Linux 6.3-rc2
[linux-block.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
bf3b9f63 40#include <net/busy_poll.h>
1da177e4 41
1da177e4
LT
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
144efe3e 46 * 1) epmutex (mutex)
c7ea7630 47 * 2) ep->mtx (mutex)
a218cc49 48 * 3) ep->lock (rwlock)
1da177e4
LT
49 *
50 * The acquire order is the one listed above, from 1 to 3.
a218cc49 51 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
1da177e4
LT
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
bf6a41db 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
22bacca4
DL
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
d8805e63
NE
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
d47de16c 82 * It is possible to drop the "ep->mtx" and to use the global
a218cc49 83 * mutex "epmutex" (together with "ep->lock") to have it working,
d47de16c 84 * but having "ep->mtx" will make the interface more scalable.
144efe3e 85 * Events that require holding "epmutex" are very rare, while for
d47de16c
DL
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
1da177e4
LT
88 */
89
1da177e4 90/* Epoll private bits inside the event mask */
df0108c5 91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 92
a9a08845 93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 94
a9a08845 95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
5071f97e
DL
98/* Maximum number of nesting allowed inside epoll sets */
99#define EP_MAX_NESTS 4
1da177e4 100
b611967d
DL
101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
d47de16c
DL
103#define EP_UNACTIVE_PTR ((void *) -1L)
104
7ef9964e
DL
105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
1da177e4
LT
107struct epoll_filefd {
108 struct file *file;
109 int fd;
39732ca5 110} __packed;
1da177e4 111
80285b75
AV
112/* Wait structure used by the poll hooks */
113struct eppoll_entry {
114 /* List header used to link this structure to the "struct epitem" */
115 struct eppoll_entry *next;
1da177e4 116
80285b75
AV
117 /* The "base" pointer is set to the container "struct epitem" */
118 struct epitem *base;
119
120 /*
121 * Wait queue item that will be linked to the target file wait
122 * queue head.
123 */
124 wait_queue_entry_t wait;
125
126 /* The wait queue head that linked the "wait" wait queue item */
127 wait_queue_head_t *whead;
1da177e4
LT
128};
129
d47de16c
DL
130/*
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
135 */
136struct epitem {
ae10b2b4
JB
137 union {
138 /* RB tree node links this structure to the eventpoll RB tree */
139 struct rb_node rbn;
140 /* Used to free the struct epitem */
141 struct rcu_head rcu;
142 };
d47de16c
DL
143
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
146
c7ea7630
DL
147 /*
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
150 */
151 struct epitem *next;
152
d47de16c
DL
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
155
d47de16c 156 /* List containing poll wait queues */
80285b75 157 struct eppoll_entry *pwqlist;
d47de16c
DL
158
159 /* The "container" of this item */
160 struct eventpoll *ep;
161
d47de16c 162 /* List header used to link this item to the "struct file" items list */
44cdc1d9 163 struct hlist_node fllink;
d47de16c 164
4d7e30d9 165 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 166 struct wakeup_source __rcu *ws;
4d7e30d9 167
c7ea7630
DL
168 /* The structure that describe the interested events and the source fd */
169 struct epoll_event event;
d47de16c
DL
170};
171
1da177e4
LT
172/*
173 * This structure is stored inside the "private_data" member of the file
bf6a41db 174 * structure and represents the main data structure for the eventpoll
1da177e4
LT
175 * interface.
176 */
177struct eventpoll {
1da177e4 178 /*
d47de16c
DL
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
1da177e4 183 */
d47de16c 184 struct mutex mtx;
1da177e4
LT
185
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
188
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
191
192 /* List of ready file descriptors */
193 struct list_head rdllist;
194
a218cc49
RP
195 /* Lock which protects rdllist and ovflist */
196 rwlock_t lock;
197
67647d0f 198 /* RB tree root used to store monitored fd structs */
b2ac2ea6 199 struct rb_root_cached rbr;
d47de16c
DL
200
201 /*
202 * This is a single linked list that chains all the "struct epitem" that
25985edc 203 * happened while transferring ready events to userspace w/out
a218cc49 204 * holding ->lock.
d47de16c
DL
205 */
206 struct epitem *ovflist;
7ef9964e 207
4d7e30d9
AH
208 /* wakeup_source used when ep_scan_ready_list is running */
209 struct wakeup_source *ws;
210
7ef9964e
DL
211 /* The user that created the eventpoll descriptor */
212 struct user_struct *user;
28d82dc1
JB
213
214 struct file *file;
215
216 /* used to optimize loop detection check */
18306c40 217 u64 gen;
319c1517 218 struct hlist_head refs;
bf3b9f63
SS
219
220#ifdef CONFIG_NET_RX_BUSY_POLL
221 /* used to track busy poll napi_id */
222 unsigned int napi_id;
223#endif
efcdd350
JB
224
225#ifdef CONFIG_DEBUG_LOCK_ALLOC
226 /* tracks wakeup nests for lockdep validation */
227 u8 nests;
228#endif
1da177e4
LT
229};
230
1da177e4
LT
231/* Wrapper struct used by poll queueing */
232struct ep_pqueue {
233 poll_table pt;
234 struct epitem *epi;
235};
236
7ef9964e
DL
237/*
238 * Configuration options available inside /proc/sys/fs/epoll/
239 */
7ef9964e 240/* Maximum number of epoll watched descriptors, per user */
52bd19f7 241static long max_user_watches __read_mostly;
7ef9964e 242
1da177e4 243/*
d47de16c 244 * This mutex is used to serialize ep_free() and eventpoll_release_file().
1da177e4 245 */
7ef9964e 246static DEFINE_MUTEX(epmutex);
1da177e4 247
18306c40
AV
248static u64 loop_check_gen = 0;
249
22bacca4 250/* Used to check for epoll file descriptor inclusion loops */
6a3890c4 251static struct eventpoll *inserting_into;
22bacca4 252
1da177e4 253/* Slab cache used to allocate "struct epitem" */
e18b890b 254static struct kmem_cache *epi_cache __read_mostly;
1da177e4
LT
255
256/* Slab cache used to allocate "struct eppoll_entry" */
e18b890b 257static struct kmem_cache *pwq_cache __read_mostly;
1da177e4 258
28d82dc1
JB
259/*
260 * List of files with newly added links, where we may need to limit the number
261 * of emanating paths. Protected by the epmutex.
262 */
319c1517
AV
263struct epitems_head {
264 struct hlist_head epitems;
265 struct epitems_head *next;
266};
267static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268
269static struct kmem_cache *ephead_cache __read_mostly;
270
271static inline void free_ephead(struct epitems_head *head)
272{
273 if (head)
274 kmem_cache_free(ephead_cache, head);
275}
276
277static void list_file(struct file *file)
278{
279 struct epitems_head *head;
280
281 head = container_of(file->f_ep, struct epitems_head, epitems);
282 if (!head->next) {
283 head->next = tfile_check_list;
284 tfile_check_list = head;
285 }
286}
287
288static void unlist_file(struct epitems_head *head)
289{
290 struct epitems_head *to_free = head;
291 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 if (p) {
293 struct epitem *epi= container_of(p, struct epitem, fllink);
294 spin_lock(&epi->ffd.file->f_lock);
295 if (!hlist_empty(&head->epitems))
296 to_free = NULL;
297 head->next = NULL;
298 spin_unlock(&epi->ffd.file->f_lock);
299 }
300 free_ephead(to_free);
301}
28d82dc1 302
7ef9964e
DL
303#ifdef CONFIG_SYSCTL
304
305#include <linux/sysctl.h>
306
eec4844f 307static long long_zero;
52bd19f7 308static long long_max = LONG_MAX;
7ef9964e 309
a8f5de89 310static struct ctl_table epoll_table[] = {
7ef9964e
DL
311 {
312 .procname = "max_user_watches",
313 .data = &max_user_watches,
52bd19f7 314 .maxlen = sizeof(max_user_watches),
7ef9964e 315 .mode = 0644,
52bd19f7 316 .proc_handler = proc_doulongvec_minmax,
eec4844f 317 .extra1 = &long_zero,
52bd19f7 318 .extra2 = &long_max,
7ef9964e 319 },
ab09203e 320 { }
7ef9964e 321};
a8f5de89
XN
322
323static void __init epoll_sysctls_init(void)
324{
325 register_sysctl("fs/epoll", epoll_table);
326}
327#else
328#define epoll_sysctls_init() do { } while (0)
7ef9964e
DL
329#endif /* CONFIG_SYSCTL */
330
28d82dc1
JB
331static const struct file_operations eventpoll_fops;
332
333static inline int is_file_epoll(struct file *f)
334{
335 return f->f_op == &eventpoll_fops;
336}
b030a4dd 337
67647d0f 338/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
339static inline void ep_set_ffd(struct epoll_filefd *ffd,
340 struct file *file, int fd)
341{
342 ffd->file = file;
343 ffd->fd = fd;
344}
345
67647d0f 346/* Compare RB tree keys */
b030a4dd
PE
347static inline int ep_cmp_ffd(struct epoll_filefd *p1,
348 struct epoll_filefd *p2)
349{
350 return (p1->file > p2->file ? +1:
351 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
352}
353
b030a4dd 354/* Tells us if the item is currently linked */
992991c0 355static inline int ep_is_linked(struct epitem *epi)
b030a4dd 356{
992991c0 357 return !list_empty(&epi->rdllink);
b030a4dd
PE
358}
359
ac6424b9 360static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
361{
362 return container_of(p, struct eppoll_entry, wait);
363}
364
b030a4dd 365/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 366static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
367{
368 return container_of(p, struct eppoll_entry, wait)->base;
369}
370
3fb0e584
DL
371/**
372 * ep_events_available - Checks if ready events might be available.
373 *
374 * @ep: Pointer to the eventpoll context.
375 *
a6c67fee
RD
376 * Return: a value different than %zero if ready events are available,
377 * or %zero otherwise.
3fb0e584
DL
378 */
379static inline int ep_events_available(struct eventpoll *ep)
380{
c5a282e9
DB
381 return !list_empty_careful(&ep->rdllist) ||
382 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
383}
384
bf3b9f63
SS
385#ifdef CONFIG_NET_RX_BUSY_POLL
386static bool ep_busy_loop_end(void *p, unsigned long start_time)
387{
388 struct eventpoll *ep = p;
389
390 return ep_events_available(ep) || busy_loop_timeout(start_time);
391}
bf3b9f63
SS
392
393/*
394 * Busy poll if globally on and supporting sockets found && no events,
395 * busy loop will return if need_resched or ep_events_available.
396 *
397 * we must do our busy polling with irqs enabled
398 */
1493c47f 399static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
bf3b9f63 400{
bf3b9f63
SS
401 unsigned int napi_id = READ_ONCE(ep->napi_id);
402
1493c47f 403 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
7c951caf
BT
404 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
405 BUSY_POLL_BUDGET);
1493c47f
SHY
406 if (ep_events_available(ep))
407 return true;
408 /*
409 * Busy poll timed out. Drop NAPI ID for now, we can add
410 * it back in when we have moved a socket with a valid NAPI
411 * ID onto the ready list.
412 */
bf3b9f63 413 ep->napi_id = 0;
1493c47f
SHY
414 return false;
415 }
416 return false;
bf3b9f63
SS
417}
418
419/*
420 * Set epoll busy poll NAPI ID from sk.
421 */
422static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
423{
bf3b9f63
SS
424 struct eventpoll *ep;
425 unsigned int napi_id;
426 struct socket *sock;
427 struct sock *sk;
bf3b9f63
SS
428
429 if (!net_busy_loop_on())
430 return;
431
dba4a925 432 sock = sock_from_file(epi->ffd.file);
bf3b9f63
SS
433 if (!sock)
434 return;
435
436 sk = sock->sk;
437 if (!sk)
438 return;
439
440 napi_id = READ_ONCE(sk->sk_napi_id);
441 ep = epi->ep;
442
443 /* Non-NAPI IDs can be rejected
444 * or
445 * Nothing to do if we already have this ID
446 */
447 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
448 return;
449
450 /* record NAPI ID for use in next busy poll */
451 ep->napi_id = napi_id;
bf3b9f63
SS
452}
453
514056d5
DB
454#else
455
1493c47f 456static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
514056d5 457{
1493c47f 458 return false;
514056d5
DB
459}
460
461static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
462{
463}
464
465#endif /* CONFIG_NET_RX_BUSY_POLL */
466
02edc6fc
SR
467/*
468 * As described in commit 0ccf831cb lockdep: annotate epoll
469 * the use of wait queues used by epoll is done in a very controlled
470 * manner. Wake ups can nest inside each other, but are never done
471 * with the same locking. For example:
472 *
473 * dfd = socket(...);
474 * efd1 = epoll_create();
475 * efd2 = epoll_create();
476 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
477 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
478 *
479 * When a packet arrives to the device underneath "dfd", the net code will
480 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
481 * callback wakeup entry on that queue, and the wake_up() performed by the
482 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
483 * (efd1) notices that it may have some event ready, so it needs to wake up
484 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
485 * that ends up in another wake_up(), after having checked about the
486 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
487 * avoid stack blasting.
488 *
489 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
490 * this special case of epoll.
491 */
2dfa4eea 492#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd 493
caf1aeaf
JA
494static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
495 unsigned pollflags)
5071f97e 496{
efcdd350 497 struct eventpoll *ep_src;
f6520c52 498 unsigned long flags;
efcdd350
JB
499 u8 nests = 0;
500
501 /*
502 * To set the subclass or nesting level for spin_lock_irqsave_nested()
503 * it might be natural to create a per-cpu nest count. However, since
504 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
505 * schedule() in the -rt kernel, the per-cpu variable are no longer
506 * protected. Thus, we are introducing a per eventpoll nest field.
507 * If we are not being call from ep_poll_callback(), epi is NULL and
508 * we are at the first level of nesting, 0. Otherwise, we are being
509 * called from ep_poll_callback() and if a previous wakeup source is
510 * not an epoll file itself, we are at depth 1 since the wakeup source
511 * is depth 0. If the wakeup source is a previous epoll file in the
512 * wakeup chain then we use its nests value and record ours as
513 * nests + 1. The previous epoll file nests value is stable since its
514 * already holding its own poll_wait.lock.
515 */
516 if (epi) {
517 if ((is_file_epoll(epi->ffd.file))) {
518 ep_src = epi->ffd.file->private_data;
519 nests = ep_src->nests;
520 } else {
521 nests = 1;
522 }
523 }
524 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
525 ep->nests = nests + 1;
caf1aeaf 526 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
efcdd350
JB
527 ep->nests = 0;
528 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
1da177e4
LT
529}
530
57a173bd
JB
531#else
532
caf1aeaf
JA
533static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
534 unsigned pollflags)
57a173bd 535{
caf1aeaf 536 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
57a173bd
JB
537}
538
539#endif
540
971316f0
ON
541static void ep_remove_wait_queue(struct eppoll_entry *pwq)
542{
543 wait_queue_head_t *whead;
544
545 rcu_read_lock();
138e4ad6
ON
546 /*
547 * If it is cleared by POLLFREE, it should be rcu-safe.
548 * If we read NULL we need a barrier paired with
549 * smp_store_release() in ep_poll_callback(), otherwise
550 * we rely on whead->lock.
551 */
552 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
553 if (whead)
554 remove_wait_queue(whead, &pwq->wait);
555 rcu_read_unlock();
556}
557
1da177e4 558/*
d1bc90dd
TB
559 * This function unregisters poll callbacks from the associated file
560 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
561 * ep_free).
1da177e4 562 */
7699acd1 563static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 564{
80285b75 565 struct eppoll_entry **p = &epi->pwqlist;
7699acd1 566 struct eppoll_entry *pwq;
1da177e4 567
80285b75
AV
568 while ((pwq = *p) != NULL) {
569 *p = pwq->next;
971316f0 570 ep_remove_wait_queue(pwq);
d1bc90dd 571 kmem_cache_free(pwq_cache, pwq);
1da177e4 572 }
1da177e4
LT
573}
574
eea1d585
EW
575/* call only when ep->mtx is held */
576static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
577{
578 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
579}
580
581/* call only when ep->mtx is held */
582static inline void ep_pm_stay_awake(struct epitem *epi)
583{
584 struct wakeup_source *ws = ep_wakeup_source(epi);
585
586 if (ws)
587 __pm_stay_awake(ws);
588}
589
590static inline bool ep_has_wakeup_source(struct epitem *epi)
591{
592 return rcu_access_pointer(epi->ws) ? true : false;
593}
594
595/* call when ep->mtx cannot be held (ep_poll_callback) */
596static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
597{
598 struct wakeup_source *ws;
599
600 rcu_read_lock();
601 ws = rcu_dereference(epi->ws);
602 if (ws)
603 __pm_stay_awake(ws);
604 rcu_read_unlock();
605}
606
5071f97e 607
57804b1c
AV
608/*
609 * ep->mutex needs to be held because we could be hit by
610 * eventpoll_release_file() and epoll_ctl().
5071f97e 611 */
57804b1c 612static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
5071f97e 613{
5071f97e
DL
614 /*
615 * Steal the ready list, and re-init the original one to the
616 * empty list. Also, set ep->ovflist to NULL so that events
617 * happening while looping w/out locks, are not lost. We cannot
618 * have the poll callback to queue directly on ep->rdllist,
619 * because we want the "sproc" callback to be able to do it
620 * in a lockless way.
621 */
57804b1c 622 lockdep_assert_irqs_enabled();
a218cc49 623 write_lock_irq(&ep->lock);
db502f8a 624 list_splice_init(&ep->rdllist, txlist);
c5a282e9 625 WRITE_ONCE(ep->ovflist, NULL);
a218cc49 626 write_unlock_irq(&ep->lock);
db502f8a 627}
5071f97e 628
db502f8a 629static void ep_done_scan(struct eventpoll *ep,
db502f8a
AV
630 struct list_head *txlist)
631{
632 struct epitem *epi, *nepi;
5071f97e 633
a218cc49 634 write_lock_irq(&ep->lock);
5071f97e
DL
635 /*
636 * During the time we spent inside the "sproc" callback, some
637 * other events might have been queued by the poll callback.
638 * We re-insert them inside the main ready-list here.
639 */
c5a282e9 640 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
5071f97e
DL
641 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
642 /*
643 * We need to check if the item is already in the list.
644 * During the "sproc" callback execution time, items are
645 * queued into ->ovflist but the "txlist" might already
646 * contain them, and the list_splice() below takes care of them.
647 */
992991c0 648 if (!ep_is_linked(epi)) {
c141175d
RP
649 /*
650 * ->ovflist is LIFO, so we have to reverse it in order
651 * to keep in FIFO.
652 */
653 list_add(&epi->rdllink, &ep->rdllist);
eea1d585 654 ep_pm_stay_awake(epi);
4d7e30d9 655 }
5071f97e
DL
656 }
657 /*
658 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
659 * releasing the lock, events will be queued in the normal way inside
660 * ep->rdllist.
661 */
c5a282e9 662 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
5071f97e
DL
663
664 /*
665 * Quickly re-inject items left on "txlist".
666 */
db502f8a 667 list_splice(txlist, &ep->rdllist);
4d7e30d9 668 __pm_relax(ep->ws);
7fab29e3
DB
669
670 if (!list_empty(&ep->rdllist)) {
671 if (waitqueue_active(&ep->wq))
672 wake_up(&ep->wq);
673 }
674
a218cc49 675 write_unlock_irq(&ep->lock);
5071f97e
DL
676}
677
ae10b2b4
JB
678static void epi_rcu_free(struct rcu_head *head)
679{
680 struct epitem *epi = container_of(head, struct epitem, rcu);
681 kmem_cache_free(epi_cache, epi);
682}
683
7699acd1
DL
684/*
685 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 686 * all the associated resources. Must be called with "mtx" held.
7699acd1
DL
687 */
688static int ep_remove(struct eventpoll *ep, struct epitem *epi)
689{
7699acd1 690 struct file *file = epi->ffd.file;
319c1517
AV
691 struct epitems_head *to_free;
692 struct hlist_head *head;
1da177e4 693
92e64178
DB
694 lockdep_assert_irqs_enabled();
695
1da177e4 696 /*
ee8ef0a4 697 * Removes poll wait queue hooks.
1da177e4 698 */
7699acd1 699 ep_unregister_pollwait(ep, epi);
1da177e4 700
7699acd1 701 /* Remove the current item from the list of epoll hooks */
68499914 702 spin_lock(&file->f_lock);
319c1517
AV
703 to_free = NULL;
704 head = file->f_ep;
705 if (head->first == &epi->fllink && !epi->fllink.next) {
706 file->f_ep = NULL;
707 if (!is_file_epoll(file)) {
708 struct epitems_head *v;
709 v = container_of(head, struct epitems_head, epitems);
710 if (!smp_load_acquire(&v->next))
711 to_free = v;
712 }
713 }
44cdc1d9 714 hlist_del_rcu(&epi->fllink);
68499914 715 spin_unlock(&file->f_lock);
319c1517 716 free_ephead(to_free);
1da177e4 717
b2ac2ea6 718 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 719
a218cc49 720 write_lock_irq(&ep->lock);
992991c0 721 if (ep_is_linked(epi))
c7ea7630 722 list_del_init(&epi->rdllink);
a218cc49 723 write_unlock_irq(&ep->lock);
1da177e4 724
eea1d585 725 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
726 /*
727 * At this point it is safe to free the eventpoll item. Use the union
728 * field epi->rcu, since we are trying to minimize the size of
729 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
730 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
731 * use of the rbn field.
732 */
733 call_rcu(&epi->rcu, epi_rcu_free);
1da177e4 734
1e1c1583 735 percpu_counter_dec(&ep->user->epoll_watches);
7ef9964e 736
c7ea7630 737 return 0;
1da177e4
LT
738}
739
7699acd1 740static void ep_free(struct eventpoll *ep)
1da177e4 741{
7699acd1
DL
742 struct rb_node *rbp;
743 struct epitem *epi;
1da177e4 744
7699acd1
DL
745 /* We need to release all tasks waiting for these file */
746 if (waitqueue_active(&ep->poll_wait))
caf1aeaf 747 ep_poll_safewake(ep, NULL, 0);
1da177e4 748
7699acd1
DL
749 /*
750 * We need to lock this because we could be hit by
751 * eventpoll_release_file() while we're freeing the "struct eventpoll".
d47de16c 752 * We do not need to hold "ep->mtx" here because the epoll file
7699acd1
DL
753 * is on the way to be removed and no one has references to it
754 * anymore. The only hit might come from eventpoll_release_file() but
25985edc 755 * holding "epmutex" is sufficient here.
7699acd1
DL
756 */
757 mutex_lock(&epmutex);
1da177e4
LT
758
759 /*
7699acd1 760 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 761 */
b2ac2ea6 762 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
763 epi = rb_entry(rbp, struct epitem, rbn);
764
765 ep_unregister_pollwait(ep, epi);
91cf5ab6 766 cond_resched();
7699acd1 767 }
1da177e4
LT
768
769 /*
7699acd1
DL
770 * Walks through the whole tree by freeing each "struct epitem". At this
771 * point we are sure no poll callbacks will be lingering around, and also by
d47de16c 772 * holding "epmutex" we can be sure that no file cleanup code will hit
a218cc49 773 * us during this operation. So we can avoid the lock on "ep->lock".
ddf676c3
EW
774 * We do not need to lock ep->mtx, either, we only do it to prevent
775 * a lockdep warning.
1da177e4 776 */
ddf676c3 777 mutex_lock(&ep->mtx);
b2ac2ea6 778 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
7699acd1
DL
779 epi = rb_entry(rbp, struct epitem, rbn);
780 ep_remove(ep, epi);
91cf5ab6 781 cond_resched();
7699acd1 782 }
ddf676c3 783 mutex_unlock(&ep->mtx);
1da177e4 784
7699acd1 785 mutex_unlock(&epmutex);
d47de16c 786 mutex_destroy(&ep->mtx);
7ef9964e 787 free_uid(ep->user);
4d7e30d9 788 wakeup_source_unregister(ep->ws);
f0ee9aab 789 kfree(ep);
7699acd1 790}
1da177e4 791
7699acd1
DL
792static int ep_eventpoll_release(struct inode *inode, struct file *file)
793{
794 struct eventpoll *ep = file->private_data;
1da177e4 795
f0ee9aab 796 if (ep)
7699acd1 797 ep_free(ep);
7699acd1 798
7699acd1 799 return 0;
1da177e4
LT
800}
801
2c0b71c1 802static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
37b5e521 803
ad9366b1 804static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
5071f97e 805{
ad9366b1
AV
806 struct eventpoll *ep = file->private_data;
807 LIST_HEAD(txlist);
5071f97e 808 struct epitem *epi, *tmp;
626cf236 809 poll_table pt;
2c0b71c1 810 __poll_t res = 0;
5071f97e 811
626cf236 812 init_poll_funcptr(&pt, NULL);
450d89ec 813
ad9366b1
AV
814 /* Insert inside our poll wait queue */
815 poll_wait(file, &ep->poll_wait, wait);
816
817 /*
818 * Proceed to find out if wanted events are really available inside
819 * the ready list.
820 */
821 mutex_lock_nested(&ep->mtx, depth);
822 ep_start_scan(ep, &txlist);
2c0b71c1
AV
823 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
824 if (ep_item_poll(epi, &pt, depth + 1)) {
825 res = EPOLLIN | EPOLLRDNORM;
826 break;
37b5e521 827 } else {
5071f97e
DL
828 /*
829 * Item has been dropped into the ready list by the poll
830 * callback, but it's not actually ready, as far as
831 * caller requested events goes. We can remove it here.
832 */
eea1d585 833 __pm_relax(ep_wakeup_source(epi));
5071f97e 834 list_del_init(&epi->rdllink);
296e236e 835 }
5071f97e 836 }
ad9366b1
AV
837 ep_done_scan(ep, &txlist);
838 mutex_unlock(&ep->mtx);
839 return res;
5071f97e
DL
840}
841
37b5e521
JB
842/*
843 * Differs from ep_eventpoll_poll() in that internal callers already have
844 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
845 * is correctly annotated.
846 */
d85e2aa2 847static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 848 int depth)
11c5ad0e 849{
ad9366b1 850 struct file *file = epi->ffd.file;
1ec09974 851 __poll_t res;
7699acd1 852
450d89ec 853 pt->_key = epi->event.events;
ad9366b1
AV
854 if (!is_file_epoll(file))
855 res = vfs_poll(file, pt);
856 else
857 res = __ep_eventpoll_poll(file, pt, depth);
1ec09974 858 return res & epi->event.events;
450d89ec 859}
a11e1d43 860
a11e1d43 861static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e 862{
ad9366b1 863 return __ep_eventpoll_poll(file, wait, 0);
7699acd1
DL
864}
865
138d22b5 866#ifdef CONFIG_PROC_FS
a3816ab0 867static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
868{
869 struct eventpoll *ep = f->private_data;
870 struct rb_node *rbp;
138d22b5
CG
871
872 mutex_lock(&ep->mtx);
b2ac2ea6 873 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 874 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 875 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 876
77493f04
CG
877 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
878 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 879 epi->ffd.fd, epi->event.events,
77493f04
CG
880 (long long)epi->event.data,
881 (long long)epi->ffd.file->f_pos,
882 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 883 if (seq_has_overflowed(m))
138d22b5
CG
884 break;
885 }
886 mutex_unlock(&ep->mtx);
138d22b5
CG
887}
888#endif
889
7699acd1
DL
890/* File callbacks that implement the eventpoll file behaviour */
891static const struct file_operations eventpoll_fops = {
138d22b5
CG
892#ifdef CONFIG_PROC_FS
893 .show_fdinfo = ep_show_fdinfo,
894#endif
7699acd1 895 .release = ep_eventpoll_release,
a11e1d43 896 .poll = ep_eventpoll_poll,
6038f373 897 .llseek = noop_llseek,
7699acd1
DL
898};
899
b611967d 900/*
7699acd1
DL
901 * This is called from eventpoll_release() to unlink files from the eventpoll
902 * interface. We need to have this facility to cleanup correctly files that are
903 * closed without being removed from the eventpoll interface.
b611967d 904 */
7699acd1 905void eventpoll_release_file(struct file *file)
b611967d 906{
7699acd1 907 struct eventpoll *ep;
44cdc1d9
AV
908 struct epitem *epi;
909 struct hlist_node *next;
b611967d
DL
910
911 /*
68499914 912 * We don't want to get "file->f_lock" because it is not
7699acd1 913 * necessary. It is not necessary because we're in the "struct file"
25985edc 914 * cleanup path, and this means that no one is using this file anymore.
5071f97e 915 * So, for example, epoll_ctl() cannot hit here since if we reach this
67647d0f 916 * point, the file counter already went to zero and fget() would fail.
d47de16c 917 * The only hit might come from ep_free() but by holding the mutex
7699acd1 918 * will correctly serialize the operation. We do need to acquire
d47de16c 919 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
7699acd1 920 * from anywhere but ep_free().
68499914
JC
921 *
922 * Besides, ep_remove() acquires the lock, so we can't hold it here.
b611967d 923 */
7699acd1 924 mutex_lock(&epmutex);
319c1517
AV
925 if (unlikely(!file->f_ep)) {
926 mutex_unlock(&epmutex);
927 return;
928 }
929 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
7699acd1 930 ep = epi->ep;
d8805e63 931 mutex_lock_nested(&ep->mtx, 0);
7699acd1 932 ep_remove(ep, epi);
d47de16c 933 mutex_unlock(&ep->mtx);
b611967d 934 }
7699acd1 935 mutex_unlock(&epmutex);
b611967d
DL
936}
937
53d2be79 938static int ep_alloc(struct eventpoll **pep)
1da177e4 939{
7ef9964e
DL
940 int error;
941 struct user_struct *user;
942 struct eventpoll *ep;
1da177e4 943
7ef9964e 944 user = get_current_user();
7ef9964e
DL
945 error = -ENOMEM;
946 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
947 if (unlikely(!ep))
948 goto free_uid;
1da177e4 949
d47de16c 950 mutex_init(&ep->mtx);
a218cc49 951 rwlock_init(&ep->lock);
1da177e4
LT
952 init_waitqueue_head(&ep->wq);
953 init_waitqueue_head(&ep->poll_wait);
954 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 955 ep->rbr = RB_ROOT_CACHED;
d47de16c 956 ep->ovflist = EP_UNACTIVE_PTR;
7ef9964e 957 ep->user = user;
1da177e4 958
53d2be79 959 *pep = ep;
1da177e4 960
1da177e4 961 return 0;
7ef9964e
DL
962
963free_uid:
964 free_uid(user);
965 return error;
1da177e4
LT
966}
967
1da177e4 968/*
c7ea7630
DL
969 * Search the file inside the eventpoll tree. The RB tree operations
970 * are protected by the "mtx" mutex, and ep_find() must be called with
971 * "mtx" held.
1da177e4
LT
972 */
973static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
974{
975 int kcmp;
1da177e4
LT
976 struct rb_node *rbp;
977 struct epitem *epi, *epir = NULL;
978 struct epoll_filefd ffd;
979
b030a4dd 980 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 981 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 982 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 983 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
984 if (kcmp > 0)
985 rbp = rbp->rb_right;
986 else if (kcmp < 0)
987 rbp = rbp->rb_left;
988 else {
1da177e4
LT
989 epir = epi;
990 break;
991 }
992 }
1da177e4 993
1da177e4
LT
994 return epir;
995}
996
bfe3911a 997#ifdef CONFIG_KCMP
0791e364
CG
998static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
999{
1000 struct rb_node *rbp;
1001 struct epitem *epi;
1002
b2ac2ea6 1003 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
1004 epi = rb_entry(rbp, struct epitem, rbn);
1005 if (epi->ffd.fd == tfd) {
1006 if (toff == 0)
1007 return epi;
1008 else
1009 toff--;
1010 }
1011 cond_resched();
1012 }
1013
1014 return NULL;
1015}
1016
1017struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1018 unsigned long toff)
1019{
1020 struct file *file_raw;
1021 struct eventpoll *ep;
1022 struct epitem *epi;
1023
1024 if (!is_file_epoll(file))
1025 return ERR_PTR(-EINVAL);
1026
1027 ep = file->private_data;
1028
1029 mutex_lock(&ep->mtx);
1030 epi = ep_find_tfd(ep, tfd, toff);
1031 if (epi)
1032 file_raw = epi->ffd.file;
1033 else
1034 file_raw = ERR_PTR(-ENOENT);
1035 mutex_unlock(&ep->mtx);
1036
1037 return file_raw;
1038}
bfe3911a 1039#endif /* CONFIG_KCMP */
0791e364 1040
a6c67fee 1041/*
a218cc49
RP
1042 * Adds a new entry to the tail of the list in a lockless way, i.e.
1043 * multiple CPUs are allowed to call this function concurrently.
1044 *
1045 * Beware: it is necessary to prevent any other modifications of the
1046 * existing list until all changes are completed, in other words
1047 * concurrent list_add_tail_lockless() calls should be protected
1048 * with a read lock, where write lock acts as a barrier which
1049 * makes sure all list_add_tail_lockless() calls are fully
1050 * completed.
1051 *
1052 * Also an element can be locklessly added to the list only in one
a6c67fee 1053 * direction i.e. either to the tail or to the head, otherwise
a218cc49
RP
1054 * concurrent access will corrupt the list.
1055 *
a6c67fee 1056 * Return: %false if element has been already added to the list, %true
a218cc49
RP
1057 * otherwise.
1058 */
1059static inline bool list_add_tail_lockless(struct list_head *new,
1060 struct list_head *head)
1061{
1062 struct list_head *prev;
1063
1064 /*
1065 * This is simple 'new->next = head' operation, but cmpxchg()
1066 * is used in order to detect that same element has been just
1067 * added to the list from another CPU: the winner observes
1068 * new->next == new.
1069 */
693fc06e 1070 if (!try_cmpxchg(&new->next, &new, head))
a218cc49
RP
1071 return false;
1072
1073 /*
1074 * Initially ->next of a new element must be updated with the head
1075 * (we are inserting to the tail) and only then pointers are atomically
1076 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1077 * updated before pointers are actually swapped and pointers are
1078 * swapped before prev->next is updated.
1079 */
1080
1081 prev = xchg(&head->prev, new);
1082
1083 /*
1084 * It is safe to modify prev->next and new->prev, because a new element
1085 * is added only to the tail and new->next is updated before XCHG.
1086 */
1087
1088 prev->next = new;
1089 new->prev = prev;
1090
1091 return true;
1092}
1093
a6c67fee 1094/*
a218cc49
RP
1095 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1096 * i.e. multiple CPUs are allowed to call this function concurrently.
1097 *
a6c67fee 1098 * Return: %false if epi element has been already chained, %true otherwise.
a218cc49
RP
1099 */
1100static inline bool chain_epi_lockless(struct epitem *epi)
1101{
1102 struct eventpoll *ep = epi->ep;
1103
0c54a6a4
KK
1104 /* Fast preliminary check */
1105 if (epi->next != EP_UNACTIVE_PTR)
1106 return false;
1107
a218cc49
RP
1108 /* Check that the same epi has not been just chained from another CPU */
1109 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1110 return false;
1111
1112 /* Atomically exchange tail */
1113 epi->next = xchg(&ep->ovflist, epi);
1114
1115 return true;
1116}
1117
1da177e4 1118/*
7699acd1 1119 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1120 * mechanism. It is called by the stored file descriptors when they
7699acd1 1121 * have events to report.
a218cc49 1122 *
a6c67fee
RD
1123 * This callback takes a read lock in order not to contend with concurrent
1124 * events from another file descriptor, thus all modifications to ->rdllist
a218cc49
RP
1125 * or ->ovflist are lockless. Read lock is paired with the write lock from
1126 * ep_scan_ready_list(), which stops all list modifications and guarantees
1127 * that lists state is seen correctly.
1128 *
1129 * Another thing worth to mention is that ep_poll_callback() can be called
1130 * concurrently for the same @epi from different CPUs if poll table was inited
1131 * with several wait queues entries. Plural wakeup from different CPUs of a
1132 * single wait queue is serialized by wq.lock, but the case when multiple wait
1133 * queues are used should be detected accordingly. This is detected using
1134 * cmpxchg() operation.
1da177e4 1135 */
ac6424b9 1136static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1137{
7699acd1 1138 int pwake = 0;
7699acd1
DL
1139 struct epitem *epi = ep_item_from_wait(wait);
1140 struct eventpoll *ep = epi->ep;
3ad6f93e 1141 __poll_t pollflags = key_to_poll(key);
a218cc49 1142 unsigned long flags;
df0108c5 1143 int ewake = 0;
1da177e4 1144
a218cc49 1145 read_lock_irqsave(&ep->lock, flags);
1da177e4 1146
bf3b9f63
SS
1147 ep_set_busy_poll_napi_id(epi);
1148
7699acd1
DL
1149 /*
1150 * If the event mask does not contain any poll(2) event, we consider the
1151 * descriptor to be disabled. This condition is likely the effect of the
1152 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1153 * until the next EPOLL_CTL_MOD will be issued.
1154 */
1155 if (!(epi->event.events & ~EP_PRIVATE_BITS))
d47de16c
DL
1156 goto out_unlock;
1157
2dfa4eea
DL
1158 /*
1159 * Check the events coming with the callback. At this stage, not
1160 * every device reports the events in the "key" parameter of the
1161 * callback. We need to be able to handle both cases here, hence the
1162 * test for "key" != NULL before the event match test.
1163 */
3ad6f93e 1164 if (pollflags && !(pollflags & epi->event.events))
2dfa4eea
DL
1165 goto out_unlock;
1166
d47de16c 1167 /*
bf6a41db 1168 * If we are transferring events to userspace, we can hold no locks
d47de16c 1169 * (because we're accessing user memory, and because of linux f_op->poll()
bf6a41db 1170 * semantics). All the events that happen during that period of time are
d47de16c
DL
1171 * chained in ep->ovflist and requeued later on.
1172 */
c5a282e9 1173 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
0c54a6a4
KK
1174 if (chain_epi_lockless(epi))
1175 ep_pm_stay_awake_rcu(epi);
1176 } else if (!ep_is_linked(epi)) {
1177 /* In the usual case, add event to ready list. */
1178 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
c3e320b6 1179 ep_pm_stay_awake_rcu(epi);
4d7e30d9 1180 }
7699acd1 1181
7699acd1
DL
1182 /*
1183 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1184 * wait list.
1185 */
df0108c5 1186 if (waitqueue_active(&ep->wq)) {
b6a515c8 1187 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1188 !(pollflags & POLLFREE)) {
1189 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1190 case EPOLLIN:
1191 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1192 ewake = 1;
1193 break;
a9a08845
LT
1194 case EPOLLOUT:
1195 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1196 ewake = 1;
1197 break;
1198 case 0:
1199 ewake = 1;
1200 break;
1201 }
1202 }
a218cc49 1203 wake_up(&ep->wq);
df0108c5 1204 }
7699acd1
DL
1205 if (waitqueue_active(&ep->poll_wait))
1206 pwake++;
1207
d47de16c 1208out_unlock:
a218cc49 1209 read_unlock_irqrestore(&ep->lock, flags);
1da177e4 1210
7699acd1
DL
1211 /* We have to call this outside the lock */
1212 if (pwake)
caf1aeaf 1213 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
7699acd1 1214
138e4ad6
ON
1215 if (!(epi->event.events & EPOLLEXCLUSIVE))
1216 ewake = 1;
1217
3ad6f93e 1218 if (pollflags & POLLFREE) {
138e4ad6
ON
1219 /*
1220 * If we race with ep_remove_wait_queue() it can miss
1221 * ->whead = NULL and do another remove_wait_queue() after
1222 * us, so we can't use __remove_wait_queue().
1223 */
1224 list_del_init(&wait->entry);
1225 /*
1226 * ->whead != NULL protects us from the race with ep_free()
1227 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1228 * held by the caller. Once we nullify it, nothing protects
1229 * ep/epi or even wait.
1230 */
1231 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1232 }
df0108c5 1233
138e4ad6 1234 return ewake;
7699acd1 1235}
1da177e4
LT
1236
1237/*
1238 * This is the callback that is used to add our wait queue to the
1239 * target file wakeup lists.
1240 */
1241static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1242 poll_table *pt)
1243{
364f374f
AV
1244 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1245 struct epitem *epi = epq->epi;
1da177e4
LT
1246 struct eppoll_entry *pwq;
1247
364f374f
AV
1248 if (unlikely(!epi)) // an earlier allocation has failed
1249 return;
1250
1251 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1252 if (unlikely(!pwq)) {
1253 epq->epi = NULL;
1254 return;
296e236e 1255 }
364f374f
AV
1256
1257 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1258 pwq->whead = whead;
1259 pwq->base = epi;
1260 if (epi->event.events & EPOLLEXCLUSIVE)
1261 add_wait_queue_exclusive(whead, &pwq->wait);
1262 else
1263 add_wait_queue(whead, &pwq->wait);
1264 pwq->next = epi->pwqlist;
1265 epi->pwqlist = pwq;
1da177e4
LT
1266}
1267
1da177e4
LT
1268static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1269{
1270 int kcmp;
b2ac2ea6 1271 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1272 struct epitem *epic;
b2ac2ea6 1273 bool leftmost = true;
1da177e4
LT
1274
1275 while (*p) {
1276 parent = *p;
1277 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1278 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1279 if (kcmp > 0) {
1da177e4 1280 p = &parent->rb_right;
b2ac2ea6
DB
1281 leftmost = false;
1282 } else
1da177e4
LT
1283 p = &parent->rb_left;
1284 }
1285 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1286 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1287}
1288
a80a6b85
AM
1289
1290
28d82dc1
JB
1291#define PATH_ARR_SIZE 5
1292/*
1293 * These are the number paths of length 1 to 5, that we are allowing to emanate
1294 * from a single file of interest. For example, we allow 1000 paths of length
1295 * 1, to emanate from each file of interest. This essentially represents the
1296 * potential wakeup paths, which need to be limited in order to avoid massive
1297 * uncontrolled wakeup storms. The common use case should be a single ep which
1298 * is connected to n file sources. In this case each file source has 1 path
1299 * of length 1. Thus, the numbers below should be more than sufficient. These
1300 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1301 * and delete can't add additional paths. Protected by the epmutex.
1302 */
1303static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1304static int path_count[PATH_ARR_SIZE];
1305
1306static int path_count_inc(int nests)
1307{
93dc6107
JB
1308 /* Allow an arbitrary number of depth 1 paths */
1309 if (nests == 0)
1310 return 0;
1311
28d82dc1
JB
1312 if (++path_count[nests] > path_limits[nests])
1313 return -1;
1314 return 0;
1315}
1316
1317static void path_count_init(void)
1318{
1319 int i;
1320
1321 for (i = 0; i < PATH_ARR_SIZE; i++)
1322 path_count[i] = 0;
1323}
1324
319c1517 1325static int reverse_path_check_proc(struct hlist_head *refs, int depth)
28d82dc1
JB
1326{
1327 int error = 0;
28d82dc1
JB
1328 struct epitem *epi;
1329
0c320f77 1330 if (depth > EP_MAX_NESTS) /* too deep nesting */
99d84d43
AV
1331 return -1;
1332
ae10b2b4 1333 /* CTL_DEL can remove links here, but that can't increase our count */
319c1517
AV
1334 hlist_for_each_entry_rcu(epi, refs, fllink) {
1335 struct hlist_head *refs = &epi->ep->refs;
1336 if (hlist_empty(refs))
d16312a4
AV
1337 error = path_count_inc(depth);
1338 else
319c1517 1339 error = reverse_path_check_proc(refs, depth + 1);
d16312a4
AV
1340 if (error != 0)
1341 break;
28d82dc1
JB
1342 }
1343 return error;
1344}
1345
1346/**
319c1517 1347 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
28d82dc1
JB
1348 * links that are proposed to be newly added. We need to
1349 * make sure that those added links don't add too many
1350 * paths such that we will spend all our time waking up
1351 * eventpoll objects.
1352 *
a6c67fee
RD
1353 * Return: %zero if the proposed links don't create too many paths,
1354 * %-1 otherwise.
28d82dc1
JB
1355 */
1356static int reverse_path_check(void)
1357{
319c1517 1358 struct epitems_head *p;
28d82dc1 1359
319c1517
AV
1360 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1361 int error;
28d82dc1 1362 path_count_init();
b62d2706 1363 rcu_read_lock();
319c1517 1364 error = reverse_path_check_proc(&p->epitems, 0);
b62d2706 1365 rcu_read_unlock();
28d82dc1 1366 if (error)
319c1517 1367 return error;
28d82dc1 1368 }
319c1517 1369 return 0;
28d82dc1
JB
1370}
1371
4d7e30d9
AH
1372static int ep_create_wakeup_source(struct epitem *epi)
1373{
3701cb59 1374 struct name_snapshot n;
eea1d585 1375 struct wakeup_source *ws;
4d7e30d9
AH
1376
1377 if (!epi->ep->ws) {
c8377adf 1378 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1379 if (!epi->ep->ws)
1380 return -ENOMEM;
1381 }
1382
3701cb59
AV
1383 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1384 ws = wakeup_source_register(NULL, n.name.name);
1385 release_dentry_name_snapshot(&n);
eea1d585
EW
1386
1387 if (!ws)
4d7e30d9 1388 return -ENOMEM;
eea1d585 1389 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1390
1391 return 0;
1392}
1393
eea1d585
EW
1394/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1395static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1396{
eea1d585
EW
1397 struct wakeup_source *ws = ep_wakeup_source(epi);
1398
d6d67e72 1399 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1400
1401 /*
1402 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1403 * used internally by wakeup_source_remove, too (called by
1404 * wakeup_source_unregister), so we cannot use call_rcu
1405 */
1406 synchronize_rcu();
1407 wakeup_source_unregister(ws);
4d7e30d9
AH
1408}
1409
319c1517
AV
1410static int attach_epitem(struct file *file, struct epitem *epi)
1411{
1412 struct epitems_head *to_free = NULL;
1413 struct hlist_head *head = NULL;
1414 struct eventpoll *ep = NULL;
1415
1416 if (is_file_epoll(file))
1417 ep = file->private_data;
1418
1419 if (ep) {
1420 head = &ep->refs;
1421 } else if (!READ_ONCE(file->f_ep)) {
1422allocate:
1423 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1424 if (!to_free)
1425 return -ENOMEM;
1426 head = &to_free->epitems;
1427 }
1428 spin_lock(&file->f_lock);
1429 if (!file->f_ep) {
1430 if (unlikely(!head)) {
1431 spin_unlock(&file->f_lock);
1432 goto allocate;
1433 }
1434 file->f_ep = head;
1435 to_free = NULL;
1436 }
1437 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1438 spin_unlock(&file->f_lock);
1439 free_ephead(to_free);
1440 return 0;
1441}
1442
c7ea7630
DL
1443/*
1444 * Must be called with "mtx" held.
1445 */
bec1a502 1446static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1447 struct file *tfile, int fd, int full_check)
1da177e4 1448{
d85e2aa2
AV
1449 int error, pwake = 0;
1450 __poll_t revents;
1da177e4
LT
1451 struct epitem *epi;
1452 struct ep_pqueue epq;
85353e91
AV
1453 struct eventpoll *tep = NULL;
1454
1455 if (is_file_epoll(tfile))
1456 tep = tfile->private_data;
1da177e4 1457
92e64178
DB
1458 lockdep_assert_irqs_enabled();
1459
1e1c1583
NP
1460 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1461 max_user_watches) >= 0))
7ef9964e 1462 return -ENOSPC;
1e1c1583
NP
1463 percpu_counter_inc(&ep->user->epoll_watches);
1464
1465 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1466 percpu_counter_dec(&ep->user->epoll_watches);
7ef9964e 1467 return -ENOMEM;
1e1c1583 1468 }
1da177e4
LT
1469
1470 /* Item initialization follow here ... */
1da177e4 1471 INIT_LIST_HEAD(&epi->rdllink);
1da177e4 1472 epi->ep = ep;
b030a4dd 1473 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1474 epi->event = *event;
d47de16c 1475 epi->next = EP_UNACTIVE_PTR;
1da177e4 1476
85353e91
AV
1477 if (tep)
1478 mutex_lock_nested(&tep->mtx, 1);
f8d4f44d 1479 /* Add the current item to the list of active epoll hook for this file */
319c1517 1480 if (unlikely(attach_epitem(tfile, epi) < 0)) {
319c1517
AV
1481 if (tep)
1482 mutex_unlock(&tep->mtx);
1e1c1583
NP
1483 kmem_cache_free(epi_cache, epi);
1484 percpu_counter_dec(&ep->user->epoll_watches);
319c1517 1485 return -ENOMEM;
d9f41e3c 1486 }
f8d4f44d 1487
319c1517
AV
1488 if (full_check && !tep)
1489 list_file(tfile);
1490
f8d4f44d
AV
1491 /*
1492 * Add the current item to the RB tree. All RB tree operations are
1493 * protected by "mtx", and ep_insert() is called with "mtx" held.
1494 */
1495 ep_rbtree_insert(ep, epi);
85353e91
AV
1496 if (tep)
1497 mutex_unlock(&tep->mtx);
f8d4f44d
AV
1498
1499 /* now check if we've created too many backpaths */
e3e096e7
AV
1500 if (unlikely(full_check && reverse_path_check())) {
1501 ep_remove(ep, epi);
1502 return -EINVAL;
1503 }
f8d4f44d 1504
d1ec50ad
AV
1505 if (epi->event.events & EPOLLWAKEUP) {
1506 error = ep_create_wakeup_source(epi);
1507 if (error) {
1508 ep_remove(ep, epi);
1509 return error;
1510 }
1511 }
f8d4f44d 1512
1da177e4
LT
1513 /* Initialize the poll table using the queue callback */
1514 epq.epi = epi;
1515 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1516
1517 /*
1518 * Attach the item to the poll hooks and get current event bits.
1519 * We can safely use the file* here because its usage count has
c7ea7630
DL
1520 * been increased by the caller of this function. Note that after
1521 * this operation completes, the poll callback can start hitting
1522 * the new item.
1da177e4 1523 */
37b5e521 1524 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1525
1526 /*
1527 * We have to check if something went wrong during the poll wait queue
1528 * install process. Namely an allocation for a wait queue failed due
1529 * high memory pressure.
1530 */
e3e096e7
AV
1531 if (unlikely(!epq.epi)) {
1532 ep_remove(ep, epi);
1533 return -ENOMEM;
1534 }
1da177e4 1535
c7ea7630 1536 /* We have to drop the new item inside our item list to keep track of it */
a218cc49 1537 write_lock_irq(&ep->lock);
c7ea7630 1538
bf3b9f63
SS
1539 /* record NAPI ID of new item if present */
1540 ep_set_busy_poll_napi_id(epi);
1541
1da177e4 1542 /* If the file is already "ready" we drop it inside the ready list */
992991c0 1543 if (revents && !ep_is_linked(epi)) {
1da177e4 1544 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1545 ep_pm_stay_awake(epi);
1da177e4
LT
1546
1547 /* Notify waiting tasks that events are available */
1548 if (waitqueue_active(&ep->wq))
a218cc49 1549 wake_up(&ep->wq);
1da177e4
LT
1550 if (waitqueue_active(&ep->poll_wait))
1551 pwake++;
1552 }
1553
a218cc49 1554 write_unlock_irq(&ep->lock);
1da177e4
LT
1555
1556 /* We have to call this outside the lock */
1557 if (pwake)
caf1aeaf 1558 ep_poll_safewake(ep, NULL, 0);
1da177e4 1559
1da177e4 1560 return 0;
1da177e4
LT
1561}
1562
1da177e4
LT
1563/*
1564 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1565 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1566 */
bec1a502
AV
1567static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1568 const struct epoll_event *event)
1da177e4
LT
1569{
1570 int pwake = 0;
626cf236
HV
1571 poll_table pt;
1572
92e64178
DB
1573 lockdep_assert_irqs_enabled();
1574
626cf236 1575 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1576
1577 /*
e057e15f
TB
1578 * Set the new event interest mask before calling f_op->poll();
1579 * otherwise we might miss an event that happens between the
1580 * f_op->poll() call and the new event set registering.
1da177e4 1581 */
128dd175 1582 epi->event.events = event->events; /* need barrier below */
e057e15f 1583 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1584 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1585 if (!ep_has_wakeup_source(epi))
4d7e30d9 1586 ep_create_wakeup_source(epi);
eea1d585 1587 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1588 ep_destroy_wakeup_source(epi);
1589 }
1da177e4 1590
128dd175
EW
1591 /*
1592 * The following barrier has two effects:
1593 *
1594 * 1) Flush epi changes above to other CPUs. This ensures
1595 * we do not miss events from ep_poll_callback if an
1596 * event occurs immediately after we call f_op->poll().
a218cc49 1597 * We need this because we did not take ep->lock while
128dd175 1598 * changing epi above (but ep_poll_callback does take
a218cc49 1599 * ep->lock).
128dd175
EW
1600 *
1601 * 2) We also need to ensure we do not miss _past_ events
1602 * when calling f_op->poll(). This barrier also
1603 * pairs with the barrier in wq_has_sleeper (see
1604 * comments for wq_has_sleeper).
1605 *
1606 * This barrier will now guarantee ep_poll_callback or f_op->poll
1607 * (or both) will notice the readiness of an item.
1608 */
1609 smp_mb();
1610
1da177e4
LT
1611 /*
1612 * Get current event bits. We can safely use the file* here because
1613 * its usage count has been increased by the caller of this function.
c7ea7630 1614 * If the item is "hot" and it is not registered inside the ready
67647d0f 1615 * list, push it inside.
1da177e4 1616 */
69112736 1617 if (ep_item_poll(epi, &pt, 1)) {
a218cc49 1618 write_lock_irq(&ep->lock);
992991c0 1619 if (!ep_is_linked(epi)) {
c7ea7630 1620 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1621 ep_pm_stay_awake(epi);
c7ea7630
DL
1622
1623 /* Notify waiting tasks that events are available */
1624 if (waitqueue_active(&ep->wq))
a218cc49 1625 wake_up(&ep->wq);
c7ea7630
DL
1626 if (waitqueue_active(&ep->poll_wait))
1627 pwake++;
7699acd1 1628 }
a218cc49 1629 write_unlock_irq(&ep->lock);
7699acd1 1630 }
1da177e4 1631
7699acd1
DL
1632 /* We have to call this outside the lock */
1633 if (pwake)
caf1aeaf 1634 ep_poll_safewake(ep, NULL, 0);
1da177e4 1635
7699acd1 1636 return 0;
1da177e4
LT
1637}
1638
ff07952a
AV
1639static int ep_send_events(struct eventpoll *ep,
1640 struct epoll_event __user *events, int maxevents)
1da177e4 1641{
4e0982a0 1642 struct epitem *epi, *tmp;
ff07952a 1643 LIST_HEAD(txlist);
626cf236 1644 poll_table pt;
ff07952a 1645 int res = 0;
626cf236 1646
cccd29bf
SHY
1647 /*
1648 * Always short-circuit for fatal signals to allow threads to make a
1649 * timely exit without the chance of finding more events available and
1650 * fetching repeatedly.
1651 */
1652 if (fatal_signal_pending(current))
1653 return -EINTR;
1654
626cf236 1655 init_poll_funcptr(&pt, NULL);
ff07952a 1656
57804b1c
AV
1657 mutex_lock(&ep->mtx);
1658 ep_start_scan(ep, &txlist);
1da177e4 1659
296e236e 1660 /*
5071f97e 1661 * We can loop without lock because we are passed a task private list.
57804b1c 1662 * Items cannot vanish during the loop we are holding ep->mtx.
296e236e 1663 */
ff07952a
AV
1664 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1665 struct wakeup_source *ws;
1666 __poll_t revents;
21877e1a 1667
ff07952a 1668 if (res >= maxevents)
4e0982a0 1669 break;
d47de16c 1670
4d7e30d9
AH
1671 /*
1672 * Activate ep->ws before deactivating epi->ws to prevent
1673 * triggering auto-suspend here (in case we reactive epi->ws
1674 * below).
1675 *
1676 * This could be rearranged to delay the deactivation of epi->ws
1677 * instead, but then epi->ws would temporarily be out of sync
1678 * with ep_is_linked().
1679 */
eea1d585
EW
1680 ws = ep_wakeup_source(epi);
1681 if (ws) {
1682 if (ws->active)
1683 __pm_stay_awake(ep->ws);
1684 __pm_relax(ws);
1685 }
1686
d47de16c 1687 list_del_init(&epi->rdllink);
1da177e4 1688
296e236e 1689 /*
5071f97e 1690 * If the event mask intersect the caller-requested one,
57804b1c
AV
1691 * deliver the event to userspace. Again, we are holding ep->mtx,
1692 * so no operations coming from userspace can change the item.
296e236e 1693 */
4e0982a0
DB
1694 revents = ep_item_poll(epi, &pt, 1);
1695 if (!revents)
1696 continue;
1697
249dbe74
AB
1698 events = epoll_put_uevent(revents, epi->event.data, events);
1699 if (!events) {
ff07952a 1700 list_add(&epi->rdllink, &txlist);
4e0982a0 1701 ep_pm_stay_awake(epi);
ff07952a
AV
1702 if (!res)
1703 res = -EFAULT;
1704 break;
4e0982a0 1705 }
ff07952a 1706 res++;
4e0982a0
DB
1707 if (epi->event.events & EPOLLONESHOT)
1708 epi->event.events &= EP_PRIVATE_BITS;
1709 else if (!(epi->event.events & EPOLLET)) {
1710 /*
1711 * If this file has been added with Level
1712 * Trigger mode, we need to insert back inside
1713 * the ready list, so that the next call to
1714 * epoll_wait() will check again the events
1715 * availability. At this point, no one can insert
1716 * into ep->rdllist besides us. The epoll_ctl()
1717 * callers are locked out by
1718 * ep_scan_ready_list() holding "mtx" and the
1719 * poll callback will queue them in ep->ovflist.
1720 */
1721 list_add_tail(&epi->rdllink, &ep->rdllist);
1722 ep_pm_stay_awake(epi);
296e236e
DL
1723 }
1724 }
57804b1c
AV
1725 ep_done_scan(ep, &txlist);
1726 mutex_unlock(&ep->mtx);
5071f97e 1727
ff07952a 1728 return res;
1da177e4
LT
1729}
1730
7cdf7c20 1731static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
0781b909 1732{
7cdf7c20
WB
1733 struct timespec64 now;
1734
1735 if (ms < 0)
1736 return NULL;
1737
1738 if (!ms) {
1739 to->tv_sec = 0;
1740 to->tv_nsec = 0;
1741 return to;
1742 }
1743
1744 to->tv_sec = ms / MSEC_PER_SEC;
1745 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
0781b909 1746
766b9f92 1747 ktime_get_ts64(&now);
7cdf7c20
WB
1748 *to = timespec64_add_safe(now, *to);
1749 return to;
0781b909
ED
1750}
1751
a16ceb13
BS
1752/*
1753 * autoremove_wake_function, but remove even on failure to wake up, because we
1754 * know that default_wake_function/ttwu will only fail if the thread is already
1755 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1756 * try to reuse it.
1757 */
1758static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1759 unsigned int mode, int sync, void *key)
1760{
1761 int ret = default_wake_function(wq_entry, mode, sync, key);
1762
1763 list_del_init(&wq_entry->entry);
1764 return ret;
1765}
1766
f4d93ad7 1767/**
a6c67fee 1768 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
f4d93ad7
SB
1769 * event buffer.
1770 *
1771 * @ep: Pointer to the eventpoll context.
1772 * @events: Pointer to the userspace buffer where the ready events should be
1773 * stored.
1774 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1775 * @timeout: Maximum timeout for the ready events fetch operation, in
7cdf7c20
WB
1776 * timespec. If the timeout is zero, the function will not block,
1777 * while if the @timeout ptr is NULL, the function will block
f4d93ad7
SB
1778 * until at least one event has been retrieved (or an error
1779 * occurred).
1780 *
a6c67fee 1781 * Return: the number of ready events which have been fetched, or an
f4d93ad7
SB
1782 * error code, in case of error.
1783 */
1da177e4 1784static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
7cdf7c20 1785 int maxevents, struct timespec64 *timeout)
1da177e4 1786{
e59d3c64 1787 int res, eavail, timed_out = 0;
da8b44d5 1788 u64 slack = 0;
ac6424b9 1789 wait_queue_entry_t wait;
95aac7b1
SB
1790 ktime_t expires, *to = NULL;
1791
679abf38
DB
1792 lockdep_assert_irqs_enabled();
1793
7cdf7c20
WB
1794 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1795 slack = select_estimate_accuracy(timeout);
95aac7b1 1796 to = &expires;
7cdf7c20
WB
1797 *to = timespec64_to_ktime(*timeout);
1798 } else if (timeout) {
f4d93ad7
SB
1799 /*
1800 * Avoid the unnecessary trip to the wait queue loop, if the
e59d3c64 1801 * caller specified a non blocking operation.
f4d93ad7 1802 */
95aac7b1
SB
1803 timed_out = 1;
1804 }
1da177e4 1805
e59d3c64
SHY
1806 /*
1807 * This call is racy: We may or may not see events that are being added
a6c67fee 1808 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
e59d3c64 1809 * with a non-zero timeout, this thread will check the ready list under
a6c67fee 1810 * lock and will add to the wait queue. For cases with a zero
e59d3c64
SHY
1811 * timeout, the user by definition should not care and will have to
1812 * recheck again.
1813 */
1814 eavail = ep_events_available(ep);
1815
00b27634
SHY
1816 while (1) {
1817 if (eavail) {
1818 /*
1819 * Try to transfer events to user space. In case we get
1820 * 0 events and there's still timeout left over, we go
1821 * trying again in search of more luck.
1822 */
1823 res = ep_send_events(ep, events, maxevents);
1824 if (res)
1825 return res;
1826 }
1827
1828 if (timed_out)
1829 return 0;
1830
00b27634 1831 eavail = ep_busy_loop(ep, timed_out);
e8c85328 1832 if (eavail)
00b27634 1833 continue;
1da177e4 1834
2efdaf76
SHY
1835 if (signal_pending(current))
1836 return -EINTR;
1837
412895f0
RP
1838 /*
1839 * Internally init_wait() uses autoremove_wake_function(),
1840 * thus wait entry is removed from the wait queue on each
1841 * wakeup. Why it is important? In case of several waiters
1842 * each new wakeup will hit the next waiter, giving it the
1843 * chance to harvest new event. Otherwise wakeup can be
1844 * lost. This is also good performance-wise, because on
1845 * normal wakeup path no need to call __remove_wait_queue()
1846 * explicitly, thus ep->lock is not taken, which halts the
1847 * event delivery.
a16ceb13
BS
1848 *
1849 * In fact, we now use an even more aggressive function that
1850 * unconditionally removes, because we don't reuse the wait
1851 * entry between loop iterations. This lets us also avoid the
1852 * performance issue if a process is killed, causing all of its
1853 * threads to wake up without being removed normally.
412895f0
RP
1854 */
1855 init_wait(&wait);
a16ceb13 1856 wait.func = ep_autoremove_wake_function;
1da177e4 1857
65759097 1858 write_lock_irq(&ep->lock);
bf3b9f63 1859 /*
65759097
RP
1860 * Barrierless variant, waitqueue_active() is called under
1861 * the same lock on wakeup ep_poll_callback() side, so it
1862 * is safe to avoid an explicit barrier.
bf3b9f63 1863 */
65759097
RP
1864 __set_current_state(TASK_INTERRUPTIBLE);
1865
1da177e4 1866 /*
65759097
RP
1867 * Do the final check under the lock. ep_scan_ready_list()
1868 * plays with two lists (->rdllist and ->ovflist) and there
1869 * is always a race when both lists are empty for short
1870 * period of time although events are pending, so lock is
1871 * important.
1da177e4 1872 */
65759097 1873 eavail = ep_events_available(ep);
2efdaf76
SHY
1874 if (!eavail)
1875 __add_wait_queue_exclusive(&ep->wq, &wait);
1876
65759097 1877 write_unlock_irq(&ep->lock);
95aac7b1 1878
2efdaf76 1879 if (!eavail)
289caf5d
SHY
1880 timed_out = !schedule_hrtimeout_range(to, slack,
1881 HRTIMER_MODE_ABS);
e411596d 1882 __set_current_state(TASK_RUNNING);
1da177e4 1883
289caf5d
SHY
1884 /*
1885 * We were woken up, thus go and try to harvest some events.
1886 * If timed out and still on the wait queue, recheck eavail
1887 * carefully under lock, below.
1888 */
412895f0 1889 eavail = 1;
1da177e4 1890
e8c85328
SHY
1891 if (!list_empty_careful(&wait.entry)) {
1892 write_lock_irq(&ep->lock);
1893 /*
1894 * If the thread timed out and is not on the wait queue,
1895 * it means that the thread was woken up after its
1896 * timeout expired before it could reacquire the lock.
1897 * Thus, when wait.entry is empty, it needs to harvest
1898 * events.
1899 */
1900 if (timed_out)
1901 eavail = list_empty(&wait.entry);
1902 __remove_wait_queue(&ep->wq, &wait);
1903 write_unlock_irq(&ep->lock);
1904 }
00b27634 1905 }
1da177e4
LT
1906}
1907
22bacca4 1908/**
773318ed 1909 * ep_loop_check_proc - verify that adding an epoll file inside another
a6c67fee 1910 * epoll structure does not violate the constraints, in
22bacca4
DL
1911 * terms of closed loops, or too deep chains (which can
1912 * result in excessive stack usage).
1913 *
a6c67fee 1914 * @ep: the &struct eventpoll to be currently checked.
bde03c4c 1915 * @depth: Current depth of the path being checked.
22bacca4 1916 *
a6c67fee
RD
1917 * Return: %zero if adding the epoll @file inside current epoll
1918 * structure @ep does not violate the constraints, or %-1 otherwise.
22bacca4 1919 */
bde03c4c 1920static int ep_loop_check_proc(struct eventpoll *ep, int depth)
22bacca4
DL
1921{
1922 int error = 0;
22bacca4
DL
1923 struct rb_node *rbp;
1924 struct epitem *epi;
1925
773318ed 1926 mutex_lock_nested(&ep->mtx, depth + 1);
18306c40 1927 ep->gen = loop_check_gen;
b2ac2ea6 1928 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
1929 epi = rb_entry(rbp, struct epitem, rbn);
1930 if (unlikely(is_file_epoll(epi->ffd.file))) {
bde03c4c 1931 struct eventpoll *ep_tovisit;
28d82dc1 1932 ep_tovisit = epi->ffd.file->private_data;
18306c40 1933 if (ep_tovisit->gen == loop_check_gen)
28d82dc1 1934 continue;
bde03c4c 1935 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
56c428ca 1936 error = -1;
bde03c4c
AV
1937 else
1938 error = ep_loop_check_proc(ep_tovisit, depth + 1);
22bacca4
DL
1939 if (error != 0)
1940 break;
28d82dc1
JB
1941 } else {
1942 /*
1943 * If we've reached a file that is not associated with
1944 * an ep, then we need to check if the newly added
1945 * links are going to add too many wakeup paths. We do
1946 * this by adding it to the tfile_check_list, if it's
1947 * not already there, and calling reverse_path_check()
1948 * during ep_insert().
1949 */
319c1517 1950 list_file(epi->ffd.file);
22bacca4
DL
1951 }
1952 }
1953 mutex_unlock(&ep->mtx);
1954
1955 return error;
1956}
1957
1958/**
bde03c4c 1959 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
a6c67fee 1960 * into another epoll file (represented by @ep) does not create
22bacca4
DL
1961 * closed loops or too deep chains.
1962 *
a6c67fee 1963 * @ep: Pointer to the epoll we are inserting into.
bde03c4c 1964 * @to: Pointer to the epoll to be inserted.
22bacca4 1965 *
a6c67fee
RD
1966 * Return: %zero if adding the epoll @to inside the epoll @from
1967 * does not violate the constraints, or %-1 otherwise.
22bacca4 1968 */
bde03c4c 1969static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
22bacca4 1970{
6a3890c4 1971 inserting_into = ep;
bde03c4c 1972 return ep_loop_check_proc(to, 0);
28d82dc1
JB
1973}
1974
1975static void clear_tfile_check_list(void)
1976{
319c1517
AV
1977 rcu_read_lock();
1978 while (tfile_check_list != EP_UNACTIVE_PTR) {
1979 struct epitems_head *head = tfile_check_list;
1980 tfile_check_list = head->next;
1981 unlist_file(head);
28d82dc1 1982 }
319c1517 1983 rcu_read_unlock();
22bacca4
DL
1984}
1985
7699acd1 1986/*
523723bb 1987 * Open an eventpoll file descriptor.
7699acd1 1988 */
791eb22e 1989static int do_epoll_create(int flags)
7699acd1 1990{
28d82dc1 1991 int error, fd;
bb57c3ed 1992 struct eventpoll *ep = NULL;
28d82dc1 1993 struct file *file;
7699acd1 1994
e38b36f3
UD
1995 /* Check the EPOLL_* constant for consistency. */
1996 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1997
296e236e
DL
1998 if (flags & ~EPOLL_CLOEXEC)
1999 return -EINVAL;
7699acd1 2000 /*
bb57c3ed 2001 * Create the internal data structure ("struct eventpoll").
7699acd1 2002 */
9fe5ad9c 2003 error = ep_alloc(&ep);
bb57c3ed
DL
2004 if (error < 0)
2005 return error;
7699acd1
DL
2006 /*
2007 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 2008 * a file structure and a free file descriptor.
7699acd1 2009 */
28d82dc1
JB
2010 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2011 if (fd < 0) {
2012 error = fd;
2013 goto out_free_ep;
2014 }
2015 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 2016 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
2017 if (IS_ERR(file)) {
2018 error = PTR_ERR(file);
2019 goto out_free_fd;
2020 }
28d82dc1 2021 ep->file = file;
98022748 2022 fd_install(fd, file);
28d82dc1
JB
2023 return fd;
2024
2025out_free_fd:
2026 put_unused_fd(fd);
2027out_free_ep:
2028 ep_free(ep);
bb57c3ed 2029 return error;
7699acd1
DL
2030}
2031
791eb22e
DB
2032SYSCALL_DEFINE1(epoll_create1, int, flags)
2033{
2034 return do_epoll_create(flags);
2035}
2036
5a8a82b1 2037SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 2038{
bfe3891a 2039 if (size <= 0)
9fe5ad9c
UD
2040 return -EINVAL;
2041
791eb22e 2042 return do_epoll_create(0);
a0998b50
UD
2043}
2044
39220e8d
JA
2045static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2046 bool nonblock)
2047{
2048 if (!nonblock) {
2049 mutex_lock_nested(mutex, depth);
2050 return 0;
2051 }
2052 if (mutex_trylock(mutex))
2053 return 0;
2054 return -EAGAIN;
2055}
2056
2057int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2058 bool nonblock)
7699acd1
DL
2059{
2060 int error;
67347fe4 2061 int full_check = 0;
7e3fb584 2062 struct fd f, tf;
7699acd1
DL
2063 struct eventpoll *ep;
2064 struct epitem *epi;
67347fe4 2065 struct eventpoll *tep = NULL;
7699acd1 2066
7699acd1 2067 error = -EBADF;
7e3fb584
AV
2068 f = fdget(epfd);
2069 if (!f.file)
7699acd1
DL
2070 goto error_return;
2071
2072 /* Get the "struct file *" for the target file */
7e3fb584
AV
2073 tf = fdget(fd);
2074 if (!tf.file)
7699acd1
DL
2075 goto error_fput;
2076
2077 /* The target file descriptor must support poll */
2078 error = -EPERM;
9965ed17 2079 if (!file_can_poll(tf.file))
7699acd1
DL
2080 goto error_tgt_fput;
2081
4d7e30d9 2082 /* Check if EPOLLWAKEUP is allowed */
c680e41b 2083 if (ep_op_has_event(op))
58e41a44 2084 ep_take_care_of_epollwakeup(epds);
4d7e30d9 2085
7699acd1
DL
2086 /*
2087 * We have to check that the file structure underneath the file descriptor
2088 * the user passed to us _is_ an eventpoll file. And also we do not permit
2089 * adding an epoll file descriptor inside itself.
2090 */
2091 error = -EINVAL;
7e3fb584 2092 if (f.file == tf.file || !is_file_epoll(f.file))
7699acd1
DL
2093 goto error_tgt_fput;
2094
df0108c5
JB
2095 /*
2096 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2097 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2098 * Also, we do not currently supported nested exclusive wakeups.
2099 */
58e41a44 2100 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2101 if (op == EPOLL_CTL_MOD)
2102 goto error_tgt_fput;
2103 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
58e41a44 2104 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
b6a515c8
JB
2105 goto error_tgt_fput;
2106 }
df0108c5 2107
7699acd1
DL
2108 /*
2109 * At this point it is safe to assume that the "private_data" contains
2110 * our own data structure.
2111 */
7e3fb584 2112 ep = f.file->private_data;
7699acd1 2113
22bacca4 2114 /*
a6c67fee
RD
2115 * When we insert an epoll file descriptor inside another epoll file
2116 * descriptor, there is the chance of creating closed loops, which are
28d82dc1
JB
2117 * better be handled here, than in more critical paths. While we are
2118 * checking for loops we also determine the list of files reachable
2119 * and hang them on the tfile_check_list, so we can check that we
2120 * haven't created too many possible wakeup paths.
22bacca4 2121 *
67347fe4
JB
2122 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2123 * the epoll file descriptor is attaching directly to a wakeup source,
2124 * unless the epoll file descriptor is nested. The purpose of taking the
2125 * 'epmutex' on add is to prevent complex toplogies such as loops and
2126 * deep wakeup paths from forming in parallel through multiple
2127 * EPOLL_CTL_ADD operations.
22bacca4 2128 */
39220e8d
JA
2129 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2130 if (error)
2131 goto error_tgt_fput;
28d82dc1 2132 if (op == EPOLL_CTL_ADD) {
319c1517
AV
2133 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2134 is_file_epoll(tf.file)) {
67347fe4 2135 mutex_unlock(&ep->mtx);
39220e8d
JA
2136 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2137 if (error)
2138 goto error_tgt_fput;
18306c40 2139 loop_check_gen++;
39220e8d 2140 full_check = 1;
67347fe4 2141 if (is_file_epoll(tf.file)) {
bde03c4c 2142 tep = tf.file->private_data;
67347fe4 2143 error = -ELOOP;
bde03c4c 2144 if (ep_loop_check(ep, tep) != 0)
67347fe4 2145 goto error_tgt_fput;
a9ed4a65 2146 }
39220e8d 2147 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
52c47969 2148 if (error)
39220e8d 2149 goto error_tgt_fput;
67347fe4
JB
2150 }
2151 }
7699acd1 2152
67647d0f 2153 /*
a6c67fee 2154 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
67647d0f
DL
2155 * above, we can be sure to be able to use the item looked up by
2156 * ep_find() till we release the mutex.
2157 */
7e3fb584 2158 epi = ep_find(ep, tf.file, fd);
7699acd1
DL
2159
2160 error = -EINVAL;
2161 switch (op) {
2162 case EPOLL_CTL_ADD:
2163 if (!epi) {
58e41a44
JA
2164 epds->events |= EPOLLERR | EPOLLHUP;
2165 error = ep_insert(ep, epds, tf.file, fd, full_check);
7699acd1
DL
2166 } else
2167 error = -EEXIST;
2168 break;
2169 case EPOLL_CTL_DEL:
2170 if (epi)
2171 error = ep_remove(ep, epi);
2172 else
2173 error = -ENOENT;
2174 break;
2175 case EPOLL_CTL_MOD:
2176 if (epi) {
b6a515c8 2177 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
58e41a44
JA
2178 epds->events |= EPOLLERR | EPOLLHUP;
2179 error = ep_modify(ep, epi, epds);
b6a515c8 2180 }
7699acd1
DL
2181 } else
2182 error = -ENOENT;
2183 break;
2184 }
d47de16c 2185 mutex_unlock(&ep->mtx);
7699acd1
DL
2186
2187error_tgt_fput:
52c47969
AV
2188 if (full_check) {
2189 clear_tfile_check_list();
18306c40 2190 loop_check_gen++;
22bacca4 2191 mutex_unlock(&epmutex);
52c47969 2192 }
22bacca4 2193
7e3fb584 2194 fdput(tf);
7699acd1 2195error_fput:
7e3fb584 2196 fdput(f);
7699acd1 2197error_return:
7699acd1
DL
2198
2199 return error;
2200}
2201
58e41a44
JA
2202/*
2203 * The following function implements the controller interface for
2204 * the eventpoll file that enables the insertion/removal/change of
2205 * file descriptors inside the interest set.
2206 */
2207SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2208 struct epoll_event __user *, event)
2209{
2210 struct epoll_event epds;
2211
2212 if (ep_op_has_event(op) &&
2213 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2214 return -EFAULT;
2215
39220e8d 2216 return do_epoll_ctl(epfd, op, fd, &epds, false);
58e41a44
JA
2217}
2218
7699acd1
DL
2219/*
2220 * Implement the event wait interface for the eventpoll file. It is the kernel
2221 * part of the user space epoll_wait(2).
2222 */
791eb22e 2223static int do_epoll_wait(int epfd, struct epoll_event __user *events,
7cdf7c20 2224 int maxevents, struct timespec64 *to)
7699acd1 2225{
2903ff01
AV
2226 int error;
2227 struct fd f;
7699acd1
DL
2228 struct eventpoll *ep;
2229
7699acd1
DL
2230 /* The maximum number of event must be greater than zero */
2231 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2232 return -EINVAL;
2233
2234 /* Verify that the area passed by the user is writeable */
96d4f267 2235 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2903ff01 2236 return -EFAULT;
7699acd1
DL
2237
2238 /* Get the "struct file *" for the eventpoll file */
2903ff01
AV
2239 f = fdget(epfd);
2240 if (!f.file)
2241 return -EBADF;
7699acd1
DL
2242
2243 /*
2244 * We have to check that the file structure underneath the fd
2245 * the user passed to us _is_ an eventpoll file.
2246 */
2247 error = -EINVAL;
2903ff01 2248 if (!is_file_epoll(f.file))
7699acd1
DL
2249 goto error_fput;
2250
2251 /*
2252 * At this point it is safe to assume that the "private_data" contains
2253 * our own data structure.
2254 */
2903ff01 2255 ep = f.file->private_data;
7699acd1
DL
2256
2257 /* Time to fish for events ... */
7cdf7c20 2258 error = ep_poll(ep, events, maxevents, to);
7699acd1
DL
2259
2260error_fput:
2903ff01 2261 fdput(f);
7699acd1
DL
2262 return error;
2263}
2264
791eb22e
DB
2265SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2266 int, maxevents, int, timeout)
2267{
7cdf7c20
WB
2268 struct timespec64 to;
2269
2270 return do_epoll_wait(epfd, events, maxevents,
2271 ep_timeout_to_timespec(&to, timeout));
791eb22e
DB
2272}
2273
7699acd1
DL
2274/*
2275 * Implement the event wait interface for the eventpoll file. It is the kernel
2276 * part of the user space epoll_pwait(2).
2277 */
58169a52
WB
2278static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2279 int maxevents, struct timespec64 *to,
2280 const sigset_t __user *sigmask, size_t sigsetsize)
7699acd1
DL
2281{
2282 int error;
7699acd1
DL
2283
2284 /*
2285 * If the caller wants a certain signal mask to be set during the wait,
2286 * we apply it here.
2287 */
b772434b 2288 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2289 if (error)
2290 return error;
7699acd1 2291
58169a52 2292 error = do_epoll_wait(epfd, events, maxevents, to);
7cdf7c20 2293
b772434b 2294 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2295
2296 return error;
2297}
2298
58169a52
WB
2299SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2300 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2301 size_t, sigsetsize)
35280bd4 2302{
7cdf7c20 2303 struct timespec64 to;
58169a52
WB
2304
2305 return do_epoll_pwait(epfd, events, maxevents,
2306 ep_timeout_to_timespec(&to, timeout),
2307 sigmask, sigsetsize);
2308}
2309
2310SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2311 int, maxevents, const struct __kernel_timespec __user *, timeout,
2312 const sigset_t __user *, sigmask, size_t, sigsetsize)
2313{
2314 struct timespec64 ts, *to = NULL;
2315
2316 if (timeout) {
2317 if (get_timespec64(&ts, timeout))
2318 return -EFAULT;
2319 to = &ts;
2320 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2321 return -EINVAL;
2322 }
2323
2324 return do_epoll_pwait(epfd, events, maxevents, to,
2325 sigmask, sigsetsize);
2326}
2327
2328#ifdef CONFIG_COMPAT
2329static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2330 int maxevents, struct timespec64 *timeout,
2331 const compat_sigset_t __user *sigmask,
2332 compat_size_t sigsetsize)
2333{
35280bd4 2334 long err;
35280bd4
AV
2335
2336 /*
2337 * If the caller wants a certain signal mask to be set during the wait,
2338 * we apply it here.
2339 */
b772434b 2340 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2341 if (err)
2342 return err;
35280bd4 2343
58169a52 2344 err = do_epoll_wait(epfd, events, maxevents, timeout);
7cdf7c20 2345
b772434b 2346 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2347
2348 return err;
2349}
58169a52
WB
2350
2351COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2352 struct epoll_event __user *, events,
2353 int, maxevents, int, timeout,
2354 const compat_sigset_t __user *, sigmask,
2355 compat_size_t, sigsetsize)
2356{
2357 struct timespec64 to;
2358
2359 return do_compat_epoll_pwait(epfd, events, maxevents,
2360 ep_timeout_to_timespec(&to, timeout),
2361 sigmask, sigsetsize);
2362}
2363
2364COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2365 struct epoll_event __user *, events,
2366 int, maxevents,
2367 const struct __kernel_timespec __user *, timeout,
2368 const compat_sigset_t __user *, sigmask,
2369 compat_size_t, sigsetsize)
2370{
2371 struct timespec64 ts, *to = NULL;
2372
2373 if (timeout) {
2374 if (get_timespec64(&ts, timeout))
2375 return -EFAULT;
2376 to = &ts;
2377 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2378 return -EINVAL;
2379 }
2380
2381 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2382 sigmask, sigsetsize);
2383}
2384
35280bd4
AV
2385#endif
2386
1da177e4
LT
2387static int __init eventpoll_init(void)
2388{
7ef9964e
DL
2389 struct sysinfo si;
2390
2391 si_meminfo(&si);
9df04e1f
DL
2392 /*
2393 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2394 */
2395 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2396 EP_ITEM_COST;
52bd19f7 2397 BUG_ON(max_user_watches < 0);
1da177e4 2398
39732ca5
EW
2399 /*
2400 * We can have many thousands of epitems, so prevent this from
2401 * using an extra cache line on 64-bit (and smaller) CPUs
2402 */
2403 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2404
1da177e4
LT
2405 /* Allocates slab cache used to allocate "struct epitem" items */
2406 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2407 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2408
2409 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2410 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2411 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
a8f5de89 2412 epoll_sysctls_init();
1da177e4 2413
319c1517
AV
2414 ephead_cache = kmem_cache_create("ep_head",
2415 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2416
1da177e4 2417 return 0;
1da177e4 2418}
cea69241 2419fs_initcall(eventpoll_init);