ext2: add support for extent_map library
[linux-2.6-block.git] / fs / ext2 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25#include <linux/smp_lock.h>
26#include <linux/time.h>
27#include <linux/highuid.h>
28#include <linux/pagemap.h>
29#include <linux/quotaops.h>
30#include <linux/module.h>
31#include <linux/writeback.h>
32#include <linux/buffer_head.h>
352b70c1 33#include <linux/extent_map.h>
1da177e4 34#include <linux/mpage.h>
68c9d702 35#include <linux/fiemap.h>
8d6d0c4d 36#include <linux/namei.h>
1da177e4
LT
37#include "ext2.h"
38#include "acl.h"
6d79125b 39#include "xip.h"
1da177e4
LT
40
41MODULE_AUTHOR("Remy Card and others");
42MODULE_DESCRIPTION("Second Extended Filesystem");
43MODULE_LICENSE("GPL");
44
45static int ext2_update_inode(struct inode * inode, int do_sync);
46
47/*
48 * Test whether an inode is a fast symlink.
49 */
50static inline int ext2_inode_is_fast_symlink(struct inode *inode)
51{
52 int ea_blocks = EXT2_I(inode)->i_file_acl ?
53 (inode->i_sb->s_blocksize >> 9) : 0;
54
55 return (S_ISLNK(inode->i_mode) &&
56 inode->i_blocks - ea_blocks == 0);
57}
58
59/*
60 * Called at the last iput() if i_nlink is zero.
61 */
62void ext2_delete_inode (struct inode * inode)
63{
fef26658
MF
64 truncate_inode_pages(&inode->i_data, 0);
65
1da177e4
LT
66 if (is_bad_inode(inode))
67 goto no_delete;
68 EXT2_I(inode)->i_dtime = get_seconds();
69 mark_inode_dirty(inode);
70 ext2_update_inode(inode, inode_needs_sync(inode));
71
72 inode->i_size = 0;
73 if (inode->i_blocks)
74 ext2_truncate (inode);
75 ext2_free_inode (inode);
352b70c1 76 remove_extent_mappings(&EXT2_I(inode)->extent_tree, 0, (u64)-1);
1da177e4
LT
77
78 return;
79no_delete:
352b70c1 80 remove_extent_mappings(&EXT2_I(inode)->extent_tree, 0, (u64)-1);
1da177e4
LT
81 clear_inode(inode); /* We must guarantee clearing of inode... */
82}
83
1da177e4
LT
84typedef struct {
85 __le32 *p;
86 __le32 key;
87 struct buffer_head *bh;
88} Indirect;
89
90static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
91{
92 p->key = *(p->p = v);
93 p->bh = bh;
94}
95
96static inline int verify_chain(Indirect *from, Indirect *to)
97{
98 while (from <= to && from->key == *from->p)
99 from++;
100 return (from > to);
101}
102
103/**
104 * ext2_block_to_path - parse the block number into array of offsets
105 * @inode: inode in question (we are only interested in its superblock)
106 * @i_block: block number to be parsed
107 * @offsets: array to store the offsets in
108 * @boundary: set this non-zero if the referred-to block is likely to be
109 * followed (on disk) by an indirect block.
110 * To store the locations of file's data ext2 uses a data structure common
111 * for UNIX filesystems - tree of pointers anchored in the inode, with
112 * data blocks at leaves and indirect blocks in intermediate nodes.
113 * This function translates the block number into path in that tree -
114 * return value is the path length and @offsets[n] is the offset of
115 * pointer to (n+1)th node in the nth one. If @block is out of range
116 * (negative or too large) warning is printed and zero returned.
117 *
118 * Note: function doesn't find node addresses, so no IO is needed. All
119 * we need to know is the capacity of indirect blocks (taken from the
120 * inode->i_sb).
121 */
122
123/*
124 * Portability note: the last comparison (check that we fit into triple
125 * indirect block) is spelled differently, because otherwise on an
126 * architecture with 32-bit longs and 8Kb pages we might get into trouble
127 * if our filesystem had 8Kb blocks. We might use long long, but that would
128 * kill us on x86. Oh, well, at least the sign propagation does not matter -
129 * i_block would have to be negative in the very beginning, so we would not
130 * get there at all.
131 */
132
133static int ext2_block_to_path(struct inode *inode,
134 long i_block, int offsets[4], int *boundary)
135{
136 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
137 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
138 const long direct_blocks = EXT2_NDIR_BLOCKS,
139 indirect_blocks = ptrs,
140 double_blocks = (1 << (ptrs_bits * 2));
141 int n = 0;
142 int final = 0;
143
144 if (i_block < 0) {
145 ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
146 } else if (i_block < direct_blocks) {
147 offsets[n++] = i_block;
148 final = direct_blocks;
149 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
150 offsets[n++] = EXT2_IND_BLOCK;
151 offsets[n++] = i_block;
152 final = ptrs;
153 } else if ((i_block -= indirect_blocks) < double_blocks) {
154 offsets[n++] = EXT2_DIND_BLOCK;
155 offsets[n++] = i_block >> ptrs_bits;
156 offsets[n++] = i_block & (ptrs - 1);
157 final = ptrs;
158 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
159 offsets[n++] = EXT2_TIND_BLOCK;
160 offsets[n++] = i_block >> (ptrs_bits * 2);
161 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
162 offsets[n++] = i_block & (ptrs - 1);
163 final = ptrs;
164 } else {
165 ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
166 }
167 if (boundary)
a686cd89
MB
168 *boundary = final - 1 - (i_block & (ptrs - 1));
169
1da177e4
LT
170 return n;
171}
172
173/**
174 * ext2_get_branch - read the chain of indirect blocks leading to data
175 * @inode: inode in question
176 * @depth: depth of the chain (1 - direct pointer, etc.)
177 * @offsets: offsets of pointers in inode/indirect blocks
178 * @chain: place to store the result
179 * @err: here we store the error value
180 *
181 * Function fills the array of triples <key, p, bh> and returns %NULL
182 * if everything went OK or the pointer to the last filled triple
183 * (incomplete one) otherwise. Upon the return chain[i].key contains
184 * the number of (i+1)-th block in the chain (as it is stored in memory,
185 * i.e. little-endian 32-bit), chain[i].p contains the address of that
186 * number (it points into struct inode for i==0 and into the bh->b_data
187 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
188 * block for i>0 and NULL for i==0. In other words, it holds the block
189 * numbers of the chain, addresses they were taken from (and where we can
190 * verify that chain did not change) and buffer_heads hosting these
191 * numbers.
192 *
193 * Function stops when it stumbles upon zero pointer (absent block)
194 * (pointer to last triple returned, *@err == 0)
195 * or when it gets an IO error reading an indirect block
196 * (ditto, *@err == -EIO)
197 * or when it notices that chain had been changed while it was reading
198 * (ditto, *@err == -EAGAIN)
199 * or when it reads all @depth-1 indirect blocks successfully and finds
200 * the whole chain, all way to the data (returns %NULL, *err == 0).
201 */
202static Indirect *ext2_get_branch(struct inode *inode,
203 int depth,
204 int *offsets,
205 Indirect chain[4],
206 int *err)
207{
208 struct super_block *sb = inode->i_sb;
209 Indirect *p = chain;
210 struct buffer_head *bh;
211
212 *err = 0;
213 /* i_data is not going away, no lock needed */
214 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
215 if (!p->key)
216 goto no_block;
217 while (--depth) {
218 bh = sb_bread(sb, le32_to_cpu(p->key));
219 if (!bh)
220 goto failure;
221 read_lock(&EXT2_I(inode)->i_meta_lock);
222 if (!verify_chain(chain, p))
223 goto changed;
224 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
225 read_unlock(&EXT2_I(inode)->i_meta_lock);
226 if (!p->key)
227 goto no_block;
228 }
229 return NULL;
230
231changed:
232 read_unlock(&EXT2_I(inode)->i_meta_lock);
233 brelse(bh);
234 *err = -EAGAIN;
235 goto no_block;
236failure:
237 *err = -EIO;
238no_block:
239 return p;
240}
241
242/**
243 * ext2_find_near - find a place for allocation with sufficient locality
244 * @inode: owner
245 * @ind: descriptor of indirect block.
246 *
1cc8dcf5 247 * This function returns the preferred place for block allocation.
1da177e4
LT
248 * It is used when heuristic for sequential allocation fails.
249 * Rules are:
250 * + if there is a block to the left of our position - allocate near it.
251 * + if pointer will live in indirect block - allocate near that block.
252 * + if pointer will live in inode - allocate in the same cylinder group.
253 *
254 * In the latter case we colour the starting block by the callers PID to
255 * prevent it from clashing with concurrent allocations for a different inode
256 * in the same block group. The PID is used here so that functionally related
257 * files will be close-by on-disk.
258 *
259 * Caller must make sure that @ind is valid and will stay that way.
260 */
261
4c8b3125 262static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
1da177e4
LT
263{
264 struct ext2_inode_info *ei = EXT2_I(inode);
265 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
266 __le32 *p;
4c8b3125
AM
267 ext2_fsblk_t bg_start;
268 ext2_fsblk_t colour;
1da177e4
LT
269
270 /* Try to find previous block */
271 for (p = ind->p - 1; p >= start; p--)
272 if (*p)
273 return le32_to_cpu(*p);
274
275 /* No such thing, so let's try location of indirect block */
276 if (ind->bh)
277 return ind->bh->b_blocknr;
278
279 /*
280 * It is going to be refered from inode itself? OK, just put it into
281 * the same cylinder group then.
282 */
24097d12 283 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
1da177e4
LT
284 colour = (current->pid % 16) *
285 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
286 return bg_start + colour;
287}
288
289/**
1cc8dcf5 290 * ext2_find_goal - find a preferred place for allocation.
1da177e4
LT
291 * @inode: owner
292 * @block: block we want
1da177e4 293 * @partial: pointer to the last triple within a chain
1da177e4 294 *
a686cd89 295 * Returns preferred place for a block (the goal).
1da177e4
LT
296 */
297
4c8b3125
AM
298static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
299 Indirect *partial)
1da177e4 300{
a686cd89
MB
301 struct ext2_block_alloc_info *block_i;
302
303 block_i = EXT2_I(inode)->i_block_alloc_info;
304
305 /*
306 * try the heuristic for sequential allocation,
307 * failing that at least try to get decent locality.
308 */
309 if (block_i && (block == block_i->last_alloc_logical_block + 1)
310 && (block_i->last_alloc_physical_block != 0)) {
311 return block_i->last_alloc_physical_block + 1;
312 }
313
314 return ext2_find_near(inode, partial);
315}
316
317/**
318 * ext2_blks_to_allocate: Look up the block map and count the number
319 * of direct blocks need to be allocated for the given branch.
320 *
321 * @branch: chain of indirect blocks
322 * @k: number of blocks need for indirect blocks
323 * @blks: number of data blocks to be mapped.
324 * @blocks_to_boundary: the offset in the indirect block
325 *
326 * return the total number of blocks to be allocate, including the
327 * direct and indirect blocks.
328 */
329static int
330ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
331 int blocks_to_boundary)
332{
333 unsigned long count = 0;
334
335 /*
336 * Simple case, [t,d]Indirect block(s) has not allocated yet
337 * then it's clear blocks on that path have not allocated
338 */
339 if (k > 0) {
340 /* right now don't hanel cross boundary allocation */
341 if (blks < blocks_to_boundary + 1)
342 count += blks;
343 else
344 count += blocks_to_boundary + 1;
345 return count;
1da177e4 346 }
a686cd89
MB
347
348 count++;
349 while (count < blks && count <= blocks_to_boundary
350 && le32_to_cpu(*(branch[0].p + count)) == 0) {
351 count++;
352 }
353 return count;
354}
355
356/**
357 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
358 * @indirect_blks: the number of blocks need to allocate for indirect
359 * blocks
360 *
361 * @new_blocks: on return it will store the new block numbers for
362 * the indirect blocks(if needed) and the first direct block,
363 * @blks: on return it will store the total number of allocated
364 * direct blocks
365 */
366static int ext2_alloc_blocks(struct inode *inode,
367 ext2_fsblk_t goal, int indirect_blks, int blks,
368 ext2_fsblk_t new_blocks[4], int *err)
369{
370 int target, i;
371 unsigned long count = 0;
372 int index = 0;
373 ext2_fsblk_t current_block = 0;
374 int ret = 0;
375
376 /*
377 * Here we try to allocate the requested multiple blocks at once,
378 * on a best-effort basis.
379 * To build a branch, we should allocate blocks for
380 * the indirect blocks(if not allocated yet), and at least
381 * the first direct block of this branch. That's the
382 * minimum number of blocks need to allocate(required)
383 */
384 target = blks + indirect_blks;
385
386 while (1) {
387 count = target;
388 /* allocating blocks for indirect blocks and direct blocks */
389 current_block = ext2_new_blocks(inode,goal,&count,err);
390 if (*err)
391 goto failed_out;
392
393 target -= count;
394 /* allocate blocks for indirect blocks */
395 while (index < indirect_blks && count) {
396 new_blocks[index++] = current_block++;
397 count--;
398 }
399
400 if (count > 0)
401 break;
402 }
403
404 /* save the new block number for the first direct block */
405 new_blocks[index] = current_block;
406
407 /* total number of blocks allocated for direct blocks */
408 ret = count;
409 *err = 0;
410 return ret;
411failed_out:
412 for (i = 0; i <index; i++)
413 ext2_free_blocks(inode, new_blocks[i], 1);
414 return ret;
1da177e4
LT
415}
416
417/**
418 * ext2_alloc_branch - allocate and set up a chain of blocks.
419 * @inode: owner
420 * @num: depth of the chain (number of blocks to allocate)
421 * @offsets: offsets (in the blocks) to store the pointers to next.
422 * @branch: place to store the chain in.
423 *
424 * This function allocates @num blocks, zeroes out all but the last one,
425 * links them into chain and (if we are synchronous) writes them to disk.
426 * In other words, it prepares a branch that can be spliced onto the
427 * inode. It stores the information about that chain in the branch[], in
428 * the same format as ext2_get_branch() would do. We are calling it after
429 * we had read the existing part of chain and partial points to the last
430 * triple of that (one with zero ->key). Upon the exit we have the same
431 * picture as after the successful ext2_get_block(), excpet that in one
432 * place chain is disconnected - *branch->p is still zero (we did not
433 * set the last link), but branch->key contains the number that should
434 * be placed into *branch->p to fill that gap.
435 *
436 * If allocation fails we free all blocks we've allocated (and forget
437 * their buffer_heads) and return the error value the from failed
438 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
439 * as described above and return 0.
440 */
441
442static int ext2_alloc_branch(struct inode *inode,
a686cd89
MB
443 int indirect_blks, int *blks, ext2_fsblk_t goal,
444 int *offsets, Indirect *branch)
1da177e4
LT
445{
446 int blocksize = inode->i_sb->s_blocksize;
a686cd89
MB
447 int i, n = 0;
448 int err = 0;
449 struct buffer_head *bh;
450 int num;
451 ext2_fsblk_t new_blocks[4];
452 ext2_fsblk_t current_block;
453
454 num = ext2_alloc_blocks(inode, goal, indirect_blks,
455 *blks, new_blocks, &err);
456 if (err)
457 return err;
458
459 branch[0].key = cpu_to_le32(new_blocks[0]);
460 /*
461 * metadata blocks and data blocks are allocated.
462 */
463 for (n = 1; n <= indirect_blks; n++) {
1da177e4 464 /*
a686cd89
MB
465 * Get buffer_head for parent block, zero it out
466 * and set the pointer to new one, then send
467 * parent to disk.
1da177e4 468 */
a686cd89
MB
469 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
470 branch[n].bh = bh;
1da177e4
LT
471 lock_buffer(bh);
472 memset(bh->b_data, 0, blocksize);
1da177e4 473 branch[n].p = (__le32 *) bh->b_data + offsets[n];
a686cd89 474 branch[n].key = cpu_to_le32(new_blocks[n]);
1da177e4 475 *branch[n].p = branch[n].key;
a686cd89
MB
476 if ( n == indirect_blks) {
477 current_block = new_blocks[n];
478 /*
479 * End of chain, update the last new metablock of
480 * the chain to point to the new allocated
481 * data blocks numbers
482 */
483 for (i=1; i < num; i++)
484 *(branch[n].p + i) = cpu_to_le32(++current_block);
485 }
1da177e4
LT
486 set_buffer_uptodate(bh);
487 unlock_buffer(bh);
488 mark_buffer_dirty_inode(bh, inode);
489 /* We used to sync bh here if IS_SYNC(inode).
490 * But we now rely upon generic_osync_inode()
491 * and b_inode_buffers. But not for directories.
492 */
493 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
494 sync_dirty_buffer(bh);
1da177e4 495 }
a686cd89 496 *blks = num;
1da177e4
LT
497 return err;
498}
499
500/**
a686cd89
MB
501 * ext2_splice_branch - splice the allocated branch onto inode.
502 * @inode: owner
503 * @block: (logical) number of block we are adding
a686cd89
MB
504 * @where: location of missing link
505 * @num: number of indirect blocks we are adding
506 * @blks: number of direct blocks we are adding
1da177e4 507 *
a686cd89
MB
508 * This function fills the missing link and does all housekeeping needed in
509 * inode (->i_blocks, etc.). In case of success we end up with the full
510 * chain to new block and return 0.
1da177e4 511 */
a686cd89
MB
512static void ext2_splice_branch(struct inode *inode,
513 long block, Indirect *where, int num, int blks)
1da177e4 514{
1da177e4 515 int i;
a686cd89
MB
516 struct ext2_block_alloc_info *block_i;
517 ext2_fsblk_t current_block;
1da177e4 518
a686cd89 519 block_i = EXT2_I(inode)->i_block_alloc_info;
1da177e4 520
a686cd89 521 /* XXX LOCKING probably should have i_meta_lock ?*/
1da177e4
LT
522 /* That's it */
523
524 *where->p = where->key;
1da177e4 525
a686cd89
MB
526 /*
527 * Update the host buffer_head or inode to point to more just allocated
528 * direct blocks blocks
529 */
530 if (num == 0 && blks > 1) {
531 current_block = le32_to_cpu(where->key) + 1;
532 for (i = 1; i < blks; i++)
533 *(where->p + i ) = cpu_to_le32(current_block++);
534 }
1da177e4 535
a686cd89
MB
536 /*
537 * update the most recently allocated logical & physical block
538 * in i_block_alloc_info, to assist find the proper goal block for next
539 * allocation
540 */
541 if (block_i) {
542 block_i->last_alloc_logical_block = block + blks - 1;
543 block_i->last_alloc_physical_block =
544 le32_to_cpu(where[num].key) + blks - 1;
545 }
1da177e4 546
a686cd89 547 /* We are done with atomic stuff, now do the rest of housekeeping */
1da177e4
LT
548
549 /* had we spliced it onto indirect block? */
550 if (where->bh)
551 mark_buffer_dirty_inode(where->bh, inode);
552
a686cd89 553 inode->i_ctime = CURRENT_TIME_SEC;
1da177e4 554 mark_inode_dirty(inode);
1da177e4
LT
555}
556
557/*
558 * Allocation strategy is simple: if we have to allocate something, we will
559 * have to go the whole way to leaf. So let's do it before attaching anything
560 * to tree, set linkage between the newborn blocks, write them if sync is
561 * required, recheck the path, free and repeat if check fails, otherwise
562 * set the last missing link (that will protect us from any truncate-generated
563 * removals - all blocks on the path are immune now) and possibly force the
564 * write on the parent block.
565 * That has a nice additional property: no special recovery from the failed
566 * allocations is needed - we simply release blocks and do not touch anything
567 * reachable from inode.
a686cd89
MB
568 *
569 * `handle' can be NULL if create == 0.
570 *
a686cd89
MB
571 * return > 0, # of blocks mapped or allocated.
572 * return = 0, if plain lookup failed.
573 * return < 0, error case.
1da177e4 574 */
a686cd89
MB
575static int ext2_get_blocks(struct inode *inode,
576 sector_t iblock, unsigned long maxblocks,
577 struct buffer_head *bh_result,
578 int create)
1da177e4
LT
579{
580 int err = -EIO;
581 int offsets[4];
582 Indirect chain[4];
583 Indirect *partial;
a686cd89
MB
584 ext2_fsblk_t goal;
585 int indirect_blks;
586 int blocks_to_boundary = 0;
587 int depth;
588 struct ext2_inode_info *ei = EXT2_I(inode);
589 int count = 0;
590 ext2_fsblk_t first_block = 0;
1da177e4 591
a686cd89 592 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
1da177e4 593
a686cd89
MB
594 if (depth == 0)
595 return (err);
1da177e4
LT
596reread:
597 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
598
599 /* Simplest case - block found, no allocation needed */
600 if (!partial) {
a686cd89
MB
601 first_block = le32_to_cpu(chain[depth - 1].key);
602 clear_buffer_new(bh_result); /* What's this do? */
603 count++;
604 /*map more blocks*/
605 while (count < maxblocks && count <= blocks_to_boundary) {
606 ext2_fsblk_t blk;
607
608 if (!verify_chain(chain, partial)) {
609 /*
610 * Indirect block might be removed by
611 * truncate while we were reading it.
612 * Handling of that case: forget what we've
613 * got now, go to reread.
614 */
615 count = 0;
616 goto changed;
617 }
618 blk = le32_to_cpu(*(chain[depth-1].p + count));
619 if (blk == first_block + count)
620 count++;
621 else
622 break;
623 }
624 goto got_it;
1da177e4
LT
625 }
626
627 /* Next simple case - plain lookup or failed read of indirect block */
a686cd89
MB
628 if (!create || err == -EIO)
629 goto cleanup;
630
631 mutex_lock(&ei->truncate_mutex);
1da177e4
LT
632
633 /*
a686cd89
MB
634 * Okay, we need to do block allocation. Lazily initialize the block
635 * allocation info here if necessary
636 */
637 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
638 ext2_init_block_alloc_info(inode);
1da177e4 639
fb01bfda 640 goal = ext2_find_goal(inode, iblock, partial);
1da177e4 641
a686cd89
MB
642 /* the number of blocks need to allocate for [d,t]indirect blocks */
643 indirect_blks = (chain + depth) - partial - 1;
644 /*
645 * Next look up the indirect map to count the totoal number of
646 * direct blocks to allocate for this branch.
647 */
648 count = ext2_blks_to_allocate(partial, indirect_blks,
649 maxblocks, blocks_to_boundary);
650 /*
651 * XXX ???? Block out ext2_truncate while we alter the tree
652 */
653 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
654 offsets + (partial - chain), partial);
655
656 if (err) {
657 mutex_unlock(&ei->truncate_mutex);
1da177e4 658 goto cleanup;
a686cd89 659 }
1da177e4 660
6d79125b
CO
661 if (ext2_use_xip(inode->i_sb)) {
662 /*
663 * we need to clear the block
664 */
665 err = ext2_clear_xip_target (inode,
666 le32_to_cpu(chain[depth-1].key));
a686cd89
MB
667 if (err) {
668 mutex_unlock(&ei->truncate_mutex);
6d79125b 669 goto cleanup;
a686cd89 670 }
6d79125b
CO
671 }
672
a686cd89
MB
673 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
674 mutex_unlock(&ei->truncate_mutex);
1da177e4 675 set_buffer_new(bh_result);
a686cd89
MB
676got_it:
677 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
678 if (count > blocks_to_boundary)
679 set_buffer_boundary(bh_result);
680 err = count;
681 /* Clean up and exit */
682 partial = chain + depth - 1; /* the whole chain */
683cleanup:
684 while (partial > chain) {
685 brelse(partial->bh);
686 partial--;
687 }
688 return err;
1da177e4
LT
689changed:
690 while (partial > chain) {
691 brelse(partial->bh);
692 partial--;
693 }
694 goto reread;
695}
696
a686cd89
MB
697int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
698{
699 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
700 int ret = ext2_get_blocks(inode, iblock, max_blocks,
701 bh_result, create);
702 if (ret > 0) {
703 bh_result->b_size = (ret << inode->i_blkbits);
704 ret = 0;
705 }
706 return ret;
707
708}
709
68c9d702
JB
710int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
711 u64 start, u64 len)
712{
713 return generic_block_fiemap(inode, fieinfo, start, len,
714 ext2_get_block);
715}
716
352b70c1
JA
717static struct extent_map *ext2_map_extent(struct address_space *mapping,
718 struct page *page,
719 size_t page_offset, loff_t start,
720 u64 len, int create, gfp_t gfp_mask)
721{
722 return map_extent_get_block(&EXT2_I(mapping->host)->extent_tree,
723 mapping, start, len, create, gfp_mask,
724 ext2_get_block);
725}
726
1da177e4
LT
727static int ext2_writepage(struct page *page, struct writeback_control *wbc)
728{
729 return block_write_full_page(page, ext2_get_block, wbc);
730}
731
732static int ext2_readpage(struct file *file, struct page *page)
733{
734 return mpage_readpage(page, ext2_get_block);
735}
736
737static int
738ext2_readpages(struct file *file, struct address_space *mapping,
739 struct list_head *pages, unsigned nr_pages)
740{
741 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
742}
743
f34fb6ec
NP
744int __ext2_write_begin(struct file *file, struct address_space *mapping,
745 loff_t pos, unsigned len, unsigned flags,
746 struct page **pagep, void **fsdata)
1da177e4 747{
f34fb6ec
NP
748 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
749 ext2_get_block);
1da177e4
LT
750}
751
752static int
f34fb6ec
NP
753ext2_write_begin(struct file *file, struct address_space *mapping,
754 loff_t pos, unsigned len, unsigned flags,
755 struct page **pagep, void **fsdata)
1da177e4 756{
f34fb6ec
NP
757 *pagep = NULL;
758 return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
1da177e4
LT
759}
760
03158cd7
NP
761static int
762ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
763 loff_t pos, unsigned len, unsigned flags,
764 struct page **pagep, void **fsdata)
765{
766 /*
767 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
768 * directory handling code to pass around offsets rather than struct
769 * pages in order to make this work easily.
770 */
771 return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
772 ext2_get_block);
773}
774
1da177e4
LT
775static int ext2_nobh_writepage(struct page *page,
776 struct writeback_control *wbc)
777{
778 return nobh_writepage(page, ext2_get_block, wbc);
779}
780
781static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
782{
783 return generic_block_bmap(mapping,block,ext2_get_block);
784}
785
1da177e4
LT
786static ssize_t
787ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
788 loff_t offset, unsigned long nr_segs)
789{
790 struct file *file = iocb->ki_filp;
791 struct inode *inode = file->f_mapping->host;
792
793 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1d8fa7a2 794 offset, nr_segs, ext2_get_block, NULL);
1da177e4
LT
795}
796
797static int
798ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
799{
800 return mpage_writepages(mapping, wbc, ext2_get_block);
801}
802
f5e54d6e 803const struct address_space_operations ext2_aops = {
1da177e4
LT
804 .readpage = ext2_readpage,
805 .readpages = ext2_readpages,
806 .writepage = ext2_writepage,
807 .sync_page = block_sync_page,
f34fb6ec
NP
808 .write_begin = ext2_write_begin,
809 .write_end = generic_write_end,
1da177e4
LT
810 .bmap = ext2_bmap,
811 .direct_IO = ext2_direct_IO,
812 .writepages = ext2_writepages,
e965f963 813 .migratepage = buffer_migrate_page,
8ab22b9a 814 .is_partially_uptodate = block_is_partially_uptodate,
1da177e4
LT
815};
816
f5e54d6e 817const struct address_space_operations ext2_aops_xip = {
6d79125b 818 .bmap = ext2_bmap,
70688e4d 819 .get_xip_mem = ext2_get_xip_mem,
6d79125b
CO
820};
821
f5e54d6e 822const struct address_space_operations ext2_nobh_aops = {
1da177e4
LT
823 .readpage = ext2_readpage,
824 .readpages = ext2_readpages,
825 .writepage = ext2_nobh_writepage,
826 .sync_page = block_sync_page,
03158cd7
NP
827 .write_begin = ext2_nobh_write_begin,
828 .write_end = nobh_write_end,
1da177e4
LT
829 .bmap = ext2_bmap,
830 .direct_IO = ext2_direct_IO,
831 .writepages = ext2_writepages,
e965f963 832 .migratepage = buffer_migrate_page,
352b70c1 833 .map_extent = ext2_map_extent,
1da177e4
LT
834};
835
836/*
837 * Probably it should be a library function... search for first non-zero word
838 * or memcmp with zero_page, whatever is better for particular architecture.
839 * Linus?
840 */
841static inline int all_zeroes(__le32 *p, __le32 *q)
842{
843 while (p < q)
844 if (*p++)
845 return 0;
846 return 1;
847}
848
849/**
850 * ext2_find_shared - find the indirect blocks for partial truncation.
851 * @inode: inode in question
852 * @depth: depth of the affected branch
853 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
854 * @chain: place to store the pointers to partial indirect blocks
855 * @top: place to the (detached) top of branch
856 *
857 * This is a helper function used by ext2_truncate().
858 *
859 * When we do truncate() we may have to clean the ends of several indirect
860 * blocks but leave the blocks themselves alive. Block is partially
861 * truncated if some data below the new i_size is refered from it (and
862 * it is on the path to the first completely truncated data block, indeed).
863 * We have to free the top of that path along with everything to the right
864 * of the path. Since no allocation past the truncation point is possible
865 * until ext2_truncate() finishes, we may safely do the latter, but top
866 * of branch may require special attention - pageout below the truncation
867 * point might try to populate it.
868 *
869 * We atomically detach the top of branch from the tree, store the block
870 * number of its root in *@top, pointers to buffer_heads of partially
871 * truncated blocks - in @chain[].bh and pointers to their last elements
872 * that should not be removed - in @chain[].p. Return value is the pointer
873 * to last filled element of @chain.
874 *
875 * The work left to caller to do the actual freeing of subtrees:
876 * a) free the subtree starting from *@top
877 * b) free the subtrees whose roots are stored in
878 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
879 * c) free the subtrees growing from the inode past the @chain[0].p
880 * (no partially truncated stuff there).
881 */
882
883static Indirect *ext2_find_shared(struct inode *inode,
884 int depth,
885 int offsets[4],
886 Indirect chain[4],
887 __le32 *top)
888{
889 Indirect *partial, *p;
890 int k, err;
891
892 *top = 0;
893 for (k = depth; k > 1 && !offsets[k-1]; k--)
894 ;
895 partial = ext2_get_branch(inode, k, offsets, chain, &err);
896 if (!partial)
897 partial = chain + k-1;
898 /*
899 * If the branch acquired continuation since we've looked at it -
900 * fine, it should all survive and (new) top doesn't belong to us.
901 */
902 write_lock(&EXT2_I(inode)->i_meta_lock);
903 if (!partial->key && *partial->p) {
904 write_unlock(&EXT2_I(inode)->i_meta_lock);
905 goto no_top;
906 }
907 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
908 ;
909 /*
910 * OK, we've found the last block that must survive. The rest of our
911 * branch should be detached before unlocking. However, if that rest
912 * of branch is all ours and does not grow immediately from the inode
913 * it's easier to cheat and just decrement partial->p.
914 */
915 if (p == chain + k - 1 && p > chain) {
916 p->p--;
917 } else {
918 *top = *p->p;
919 *p->p = 0;
920 }
921 write_unlock(&EXT2_I(inode)->i_meta_lock);
922
923 while(partial > p)
924 {
925 brelse(partial->bh);
926 partial--;
927 }
928no_top:
929 return partial;
930}
931
932/**
933 * ext2_free_data - free a list of data blocks
934 * @inode: inode we are dealing with
935 * @p: array of block numbers
936 * @q: points immediately past the end of array
937 *
938 * We are freeing all blocks refered from that array (numbers are
939 * stored as little-endian 32-bit) and updating @inode->i_blocks
940 * appropriately.
941 */
942static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
943{
944 unsigned long block_to_free = 0, count = 0;
945 unsigned long nr;
946
947 for ( ; p < q ; p++) {
948 nr = le32_to_cpu(*p);
949 if (nr) {
950 *p = 0;
951 /* accumulate blocks to free if they're contiguous */
952 if (count == 0)
953 goto free_this;
954 else if (block_to_free == nr - count)
955 count++;
956 else {
957 mark_inode_dirty(inode);
958 ext2_free_blocks (inode, block_to_free, count);
959 free_this:
960 block_to_free = nr;
961 count = 1;
962 }
963 }
964 }
965 if (count > 0) {
966 mark_inode_dirty(inode);
967 ext2_free_blocks (inode, block_to_free, count);
968 }
969}
970
971/**
972 * ext2_free_branches - free an array of branches
973 * @inode: inode we are dealing with
974 * @p: array of block numbers
975 * @q: pointer immediately past the end of array
976 * @depth: depth of the branches to free
977 *
978 * We are freeing all blocks refered from these branches (numbers are
979 * stored as little-endian 32-bit) and updating @inode->i_blocks
980 * appropriately.
981 */
982static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
983{
984 struct buffer_head * bh;
985 unsigned long nr;
986
987 if (depth--) {
988 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
989 for ( ; p < q ; p++) {
990 nr = le32_to_cpu(*p);
991 if (!nr)
992 continue;
993 *p = 0;
994 bh = sb_bread(inode->i_sb, nr);
995 /*
996 * A read failure? Report error and clear slot
997 * (should be rare).
998 */
999 if (!bh) {
1000 ext2_error(inode->i_sb, "ext2_free_branches",
1001 "Read failure, inode=%ld, block=%ld",
1002 inode->i_ino, nr);
1003 continue;
1004 }
1005 ext2_free_branches(inode,
1006 (__le32*)bh->b_data,
1007 (__le32*)bh->b_data + addr_per_block,
1008 depth);
1009 bforget(bh);
1010 ext2_free_blocks(inode, nr, 1);
1011 mark_inode_dirty(inode);
1012 }
1013 } else
1014 ext2_free_data(inode, p, q);
1015}
1016
a686cd89 1017void ext2_truncate(struct inode *inode)
1da177e4
LT
1018{
1019 __le32 *i_data = EXT2_I(inode)->i_data;
a686cd89 1020 struct ext2_inode_info *ei = EXT2_I(inode);
1da177e4
LT
1021 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1022 int offsets[4];
1023 Indirect chain[4];
1024 Indirect *partial;
1025 __le32 nr = 0;
1026 int n;
1027 long iblock;
1028 unsigned blocksize;
1029
1030 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1031 S_ISLNK(inode->i_mode)))
1032 return;
1033 if (ext2_inode_is_fast_symlink(inode))
1034 return;
1035 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1036 return;
1037
1da177e4
LT
1038 blocksize = inode->i_sb->s_blocksize;
1039 iblock = (inode->i_size + blocksize-1)
1040 >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1041
6d79125b
CO
1042 if (mapping_is_xip(inode->i_mapping))
1043 xip_truncate_page(inode->i_mapping, inode->i_size);
1044 else if (test_opt(inode->i_sb, NOBH))
03158cd7
NP
1045 nobh_truncate_page(inode->i_mapping,
1046 inode->i_size, ext2_get_block);
1da177e4
LT
1047 else
1048 block_truncate_page(inode->i_mapping,
1049 inode->i_size, ext2_get_block);
1050
1051 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1052 if (n == 0)
1053 return;
1054
a686cd89
MB
1055 /*
1056 * From here we block out all ext2_get_block() callers who want to
1057 * modify the block allocation tree.
1058 */
1059 mutex_lock(&ei->truncate_mutex);
1060
1da177e4
LT
1061 if (n == 1) {
1062 ext2_free_data(inode, i_data+offsets[0],
1063 i_data + EXT2_NDIR_BLOCKS);
1064 goto do_indirects;
1065 }
1066
1067 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1068 /* Kill the top of shared branch (already detached) */
1069 if (nr) {
1070 if (partial == chain)
1071 mark_inode_dirty(inode);
1072 else
1073 mark_buffer_dirty_inode(partial->bh, inode);
1074 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1075 }
1076 /* Clear the ends of indirect blocks on the shared branch */
1077 while (partial > chain) {
1078 ext2_free_branches(inode,
1079 partial->p + 1,
1080 (__le32*)partial->bh->b_data+addr_per_block,
1081 (chain+n-1) - partial);
1082 mark_buffer_dirty_inode(partial->bh, inode);
1083 brelse (partial->bh);
1084 partial--;
1085 }
1086do_indirects:
1087 /* Kill the remaining (whole) subtrees */
1088 switch (offsets[0]) {
1089 default:
1090 nr = i_data[EXT2_IND_BLOCK];
1091 if (nr) {
1092 i_data[EXT2_IND_BLOCK] = 0;
1093 mark_inode_dirty(inode);
1094 ext2_free_branches(inode, &nr, &nr+1, 1);
1095 }
1096 case EXT2_IND_BLOCK:
1097 nr = i_data[EXT2_DIND_BLOCK];
1098 if (nr) {
1099 i_data[EXT2_DIND_BLOCK] = 0;
1100 mark_inode_dirty(inode);
1101 ext2_free_branches(inode, &nr, &nr+1, 2);
1102 }
1103 case EXT2_DIND_BLOCK:
1104 nr = i_data[EXT2_TIND_BLOCK];
1105 if (nr) {
1106 i_data[EXT2_TIND_BLOCK] = 0;
1107 mark_inode_dirty(inode);
1108 ext2_free_branches(inode, &nr, &nr+1, 3);
1109 }
1110 case EXT2_TIND_BLOCK:
1111 ;
1112 }
a686cd89
MB
1113
1114 ext2_discard_reservation(inode);
1115
1116 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
1117 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1118 if (inode_needs_sync(inode)) {
1119 sync_mapping_buffers(inode->i_mapping);
1120 ext2_sync_inode (inode);
1121 } else {
1122 mark_inode_dirty(inode);
1123 }
1124}
1125
1126static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1127 struct buffer_head **p)
1128{
1129 struct buffer_head * bh;
1130 unsigned long block_group;
1131 unsigned long block;
1132 unsigned long offset;
1133 struct ext2_group_desc * gdp;
1134
1135 *p = NULL;
1136 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1137 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1138 goto Einval;
1139
1140 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
ef2fb679 1141 gdp = ext2_get_group_desc(sb, block_group, NULL);
1da177e4
LT
1142 if (!gdp)
1143 goto Egdp;
1144 /*
1145 * Figure out the offset within the block group inode table
1146 */
1147 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1148 block = le32_to_cpu(gdp->bg_inode_table) +
1149 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1150 if (!(bh = sb_bread(sb, block)))
1151 goto Eio;
1152
1153 *p = bh;
1154 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1155 return (struct ext2_inode *) (bh->b_data + offset);
1156
1157Einval:
1158 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1159 (unsigned long) ino);
1160 return ERR_PTR(-EINVAL);
1161Eio:
1162 ext2_error(sb, "ext2_get_inode",
1163 "unable to read inode block - inode=%lu, block=%lu",
1164 (unsigned long) ino, block);
1165Egdp:
1166 return ERR_PTR(-EIO);
1167}
1168
1169void ext2_set_inode_flags(struct inode *inode)
1170{
1171 unsigned int flags = EXT2_I(inode)->i_flags;
1172
1173 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1174 if (flags & EXT2_SYNC_FL)
1175 inode->i_flags |= S_SYNC;
1176 if (flags & EXT2_APPEND_FL)
1177 inode->i_flags |= S_APPEND;
1178 if (flags & EXT2_IMMUTABLE_FL)
1179 inode->i_flags |= S_IMMUTABLE;
1180 if (flags & EXT2_NOATIME_FL)
1181 inode->i_flags |= S_NOATIME;
1182 if (flags & EXT2_DIRSYNC_FL)
1183 inode->i_flags |= S_DIRSYNC;
1184}
1185
4f99ed67
JK
1186/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1187void ext2_get_inode_flags(struct ext2_inode_info *ei)
1188{
1189 unsigned int flags = ei->vfs_inode.i_flags;
1190
1191 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1192 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1193 if (flags & S_SYNC)
1194 ei->i_flags |= EXT2_SYNC_FL;
1195 if (flags & S_APPEND)
1196 ei->i_flags |= EXT2_APPEND_FL;
1197 if (flags & S_IMMUTABLE)
1198 ei->i_flags |= EXT2_IMMUTABLE_FL;
1199 if (flags & S_NOATIME)
1200 ei->i_flags |= EXT2_NOATIME_FL;
1201 if (flags & S_DIRSYNC)
1202 ei->i_flags |= EXT2_DIRSYNC_FL;
1203}
1204
52fcf703 1205struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1da177e4 1206{
52fcf703 1207 struct ext2_inode_info *ei;
1da177e4 1208 struct buffer_head * bh;
52fcf703
DH
1209 struct ext2_inode *raw_inode;
1210 struct inode *inode;
1211 long ret = -EIO;
1da177e4
LT
1212 int n;
1213
52fcf703
DH
1214 inode = iget_locked(sb, ino);
1215 if (!inode)
1216 return ERR_PTR(-ENOMEM);
1217 if (!(inode->i_state & I_NEW))
1218 return inode;
1219
1220 ei = EXT2_I(inode);
1da177e4
LT
1221#ifdef CONFIG_EXT2_FS_POSIX_ACL
1222 ei->i_acl = EXT2_ACL_NOT_CACHED;
1223 ei->i_default_acl = EXT2_ACL_NOT_CACHED;
1224#endif
a686cd89
MB
1225 ei->i_block_alloc_info = NULL;
1226
52fcf703
DH
1227 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1228 if (IS_ERR(raw_inode)) {
1229 ret = PTR_ERR(raw_inode);
1da177e4 1230 goto bad_inode;
52fcf703 1231 }
1da177e4
LT
1232
1233 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1234 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1235 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1236 if (!(test_opt (inode->i_sb, NO_UID32))) {
1237 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1238 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1239 }
1240 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1241 inode->i_size = le32_to_cpu(raw_inode->i_size);
4d7bf11d
MR
1242 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1243 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1244 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1da177e4
LT
1245 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1246 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1247 /* We now have enough fields to check if the inode was active or not.
1248 * This is needed because nfsd might try to access dead inodes
1249 * the test is that same one that e2fsck uses
1250 * NeilBrown 1999oct15
1251 */
1252 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1253 /* this inode is deleted */
1254 brelse (bh);
52fcf703 1255 ret = -ESTALE;
1da177e4
LT
1256 goto bad_inode;
1257 }
1da177e4
LT
1258 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1259 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1260 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1261 ei->i_frag_no = raw_inode->i_frag;
1262 ei->i_frag_size = raw_inode->i_fsize;
1263 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1264 ei->i_dir_acl = 0;
1265 if (S_ISREG(inode->i_mode))
1266 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1267 else
1268 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1269 ei->i_dtime = 0;
1270 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1271 ei->i_state = 0;
1da177e4
LT
1272 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1273 ei->i_dir_start_lookup = 0;
352b70c1 1274 extent_map_tree_init(&ei->extent_tree);
1da177e4
LT
1275
1276 /*
1277 * NOTE! The in-memory inode i_data array is in little-endian order
1278 * even on big-endian machines: we do NOT byteswap the block numbers!
1279 */
1280 for (n = 0; n < EXT2_N_BLOCKS; n++)
1281 ei->i_data[n] = raw_inode->i_block[n];
1282
1283 if (S_ISREG(inode->i_mode)) {
1284 inode->i_op = &ext2_file_inode_operations;
6d79125b
CO
1285 if (ext2_use_xip(inode->i_sb)) {
1286 inode->i_mapping->a_ops = &ext2_aops_xip;
1287 inode->i_fop = &ext2_xip_file_operations;
1288 } else if (test_opt(inode->i_sb, NOBH)) {
1da177e4 1289 inode->i_mapping->a_ops = &ext2_nobh_aops;
6d79125b
CO
1290 inode->i_fop = &ext2_file_operations;
1291 } else {
1da177e4 1292 inode->i_mapping->a_ops = &ext2_aops;
6d79125b
CO
1293 inode->i_fop = &ext2_file_operations;
1294 }
1da177e4
LT
1295 } else if (S_ISDIR(inode->i_mode)) {
1296 inode->i_op = &ext2_dir_inode_operations;
1297 inode->i_fop = &ext2_dir_operations;
1298 if (test_opt(inode->i_sb, NOBH))
1299 inode->i_mapping->a_ops = &ext2_nobh_aops;
1300 else
1301 inode->i_mapping->a_ops = &ext2_aops;
1302 } else if (S_ISLNK(inode->i_mode)) {
8d6d0c4d 1303 if (ext2_inode_is_fast_symlink(inode)) {
1da177e4 1304 inode->i_op = &ext2_fast_symlink_inode_operations;
8d6d0c4d
DG
1305 nd_terminate_link(ei->i_data, inode->i_size,
1306 sizeof(ei->i_data) - 1);
1307 } else {
1da177e4
LT
1308 inode->i_op = &ext2_symlink_inode_operations;
1309 if (test_opt(inode->i_sb, NOBH))
1310 inode->i_mapping->a_ops = &ext2_nobh_aops;
1311 else
1312 inode->i_mapping->a_ops = &ext2_aops;
1313 }
1314 } else {
1315 inode->i_op = &ext2_special_inode_operations;
1316 if (raw_inode->i_block[0])
1317 init_special_inode(inode, inode->i_mode,
1318 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1319 else
1320 init_special_inode(inode, inode->i_mode,
1321 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1322 }
1323 brelse (bh);
1324 ext2_set_inode_flags(inode);
52fcf703
DH
1325 unlock_new_inode(inode);
1326 return inode;
1da177e4
LT
1327
1328bad_inode:
52fcf703
DH
1329 iget_failed(inode);
1330 return ERR_PTR(ret);
1da177e4
LT
1331}
1332
1333static int ext2_update_inode(struct inode * inode, int do_sync)
1334{
1335 struct ext2_inode_info *ei = EXT2_I(inode);
1336 struct super_block *sb = inode->i_sb;
1337 ino_t ino = inode->i_ino;
1338 uid_t uid = inode->i_uid;
1339 gid_t gid = inode->i_gid;
1340 struct buffer_head * bh;
1341 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1342 int n;
1343 int err = 0;
1344
1345 if (IS_ERR(raw_inode))
1346 return -EIO;
1347
1348 /* For fields not not tracking in the in-memory inode,
1349 * initialise them to zero for new inodes. */
1350 if (ei->i_state & EXT2_STATE_NEW)
1351 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1352
4f99ed67 1353 ext2_get_inode_flags(ei);
1da177e4
LT
1354 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1355 if (!(test_opt(sb, NO_UID32))) {
1356 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1357 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1358/*
1359 * Fix up interoperability with old kernels. Otherwise, old inodes get
1360 * re-used with the upper 16 bits of the uid/gid intact
1361 */
1362 if (!ei->i_dtime) {
1363 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1364 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1365 } else {
1366 raw_inode->i_uid_high = 0;
1367 raw_inode->i_gid_high = 0;
1368 }
1369 } else {
1370 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1371 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1372 raw_inode->i_uid_high = 0;
1373 raw_inode->i_gid_high = 0;
1374 }
1375 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1376 raw_inode->i_size = cpu_to_le32(inode->i_size);
1377 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1378 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1379 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1380
1381 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1382 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1383 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1384 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1385 raw_inode->i_frag = ei->i_frag_no;
1386 raw_inode->i_fsize = ei->i_frag_size;
1387 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1388 if (!S_ISREG(inode->i_mode))
1389 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1390 else {
1391 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1392 if (inode->i_size > 0x7fffffffULL) {
1393 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1394 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1395 EXT2_SB(sb)->s_es->s_rev_level ==
1396 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1397 /* If this is the first large file
1398 * created, add a flag to the superblock.
1399 */
1400 lock_kernel();
1401 ext2_update_dynamic_rev(sb);
1402 EXT2_SET_RO_COMPAT_FEATURE(sb,
1403 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1404 unlock_kernel();
1405 ext2_write_super(sb);
1406 }
1407 }
1408 }
1409
1410 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1411 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1412 if (old_valid_dev(inode->i_rdev)) {
1413 raw_inode->i_block[0] =
1414 cpu_to_le32(old_encode_dev(inode->i_rdev));
1415 raw_inode->i_block[1] = 0;
1416 } else {
1417 raw_inode->i_block[0] = 0;
1418 raw_inode->i_block[1] =
1419 cpu_to_le32(new_encode_dev(inode->i_rdev));
1420 raw_inode->i_block[2] = 0;
1421 }
1422 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1423 raw_inode->i_block[n] = ei->i_data[n];
1424 mark_buffer_dirty(bh);
1425 if (do_sync) {
1426 sync_dirty_buffer(bh);
1427 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1428 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1429 sb->s_id, (unsigned long) ino);
1430 err = -EIO;
1431 }
1432 }
1433 ei->i_state &= ~EXT2_STATE_NEW;
1434 brelse (bh);
1435 return err;
1436}
1437
1438int ext2_write_inode(struct inode *inode, int wait)
1439{
1440 return ext2_update_inode(inode, wait);
1441}
1442
1443int ext2_sync_inode(struct inode *inode)
1444{
1445 struct writeback_control wbc = {
1446 .sync_mode = WB_SYNC_ALL,
1447 .nr_to_write = 0, /* sys_fsync did this */
1448 };
1449 return sync_inode(inode, &wbc);
1450}
1451
1452int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1453{
1454 struct inode *inode = dentry->d_inode;
1455 int error;
1456
1457 error = inode_change_ok(inode, iattr);
1458 if (error)
1459 return error;
1460 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1461 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1462 error = DQUOT_TRANSFER(inode, iattr) ? -EDQUOT : 0;
1463 if (error)
1464 return error;
1465 }
1466 error = inode_setattr(inode, iattr);
1467 if (!error && (iattr->ia_valid & ATTR_MODE))
1468 error = ext2_acl_chmod(inode);
1469 return error;
1470}