ext2: async get_block and support code
[linux-block.git] / fs / ext2 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25#include <linux/smp_lock.h>
26#include <linux/time.h>
27#include <linux/highuid.h>
28#include <linux/pagemap.h>
29#include <linux/quotaops.h>
30#include <linux/module.h>
31#include <linux/writeback.h>
32#include <linux/buffer_head.h>
33#include <linux/mpage.h>
68c9d702 34#include <linux/fiemap.h>
8d6d0c4d 35#include <linux/namei.h>
1da177e4
LT
36#include "ext2.h"
37#include "acl.h"
6d79125b 38#include "xip.h"
1da177e4
LT
39
40MODULE_AUTHOR("Remy Card and others");
41MODULE_DESCRIPTION("Second Extended Filesystem");
42MODULE_LICENSE("GPL");
43
1da177e4
LT
44/*
45 * Test whether an inode is a fast symlink.
46 */
47static inline int ext2_inode_is_fast_symlink(struct inode *inode)
48{
49 int ea_blocks = EXT2_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
51
52 return (S_ISLNK(inode->i_mode) &&
53 inode->i_blocks - ea_blocks == 0);
54}
55
56/*
57 * Called at the last iput() if i_nlink is zero.
58 */
59void ext2_delete_inode (struct inode * inode)
60{
fef26658
MF
61 truncate_inode_pages(&inode->i_data, 0);
62
1da177e4
LT
63 if (is_bad_inode(inode))
64 goto no_delete;
65 EXT2_I(inode)->i_dtime = get_seconds();
66 mark_inode_dirty(inode);
e1740a46 67 ext2_write_inode(inode, inode_needs_sync(inode));
1da177e4
LT
68
69 inode->i_size = 0;
70 if (inode->i_blocks)
71 ext2_truncate (inode);
72 ext2_free_inode (inode);
73
74 return;
75no_delete:
76 clear_inode(inode); /* We must guarantee clearing of inode... */
77}
78
1da177e4
LT
79typedef struct {
80 __le32 *p;
81 __le32 key;
82 struct buffer_head *bh;
83} Indirect;
84
85static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
86{
87 p->key = *(p->p = v);
88 p->bh = bh;
89}
90
91static inline int verify_chain(Indirect *from, Indirect *to)
92{
93 while (from <= to && from->key == *from->p)
94 from++;
95 return (from > to);
96}
97
98/**
99 * ext2_block_to_path - parse the block number into array of offsets
100 * @inode: inode in question (we are only interested in its superblock)
101 * @i_block: block number to be parsed
102 * @offsets: array to store the offsets in
103 * @boundary: set this non-zero if the referred-to block is likely to be
104 * followed (on disk) by an indirect block.
105 * To store the locations of file's data ext2 uses a data structure common
106 * for UNIX filesystems - tree of pointers anchored in the inode, with
107 * data blocks at leaves and indirect blocks in intermediate nodes.
108 * This function translates the block number into path in that tree -
109 * return value is the path length and @offsets[n] is the offset of
110 * pointer to (n+1)th node in the nth one. If @block is out of range
111 * (negative or too large) warning is printed and zero returned.
112 *
113 * Note: function doesn't find node addresses, so no IO is needed. All
114 * we need to know is the capacity of indirect blocks (taken from the
115 * inode->i_sb).
116 */
117
118/*
119 * Portability note: the last comparison (check that we fit into triple
120 * indirect block) is spelled differently, because otherwise on an
121 * architecture with 32-bit longs and 8Kb pages we might get into trouble
122 * if our filesystem had 8Kb blocks. We might use long long, but that would
123 * kill us on x86. Oh, well, at least the sign propagation does not matter -
124 * i_block would have to be negative in the very beginning, so we would not
125 * get there at all.
126 */
127
128static int ext2_block_to_path(struct inode *inode,
129 long i_block, int offsets[4], int *boundary)
130{
131 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
132 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
133 const long direct_blocks = EXT2_NDIR_BLOCKS,
134 indirect_blocks = ptrs,
135 double_blocks = (1 << (ptrs_bits * 2));
136 int n = 0;
137 int final = 0;
138
139 if (i_block < 0) {
140 ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
141 } else if (i_block < direct_blocks) {
142 offsets[n++] = i_block;
143 final = direct_blocks;
144 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
145 offsets[n++] = EXT2_IND_BLOCK;
146 offsets[n++] = i_block;
147 final = ptrs;
148 } else if ((i_block -= indirect_blocks) < double_blocks) {
149 offsets[n++] = EXT2_DIND_BLOCK;
150 offsets[n++] = i_block >> ptrs_bits;
151 offsets[n++] = i_block & (ptrs - 1);
152 final = ptrs;
153 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
154 offsets[n++] = EXT2_TIND_BLOCK;
155 offsets[n++] = i_block >> (ptrs_bits * 2);
156 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
157 offsets[n++] = i_block & (ptrs - 1);
158 final = ptrs;
159 } else {
160 ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
161 }
162 if (boundary)
a686cd89
MB
163 *boundary = final - 1 - (i_block & (ptrs - 1));
164
1da177e4
LT
165 return n;
166}
167
168/**
169 * ext2_get_branch - read the chain of indirect blocks leading to data
170 * @inode: inode in question
171 * @depth: depth of the chain (1 - direct pointer, etc.)
172 * @offsets: offsets of pointers in inode/indirect blocks
173 * @chain: place to store the result
174 * @err: here we store the error value
175 *
176 * Function fills the array of triples <key, p, bh> and returns %NULL
177 * if everything went OK or the pointer to the last filled triple
178 * (incomplete one) otherwise. Upon the return chain[i].key contains
179 * the number of (i+1)-th block in the chain (as it is stored in memory,
180 * i.e. little-endian 32-bit), chain[i].p contains the address of that
181 * number (it points into struct inode for i==0 and into the bh->b_data
182 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
183 * block for i>0 and NULL for i==0. In other words, it holds the block
184 * numbers of the chain, addresses they were taken from (and where we can
185 * verify that chain did not change) and buffer_heads hosting these
186 * numbers.
187 *
188 * Function stops when it stumbles upon zero pointer (absent block)
189 * (pointer to last triple returned, *@err == 0)
190 * or when it gets an IO error reading an indirect block
191 * (ditto, *@err == -EIO)
192 * or when it notices that chain had been changed while it was reading
193 * (ditto, *@err == -EAGAIN)
194 * or when it reads all @depth-1 indirect blocks successfully and finds
195 * the whole chain, all way to the data (returns %NULL, *err == 0).
196 */
2557c31c
JA
197static Indirect *ext2_get_branch(struct inode *inode, int depth,
198 int *offsets, Indirect chain[4],
199 int *err, struct wait_bit_queue *wait)
1da177e4
LT
200{
201 struct super_block *sb = inode->i_sb;
202 Indirect *p = chain;
203 struct buffer_head *bh;
204
205 *err = 0;
206 /* i_data is not going away, no lock needed */
207 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
208 if (!p->key)
209 goto no_block;
210 while (--depth) {
2557c31c
JA
211 bh = sb_bread_async(sb, le32_to_cpu(p->key), wait);
212 if (!bh || IS_ERR(bh))
1da177e4
LT
213 goto failure;
214 read_lock(&EXT2_I(inode)->i_meta_lock);
215 if (!verify_chain(chain, p))
216 goto changed;
217 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
218 read_unlock(&EXT2_I(inode)->i_meta_lock);
219 if (!p->key)
220 goto no_block;
221 }
222 return NULL;
223
224changed:
225 read_unlock(&EXT2_I(inode)->i_meta_lock);
226 brelse(bh);
227 *err = -EAGAIN;
228 goto no_block;
229failure:
2557c31c
JA
230 if (IS_ERR(bh))
231 *err = PTR_ERR(bh);
232 else
233 *err = -EIO;
1da177e4
LT
234no_block:
235 return p;
236}
237
238/**
239 * ext2_find_near - find a place for allocation with sufficient locality
240 * @inode: owner
241 * @ind: descriptor of indirect block.
242 *
1cc8dcf5 243 * This function returns the preferred place for block allocation.
1da177e4
LT
244 * It is used when heuristic for sequential allocation fails.
245 * Rules are:
246 * + if there is a block to the left of our position - allocate near it.
247 * + if pointer will live in indirect block - allocate near that block.
248 * + if pointer will live in inode - allocate in the same cylinder group.
249 *
250 * In the latter case we colour the starting block by the callers PID to
251 * prevent it from clashing with concurrent allocations for a different inode
252 * in the same block group. The PID is used here so that functionally related
253 * files will be close-by on-disk.
254 *
255 * Caller must make sure that @ind is valid and will stay that way.
256 */
257
4c8b3125 258static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
1da177e4
LT
259{
260 struct ext2_inode_info *ei = EXT2_I(inode);
261 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
262 __le32 *p;
4c8b3125
AM
263 ext2_fsblk_t bg_start;
264 ext2_fsblk_t colour;
1da177e4
LT
265
266 /* Try to find previous block */
267 for (p = ind->p - 1; p >= start; p--)
268 if (*p)
269 return le32_to_cpu(*p);
270
271 /* No such thing, so let's try location of indirect block */
272 if (ind->bh)
273 return ind->bh->b_blocknr;
274
275 /*
276 * It is going to be refered from inode itself? OK, just put it into
277 * the same cylinder group then.
278 */
24097d12 279 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
1da177e4
LT
280 colour = (current->pid % 16) *
281 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
282 return bg_start + colour;
283}
284
285/**
1cc8dcf5 286 * ext2_find_goal - find a preferred place for allocation.
1da177e4
LT
287 * @inode: owner
288 * @block: block we want
1da177e4 289 * @partial: pointer to the last triple within a chain
1da177e4 290 *
a686cd89 291 * Returns preferred place for a block (the goal).
1da177e4
LT
292 */
293
4c8b3125
AM
294static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
295 Indirect *partial)
1da177e4 296{
a686cd89
MB
297 struct ext2_block_alloc_info *block_i;
298
299 block_i = EXT2_I(inode)->i_block_alloc_info;
300
301 /*
302 * try the heuristic for sequential allocation,
303 * failing that at least try to get decent locality.
304 */
305 if (block_i && (block == block_i->last_alloc_logical_block + 1)
306 && (block_i->last_alloc_physical_block != 0)) {
307 return block_i->last_alloc_physical_block + 1;
308 }
309
310 return ext2_find_near(inode, partial);
311}
312
313/**
314 * ext2_blks_to_allocate: Look up the block map and count the number
315 * of direct blocks need to be allocated for the given branch.
316 *
317 * @branch: chain of indirect blocks
318 * @k: number of blocks need for indirect blocks
319 * @blks: number of data blocks to be mapped.
320 * @blocks_to_boundary: the offset in the indirect block
321 *
322 * return the total number of blocks to be allocate, including the
323 * direct and indirect blocks.
324 */
325static int
326ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
327 int blocks_to_boundary)
328{
329 unsigned long count = 0;
330
331 /*
332 * Simple case, [t,d]Indirect block(s) has not allocated yet
333 * then it's clear blocks on that path have not allocated
334 */
335 if (k > 0) {
336 /* right now don't hanel cross boundary allocation */
337 if (blks < blocks_to_boundary + 1)
338 count += blks;
339 else
340 count += blocks_to_boundary + 1;
341 return count;
1da177e4 342 }
a686cd89
MB
343
344 count++;
345 while (count < blks && count <= blocks_to_boundary
346 && le32_to_cpu(*(branch[0].p + count)) == 0) {
347 count++;
348 }
349 return count;
350}
351
352/**
353 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
354 * @indirect_blks: the number of blocks need to allocate for indirect
355 * blocks
356 *
357 * @new_blocks: on return it will store the new block numbers for
358 * the indirect blocks(if needed) and the first direct block,
359 * @blks: on return it will store the total number of allocated
360 * direct blocks
361 */
362static int ext2_alloc_blocks(struct inode *inode,
363 ext2_fsblk_t goal, int indirect_blks, int blks,
364 ext2_fsblk_t new_blocks[4], int *err)
365{
366 int target, i;
367 unsigned long count = 0;
368 int index = 0;
369 ext2_fsblk_t current_block = 0;
370 int ret = 0;
371
372 /*
373 * Here we try to allocate the requested multiple blocks at once,
374 * on a best-effort basis.
375 * To build a branch, we should allocate blocks for
376 * the indirect blocks(if not allocated yet), and at least
377 * the first direct block of this branch. That's the
378 * minimum number of blocks need to allocate(required)
379 */
380 target = blks + indirect_blks;
381
382 while (1) {
383 count = target;
384 /* allocating blocks for indirect blocks and direct blocks */
385 current_block = ext2_new_blocks(inode,goal,&count,err);
386 if (*err)
387 goto failed_out;
388
389 target -= count;
390 /* allocate blocks for indirect blocks */
391 while (index < indirect_blks && count) {
392 new_blocks[index++] = current_block++;
393 count--;
394 }
395
396 if (count > 0)
397 break;
398 }
399
400 /* save the new block number for the first direct block */
401 new_blocks[index] = current_block;
402
403 /* total number of blocks allocated for direct blocks */
404 ret = count;
405 *err = 0;
406 return ret;
407failed_out:
408 for (i = 0; i <index; i++)
409 ext2_free_blocks(inode, new_blocks[i], 1);
410 return ret;
1da177e4
LT
411}
412
413/**
414 * ext2_alloc_branch - allocate and set up a chain of blocks.
415 * @inode: owner
416 * @num: depth of the chain (number of blocks to allocate)
417 * @offsets: offsets (in the blocks) to store the pointers to next.
418 * @branch: place to store the chain in.
419 *
420 * This function allocates @num blocks, zeroes out all but the last one,
421 * links them into chain and (if we are synchronous) writes them to disk.
422 * In other words, it prepares a branch that can be spliced onto the
423 * inode. It stores the information about that chain in the branch[], in
424 * the same format as ext2_get_branch() would do. We are calling it after
425 * we had read the existing part of chain and partial points to the last
426 * triple of that (one with zero ->key). Upon the exit we have the same
427 * picture as after the successful ext2_get_block(), excpet that in one
428 * place chain is disconnected - *branch->p is still zero (we did not
429 * set the last link), but branch->key contains the number that should
430 * be placed into *branch->p to fill that gap.
431 *
432 * If allocation fails we free all blocks we've allocated (and forget
433 * their buffer_heads) and return the error value the from failed
434 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
435 * as described above and return 0.
436 */
437
438static int ext2_alloc_branch(struct inode *inode,
a686cd89
MB
439 int indirect_blks, int *blks, ext2_fsblk_t goal,
440 int *offsets, Indirect *branch)
1da177e4
LT
441{
442 int blocksize = inode->i_sb->s_blocksize;
a686cd89
MB
443 int i, n = 0;
444 int err = 0;
445 struct buffer_head *bh;
446 int num;
447 ext2_fsblk_t new_blocks[4];
448 ext2_fsblk_t current_block;
449
450 num = ext2_alloc_blocks(inode, goal, indirect_blks,
451 *blks, new_blocks, &err);
452 if (err)
453 return err;
454
455 branch[0].key = cpu_to_le32(new_blocks[0]);
456 /*
457 * metadata blocks and data blocks are allocated.
458 */
459 for (n = 1; n <= indirect_blks; n++) {
1da177e4 460 /*
a686cd89
MB
461 * Get buffer_head for parent block, zero it out
462 * and set the pointer to new one, then send
463 * parent to disk.
1da177e4 464 */
a686cd89
MB
465 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
466 branch[n].bh = bh;
1da177e4
LT
467 lock_buffer(bh);
468 memset(bh->b_data, 0, blocksize);
1da177e4 469 branch[n].p = (__le32 *) bh->b_data + offsets[n];
a686cd89 470 branch[n].key = cpu_to_le32(new_blocks[n]);
1da177e4 471 *branch[n].p = branch[n].key;
a686cd89
MB
472 if ( n == indirect_blks) {
473 current_block = new_blocks[n];
474 /*
475 * End of chain, update the last new metablock of
476 * the chain to point to the new allocated
477 * data blocks numbers
478 */
479 for (i=1; i < num; i++)
480 *(branch[n].p + i) = cpu_to_le32(++current_block);
481 }
1da177e4
LT
482 set_buffer_uptodate(bh);
483 unlock_buffer(bh);
484 mark_buffer_dirty_inode(bh, inode);
485 /* We used to sync bh here if IS_SYNC(inode).
a2a735ad 486 * But we now rely upon generic_write_sync()
1da177e4
LT
487 * and b_inode_buffers. But not for directories.
488 */
489 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
490 sync_dirty_buffer(bh);
1da177e4 491 }
a686cd89 492 *blks = num;
1da177e4
LT
493 return err;
494}
495
496/**
a686cd89
MB
497 * ext2_splice_branch - splice the allocated branch onto inode.
498 * @inode: owner
499 * @block: (logical) number of block we are adding
a686cd89
MB
500 * @where: location of missing link
501 * @num: number of indirect blocks we are adding
502 * @blks: number of direct blocks we are adding
1da177e4 503 *
a686cd89
MB
504 * This function fills the missing link and does all housekeeping needed in
505 * inode (->i_blocks, etc.). In case of success we end up with the full
506 * chain to new block and return 0.
1da177e4 507 */
a686cd89
MB
508static void ext2_splice_branch(struct inode *inode,
509 long block, Indirect *where, int num, int blks)
1da177e4 510{
1da177e4 511 int i;
a686cd89
MB
512 struct ext2_block_alloc_info *block_i;
513 ext2_fsblk_t current_block;
1da177e4 514
a686cd89 515 block_i = EXT2_I(inode)->i_block_alloc_info;
1da177e4 516
a686cd89 517 /* XXX LOCKING probably should have i_meta_lock ?*/
1da177e4
LT
518 /* That's it */
519
520 *where->p = where->key;
1da177e4 521
a686cd89
MB
522 /*
523 * Update the host buffer_head or inode to point to more just allocated
524 * direct blocks blocks
525 */
526 if (num == 0 && blks > 1) {
527 current_block = le32_to_cpu(where->key) + 1;
528 for (i = 1; i < blks; i++)
529 *(where->p + i ) = cpu_to_le32(current_block++);
530 }
1da177e4 531
a686cd89
MB
532 /*
533 * update the most recently allocated logical & physical block
534 * in i_block_alloc_info, to assist find the proper goal block for next
535 * allocation
536 */
537 if (block_i) {
538 block_i->last_alloc_logical_block = block + blks - 1;
539 block_i->last_alloc_physical_block =
540 le32_to_cpu(where[num].key) + blks - 1;
541 }
1da177e4 542
a686cd89 543 /* We are done with atomic stuff, now do the rest of housekeeping */
1da177e4
LT
544
545 /* had we spliced it onto indirect block? */
546 if (where->bh)
547 mark_buffer_dirty_inode(where->bh, inode);
548
a686cd89 549 inode->i_ctime = CURRENT_TIME_SEC;
1da177e4 550 mark_inode_dirty(inode);
1da177e4
LT
551}
552
553/*
554 * Allocation strategy is simple: if we have to allocate something, we will
555 * have to go the whole way to leaf. So let's do it before attaching anything
556 * to tree, set linkage between the newborn blocks, write them if sync is
557 * required, recheck the path, free and repeat if check fails, otherwise
558 * set the last missing link (that will protect us from any truncate-generated
559 * removals - all blocks on the path are immune now) and possibly force the
560 * write on the parent block.
561 * That has a nice additional property: no special recovery from the failed
562 * allocations is needed - we simply release blocks and do not touch anything
563 * reachable from inode.
a686cd89
MB
564 *
565 * `handle' can be NULL if create == 0.
566 *
a686cd89
MB
567 * return > 0, # of blocks mapped or allocated.
568 * return = 0, if plain lookup failed.
569 * return < 0, error case.
1da177e4 570 */
2557c31c
JA
571static int ext2_get_blocks(struct inode *inode, sector_t iblock,
572 unsigned long maxblocks,
573 struct buffer_head *bh_result, int create,
574 struct wait_bit_queue *wait)
1da177e4
LT
575{
576 int err = -EIO;
577 int offsets[4];
578 Indirect chain[4];
579 Indirect *partial;
a686cd89
MB
580 ext2_fsblk_t goal;
581 int indirect_blks;
582 int blocks_to_boundary = 0;
583 int depth;
584 struct ext2_inode_info *ei = EXT2_I(inode);
585 int count = 0;
586 ext2_fsblk_t first_block = 0;
1da177e4 587
a686cd89 588 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
1da177e4 589
a686cd89
MB
590 if (depth == 0)
591 return (err);
1da177e4 592
2557c31c 593 partial = ext2_get_branch(inode, depth, offsets, chain, &err, wait);
1da177e4
LT
594 /* Simplest case - block found, no allocation needed */
595 if (!partial) {
a686cd89
MB
596 first_block = le32_to_cpu(chain[depth - 1].key);
597 clear_buffer_new(bh_result); /* What's this do? */
598 count++;
599 /*map more blocks*/
600 while (count < maxblocks && count <= blocks_to_boundary) {
601 ext2_fsblk_t blk;
602
316cb4ef 603 if (!verify_chain(chain, chain + depth - 1)) {
a686cd89
MB
604 /*
605 * Indirect block might be removed by
606 * truncate while we were reading it.
607 * Handling of that case: forget what we've
608 * got now, go to reread.
609 */
316cb4ef 610 err = -EAGAIN;
a686cd89 611 count = 0;
316cb4ef 612 break;
a686cd89
MB
613 }
614 blk = le32_to_cpu(*(chain[depth-1].p + count));
615 if (blk == first_block + count)
616 count++;
617 else
618 break;
619 }
316cb4ef
JK
620 if (err != -EAGAIN)
621 goto got_it;
1da177e4
LT
622 }
623
624 /* Next simple case - plain lookup or failed read of indirect block */
2557c31c 625 if (!create || err == -EIO || err == -EIOCBRETRY)
a686cd89
MB
626 goto cleanup;
627
628 mutex_lock(&ei->truncate_mutex);
316cb4ef
JK
629 /*
630 * If the indirect block is missing while we are reading
631 * the chain(ext3_get_branch() returns -EAGAIN err), or
632 * if the chain has been changed after we grab the semaphore,
633 * (either because another process truncated this branch, or
634 * another get_block allocated this branch) re-grab the chain to see if
635 * the request block has been allocated or not.
636 *
637 * Since we already block the truncate/other get_block
638 * at this point, we will have the current copy of the chain when we
639 * splice the branch into the tree.
640 */
641 if (err == -EAGAIN || !verify_chain(chain, partial)) {
642 while (partial > chain) {
643 brelse(partial->bh);
644 partial--;
645 }
2557c31c
JA
646 partial = ext2_get_branch(inode, depth, offsets, chain, &err,
647 wait);
316cb4ef
JK
648 if (!partial) {
649 count++;
650 mutex_unlock(&ei->truncate_mutex);
651 if (err)
652 goto cleanup;
653 clear_buffer_new(bh_result);
654 goto got_it;
655 }
656 }
1da177e4
LT
657
658 /*
a686cd89
MB
659 * Okay, we need to do block allocation. Lazily initialize the block
660 * allocation info here if necessary
661 */
662 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
663 ext2_init_block_alloc_info(inode);
1da177e4 664
fb01bfda 665 goal = ext2_find_goal(inode, iblock, partial);
1da177e4 666
a686cd89
MB
667 /* the number of blocks need to allocate for [d,t]indirect blocks */
668 indirect_blks = (chain + depth) - partial - 1;
669 /*
670 * Next look up the indirect map to count the totoal number of
671 * direct blocks to allocate for this branch.
672 */
673 count = ext2_blks_to_allocate(partial, indirect_blks,
674 maxblocks, blocks_to_boundary);
675 /*
676 * XXX ???? Block out ext2_truncate while we alter the tree
677 */
678 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
679 offsets + (partial - chain), partial);
680
681 if (err) {
682 mutex_unlock(&ei->truncate_mutex);
1da177e4 683 goto cleanup;
a686cd89 684 }
1da177e4 685
6d79125b
CO
686 if (ext2_use_xip(inode->i_sb)) {
687 /*
688 * we need to clear the block
689 */
690 err = ext2_clear_xip_target (inode,
691 le32_to_cpu(chain[depth-1].key));
a686cd89
MB
692 if (err) {
693 mutex_unlock(&ei->truncate_mutex);
6d79125b 694 goto cleanup;
a686cd89 695 }
6d79125b
CO
696 }
697
a686cd89
MB
698 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
699 mutex_unlock(&ei->truncate_mutex);
1da177e4 700 set_buffer_new(bh_result);
a686cd89
MB
701got_it:
702 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
703 if (count > blocks_to_boundary)
704 set_buffer_boundary(bh_result);
705 err = count;
706 /* Clean up and exit */
707 partial = chain + depth - 1; /* the whole chain */
708cleanup:
709 while (partial > chain) {
710 brelse(partial->bh);
711 partial--;
712 }
713 return err;
1da177e4
LT
714}
715
a686cd89
MB
716int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
717{
718 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
719 int ret = ext2_get_blocks(inode, iblock, max_blocks,
2557c31c 720 bh_result, create, NULL);
a686cd89
MB
721 if (ret > 0) {
722 bh_result->b_size = (ret << inode->i_blkbits);
723 ret = 0;
724 }
725 return ret;
726
727}
728
2557c31c
JA
729int ext2_get_block_async(struct inode *inode, sector_t iblock,
730 struct buffer_head *bh_result, int create)
731{
732 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
733 int ret = ext2_get_blocks(inode, iblock, max_blocks,
734 bh_result, create, current->io_wait);
735 if (ret > 0) {
736 bh_result->b_size = (ret << inode->i_blkbits);
737 ret = 0;
738 }
739 return ret;
740
741}
68c9d702
JB
742int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
743 u64 start, u64 len)
744{
745 return generic_block_fiemap(inode, fieinfo, start, len,
746 ext2_get_block);
747}
748
1da177e4
LT
749static int ext2_writepage(struct page *page, struct writeback_control *wbc)
750{
751 return block_write_full_page(page, ext2_get_block, wbc);
752}
753
754static int ext2_readpage(struct file *file, struct page *page)
755{
756 return mpage_readpage(page, ext2_get_block);
757}
758
759static int
760ext2_readpages(struct file *file, struct address_space *mapping,
761 struct list_head *pages, unsigned nr_pages)
762{
763 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
764}
765
f34fb6ec
NP
766int __ext2_write_begin(struct file *file, struct address_space *mapping,
767 loff_t pos, unsigned len, unsigned flags,
768 struct page **pagep, void **fsdata)
1da177e4 769{
f34fb6ec 770 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2557c31c 771 ext2_get_block_async);
1da177e4
LT
772}
773
774static int
f34fb6ec
NP
775ext2_write_begin(struct file *file, struct address_space *mapping,
776 loff_t pos, unsigned len, unsigned flags,
777 struct page **pagep, void **fsdata)
1da177e4 778{
f34fb6ec
NP
779 *pagep = NULL;
780 return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
1da177e4
LT
781}
782
03158cd7
NP
783static int
784ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
785 loff_t pos, unsigned len, unsigned flags,
786 struct page **pagep, void **fsdata)
787{
788 /*
789 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
790 * directory handling code to pass around offsets rather than struct
791 * pages in order to make this work easily.
792 */
793 return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2557c31c 794 ext2_get_block_async);
03158cd7
NP
795}
796
1da177e4
LT
797static int ext2_nobh_writepage(struct page *page,
798 struct writeback_control *wbc)
799{
800 return nobh_writepage(page, ext2_get_block, wbc);
801}
802
803static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
804{
805 return generic_block_bmap(mapping,block,ext2_get_block);
806}
807
1da177e4
LT
808static ssize_t
809ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
810 loff_t offset, unsigned long nr_segs)
811{
812 struct file *file = iocb->ki_filp;
813 struct inode *inode = file->f_mapping->host;
814
815 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1d8fa7a2 816 offset, nr_segs, ext2_get_block, NULL);
1da177e4
LT
817}
818
819static int
820ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
821{
822 return mpage_writepages(mapping, wbc, ext2_get_block);
823}
824
f5e54d6e 825const struct address_space_operations ext2_aops = {
1da177e4
LT
826 .readpage = ext2_readpage,
827 .readpages = ext2_readpages,
828 .writepage = ext2_writepage,
829 .sync_page = block_sync_page,
f34fb6ec
NP
830 .write_begin = ext2_write_begin,
831 .write_end = generic_write_end,
1da177e4
LT
832 .bmap = ext2_bmap,
833 .direct_IO = ext2_direct_IO,
834 .writepages = ext2_writepages,
e965f963 835 .migratepage = buffer_migrate_page,
8ab22b9a 836 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 837 .error_remove_page = generic_error_remove_page,
1da177e4
LT
838};
839
f5e54d6e 840const struct address_space_operations ext2_aops_xip = {
6d79125b 841 .bmap = ext2_bmap,
70688e4d 842 .get_xip_mem = ext2_get_xip_mem,
6d79125b
CO
843};
844
f5e54d6e 845const struct address_space_operations ext2_nobh_aops = {
1da177e4
LT
846 .readpage = ext2_readpage,
847 .readpages = ext2_readpages,
848 .writepage = ext2_nobh_writepage,
849 .sync_page = block_sync_page,
03158cd7
NP
850 .write_begin = ext2_nobh_write_begin,
851 .write_end = nobh_write_end,
1da177e4
LT
852 .bmap = ext2_bmap,
853 .direct_IO = ext2_direct_IO,
854 .writepages = ext2_writepages,
e965f963 855 .migratepage = buffer_migrate_page,
aa261f54 856 .error_remove_page = generic_error_remove_page,
1da177e4
LT
857};
858
859/*
860 * Probably it should be a library function... search for first non-zero word
861 * or memcmp with zero_page, whatever is better for particular architecture.
862 * Linus?
863 */
864static inline int all_zeroes(__le32 *p, __le32 *q)
865{
866 while (p < q)
867 if (*p++)
868 return 0;
869 return 1;
870}
871
872/**
873 * ext2_find_shared - find the indirect blocks for partial truncation.
874 * @inode: inode in question
875 * @depth: depth of the affected branch
876 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
877 * @chain: place to store the pointers to partial indirect blocks
878 * @top: place to the (detached) top of branch
879 *
880 * This is a helper function used by ext2_truncate().
881 *
882 * When we do truncate() we may have to clean the ends of several indirect
883 * blocks but leave the blocks themselves alive. Block is partially
884 * truncated if some data below the new i_size is refered from it (and
885 * it is on the path to the first completely truncated data block, indeed).
886 * We have to free the top of that path along with everything to the right
887 * of the path. Since no allocation past the truncation point is possible
888 * until ext2_truncate() finishes, we may safely do the latter, but top
889 * of branch may require special attention - pageout below the truncation
890 * point might try to populate it.
891 *
892 * We atomically detach the top of branch from the tree, store the block
893 * number of its root in *@top, pointers to buffer_heads of partially
894 * truncated blocks - in @chain[].bh and pointers to their last elements
895 * that should not be removed - in @chain[].p. Return value is the pointer
896 * to last filled element of @chain.
897 *
898 * The work left to caller to do the actual freeing of subtrees:
899 * a) free the subtree starting from *@top
900 * b) free the subtrees whose roots are stored in
901 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
902 * c) free the subtrees growing from the inode past the @chain[0].p
903 * (no partially truncated stuff there).
904 */
905
906static Indirect *ext2_find_shared(struct inode *inode,
907 int depth,
908 int offsets[4],
909 Indirect chain[4],
910 __le32 *top)
911{
912 Indirect *partial, *p;
913 int k, err;
914
915 *top = 0;
916 for (k = depth; k > 1 && !offsets[k-1]; k--)
917 ;
2557c31c 918 partial = ext2_get_branch(inode, k, offsets, chain, &err, NULL);
1da177e4
LT
919 if (!partial)
920 partial = chain + k-1;
921 /*
922 * If the branch acquired continuation since we've looked at it -
923 * fine, it should all survive and (new) top doesn't belong to us.
924 */
925 write_lock(&EXT2_I(inode)->i_meta_lock);
926 if (!partial->key && *partial->p) {
927 write_unlock(&EXT2_I(inode)->i_meta_lock);
928 goto no_top;
929 }
930 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
931 ;
932 /*
933 * OK, we've found the last block that must survive. The rest of our
934 * branch should be detached before unlocking. However, if that rest
935 * of branch is all ours and does not grow immediately from the inode
936 * it's easier to cheat and just decrement partial->p.
937 */
938 if (p == chain + k - 1 && p > chain) {
939 p->p--;
940 } else {
941 *top = *p->p;
942 *p->p = 0;
943 }
944 write_unlock(&EXT2_I(inode)->i_meta_lock);
945
946 while(partial > p)
947 {
948 brelse(partial->bh);
949 partial--;
950 }
951no_top:
952 return partial;
953}
954
955/**
956 * ext2_free_data - free a list of data blocks
957 * @inode: inode we are dealing with
958 * @p: array of block numbers
959 * @q: points immediately past the end of array
960 *
961 * We are freeing all blocks refered from that array (numbers are
962 * stored as little-endian 32-bit) and updating @inode->i_blocks
963 * appropriately.
964 */
965static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
966{
967 unsigned long block_to_free = 0, count = 0;
968 unsigned long nr;
969
970 for ( ; p < q ; p++) {
971 nr = le32_to_cpu(*p);
972 if (nr) {
973 *p = 0;
974 /* accumulate blocks to free if they're contiguous */
975 if (count == 0)
976 goto free_this;
977 else if (block_to_free == nr - count)
978 count++;
979 else {
980 mark_inode_dirty(inode);
981 ext2_free_blocks (inode, block_to_free, count);
982 free_this:
983 block_to_free = nr;
984 count = 1;
985 }
986 }
987 }
988 if (count > 0) {
989 mark_inode_dirty(inode);
990 ext2_free_blocks (inode, block_to_free, count);
991 }
992}
993
994/**
995 * ext2_free_branches - free an array of branches
996 * @inode: inode we are dealing with
997 * @p: array of block numbers
998 * @q: pointer immediately past the end of array
999 * @depth: depth of the branches to free
1000 *
1001 * We are freeing all blocks refered from these branches (numbers are
1002 * stored as little-endian 32-bit) and updating @inode->i_blocks
1003 * appropriately.
1004 */
1005static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1006{
1007 struct buffer_head * bh;
1008 unsigned long nr;
1009
1010 if (depth--) {
1011 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1012 for ( ; p < q ; p++) {
1013 nr = le32_to_cpu(*p);
1014 if (!nr)
1015 continue;
1016 *p = 0;
1017 bh = sb_bread(inode->i_sb, nr);
1018 /*
1019 * A read failure? Report error and clear slot
1020 * (should be rare).
1021 */
1022 if (!bh) {
1023 ext2_error(inode->i_sb, "ext2_free_branches",
1024 "Read failure, inode=%ld, block=%ld",
1025 inode->i_ino, nr);
1026 continue;
1027 }
1028 ext2_free_branches(inode,
1029 (__le32*)bh->b_data,
1030 (__le32*)bh->b_data + addr_per_block,
1031 depth);
1032 bforget(bh);
1033 ext2_free_blocks(inode, nr, 1);
1034 mark_inode_dirty(inode);
1035 }
1036 } else
1037 ext2_free_data(inode, p, q);
1038}
1039
a686cd89 1040void ext2_truncate(struct inode *inode)
1da177e4
LT
1041{
1042 __le32 *i_data = EXT2_I(inode)->i_data;
a686cd89 1043 struct ext2_inode_info *ei = EXT2_I(inode);
1da177e4
LT
1044 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1045 int offsets[4];
1046 Indirect chain[4];
1047 Indirect *partial;
1048 __le32 nr = 0;
1049 int n;
1050 long iblock;
1051 unsigned blocksize;
1052
1053 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1054 S_ISLNK(inode->i_mode)))
1055 return;
1056 if (ext2_inode_is_fast_symlink(inode))
1057 return;
1058 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1059 return;
1060
1da177e4
LT
1061 blocksize = inode->i_sb->s_blocksize;
1062 iblock = (inode->i_size + blocksize-1)
1063 >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1064
6d79125b
CO
1065 if (mapping_is_xip(inode->i_mapping))
1066 xip_truncate_page(inode->i_mapping, inode->i_size);
1067 else if (test_opt(inode->i_sb, NOBH))
03158cd7
NP
1068 nobh_truncate_page(inode->i_mapping,
1069 inode->i_size, ext2_get_block);
1da177e4
LT
1070 else
1071 block_truncate_page(inode->i_mapping,
1072 inode->i_size, ext2_get_block);
1073
1074 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1075 if (n == 0)
1076 return;
1077
a686cd89
MB
1078 /*
1079 * From here we block out all ext2_get_block() callers who want to
1080 * modify the block allocation tree.
1081 */
1082 mutex_lock(&ei->truncate_mutex);
1083
1da177e4
LT
1084 if (n == 1) {
1085 ext2_free_data(inode, i_data+offsets[0],
1086 i_data + EXT2_NDIR_BLOCKS);
1087 goto do_indirects;
1088 }
1089
1090 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1091 /* Kill the top of shared branch (already detached) */
1092 if (nr) {
1093 if (partial == chain)
1094 mark_inode_dirty(inode);
1095 else
1096 mark_buffer_dirty_inode(partial->bh, inode);
1097 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1098 }
1099 /* Clear the ends of indirect blocks on the shared branch */
1100 while (partial > chain) {
1101 ext2_free_branches(inode,
1102 partial->p + 1,
1103 (__le32*)partial->bh->b_data+addr_per_block,
1104 (chain+n-1) - partial);
1105 mark_buffer_dirty_inode(partial->bh, inode);
1106 brelse (partial->bh);
1107 partial--;
1108 }
1109do_indirects:
1110 /* Kill the remaining (whole) subtrees */
1111 switch (offsets[0]) {
1112 default:
1113 nr = i_data[EXT2_IND_BLOCK];
1114 if (nr) {
1115 i_data[EXT2_IND_BLOCK] = 0;
1116 mark_inode_dirty(inode);
1117 ext2_free_branches(inode, &nr, &nr+1, 1);
1118 }
1119 case EXT2_IND_BLOCK:
1120 nr = i_data[EXT2_DIND_BLOCK];
1121 if (nr) {
1122 i_data[EXT2_DIND_BLOCK] = 0;
1123 mark_inode_dirty(inode);
1124 ext2_free_branches(inode, &nr, &nr+1, 2);
1125 }
1126 case EXT2_DIND_BLOCK:
1127 nr = i_data[EXT2_TIND_BLOCK];
1128 if (nr) {
1129 i_data[EXT2_TIND_BLOCK] = 0;
1130 mark_inode_dirty(inode);
1131 ext2_free_branches(inode, &nr, &nr+1, 3);
1132 }
1133 case EXT2_TIND_BLOCK:
1134 ;
1135 }
a686cd89
MB
1136
1137 ext2_discard_reservation(inode);
1138
1139 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
1140 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1141 if (inode_needs_sync(inode)) {
1142 sync_mapping_buffers(inode->i_mapping);
1143 ext2_sync_inode (inode);
1144 } else {
1145 mark_inode_dirty(inode);
1146 }
1147}
1148
1149static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1150 struct buffer_head **p)
1151{
1152 struct buffer_head * bh;
1153 unsigned long block_group;
1154 unsigned long block;
1155 unsigned long offset;
1156 struct ext2_group_desc * gdp;
1157
1158 *p = NULL;
1159 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1160 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1161 goto Einval;
1162
1163 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
ef2fb679 1164 gdp = ext2_get_group_desc(sb, block_group, NULL);
1da177e4
LT
1165 if (!gdp)
1166 goto Egdp;
1167 /*
1168 * Figure out the offset within the block group inode table
1169 */
1170 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1171 block = le32_to_cpu(gdp->bg_inode_table) +
1172 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1173 if (!(bh = sb_bread(sb, block)))
1174 goto Eio;
1175
1176 *p = bh;
1177 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1178 return (struct ext2_inode *) (bh->b_data + offset);
1179
1180Einval:
1181 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1182 (unsigned long) ino);
1183 return ERR_PTR(-EINVAL);
1184Eio:
1185 ext2_error(sb, "ext2_get_inode",
1186 "unable to read inode block - inode=%lu, block=%lu",
1187 (unsigned long) ino, block);
1188Egdp:
1189 return ERR_PTR(-EIO);
1190}
1191
1192void ext2_set_inode_flags(struct inode *inode)
1193{
1194 unsigned int flags = EXT2_I(inode)->i_flags;
1195
1196 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1197 if (flags & EXT2_SYNC_FL)
1198 inode->i_flags |= S_SYNC;
1199 if (flags & EXT2_APPEND_FL)
1200 inode->i_flags |= S_APPEND;
1201 if (flags & EXT2_IMMUTABLE_FL)
1202 inode->i_flags |= S_IMMUTABLE;
1203 if (flags & EXT2_NOATIME_FL)
1204 inode->i_flags |= S_NOATIME;
1205 if (flags & EXT2_DIRSYNC_FL)
1206 inode->i_flags |= S_DIRSYNC;
1207}
1208
4f99ed67
JK
1209/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1210void ext2_get_inode_flags(struct ext2_inode_info *ei)
1211{
1212 unsigned int flags = ei->vfs_inode.i_flags;
1213
1214 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1215 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1216 if (flags & S_SYNC)
1217 ei->i_flags |= EXT2_SYNC_FL;
1218 if (flags & S_APPEND)
1219 ei->i_flags |= EXT2_APPEND_FL;
1220 if (flags & S_IMMUTABLE)
1221 ei->i_flags |= EXT2_IMMUTABLE_FL;
1222 if (flags & S_NOATIME)
1223 ei->i_flags |= EXT2_NOATIME_FL;
1224 if (flags & S_DIRSYNC)
1225 ei->i_flags |= EXT2_DIRSYNC_FL;
1226}
1227
52fcf703 1228struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1da177e4 1229{
52fcf703 1230 struct ext2_inode_info *ei;
1da177e4 1231 struct buffer_head * bh;
52fcf703
DH
1232 struct ext2_inode *raw_inode;
1233 struct inode *inode;
1234 long ret = -EIO;
1da177e4
LT
1235 int n;
1236
52fcf703
DH
1237 inode = iget_locked(sb, ino);
1238 if (!inode)
1239 return ERR_PTR(-ENOMEM);
1240 if (!(inode->i_state & I_NEW))
1241 return inode;
1242
1243 ei = EXT2_I(inode);
a686cd89
MB
1244 ei->i_block_alloc_info = NULL;
1245
52fcf703
DH
1246 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1247 if (IS_ERR(raw_inode)) {
1248 ret = PTR_ERR(raw_inode);
1da177e4 1249 goto bad_inode;
52fcf703 1250 }
1da177e4
LT
1251
1252 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1253 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1254 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1255 if (!(test_opt (inode->i_sb, NO_UID32))) {
1256 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1257 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1258 }
1259 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1260 inode->i_size = le32_to_cpu(raw_inode->i_size);
4d7bf11d
MR
1261 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1262 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1263 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1da177e4
LT
1264 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1265 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1266 /* We now have enough fields to check if the inode was active or not.
1267 * This is needed because nfsd might try to access dead inodes
1268 * the test is that same one that e2fsck uses
1269 * NeilBrown 1999oct15
1270 */
1271 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1272 /* this inode is deleted */
1273 brelse (bh);
52fcf703 1274 ret = -ESTALE;
1da177e4
LT
1275 goto bad_inode;
1276 }
1da177e4
LT
1277 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1278 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1279 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1280 ei->i_frag_no = raw_inode->i_frag;
1281 ei->i_frag_size = raw_inode->i_fsize;
1282 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1283 ei->i_dir_acl = 0;
1284 if (S_ISREG(inode->i_mode))
1285 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1286 else
1287 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1288 ei->i_dtime = 0;
1289 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1290 ei->i_state = 0;
1da177e4
LT
1291 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1292 ei->i_dir_start_lookup = 0;
1293
1294 /*
1295 * NOTE! The in-memory inode i_data array is in little-endian order
1296 * even on big-endian machines: we do NOT byteswap the block numbers!
1297 */
1298 for (n = 0; n < EXT2_N_BLOCKS; n++)
1299 ei->i_data[n] = raw_inode->i_block[n];
1300
1301 if (S_ISREG(inode->i_mode)) {
1302 inode->i_op = &ext2_file_inode_operations;
6d79125b
CO
1303 if (ext2_use_xip(inode->i_sb)) {
1304 inode->i_mapping->a_ops = &ext2_aops_xip;
1305 inode->i_fop = &ext2_xip_file_operations;
1306 } else if (test_opt(inode->i_sb, NOBH)) {
1da177e4 1307 inode->i_mapping->a_ops = &ext2_nobh_aops;
6d79125b
CO
1308 inode->i_fop = &ext2_file_operations;
1309 } else {
1da177e4 1310 inode->i_mapping->a_ops = &ext2_aops;
6d79125b
CO
1311 inode->i_fop = &ext2_file_operations;
1312 }
1da177e4
LT
1313 } else if (S_ISDIR(inode->i_mode)) {
1314 inode->i_op = &ext2_dir_inode_operations;
1315 inode->i_fop = &ext2_dir_operations;
1316 if (test_opt(inode->i_sb, NOBH))
1317 inode->i_mapping->a_ops = &ext2_nobh_aops;
1318 else
1319 inode->i_mapping->a_ops = &ext2_aops;
1320 } else if (S_ISLNK(inode->i_mode)) {
8d6d0c4d 1321 if (ext2_inode_is_fast_symlink(inode)) {
1da177e4 1322 inode->i_op = &ext2_fast_symlink_inode_operations;
8d6d0c4d
DG
1323 nd_terminate_link(ei->i_data, inode->i_size,
1324 sizeof(ei->i_data) - 1);
1325 } else {
1da177e4
LT
1326 inode->i_op = &ext2_symlink_inode_operations;
1327 if (test_opt(inode->i_sb, NOBH))
1328 inode->i_mapping->a_ops = &ext2_nobh_aops;
1329 else
1330 inode->i_mapping->a_ops = &ext2_aops;
1331 }
1332 } else {
1333 inode->i_op = &ext2_special_inode_operations;
1334 if (raw_inode->i_block[0])
1335 init_special_inode(inode, inode->i_mode,
1336 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1337 else
1338 init_special_inode(inode, inode->i_mode,
1339 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1340 }
1341 brelse (bh);
1342 ext2_set_inode_flags(inode);
52fcf703
DH
1343 unlock_new_inode(inode);
1344 return inode;
1da177e4
LT
1345
1346bad_inode:
52fcf703
DH
1347 iget_failed(inode);
1348 return ERR_PTR(ret);
1da177e4
LT
1349}
1350
e1740a46 1351int ext2_write_inode(struct inode *inode, int do_sync)
1da177e4
LT
1352{
1353 struct ext2_inode_info *ei = EXT2_I(inode);
1354 struct super_block *sb = inode->i_sb;
1355 ino_t ino = inode->i_ino;
1356 uid_t uid = inode->i_uid;
1357 gid_t gid = inode->i_gid;
1358 struct buffer_head * bh;
1359 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1360 int n;
1361 int err = 0;
1362
1363 if (IS_ERR(raw_inode))
1364 return -EIO;
1365
1366 /* For fields not not tracking in the in-memory inode,
1367 * initialise them to zero for new inodes. */
1368 if (ei->i_state & EXT2_STATE_NEW)
1369 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1370
4f99ed67 1371 ext2_get_inode_flags(ei);
1da177e4
LT
1372 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1373 if (!(test_opt(sb, NO_UID32))) {
1374 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1375 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1376/*
1377 * Fix up interoperability with old kernels. Otherwise, old inodes get
1378 * re-used with the upper 16 bits of the uid/gid intact
1379 */
1380 if (!ei->i_dtime) {
1381 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1382 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1383 } else {
1384 raw_inode->i_uid_high = 0;
1385 raw_inode->i_gid_high = 0;
1386 }
1387 } else {
1388 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1389 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1390 raw_inode->i_uid_high = 0;
1391 raw_inode->i_gid_high = 0;
1392 }
1393 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1394 raw_inode->i_size = cpu_to_le32(inode->i_size);
1395 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1396 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1397 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1398
1399 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1400 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1401 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1402 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1403 raw_inode->i_frag = ei->i_frag_no;
1404 raw_inode->i_fsize = ei->i_frag_size;
1405 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1406 if (!S_ISREG(inode->i_mode))
1407 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1408 else {
1409 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1410 if (inode->i_size > 0x7fffffffULL) {
1411 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1412 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1413 EXT2_SB(sb)->s_es->s_rev_level ==
1414 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1415 /* If this is the first large file
1416 * created, add a flag to the superblock.
1417 */
1418 lock_kernel();
1419 ext2_update_dynamic_rev(sb);
1420 EXT2_SET_RO_COMPAT_FEATURE(sb,
1421 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1422 unlock_kernel();
1423 ext2_write_super(sb);
1424 }
1425 }
1426 }
1427
1428 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1429 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1430 if (old_valid_dev(inode->i_rdev)) {
1431 raw_inode->i_block[0] =
1432 cpu_to_le32(old_encode_dev(inode->i_rdev));
1433 raw_inode->i_block[1] = 0;
1434 } else {
1435 raw_inode->i_block[0] = 0;
1436 raw_inode->i_block[1] =
1437 cpu_to_le32(new_encode_dev(inode->i_rdev));
1438 raw_inode->i_block[2] = 0;
1439 }
1440 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1441 raw_inode->i_block[n] = ei->i_data[n];
1442 mark_buffer_dirty(bh);
1443 if (do_sync) {
1444 sync_dirty_buffer(bh);
1445 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1446 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1447 sb->s_id, (unsigned long) ino);
1448 err = -EIO;
1449 }
1450 }
1451 ei->i_state &= ~EXT2_STATE_NEW;
1452 brelse (bh);
1453 return err;
1454}
1455
1da177e4
LT
1456int ext2_sync_inode(struct inode *inode)
1457{
1458 struct writeback_control wbc = {
1459 .sync_mode = WB_SYNC_ALL,
1460 .nr_to_write = 0, /* sys_fsync did this */
1461 };
1462 return sync_inode(inode, &wbc);
1463}
1464
1465int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1466{
1467 struct inode *inode = dentry->d_inode;
1468 int error;
1469
1470 error = inode_change_ok(inode, iattr);
1471 if (error)
1472 return error;
1473 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1474 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
6f90bee5 1475 error = vfs_dq_transfer(inode, iattr) ? -EDQUOT : 0;
1da177e4
LT
1476 if (error)
1477 return error;
1478 }
1479 error = inode_setattr(inode, iattr);
1480 if (!error && (iattr->ia_valid & ATTR_MODE))
1481 error = ext2_acl_chmod(inode);
1482 return error;
1483}