fc_init(journal, EXT4_NUM_FC_BLKS)) {
1212 pr_warn("Error while enabling fast commits, turning off.");
1213 ext4_clear_feature_fast_commit(sb);
1214 }
1215}
aa75f4d3
HS
1216
1217int __init ext4_fc_init_dentry_cache(void)
1218{
1219 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
1220 SLAB_RECLAIM_ACCOUNT);
1221
1222 if (ext4_fc_dentry_cachep == NULL)
1223 return -ENOMEM;
1224
1225 return 0;
1226}