clean reverse_path_check_proc() a bit
[linux-block.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
bf3b9f63 40#include <net/busy_poll.h>
1da177e4 41
1da177e4
LT
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
144efe3e 46 * 1) epmutex (mutex)
c7ea7630 47 * 2) ep->mtx (mutex)
a218cc49 48 * 3) ep->lock (rwlock)
1da177e4
LT
49 *
50 * The acquire order is the one listed above, from 1 to 3.
a218cc49 51 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
1da177e4
LT
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
bf6a41db 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
22bacca4
DL
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
d8805e63
NE
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
d47de16c 82 * It is possible to drop the "ep->mtx" and to use the global
a218cc49 83 * mutex "epmutex" (together with "ep->lock") to have it working,
d47de16c 84 * but having "ep->mtx" will make the interface more scalable.
144efe3e 85 * Events that require holding "epmutex" are very rare, while for
d47de16c
DL
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
1da177e4
LT
88 */
89
1da177e4 90/* Epoll private bits inside the event mask */
df0108c5 91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 92
a9a08845 93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 94
a9a08845 95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
5071f97e
DL
98/* Maximum number of nesting allowed inside epoll sets */
99#define EP_MAX_NESTS 4
1da177e4 100
b611967d
DL
101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
d47de16c
DL
103#define EP_UNACTIVE_PTR ((void *) -1L)
104
7ef9964e
DL
105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
1da177e4
LT
107struct epoll_filefd {
108 struct file *file;
109 int fd;
39732ca5 110} __packed;
1da177e4 111
80285b75
AV
112/* Wait structure used by the poll hooks */
113struct eppoll_entry {
114 /* List header used to link this structure to the "struct epitem" */
115 struct eppoll_entry *next;
116
117 /* The "base" pointer is set to the container "struct epitem" */
118 struct epitem *base;
119
120 /*
121 * Wait queue item that will be linked to the target file wait
122 * queue head.
123 */
124 wait_queue_entry_t wait;
125
126 /* The wait queue head that linked the "wait" wait queue item */
127 wait_queue_head_t *whead;
128};
129
d47de16c
DL
130/*
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
135 */
136struct epitem {
ae10b2b4
JB
137 union {
138 /* RB tree node links this structure to the eventpoll RB tree */
139 struct rb_node rbn;
140 /* Used to free the struct epitem */
141 struct rcu_head rcu;
142 };
d47de16c
DL
143
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
146
c7ea7630
DL
147 /*
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
150 */
151 struct epitem *next;
152
d47de16c
DL
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
155
d47de16c 156 /* List containing poll wait queues */
80285b75 157 struct eppoll_entry *pwqlist;
d47de16c
DL
158
159 /* The "container" of this item */
160 struct eventpoll *ep;
161
d47de16c
DL
162 /* List header used to link this item to the "struct file" items list */
163 struct list_head fllink;
164
4d7e30d9 165 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 166 struct wakeup_source __rcu *ws;
4d7e30d9 167
c7ea7630
DL
168 /* The structure that describe the interested events and the source fd */
169 struct epoll_event event;
d47de16c
DL
170};
171
1da177e4
LT
172/*
173 * This structure is stored inside the "private_data" member of the file
bf6a41db 174 * structure and represents the main data structure for the eventpoll
1da177e4
LT
175 * interface.
176 */
177struct eventpoll {
1da177e4 178 /*
d47de16c
DL
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
1da177e4 183 */
d47de16c 184 struct mutex mtx;
1da177e4
LT
185
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
188
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
191
192 /* List of ready file descriptors */
193 struct list_head rdllist;
194
a218cc49
RP
195 /* Lock which protects rdllist and ovflist */
196 rwlock_t lock;
197
67647d0f 198 /* RB tree root used to store monitored fd structs */
b2ac2ea6 199 struct rb_root_cached rbr;
d47de16c
DL
200
201 /*
202 * This is a single linked list that chains all the "struct epitem" that
25985edc 203 * happened while transferring ready events to userspace w/out
a218cc49 204 * holding ->lock.
d47de16c
DL
205 */
206 struct epitem *ovflist;
7ef9964e 207
4d7e30d9
AH
208 /* wakeup_source used when ep_scan_ready_list is running */
209 struct wakeup_source *ws;
210
7ef9964e
DL
211 /* The user that created the eventpoll descriptor */
212 struct user_struct *user;
28d82dc1
JB
213
214 struct file *file;
215
216 /* used to optimize loop detection check */
18306c40 217 u64 gen;
bf3b9f63
SS
218
219#ifdef CONFIG_NET_RX_BUSY_POLL
220 /* used to track busy poll napi_id */
221 unsigned int napi_id;
222#endif
efcdd350
JB
223
224#ifdef CONFIG_DEBUG_LOCK_ALLOC
225 /* tracks wakeup nests for lockdep validation */
226 u8 nests;
227#endif
1da177e4
LT
228};
229
1da177e4
LT
230/* Wrapper struct used by poll queueing */
231struct ep_pqueue {
232 poll_table pt;
233 struct epitem *epi;
234};
235
5071f97e
DL
236/* Used by the ep_send_events() function as callback private data */
237struct ep_send_events_data {
238 int maxevents;
239 struct epoll_event __user *events;
d7ebbe46 240 int res;
5071f97e
DL
241};
242
7ef9964e
DL
243/*
244 * Configuration options available inside /proc/sys/fs/epoll/
245 */
7ef9964e 246/* Maximum number of epoll watched descriptors, per user */
52bd19f7 247static long max_user_watches __read_mostly;
7ef9964e 248
1da177e4 249/*
d47de16c 250 * This mutex is used to serialize ep_free() and eventpoll_release_file().
1da177e4 251 */
7ef9964e 252static DEFINE_MUTEX(epmutex);
1da177e4 253
18306c40
AV
254static u64 loop_check_gen = 0;
255
22bacca4 256/* Used to check for epoll file descriptor inclusion loops */
d01f0594
AV
257static void *cookies[EP_MAX_NESTS + 1];
258static int nesting;
22bacca4 259
1da177e4 260/* Slab cache used to allocate "struct epitem" */
e18b890b 261static struct kmem_cache *epi_cache __read_mostly;
1da177e4
LT
262
263/* Slab cache used to allocate "struct eppoll_entry" */
e18b890b 264static struct kmem_cache *pwq_cache __read_mostly;
1da177e4 265
28d82dc1
JB
266/*
267 * List of files with newly added links, where we may need to limit the number
268 * of emanating paths. Protected by the epmutex.
269 */
270static LIST_HEAD(tfile_check_list);
271
7ef9964e
DL
272#ifdef CONFIG_SYSCTL
273
274#include <linux/sysctl.h>
275
eec4844f 276static long long_zero;
52bd19f7 277static long long_max = LONG_MAX;
7ef9964e 278
1f7e0616 279struct ctl_table epoll_table[] = {
7ef9964e
DL
280 {
281 .procname = "max_user_watches",
282 .data = &max_user_watches,
52bd19f7 283 .maxlen = sizeof(max_user_watches),
7ef9964e 284 .mode = 0644,
52bd19f7 285 .proc_handler = proc_doulongvec_minmax,
eec4844f 286 .extra1 = &long_zero,
52bd19f7 287 .extra2 = &long_max,
7ef9964e 288 },
ab09203e 289 { }
7ef9964e
DL
290};
291#endif /* CONFIG_SYSCTL */
292
28d82dc1
JB
293static const struct file_operations eventpoll_fops;
294
295static inline int is_file_epoll(struct file *f)
296{
297 return f->f_op == &eventpoll_fops;
298}
b030a4dd 299
67647d0f 300/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
301static inline void ep_set_ffd(struct epoll_filefd *ffd,
302 struct file *file, int fd)
303{
304 ffd->file = file;
305 ffd->fd = fd;
306}
307
67647d0f 308/* Compare RB tree keys */
b030a4dd
PE
309static inline int ep_cmp_ffd(struct epoll_filefd *p1,
310 struct epoll_filefd *p2)
311{
312 return (p1->file > p2->file ? +1:
313 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
314}
315
b030a4dd 316/* Tells us if the item is currently linked */
992991c0 317static inline int ep_is_linked(struct epitem *epi)
b030a4dd 318{
992991c0 319 return !list_empty(&epi->rdllink);
b030a4dd
PE
320}
321
ac6424b9 322static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
323{
324 return container_of(p, struct eppoll_entry, wait);
325}
326
b030a4dd 327/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 328static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
329{
330 return container_of(p, struct eppoll_entry, wait)->base;
331}
332
3fb0e584
DL
333/**
334 * ep_events_available - Checks if ready events might be available.
335 *
336 * @ep: Pointer to the eventpoll context.
337 *
338 * Returns: Returns a value different than zero if ready events are available,
339 * or zero otherwise.
340 */
341static inline int ep_events_available(struct eventpoll *ep)
342{
c5a282e9
DB
343 return !list_empty_careful(&ep->rdllist) ||
344 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
345}
346
bf3b9f63
SS
347#ifdef CONFIG_NET_RX_BUSY_POLL
348static bool ep_busy_loop_end(void *p, unsigned long start_time)
349{
350 struct eventpoll *ep = p;
351
352 return ep_events_available(ep) || busy_loop_timeout(start_time);
353}
bf3b9f63
SS
354
355/*
356 * Busy poll if globally on and supporting sockets found && no events,
357 * busy loop will return if need_resched or ep_events_available.
358 *
359 * we must do our busy polling with irqs enabled
360 */
361static void ep_busy_loop(struct eventpoll *ep, int nonblock)
362{
bf3b9f63
SS
363 unsigned int napi_id = READ_ONCE(ep->napi_id);
364
365 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
366 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
bf3b9f63
SS
367}
368
369static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
370{
bf3b9f63
SS
371 if (ep->napi_id)
372 ep->napi_id = 0;
bf3b9f63
SS
373}
374
375/*
376 * Set epoll busy poll NAPI ID from sk.
377 */
378static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
379{
bf3b9f63
SS
380 struct eventpoll *ep;
381 unsigned int napi_id;
382 struct socket *sock;
383 struct sock *sk;
384 int err;
385
386 if (!net_busy_loop_on())
387 return;
388
389 sock = sock_from_file(epi->ffd.file, &err);
390 if (!sock)
391 return;
392
393 sk = sock->sk;
394 if (!sk)
395 return;
396
397 napi_id = READ_ONCE(sk->sk_napi_id);
398 ep = epi->ep;
399
400 /* Non-NAPI IDs can be rejected
401 * or
402 * Nothing to do if we already have this ID
403 */
404 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
405 return;
406
407 /* record NAPI ID for use in next busy poll */
408 ep->napi_id = napi_id;
bf3b9f63
SS
409}
410
514056d5
DB
411#else
412
413static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
414{
415}
416
417static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
418{
419}
420
421static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
422{
423}
424
425#endif /* CONFIG_NET_RX_BUSY_POLL */
426
3b1688ef
AV
427static bool ep_push_nested(void *cookie)
428{
429 int i;
430
431 if (nesting > EP_MAX_NESTS) /* too deep nesting */
432 return false;
433
434 for (i = 0; i < nesting; i++) {
435 if (cookies[i] == cookie) /* loop detected */
436 return false;
437 }
438 cookies[nesting++] = cookie;
439 return true;
440}
441
02edc6fc
SR
442/*
443 * As described in commit 0ccf831cb lockdep: annotate epoll
444 * the use of wait queues used by epoll is done in a very controlled
445 * manner. Wake ups can nest inside each other, but are never done
446 * with the same locking. For example:
447 *
448 * dfd = socket(...);
449 * efd1 = epoll_create();
450 * efd2 = epoll_create();
451 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
452 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
453 *
454 * When a packet arrives to the device underneath "dfd", the net code will
455 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
456 * callback wakeup entry on that queue, and the wake_up() performed by the
457 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
458 * (efd1) notices that it may have some event ready, so it needs to wake up
459 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
460 * that ends up in another wake_up(), after having checked about the
461 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
462 * avoid stack blasting.
463 *
464 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
465 * this special case of epoll.
466 */
2dfa4eea 467#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd 468
efcdd350 469static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
5071f97e 470{
efcdd350 471 struct eventpoll *ep_src;
f6520c52 472 unsigned long flags;
efcdd350
JB
473 u8 nests = 0;
474
475 /*
476 * To set the subclass or nesting level for spin_lock_irqsave_nested()
477 * it might be natural to create a per-cpu nest count. However, since
478 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
479 * schedule() in the -rt kernel, the per-cpu variable are no longer
480 * protected. Thus, we are introducing a per eventpoll nest field.
481 * If we are not being call from ep_poll_callback(), epi is NULL and
482 * we are at the first level of nesting, 0. Otherwise, we are being
483 * called from ep_poll_callback() and if a previous wakeup source is
484 * not an epoll file itself, we are at depth 1 since the wakeup source
485 * is depth 0. If the wakeup source is a previous epoll file in the
486 * wakeup chain then we use its nests value and record ours as
487 * nests + 1. The previous epoll file nests value is stable since its
488 * already holding its own poll_wait.lock.
489 */
490 if (epi) {
491 if ((is_file_epoll(epi->ffd.file))) {
492 ep_src = epi->ffd.file->private_data;
493 nests = ep_src->nests;
494 } else {
495 nests = 1;
496 }
497 }
498 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
499 ep->nests = nests + 1;
500 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
501 ep->nests = 0;
502 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
1da177e4
LT
503}
504
57a173bd
JB
505#else
506
efcdd350 507static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
57a173bd 508{
efcdd350 509 wake_up_poll(&ep->poll_wait, EPOLLIN);
57a173bd
JB
510}
511
512#endif
513
971316f0
ON
514static void ep_remove_wait_queue(struct eppoll_entry *pwq)
515{
516 wait_queue_head_t *whead;
517
518 rcu_read_lock();
138e4ad6
ON
519 /*
520 * If it is cleared by POLLFREE, it should be rcu-safe.
521 * If we read NULL we need a barrier paired with
522 * smp_store_release() in ep_poll_callback(), otherwise
523 * we rely on whead->lock.
524 */
525 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
526 if (whead)
527 remove_wait_queue(whead, &pwq->wait);
528 rcu_read_unlock();
529}
530
1da177e4 531/*
d1bc90dd
TB
532 * This function unregisters poll callbacks from the associated file
533 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
534 * ep_free).
1da177e4 535 */
7699acd1 536static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 537{
80285b75 538 struct eppoll_entry **p = &epi->pwqlist;
7699acd1 539 struct eppoll_entry *pwq;
1da177e4 540
80285b75
AV
541 while ((pwq = *p) != NULL) {
542 *p = pwq->next;
971316f0 543 ep_remove_wait_queue(pwq);
d1bc90dd 544 kmem_cache_free(pwq_cache, pwq);
1da177e4 545 }
1da177e4
LT
546}
547
eea1d585
EW
548/* call only when ep->mtx is held */
549static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
550{
551 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
552}
553
554/* call only when ep->mtx is held */
555static inline void ep_pm_stay_awake(struct epitem *epi)
556{
557 struct wakeup_source *ws = ep_wakeup_source(epi);
558
559 if (ws)
560 __pm_stay_awake(ws);
561}
562
563static inline bool ep_has_wakeup_source(struct epitem *epi)
564{
565 return rcu_access_pointer(epi->ws) ? true : false;
566}
567
568/* call when ep->mtx cannot be held (ep_poll_callback) */
569static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
570{
571 struct wakeup_source *ws;
572
573 rcu_read_lock();
574 ws = rcu_dereference(epi->ws);
575 if (ws)
576 __pm_stay_awake(ws);
577 rcu_read_unlock();
578}
579
5071f97e
DL
580/**
581 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
582 * the scan code, to call f_op->poll(). Also allows for
583 * O(NumReady) performance.
584 *
585 * @ep: Pointer to the epoll private data structure.
586 * @sproc: Pointer to the scan callback.
587 * @priv: Private opaque data passed to the @sproc callback.
d8805e63 588 * @depth: The current depth of recursive f_op->poll calls.
67347fe4 589 * @ep_locked: caller already holds ep->mtx
5071f97e
DL
590 *
591 * Returns: The same integer error code returned by the @sproc callback.
592 */
d85e2aa2
AV
593static __poll_t ep_scan_ready_list(struct eventpoll *ep,
594 __poll_t (*sproc)(struct eventpoll *,
5071f97e 595 struct list_head *, void *),
67347fe4 596 void *priv, int depth, bool ep_locked)
5071f97e 597{
d85e2aa2 598 __poll_t res;
5071f97e 599 struct epitem *epi, *nepi;
296e236e 600 LIST_HEAD(txlist);
5071f97e 601
92e64178
DB
602 lockdep_assert_irqs_enabled();
603
5071f97e
DL
604 /*
605 * We need to lock this because we could be hit by
e057e15f 606 * eventpoll_release_file() and epoll_ctl().
5071f97e 607 */
67347fe4
JB
608
609 if (!ep_locked)
610 mutex_lock_nested(&ep->mtx, depth);
5071f97e
DL
611
612 /*
613 * Steal the ready list, and re-init the original one to the
614 * empty list. Also, set ep->ovflist to NULL so that events
615 * happening while looping w/out locks, are not lost. We cannot
616 * have the poll callback to queue directly on ep->rdllist,
617 * because we want the "sproc" callback to be able to do it
618 * in a lockless way.
619 */
a218cc49 620 write_lock_irq(&ep->lock);
296e236e 621 list_splice_init(&ep->rdllist, &txlist);
c5a282e9 622 WRITE_ONCE(ep->ovflist, NULL);
a218cc49 623 write_unlock_irq(&ep->lock);
5071f97e
DL
624
625 /*
626 * Now call the callback function.
627 */
d85e2aa2 628 res = (*sproc)(ep, &txlist, priv);
5071f97e 629
a218cc49 630 write_lock_irq(&ep->lock);
5071f97e
DL
631 /*
632 * During the time we spent inside the "sproc" callback, some
633 * other events might have been queued by the poll callback.
634 * We re-insert them inside the main ready-list here.
635 */
c5a282e9 636 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
5071f97e
DL
637 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
638 /*
639 * We need to check if the item is already in the list.
640 * During the "sproc" callback execution time, items are
641 * queued into ->ovflist but the "txlist" might already
642 * contain them, and the list_splice() below takes care of them.
643 */
992991c0 644 if (!ep_is_linked(epi)) {
c141175d
RP
645 /*
646 * ->ovflist is LIFO, so we have to reverse it in order
647 * to keep in FIFO.
648 */
649 list_add(&epi->rdllink, &ep->rdllist);
eea1d585 650 ep_pm_stay_awake(epi);
4d7e30d9 651 }
5071f97e
DL
652 }
653 /*
654 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
655 * releasing the lock, events will be queued in the normal way inside
656 * ep->rdllist.
657 */
c5a282e9 658 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
5071f97e
DL
659
660 /*
661 * Quickly re-inject items left on "txlist".
662 */
663 list_splice(&txlist, &ep->rdllist);
4d7e30d9 664 __pm_relax(ep->ws);
a218cc49 665 write_unlock_irq(&ep->lock);
5071f97e 666
67347fe4
JB
667 if (!ep_locked)
668 mutex_unlock(&ep->mtx);
5071f97e 669
d85e2aa2 670 return res;
5071f97e
DL
671}
672
ae10b2b4
JB
673static void epi_rcu_free(struct rcu_head *head)
674{
675 struct epitem *epi = container_of(head, struct epitem, rcu);
676 kmem_cache_free(epi_cache, epi);
677}
678
7699acd1
DL
679/*
680 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 681 * all the associated resources. Must be called with "mtx" held.
7699acd1
DL
682 */
683static int ep_remove(struct eventpoll *ep, struct epitem *epi)
684{
7699acd1 685 struct file *file = epi->ffd.file;
1da177e4 686
92e64178
DB
687 lockdep_assert_irqs_enabled();
688
1da177e4 689 /*
ee8ef0a4 690 * Removes poll wait queue hooks.
1da177e4 691 */
7699acd1 692 ep_unregister_pollwait(ep, epi);
1da177e4 693
7699acd1 694 /* Remove the current item from the list of epoll hooks */
68499914 695 spin_lock(&file->f_lock);
ae10b2b4 696 list_del_rcu(&epi->fllink);
68499914 697 spin_unlock(&file->f_lock);
1da177e4 698
b2ac2ea6 699 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 700
a218cc49 701 write_lock_irq(&ep->lock);
992991c0 702 if (ep_is_linked(epi))
c7ea7630 703 list_del_init(&epi->rdllink);
a218cc49 704 write_unlock_irq(&ep->lock);
1da177e4 705
eea1d585 706 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
707 /*
708 * At this point it is safe to free the eventpoll item. Use the union
709 * field epi->rcu, since we are trying to minimize the size of
710 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
711 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
712 * use of the rbn field.
713 */
714 call_rcu(&epi->rcu, epi_rcu_free);
1da177e4 715
52bd19f7 716 atomic_long_dec(&ep->user->epoll_watches);
7ef9964e 717
c7ea7630 718 return 0;
1da177e4
LT
719}
720
7699acd1 721static void ep_free(struct eventpoll *ep)
1da177e4 722{
7699acd1
DL
723 struct rb_node *rbp;
724 struct epitem *epi;
1da177e4 725
7699acd1
DL
726 /* We need to release all tasks waiting for these file */
727 if (waitqueue_active(&ep->poll_wait))
efcdd350 728 ep_poll_safewake(ep, NULL);
1da177e4 729
7699acd1
DL
730 /*
731 * We need to lock this because we could be hit by
732 * eventpoll_release_file() while we're freeing the "struct eventpoll".
d47de16c 733 * We do not need to hold "ep->mtx" here because the epoll file
7699acd1
DL
734 * is on the way to be removed and no one has references to it
735 * anymore. The only hit might come from eventpoll_release_file() but
25985edc 736 * holding "epmutex" is sufficient here.
7699acd1
DL
737 */
738 mutex_lock(&epmutex);
1da177e4
LT
739
740 /*
7699acd1 741 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 742 */
b2ac2ea6 743 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
744 epi = rb_entry(rbp, struct epitem, rbn);
745
746 ep_unregister_pollwait(ep, epi);
91cf5ab6 747 cond_resched();
7699acd1 748 }
1da177e4
LT
749
750 /*
7699acd1
DL
751 * Walks through the whole tree by freeing each "struct epitem". At this
752 * point we are sure no poll callbacks will be lingering around, and also by
d47de16c 753 * holding "epmutex" we can be sure that no file cleanup code will hit
a218cc49 754 * us during this operation. So we can avoid the lock on "ep->lock".
ddf676c3
EW
755 * We do not need to lock ep->mtx, either, we only do it to prevent
756 * a lockdep warning.
1da177e4 757 */
ddf676c3 758 mutex_lock(&ep->mtx);
b2ac2ea6 759 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
7699acd1
DL
760 epi = rb_entry(rbp, struct epitem, rbn);
761 ep_remove(ep, epi);
91cf5ab6 762 cond_resched();
7699acd1 763 }
ddf676c3 764 mutex_unlock(&ep->mtx);
1da177e4 765
7699acd1 766 mutex_unlock(&epmutex);
d47de16c 767 mutex_destroy(&ep->mtx);
7ef9964e 768 free_uid(ep->user);
4d7e30d9 769 wakeup_source_unregister(ep->ws);
f0ee9aab 770 kfree(ep);
7699acd1 771}
1da177e4 772
7699acd1
DL
773static int ep_eventpoll_release(struct inode *inode, struct file *file)
774{
775 struct eventpoll *ep = file->private_data;
1da177e4 776
f0ee9aab 777 if (ep)
7699acd1 778 ep_free(ep);
7699acd1 779
7699acd1 780 return 0;
1da177e4
LT
781}
782
d85e2aa2 783static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
37b5e521
JB
784 void *priv);
785static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
786 poll_table *pt);
787
788/*
789 * Differs from ep_eventpoll_poll() in that internal callers already have
790 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
791 * is correctly annotated.
792 */
d85e2aa2 793static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 794 int depth)
450d89ec 795{
37b5e521
JB
796 struct eventpoll *ep;
797 bool locked;
798
450d89ec 799 pt->_key = epi->event.events;
37b5e521 800 if (!is_file_epoll(epi->ffd.file))
9965ed17 801 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
450d89ec 802
37b5e521
JB
803 ep = epi->ffd.file->private_data;
804 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
805 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
450d89ec 806
37b5e521
JB
807 return ep_scan_ready_list(epi->ffd.file->private_data,
808 ep_read_events_proc, &depth, depth,
809 locked) & epi->event.events;
450d89ec
EW
810}
811
d85e2aa2 812static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 813 void *priv)
5071f97e
DL
814{
815 struct epitem *epi, *tmp;
626cf236 816 poll_table pt;
37b5e521 817 int depth = *(int *)priv;
5071f97e 818
626cf236 819 init_poll_funcptr(&pt, NULL);
37b5e521 820 depth++;
450d89ec 821
5071f97e 822 list_for_each_entry_safe(epi, tmp, head, rdllink) {
37b5e521 823 if (ep_item_poll(epi, &pt, depth)) {
a9a08845 824 return EPOLLIN | EPOLLRDNORM;
37b5e521 825 } else {
5071f97e
DL
826 /*
827 * Item has been dropped into the ready list by the poll
828 * callback, but it's not actually ready, as far as
829 * caller requested events goes. We can remove it here.
830 */
eea1d585 831 __pm_relax(ep_wakeup_source(epi));
5071f97e 832 list_del_init(&epi->rdllink);
296e236e 833 }
5071f97e
DL
834 }
835
836 return 0;
837}
838
a11e1d43 839static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e
BN
840{
841 struct eventpoll *ep = file->private_data;
842 int depth = 0;
7699acd1 843
a11e1d43
LT
844 /* Insert inside our poll wait queue */
845 poll_wait(file, &ep->poll_wait, wait);
846
5071f97e
DL
847 /*
848 * Proceed to find out if wanted events are really available inside
37b5e521 849 * the ready list.
5071f97e 850 */
37b5e521
JB
851 return ep_scan_ready_list(ep, ep_read_events_proc,
852 &depth, depth, false);
7699acd1
DL
853}
854
138d22b5 855#ifdef CONFIG_PROC_FS
a3816ab0 856static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
857{
858 struct eventpoll *ep = f->private_data;
859 struct rb_node *rbp;
138d22b5
CG
860
861 mutex_lock(&ep->mtx);
b2ac2ea6 862 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 863 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 864 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 865
77493f04
CG
866 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
867 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 868 epi->ffd.fd, epi->event.events,
77493f04
CG
869 (long long)epi->event.data,
870 (long long)epi->ffd.file->f_pos,
871 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 872 if (seq_has_overflowed(m))
138d22b5
CG
873 break;
874 }
875 mutex_unlock(&ep->mtx);
138d22b5
CG
876}
877#endif
878
7699acd1
DL
879/* File callbacks that implement the eventpoll file behaviour */
880static const struct file_operations eventpoll_fops = {
138d22b5
CG
881#ifdef CONFIG_PROC_FS
882 .show_fdinfo = ep_show_fdinfo,
883#endif
7699acd1 884 .release = ep_eventpoll_release,
a11e1d43 885 .poll = ep_eventpoll_poll,
6038f373 886 .llseek = noop_llseek,
7699acd1
DL
887};
888
b611967d 889/*
7699acd1
DL
890 * This is called from eventpoll_release() to unlink files from the eventpoll
891 * interface. We need to have this facility to cleanup correctly files that are
892 * closed without being removed from the eventpoll interface.
b611967d 893 */
7699acd1 894void eventpoll_release_file(struct file *file)
b611967d 895{
7699acd1 896 struct eventpoll *ep;
ebe06187 897 struct epitem *epi, *next;
b611967d
DL
898
899 /*
68499914 900 * We don't want to get "file->f_lock" because it is not
7699acd1 901 * necessary. It is not necessary because we're in the "struct file"
25985edc 902 * cleanup path, and this means that no one is using this file anymore.
5071f97e 903 * So, for example, epoll_ctl() cannot hit here since if we reach this
67647d0f 904 * point, the file counter already went to zero and fget() would fail.
d47de16c 905 * The only hit might come from ep_free() but by holding the mutex
7699acd1 906 * will correctly serialize the operation. We do need to acquire
d47de16c 907 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
7699acd1 908 * from anywhere but ep_free().
68499914
JC
909 *
910 * Besides, ep_remove() acquires the lock, so we can't hold it here.
b611967d 911 */
7699acd1 912 mutex_lock(&epmutex);
ebe06187 913 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
7699acd1 914 ep = epi->ep;
d8805e63 915 mutex_lock_nested(&ep->mtx, 0);
7699acd1 916 ep_remove(ep, epi);
d47de16c 917 mutex_unlock(&ep->mtx);
b611967d 918 }
7699acd1 919 mutex_unlock(&epmutex);
b611967d
DL
920}
921
53d2be79 922static int ep_alloc(struct eventpoll **pep)
1da177e4 923{
7ef9964e
DL
924 int error;
925 struct user_struct *user;
926 struct eventpoll *ep;
1da177e4 927
7ef9964e 928 user = get_current_user();
7ef9964e
DL
929 error = -ENOMEM;
930 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
931 if (unlikely(!ep))
932 goto free_uid;
1da177e4 933
d47de16c 934 mutex_init(&ep->mtx);
a218cc49 935 rwlock_init(&ep->lock);
1da177e4
LT
936 init_waitqueue_head(&ep->wq);
937 init_waitqueue_head(&ep->poll_wait);
938 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 939 ep->rbr = RB_ROOT_CACHED;
d47de16c 940 ep->ovflist = EP_UNACTIVE_PTR;
7ef9964e 941 ep->user = user;
1da177e4 942
53d2be79 943 *pep = ep;
1da177e4 944
1da177e4 945 return 0;
7ef9964e
DL
946
947free_uid:
948 free_uid(user);
949 return error;
1da177e4
LT
950}
951
1da177e4 952/*
c7ea7630
DL
953 * Search the file inside the eventpoll tree. The RB tree operations
954 * are protected by the "mtx" mutex, and ep_find() must be called with
955 * "mtx" held.
1da177e4
LT
956 */
957static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
958{
959 int kcmp;
1da177e4
LT
960 struct rb_node *rbp;
961 struct epitem *epi, *epir = NULL;
962 struct epoll_filefd ffd;
963
b030a4dd 964 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 965 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 966 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 967 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
968 if (kcmp > 0)
969 rbp = rbp->rb_right;
970 else if (kcmp < 0)
971 rbp = rbp->rb_left;
972 else {
1da177e4
LT
973 epir = epi;
974 break;
975 }
976 }
1da177e4 977
1da177e4
LT
978 return epir;
979}
980
92ef6da3 981#ifdef CONFIG_CHECKPOINT_RESTORE
0791e364
CG
982static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
983{
984 struct rb_node *rbp;
985 struct epitem *epi;
986
b2ac2ea6 987 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
988 epi = rb_entry(rbp, struct epitem, rbn);
989 if (epi->ffd.fd == tfd) {
990 if (toff == 0)
991 return epi;
992 else
993 toff--;
994 }
995 cond_resched();
996 }
997
998 return NULL;
999}
1000
1001struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1002 unsigned long toff)
1003{
1004 struct file *file_raw;
1005 struct eventpoll *ep;
1006 struct epitem *epi;
1007
1008 if (!is_file_epoll(file))
1009 return ERR_PTR(-EINVAL);
1010
1011 ep = file->private_data;
1012
1013 mutex_lock(&ep->mtx);
1014 epi = ep_find_tfd(ep, tfd, toff);
1015 if (epi)
1016 file_raw = epi->ffd.file;
1017 else
1018 file_raw = ERR_PTR(-ENOENT);
1019 mutex_unlock(&ep->mtx);
1020
1021 return file_raw;
1022}
92ef6da3 1023#endif /* CONFIG_CHECKPOINT_RESTORE */
0791e364 1024
a218cc49
RP
1025/**
1026 * Adds a new entry to the tail of the list in a lockless way, i.e.
1027 * multiple CPUs are allowed to call this function concurrently.
1028 *
1029 * Beware: it is necessary to prevent any other modifications of the
1030 * existing list until all changes are completed, in other words
1031 * concurrent list_add_tail_lockless() calls should be protected
1032 * with a read lock, where write lock acts as a barrier which
1033 * makes sure all list_add_tail_lockless() calls are fully
1034 * completed.
1035 *
1036 * Also an element can be locklessly added to the list only in one
1037 * direction i.e. either to the tail either to the head, otherwise
1038 * concurrent access will corrupt the list.
1039 *
1040 * Returns %false if element has been already added to the list, %true
1041 * otherwise.
1042 */
1043static inline bool list_add_tail_lockless(struct list_head *new,
1044 struct list_head *head)
1045{
1046 struct list_head *prev;
1047
1048 /*
1049 * This is simple 'new->next = head' operation, but cmpxchg()
1050 * is used in order to detect that same element has been just
1051 * added to the list from another CPU: the winner observes
1052 * new->next == new.
1053 */
1054 if (cmpxchg(&new->next, new, head) != new)
1055 return false;
1056
1057 /*
1058 * Initially ->next of a new element must be updated with the head
1059 * (we are inserting to the tail) and only then pointers are atomically
1060 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1061 * updated before pointers are actually swapped and pointers are
1062 * swapped before prev->next is updated.
1063 */
1064
1065 prev = xchg(&head->prev, new);
1066
1067 /*
1068 * It is safe to modify prev->next and new->prev, because a new element
1069 * is added only to the tail and new->next is updated before XCHG.
1070 */
1071
1072 prev->next = new;
1073 new->prev = prev;
1074
1075 return true;
1076}
1077
1078/**
1079 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1080 * i.e. multiple CPUs are allowed to call this function concurrently.
1081 *
1082 * Returns %false if epi element has been already chained, %true otherwise.
1083 */
1084static inline bool chain_epi_lockless(struct epitem *epi)
1085{
1086 struct eventpoll *ep = epi->ep;
1087
0c54a6a4
KK
1088 /* Fast preliminary check */
1089 if (epi->next != EP_UNACTIVE_PTR)
1090 return false;
1091
a218cc49
RP
1092 /* Check that the same epi has not been just chained from another CPU */
1093 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1094 return false;
1095
1096 /* Atomically exchange tail */
1097 epi->next = xchg(&ep->ovflist, epi);
1098
1099 return true;
1100}
1101
1da177e4 1102/*
7699acd1 1103 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1104 * mechanism. It is called by the stored file descriptors when they
7699acd1 1105 * have events to report.
a218cc49
RP
1106 *
1107 * This callback takes a read lock in order not to content with concurrent
1108 * events from another file descriptors, thus all modifications to ->rdllist
1109 * or ->ovflist are lockless. Read lock is paired with the write lock from
1110 * ep_scan_ready_list(), which stops all list modifications and guarantees
1111 * that lists state is seen correctly.
1112 *
1113 * Another thing worth to mention is that ep_poll_callback() can be called
1114 * concurrently for the same @epi from different CPUs if poll table was inited
1115 * with several wait queues entries. Plural wakeup from different CPUs of a
1116 * single wait queue is serialized by wq.lock, but the case when multiple wait
1117 * queues are used should be detected accordingly. This is detected using
1118 * cmpxchg() operation.
1da177e4 1119 */
ac6424b9 1120static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1121{
7699acd1 1122 int pwake = 0;
7699acd1
DL
1123 struct epitem *epi = ep_item_from_wait(wait);
1124 struct eventpoll *ep = epi->ep;
3ad6f93e 1125 __poll_t pollflags = key_to_poll(key);
a218cc49 1126 unsigned long flags;
df0108c5 1127 int ewake = 0;
1da177e4 1128
a218cc49 1129 read_lock_irqsave(&ep->lock, flags);
1da177e4 1130
bf3b9f63
SS
1131 ep_set_busy_poll_napi_id(epi);
1132
7699acd1
DL
1133 /*
1134 * If the event mask does not contain any poll(2) event, we consider the
1135 * descriptor to be disabled. This condition is likely the effect of the
1136 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1137 * until the next EPOLL_CTL_MOD will be issued.
1138 */
1139 if (!(epi->event.events & ~EP_PRIVATE_BITS))
d47de16c
DL
1140 goto out_unlock;
1141
2dfa4eea
DL
1142 /*
1143 * Check the events coming with the callback. At this stage, not
1144 * every device reports the events in the "key" parameter of the
1145 * callback. We need to be able to handle both cases here, hence the
1146 * test for "key" != NULL before the event match test.
1147 */
3ad6f93e 1148 if (pollflags && !(pollflags & epi->event.events))
2dfa4eea
DL
1149 goto out_unlock;
1150
d47de16c 1151 /*
bf6a41db 1152 * If we are transferring events to userspace, we can hold no locks
d47de16c 1153 * (because we're accessing user memory, and because of linux f_op->poll()
bf6a41db 1154 * semantics). All the events that happen during that period of time are
d47de16c
DL
1155 * chained in ep->ovflist and requeued later on.
1156 */
c5a282e9 1157 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
0c54a6a4
KK
1158 if (chain_epi_lockless(epi))
1159 ep_pm_stay_awake_rcu(epi);
1160 } else if (!ep_is_linked(epi)) {
1161 /* In the usual case, add event to ready list. */
1162 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
c3e320b6 1163 ep_pm_stay_awake_rcu(epi);
4d7e30d9 1164 }
7699acd1 1165
7699acd1
DL
1166 /*
1167 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1168 * wait list.
1169 */
df0108c5 1170 if (waitqueue_active(&ep->wq)) {
b6a515c8 1171 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1172 !(pollflags & POLLFREE)) {
1173 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1174 case EPOLLIN:
1175 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1176 ewake = 1;
1177 break;
a9a08845
LT
1178 case EPOLLOUT:
1179 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1180 ewake = 1;
1181 break;
1182 case 0:
1183 ewake = 1;
1184 break;
1185 }
1186 }
a218cc49 1187 wake_up(&ep->wq);
df0108c5 1188 }
7699acd1
DL
1189 if (waitqueue_active(&ep->poll_wait))
1190 pwake++;
1191
d47de16c 1192out_unlock:
a218cc49 1193 read_unlock_irqrestore(&ep->lock, flags);
1da177e4 1194
7699acd1
DL
1195 /* We have to call this outside the lock */
1196 if (pwake)
efcdd350 1197 ep_poll_safewake(ep, epi);
7699acd1 1198
138e4ad6
ON
1199 if (!(epi->event.events & EPOLLEXCLUSIVE))
1200 ewake = 1;
1201
3ad6f93e 1202 if (pollflags & POLLFREE) {
138e4ad6
ON
1203 /*
1204 * If we race with ep_remove_wait_queue() it can miss
1205 * ->whead = NULL and do another remove_wait_queue() after
1206 * us, so we can't use __remove_wait_queue().
1207 */
1208 list_del_init(&wait->entry);
1209 /*
1210 * ->whead != NULL protects us from the race with ep_free()
1211 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1212 * held by the caller. Once we nullify it, nothing protects
1213 * ep/epi or even wait.
1214 */
1215 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1216 }
df0108c5 1217
138e4ad6 1218 return ewake;
7699acd1 1219}
1da177e4
LT
1220
1221/*
1222 * This is the callback that is used to add our wait queue to the
1223 * target file wakeup lists.
1224 */
1225static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1226 poll_table *pt)
1227{
364f374f
AV
1228 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1229 struct epitem *epi = epq->epi;
1da177e4
LT
1230 struct eppoll_entry *pwq;
1231
364f374f
AV
1232 if (unlikely(!epi)) // an earlier allocation has failed
1233 return;
1234
1235 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1236 if (unlikely(!pwq)) {
1237 epq->epi = NULL;
1238 return;
296e236e 1239 }
364f374f
AV
1240
1241 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1242 pwq->whead = whead;
1243 pwq->base = epi;
1244 if (epi->event.events & EPOLLEXCLUSIVE)
1245 add_wait_queue_exclusive(whead, &pwq->wait);
1246 else
1247 add_wait_queue(whead, &pwq->wait);
1248 pwq->next = epi->pwqlist;
1249 epi->pwqlist = pwq;
1da177e4
LT
1250}
1251
1da177e4
LT
1252static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1253{
1254 int kcmp;
b2ac2ea6 1255 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1256 struct epitem *epic;
b2ac2ea6 1257 bool leftmost = true;
1da177e4
LT
1258
1259 while (*p) {
1260 parent = *p;
1261 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1262 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1263 if (kcmp > 0) {
1da177e4 1264 p = &parent->rb_right;
b2ac2ea6
DB
1265 leftmost = false;
1266 } else
1da177e4
LT
1267 p = &parent->rb_left;
1268 }
1269 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1270 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1271}
1272
a80a6b85
AM
1273
1274
28d82dc1
JB
1275#define PATH_ARR_SIZE 5
1276/*
1277 * These are the number paths of length 1 to 5, that we are allowing to emanate
1278 * from a single file of interest. For example, we allow 1000 paths of length
1279 * 1, to emanate from each file of interest. This essentially represents the
1280 * potential wakeup paths, which need to be limited in order to avoid massive
1281 * uncontrolled wakeup storms. The common use case should be a single ep which
1282 * is connected to n file sources. In this case each file source has 1 path
1283 * of length 1. Thus, the numbers below should be more than sufficient. These
1284 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1285 * and delete can't add additional paths. Protected by the epmutex.
1286 */
1287static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1288static int path_count[PATH_ARR_SIZE];
1289
1290static int path_count_inc(int nests)
1291{
93dc6107
JB
1292 /* Allow an arbitrary number of depth 1 paths */
1293 if (nests == 0)
1294 return 0;
1295
28d82dc1
JB
1296 if (++path_count[nests] > path_limits[nests])
1297 return -1;
1298 return 0;
1299}
1300
1301static void path_count_init(void)
1302{
1303 int i;
1304
1305 for (i = 0; i < PATH_ARR_SIZE; i++)
1306 path_count[i] = 0;
1307}
1308
aebf15f0 1309static int reverse_path_check_proc(struct file *file, int depth)
28d82dc1
JB
1310{
1311 int error = 0;
28d82dc1
JB
1312 struct epitem *epi;
1313
0c320f77 1314 if (depth > EP_MAX_NESTS) /* too deep nesting */
99d84d43
AV
1315 return -1;
1316
ae10b2b4
JB
1317 /* CTL_DEL can remove links here, but that can't increase our count */
1318 rcu_read_lock();
1319 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
d16312a4
AV
1320 struct file *recepient = epi->ep->file;
1321 if (WARN_ON(!is_file_epoll(recepient)))
1322 continue;
1323 if (list_empty(&recepient->f_ep_links))
1324 error = path_count_inc(depth);
1325 else
1326 error = reverse_path_check_proc(recepient, depth + 1);
1327 if (error != 0)
1328 break;
28d82dc1 1329 }
ae10b2b4 1330 rcu_read_unlock();
28d82dc1
JB
1331 return error;
1332}
1333
1334/**
1335 * reverse_path_check - The tfile_check_list is list of file *, which have
1336 * links that are proposed to be newly added. We need to
1337 * make sure that those added links don't add too many
1338 * paths such that we will spend all our time waking up
1339 * eventpoll objects.
1340 *
1341 * Returns: Returns zero if the proposed links don't create too many paths,
1342 * -1 otherwise.
1343 */
1344static int reverse_path_check(void)
1345{
28d82dc1
JB
1346 int error = 0;
1347 struct file *current_file;
1348
1349 /* let's call this for all tfiles */
1350 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
28d82dc1 1351 path_count_init();
aebf15f0 1352 error = reverse_path_check_proc(current_file, 0);
28d82dc1
JB
1353 if (error)
1354 break;
1355 }
1356 return error;
1357}
1358
4d7e30d9
AH
1359static int ep_create_wakeup_source(struct epitem *epi)
1360{
3701cb59 1361 struct name_snapshot n;
eea1d585 1362 struct wakeup_source *ws;
4d7e30d9
AH
1363
1364 if (!epi->ep->ws) {
c8377adf 1365 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1366 if (!epi->ep->ws)
1367 return -ENOMEM;
1368 }
1369
3701cb59
AV
1370 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1371 ws = wakeup_source_register(NULL, n.name.name);
1372 release_dentry_name_snapshot(&n);
eea1d585
EW
1373
1374 if (!ws)
4d7e30d9 1375 return -ENOMEM;
eea1d585 1376 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1377
1378 return 0;
1379}
1380
eea1d585
EW
1381/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1382static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1383{
eea1d585
EW
1384 struct wakeup_source *ws = ep_wakeup_source(epi);
1385
d6d67e72 1386 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1387
1388 /*
1389 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1390 * used internally by wakeup_source_remove, too (called by
1391 * wakeup_source_unregister), so we cannot use call_rcu
1392 */
1393 synchronize_rcu();
1394 wakeup_source_unregister(ws);
4d7e30d9
AH
1395}
1396
c7ea7630
DL
1397/*
1398 * Must be called with "mtx" held.
1399 */
bec1a502 1400static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1401 struct file *tfile, int fd, int full_check)
1da177e4 1402{
d85e2aa2
AV
1403 int error, pwake = 0;
1404 __poll_t revents;
52bd19f7 1405 long user_watches;
1da177e4
LT
1406 struct epitem *epi;
1407 struct ep_pqueue epq;
1408
92e64178
DB
1409 lockdep_assert_irqs_enabled();
1410
52bd19f7
RH
1411 user_watches = atomic_long_read(&ep->user->epoll_watches);
1412 if (unlikely(user_watches >= max_user_watches))
7ef9964e 1413 return -ENOSPC;
e94b1766 1414 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
7ef9964e 1415 return -ENOMEM;
1da177e4
LT
1416
1417 /* Item initialization follow here ... */
1da177e4
LT
1418 INIT_LIST_HEAD(&epi->rdllink);
1419 INIT_LIST_HEAD(&epi->fllink);
80285b75 1420 epi->pwqlist = NULL;
1da177e4 1421 epi->ep = ep;
b030a4dd 1422 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1423 epi->event = *event;
d47de16c 1424 epi->next = EP_UNACTIVE_PTR;
4d7e30d9
AH
1425 if (epi->event.events & EPOLLWAKEUP) {
1426 error = ep_create_wakeup_source(epi);
1427 if (error)
1428 goto error_create_wakeup_source;
1429 } else {
eea1d585 1430 RCU_INIT_POINTER(epi->ws, NULL);
4d7e30d9 1431 }
1da177e4 1432
f8d4f44d
AV
1433 /* Add the current item to the list of active epoll hook for this file */
1434 spin_lock(&tfile->f_lock);
1435 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1436 spin_unlock(&tfile->f_lock);
1437
1438 /*
1439 * Add the current item to the RB tree. All RB tree operations are
1440 * protected by "mtx", and ep_insert() is called with "mtx" held.
1441 */
1442 ep_rbtree_insert(ep, epi);
1443
1444 /* now check if we've created too many backpaths */
1445 error = -EINVAL;
1446 if (full_check && reverse_path_check())
1447 goto error_remove_epi;
1448
1da177e4
LT
1449 /* Initialize the poll table using the queue callback */
1450 epq.epi = epi;
1451 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1452
1453 /*
1454 * Attach the item to the poll hooks and get current event bits.
1455 * We can safely use the file* here because its usage count has
c7ea7630
DL
1456 * been increased by the caller of this function. Note that after
1457 * this operation completes, the poll callback can start hitting
1458 * the new item.
1da177e4 1459 */
37b5e521 1460 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1461
1462 /*
1463 * We have to check if something went wrong during the poll wait queue
1464 * install process. Namely an allocation for a wait queue failed due
1465 * high memory pressure.
1466 */
7ef9964e 1467 error = -ENOMEM;
364f374f 1468 if (!epq.epi)
7699acd1 1469 goto error_unregister;
1da177e4 1470
c7ea7630 1471 /* We have to drop the new item inside our item list to keep track of it */
a218cc49 1472 write_lock_irq(&ep->lock);
c7ea7630 1473
bf3b9f63
SS
1474 /* record NAPI ID of new item if present */
1475 ep_set_busy_poll_napi_id(epi);
1476
1da177e4 1477 /* If the file is already "ready" we drop it inside the ready list */
992991c0 1478 if (revents && !ep_is_linked(epi)) {
1da177e4 1479 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1480 ep_pm_stay_awake(epi);
1da177e4
LT
1481
1482 /* Notify waiting tasks that events are available */
1483 if (waitqueue_active(&ep->wq))
a218cc49 1484 wake_up(&ep->wq);
1da177e4
LT
1485 if (waitqueue_active(&ep->poll_wait))
1486 pwake++;
1487 }
1488
a218cc49 1489 write_unlock_irq(&ep->lock);
1da177e4 1490
52bd19f7 1491 atomic_long_inc(&ep->user->epoll_watches);
7ef9964e 1492
1da177e4
LT
1493 /* We have to call this outside the lock */
1494 if (pwake)
efcdd350 1495 ep_poll_safewake(ep, NULL);
1da177e4 1496
1da177e4
LT
1497 return 0;
1498
f8d4f44d
AV
1499error_unregister:
1500 ep_unregister_pollwait(ep, epi);
28d82dc1
JB
1501error_remove_epi:
1502 spin_lock(&tfile->f_lock);
ae10b2b4 1503 list_del_rcu(&epi->fllink);
28d82dc1
JB
1504 spin_unlock(&tfile->f_lock);
1505
b2ac2ea6 1506 rb_erase_cached(&epi->rbn, &ep->rbr);
28d82dc1 1507
1da177e4
LT
1508 /*
1509 * We need to do this because an event could have been arrived on some
67647d0f
DL
1510 * allocated wait queue. Note that we don't care about the ep->ovflist
1511 * list, since that is used/cleaned only inside a section bound by "mtx".
1512 * And ep_insert() is called with "mtx" held.
1da177e4 1513 */
a218cc49 1514 write_lock_irq(&ep->lock);
992991c0 1515 if (ep_is_linked(epi))
6192bd53 1516 list_del_init(&epi->rdllink);
a218cc49 1517 write_unlock_irq(&ep->lock);
1da177e4 1518
eea1d585 1519 wakeup_source_unregister(ep_wakeup_source(epi));
4d7e30d9
AH
1520
1521error_create_wakeup_source:
b030a4dd 1522 kmem_cache_free(epi_cache, epi);
7ef9964e 1523
1da177e4
LT
1524 return error;
1525}
1526
1da177e4
LT
1527/*
1528 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1529 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1530 */
bec1a502
AV
1531static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1532 const struct epoll_event *event)
1da177e4
LT
1533{
1534 int pwake = 0;
626cf236
HV
1535 poll_table pt;
1536
92e64178
DB
1537 lockdep_assert_irqs_enabled();
1538
626cf236 1539 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1540
1541 /*
e057e15f
TB
1542 * Set the new event interest mask before calling f_op->poll();
1543 * otherwise we might miss an event that happens between the
1544 * f_op->poll() call and the new event set registering.
1da177e4 1545 */
128dd175 1546 epi->event.events = event->events; /* need barrier below */
e057e15f 1547 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1548 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1549 if (!ep_has_wakeup_source(epi))
4d7e30d9 1550 ep_create_wakeup_source(epi);
eea1d585 1551 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1552 ep_destroy_wakeup_source(epi);
1553 }
1da177e4 1554
128dd175
EW
1555 /*
1556 * The following barrier has two effects:
1557 *
1558 * 1) Flush epi changes above to other CPUs. This ensures
1559 * we do not miss events from ep_poll_callback if an
1560 * event occurs immediately after we call f_op->poll().
a218cc49 1561 * We need this because we did not take ep->lock while
128dd175 1562 * changing epi above (but ep_poll_callback does take
a218cc49 1563 * ep->lock).
128dd175
EW
1564 *
1565 * 2) We also need to ensure we do not miss _past_ events
1566 * when calling f_op->poll(). This barrier also
1567 * pairs with the barrier in wq_has_sleeper (see
1568 * comments for wq_has_sleeper).
1569 *
1570 * This barrier will now guarantee ep_poll_callback or f_op->poll
1571 * (or both) will notice the readiness of an item.
1572 */
1573 smp_mb();
1574
1da177e4
LT
1575 /*
1576 * Get current event bits. We can safely use the file* here because
1577 * its usage count has been increased by the caller of this function.
c7ea7630 1578 * If the item is "hot" and it is not registered inside the ready
67647d0f 1579 * list, push it inside.
1da177e4 1580 */
69112736 1581 if (ep_item_poll(epi, &pt, 1)) {
a218cc49 1582 write_lock_irq(&ep->lock);
992991c0 1583 if (!ep_is_linked(epi)) {
c7ea7630 1584 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1585 ep_pm_stay_awake(epi);
c7ea7630
DL
1586
1587 /* Notify waiting tasks that events are available */
1588 if (waitqueue_active(&ep->wq))
a218cc49 1589 wake_up(&ep->wq);
c7ea7630
DL
1590 if (waitqueue_active(&ep->poll_wait))
1591 pwake++;
7699acd1 1592 }
a218cc49 1593 write_unlock_irq(&ep->lock);
7699acd1 1594 }
1da177e4 1595
7699acd1
DL
1596 /* We have to call this outside the lock */
1597 if (pwake)
efcdd350 1598 ep_poll_safewake(ep, NULL);
1da177e4 1599
7699acd1 1600 return 0;
1da177e4
LT
1601}
1602
d85e2aa2 1603static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 1604 void *priv)
1da177e4 1605{
5071f97e 1606 struct ep_send_events_data *esed = priv;
d85e2aa2 1607 __poll_t revents;
4e0982a0
DB
1608 struct epitem *epi, *tmp;
1609 struct epoll_event __user *uevent = esed->events;
eea1d585 1610 struct wakeup_source *ws;
626cf236
HV
1611 poll_table pt;
1612
1613 init_poll_funcptr(&pt, NULL);
4e0982a0 1614 esed->res = 0;
1da177e4 1615
296e236e 1616 /*
5071f97e
DL
1617 * We can loop without lock because we are passed a task private list.
1618 * Items cannot vanish during the loop because ep_scan_ready_list() is
1619 * holding "mtx" during this call.
296e236e 1620 */
21877e1a
DB
1621 lockdep_assert_held(&ep->mtx);
1622
4e0982a0
DB
1623 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1624 if (esed->res >= esed->maxevents)
1625 break;
d47de16c 1626
4d7e30d9
AH
1627 /*
1628 * Activate ep->ws before deactivating epi->ws to prevent
1629 * triggering auto-suspend here (in case we reactive epi->ws
1630 * below).
1631 *
1632 * This could be rearranged to delay the deactivation of epi->ws
1633 * instead, but then epi->ws would temporarily be out of sync
1634 * with ep_is_linked().
1635 */
eea1d585
EW
1636 ws = ep_wakeup_source(epi);
1637 if (ws) {
1638 if (ws->active)
1639 __pm_stay_awake(ep->ws);
1640 __pm_relax(ws);
1641 }
1642
d47de16c 1643 list_del_init(&epi->rdllink);
1da177e4 1644
296e236e 1645 /*
5071f97e
DL
1646 * If the event mask intersect the caller-requested one,
1647 * deliver the event to userspace. Again, ep_scan_ready_list()
4e0982a0 1648 * is holding ep->mtx, so no operations coming from userspace
5071f97e 1649 * can change the item.
296e236e 1650 */
4e0982a0
DB
1651 revents = ep_item_poll(epi, &pt, 1);
1652 if (!revents)
1653 continue;
1654
1655 if (__put_user(revents, &uevent->events) ||
1656 __put_user(epi->event.data, &uevent->data)) {
1657 list_add(&epi->rdllink, head);
1658 ep_pm_stay_awake(epi);
1659 if (!esed->res)
1660 esed->res = -EFAULT;
1661 return 0;
1662 }
1663 esed->res++;
1664 uevent++;
1665 if (epi->event.events & EPOLLONESHOT)
1666 epi->event.events &= EP_PRIVATE_BITS;
1667 else if (!(epi->event.events & EPOLLET)) {
1668 /*
1669 * If this file has been added with Level
1670 * Trigger mode, we need to insert back inside
1671 * the ready list, so that the next call to
1672 * epoll_wait() will check again the events
1673 * availability. At this point, no one can insert
1674 * into ep->rdllist besides us. The epoll_ctl()
1675 * callers are locked out by
1676 * ep_scan_ready_list() holding "mtx" and the
1677 * poll callback will queue them in ep->ovflist.
1678 */
1679 list_add_tail(&epi->rdllink, &ep->rdllist);
1680 ep_pm_stay_awake(epi);
296e236e
DL
1681 }
1682 }
5071f97e 1683
d7ebbe46 1684 return 0;
5071f97e 1685}
d47de16c 1686
296e236e
DL
1687static int ep_send_events(struct eventpoll *ep,
1688 struct epoll_event __user *events, int maxevents)
5071f97e
DL
1689{
1690 struct ep_send_events_data esed;
1da177e4 1691
5071f97e
DL
1692 esed.maxevents = maxevents;
1693 esed.events = events;
6192bd53 1694
d7ebbe46
AV
1695 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1696 return esed.res;
1da177e4
LT
1697}
1698
766b9f92 1699static inline struct timespec64 ep_set_mstimeout(long ms)
0781b909 1700{
766b9f92 1701 struct timespec64 now, ts = {
0781b909
ED
1702 .tv_sec = ms / MSEC_PER_SEC,
1703 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1704 };
1705
766b9f92
DD
1706 ktime_get_ts64(&now);
1707 return timespec64_add_safe(now, ts);
0781b909
ED
1708}
1709
f4d93ad7
SB
1710/**
1711 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1712 * event buffer.
1713 *
1714 * @ep: Pointer to the eventpoll context.
1715 * @events: Pointer to the userspace buffer where the ready events should be
1716 * stored.
1717 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1718 * @timeout: Maximum timeout for the ready events fetch operation, in
1719 * milliseconds. If the @timeout is zero, the function will not block,
1720 * while if the @timeout is less than zero, the function will block
1721 * until at least one event has been retrieved (or an error
1722 * occurred).
1723 *
1724 * Returns: Returns the number of ready events which have been fetched, or an
1725 * error code, in case of error.
1726 */
1da177e4
LT
1727static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1728 int maxevents, long timeout)
1729{
f4d93ad7 1730 int res = 0, eavail, timed_out = 0;
da8b44d5 1731 u64 slack = 0;
ac6424b9 1732 wait_queue_entry_t wait;
95aac7b1
SB
1733 ktime_t expires, *to = NULL;
1734
679abf38
DB
1735 lockdep_assert_irqs_enabled();
1736
95aac7b1 1737 if (timeout > 0) {
766b9f92 1738 struct timespec64 end_time = ep_set_mstimeout(timeout);
0781b909 1739
95aac7b1
SB
1740 slack = select_estimate_accuracy(&end_time);
1741 to = &expires;
766b9f92 1742 *to = timespec64_to_ktime(end_time);
95aac7b1 1743 } else if (timeout == 0) {
f4d93ad7
SB
1744 /*
1745 * Avoid the unnecessary trip to the wait queue loop, if the
c5a282e9
DB
1746 * caller specified a non blocking operation. We still need
1747 * lock because we could race and not see an epi being added
1748 * to the ready list while in irq callback. Thus incorrectly
1749 * returning 0 back to userspace.
f4d93ad7 1750 */
95aac7b1 1751 timed_out = 1;
c5a282e9 1752
a218cc49 1753 write_lock_irq(&ep->lock);
c5a282e9 1754 eavail = ep_events_available(ep);
a218cc49 1755 write_unlock_irq(&ep->lock);
c5a282e9 1756
35cff1a6 1757 goto send_events;
95aac7b1 1758 }
1da177e4 1759
f4d93ad7 1760fetch_events:
bf3b9f63
SS
1761
1762 if (!ep_events_available(ep))
1763 ep_busy_loop(ep, timed_out);
1764
c5a282e9
DB
1765 eavail = ep_events_available(ep);
1766 if (eavail)
35cff1a6 1767 goto send_events;
1da177e4 1768
c5a282e9
DB
1769 /*
1770 * Busy poll timed out. Drop NAPI ID for now, we can add
1771 * it back in when we have moved a socket with a valid NAPI
1772 * ID onto the ready list.
1773 */
1774 ep_reset_busy_poll_napi_id(ep);
bf3b9f63 1775
412895f0
RP
1776 do {
1777 /*
1778 * Internally init_wait() uses autoremove_wake_function(),
1779 * thus wait entry is removed from the wait queue on each
1780 * wakeup. Why it is important? In case of several waiters
1781 * each new wakeup will hit the next waiter, giving it the
1782 * chance to harvest new event. Otherwise wakeup can be
1783 * lost. This is also good performance-wise, because on
1784 * normal wakeup path no need to call __remove_wait_queue()
1785 * explicitly, thus ep->lock is not taken, which halts the
1786 * event delivery.
1787 */
1788 init_wait(&wait);
1da177e4 1789
65759097 1790 write_lock_irq(&ep->lock);
bf3b9f63 1791 /*
65759097
RP
1792 * Barrierless variant, waitqueue_active() is called under
1793 * the same lock on wakeup ep_poll_callback() side, so it
1794 * is safe to avoid an explicit barrier.
bf3b9f63 1795 */
65759097
RP
1796 __set_current_state(TASK_INTERRUPTIBLE);
1797
1da177e4 1798 /*
65759097
RP
1799 * Do the final check under the lock. ep_scan_ready_list()
1800 * plays with two lists (->rdllist and ->ovflist) and there
1801 * is always a race when both lists are empty for short
1802 * period of time although events are pending, so lock is
1803 * important.
1da177e4 1804 */
65759097
RP
1805 eavail = ep_events_available(ep);
1806 if (!eavail) {
1807 if (signal_pending(current))
1808 res = -EINTR;
1809 else
1810 __add_wait_queue_exclusive(&ep->wq, &wait);
c5a282e9 1811 }
65759097 1812 write_unlock_irq(&ep->lock);
95aac7b1 1813
65759097 1814 if (eavail || res)
c5a282e9 1815 break;
1da177e4 1816
abc610e0 1817 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
c5a282e9 1818 timed_out = 1;
abc610e0
DB
1819 break;
1820 }
412895f0
RP
1821
1822 /* We were woken up, thus go and try to harvest some events */
1823 eavail = 1;
1824
1825 } while (0);
1da177e4 1826
c5a282e9 1827 __set_current_state(TASK_RUNNING);
1da177e4 1828
412895f0
RP
1829 if (!list_empty_careful(&wait.entry)) {
1830 write_lock_irq(&ep->lock);
1831 __remove_wait_queue(&ep->wq, &wait);
1832 write_unlock_irq(&ep->lock);
1833 }
1834
35cff1a6 1835send_events:
65759097
RP
1836 if (fatal_signal_pending(current)) {
1837 /*
1838 * Always short-circuit for fatal signals to allow
1839 * threads to make a timely exit without the chance of
1840 * finding more events available and fetching
1841 * repeatedly.
1842 */
1843 res = -EINTR;
1844 }
1da177e4
LT
1845 /*
1846 * Try to transfer events to user space. In case we get 0 events and
1847 * there's still timeout left over, we go trying again in search of
1848 * more luck.
1849 */
1850 if (!res && eavail &&
95aac7b1 1851 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
f4d93ad7 1852 goto fetch_events;
1da177e4
LT
1853
1854 return res;
1855}
1856
22bacca4 1857/**
773318ed 1858 * ep_loop_check_proc - verify that adding an epoll file inside another
22bacca4
DL
1859 * epoll structure, does not violate the constraints, in
1860 * terms of closed loops, or too deep chains (which can
1861 * result in excessive stack usage).
1862 *
1863 * @priv: Pointer to the epoll file to be currently checked.
1864 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1865 * data structure pointer.
1866 * @call_nests: Current dept of the @ep_call_nested() call stack.
1867 *
1868 * Returns: Returns zero if adding the epoll @file inside current epoll
1869 * structure @ep does not violate the constraints, or -1 otherwise.
1870 */
773318ed 1871static int ep_loop_check_proc(void *priv, void *cookie, int depth)
22bacca4
DL
1872{
1873 int error = 0;
1874 struct file *file = priv;
1875 struct eventpoll *ep = file->private_data;
28d82dc1 1876 struct eventpoll *ep_tovisit;
22bacca4
DL
1877 struct rb_node *rbp;
1878 struct epitem *epi;
1879
99d84d43
AV
1880 if (!ep_push_nested(cookie)) /* limits recursion */
1881 return -1;
1882
773318ed 1883 mutex_lock_nested(&ep->mtx, depth + 1);
18306c40 1884 ep->gen = loop_check_gen;
b2ac2ea6 1885 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
1886 epi = rb_entry(rbp, struct epitem, rbn);
1887 if (unlikely(is_file_epoll(epi->ffd.file))) {
28d82dc1 1888 ep_tovisit = epi->ffd.file->private_data;
18306c40 1889 if (ep_tovisit->gen == loop_check_gen)
28d82dc1 1890 continue;
773318ed
AV
1891 error = ep_loop_check_proc(epi->ffd.file, ep_tovisit,
1892 depth + 1);
22bacca4
DL
1893 if (error != 0)
1894 break;
28d82dc1
JB
1895 } else {
1896 /*
1897 * If we've reached a file that is not associated with
1898 * an ep, then we need to check if the newly added
1899 * links are going to add too many wakeup paths. We do
1900 * this by adding it to the tfile_check_list, if it's
1901 * not already there, and calling reverse_path_check()
1902 * during ep_insert().
1903 */
a9ed4a65 1904 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
77f4689d
AV
1905 if (get_file_rcu(epi->ffd.file))
1906 list_add(&epi->ffd.file->f_tfile_llink,
1907 &tfile_check_list);
a9ed4a65 1908 }
22bacca4
DL
1909 }
1910 }
1911 mutex_unlock(&ep->mtx);
99d84d43 1912 nesting--; /* pop */
22bacca4
DL
1913
1914 return error;
1915}
1916
1917/**
1918 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1919 * another epoll file (represented by @ep) does not create
1920 * closed loops or too deep chains.
1921 *
1922 * @ep: Pointer to the epoll private data structure.
1923 * @file: Pointer to the epoll file to be checked.
1924 *
1925 * Returns: Returns zero if adding the epoll @file inside current epoll
1926 * structure @ep does not violate the constraints, or -1 otherwise.
1927 */
1928static int ep_loop_check(struct eventpoll *ep, struct file *file)
1929{
773318ed 1930 return ep_loop_check_proc(file, ep, 0);
28d82dc1
JB
1931}
1932
1933static void clear_tfile_check_list(void)
1934{
1935 struct file *file;
1936
1937 /* first clear the tfile_check_list */
1938 while (!list_empty(&tfile_check_list)) {
1939 file = list_first_entry(&tfile_check_list, struct file,
1940 f_tfile_llink);
1941 list_del_init(&file->f_tfile_llink);
a9ed4a65 1942 fput(file);
28d82dc1
JB
1943 }
1944 INIT_LIST_HEAD(&tfile_check_list);
22bacca4
DL
1945}
1946
7699acd1 1947/*
523723bb 1948 * Open an eventpoll file descriptor.
7699acd1 1949 */
791eb22e 1950static int do_epoll_create(int flags)
7699acd1 1951{
28d82dc1 1952 int error, fd;
bb57c3ed 1953 struct eventpoll *ep = NULL;
28d82dc1 1954 struct file *file;
7699acd1 1955
e38b36f3
UD
1956 /* Check the EPOLL_* constant for consistency. */
1957 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1958
296e236e
DL
1959 if (flags & ~EPOLL_CLOEXEC)
1960 return -EINVAL;
7699acd1 1961 /*
bb57c3ed 1962 * Create the internal data structure ("struct eventpoll").
7699acd1 1963 */
9fe5ad9c 1964 error = ep_alloc(&ep);
bb57c3ed
DL
1965 if (error < 0)
1966 return error;
7699acd1
DL
1967 /*
1968 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 1969 * a file structure and a free file descriptor.
7699acd1 1970 */
28d82dc1
JB
1971 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1972 if (fd < 0) {
1973 error = fd;
1974 goto out_free_ep;
1975 }
1976 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 1977 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
1978 if (IS_ERR(file)) {
1979 error = PTR_ERR(file);
1980 goto out_free_fd;
1981 }
28d82dc1 1982 ep->file = file;
98022748 1983 fd_install(fd, file);
28d82dc1
JB
1984 return fd;
1985
1986out_free_fd:
1987 put_unused_fd(fd);
1988out_free_ep:
1989 ep_free(ep);
bb57c3ed 1990 return error;
7699acd1
DL
1991}
1992
791eb22e
DB
1993SYSCALL_DEFINE1(epoll_create1, int, flags)
1994{
1995 return do_epoll_create(flags);
1996}
1997
5a8a82b1 1998SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 1999{
bfe3891a 2000 if (size <= 0)
9fe5ad9c
UD
2001 return -EINVAL;
2002
791eb22e 2003 return do_epoll_create(0);
a0998b50
UD
2004}
2005
39220e8d
JA
2006static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2007 bool nonblock)
2008{
2009 if (!nonblock) {
2010 mutex_lock_nested(mutex, depth);
2011 return 0;
2012 }
2013 if (mutex_trylock(mutex))
2014 return 0;
2015 return -EAGAIN;
2016}
2017
2018int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2019 bool nonblock)
7699acd1
DL
2020{
2021 int error;
67347fe4 2022 int full_check = 0;
7e3fb584 2023 struct fd f, tf;
7699acd1
DL
2024 struct eventpoll *ep;
2025 struct epitem *epi;
67347fe4 2026 struct eventpoll *tep = NULL;
7699acd1 2027
7699acd1 2028 error = -EBADF;
7e3fb584
AV
2029 f = fdget(epfd);
2030 if (!f.file)
7699acd1
DL
2031 goto error_return;
2032
2033 /* Get the "struct file *" for the target file */
7e3fb584
AV
2034 tf = fdget(fd);
2035 if (!tf.file)
7699acd1
DL
2036 goto error_fput;
2037
2038 /* The target file descriptor must support poll */
2039 error = -EPERM;
9965ed17 2040 if (!file_can_poll(tf.file))
7699acd1
DL
2041 goto error_tgt_fput;
2042
4d7e30d9 2043 /* Check if EPOLLWAKEUP is allowed */
c680e41b 2044 if (ep_op_has_event(op))
58e41a44 2045 ep_take_care_of_epollwakeup(epds);
4d7e30d9 2046
7699acd1
DL
2047 /*
2048 * We have to check that the file structure underneath the file descriptor
2049 * the user passed to us _is_ an eventpoll file. And also we do not permit
2050 * adding an epoll file descriptor inside itself.
2051 */
2052 error = -EINVAL;
7e3fb584 2053 if (f.file == tf.file || !is_file_epoll(f.file))
7699acd1
DL
2054 goto error_tgt_fput;
2055
df0108c5
JB
2056 /*
2057 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2058 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2059 * Also, we do not currently supported nested exclusive wakeups.
2060 */
58e41a44 2061 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2062 if (op == EPOLL_CTL_MOD)
2063 goto error_tgt_fput;
2064 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
58e41a44 2065 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
b6a515c8
JB
2066 goto error_tgt_fput;
2067 }
df0108c5 2068
7699acd1
DL
2069 /*
2070 * At this point it is safe to assume that the "private_data" contains
2071 * our own data structure.
2072 */
7e3fb584 2073 ep = f.file->private_data;
7699acd1 2074
22bacca4
DL
2075 /*
2076 * When we insert an epoll file descriptor, inside another epoll file
2077 * descriptor, there is the change of creating closed loops, which are
28d82dc1
JB
2078 * better be handled here, than in more critical paths. While we are
2079 * checking for loops we also determine the list of files reachable
2080 * and hang them on the tfile_check_list, so we can check that we
2081 * haven't created too many possible wakeup paths.
22bacca4 2082 *
67347fe4
JB
2083 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2084 * the epoll file descriptor is attaching directly to a wakeup source,
2085 * unless the epoll file descriptor is nested. The purpose of taking the
2086 * 'epmutex' on add is to prevent complex toplogies such as loops and
2087 * deep wakeup paths from forming in parallel through multiple
2088 * EPOLL_CTL_ADD operations.
22bacca4 2089 */
39220e8d
JA
2090 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2091 if (error)
2092 goto error_tgt_fput;
28d82dc1 2093 if (op == EPOLL_CTL_ADD) {
67347fe4 2094 if (!list_empty(&f.file->f_ep_links) ||
fe0a916c 2095 ep->gen == loop_check_gen ||
67347fe4 2096 is_file_epoll(tf.file)) {
67347fe4 2097 mutex_unlock(&ep->mtx);
39220e8d
JA
2098 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2099 if (error)
2100 goto error_tgt_fput;
18306c40 2101 loop_check_gen++;
39220e8d 2102 full_check = 1;
67347fe4
JB
2103 if (is_file_epoll(tf.file)) {
2104 error = -ELOOP;
52c47969 2105 if (ep_loop_check(ep, tf.file) != 0)
67347fe4 2106 goto error_tgt_fput;
a9ed4a65
MZ
2107 } else {
2108 get_file(tf.file);
67347fe4
JB
2109 list_add(&tf.file->f_tfile_llink,
2110 &tfile_check_list);
a9ed4a65 2111 }
39220e8d 2112 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
52c47969 2113 if (error)
39220e8d 2114 goto error_tgt_fput;
67347fe4
JB
2115 if (is_file_epoll(tf.file)) {
2116 tep = tf.file->private_data;
39220e8d
JA
2117 error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2118 if (error) {
2119 mutex_unlock(&ep->mtx);
52c47969 2120 goto error_tgt_fput;
39220e8d 2121 }
13d51807 2122 }
67347fe4
JB
2123 }
2124 }
7699acd1 2125
67647d0f
DL
2126 /*
2127 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2128 * above, we can be sure to be able to use the item looked up by
2129 * ep_find() till we release the mutex.
2130 */
7e3fb584 2131 epi = ep_find(ep, tf.file, fd);
7699acd1
DL
2132
2133 error = -EINVAL;
2134 switch (op) {
2135 case EPOLL_CTL_ADD:
2136 if (!epi) {
58e41a44
JA
2137 epds->events |= EPOLLERR | EPOLLHUP;
2138 error = ep_insert(ep, epds, tf.file, fd, full_check);
7699acd1
DL
2139 } else
2140 error = -EEXIST;
2141 break;
2142 case EPOLL_CTL_DEL:
2143 if (epi)
2144 error = ep_remove(ep, epi);
2145 else
2146 error = -ENOENT;
2147 break;
2148 case EPOLL_CTL_MOD:
2149 if (epi) {
b6a515c8 2150 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
58e41a44
JA
2151 epds->events |= EPOLLERR | EPOLLHUP;
2152 error = ep_modify(ep, epi, epds);
b6a515c8 2153 }
7699acd1
DL
2154 } else
2155 error = -ENOENT;
2156 break;
2157 }
67347fe4
JB
2158 if (tep != NULL)
2159 mutex_unlock(&tep->mtx);
d47de16c 2160 mutex_unlock(&ep->mtx);
7699acd1
DL
2161
2162error_tgt_fput:
52c47969
AV
2163 if (full_check) {
2164 clear_tfile_check_list();
18306c40 2165 loop_check_gen++;
22bacca4 2166 mutex_unlock(&epmutex);
52c47969 2167 }
22bacca4 2168
7e3fb584 2169 fdput(tf);
7699acd1 2170error_fput:
7e3fb584 2171 fdput(f);
7699acd1 2172error_return:
7699acd1
DL
2173
2174 return error;
2175}
2176
58e41a44
JA
2177/*
2178 * The following function implements the controller interface for
2179 * the eventpoll file that enables the insertion/removal/change of
2180 * file descriptors inside the interest set.
2181 */
2182SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2183 struct epoll_event __user *, event)
2184{
2185 struct epoll_event epds;
2186
2187 if (ep_op_has_event(op) &&
2188 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2189 return -EFAULT;
2190
39220e8d 2191 return do_epoll_ctl(epfd, op, fd, &epds, false);
58e41a44
JA
2192}
2193
7699acd1
DL
2194/*
2195 * Implement the event wait interface for the eventpoll file. It is the kernel
2196 * part of the user space epoll_wait(2).
2197 */
791eb22e
DB
2198static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2199 int maxevents, int timeout)
7699acd1 2200{
2903ff01
AV
2201 int error;
2202 struct fd f;
7699acd1
DL
2203 struct eventpoll *ep;
2204
7699acd1
DL
2205 /* The maximum number of event must be greater than zero */
2206 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2207 return -EINVAL;
2208
2209 /* Verify that the area passed by the user is writeable */
96d4f267 2210 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2903ff01 2211 return -EFAULT;
7699acd1
DL
2212
2213 /* Get the "struct file *" for the eventpoll file */
2903ff01
AV
2214 f = fdget(epfd);
2215 if (!f.file)
2216 return -EBADF;
7699acd1
DL
2217
2218 /*
2219 * We have to check that the file structure underneath the fd
2220 * the user passed to us _is_ an eventpoll file.
2221 */
2222 error = -EINVAL;
2903ff01 2223 if (!is_file_epoll(f.file))
7699acd1
DL
2224 goto error_fput;
2225
2226 /*
2227 * At this point it is safe to assume that the "private_data" contains
2228 * our own data structure.
2229 */
2903ff01 2230 ep = f.file->private_data;
7699acd1
DL
2231
2232 /* Time to fish for events ... */
2233 error = ep_poll(ep, events, maxevents, timeout);
2234
2235error_fput:
2903ff01 2236 fdput(f);
7699acd1
DL
2237 return error;
2238}
2239
791eb22e
DB
2240SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2241 int, maxevents, int, timeout)
2242{
2243 return do_epoll_wait(epfd, events, maxevents, timeout);
2244}
2245
7699acd1
DL
2246/*
2247 * Implement the event wait interface for the eventpoll file. It is the kernel
2248 * part of the user space epoll_pwait(2).
2249 */
5a8a82b1
HC
2250SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2251 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2252 size_t, sigsetsize)
7699acd1
DL
2253{
2254 int error;
7699acd1
DL
2255
2256 /*
2257 * If the caller wants a certain signal mask to be set during the wait,
2258 * we apply it here.
2259 */
b772434b 2260 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2261 if (error)
2262 return error;
7699acd1 2263
791eb22e 2264 error = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2265 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2266
2267 return error;
2268}
2269
35280bd4
AV
2270#ifdef CONFIG_COMPAT
2271COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2272 struct epoll_event __user *, events,
2273 int, maxevents, int, timeout,
2274 const compat_sigset_t __user *, sigmask,
2275 compat_size_t, sigsetsize)
2276{
2277 long err;
35280bd4
AV
2278
2279 /*
2280 * If the caller wants a certain signal mask to be set during the wait,
2281 * we apply it here.
2282 */
b772434b 2283 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2284 if (err)
2285 return err;
35280bd4 2286
791eb22e 2287 err = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2288 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2289
2290 return err;
2291}
2292#endif
2293
1da177e4
LT
2294static int __init eventpoll_init(void)
2295{
7ef9964e
DL
2296 struct sysinfo si;
2297
2298 si_meminfo(&si);
9df04e1f
DL
2299 /*
2300 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2301 */
2302 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2303 EP_ITEM_COST;
52bd19f7 2304 BUG_ON(max_user_watches < 0);
1da177e4 2305
39732ca5
EW
2306 /*
2307 * We can have many thousands of epitems, so prevent this from
2308 * using an extra cache line on 64-bit (and smaller) CPUs
2309 */
2310 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2311
1da177e4
LT
2312 /* Allocates slab cache used to allocate "struct epitem" items */
2313 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2314 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2315
2316 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2317 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2318 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 2319
1da177e4 2320 return 0;
1da177e4 2321}
cea69241 2322fs_initcall(eventpoll_init);