Merge tag 'pci-v6.16-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
[linux-2.6-block.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
18e2bf0e 40#include <linux/capability.h>
bf3b9f63 41#include <net/busy_poll.h>
1da177e4 42
1da177e4
LT
43/*
44 * LOCKING:
45 * There are three level of locking required by epoll :
46 *
d4cb626d 47 * 1) epnested_mutex (mutex)
c7ea7630 48 * 2) ep->mtx (mutex)
a218cc49 49 * 3) ep->lock (rwlock)
1da177e4
LT
50 *
51 * The acquire order is the one listed above, from 1 to 3.
a218cc49 52 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
d4cb626d
DB
61 * The epnested_mutex is acquired when inserting an epoll fd onto another
62 * epoll fd. We do this so that we walk the epoll tree and ensure that this
22bacca4
DL
63 * insertion does not create a cycle of epoll file descriptors, which
64 * could lead to deadlock. We need a global mutex to prevent two
65 * simultaneous inserts (A into B and B into A) from racing and
66 * constructing a cycle without either insert observing that it is
67 * going to.
d8805e63
NE
68 * It is necessary to acquire multiple "ep->mtx"es at once in the
69 * case when one epoll fd is added to another. In this case, we
70 * always acquire the locks in the order of nesting (i.e. after
71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72 * before e2->mtx). Since we disallow cycles of epoll file
73 * descriptors, this ensures that the mutexes are well-ordered. In
74 * order to communicate this nesting to lockdep, when walking a tree
75 * of epoll file descriptors, we use the current recursion depth as
76 * the lockdep subkey.
d47de16c 77 * It is possible to drop the "ep->mtx" and to use the global
d4cb626d 78 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
d47de16c 79 * but having "ep->mtx" will make the interface more scalable.
d4cb626d 80 * Events that require holding "epnested_mutex" are very rare, while for
d47de16c
DL
81 * normal operations the epoll private "ep->mtx" will guarantee
82 * a better scalability.
1da177e4
LT
83 */
84
1da177e4 85/* Epoll private bits inside the event mask */
df0108c5 86#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 87
a9a08845 88#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 89
a9a08845 90#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92
5071f97e
DL
93/* Maximum number of nesting allowed inside epoll sets */
94#define EP_MAX_NESTS 4
1da177e4 95
b611967d
DL
96#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97
d47de16c
DL
98#define EP_UNACTIVE_PTR ((void *) -1L)
99
7ef9964e
DL
100#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101
1da177e4
LT
102struct epoll_filefd {
103 struct file *file;
104 int fd;
39732ca5 105} __packed;
1da177e4 106
80285b75
AV
107/* Wait structure used by the poll hooks */
108struct eppoll_entry {
109 /* List header used to link this structure to the "struct epitem" */
110 struct eppoll_entry *next;
1da177e4 111
80285b75
AV
112 /* The "base" pointer is set to the container "struct epitem" */
113 struct epitem *base;
114
115 /*
116 * Wait queue item that will be linked to the target file wait
117 * queue head.
118 */
119 wait_queue_entry_t wait;
120
121 /* The wait queue head that linked the "wait" wait queue item */
122 wait_queue_head_t *whead;
1da177e4
LT
123};
124
d47de16c
DL
125/*
126 * Each file descriptor added to the eventpoll interface will
127 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
128 * Avoid increasing the size of this struct, there can be many thousands
129 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
130 */
131struct epitem {
ae10b2b4
JB
132 union {
133 /* RB tree node links this structure to the eventpoll RB tree */
134 struct rb_node rbn;
135 /* Used to free the struct epitem */
136 struct rcu_head rcu;
137 };
d47de16c
DL
138
139 /* List header used to link this structure to the eventpoll ready list */
5f02b80c
LT
140 struct list_head rdllink;
141
142 /*
143 * Works together "struct eventpoll"->ovflist in keeping the
144 * single linked chain of items.
145 */
146 struct epitem *next;
c7ea7630 147
d47de16c
DL
148 /* The file descriptor information this item refers to */
149 struct epoll_filefd ffd;
150
58c9b016
PA
151 /*
152 * Protected by file->f_lock, true for to-be-released epitem already
153 * removed from the "struct file" items list; together with
154 * eventpoll->refcount orchestrates "struct eventpoll" disposal
155 */
156 bool dying;
157
d47de16c 158 /* List containing poll wait queues */
80285b75 159 struct eppoll_entry *pwqlist;
d47de16c
DL
160
161 /* The "container" of this item */
162 struct eventpoll *ep;
163
d47de16c 164 /* List header used to link this item to the "struct file" items list */
44cdc1d9 165 struct hlist_node fllink;
d47de16c 166
4d7e30d9 167 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 168 struct wakeup_source __rcu *ws;
4d7e30d9 169
c7ea7630
DL
170 /* The structure that describe the interested events and the source fd */
171 struct epoll_event event;
d47de16c
DL
172};
173
1da177e4
LT
174/*
175 * This structure is stored inside the "private_data" member of the file
bf6a41db 176 * structure and represents the main data structure for the eventpoll
1da177e4
LT
177 * interface.
178 */
179struct eventpoll {
1da177e4 180 /*
d47de16c
DL
181 * This mutex is used to ensure that files are not removed
182 * while epoll is using them. This is held during the event
183 * collection loop, the file cleanup path, the epoll file exit
184 * code and the ctl operations.
1da177e4 185 */
d47de16c 186 struct mutex mtx;
1da177e4
LT
187
188 /* Wait queue used by sys_epoll_wait() */
189 wait_queue_head_t wq;
190
191 /* Wait queue used by file->poll() */
192 wait_queue_head_t poll_wait;
193
5f02b80c
LT
194 /* List of ready file descriptors */
195 struct list_head rdllist;
196
197 /* Lock which protects rdllist and ovflist */
198 rwlock_t lock;
a218cc49 199
67647d0f 200 /* RB tree root used to store monitored fd structs */
b2ac2ea6 201 struct rb_root_cached rbr;
d47de16c 202
5f02b80c
LT
203 /*
204 * This is a single linked list that chains all the "struct epitem" that
205 * happened while transferring ready events to userspace w/out
206 * holding ->lock.
207 */
208 struct epitem *ovflist;
209
e6f79580 210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
4d7e30d9
AH
211 struct wakeup_source *ws;
212
7ef9964e
DL
213 /* The user that created the eventpoll descriptor */
214 struct user_struct *user;
28d82dc1
JB
215
216 struct file *file;
217
218 /* used to optimize loop detection check */
18306c40 219 u64 gen;
319c1517 220 struct hlist_head refs;
bf3b9f63 221
58c9b016
PA
222 /*
223 * usage count, used together with epitem->dying to
224 * orchestrate the disposal of this struct
225 */
226 refcount_t refcount;
227
bf3b9f63
SS
228#ifdef CONFIG_NET_RX_BUSY_POLL
229 /* used to track busy poll napi_id */
230 unsigned int napi_id;
85455c79
JD
231 /* busy poll timeout */
232 u32 busy_poll_usecs;
c6aa2a77
JD
233 /* busy poll packet budget */
234 u16 busy_poll_budget;
de57a251 235 bool prefer_busy_poll;
bf3b9f63 236#endif
efcdd350
JB
237
238#ifdef CONFIG_DEBUG_LOCK_ALLOC
239 /* tracks wakeup nests for lockdep validation */
240 u8 nests;
241#endif
1da177e4
LT
242};
243
1da177e4
LT
244/* Wrapper struct used by poll queueing */
245struct ep_pqueue {
246 poll_table pt;
247 struct epitem *epi;
248};
249
7ef9964e
DL
250/*
251 * Configuration options available inside /proc/sys/fs/epoll/
252 */
7ef9964e 253/* Maximum number of epoll watched descriptors, per user */
52bd19f7 254static long max_user_watches __read_mostly;
7ef9964e 255
58c9b016 256/* Used for cycles detection */
d4cb626d 257static DEFINE_MUTEX(epnested_mutex);
1da177e4 258
18306c40
AV
259static u64 loop_check_gen = 0;
260
22bacca4 261/* Used to check for epoll file descriptor inclusion loops */
6a3890c4 262static struct eventpoll *inserting_into;
22bacca4 263
1da177e4 264/* Slab cache used to allocate "struct epitem" */
68279f9c 265static struct kmem_cache *epi_cache __ro_after_init;
1da177e4
LT
266
267/* Slab cache used to allocate "struct eppoll_entry" */
68279f9c 268static struct kmem_cache *pwq_cache __ro_after_init;
1da177e4 269
28d82dc1
JB
270/*
271 * List of files with newly added links, where we may need to limit the number
d4cb626d 272 * of emanating paths. Protected by the epnested_mutex.
28d82dc1 273 */
319c1517
AV
274struct epitems_head {
275 struct hlist_head epitems;
276 struct epitems_head *next;
277};
278static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
279
68279f9c 280static struct kmem_cache *ephead_cache __ro_after_init;
319c1517
AV
281
282static inline void free_ephead(struct epitems_head *head)
283{
284 if (head)
285 kmem_cache_free(ephead_cache, head);
286}
287
288static void list_file(struct file *file)
289{
290 struct epitems_head *head;
291
292 head = container_of(file->f_ep, struct epitems_head, epitems);
293 if (!head->next) {
294 head->next = tfile_check_list;
295 tfile_check_list = head;
296 }
297}
298
299static void unlist_file(struct epitems_head *head)
300{
301 struct epitems_head *to_free = head;
302 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
303 if (p) {
304 struct epitem *epi= container_of(p, struct epitem, fllink);
305 spin_lock(&epi->ffd.file->f_lock);
306 if (!hlist_empty(&head->epitems))
307 to_free = NULL;
308 head->next = NULL;
309 spin_unlock(&epi->ffd.file->f_lock);
310 }
311 free_ephead(to_free);
312}
28d82dc1 313
7ef9964e
DL
314#ifdef CONFIG_SYSCTL
315
316#include <linux/sysctl.h>
317
eec4844f 318static long long_zero;
52bd19f7 319static long long_max = LONG_MAX;
7ef9964e 320
1751f872 321static const struct ctl_table epoll_table[] = {
7ef9964e
DL
322 {
323 .procname = "max_user_watches",
324 .data = &max_user_watches,
52bd19f7 325 .maxlen = sizeof(max_user_watches),
7ef9964e 326 .mode = 0644,
52bd19f7 327 .proc_handler = proc_doulongvec_minmax,
eec4844f 328 .extra1 = &long_zero,
52bd19f7 329 .extra2 = &long_max,
7ef9964e 330 },
7ef9964e 331};
a8f5de89
XN
332
333static void __init epoll_sysctls_init(void)
334{
335 register_sysctl("fs/epoll", epoll_table);
336}
337#else
338#define epoll_sysctls_init() do { } while (0)
7ef9964e
DL
339#endif /* CONFIG_SYSCTL */
340
28d82dc1
JB
341static const struct file_operations eventpoll_fops;
342
343static inline int is_file_epoll(struct file *f)
344{
345 return f->f_op == &eventpoll_fops;
346}
b030a4dd 347
67647d0f 348/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
349static inline void ep_set_ffd(struct epoll_filefd *ffd,
350 struct file *file, int fd)
351{
352 ffd->file = file;
353 ffd->fd = fd;
354}
355
67647d0f 356/* Compare RB tree keys */
b030a4dd
PE
357static inline int ep_cmp_ffd(struct epoll_filefd *p1,
358 struct epoll_filefd *p2)
359{
360 return (p1->file > p2->file ? +1:
361 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
362}
363
5f02b80c
LT
364/* Tells us if the item is currently linked */
365static inline int ep_is_linked(struct epitem *epi)
b030a4dd 366{
5f02b80c 367 return !list_empty(&epi->rdllink);
b030a4dd
PE
368}
369
ac6424b9 370static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
371{
372 return container_of(p, struct eppoll_entry, wait);
373}
374
b030a4dd 375/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 376static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
377{
378 return container_of(p, struct eppoll_entry, wait)->base;
379}
380
3fb0e584
DL
381/**
382 * ep_events_available - Checks if ready events might be available.
383 *
384 * @ep: Pointer to the eventpoll context.
385 *
5f02b80c
LT
386 * Return: a value different than %zero if ready events are available,
387 * or %zero otherwise.
3fb0e584 388 */
5f02b80c 389static inline int ep_events_available(struct eventpoll *ep)
3fb0e584 390{
5f02b80c
LT
391 return !list_empty_careful(&ep->rdllist) ||
392 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
393}
394
bf3b9f63 395#ifdef CONFIG_NET_RX_BUSY_POLL
85455c79
JD
396/**
397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
398 * from the epoll instance ep is preferred, but if it is not set fallback to
399 * the system-wide global via busy_loop_timeout.
400 *
401 * @start_time: The start time used to compute the remaining time until timeout.
402 * @ep: Pointer to the eventpoll context.
403 *
404 * Return: true if the timeout has expired, false otherwise.
405 */
406static bool busy_loop_ep_timeout(unsigned long start_time,
407 struct eventpoll *ep)
408{
409 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
410
411 if (bp_usec) {
412 unsigned long end_time = start_time + bp_usec;
413 unsigned long now = busy_loop_current_time();
414
415 return time_after(now, end_time);
416 } else {
417 return busy_loop_timeout(start_time);
418 }
419}
420
421static bool ep_busy_loop_on(struct eventpoll *ep)
422{
ab5b28b0
MK
423 return !!READ_ONCE(ep->busy_poll_usecs) ||
424 READ_ONCE(ep->prefer_busy_poll) ||
425 net_busy_loop_on();
85455c79
JD
426}
427
bf3b9f63
SS
428static bool ep_busy_loop_end(void *p, unsigned long start_time)
429{
430 struct eventpoll *ep = p;
431
85455c79 432 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
bf3b9f63 433}
bf3b9f63
SS
434
435/*
436 * Busy poll if globally on and supporting sockets found && no events,
437 * busy loop will return if need_resched or ep_events_available.
438 *
439 * we must do our busy polling with irqs enabled
440 */
d3a194d9 441static bool ep_busy_loop(struct eventpoll *ep)
bf3b9f63 442{
bf3b9f63 443 unsigned int napi_id = READ_ONCE(ep->napi_id);
c6aa2a77 444 u16 budget = READ_ONCE(ep->busy_poll_budget);
de57a251 445 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
c6aa2a77
JD
446
447 if (!budget)
448 budget = BUSY_POLL_BUDGET;
bf3b9f63 449
b9d75210 450 if (napi_id_valid(napi_id) && ep_busy_loop_on(ep)) {
d3a194d9 451 napi_busy_loop(napi_id, ep_busy_loop_end,
de57a251 452 ep, prefer_busy_poll, budget);
1493c47f
SHY
453 if (ep_events_available(ep))
454 return true;
455 /*
456 * Busy poll timed out. Drop NAPI ID for now, we can add
457 * it back in when we have moved a socket with a valid NAPI
458 * ID onto the ready list.
459 */
8a6de262
MK
460 if (prefer_busy_poll)
461 napi_resume_irqs(napi_id);
bf3b9f63 462 ep->napi_id = 0;
1493c47f
SHY
463 return false;
464 }
465 return false;
bf3b9f63
SS
466}
467
468/*
469 * Set epoll busy poll NAPI ID from sk.
470 */
471static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
472{
85455c79 473 struct eventpoll *ep = epi->ep;
bf3b9f63
SS
474 unsigned int napi_id;
475 struct socket *sock;
476 struct sock *sk;
bf3b9f63 477
85455c79 478 if (!ep_busy_loop_on(ep))
bf3b9f63
SS
479 return;
480
dba4a925 481 sock = sock_from_file(epi->ffd.file);
bf3b9f63
SS
482 if (!sock)
483 return;
484
485 sk = sock->sk;
486 if (!sk)
487 return;
488
489 napi_id = READ_ONCE(sk->sk_napi_id);
bf3b9f63
SS
490
491 /* Non-NAPI IDs can be rejected
492 * or
493 * Nothing to do if we already have this ID
494 */
b9d75210 495 if (!napi_id_valid(napi_id) || napi_id == ep->napi_id)
bf3b9f63
SS
496 return;
497
498 /* record NAPI ID for use in next busy poll */
499 ep->napi_id = napi_id;
bf3b9f63
SS
500}
501
18e2bf0e
JD
502static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
503 unsigned long arg)
504{
505 struct eventpoll *ep = file->private_data;
506 void __user *uarg = (void __user *)arg;
507 struct epoll_params epoll_params;
508
509 switch (cmd) {
510 case EPIOCSPARAMS:
511 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
512 return -EFAULT;
513
514 /* pad byte must be zero */
515 if (epoll_params.__pad)
516 return -EINVAL;
517
518 if (epoll_params.busy_poll_usecs > S32_MAX)
519 return -EINVAL;
520
521 if (epoll_params.prefer_busy_poll > 1)
522 return -EINVAL;
523
524 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
525 !capable(CAP_NET_ADMIN))
526 return -EPERM;
527
528 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
529 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
530 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
531 return 0;
532 case EPIOCGPARAMS:
533 memset(&epoll_params, 0, sizeof(epoll_params));
534 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
535 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
536 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
537 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
538 return -EFAULT;
539 return 0;
540 default:
541 return -ENOIOCTLCMD;
542 }
543}
544
8a6de262
MK
545static void ep_suspend_napi_irqs(struct eventpoll *ep)
546{
547 unsigned int napi_id = READ_ONCE(ep->napi_id);
548
b9d75210 549 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll))
8a6de262
MK
550 napi_suspend_irqs(napi_id);
551}
552
553static void ep_resume_napi_irqs(struct eventpoll *ep)
554{
555 unsigned int napi_id = READ_ONCE(ep->napi_id);
556
b9d75210 557 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll))
8a6de262
MK
558 napi_resume_irqs(napi_id);
559}
560
514056d5
DB
561#else
562
d3a194d9 563static inline bool ep_busy_loop(struct eventpoll *ep)
514056d5 564{
1493c47f 565 return false;
514056d5
DB
566}
567
568static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
569{
570}
571
18e2bf0e
JD
572static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
573 unsigned long arg)
574{
575 return -EOPNOTSUPP;
576}
577
8a6de262
MK
578static void ep_suspend_napi_irqs(struct eventpoll *ep)
579{
580}
581
582static void ep_resume_napi_irqs(struct eventpoll *ep)
583{
584}
585
514056d5
DB
586#endif /* CONFIG_NET_RX_BUSY_POLL */
587
02edc6fc
SR
588/*
589 * As described in commit 0ccf831cb lockdep: annotate epoll
590 * the use of wait queues used by epoll is done in a very controlled
591 * manner. Wake ups can nest inside each other, but are never done
592 * with the same locking. For example:
593 *
594 * dfd = socket(...);
595 * efd1 = epoll_create();
596 * efd2 = epoll_create();
597 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
598 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
599 *
600 * When a packet arrives to the device underneath "dfd", the net code will
601 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
602 * callback wakeup entry on that queue, and the wake_up() performed by the
603 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
604 * (efd1) notices that it may have some event ready, so it needs to wake up
605 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
606 * that ends up in another wake_up(), after having checked about the
7059a9aa
CL
607 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
608 * stack blasting.
02edc6fc
SR
609 *
610 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
611 * this special case of epoll.
612 */
2dfa4eea 613#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd 614
caf1aeaf
JA
615static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
616 unsigned pollflags)
5071f97e 617{
efcdd350 618 struct eventpoll *ep_src;
f6520c52 619 unsigned long flags;
efcdd350
JB
620 u8 nests = 0;
621
622 /*
623 * To set the subclass or nesting level for spin_lock_irqsave_nested()
624 * it might be natural to create a per-cpu nest count. However, since
625 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
626 * schedule() in the -rt kernel, the per-cpu variable are no longer
627 * protected. Thus, we are introducing a per eventpoll nest field.
628 * If we are not being call from ep_poll_callback(), epi is NULL and
629 * we are at the first level of nesting, 0. Otherwise, we are being
630 * called from ep_poll_callback() and if a previous wakeup source is
631 * not an epoll file itself, we are at depth 1 since the wakeup source
632 * is depth 0. If the wakeup source is a previous epoll file in the
633 * wakeup chain then we use its nests value and record ours as
634 * nests + 1. The previous epoll file nests value is stable since its
635 * already holding its own poll_wait.lock.
636 */
637 if (epi) {
638 if ((is_file_epoll(epi->ffd.file))) {
639 ep_src = epi->ffd.file->private_data;
640 nests = ep_src->nests;
641 } else {
642 nests = 1;
643 }
644 }
645 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
646 ep->nests = nests + 1;
caf1aeaf 647 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
efcdd350
JB
648 ep->nests = 0;
649 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
1da177e4
LT
650}
651
57a173bd
JB
652#else
653
caf1aeaf 654static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
38f1755a 655 __poll_t pollflags)
57a173bd 656{
caf1aeaf 657 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
57a173bd
JB
658}
659
660#endif
661
971316f0
ON
662static void ep_remove_wait_queue(struct eppoll_entry *pwq)
663{
664 wait_queue_head_t *whead;
665
666 rcu_read_lock();
138e4ad6
ON
667 /*
668 * If it is cleared by POLLFREE, it should be rcu-safe.
669 * If we read NULL we need a barrier paired with
670 * smp_store_release() in ep_poll_callback(), otherwise
671 * we rely on whead->lock.
672 */
673 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
674 if (whead)
675 remove_wait_queue(whead, &pwq->wait);
676 rcu_read_unlock();
677}
678
1da177e4 679/*
d1bc90dd 680 * This function unregisters poll callbacks from the associated file
58c9b016 681 * descriptor. Must be called with "mtx" held.
1da177e4 682 */
7699acd1 683static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 684{
80285b75 685 struct eppoll_entry **p = &epi->pwqlist;
7699acd1 686 struct eppoll_entry *pwq;
1da177e4 687
80285b75
AV
688 while ((pwq = *p) != NULL) {
689 *p = pwq->next;
971316f0 690 ep_remove_wait_queue(pwq);
d1bc90dd 691 kmem_cache_free(pwq_cache, pwq);
1da177e4 692 }
1da177e4
LT
693}
694
eea1d585
EW
695/* call only when ep->mtx is held */
696static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
697{
698 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
699}
700
701/* call only when ep->mtx is held */
702static inline void ep_pm_stay_awake(struct epitem *epi)
703{
704 struct wakeup_source *ws = ep_wakeup_source(epi);
705
706 if (ws)
707 __pm_stay_awake(ws);
708}
709
710static inline bool ep_has_wakeup_source(struct epitem *epi)
711{
712 return rcu_access_pointer(epi->ws) ? true : false;
713}
714
715/* call when ep->mtx cannot be held (ep_poll_callback) */
716static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
717{
718 struct wakeup_source *ws;
719
720 rcu_read_lock();
721 ws = rcu_dereference(epi->ws);
722 if (ws)
723 __pm_stay_awake(ws);
724 rcu_read_unlock();
725}
726
5f02b80c
LT
727
728/*
729 * ep->mutex needs to be held because we could be hit by
730 * eventpoll_release_file() and epoll_ctl().
731 */
732static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
733{
734 /*
735 * Steal the ready list, and re-init the original one to the
736 * empty list. Also, set ep->ovflist to NULL so that events
737 * happening while looping w/out locks, are not lost. We cannot
738 * have the poll callback to queue directly on ep->rdllist,
739 * because we want the "sproc" callback to be able to do it
740 * in a lockless way.
741 */
742 lockdep_assert_irqs_enabled();
743 write_lock_irq(&ep->lock);
744 list_splice_init(&ep->rdllist, txlist);
745 WRITE_ONCE(ep->ovflist, NULL);
746 write_unlock_irq(&ep->lock);
747}
748
749static void ep_done_scan(struct eventpoll *ep,
750 struct list_head *txlist)
751{
752 struct epitem *epi, *nepi;
753
754 write_lock_irq(&ep->lock);
755 /*
756 * During the time we spent inside the "sproc" callback, some
757 * other events might have been queued by the poll callback.
758 * We re-insert them inside the main ready-list here.
759 */
760 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
761 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
762 /*
763 * We need to check if the item is already in the list.
764 * During the "sproc" callback execution time, items are
765 * queued into ->ovflist but the "txlist" might already
766 * contain them, and the list_splice() below takes care of them.
767 */
768 if (!ep_is_linked(epi)) {
769 /*
770 * ->ovflist is LIFO, so we have to reverse it in order
771 * to keep in FIFO.
772 */
773 list_add(&epi->rdllink, &ep->rdllist);
774 ep_pm_stay_awake(epi);
775 }
776 }
777 /*
778 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
779 * releasing the lock, events will be queued in the normal way inside
780 * ep->rdllist.
781 */
782 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
783
784 /*
785 * Quickly re-inject items left on "txlist".
786 */
787 list_splice(txlist, &ep->rdllist);
788 __pm_relax(ep->ws);
789
790 if (!list_empty(&ep->rdllist)) {
791 if (waitqueue_active(&ep->wq))
792 wake_up(&ep->wq);
793 }
794
795 write_unlock_irq(&ep->lock);
796}
797
58c9b016
PA
798static void ep_get(struct eventpoll *ep)
799{
800 refcount_inc(&ep->refcount);
801}
802
803/*
804 * Returns true if the event poll can be disposed
805 */
806static bool ep_refcount_dec_and_test(struct eventpoll *ep)
807{
808 if (!refcount_dec_and_test(&ep->refcount))
809 return false;
810
811 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
812 return true;
813}
814
815static void ep_free(struct eventpoll *ep)
816{
8a6de262 817 ep_resume_napi_irqs(ep);
58c9b016
PA
818 mutex_destroy(&ep->mtx);
819 free_uid(ep->user);
820 wakeup_source_unregister(ep->ws);
821 kfree(ep);
822}
823
7699acd1
DL
824/*
825 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 826 * all the associated resources. Must be called with "mtx" held.
58c9b016
PA
827 * If the dying flag is set, do the removal only if force is true.
828 * This prevents ep_clear_and_put() from dropping all the ep references
829 * while running concurrently with eventpoll_release_file().
830 * Returns true if the eventpoll can be disposed.
7699acd1 831 */
58c9b016 832static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
7699acd1 833{
7699acd1 834 struct file *file = epi->ffd.file;
319c1517
AV
835 struct epitems_head *to_free;
836 struct hlist_head *head;
1da177e4 837
5f02b80c 838 lockdep_assert_irqs_enabled();
92e64178 839
1da177e4 840 /*
ee8ef0a4 841 * Removes poll wait queue hooks.
1da177e4 842 */
7699acd1 843 ep_unregister_pollwait(ep, epi);
1da177e4 844
7699acd1 845 /* Remove the current item from the list of epoll hooks */
68499914 846 spin_lock(&file->f_lock);
58c9b016
PA
847 if (epi->dying && !force) {
848 spin_unlock(&file->f_lock);
849 return false;
850 }
851
319c1517
AV
852 to_free = NULL;
853 head = file->f_ep;
854 if (head->first == &epi->fllink && !epi->fllink.next) {
6474353a
CB
855 /* See eventpoll_release() for details. */
856 WRITE_ONCE(file->f_ep, NULL);
319c1517
AV
857 if (!is_file_epoll(file)) {
858 struct epitems_head *v;
859 v = container_of(head, struct epitems_head, epitems);
860 if (!smp_load_acquire(&v->next))
861 to_free = v;
862 }
863 }
44cdc1d9 864 hlist_del_rcu(&epi->fllink);
68499914 865 spin_unlock(&file->f_lock);
319c1517 866 free_ephead(to_free);
1da177e4 867
b2ac2ea6 868 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 869
5f02b80c
LT
870 write_lock_irq(&ep->lock);
871 if (ep_is_linked(epi))
872 list_del_init(&epi->rdllink);
873 write_unlock_irq(&ep->lock);
1da177e4 874
eea1d585 875 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
876 /*
877 * At this point it is safe to free the eventpoll item. Use the union
878 * field epi->rcu, since we are trying to minimize the size of
879 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
880 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
881 * use of the rbn field.
882 */
0611a640 883 kfree_rcu(epi, rcu);
1da177e4 884
1e1c1583 885 percpu_counter_dec(&ep->user->epoll_watches);
8c2e52eb 886 return true;
58c9b016 887}
7ef9964e 888
58c9b016
PA
889/*
890 * ep_remove variant for callers owing an additional reference to the ep
891 */
892static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
893{
8c2e52eb
LT
894 if (__ep_remove(ep, epi, false))
895 WARN_ON_ONCE(ep_refcount_dec_and_test(ep));
1da177e4
LT
896}
897
58c9b016 898static void ep_clear_and_put(struct eventpoll *ep)
1da177e4 899{
58c9b016 900 struct rb_node *rbp, *next;
7699acd1 901 struct epitem *epi;
1da177e4 902
7699acd1
DL
903 /* We need to release all tasks waiting for these file */
904 if (waitqueue_active(&ep->poll_wait))
caf1aeaf 905 ep_poll_safewake(ep, NULL, 0);
1da177e4 906
58c9b016 907 mutex_lock(&ep->mtx);
1da177e4
LT
908
909 /*
7699acd1 910 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 911 */
b2ac2ea6 912 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
913 epi = rb_entry(rbp, struct epitem, rbn);
914
915 ep_unregister_pollwait(ep, epi);
91cf5ab6 916 cond_resched();
7699acd1 917 }
1da177e4
LT
918
919 /*
58c9b016
PA
920 * Walks through the whole tree and try to free each "struct epitem".
921 * Note that ep_remove_safe() will not remove the epitem in case of a
922 * racing eventpoll_release_file(); the latter will do the removal.
923 * At this point we are sure no poll callbacks will be lingering around.
924 * Since we still own a reference to the eventpoll struct, the loop can't
925 * dispose it.
1da177e4 926 */
58c9b016
PA
927 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
928 next = rb_next(rbp);
7699acd1 929 epi = rb_entry(rbp, struct epitem, rbn);
58c9b016 930 ep_remove_safe(ep, epi);
91cf5ab6 931 cond_resched();
7699acd1 932 }
58c9b016 933
ddf676c3 934 mutex_unlock(&ep->mtx);
8c2e52eb 935 if (ep_refcount_dec_and_test(ep))
58c9b016 936 ep_free(ep);
7699acd1 937}
1da177e4 938
18e2bf0e
JD
939static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
940 unsigned long arg)
941{
942 int ret;
943
944 if (!is_file_epoll(file))
945 return -EINVAL;
946
947 switch (cmd) {
948 case EPIOCSPARAMS:
949 case EPIOCGPARAMS:
950 ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
951 break;
952 default:
953 ret = -EINVAL;
954 break;
955 }
956
957 return ret;
958}
959
7699acd1
DL
960static int ep_eventpoll_release(struct inode *inode, struct file *file)
961{
962 struct eventpoll *ep = file->private_data;
1da177e4 963
f0ee9aab 964 if (ep)
58c9b016 965 ep_clear_and_put(ep);
7699acd1 966
7699acd1 967 return 0;
1da177e4
LT
968}
969
2c0b71c1 970static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
37b5e521 971
ad9366b1 972static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
5071f97e 973{
ad9366b1 974 struct eventpoll *ep = file->private_data;
5f02b80c
LT
975 LIST_HEAD(txlist);
976 struct epitem *epi, *tmp;
626cf236 977 poll_table pt;
2c0b71c1 978 __poll_t res = 0;
5071f97e 979
626cf236 980 init_poll_funcptr(&pt, NULL);
450d89ec 981
ad9366b1
AV
982 /* Insert inside our poll wait queue */
983 poll_wait(file, &ep->poll_wait, wait);
984
985 /*
986 * Proceed to find out if wanted events are really available inside
987 * the ready list.
988 */
989 mutex_lock_nested(&ep->mtx, depth);
5f02b80c
LT
990 ep_start_scan(ep, &txlist);
991 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
2c0b71c1
AV
992 if (ep_item_poll(epi, &pt, depth + 1)) {
993 res = EPOLLIN | EPOLLRDNORM;
994 break;
37b5e521 995 } else {
5071f97e 996 /*
5f02b80c
LT
997 * Item has been dropped into the ready list by the poll
998 * callback, but it's not actually ready, as far as
999 * caller requested events goes. We can remove it here.
5071f97e 1000 */
eea1d585 1001 __pm_relax(ep_wakeup_source(epi));
5f02b80c 1002 list_del_init(&epi->rdllink);
296e236e 1003 }
5071f97e 1004 }
5f02b80c 1005 ep_done_scan(ep, &txlist);
ad9366b1
AV
1006 mutex_unlock(&ep->mtx);
1007 return res;
5071f97e
DL
1008}
1009
4efaa5ac
LT
1010/*
1011 * The ffd.file pointer may be in the process of being torn down due to
1012 * being closed, but we may not have finished eventpoll_release() yet.
1013 *
1014 * Normally, even with the atomic_long_inc_not_zero, the file may have
1015 * been free'd and then gotten re-allocated to something else (since
1016 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
1017 *
1018 * But for epoll, users hold the ep->mtx mutex, and as such any file in
1019 * the process of being free'd will block in eventpoll_release_file()
1020 * and thus the underlying file allocation will not be free'd, and the
1021 * file re-use cannot happen.
1022 *
1023 * For the same reason we can avoid a rcu_read_lock() around the
1024 * operation - 'ffd.file' cannot go away even if the refcount has
1025 * reached zero (but we must still not call out to ->poll() functions
1026 * etc).
1027 */
1028static struct file *epi_fget(const struct epitem *epi)
1029{
1030 struct file *file;
1031
1032 file = epi->ffd.file;
90ee6ed7 1033 if (!file_ref_get(&file->f_ref))
4efaa5ac
LT
1034 file = NULL;
1035 return file;
1036}
1037
37b5e521
JB
1038/*
1039 * Differs from ep_eventpoll_poll() in that internal callers already have
1040 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1041 * is correctly annotated.
1042 */
d85e2aa2 1043static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 1044 int depth)
11c5ad0e 1045{
4efaa5ac 1046 struct file *file = epi_fget(epi);
1ec09974 1047 __poll_t res;
7699acd1 1048
4efaa5ac
LT
1049 /*
1050 * We could return EPOLLERR | EPOLLHUP or something, but let's
1051 * treat this more as "file doesn't exist, poll didn't happen".
1052 */
1053 if (!file)
1054 return 0;
1055
450d89ec 1056 pt->_key = epi->event.events;
ad9366b1
AV
1057 if (!is_file_epoll(file))
1058 res = vfs_poll(file, pt);
1059 else
1060 res = __ep_eventpoll_poll(file, pt, depth);
4efaa5ac 1061 fput(file);
1ec09974 1062 return res & epi->event.events;
450d89ec 1063}
a11e1d43 1064
a11e1d43 1065static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e 1066{
ad9366b1 1067 return __ep_eventpoll_poll(file, wait, 0);
7699acd1
DL
1068}
1069
138d22b5 1070#ifdef CONFIG_PROC_FS
a3816ab0 1071static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
1072{
1073 struct eventpoll *ep = f->private_data;
1074 struct rb_node *rbp;
138d22b5
CG
1075
1076 mutex_lock(&ep->mtx);
b2ac2ea6 1077 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 1078 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 1079 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 1080
77493f04
CG
1081 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1082 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 1083 epi->ffd.fd, epi->event.events,
77493f04
CG
1084 (long long)epi->event.data,
1085 (long long)epi->ffd.file->f_pos,
1086 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 1087 if (seq_has_overflowed(m))
138d22b5
CG
1088 break;
1089 }
1090 mutex_unlock(&ep->mtx);
138d22b5
CG
1091}
1092#endif
1093
7699acd1
DL
1094/* File callbacks that implement the eventpoll file behaviour */
1095static const struct file_operations eventpoll_fops = {
138d22b5
CG
1096#ifdef CONFIG_PROC_FS
1097 .show_fdinfo = ep_show_fdinfo,
1098#endif
7699acd1 1099 .release = ep_eventpoll_release,
a11e1d43 1100 .poll = ep_eventpoll_poll,
6038f373 1101 .llseek = noop_llseek,
18e2bf0e
JD
1102 .unlocked_ioctl = ep_eventpoll_ioctl,
1103 .compat_ioctl = compat_ptr_ioctl,
7699acd1
DL
1104};
1105
b611967d 1106/*
7699acd1
DL
1107 * This is called from eventpoll_release() to unlink files from the eventpoll
1108 * interface. We need to have this facility to cleanup correctly files that are
1109 * closed without being removed from the eventpoll interface.
b611967d 1110 */
7699acd1 1111void eventpoll_release_file(struct file *file)
b611967d 1112{
7699acd1 1113 struct eventpoll *ep;
44cdc1d9 1114 struct epitem *epi;
58c9b016 1115 bool dispose;
b611967d
DL
1116
1117 /*
58c9b016
PA
1118 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1119 * touching the epitems list before eventpoll_release_file() can access
1120 * the ep->mtx.
b611967d 1121 */
58c9b016
PA
1122again:
1123 spin_lock(&file->f_lock);
1124 if (file->f_ep && file->f_ep->first) {
1125 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1126 epi->dying = true;
1127 spin_unlock(&file->f_lock);
1128
1129 /*
1130 * ep access is safe as we still own a reference to the ep
1131 * struct
1132 */
7699acd1 1133 ep = epi->ep;
58c9b016
PA
1134 mutex_lock(&ep->mtx);
1135 dispose = __ep_remove(ep, epi, true);
d47de16c 1136 mutex_unlock(&ep->mtx);
58c9b016 1137
8c2e52eb 1138 if (dispose && ep_refcount_dec_and_test(ep))
58c9b016
PA
1139 ep_free(ep);
1140 goto again;
b611967d 1141 }
58c9b016 1142 spin_unlock(&file->f_lock);
b611967d
DL
1143}
1144
53d2be79 1145static int ep_alloc(struct eventpoll **pep)
1da177e4 1146{
7ef9964e 1147 struct eventpoll *ep;
1da177e4 1148
7ef9964e
DL
1149 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1150 if (unlikely(!ep))
05f26f86 1151 return -ENOMEM;
1da177e4 1152
d47de16c 1153 mutex_init(&ep->mtx);
5f02b80c 1154 rwlock_init(&ep->lock);
1da177e4
LT
1155 init_waitqueue_head(&ep->wq);
1156 init_waitqueue_head(&ep->poll_wait);
5f02b80c 1157 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 1158 ep->rbr = RB_ROOT_CACHED;
5f02b80c 1159 ep->ovflist = EP_UNACTIVE_PTR;
05f26f86 1160 ep->user = get_current_user();
58c9b016 1161 refcount_set(&ep->refcount, 1);
1da177e4 1162
53d2be79 1163 *pep = ep;
1da177e4 1164
1da177e4
LT
1165 return 0;
1166}
1167
1da177e4 1168/*
c7ea7630
DL
1169 * Search the file inside the eventpoll tree. The RB tree operations
1170 * are protected by the "mtx" mutex, and ep_find() must be called with
1171 * "mtx" held.
1da177e4
LT
1172 */
1173static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1174{
1175 int kcmp;
1da177e4
LT
1176 struct rb_node *rbp;
1177 struct epitem *epi, *epir = NULL;
1178 struct epoll_filefd ffd;
1179
b030a4dd 1180 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 1181 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 1182 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 1183 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
1184 if (kcmp > 0)
1185 rbp = rbp->rb_right;
1186 else if (kcmp < 0)
1187 rbp = rbp->rb_left;
1188 else {
1da177e4
LT
1189 epir = epi;
1190 break;
1191 }
1192 }
1da177e4 1193
1da177e4
LT
1194 return epir;
1195}
1196
bfe3911a 1197#ifdef CONFIG_KCMP
0791e364
CG
1198static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1199{
1200 struct rb_node *rbp;
1201 struct epitem *epi;
1202
b2ac2ea6 1203 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
1204 epi = rb_entry(rbp, struct epitem, rbn);
1205 if (epi->ffd.fd == tfd) {
1206 if (toff == 0)
1207 return epi;
1208 else
1209 toff--;
1210 }
1211 cond_resched();
1212 }
1213
1214 return NULL;
1215}
1216
1217struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1218 unsigned long toff)
1219{
1220 struct file *file_raw;
1221 struct eventpoll *ep;
1222 struct epitem *epi;
1223
1224 if (!is_file_epoll(file))
1225 return ERR_PTR(-EINVAL);
1226
1227 ep = file->private_data;
1228
1229 mutex_lock(&ep->mtx);
1230 epi = ep_find_tfd(ep, tfd, toff);
1231 if (epi)
1232 file_raw = epi->ffd.file;
1233 else
1234 file_raw = ERR_PTR(-ENOENT);
1235 mutex_unlock(&ep->mtx);
1236
1237 return file_raw;
1238}
bfe3911a 1239#endif /* CONFIG_KCMP */
0791e364 1240
5f02b80c
LT
1241/*
1242 * Adds a new entry to the tail of the list in a lockless way, i.e.
1243 * multiple CPUs are allowed to call this function concurrently.
1244 *
1245 * Beware: it is necessary to prevent any other modifications of the
1246 * existing list until all changes are completed, in other words
1247 * concurrent list_add_tail_lockless() calls should be protected
1248 * with a read lock, where write lock acts as a barrier which
1249 * makes sure all list_add_tail_lockless() calls are fully
1250 * completed.
1251 *
1252 * Also an element can be locklessly added to the list only in one
1253 * direction i.e. either to the tail or to the head, otherwise
1254 * concurrent access will corrupt the list.
1255 *
1256 * Return: %false if element has been already added to the list, %true
1257 * otherwise.
1258 */
1259static inline bool list_add_tail_lockless(struct list_head *new,
1260 struct list_head *head)
1261{
1262 struct list_head *prev;
1263
1264 /*
1265 * This is simple 'new->next = head' operation, but cmpxchg()
1266 * is used in order to detect that same element has been just
1267 * added to the list from another CPU: the winner observes
1268 * new->next == new.
1269 */
1270 if (!try_cmpxchg(&new->next, &new, head))
1271 return false;
1272
1273 /*
1274 * Initially ->next of a new element must be updated with the head
1275 * (we are inserting to the tail) and only then pointers are atomically
1276 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1277 * updated before pointers are actually swapped and pointers are
1278 * swapped before prev->next is updated.
1279 */
1280
1281 prev = xchg(&head->prev, new);
1282
1283 /*
1284 * It is safe to modify prev->next and new->prev, because a new element
1285 * is added only to the tail and new->next is updated before XCHG.
1286 */
1287
1288 prev->next = new;
1289 new->prev = prev;
1290
1291 return true;
1292}
1293
1294/*
1295 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1296 * i.e. multiple CPUs are allowed to call this function concurrently.
1297 *
1298 * Return: %false if epi element has been already chained, %true otherwise.
1299 */
1300static inline bool chain_epi_lockless(struct epitem *epi)
1301{
1302 struct eventpoll *ep = epi->ep;
1303
1304 /* Fast preliminary check */
1305 if (epi->next != EP_UNACTIVE_PTR)
1306 return false;
1307
1308 /* Check that the same epi has not been just chained from another CPU */
1309 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1310 return false;
1311
1312 /* Atomically exchange tail */
1313 epi->next = xchg(&ep->ovflist, epi);
1314
1315 return true;
1316}
1317
1da177e4 1318/*
7699acd1 1319 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1320 * mechanism. It is called by the stored file descriptors when they
7699acd1 1321 * have events to report.
a218cc49 1322 *
5f02b80c
LT
1323 * This callback takes a read lock in order not to contend with concurrent
1324 * events from another file descriptor, thus all modifications to ->rdllist
1325 * or ->ovflist are lockless. Read lock is paired with the write lock from
1326 * ep_start/done_scan(), which stops all list modifications and guarantees
1327 * that lists state is seen correctly.
1328 *
a218cc49
RP
1329 * Another thing worth to mention is that ep_poll_callback() can be called
1330 * concurrently for the same @epi from different CPUs if poll table was inited
1331 * with several wait queues entries. Plural wakeup from different CPUs of a
1332 * single wait queue is serialized by wq.lock, but the case when multiple wait
1333 * queues are used should be detected accordingly. This is detected using
1334 * cmpxchg() operation.
1da177e4 1335 */
ac6424b9 1336static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1337{
5f02b80c 1338 int pwake = 0;
7699acd1
DL
1339 struct epitem *epi = ep_item_from_wait(wait);
1340 struct eventpoll *ep = epi->ep;
3ad6f93e 1341 __poll_t pollflags = key_to_poll(key);
5f02b80c 1342 unsigned long flags;
df0108c5 1343 int ewake = 0;
1da177e4 1344
5f02b80c
LT
1345 read_lock_irqsave(&ep->lock, flags);
1346
bf3b9f63
SS
1347 ep_set_busy_poll_napi_id(epi);
1348
7699acd1
DL
1349 /*
1350 * If the event mask does not contain any poll(2) event, we consider the
1351 * descriptor to be disabled. This condition is likely the effect of the
1352 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1353 * until the next EPOLL_CTL_MOD will be issued.
1354 */
1355 if (!(epi->event.events & ~EP_PRIVATE_BITS))
5f02b80c 1356 goto out_unlock;
d47de16c 1357
2dfa4eea
DL
1358 /*
1359 * Check the events coming with the callback. At this stage, not
1360 * every device reports the events in the "key" parameter of the
1361 * callback. We need to be able to handle both cases here, hence the
1362 * test for "key" != NULL before the event match test.
1363 */
3ad6f93e 1364 if (pollflags && !(pollflags & epi->event.events))
5f02b80c 1365 goto out_unlock;
2dfa4eea 1366
5f02b80c
LT
1367 /*
1368 * If we are transferring events to userspace, we can hold no locks
1369 * (because we're accessing user memory, and because of linux f_op->poll()
1370 * semantics). All the events that happen during that period of time are
1371 * chained in ep->ovflist and requeued later on.
1372 */
1373 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1374 if (chain_epi_lockless(epi))
1375 ep_pm_stay_awake_rcu(epi);
1376 } else if (!ep_is_linked(epi)) {
1377 /* In the usual case, add event to ready list. */
1378 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1379 ep_pm_stay_awake_rcu(epi);
1380 }
7699acd1 1381
7699acd1
DL
1382 /*
1383 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1384 * wait list.
1385 */
df0108c5 1386 if (waitqueue_active(&ep->wq)) {
b6a515c8 1387 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1388 !(pollflags & POLLFREE)) {
1389 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1390 case EPOLLIN:
1391 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1392 ewake = 1;
1393 break;
a9a08845
LT
1394 case EPOLLOUT:
1395 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1396 ewake = 1;
1397 break;
1398 case 0:
1399 ewake = 1;
1400 break;
1401 }
1402 }
900bbaae
XY
1403 if (sync)
1404 wake_up_sync(&ep->wq);
1405 else
1406 wake_up(&ep->wq);
df0108c5 1407 }
7699acd1 1408 if (waitqueue_active(&ep->poll_wait))
5f02b80c
LT
1409 pwake++;
1410
1411out_unlock:
1412 read_unlock_irqrestore(&ep->lock, flags);
1413
1414 /* We have to call this outside the lock */
1415 if (pwake)
caf1aeaf 1416 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
7699acd1 1417
138e4ad6
ON
1418 if (!(epi->event.events & EPOLLEXCLUSIVE))
1419 ewake = 1;
1420
3ad6f93e 1421 if (pollflags & POLLFREE) {
138e4ad6
ON
1422 /*
1423 * If we race with ep_remove_wait_queue() it can miss
1424 * ->whead = NULL and do another remove_wait_queue() after
1425 * us, so we can't use __remove_wait_queue().
1426 */
1427 list_del_init(&wait->entry);
1428 /*
58c9b016
PA
1429 * ->whead != NULL protects us from the race with
1430 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1431 * takes whead->lock held by the caller. Once we nullify it,
1432 * nothing protects ep/epi or even wait.
138e4ad6
ON
1433 */
1434 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1435 }
df0108c5 1436
138e4ad6 1437 return ewake;
7699acd1 1438}
1da177e4
LT
1439
1440/*
1441 * This is the callback that is used to add our wait queue to the
1442 * target file wakeup lists.
1443 */
1444static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1445 poll_table *pt)
1446{
364f374f
AV
1447 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1448 struct epitem *epi = epq->epi;
1da177e4
LT
1449 struct eppoll_entry *pwq;
1450
364f374f
AV
1451 if (unlikely(!epi)) // an earlier allocation has failed
1452 return;
1453
1454 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1455 if (unlikely(!pwq)) {
1456 epq->epi = NULL;
1457 return;
296e236e 1458 }
364f374f
AV
1459
1460 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1461 pwq->whead = whead;
1462 pwq->base = epi;
1463 if (epi->event.events & EPOLLEXCLUSIVE)
1464 add_wait_queue_exclusive(whead, &pwq->wait);
1465 else
1466 add_wait_queue(whead, &pwq->wait);
1467 pwq->next = epi->pwqlist;
1468 epi->pwqlist = pwq;
1da177e4
LT
1469}
1470
1da177e4
LT
1471static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1472{
1473 int kcmp;
b2ac2ea6 1474 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1475 struct epitem *epic;
b2ac2ea6 1476 bool leftmost = true;
1da177e4
LT
1477
1478 while (*p) {
1479 parent = *p;
1480 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1481 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1482 if (kcmp > 0) {
1da177e4 1483 p = &parent->rb_right;
b2ac2ea6
DB
1484 leftmost = false;
1485 } else
1da177e4
LT
1486 p = &parent->rb_left;
1487 }
1488 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1489 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1490}
1491
a80a6b85
AM
1492
1493
28d82dc1
JB
1494#define PATH_ARR_SIZE 5
1495/*
1496 * These are the number paths of length 1 to 5, that we are allowing to emanate
1497 * from a single file of interest. For example, we allow 1000 paths of length
1498 * 1, to emanate from each file of interest. This essentially represents the
1499 * potential wakeup paths, which need to be limited in order to avoid massive
1500 * uncontrolled wakeup storms. The common use case should be a single ep which
1501 * is connected to n file sources. In this case each file source has 1 path
1502 * of length 1. Thus, the numbers below should be more than sufficient. These
1503 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
d4cb626d 1504 * and delete can't add additional paths. Protected by the epnested_mutex.
28d82dc1
JB
1505 */
1506static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1507static int path_count[PATH_ARR_SIZE];
1508
1509static int path_count_inc(int nests)
1510{
93dc6107
JB
1511 /* Allow an arbitrary number of depth 1 paths */
1512 if (nests == 0)
1513 return 0;
1514
28d82dc1
JB
1515 if (++path_count[nests] > path_limits[nests])
1516 return -1;
1517 return 0;
1518}
1519
1520static void path_count_init(void)
1521{
1522 int i;
1523
1524 for (i = 0; i < PATH_ARR_SIZE; i++)
1525 path_count[i] = 0;
1526}
1527
319c1517 1528static int reverse_path_check_proc(struct hlist_head *refs, int depth)
28d82dc1
JB
1529{
1530 int error = 0;
28d82dc1
JB
1531 struct epitem *epi;
1532
0c320f77 1533 if (depth > EP_MAX_NESTS) /* too deep nesting */
99d84d43
AV
1534 return -1;
1535
ae10b2b4 1536 /* CTL_DEL can remove links here, but that can't increase our count */
319c1517
AV
1537 hlist_for_each_entry_rcu(epi, refs, fllink) {
1538 struct hlist_head *refs = &epi->ep->refs;
1539 if (hlist_empty(refs))
d16312a4
AV
1540 error = path_count_inc(depth);
1541 else
319c1517 1542 error = reverse_path_check_proc(refs, depth + 1);
d16312a4
AV
1543 if (error != 0)
1544 break;
28d82dc1
JB
1545 }
1546 return error;
1547}
1548
1549/**
319c1517 1550 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
28d82dc1
JB
1551 * links that are proposed to be newly added. We need to
1552 * make sure that those added links don't add too many
1553 * paths such that we will spend all our time waking up
1554 * eventpoll objects.
1555 *
a6c67fee
RD
1556 * Return: %zero if the proposed links don't create too many paths,
1557 * %-1 otherwise.
28d82dc1
JB
1558 */
1559static int reverse_path_check(void)
1560{
319c1517 1561 struct epitems_head *p;
28d82dc1 1562
319c1517
AV
1563 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1564 int error;
28d82dc1 1565 path_count_init();
b62d2706 1566 rcu_read_lock();
319c1517 1567 error = reverse_path_check_proc(&p->epitems, 0);
b62d2706 1568 rcu_read_unlock();
28d82dc1 1569 if (error)
319c1517 1570 return error;
28d82dc1 1571 }
319c1517 1572 return 0;
28d82dc1
JB
1573}
1574
4d7e30d9
AH
1575static int ep_create_wakeup_source(struct epitem *epi)
1576{
3701cb59 1577 struct name_snapshot n;
eea1d585 1578 struct wakeup_source *ws;
4d7e30d9
AH
1579
1580 if (!epi->ep->ws) {
c8377adf 1581 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1582 if (!epi->ep->ws)
1583 return -ENOMEM;
1584 }
1585
3701cb59
AV
1586 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1587 ws = wakeup_source_register(NULL, n.name.name);
1588 release_dentry_name_snapshot(&n);
eea1d585
EW
1589
1590 if (!ws)
4d7e30d9 1591 return -ENOMEM;
eea1d585 1592 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1593
1594 return 0;
1595}
1596
eea1d585
EW
1597/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1598static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1599{
eea1d585
EW
1600 struct wakeup_source *ws = ep_wakeup_source(epi);
1601
d6d67e72 1602 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1603
1604 /*
1605 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1606 * used internally by wakeup_source_remove, too (called by
1607 * wakeup_source_unregister), so we cannot use call_rcu
1608 */
1609 synchronize_rcu();
1610 wakeup_source_unregister(ws);
4d7e30d9
AH
1611}
1612
319c1517
AV
1613static int attach_epitem(struct file *file, struct epitem *epi)
1614{
1615 struct epitems_head *to_free = NULL;
1616 struct hlist_head *head = NULL;
1617 struct eventpoll *ep = NULL;
1618
1619 if (is_file_epoll(file))
1620 ep = file->private_data;
1621
1622 if (ep) {
1623 head = &ep->refs;
1624 } else if (!READ_ONCE(file->f_ep)) {
1625allocate:
1626 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1627 if (!to_free)
1628 return -ENOMEM;
1629 head = &to_free->epitems;
1630 }
1631 spin_lock(&file->f_lock);
1632 if (!file->f_ep) {
1633 if (unlikely(!head)) {
1634 spin_unlock(&file->f_lock);
1635 goto allocate;
1636 }
6474353a
CB
1637 /* See eventpoll_release() for details. */
1638 WRITE_ONCE(file->f_ep, head);
319c1517
AV
1639 to_free = NULL;
1640 }
1641 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1642 spin_unlock(&file->f_lock);
1643 free_ephead(to_free);
1644 return 0;
1645}
1646
c7ea7630
DL
1647/*
1648 * Must be called with "mtx" held.
1649 */
bec1a502 1650static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1651 struct file *tfile, int fd, int full_check)
1da177e4 1652{
d85e2aa2
AV
1653 int error, pwake = 0;
1654 __poll_t revents;
1da177e4
LT
1655 struct epitem *epi;
1656 struct ep_pqueue epq;
85353e91
AV
1657 struct eventpoll *tep = NULL;
1658
1659 if (is_file_epoll(tfile))
1660 tep = tfile->private_data;
1da177e4 1661
5f02b80c
LT
1662 lockdep_assert_irqs_enabled();
1663
1e1c1583
NP
1664 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1665 max_user_watches) >= 0))
7ef9964e 1666 return -ENOSPC;
1e1c1583
NP
1667 percpu_counter_inc(&ep->user->epoll_watches);
1668
1669 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1670 percpu_counter_dec(&ep->user->epoll_watches);
7ef9964e 1671 return -ENOMEM;
1e1c1583 1672 }
1da177e4
LT
1673
1674 /* Item initialization follow here ... */
5f02b80c 1675 INIT_LIST_HEAD(&epi->rdllink);
1da177e4 1676 epi->ep = ep;
b030a4dd 1677 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1678 epi->event = *event;
5f02b80c 1679 epi->next = EP_UNACTIVE_PTR;
1da177e4 1680
85353e91
AV
1681 if (tep)
1682 mutex_lock_nested(&tep->mtx, 1);
f8d4f44d 1683 /* Add the current item to the list of active epoll hook for this file */
319c1517 1684 if (unlikely(attach_epitem(tfile, epi) < 0)) {
319c1517
AV
1685 if (tep)
1686 mutex_unlock(&tep->mtx);
1e1c1583
NP
1687 kmem_cache_free(epi_cache, epi);
1688 percpu_counter_dec(&ep->user->epoll_watches);
319c1517 1689 return -ENOMEM;
d9f41e3c 1690 }
f8d4f44d 1691
319c1517
AV
1692 if (full_check && !tep)
1693 list_file(tfile);
1694
f8d4f44d
AV
1695 /*
1696 * Add the current item to the RB tree. All RB tree operations are
1697 * protected by "mtx", and ep_insert() is called with "mtx" held.
1698 */
1699 ep_rbtree_insert(ep, epi);
85353e91
AV
1700 if (tep)
1701 mutex_unlock(&tep->mtx);
f8d4f44d 1702
58c9b016
PA
1703 /*
1704 * ep_remove_safe() calls in the later error paths can't lead to
1705 * ep_free() as the ep file itself still holds an ep reference.
1706 */
1707 ep_get(ep);
1708
f8d4f44d 1709 /* now check if we've created too many backpaths */
e3e096e7 1710 if (unlikely(full_check && reverse_path_check())) {
58c9b016 1711 ep_remove_safe(ep, epi);
e3e096e7
AV
1712 return -EINVAL;
1713 }
f8d4f44d 1714
d1ec50ad
AV
1715 if (epi->event.events & EPOLLWAKEUP) {
1716 error = ep_create_wakeup_source(epi);
1717 if (error) {
58c9b016 1718 ep_remove_safe(ep, epi);
d1ec50ad
AV
1719 return error;
1720 }
1721 }
f8d4f44d 1722
1da177e4
LT
1723 /* Initialize the poll table using the queue callback */
1724 epq.epi = epi;
1725 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1726
1727 /*
1728 * Attach the item to the poll hooks and get current event bits.
1729 * We can safely use the file* here because its usage count has
c7ea7630
DL
1730 * been increased by the caller of this function. Note that after
1731 * this operation completes, the poll callback can start hitting
1732 * the new item.
1da177e4 1733 */
37b5e521 1734 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1735
1736 /*
1737 * We have to check if something went wrong during the poll wait queue
1738 * install process. Namely an allocation for a wait queue failed due
1739 * high memory pressure.
1740 */
e3e096e7 1741 if (unlikely(!epq.epi)) {
58c9b016 1742 ep_remove_safe(ep, epi);
e3e096e7
AV
1743 return -ENOMEM;
1744 }
1da177e4 1745
5f02b80c
LT
1746 /* We have to drop the new item inside our item list to keep track of it */
1747 write_lock_irq(&ep->lock);
1748
bf3b9f63
SS
1749 /* record NAPI ID of new item if present */
1750 ep_set_busy_poll_napi_id(epi);
1751
1da177e4 1752 /* If the file is already "ready" we drop it inside the ready list */
5f02b80c
LT
1753 if (revents && !ep_is_linked(epi)) {
1754 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1755 ep_pm_stay_awake(epi);
1da177e4
LT
1756
1757 /* Notify waiting tasks that events are available */
1758 if (waitqueue_active(&ep->wq))
a218cc49 1759 wake_up(&ep->wq);
1da177e4
LT
1760 if (waitqueue_active(&ep->poll_wait))
1761 pwake++;
1762 }
1763
5f02b80c
LT
1764 write_unlock_irq(&ep->lock);
1765
1da177e4
LT
1766 /* We have to call this outside the lock */
1767 if (pwake)
caf1aeaf 1768 ep_poll_safewake(ep, NULL, 0);
1da177e4 1769
1da177e4 1770 return 0;
1da177e4
LT
1771}
1772
1da177e4
LT
1773/*
1774 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1775 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1776 */
bec1a502
AV
1777static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1778 const struct epoll_event *event)
1da177e4 1779{
5f02b80c 1780 int pwake = 0;
626cf236
HV
1781 poll_table pt;
1782
5f02b80c
LT
1783 lockdep_assert_irqs_enabled();
1784
626cf236 1785 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1786
1787 /*
e057e15f
TB
1788 * Set the new event interest mask before calling f_op->poll();
1789 * otherwise we might miss an event that happens between the
1790 * f_op->poll() call and the new event set registering.
1da177e4 1791 */
128dd175 1792 epi->event.events = event->events; /* need barrier below */
e057e15f 1793 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1794 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1795 if (!ep_has_wakeup_source(epi))
4d7e30d9 1796 ep_create_wakeup_source(epi);
eea1d585 1797 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1798 ep_destroy_wakeup_source(epi);
1799 }
1da177e4 1800
128dd175
EW
1801 /*
1802 * The following barrier has two effects:
1803 *
1804 * 1) Flush epi changes above to other CPUs. This ensures
1805 * we do not miss events from ep_poll_callback if an
1806 * event occurs immediately after we call f_op->poll().
a218cc49 1807 * We need this because we did not take ep->lock while
128dd175 1808 * changing epi above (but ep_poll_callback does take
a218cc49 1809 * ep->lock).
128dd175
EW
1810 *
1811 * 2) We also need to ensure we do not miss _past_ events
1812 * when calling f_op->poll(). This barrier also
1813 * pairs with the barrier in wq_has_sleeper (see
1814 * comments for wq_has_sleeper).
1815 *
1816 * This barrier will now guarantee ep_poll_callback or f_op->poll
1817 * (or both) will notice the readiness of an item.
1818 */
1819 smp_mb();
1820
1da177e4
LT
1821 /*
1822 * Get current event bits. We can safely use the file* here because
1823 * its usage count has been increased by the caller of this function.
c7ea7630 1824 * If the item is "hot" and it is not registered inside the ready
67647d0f 1825 * list, push it inside.
1da177e4 1826 */
69112736 1827 if (ep_item_poll(epi, &pt, 1)) {
5f02b80c
LT
1828 write_lock_irq(&ep->lock);
1829 if (!ep_is_linked(epi)) {
1830 list_add_tail(&epi->rdllink, &ep->rdllist);
1831 ep_pm_stay_awake(epi);
c7ea7630 1832
5f02b80c
LT
1833 /* Notify waiting tasks that events are available */
1834 if (waitqueue_active(&ep->wq))
1835 wake_up(&ep->wq);
1836 if (waitqueue_active(&ep->poll_wait))
1837 pwake++;
1838 }
1839 write_unlock_irq(&ep->lock);
7699acd1 1840 }
1da177e4 1841
5f02b80c
LT
1842 /* We have to call this outside the lock */
1843 if (pwake)
1844 ep_poll_safewake(ep, NULL, 0);
1845
7699acd1 1846 return 0;
1da177e4
LT
1847}
1848
ff07952a
AV
1849static int ep_send_events(struct eventpoll *ep,
1850 struct epoll_event __user *events, int maxevents)
1da177e4 1851{
4e0982a0 1852 struct epitem *epi, *tmp;
5f02b80c 1853 LIST_HEAD(txlist);
626cf236 1854 poll_table pt;
ff07952a 1855 int res = 0;
626cf236 1856
cccd29bf
SHY
1857 /*
1858 * Always short-circuit for fatal signals to allow threads to make a
1859 * timely exit without the chance of finding more events available and
1860 * fetching repeatedly.
1861 */
1862 if (fatal_signal_pending(current))
1863 return -EINTR;
1864
626cf236 1865 init_poll_funcptr(&pt, NULL);
ff07952a 1866
57804b1c 1867 mutex_lock(&ep->mtx);
5f02b80c 1868 ep_start_scan(ep, &txlist);
1da177e4 1869
5f02b80c
LT
1870 /*
1871 * We can loop without lock because we are passed a task private list.
1872 * Items cannot vanish during the loop we are holding ep->mtx.
1873 */
1874 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
ff07952a
AV
1875 struct wakeup_source *ws;
1876 __poll_t revents;
21877e1a 1877
5f02b80c 1878 if (res >= maxevents)
4e0982a0 1879 break;
d47de16c 1880
4d7e30d9
AH
1881 /*
1882 * Activate ep->ws before deactivating epi->ws to prevent
1883 * triggering auto-suspend here (in case we reactive epi->ws
1884 * below).
1885 *
1886 * This could be rearranged to delay the deactivation of epi->ws
1887 * instead, but then epi->ws would temporarily be out of sync
1888 * with ep_is_linked().
1889 */
eea1d585
EW
1890 ws = ep_wakeup_source(epi);
1891 if (ws) {
1892 if (ws->active)
1893 __pm_stay_awake(ep->ws);
1894 __pm_relax(ws);
1895 }
1896
5f02b80c
LT
1897 list_del_init(&epi->rdllink);
1898
296e236e 1899 /*
5071f97e 1900 * If the event mask intersect the caller-requested one,
57804b1c
AV
1901 * deliver the event to userspace. Again, we are holding ep->mtx,
1902 * so no operations coming from userspace can change the item.
296e236e 1903 */
4e0982a0 1904 revents = ep_item_poll(epi, &pt, 1);
5f02b80c 1905 if (!revents)
4e0982a0
DB
1906 continue;
1907
249dbe74
AB
1908 events = epoll_put_uevent(revents, epi->event.data, events);
1909 if (!events) {
5f02b80c
LT
1910 list_add(&epi->rdllink, &txlist);
1911 ep_pm_stay_awake(epi);
ff07952a
AV
1912 if (!res)
1913 res = -EFAULT;
1914 break;
4e0982a0 1915 }
ff07952a 1916 res++;
4e0982a0
DB
1917 if (epi->event.events & EPOLLONESHOT)
1918 epi->event.events &= EP_PRIVATE_BITS;
5f02b80c 1919 else if (!(epi->event.events & EPOLLET)) {
4e0982a0 1920 /*
5f02b80c
LT
1921 * If this file has been added with Level
1922 * Trigger mode, we need to insert back inside
1923 * the ready list, so that the next call to
1924 * epoll_wait() will check again the events
1925 * availability. At this point, no one can insert
1926 * into ep->rdllist besides us. The epoll_ctl()
1927 * callers are locked out by
1928 * ep_send_events() holding "mtx" and the
1929 * poll callback will queue them in ep->ovflist.
4e0982a0 1930 */
5f02b80c 1931 list_add_tail(&epi->rdllink, &ep->rdllist);
4e0982a0 1932 ep_pm_stay_awake(epi);
296e236e
DL
1933 }
1934 }
5f02b80c 1935 ep_done_scan(ep, &txlist);
57804b1c 1936 mutex_unlock(&ep->mtx);
5071f97e 1937
ff07952a 1938 return res;
1da177e4
LT
1939}
1940
7cdf7c20 1941static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
0781b909 1942{
7cdf7c20
WB
1943 struct timespec64 now;
1944
1945 if (ms < 0)
1946 return NULL;
1947
1948 if (!ms) {
1949 to->tv_sec = 0;
1950 to->tv_nsec = 0;
1951 return to;
1952 }
1953
1954 to->tv_sec = ms / MSEC_PER_SEC;
1955 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
0781b909 1956
766b9f92 1957 ktime_get_ts64(&now);
7cdf7c20
WB
1958 *to = timespec64_add_safe(now, *to);
1959 return to;
0781b909
ED
1960}
1961
a16ceb13
BS
1962/*
1963 * autoremove_wake_function, but remove even on failure to wake up, because we
1964 * know that default_wake_function/ttwu will only fail if the thread is already
1965 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1966 * try to reuse it.
1967 */
1968static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1969 unsigned int mode, int sync, void *key)
1970{
1971 int ret = default_wake_function(wq_entry, mode, sync, key);
1972
2192bba0
BS
1973 /*
1974 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1975 * iterations see the cause of this wakeup.
1976 */
1977 list_del_init_careful(&wq_entry->entry);
a16ceb13
BS
1978 return ret;
1979}
1980
38d20356
JA
1981static int ep_try_send_events(struct eventpoll *ep,
1982 struct epoll_event __user *events, int maxevents)
1983{
1984 int res;
1985
1986 /*
1987 * Try to transfer events to user space. In case we get 0 events and
1988 * there's still timeout left over, we go trying again in search of
1989 * more luck.
1990 */
1991 res = ep_send_events(ep, events, maxevents);
1992 if (res > 0)
1993 ep_suspend_napi_irqs(ep);
1994 return res;
1995}
1996
0a65bc27
JD
1997static int ep_schedule_timeout(ktime_t *to)
1998{
1999 if (to)
2000 return ktime_after(*to, ktime_get());
2001 else
2002 return 1;
2003}
2004
f4d93ad7 2005/**
a6c67fee 2006 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
f4d93ad7
SB
2007 * event buffer.
2008 *
2009 * @ep: Pointer to the eventpoll context.
2010 * @events: Pointer to the userspace buffer where the ready events should be
2011 * stored.
2012 * @maxevents: Size (in terms of number of events) of the caller event buffer.
2013 * @timeout: Maximum timeout for the ready events fetch operation, in
7cdf7c20
WB
2014 * timespec. If the timeout is zero, the function will not block,
2015 * while if the @timeout ptr is NULL, the function will block
f4d93ad7
SB
2016 * until at least one event has been retrieved (or an error
2017 * occurred).
2018 *
a6c67fee 2019 * Return: the number of ready events which have been fetched, or an
f4d93ad7
SB
2020 * error code, in case of error.
2021 */
1da177e4 2022static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
7cdf7c20 2023 int maxevents, struct timespec64 *timeout)
1da177e4 2024{
e59d3c64 2025 int res, eavail, timed_out = 0;
da8b44d5 2026 u64 slack = 0;
ac6424b9 2027 wait_queue_entry_t wait;
95aac7b1
SB
2028 ktime_t expires, *to = NULL;
2029
5f02b80c
LT
2030 lockdep_assert_irqs_enabled();
2031
7cdf7c20
WB
2032 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
2033 slack = select_estimate_accuracy(timeout);
95aac7b1 2034 to = &expires;
7cdf7c20
WB
2035 *to = timespec64_to_ktime(*timeout);
2036 } else if (timeout) {
f4d93ad7
SB
2037 /*
2038 * Avoid the unnecessary trip to the wait queue loop, if the
e59d3c64 2039 * caller specified a non blocking operation.
f4d93ad7 2040 */
95aac7b1
SB
2041 timed_out = 1;
2042 }
1da177e4 2043
e59d3c64
SHY
2044 /*
2045 * This call is racy: We may or may not see events that are being added
a6c67fee 2046 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
e59d3c64 2047 * with a non-zero timeout, this thread will check the ready list under
a6c67fee 2048 * lock and will add to the wait queue. For cases with a zero
e59d3c64
SHY
2049 * timeout, the user by definition should not care and will have to
2050 * recheck again.
2051 */
2052 eavail = ep_events_available(ep);
2053
00b27634
SHY
2054 while (1) {
2055 if (eavail) {
38d20356
JA
2056 res = ep_try_send_events(ep, events, maxevents);
2057 if (res)
00b27634
SHY
2058 return res;
2059 }
2060
2061 if (timed_out)
2062 return 0;
2063
d3a194d9 2064 eavail = ep_busy_loop(ep);
e8c85328 2065 if (eavail)
00b27634 2066 continue;
1da177e4 2067
2efdaf76
SHY
2068 if (signal_pending(current))
2069 return -EINTR;
2070
412895f0
RP
2071 /*
2072 * Internally init_wait() uses autoremove_wake_function(),
2073 * thus wait entry is removed from the wait queue on each
2074 * wakeup. Why it is important? In case of several waiters
2075 * each new wakeup will hit the next waiter, giving it the
2076 * chance to harvest new event. Otherwise wakeup can be
2077 * lost. This is also good performance-wise, because on
2078 * normal wakeup path no need to call __remove_wait_queue()
2079 * explicitly, thus ep->lock is not taken, which halts the
2080 * event delivery.
a16ceb13
BS
2081 *
2082 * In fact, we now use an even more aggressive function that
2083 * unconditionally removes, because we don't reuse the wait
2084 * entry between loop iterations. This lets us also avoid the
2085 * performance issue if a process is killed, causing all of its
2086 * threads to wake up without being removed normally.
412895f0
RP
2087 */
2088 init_wait(&wait);
a16ceb13 2089 wait.func = ep_autoremove_wake_function;
1da177e4 2090
5f02b80c
LT
2091 write_lock_irq(&ep->lock);
2092 /*
2093 * Barrierless variant, waitqueue_active() is called under
2094 * the same lock on wakeup ep_poll_callback() side, so it
2095 * is safe to avoid an explicit barrier.
2096 */
2097 __set_current_state(TASK_INTERRUPTIBLE);
65759097 2098
5f02b80c
LT
2099 /*
2100 * Do the final check under the lock. ep_start/done_scan()
2101 * plays with two lists (->rdllist and ->ovflist) and there
2102 * is always a race when both lists are empty for short
2103 * period of time although events are pending, so lock is
2104 * important.
2105 */
2106 eavail = ep_events_available(ep);
2107 if (!eavail)
2108 __add_wait_queue_exclusive(&ep->wq, &wait);
2109
2110 write_unlock_irq(&ep->lock);
2111
2112 if (!eavail)
d9ec7330
MK
2113 timed_out = !ep_schedule_timeout(to) ||
2114 !schedule_hrtimeout_range(to, slack,
2115 HRTIMER_MODE_ABS);
5f02b80c 2116 __set_current_state(TASK_RUNNING);
1da177e4 2117
5f02b80c
LT
2118 /*
2119 * We were woken up, thus go and try to harvest some events.
2120 * If timed out and still on the wait queue, recheck eavail
2121 * carefully under lock, below.
2122 */
2123 eavail = 1;
2124
2125 if (!list_empty_careful(&wait.entry)) {
2126 write_lock_irq(&ep->lock);
2127 /*
2128 * If the thread timed out and is not on the wait queue,
2129 * it means that the thread was woken up after its
2130 * timeout expired before it could reacquire the lock.
2131 * Thus, when wait.entry is empty, it needs to harvest
2132 * events.
2133 */
2134 if (timed_out)
2135 eavail = list_empty(&wait.entry);
2136 __remove_wait_queue(&ep->wq, &wait);
2137 write_unlock_irq(&ep->lock);
2138 }
00b27634 2139 }
1da177e4
LT
2140}
2141
22bacca4 2142/**
773318ed 2143 * ep_loop_check_proc - verify that adding an epoll file inside another
a6c67fee 2144 * epoll structure does not violate the constraints, in
22bacca4
DL
2145 * terms of closed loops, or too deep chains (which can
2146 * result in excessive stack usage).
2147 *
a6c67fee 2148 * @ep: the &struct eventpoll to be currently checked.
bde03c4c 2149 * @depth: Current depth of the path being checked.
22bacca4 2150 *
a6c67fee
RD
2151 * Return: %zero if adding the epoll @file inside current epoll
2152 * structure @ep does not violate the constraints, or %-1 otherwise.
22bacca4 2153 */
bde03c4c 2154static int ep_loop_check_proc(struct eventpoll *ep, int depth)
22bacca4
DL
2155{
2156 int error = 0;
22bacca4
DL
2157 struct rb_node *rbp;
2158 struct epitem *epi;
2159
773318ed 2160 mutex_lock_nested(&ep->mtx, depth + 1);
18306c40 2161 ep->gen = loop_check_gen;
b2ac2ea6 2162 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
2163 epi = rb_entry(rbp, struct epitem, rbn);
2164 if (unlikely(is_file_epoll(epi->ffd.file))) {
bde03c4c 2165 struct eventpoll *ep_tovisit;
28d82dc1 2166 ep_tovisit = epi->ffd.file->private_data;
18306c40 2167 if (ep_tovisit->gen == loop_check_gen)
28d82dc1 2168 continue;
bde03c4c 2169 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
56c428ca 2170 error = -1;
bde03c4c
AV
2171 else
2172 error = ep_loop_check_proc(ep_tovisit, depth + 1);
22bacca4
DL
2173 if (error != 0)
2174 break;
28d82dc1
JB
2175 } else {
2176 /*
2177 * If we've reached a file that is not associated with
2178 * an ep, then we need to check if the newly added
2179 * links are going to add too many wakeup paths. We do
2180 * this by adding it to the tfile_check_list, if it's
2181 * not already there, and calling reverse_path_check()
2182 * during ep_insert().
2183 */
319c1517 2184 list_file(epi->ffd.file);
22bacca4
DL
2185 }
2186 }
2187 mutex_unlock(&ep->mtx);
2188
2189 return error;
2190}
2191
2192/**
bde03c4c 2193 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
a6c67fee 2194 * into another epoll file (represented by @ep) does not create
22bacca4
DL
2195 * closed loops or too deep chains.
2196 *
a6c67fee 2197 * @ep: Pointer to the epoll we are inserting into.
bde03c4c 2198 * @to: Pointer to the epoll to be inserted.
22bacca4 2199 *
a6c67fee
RD
2200 * Return: %zero if adding the epoll @to inside the epoll @from
2201 * does not violate the constraints, or %-1 otherwise.
22bacca4 2202 */
bde03c4c 2203static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
22bacca4 2204{
6a3890c4 2205 inserting_into = ep;
bde03c4c 2206 return ep_loop_check_proc(to, 0);
28d82dc1
JB
2207}
2208
2209static void clear_tfile_check_list(void)
2210{
319c1517
AV
2211 rcu_read_lock();
2212 while (tfile_check_list != EP_UNACTIVE_PTR) {
2213 struct epitems_head *head = tfile_check_list;
2214 tfile_check_list = head->next;
2215 unlist_file(head);
28d82dc1 2216 }
319c1517 2217 rcu_read_unlock();
22bacca4
DL
2218}
2219
7699acd1 2220/*
523723bb 2221 * Open an eventpoll file descriptor.
7699acd1 2222 */
791eb22e 2223static int do_epoll_create(int flags)
7699acd1 2224{
28d82dc1 2225 int error, fd;
bb57c3ed 2226 struct eventpoll *ep = NULL;
28d82dc1 2227 struct file *file;
7699acd1 2228
e38b36f3
UD
2229 /* Check the EPOLL_* constant for consistency. */
2230 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2231
296e236e
DL
2232 if (flags & ~EPOLL_CLOEXEC)
2233 return -EINVAL;
7699acd1 2234 /*
bb57c3ed 2235 * Create the internal data structure ("struct eventpoll").
7699acd1 2236 */
9fe5ad9c 2237 error = ep_alloc(&ep);
bb57c3ed
DL
2238 if (error < 0)
2239 return error;
7699acd1
DL
2240 /*
2241 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 2242 * a file structure and a free file descriptor.
7699acd1 2243 */
28d82dc1
JB
2244 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2245 if (fd < 0) {
2246 error = fd;
2247 goto out_free_ep;
2248 }
2249 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 2250 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
2251 if (IS_ERR(file)) {
2252 error = PTR_ERR(file);
2253 goto out_free_fd;
2254 }
28d82dc1 2255 ep->file = file;
98022748 2256 fd_install(fd, file);
28d82dc1
JB
2257 return fd;
2258
2259out_free_fd:
2260 put_unused_fd(fd);
2261out_free_ep:
58c9b016 2262 ep_clear_and_put(ep);
bb57c3ed 2263 return error;
7699acd1
DL
2264}
2265
791eb22e
DB
2266SYSCALL_DEFINE1(epoll_create1, int, flags)
2267{
2268 return do_epoll_create(flags);
2269}
2270
5a8a82b1 2271SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 2272{
bfe3891a 2273 if (size <= 0)
9fe5ad9c
UD
2274 return -EINVAL;
2275
791eb22e 2276 return do_epoll_create(0);
a0998b50
UD
2277}
2278
063f3ed9
PD
2279#ifdef CONFIG_PM_SLEEP
2280static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2281{
2282 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2283 epev->events &= ~EPOLLWAKEUP;
2284}
2285#else
2286static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2287{
2288 epev->events &= ~EPOLLWAKEUP;
2289}
2290#endif
2291
39220e8d
JA
2292static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2293 bool nonblock)
2294{
2295 if (!nonblock) {
2296 mutex_lock_nested(mutex, depth);
2297 return 0;
2298 }
2299 if (mutex_trylock(mutex))
2300 return 0;
2301 return -EAGAIN;
2302}
2303
2304int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2305 bool nonblock)
7699acd1
DL
2306{
2307 int error;
67347fe4 2308 int full_check = 0;
7699acd1
DL
2309 struct eventpoll *ep;
2310 struct epitem *epi;
67347fe4 2311 struct eventpoll *tep = NULL;
7699acd1 2312
6348be02
AV
2313 CLASS(fd, f)(epfd);
2314 if (fd_empty(f))
2315 return -EBADF;
7699acd1
DL
2316
2317 /* Get the "struct file *" for the target file */
6348be02
AV
2318 CLASS(fd, tf)(fd);
2319 if (fd_empty(tf))
2320 return -EBADF;
7699acd1
DL
2321
2322 /* The target file descriptor must support poll */
1da91ea8 2323 if (!file_can_poll(fd_file(tf)))
6348be02 2324 return -EPERM;
7699acd1 2325
4d7e30d9 2326 /* Check if EPOLLWAKEUP is allowed */
c680e41b 2327 if (ep_op_has_event(op))
58e41a44 2328 ep_take_care_of_epollwakeup(epds);
4d7e30d9 2329
7699acd1
DL
2330 /*
2331 * We have to check that the file structure underneath the file descriptor
2332 * the user passed to us _is_ an eventpoll file. And also we do not permit
2333 * adding an epoll file descriptor inside itself.
2334 */
2335 error = -EINVAL;
1da91ea8 2336 if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f)))
7699acd1
DL
2337 goto error_tgt_fput;
2338
df0108c5
JB
2339 /*
2340 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2341 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2342 * Also, we do not currently supported nested exclusive wakeups.
2343 */
58e41a44 2344 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2345 if (op == EPOLL_CTL_MOD)
2346 goto error_tgt_fput;
1da91ea8 2347 if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) ||
58e41a44 2348 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
b6a515c8
JB
2349 goto error_tgt_fput;
2350 }
df0108c5 2351
7699acd1
DL
2352 /*
2353 * At this point it is safe to assume that the "private_data" contains
2354 * our own data structure.
2355 */
1da91ea8 2356 ep = fd_file(f)->private_data;
7699acd1 2357
22bacca4 2358 /*
a6c67fee
RD
2359 * When we insert an epoll file descriptor inside another epoll file
2360 * descriptor, there is the chance of creating closed loops, which are
28d82dc1
JB
2361 * better be handled here, than in more critical paths. While we are
2362 * checking for loops we also determine the list of files reachable
2363 * and hang them on the tfile_check_list, so we can check that we
2364 * haven't created too many possible wakeup paths.
22bacca4 2365 *
67347fe4
JB
2366 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2367 * the epoll file descriptor is attaching directly to a wakeup source,
2368 * unless the epoll file descriptor is nested. The purpose of taking the
d4cb626d 2369 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
67347fe4
JB
2370 * deep wakeup paths from forming in parallel through multiple
2371 * EPOLL_CTL_ADD operations.
22bacca4 2372 */
39220e8d
JA
2373 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2374 if (error)
2375 goto error_tgt_fput;
28d82dc1 2376 if (op == EPOLL_CTL_ADD) {
1da91ea8
AV
2377 if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen ||
2378 is_file_epoll(fd_file(tf))) {
67347fe4 2379 mutex_unlock(&ep->mtx);
d4cb626d 2380 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
39220e8d
JA
2381 if (error)
2382 goto error_tgt_fput;
18306c40 2383 loop_check_gen++;
39220e8d 2384 full_check = 1;
1da91ea8
AV
2385 if (is_file_epoll(fd_file(tf))) {
2386 tep = fd_file(tf)->private_data;
67347fe4 2387 error = -ELOOP;
bde03c4c 2388 if (ep_loop_check(ep, tep) != 0)
67347fe4 2389 goto error_tgt_fput;
a9ed4a65 2390 }
39220e8d 2391 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
52c47969 2392 if (error)
39220e8d 2393 goto error_tgt_fput;
67347fe4
JB
2394 }
2395 }
7699acd1 2396
67647d0f 2397 /*
a6c67fee 2398 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
67647d0f
DL
2399 * above, we can be sure to be able to use the item looked up by
2400 * ep_find() till we release the mutex.
2401 */
1da91ea8 2402 epi = ep_find(ep, fd_file(tf), fd);
7699acd1
DL
2403
2404 error = -EINVAL;
2405 switch (op) {
2406 case EPOLL_CTL_ADD:
2407 if (!epi) {
58e41a44 2408 epds->events |= EPOLLERR | EPOLLHUP;
1da91ea8 2409 error = ep_insert(ep, epds, fd_file(tf), fd, full_check);
7699acd1
DL
2410 } else
2411 error = -EEXIST;
2412 break;
2413 case EPOLL_CTL_DEL:
58c9b016
PA
2414 if (epi) {
2415 /*
2416 * The eventpoll itself is still alive: the refcount
2417 * can't go to zero here.
2418 */
2419 ep_remove_safe(ep, epi);
2420 error = 0;
2421 } else {
7699acd1 2422 error = -ENOENT;
58c9b016 2423 }
7699acd1
DL
2424 break;
2425 case EPOLL_CTL_MOD:
2426 if (epi) {
b6a515c8 2427 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
58e41a44
JA
2428 epds->events |= EPOLLERR | EPOLLHUP;
2429 error = ep_modify(ep, epi, epds);
b6a515c8 2430 }
7699acd1
DL
2431 } else
2432 error = -ENOENT;
2433 break;
2434 }
d47de16c 2435 mutex_unlock(&ep->mtx);
7699acd1
DL
2436
2437error_tgt_fput:
52c47969
AV
2438 if (full_check) {
2439 clear_tfile_check_list();
18306c40 2440 loop_check_gen++;
d4cb626d 2441 mutex_unlock(&epnested_mutex);
52c47969 2442 }
7699acd1
DL
2443 return error;
2444}
2445
58e41a44
JA
2446/*
2447 * The following function implements the controller interface for
2448 * the eventpoll file that enables the insertion/removal/change of
2449 * file descriptors inside the interest set.
2450 */
2451SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2452 struct epoll_event __user *, event)
2453{
2454 struct epoll_event epds;
2455
2456 if (ep_op_has_event(op) &&
2457 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2458 return -EFAULT;
2459
39220e8d 2460 return do_epoll_ctl(epfd, op, fd, &epds, false);
58e41a44
JA
2461}
2462
6b47d35d
JA
2463static int ep_check_params(struct file *file, struct epoll_event __user *evs,
2464 int maxevents)
2465{
2466 /* The maximum number of event must be greater than zero */
2467 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2468 return -EINVAL;
2469
2470 /* Verify that the area passed by the user is writeable */
2471 if (!access_ok(evs, maxevents * sizeof(struct epoll_event)))
2472 return -EFAULT;
2473
2474 /*
2475 * We have to check that the file structure underneath the fd
2476 * the user passed to us _is_ an eventpoll file.
2477 */
2478 if (!is_file_epoll(file))
2479 return -EINVAL;
2480
2481 return 0;
2482}
2483
ae3a4f1f
JA
2484int epoll_sendevents(struct file *file, struct epoll_event __user *events,
2485 int maxevents)
2486{
2487 struct eventpoll *ep;
2488 int ret;
2489
2490 ret = ep_check_params(file, events, maxevents);
2491 if (unlikely(ret))
2492 return ret;
2493
2494 ep = file->private_data;
2495 /*
2496 * Racy call, but that's ok - it should get retried based on
2497 * poll readiness anyway.
2498 */
2499 if (ep_events_available(ep))
2500 return ep_try_send_events(ep, events, maxevents);
2501 return 0;
2502}
2503
7699acd1
DL
2504/*
2505 * Implement the event wait interface for the eventpoll file. It is the kernel
2506 * part of the user space epoll_wait(2).
2507 */
791eb22e 2508static int do_epoll_wait(int epfd, struct epoll_event __user *events,
7cdf7c20 2509 int maxevents, struct timespec64 *to)
7699acd1 2510{
7699acd1 2511 struct eventpoll *ep;
6b47d35d 2512 int ret;
7699acd1
DL
2513
2514 /* Get the "struct file *" for the eventpoll file */
8152f820
AV
2515 CLASS(fd, f)(epfd);
2516 if (fd_empty(f))
2903ff01 2517 return -EBADF;
7699acd1 2518
6b47d35d
JA
2519 ret = ep_check_params(fd_file(f), events, maxevents);
2520 if (unlikely(ret))
2521 return ret;
7699acd1
DL
2522
2523 /*
2524 * At this point it is safe to assume that the "private_data" contains
2525 * our own data structure.
2526 */
1da91ea8 2527 ep = fd_file(f)->private_data;
7699acd1
DL
2528
2529 /* Time to fish for events ... */
8152f820 2530 return ep_poll(ep, events, maxevents, to);
7699acd1
DL
2531}
2532
791eb22e
DB
2533SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2534 int, maxevents, int, timeout)
2535{
7cdf7c20
WB
2536 struct timespec64 to;
2537
2538 return do_epoll_wait(epfd, events, maxevents,
2539 ep_timeout_to_timespec(&to, timeout));
791eb22e
DB
2540}
2541
7699acd1
DL
2542/*
2543 * Implement the event wait interface for the eventpoll file. It is the kernel
2544 * part of the user space epoll_pwait(2).
2545 */
58169a52
WB
2546static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2547 int maxevents, struct timespec64 *to,
2548 const sigset_t __user *sigmask, size_t sigsetsize)
7699acd1
DL
2549{
2550 int error;
7699acd1
DL
2551
2552 /*
2553 * If the caller wants a certain signal mask to be set during the wait,
2554 * we apply it here.
2555 */
b772434b 2556 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2557 if (error)
2558 return error;
7699acd1 2559
58169a52 2560 error = do_epoll_wait(epfd, events, maxevents, to);
7cdf7c20 2561
b772434b 2562 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2563
2564 return error;
2565}
2566
58169a52
WB
2567SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2568 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2569 size_t, sigsetsize)
35280bd4 2570{
7cdf7c20 2571 struct timespec64 to;
58169a52
WB
2572
2573 return do_epoll_pwait(epfd, events, maxevents,
2574 ep_timeout_to_timespec(&to, timeout),
2575 sigmask, sigsetsize);
2576}
2577
2578SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2579 int, maxevents, const struct __kernel_timespec __user *, timeout,
2580 const sigset_t __user *, sigmask, size_t, sigsetsize)
2581{
2582 struct timespec64 ts, *to = NULL;
2583
2584 if (timeout) {
2585 if (get_timespec64(&ts, timeout))
2586 return -EFAULT;
2587 to = &ts;
2588 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2589 return -EINVAL;
2590 }
2591
2592 return do_epoll_pwait(epfd, events, maxevents, to,
2593 sigmask, sigsetsize);
2594}
2595
2596#ifdef CONFIG_COMPAT
2597static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2598 int maxevents, struct timespec64 *timeout,
2599 const compat_sigset_t __user *sigmask,
2600 compat_size_t sigsetsize)
2601{
35280bd4 2602 long err;
35280bd4
AV
2603
2604 /*
2605 * If the caller wants a certain signal mask to be set during the wait,
2606 * we apply it here.
2607 */
b772434b 2608 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2609 if (err)
2610 return err;
35280bd4 2611
58169a52 2612 err = do_epoll_wait(epfd, events, maxevents, timeout);
7cdf7c20 2613
b772434b 2614 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2615
2616 return err;
2617}
58169a52
WB
2618
2619COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2620 struct epoll_event __user *, events,
2621 int, maxevents, int, timeout,
2622 const compat_sigset_t __user *, sigmask,
2623 compat_size_t, sigsetsize)
2624{
2625 struct timespec64 to;
2626
2627 return do_compat_epoll_pwait(epfd, events, maxevents,
2628 ep_timeout_to_timespec(&to, timeout),
2629 sigmask, sigsetsize);
2630}
2631
2632COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2633 struct epoll_event __user *, events,
2634 int, maxevents,
2635 const struct __kernel_timespec __user *, timeout,
2636 const compat_sigset_t __user *, sigmask,
2637 compat_size_t, sigsetsize)
2638{
2639 struct timespec64 ts, *to = NULL;
2640
2641 if (timeout) {
2642 if (get_timespec64(&ts, timeout))
2643 return -EFAULT;
2644 to = &ts;
2645 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2646 return -EINVAL;
2647 }
2648
2649 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2650 sigmask, sigsetsize);
2651}
2652
35280bd4
AV
2653#endif
2654
1da177e4
LT
2655static int __init eventpoll_init(void)
2656{
7ef9964e
DL
2657 struct sysinfo si;
2658
2659 si_meminfo(&si);
9df04e1f
DL
2660 /*
2661 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2662 */
2663 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2664 EP_ITEM_COST;
52bd19f7 2665 BUG_ON(max_user_watches < 0);
1da177e4 2666
39732ca5
EW
2667 /*
2668 * We can have many thousands of epitems, so prevent this from
2669 * using an extra cache line on 64-bit (and smaller) CPUs
2670 */
2671 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2672
1da177e4
LT
2673 /* Allocates slab cache used to allocate "struct epitem" items */
2674 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2675 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2676
2677 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2678 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2679 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
a8f5de89 2680 epoll_sysctls_init();
1da177e4 2681
319c1517
AV
2682 ephead_cache = kmem_cache_create("ep_head",
2683 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2684
1da177e4 2685 return 0;
1da177e4 2686}
cea69241 2687fs_initcall(eventpoll_init);