epoll: pull fatal signal checks into ep_send_events()
[linux-block.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
bf3b9f63 40#include <net/busy_poll.h>
1da177e4 41
1da177e4
LT
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
144efe3e 46 * 1) epmutex (mutex)
c7ea7630 47 * 2) ep->mtx (mutex)
a218cc49 48 * 3) ep->lock (rwlock)
1da177e4
LT
49 *
50 * The acquire order is the one listed above, from 1 to 3.
a218cc49 51 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
1da177e4
LT
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
bf6a41db 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
22bacca4
DL
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
d8805e63
NE
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
d47de16c 82 * It is possible to drop the "ep->mtx" and to use the global
a218cc49 83 * mutex "epmutex" (together with "ep->lock") to have it working,
d47de16c 84 * but having "ep->mtx" will make the interface more scalable.
144efe3e 85 * Events that require holding "epmutex" are very rare, while for
d47de16c
DL
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
1da177e4
LT
88 */
89
1da177e4 90/* Epoll private bits inside the event mask */
df0108c5 91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 92
a9a08845 93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 94
a9a08845 95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
5071f97e
DL
98/* Maximum number of nesting allowed inside epoll sets */
99#define EP_MAX_NESTS 4
1da177e4 100
b611967d
DL
101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
d47de16c
DL
103#define EP_UNACTIVE_PTR ((void *) -1L)
104
7ef9964e
DL
105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
1da177e4
LT
107struct epoll_filefd {
108 struct file *file;
109 int fd;
39732ca5 110} __packed;
1da177e4 111
80285b75
AV
112/* Wait structure used by the poll hooks */
113struct eppoll_entry {
114 /* List header used to link this structure to the "struct epitem" */
115 struct eppoll_entry *next;
1da177e4 116
80285b75
AV
117 /* The "base" pointer is set to the container "struct epitem" */
118 struct epitem *base;
119
120 /*
121 * Wait queue item that will be linked to the target file wait
122 * queue head.
123 */
124 wait_queue_entry_t wait;
125
126 /* The wait queue head that linked the "wait" wait queue item */
127 wait_queue_head_t *whead;
1da177e4
LT
128};
129
d47de16c
DL
130/*
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
135 */
136struct epitem {
ae10b2b4
JB
137 union {
138 /* RB tree node links this structure to the eventpoll RB tree */
139 struct rb_node rbn;
140 /* Used to free the struct epitem */
141 struct rcu_head rcu;
142 };
d47de16c
DL
143
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
146
c7ea7630
DL
147 /*
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
150 */
151 struct epitem *next;
152
d47de16c
DL
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
155
d47de16c 156 /* List containing poll wait queues */
80285b75 157 struct eppoll_entry *pwqlist;
d47de16c
DL
158
159 /* The "container" of this item */
160 struct eventpoll *ep;
161
d47de16c 162 /* List header used to link this item to the "struct file" items list */
44cdc1d9 163 struct hlist_node fllink;
d47de16c 164
4d7e30d9 165 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 166 struct wakeup_source __rcu *ws;
4d7e30d9 167
c7ea7630
DL
168 /* The structure that describe the interested events and the source fd */
169 struct epoll_event event;
d47de16c
DL
170};
171
1da177e4
LT
172/*
173 * This structure is stored inside the "private_data" member of the file
bf6a41db 174 * structure and represents the main data structure for the eventpoll
1da177e4
LT
175 * interface.
176 */
177struct eventpoll {
1da177e4 178 /*
d47de16c
DL
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
1da177e4 183 */
d47de16c 184 struct mutex mtx;
1da177e4
LT
185
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
188
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
191
192 /* List of ready file descriptors */
193 struct list_head rdllist;
194
a218cc49
RP
195 /* Lock which protects rdllist and ovflist */
196 rwlock_t lock;
197
67647d0f 198 /* RB tree root used to store monitored fd structs */
b2ac2ea6 199 struct rb_root_cached rbr;
d47de16c
DL
200
201 /*
202 * This is a single linked list that chains all the "struct epitem" that
25985edc 203 * happened while transferring ready events to userspace w/out
a218cc49 204 * holding ->lock.
d47de16c
DL
205 */
206 struct epitem *ovflist;
7ef9964e 207
4d7e30d9
AH
208 /* wakeup_source used when ep_scan_ready_list is running */
209 struct wakeup_source *ws;
210
7ef9964e
DL
211 /* The user that created the eventpoll descriptor */
212 struct user_struct *user;
28d82dc1
JB
213
214 struct file *file;
215
216 /* used to optimize loop detection check */
18306c40 217 u64 gen;
319c1517 218 struct hlist_head refs;
bf3b9f63
SS
219
220#ifdef CONFIG_NET_RX_BUSY_POLL
221 /* used to track busy poll napi_id */
222 unsigned int napi_id;
223#endif
efcdd350
JB
224
225#ifdef CONFIG_DEBUG_LOCK_ALLOC
226 /* tracks wakeup nests for lockdep validation */
227 u8 nests;
228#endif
1da177e4
LT
229};
230
1da177e4
LT
231/* Wrapper struct used by poll queueing */
232struct ep_pqueue {
233 poll_table pt;
234 struct epitem *epi;
235};
236
7ef9964e
DL
237/*
238 * Configuration options available inside /proc/sys/fs/epoll/
239 */
7ef9964e 240/* Maximum number of epoll watched descriptors, per user */
52bd19f7 241static long max_user_watches __read_mostly;
7ef9964e 242
1da177e4 243/*
d47de16c 244 * This mutex is used to serialize ep_free() and eventpoll_release_file().
1da177e4 245 */
7ef9964e 246static DEFINE_MUTEX(epmutex);
1da177e4 247
18306c40
AV
248static u64 loop_check_gen = 0;
249
22bacca4 250/* Used to check for epoll file descriptor inclusion loops */
6a3890c4 251static struct eventpoll *inserting_into;
22bacca4 252
1da177e4 253/* Slab cache used to allocate "struct epitem" */
e18b890b 254static struct kmem_cache *epi_cache __read_mostly;
1da177e4
LT
255
256/* Slab cache used to allocate "struct eppoll_entry" */
e18b890b 257static struct kmem_cache *pwq_cache __read_mostly;
1da177e4 258
28d82dc1
JB
259/*
260 * List of files with newly added links, where we may need to limit the number
261 * of emanating paths. Protected by the epmutex.
262 */
319c1517
AV
263struct epitems_head {
264 struct hlist_head epitems;
265 struct epitems_head *next;
266};
267static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268
269static struct kmem_cache *ephead_cache __read_mostly;
270
271static inline void free_ephead(struct epitems_head *head)
272{
273 if (head)
274 kmem_cache_free(ephead_cache, head);
275}
276
277static void list_file(struct file *file)
278{
279 struct epitems_head *head;
280
281 head = container_of(file->f_ep, struct epitems_head, epitems);
282 if (!head->next) {
283 head->next = tfile_check_list;
284 tfile_check_list = head;
285 }
286}
287
288static void unlist_file(struct epitems_head *head)
289{
290 struct epitems_head *to_free = head;
291 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 if (p) {
293 struct epitem *epi= container_of(p, struct epitem, fllink);
294 spin_lock(&epi->ffd.file->f_lock);
295 if (!hlist_empty(&head->epitems))
296 to_free = NULL;
297 head->next = NULL;
298 spin_unlock(&epi->ffd.file->f_lock);
299 }
300 free_ephead(to_free);
301}
28d82dc1 302
7ef9964e
DL
303#ifdef CONFIG_SYSCTL
304
305#include <linux/sysctl.h>
306
eec4844f 307static long long_zero;
52bd19f7 308static long long_max = LONG_MAX;
7ef9964e 309
1f7e0616 310struct ctl_table epoll_table[] = {
7ef9964e
DL
311 {
312 .procname = "max_user_watches",
313 .data = &max_user_watches,
52bd19f7 314 .maxlen = sizeof(max_user_watches),
7ef9964e 315 .mode = 0644,
52bd19f7 316 .proc_handler = proc_doulongvec_minmax,
eec4844f 317 .extra1 = &long_zero,
52bd19f7 318 .extra2 = &long_max,
7ef9964e 319 },
ab09203e 320 { }
7ef9964e
DL
321};
322#endif /* CONFIG_SYSCTL */
323
28d82dc1
JB
324static const struct file_operations eventpoll_fops;
325
326static inline int is_file_epoll(struct file *f)
327{
328 return f->f_op == &eventpoll_fops;
329}
b030a4dd 330
67647d0f 331/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
332static inline void ep_set_ffd(struct epoll_filefd *ffd,
333 struct file *file, int fd)
334{
335 ffd->file = file;
336 ffd->fd = fd;
337}
338
67647d0f 339/* Compare RB tree keys */
b030a4dd
PE
340static inline int ep_cmp_ffd(struct epoll_filefd *p1,
341 struct epoll_filefd *p2)
342{
343 return (p1->file > p2->file ? +1:
344 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
345}
346
b030a4dd 347/* Tells us if the item is currently linked */
992991c0 348static inline int ep_is_linked(struct epitem *epi)
b030a4dd 349{
992991c0 350 return !list_empty(&epi->rdllink);
b030a4dd
PE
351}
352
ac6424b9 353static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
354{
355 return container_of(p, struct eppoll_entry, wait);
356}
357
b030a4dd 358/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 359static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
360{
361 return container_of(p, struct eppoll_entry, wait)->base;
362}
363
3fb0e584
DL
364/**
365 * ep_events_available - Checks if ready events might be available.
366 *
367 * @ep: Pointer to the eventpoll context.
368 *
369 * Returns: Returns a value different than zero if ready events are available,
370 * or zero otherwise.
371 */
372static inline int ep_events_available(struct eventpoll *ep)
373{
c5a282e9
DB
374 return !list_empty_careful(&ep->rdllist) ||
375 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
376}
377
bf3b9f63
SS
378#ifdef CONFIG_NET_RX_BUSY_POLL
379static bool ep_busy_loop_end(void *p, unsigned long start_time)
380{
381 struct eventpoll *ep = p;
382
383 return ep_events_available(ep) || busy_loop_timeout(start_time);
384}
bf3b9f63
SS
385
386/*
387 * Busy poll if globally on and supporting sockets found && no events,
388 * busy loop will return if need_resched or ep_events_available.
389 *
390 * we must do our busy polling with irqs enabled
391 */
392static void ep_busy_loop(struct eventpoll *ep, int nonblock)
393{
bf3b9f63
SS
394 unsigned int napi_id = READ_ONCE(ep->napi_id);
395
396 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
7c951caf
BT
397 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
398 BUSY_POLL_BUDGET);
bf3b9f63
SS
399}
400
401static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
402{
bf3b9f63
SS
403 if (ep->napi_id)
404 ep->napi_id = 0;
bf3b9f63
SS
405}
406
407/*
408 * Set epoll busy poll NAPI ID from sk.
409 */
410static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
411{
bf3b9f63
SS
412 struct eventpoll *ep;
413 unsigned int napi_id;
414 struct socket *sock;
415 struct sock *sk;
bf3b9f63
SS
416
417 if (!net_busy_loop_on())
418 return;
419
dba4a925 420 sock = sock_from_file(epi->ffd.file);
bf3b9f63
SS
421 if (!sock)
422 return;
423
424 sk = sock->sk;
425 if (!sk)
426 return;
427
428 napi_id = READ_ONCE(sk->sk_napi_id);
429 ep = epi->ep;
430
431 /* Non-NAPI IDs can be rejected
432 * or
433 * Nothing to do if we already have this ID
434 */
435 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
436 return;
437
438 /* record NAPI ID for use in next busy poll */
439 ep->napi_id = napi_id;
bf3b9f63
SS
440}
441
514056d5
DB
442#else
443
444static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
445{
446}
447
448static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
449{
450}
451
452static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
453{
454}
455
456#endif /* CONFIG_NET_RX_BUSY_POLL */
457
02edc6fc
SR
458/*
459 * As described in commit 0ccf831cb lockdep: annotate epoll
460 * the use of wait queues used by epoll is done in a very controlled
461 * manner. Wake ups can nest inside each other, but are never done
462 * with the same locking. For example:
463 *
464 * dfd = socket(...);
465 * efd1 = epoll_create();
466 * efd2 = epoll_create();
467 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
468 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
469 *
470 * When a packet arrives to the device underneath "dfd", the net code will
471 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
472 * callback wakeup entry on that queue, and the wake_up() performed by the
473 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
474 * (efd1) notices that it may have some event ready, so it needs to wake up
475 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
476 * that ends up in another wake_up(), after having checked about the
477 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
478 * avoid stack blasting.
479 *
480 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
481 * this special case of epoll.
482 */
2dfa4eea 483#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd 484
efcdd350 485static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
5071f97e 486{
efcdd350 487 struct eventpoll *ep_src;
f6520c52 488 unsigned long flags;
efcdd350
JB
489 u8 nests = 0;
490
491 /*
492 * To set the subclass or nesting level for spin_lock_irqsave_nested()
493 * it might be natural to create a per-cpu nest count. However, since
494 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
495 * schedule() in the -rt kernel, the per-cpu variable are no longer
496 * protected. Thus, we are introducing a per eventpoll nest field.
497 * If we are not being call from ep_poll_callback(), epi is NULL and
498 * we are at the first level of nesting, 0. Otherwise, we are being
499 * called from ep_poll_callback() and if a previous wakeup source is
500 * not an epoll file itself, we are at depth 1 since the wakeup source
501 * is depth 0. If the wakeup source is a previous epoll file in the
502 * wakeup chain then we use its nests value and record ours as
503 * nests + 1. The previous epoll file nests value is stable since its
504 * already holding its own poll_wait.lock.
505 */
506 if (epi) {
507 if ((is_file_epoll(epi->ffd.file))) {
508 ep_src = epi->ffd.file->private_data;
509 nests = ep_src->nests;
510 } else {
511 nests = 1;
512 }
513 }
514 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
515 ep->nests = nests + 1;
516 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
517 ep->nests = 0;
518 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
1da177e4
LT
519}
520
57a173bd
JB
521#else
522
efcdd350 523static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
57a173bd 524{
efcdd350 525 wake_up_poll(&ep->poll_wait, EPOLLIN);
57a173bd
JB
526}
527
528#endif
529
971316f0
ON
530static void ep_remove_wait_queue(struct eppoll_entry *pwq)
531{
532 wait_queue_head_t *whead;
533
534 rcu_read_lock();
138e4ad6
ON
535 /*
536 * If it is cleared by POLLFREE, it should be rcu-safe.
537 * If we read NULL we need a barrier paired with
538 * smp_store_release() in ep_poll_callback(), otherwise
539 * we rely on whead->lock.
540 */
541 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
542 if (whead)
543 remove_wait_queue(whead, &pwq->wait);
544 rcu_read_unlock();
545}
546
1da177e4 547/*
d1bc90dd
TB
548 * This function unregisters poll callbacks from the associated file
549 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
550 * ep_free).
1da177e4 551 */
7699acd1 552static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 553{
80285b75 554 struct eppoll_entry **p = &epi->pwqlist;
7699acd1 555 struct eppoll_entry *pwq;
1da177e4 556
80285b75
AV
557 while ((pwq = *p) != NULL) {
558 *p = pwq->next;
971316f0 559 ep_remove_wait_queue(pwq);
d1bc90dd 560 kmem_cache_free(pwq_cache, pwq);
1da177e4 561 }
1da177e4
LT
562}
563
eea1d585
EW
564/* call only when ep->mtx is held */
565static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
566{
567 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
568}
569
570/* call only when ep->mtx is held */
571static inline void ep_pm_stay_awake(struct epitem *epi)
572{
573 struct wakeup_source *ws = ep_wakeup_source(epi);
574
575 if (ws)
576 __pm_stay_awake(ws);
577}
578
579static inline bool ep_has_wakeup_source(struct epitem *epi)
580{
581 return rcu_access_pointer(epi->ws) ? true : false;
582}
583
584/* call when ep->mtx cannot be held (ep_poll_callback) */
585static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
586{
587 struct wakeup_source *ws;
588
589 rcu_read_lock();
590 ws = rcu_dereference(epi->ws);
591 if (ws)
592 __pm_stay_awake(ws);
593 rcu_read_unlock();
594}
595
5071f97e 596
57804b1c
AV
597/*
598 * ep->mutex needs to be held because we could be hit by
599 * eventpoll_release_file() and epoll_ctl().
5071f97e 600 */
57804b1c 601static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
5071f97e 602{
5071f97e
DL
603 /*
604 * Steal the ready list, and re-init the original one to the
605 * empty list. Also, set ep->ovflist to NULL so that events
606 * happening while looping w/out locks, are not lost. We cannot
607 * have the poll callback to queue directly on ep->rdllist,
608 * because we want the "sproc" callback to be able to do it
609 * in a lockless way.
610 */
57804b1c 611 lockdep_assert_irqs_enabled();
a218cc49 612 write_lock_irq(&ep->lock);
db502f8a 613 list_splice_init(&ep->rdllist, txlist);
c5a282e9 614 WRITE_ONCE(ep->ovflist, NULL);
a218cc49 615 write_unlock_irq(&ep->lock);
db502f8a 616}
5071f97e 617
db502f8a 618static void ep_done_scan(struct eventpoll *ep,
db502f8a
AV
619 struct list_head *txlist)
620{
621 struct epitem *epi, *nepi;
5071f97e 622
a218cc49 623 write_lock_irq(&ep->lock);
5071f97e
DL
624 /*
625 * During the time we spent inside the "sproc" callback, some
626 * other events might have been queued by the poll callback.
627 * We re-insert them inside the main ready-list here.
628 */
c5a282e9 629 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
5071f97e
DL
630 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
631 /*
632 * We need to check if the item is already in the list.
633 * During the "sproc" callback execution time, items are
634 * queued into ->ovflist but the "txlist" might already
635 * contain them, and the list_splice() below takes care of them.
636 */
992991c0 637 if (!ep_is_linked(epi)) {
c141175d
RP
638 /*
639 * ->ovflist is LIFO, so we have to reverse it in order
640 * to keep in FIFO.
641 */
642 list_add(&epi->rdllink, &ep->rdllist);
eea1d585 643 ep_pm_stay_awake(epi);
4d7e30d9 644 }
5071f97e
DL
645 }
646 /*
647 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
648 * releasing the lock, events will be queued in the normal way inside
649 * ep->rdllist.
650 */
c5a282e9 651 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
5071f97e
DL
652
653 /*
654 * Quickly re-inject items left on "txlist".
655 */
db502f8a 656 list_splice(txlist, &ep->rdllist);
4d7e30d9 657 __pm_relax(ep->ws);
a218cc49 658 write_unlock_irq(&ep->lock);
5071f97e
DL
659}
660
ae10b2b4
JB
661static void epi_rcu_free(struct rcu_head *head)
662{
663 struct epitem *epi = container_of(head, struct epitem, rcu);
664 kmem_cache_free(epi_cache, epi);
665}
666
7699acd1
DL
667/*
668 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 669 * all the associated resources. Must be called with "mtx" held.
7699acd1
DL
670 */
671static int ep_remove(struct eventpoll *ep, struct epitem *epi)
672{
7699acd1 673 struct file *file = epi->ffd.file;
319c1517
AV
674 struct epitems_head *to_free;
675 struct hlist_head *head;
1da177e4 676
92e64178
DB
677 lockdep_assert_irqs_enabled();
678
1da177e4 679 /*
ee8ef0a4 680 * Removes poll wait queue hooks.
1da177e4 681 */
7699acd1 682 ep_unregister_pollwait(ep, epi);
1da177e4 683
7699acd1 684 /* Remove the current item from the list of epoll hooks */
68499914 685 spin_lock(&file->f_lock);
319c1517
AV
686 to_free = NULL;
687 head = file->f_ep;
688 if (head->first == &epi->fllink && !epi->fllink.next) {
689 file->f_ep = NULL;
690 if (!is_file_epoll(file)) {
691 struct epitems_head *v;
692 v = container_of(head, struct epitems_head, epitems);
693 if (!smp_load_acquire(&v->next))
694 to_free = v;
695 }
696 }
44cdc1d9 697 hlist_del_rcu(&epi->fllink);
68499914 698 spin_unlock(&file->f_lock);
319c1517 699 free_ephead(to_free);
1da177e4 700
b2ac2ea6 701 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 702
a218cc49 703 write_lock_irq(&ep->lock);
992991c0 704 if (ep_is_linked(epi))
c7ea7630 705 list_del_init(&epi->rdllink);
a218cc49 706 write_unlock_irq(&ep->lock);
1da177e4 707
eea1d585 708 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
709 /*
710 * At this point it is safe to free the eventpoll item. Use the union
711 * field epi->rcu, since we are trying to minimize the size of
712 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
713 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
714 * use of the rbn field.
715 */
716 call_rcu(&epi->rcu, epi_rcu_free);
1da177e4 717
52bd19f7 718 atomic_long_dec(&ep->user->epoll_watches);
7ef9964e 719
c7ea7630 720 return 0;
1da177e4
LT
721}
722
7699acd1 723static void ep_free(struct eventpoll *ep)
1da177e4 724{
7699acd1
DL
725 struct rb_node *rbp;
726 struct epitem *epi;
1da177e4 727
7699acd1
DL
728 /* We need to release all tasks waiting for these file */
729 if (waitqueue_active(&ep->poll_wait))
efcdd350 730 ep_poll_safewake(ep, NULL);
1da177e4 731
7699acd1
DL
732 /*
733 * We need to lock this because we could be hit by
734 * eventpoll_release_file() while we're freeing the "struct eventpoll".
d47de16c 735 * We do not need to hold "ep->mtx" here because the epoll file
7699acd1
DL
736 * is on the way to be removed and no one has references to it
737 * anymore. The only hit might come from eventpoll_release_file() but
25985edc 738 * holding "epmutex" is sufficient here.
7699acd1
DL
739 */
740 mutex_lock(&epmutex);
1da177e4
LT
741
742 /*
7699acd1 743 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 744 */
b2ac2ea6 745 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
746 epi = rb_entry(rbp, struct epitem, rbn);
747
748 ep_unregister_pollwait(ep, epi);
91cf5ab6 749 cond_resched();
7699acd1 750 }
1da177e4
LT
751
752 /*
7699acd1
DL
753 * Walks through the whole tree by freeing each "struct epitem". At this
754 * point we are sure no poll callbacks will be lingering around, and also by
d47de16c 755 * holding "epmutex" we can be sure that no file cleanup code will hit
a218cc49 756 * us during this operation. So we can avoid the lock on "ep->lock".
ddf676c3
EW
757 * We do not need to lock ep->mtx, either, we only do it to prevent
758 * a lockdep warning.
1da177e4 759 */
ddf676c3 760 mutex_lock(&ep->mtx);
b2ac2ea6 761 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
7699acd1
DL
762 epi = rb_entry(rbp, struct epitem, rbn);
763 ep_remove(ep, epi);
91cf5ab6 764 cond_resched();
7699acd1 765 }
ddf676c3 766 mutex_unlock(&ep->mtx);
1da177e4 767
7699acd1 768 mutex_unlock(&epmutex);
d47de16c 769 mutex_destroy(&ep->mtx);
7ef9964e 770 free_uid(ep->user);
4d7e30d9 771 wakeup_source_unregister(ep->ws);
f0ee9aab 772 kfree(ep);
7699acd1 773}
1da177e4 774
7699acd1
DL
775static int ep_eventpoll_release(struct inode *inode, struct file *file)
776{
777 struct eventpoll *ep = file->private_data;
1da177e4 778
f0ee9aab 779 if (ep)
7699acd1 780 ep_free(ep);
7699acd1 781
7699acd1 782 return 0;
1da177e4
LT
783}
784
2c0b71c1 785static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
37b5e521 786
ad9366b1 787static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
5071f97e 788{
ad9366b1
AV
789 struct eventpoll *ep = file->private_data;
790 LIST_HEAD(txlist);
5071f97e 791 struct epitem *epi, *tmp;
626cf236 792 poll_table pt;
2c0b71c1 793 __poll_t res = 0;
5071f97e 794
626cf236 795 init_poll_funcptr(&pt, NULL);
450d89ec 796
ad9366b1
AV
797 /* Insert inside our poll wait queue */
798 poll_wait(file, &ep->poll_wait, wait);
799
800 /*
801 * Proceed to find out if wanted events are really available inside
802 * the ready list.
803 */
804 mutex_lock_nested(&ep->mtx, depth);
805 ep_start_scan(ep, &txlist);
2c0b71c1
AV
806 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
807 if (ep_item_poll(epi, &pt, depth + 1)) {
808 res = EPOLLIN | EPOLLRDNORM;
809 break;
37b5e521 810 } else {
5071f97e
DL
811 /*
812 * Item has been dropped into the ready list by the poll
813 * callback, but it's not actually ready, as far as
814 * caller requested events goes. We can remove it here.
815 */
eea1d585 816 __pm_relax(ep_wakeup_source(epi));
5071f97e 817 list_del_init(&epi->rdllink);
296e236e 818 }
5071f97e 819 }
ad9366b1
AV
820 ep_done_scan(ep, &txlist);
821 mutex_unlock(&ep->mtx);
822 return res;
5071f97e
DL
823}
824
37b5e521
JB
825/*
826 * Differs from ep_eventpoll_poll() in that internal callers already have
827 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
828 * is correctly annotated.
829 */
d85e2aa2 830static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 831 int depth)
11c5ad0e 832{
ad9366b1 833 struct file *file = epi->ffd.file;
1ec09974 834 __poll_t res;
7699acd1 835
450d89ec 836 pt->_key = epi->event.events;
ad9366b1
AV
837 if (!is_file_epoll(file))
838 res = vfs_poll(file, pt);
839 else
840 res = __ep_eventpoll_poll(file, pt, depth);
1ec09974 841 return res & epi->event.events;
450d89ec 842}
a11e1d43 843
a11e1d43 844static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e 845{
ad9366b1 846 return __ep_eventpoll_poll(file, wait, 0);
7699acd1
DL
847}
848
138d22b5 849#ifdef CONFIG_PROC_FS
a3816ab0 850static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
851{
852 struct eventpoll *ep = f->private_data;
853 struct rb_node *rbp;
138d22b5
CG
854
855 mutex_lock(&ep->mtx);
b2ac2ea6 856 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 857 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 858 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 859
77493f04
CG
860 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
861 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 862 epi->ffd.fd, epi->event.events,
77493f04
CG
863 (long long)epi->event.data,
864 (long long)epi->ffd.file->f_pos,
865 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 866 if (seq_has_overflowed(m))
138d22b5
CG
867 break;
868 }
869 mutex_unlock(&ep->mtx);
138d22b5
CG
870}
871#endif
872
7699acd1
DL
873/* File callbacks that implement the eventpoll file behaviour */
874static const struct file_operations eventpoll_fops = {
138d22b5
CG
875#ifdef CONFIG_PROC_FS
876 .show_fdinfo = ep_show_fdinfo,
877#endif
7699acd1 878 .release = ep_eventpoll_release,
a11e1d43 879 .poll = ep_eventpoll_poll,
6038f373 880 .llseek = noop_llseek,
7699acd1
DL
881};
882
b611967d 883/*
7699acd1
DL
884 * This is called from eventpoll_release() to unlink files from the eventpoll
885 * interface. We need to have this facility to cleanup correctly files that are
886 * closed without being removed from the eventpoll interface.
b611967d 887 */
7699acd1 888void eventpoll_release_file(struct file *file)
b611967d 889{
7699acd1 890 struct eventpoll *ep;
44cdc1d9
AV
891 struct epitem *epi;
892 struct hlist_node *next;
b611967d
DL
893
894 /*
68499914 895 * We don't want to get "file->f_lock" because it is not
7699acd1 896 * necessary. It is not necessary because we're in the "struct file"
25985edc 897 * cleanup path, and this means that no one is using this file anymore.
5071f97e 898 * So, for example, epoll_ctl() cannot hit here since if we reach this
67647d0f 899 * point, the file counter already went to zero and fget() would fail.
d47de16c 900 * The only hit might come from ep_free() but by holding the mutex
7699acd1 901 * will correctly serialize the operation. We do need to acquire
d47de16c 902 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
7699acd1 903 * from anywhere but ep_free().
68499914
JC
904 *
905 * Besides, ep_remove() acquires the lock, so we can't hold it here.
b611967d 906 */
7699acd1 907 mutex_lock(&epmutex);
319c1517
AV
908 if (unlikely(!file->f_ep)) {
909 mutex_unlock(&epmutex);
910 return;
911 }
912 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
7699acd1 913 ep = epi->ep;
d8805e63 914 mutex_lock_nested(&ep->mtx, 0);
7699acd1 915 ep_remove(ep, epi);
d47de16c 916 mutex_unlock(&ep->mtx);
b611967d 917 }
7699acd1 918 mutex_unlock(&epmutex);
b611967d
DL
919}
920
53d2be79 921static int ep_alloc(struct eventpoll **pep)
1da177e4 922{
7ef9964e
DL
923 int error;
924 struct user_struct *user;
925 struct eventpoll *ep;
1da177e4 926
7ef9964e 927 user = get_current_user();
7ef9964e
DL
928 error = -ENOMEM;
929 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
930 if (unlikely(!ep))
931 goto free_uid;
1da177e4 932
d47de16c 933 mutex_init(&ep->mtx);
a218cc49 934 rwlock_init(&ep->lock);
1da177e4
LT
935 init_waitqueue_head(&ep->wq);
936 init_waitqueue_head(&ep->poll_wait);
937 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 938 ep->rbr = RB_ROOT_CACHED;
d47de16c 939 ep->ovflist = EP_UNACTIVE_PTR;
7ef9964e 940 ep->user = user;
1da177e4 941
53d2be79 942 *pep = ep;
1da177e4 943
1da177e4 944 return 0;
7ef9964e
DL
945
946free_uid:
947 free_uid(user);
948 return error;
1da177e4
LT
949}
950
1da177e4 951/*
c7ea7630
DL
952 * Search the file inside the eventpoll tree. The RB tree operations
953 * are protected by the "mtx" mutex, and ep_find() must be called with
954 * "mtx" held.
1da177e4
LT
955 */
956static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
957{
958 int kcmp;
1da177e4
LT
959 struct rb_node *rbp;
960 struct epitem *epi, *epir = NULL;
961 struct epoll_filefd ffd;
962
b030a4dd 963 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 964 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 965 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 966 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
967 if (kcmp > 0)
968 rbp = rbp->rb_right;
969 else if (kcmp < 0)
970 rbp = rbp->rb_left;
971 else {
1da177e4
LT
972 epir = epi;
973 break;
974 }
975 }
1da177e4 976
1da177e4
LT
977 return epir;
978}
979
92ef6da3 980#ifdef CONFIG_CHECKPOINT_RESTORE
0791e364
CG
981static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
982{
983 struct rb_node *rbp;
984 struct epitem *epi;
985
b2ac2ea6 986 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
987 epi = rb_entry(rbp, struct epitem, rbn);
988 if (epi->ffd.fd == tfd) {
989 if (toff == 0)
990 return epi;
991 else
992 toff--;
993 }
994 cond_resched();
995 }
996
997 return NULL;
998}
999
1000struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1001 unsigned long toff)
1002{
1003 struct file *file_raw;
1004 struct eventpoll *ep;
1005 struct epitem *epi;
1006
1007 if (!is_file_epoll(file))
1008 return ERR_PTR(-EINVAL);
1009
1010 ep = file->private_data;
1011
1012 mutex_lock(&ep->mtx);
1013 epi = ep_find_tfd(ep, tfd, toff);
1014 if (epi)
1015 file_raw = epi->ffd.file;
1016 else
1017 file_raw = ERR_PTR(-ENOENT);
1018 mutex_unlock(&ep->mtx);
1019
1020 return file_raw;
1021}
92ef6da3 1022#endif /* CONFIG_CHECKPOINT_RESTORE */
0791e364 1023
a218cc49
RP
1024/**
1025 * Adds a new entry to the tail of the list in a lockless way, i.e.
1026 * multiple CPUs are allowed to call this function concurrently.
1027 *
1028 * Beware: it is necessary to prevent any other modifications of the
1029 * existing list until all changes are completed, in other words
1030 * concurrent list_add_tail_lockless() calls should be protected
1031 * with a read lock, where write lock acts as a barrier which
1032 * makes sure all list_add_tail_lockless() calls are fully
1033 * completed.
1034 *
1035 * Also an element can be locklessly added to the list only in one
1036 * direction i.e. either to the tail either to the head, otherwise
1037 * concurrent access will corrupt the list.
1038 *
1039 * Returns %false if element has been already added to the list, %true
1040 * otherwise.
1041 */
1042static inline bool list_add_tail_lockless(struct list_head *new,
1043 struct list_head *head)
1044{
1045 struct list_head *prev;
1046
1047 /*
1048 * This is simple 'new->next = head' operation, but cmpxchg()
1049 * is used in order to detect that same element has been just
1050 * added to the list from another CPU: the winner observes
1051 * new->next == new.
1052 */
1053 if (cmpxchg(&new->next, new, head) != new)
1054 return false;
1055
1056 /*
1057 * Initially ->next of a new element must be updated with the head
1058 * (we are inserting to the tail) and only then pointers are atomically
1059 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1060 * updated before pointers are actually swapped and pointers are
1061 * swapped before prev->next is updated.
1062 */
1063
1064 prev = xchg(&head->prev, new);
1065
1066 /*
1067 * It is safe to modify prev->next and new->prev, because a new element
1068 * is added only to the tail and new->next is updated before XCHG.
1069 */
1070
1071 prev->next = new;
1072 new->prev = prev;
1073
1074 return true;
1075}
1076
1077/**
1078 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1079 * i.e. multiple CPUs are allowed to call this function concurrently.
1080 *
1081 * Returns %false if epi element has been already chained, %true otherwise.
1082 */
1083static inline bool chain_epi_lockless(struct epitem *epi)
1084{
1085 struct eventpoll *ep = epi->ep;
1086
0c54a6a4
KK
1087 /* Fast preliminary check */
1088 if (epi->next != EP_UNACTIVE_PTR)
1089 return false;
1090
a218cc49
RP
1091 /* Check that the same epi has not been just chained from another CPU */
1092 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1093 return false;
1094
1095 /* Atomically exchange tail */
1096 epi->next = xchg(&ep->ovflist, epi);
1097
1098 return true;
1099}
1100
1da177e4 1101/*
7699acd1 1102 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1103 * mechanism. It is called by the stored file descriptors when they
7699acd1 1104 * have events to report.
a218cc49
RP
1105 *
1106 * This callback takes a read lock in order not to content with concurrent
1107 * events from another file descriptors, thus all modifications to ->rdllist
1108 * or ->ovflist are lockless. Read lock is paired with the write lock from
1109 * ep_scan_ready_list(), which stops all list modifications and guarantees
1110 * that lists state is seen correctly.
1111 *
1112 * Another thing worth to mention is that ep_poll_callback() can be called
1113 * concurrently for the same @epi from different CPUs if poll table was inited
1114 * with several wait queues entries. Plural wakeup from different CPUs of a
1115 * single wait queue is serialized by wq.lock, but the case when multiple wait
1116 * queues are used should be detected accordingly. This is detected using
1117 * cmpxchg() operation.
1da177e4 1118 */
ac6424b9 1119static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1120{
7699acd1 1121 int pwake = 0;
7699acd1
DL
1122 struct epitem *epi = ep_item_from_wait(wait);
1123 struct eventpoll *ep = epi->ep;
3ad6f93e 1124 __poll_t pollflags = key_to_poll(key);
a218cc49 1125 unsigned long flags;
df0108c5 1126 int ewake = 0;
1da177e4 1127
a218cc49 1128 read_lock_irqsave(&ep->lock, flags);
1da177e4 1129
bf3b9f63
SS
1130 ep_set_busy_poll_napi_id(epi);
1131
7699acd1
DL
1132 /*
1133 * If the event mask does not contain any poll(2) event, we consider the
1134 * descriptor to be disabled. This condition is likely the effect of the
1135 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1136 * until the next EPOLL_CTL_MOD will be issued.
1137 */
1138 if (!(epi->event.events & ~EP_PRIVATE_BITS))
d47de16c
DL
1139 goto out_unlock;
1140
2dfa4eea
DL
1141 /*
1142 * Check the events coming with the callback. At this stage, not
1143 * every device reports the events in the "key" parameter of the
1144 * callback. We need to be able to handle both cases here, hence the
1145 * test for "key" != NULL before the event match test.
1146 */
3ad6f93e 1147 if (pollflags && !(pollflags & epi->event.events))
2dfa4eea
DL
1148 goto out_unlock;
1149
d47de16c 1150 /*
bf6a41db 1151 * If we are transferring events to userspace, we can hold no locks
d47de16c 1152 * (because we're accessing user memory, and because of linux f_op->poll()
bf6a41db 1153 * semantics). All the events that happen during that period of time are
d47de16c
DL
1154 * chained in ep->ovflist and requeued later on.
1155 */
c5a282e9 1156 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
0c54a6a4
KK
1157 if (chain_epi_lockless(epi))
1158 ep_pm_stay_awake_rcu(epi);
1159 } else if (!ep_is_linked(epi)) {
1160 /* In the usual case, add event to ready list. */
1161 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
c3e320b6 1162 ep_pm_stay_awake_rcu(epi);
4d7e30d9 1163 }
7699acd1 1164
7699acd1
DL
1165 /*
1166 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1167 * wait list.
1168 */
df0108c5 1169 if (waitqueue_active(&ep->wq)) {
b6a515c8 1170 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1171 !(pollflags & POLLFREE)) {
1172 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1173 case EPOLLIN:
1174 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1175 ewake = 1;
1176 break;
a9a08845
LT
1177 case EPOLLOUT:
1178 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1179 ewake = 1;
1180 break;
1181 case 0:
1182 ewake = 1;
1183 break;
1184 }
1185 }
a218cc49 1186 wake_up(&ep->wq);
df0108c5 1187 }
7699acd1
DL
1188 if (waitqueue_active(&ep->poll_wait))
1189 pwake++;
1190
d47de16c 1191out_unlock:
a218cc49 1192 read_unlock_irqrestore(&ep->lock, flags);
1da177e4 1193
7699acd1
DL
1194 /* We have to call this outside the lock */
1195 if (pwake)
efcdd350 1196 ep_poll_safewake(ep, epi);
7699acd1 1197
138e4ad6
ON
1198 if (!(epi->event.events & EPOLLEXCLUSIVE))
1199 ewake = 1;
1200
3ad6f93e 1201 if (pollflags & POLLFREE) {
138e4ad6
ON
1202 /*
1203 * If we race with ep_remove_wait_queue() it can miss
1204 * ->whead = NULL and do another remove_wait_queue() after
1205 * us, so we can't use __remove_wait_queue().
1206 */
1207 list_del_init(&wait->entry);
1208 /*
1209 * ->whead != NULL protects us from the race with ep_free()
1210 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1211 * held by the caller. Once we nullify it, nothing protects
1212 * ep/epi or even wait.
1213 */
1214 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1215 }
df0108c5 1216
138e4ad6 1217 return ewake;
7699acd1 1218}
1da177e4
LT
1219
1220/*
1221 * This is the callback that is used to add our wait queue to the
1222 * target file wakeup lists.
1223 */
1224static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1225 poll_table *pt)
1226{
364f374f
AV
1227 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1228 struct epitem *epi = epq->epi;
1da177e4
LT
1229 struct eppoll_entry *pwq;
1230
364f374f
AV
1231 if (unlikely(!epi)) // an earlier allocation has failed
1232 return;
1233
1234 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1235 if (unlikely(!pwq)) {
1236 epq->epi = NULL;
1237 return;
296e236e 1238 }
364f374f
AV
1239
1240 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1241 pwq->whead = whead;
1242 pwq->base = epi;
1243 if (epi->event.events & EPOLLEXCLUSIVE)
1244 add_wait_queue_exclusive(whead, &pwq->wait);
1245 else
1246 add_wait_queue(whead, &pwq->wait);
1247 pwq->next = epi->pwqlist;
1248 epi->pwqlist = pwq;
1da177e4
LT
1249}
1250
1da177e4
LT
1251static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1252{
1253 int kcmp;
b2ac2ea6 1254 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1255 struct epitem *epic;
b2ac2ea6 1256 bool leftmost = true;
1da177e4
LT
1257
1258 while (*p) {
1259 parent = *p;
1260 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1261 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1262 if (kcmp > 0) {
1da177e4 1263 p = &parent->rb_right;
b2ac2ea6
DB
1264 leftmost = false;
1265 } else
1da177e4
LT
1266 p = &parent->rb_left;
1267 }
1268 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1269 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1270}
1271
a80a6b85
AM
1272
1273
28d82dc1
JB
1274#define PATH_ARR_SIZE 5
1275/*
1276 * These are the number paths of length 1 to 5, that we are allowing to emanate
1277 * from a single file of interest. For example, we allow 1000 paths of length
1278 * 1, to emanate from each file of interest. This essentially represents the
1279 * potential wakeup paths, which need to be limited in order to avoid massive
1280 * uncontrolled wakeup storms. The common use case should be a single ep which
1281 * is connected to n file sources. In this case each file source has 1 path
1282 * of length 1. Thus, the numbers below should be more than sufficient. These
1283 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1284 * and delete can't add additional paths. Protected by the epmutex.
1285 */
1286static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1287static int path_count[PATH_ARR_SIZE];
1288
1289static int path_count_inc(int nests)
1290{
93dc6107
JB
1291 /* Allow an arbitrary number of depth 1 paths */
1292 if (nests == 0)
1293 return 0;
1294
28d82dc1
JB
1295 if (++path_count[nests] > path_limits[nests])
1296 return -1;
1297 return 0;
1298}
1299
1300static void path_count_init(void)
1301{
1302 int i;
1303
1304 for (i = 0; i < PATH_ARR_SIZE; i++)
1305 path_count[i] = 0;
1306}
1307
319c1517 1308static int reverse_path_check_proc(struct hlist_head *refs, int depth)
28d82dc1
JB
1309{
1310 int error = 0;
28d82dc1
JB
1311 struct epitem *epi;
1312
0c320f77 1313 if (depth > EP_MAX_NESTS) /* too deep nesting */
99d84d43
AV
1314 return -1;
1315
ae10b2b4 1316 /* CTL_DEL can remove links here, but that can't increase our count */
319c1517
AV
1317 hlist_for_each_entry_rcu(epi, refs, fllink) {
1318 struct hlist_head *refs = &epi->ep->refs;
1319 if (hlist_empty(refs))
d16312a4
AV
1320 error = path_count_inc(depth);
1321 else
319c1517 1322 error = reverse_path_check_proc(refs, depth + 1);
d16312a4
AV
1323 if (error != 0)
1324 break;
28d82dc1
JB
1325 }
1326 return error;
1327}
1328
1329/**
319c1517 1330 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
28d82dc1
JB
1331 * links that are proposed to be newly added. We need to
1332 * make sure that those added links don't add too many
1333 * paths such that we will spend all our time waking up
1334 * eventpoll objects.
1335 *
1336 * Returns: Returns zero if the proposed links don't create too many paths,
1337 * -1 otherwise.
1338 */
1339static int reverse_path_check(void)
1340{
319c1517 1341 struct epitems_head *p;
28d82dc1 1342
319c1517
AV
1343 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1344 int error;
28d82dc1 1345 path_count_init();
b62d2706 1346 rcu_read_lock();
319c1517 1347 error = reverse_path_check_proc(&p->epitems, 0);
b62d2706 1348 rcu_read_unlock();
28d82dc1 1349 if (error)
319c1517 1350 return error;
28d82dc1 1351 }
319c1517 1352 return 0;
28d82dc1
JB
1353}
1354
4d7e30d9
AH
1355static int ep_create_wakeup_source(struct epitem *epi)
1356{
3701cb59 1357 struct name_snapshot n;
eea1d585 1358 struct wakeup_source *ws;
4d7e30d9
AH
1359
1360 if (!epi->ep->ws) {
c8377adf 1361 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1362 if (!epi->ep->ws)
1363 return -ENOMEM;
1364 }
1365
3701cb59
AV
1366 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1367 ws = wakeup_source_register(NULL, n.name.name);
1368 release_dentry_name_snapshot(&n);
eea1d585
EW
1369
1370 if (!ws)
4d7e30d9 1371 return -ENOMEM;
eea1d585 1372 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1373
1374 return 0;
1375}
1376
eea1d585
EW
1377/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1378static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1379{
eea1d585
EW
1380 struct wakeup_source *ws = ep_wakeup_source(epi);
1381
d6d67e72 1382 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1383
1384 /*
1385 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1386 * used internally by wakeup_source_remove, too (called by
1387 * wakeup_source_unregister), so we cannot use call_rcu
1388 */
1389 synchronize_rcu();
1390 wakeup_source_unregister(ws);
4d7e30d9
AH
1391}
1392
319c1517
AV
1393static int attach_epitem(struct file *file, struct epitem *epi)
1394{
1395 struct epitems_head *to_free = NULL;
1396 struct hlist_head *head = NULL;
1397 struct eventpoll *ep = NULL;
1398
1399 if (is_file_epoll(file))
1400 ep = file->private_data;
1401
1402 if (ep) {
1403 head = &ep->refs;
1404 } else if (!READ_ONCE(file->f_ep)) {
1405allocate:
1406 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1407 if (!to_free)
1408 return -ENOMEM;
1409 head = &to_free->epitems;
1410 }
1411 spin_lock(&file->f_lock);
1412 if (!file->f_ep) {
1413 if (unlikely(!head)) {
1414 spin_unlock(&file->f_lock);
1415 goto allocate;
1416 }
1417 file->f_ep = head;
1418 to_free = NULL;
1419 }
1420 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1421 spin_unlock(&file->f_lock);
1422 free_ephead(to_free);
1423 return 0;
1424}
1425
c7ea7630
DL
1426/*
1427 * Must be called with "mtx" held.
1428 */
bec1a502 1429static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1430 struct file *tfile, int fd, int full_check)
1da177e4 1431{
d85e2aa2
AV
1432 int error, pwake = 0;
1433 __poll_t revents;
52bd19f7 1434 long user_watches;
1da177e4
LT
1435 struct epitem *epi;
1436 struct ep_pqueue epq;
85353e91
AV
1437 struct eventpoll *tep = NULL;
1438
1439 if (is_file_epoll(tfile))
1440 tep = tfile->private_data;
1da177e4 1441
92e64178
DB
1442 lockdep_assert_irqs_enabled();
1443
52bd19f7
RH
1444 user_watches = atomic_long_read(&ep->user->epoll_watches);
1445 if (unlikely(user_watches >= max_user_watches))
7ef9964e 1446 return -ENOSPC;
d1ec50ad 1447 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL)))
7ef9964e 1448 return -ENOMEM;
1da177e4
LT
1449
1450 /* Item initialization follow here ... */
1da177e4 1451 INIT_LIST_HEAD(&epi->rdllink);
1da177e4 1452 epi->ep = ep;
b030a4dd 1453 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1454 epi->event = *event;
d47de16c 1455 epi->next = EP_UNACTIVE_PTR;
1da177e4 1456
85353e91
AV
1457 if (tep)
1458 mutex_lock_nested(&tep->mtx, 1);
f8d4f44d 1459 /* Add the current item to the list of active epoll hook for this file */
319c1517
AV
1460 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1461 kmem_cache_free(epi_cache, epi);
1462 if (tep)
1463 mutex_unlock(&tep->mtx);
1464 return -ENOMEM;
d9f41e3c 1465 }
f8d4f44d 1466
319c1517
AV
1467 if (full_check && !tep)
1468 list_file(tfile);
1469
1470 atomic_long_inc(&ep->user->epoll_watches);
f8d4f44d
AV
1471
1472 /*
1473 * Add the current item to the RB tree. All RB tree operations are
1474 * protected by "mtx", and ep_insert() is called with "mtx" held.
1475 */
1476 ep_rbtree_insert(ep, epi);
85353e91
AV
1477 if (tep)
1478 mutex_unlock(&tep->mtx);
f8d4f44d
AV
1479
1480 /* now check if we've created too many backpaths */
e3e096e7
AV
1481 if (unlikely(full_check && reverse_path_check())) {
1482 ep_remove(ep, epi);
1483 return -EINVAL;
1484 }
f8d4f44d 1485
d1ec50ad
AV
1486 if (epi->event.events & EPOLLWAKEUP) {
1487 error = ep_create_wakeup_source(epi);
1488 if (error) {
1489 ep_remove(ep, epi);
1490 return error;
1491 }
1492 }
f8d4f44d 1493
1da177e4
LT
1494 /* Initialize the poll table using the queue callback */
1495 epq.epi = epi;
1496 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1497
1498 /*
1499 * Attach the item to the poll hooks and get current event bits.
1500 * We can safely use the file* here because its usage count has
c7ea7630
DL
1501 * been increased by the caller of this function. Note that after
1502 * this operation completes, the poll callback can start hitting
1503 * the new item.
1da177e4 1504 */
37b5e521 1505 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1506
1507 /*
1508 * We have to check if something went wrong during the poll wait queue
1509 * install process. Namely an allocation for a wait queue failed due
1510 * high memory pressure.
1511 */
e3e096e7
AV
1512 if (unlikely(!epq.epi)) {
1513 ep_remove(ep, epi);
1514 return -ENOMEM;
1515 }
1da177e4 1516
c7ea7630 1517 /* We have to drop the new item inside our item list to keep track of it */
a218cc49 1518 write_lock_irq(&ep->lock);
c7ea7630 1519
bf3b9f63
SS
1520 /* record NAPI ID of new item if present */
1521 ep_set_busy_poll_napi_id(epi);
1522
1da177e4 1523 /* If the file is already "ready" we drop it inside the ready list */
992991c0 1524 if (revents && !ep_is_linked(epi)) {
1da177e4 1525 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1526 ep_pm_stay_awake(epi);
1da177e4
LT
1527
1528 /* Notify waiting tasks that events are available */
1529 if (waitqueue_active(&ep->wq))
a218cc49 1530 wake_up(&ep->wq);
1da177e4
LT
1531 if (waitqueue_active(&ep->poll_wait))
1532 pwake++;
1533 }
1534
a218cc49 1535 write_unlock_irq(&ep->lock);
1da177e4
LT
1536
1537 /* We have to call this outside the lock */
1538 if (pwake)
efcdd350 1539 ep_poll_safewake(ep, NULL);
1da177e4 1540
1da177e4 1541 return 0;
1da177e4
LT
1542}
1543
1da177e4
LT
1544/*
1545 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1546 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1547 */
bec1a502
AV
1548static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1549 const struct epoll_event *event)
1da177e4
LT
1550{
1551 int pwake = 0;
626cf236
HV
1552 poll_table pt;
1553
92e64178
DB
1554 lockdep_assert_irqs_enabled();
1555
626cf236 1556 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1557
1558 /*
e057e15f
TB
1559 * Set the new event interest mask before calling f_op->poll();
1560 * otherwise we might miss an event that happens between the
1561 * f_op->poll() call and the new event set registering.
1da177e4 1562 */
128dd175 1563 epi->event.events = event->events; /* need barrier below */
e057e15f 1564 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1565 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1566 if (!ep_has_wakeup_source(epi))
4d7e30d9 1567 ep_create_wakeup_source(epi);
eea1d585 1568 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1569 ep_destroy_wakeup_source(epi);
1570 }
1da177e4 1571
128dd175
EW
1572 /*
1573 * The following barrier has two effects:
1574 *
1575 * 1) Flush epi changes above to other CPUs. This ensures
1576 * we do not miss events from ep_poll_callback if an
1577 * event occurs immediately after we call f_op->poll().
a218cc49 1578 * We need this because we did not take ep->lock while
128dd175 1579 * changing epi above (but ep_poll_callback does take
a218cc49 1580 * ep->lock).
128dd175
EW
1581 *
1582 * 2) We also need to ensure we do not miss _past_ events
1583 * when calling f_op->poll(). This barrier also
1584 * pairs with the barrier in wq_has_sleeper (see
1585 * comments for wq_has_sleeper).
1586 *
1587 * This barrier will now guarantee ep_poll_callback or f_op->poll
1588 * (or both) will notice the readiness of an item.
1589 */
1590 smp_mb();
1591
1da177e4
LT
1592 /*
1593 * Get current event bits. We can safely use the file* here because
1594 * its usage count has been increased by the caller of this function.
c7ea7630 1595 * If the item is "hot" and it is not registered inside the ready
67647d0f 1596 * list, push it inside.
1da177e4 1597 */
69112736 1598 if (ep_item_poll(epi, &pt, 1)) {
a218cc49 1599 write_lock_irq(&ep->lock);
992991c0 1600 if (!ep_is_linked(epi)) {
c7ea7630 1601 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1602 ep_pm_stay_awake(epi);
c7ea7630
DL
1603
1604 /* Notify waiting tasks that events are available */
1605 if (waitqueue_active(&ep->wq))
a218cc49 1606 wake_up(&ep->wq);
c7ea7630
DL
1607 if (waitqueue_active(&ep->poll_wait))
1608 pwake++;
7699acd1 1609 }
a218cc49 1610 write_unlock_irq(&ep->lock);
7699acd1 1611 }
1da177e4 1612
7699acd1
DL
1613 /* We have to call this outside the lock */
1614 if (pwake)
efcdd350 1615 ep_poll_safewake(ep, NULL);
1da177e4 1616
7699acd1 1617 return 0;
1da177e4
LT
1618}
1619
ff07952a
AV
1620static int ep_send_events(struct eventpoll *ep,
1621 struct epoll_event __user *events, int maxevents)
1da177e4 1622{
4e0982a0 1623 struct epitem *epi, *tmp;
ff07952a 1624 LIST_HEAD(txlist);
626cf236 1625 poll_table pt;
ff07952a 1626 int res = 0;
626cf236 1627
cccd29bf
SHY
1628 /*
1629 * Always short-circuit for fatal signals to allow threads to make a
1630 * timely exit without the chance of finding more events available and
1631 * fetching repeatedly.
1632 */
1633 if (fatal_signal_pending(current))
1634 return -EINTR;
1635
626cf236 1636 init_poll_funcptr(&pt, NULL);
ff07952a 1637
57804b1c
AV
1638 mutex_lock(&ep->mtx);
1639 ep_start_scan(ep, &txlist);
1da177e4 1640
296e236e 1641 /*
5071f97e 1642 * We can loop without lock because we are passed a task private list.
57804b1c 1643 * Items cannot vanish during the loop we are holding ep->mtx.
296e236e 1644 */
ff07952a
AV
1645 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1646 struct wakeup_source *ws;
1647 __poll_t revents;
21877e1a 1648
ff07952a 1649 if (res >= maxevents)
4e0982a0 1650 break;
d47de16c 1651
4d7e30d9
AH
1652 /*
1653 * Activate ep->ws before deactivating epi->ws to prevent
1654 * triggering auto-suspend here (in case we reactive epi->ws
1655 * below).
1656 *
1657 * This could be rearranged to delay the deactivation of epi->ws
1658 * instead, but then epi->ws would temporarily be out of sync
1659 * with ep_is_linked().
1660 */
eea1d585
EW
1661 ws = ep_wakeup_source(epi);
1662 if (ws) {
1663 if (ws->active)
1664 __pm_stay_awake(ep->ws);
1665 __pm_relax(ws);
1666 }
1667
d47de16c 1668 list_del_init(&epi->rdllink);
1da177e4 1669
296e236e 1670 /*
5071f97e 1671 * If the event mask intersect the caller-requested one,
57804b1c
AV
1672 * deliver the event to userspace. Again, we are holding ep->mtx,
1673 * so no operations coming from userspace can change the item.
296e236e 1674 */
4e0982a0
DB
1675 revents = ep_item_poll(epi, &pt, 1);
1676 if (!revents)
1677 continue;
1678
ff07952a
AV
1679 if (__put_user(revents, &events->events) ||
1680 __put_user(epi->event.data, &events->data)) {
1681 list_add(&epi->rdllink, &txlist);
4e0982a0 1682 ep_pm_stay_awake(epi);
ff07952a
AV
1683 if (!res)
1684 res = -EFAULT;
1685 break;
4e0982a0 1686 }
ff07952a
AV
1687 res++;
1688 events++;
4e0982a0
DB
1689 if (epi->event.events & EPOLLONESHOT)
1690 epi->event.events &= EP_PRIVATE_BITS;
1691 else if (!(epi->event.events & EPOLLET)) {
1692 /*
1693 * If this file has been added with Level
1694 * Trigger mode, we need to insert back inside
1695 * the ready list, so that the next call to
1696 * epoll_wait() will check again the events
1697 * availability. At this point, no one can insert
1698 * into ep->rdllist besides us. The epoll_ctl()
1699 * callers are locked out by
1700 * ep_scan_ready_list() holding "mtx" and the
1701 * poll callback will queue them in ep->ovflist.
1702 */
1703 list_add_tail(&epi->rdllink, &ep->rdllist);
1704 ep_pm_stay_awake(epi);
296e236e
DL
1705 }
1706 }
57804b1c
AV
1707 ep_done_scan(ep, &txlist);
1708 mutex_unlock(&ep->mtx);
5071f97e 1709
ff07952a 1710 return res;
1da177e4
LT
1711}
1712
766b9f92 1713static inline struct timespec64 ep_set_mstimeout(long ms)
0781b909 1714{
766b9f92 1715 struct timespec64 now, ts = {
0781b909
ED
1716 .tv_sec = ms / MSEC_PER_SEC,
1717 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1718 };
1719
766b9f92
DD
1720 ktime_get_ts64(&now);
1721 return timespec64_add_safe(now, ts);
0781b909
ED
1722}
1723
f4d93ad7
SB
1724/**
1725 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1726 * event buffer.
1727 *
1728 * @ep: Pointer to the eventpoll context.
1729 * @events: Pointer to the userspace buffer where the ready events should be
1730 * stored.
1731 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1732 * @timeout: Maximum timeout for the ready events fetch operation, in
1733 * milliseconds. If the @timeout is zero, the function will not block,
1734 * while if the @timeout is less than zero, the function will block
1735 * until at least one event has been retrieved (or an error
1736 * occurred).
1737 *
1738 * Returns: Returns the number of ready events which have been fetched, or an
1739 * error code, in case of error.
1740 */
1da177e4
LT
1741static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1742 int maxevents, long timeout)
1743{
2efdaf76 1744 int res, eavail, timed_out = 0;
da8b44d5 1745 u64 slack = 0;
ac6424b9 1746 wait_queue_entry_t wait;
95aac7b1
SB
1747 ktime_t expires, *to = NULL;
1748
679abf38
DB
1749 lockdep_assert_irqs_enabled();
1750
95aac7b1 1751 if (timeout > 0) {
766b9f92 1752 struct timespec64 end_time = ep_set_mstimeout(timeout);
0781b909 1753
95aac7b1
SB
1754 slack = select_estimate_accuracy(&end_time);
1755 to = &expires;
766b9f92 1756 *to = timespec64_to_ktime(end_time);
95aac7b1 1757 } else if (timeout == 0) {
f4d93ad7
SB
1758 /*
1759 * Avoid the unnecessary trip to the wait queue loop, if the
c5a282e9
DB
1760 * caller specified a non blocking operation. We still need
1761 * lock because we could race and not see an epi being added
1762 * to the ready list while in irq callback. Thus incorrectly
1763 * returning 0 back to userspace.
f4d93ad7 1764 */
95aac7b1 1765 timed_out = 1;
c5a282e9 1766
a218cc49 1767 write_lock_irq(&ep->lock);
c5a282e9 1768 eavail = ep_events_available(ep);
a218cc49 1769 write_unlock_irq(&ep->lock);
c5a282e9 1770
35cff1a6 1771 goto send_events;
95aac7b1 1772 }
1da177e4 1773
f4d93ad7 1774fetch_events:
bf3b9f63
SS
1775
1776 if (!ep_events_available(ep))
1777 ep_busy_loop(ep, timed_out);
1778
c5a282e9
DB
1779 eavail = ep_events_available(ep);
1780 if (eavail)
35cff1a6 1781 goto send_events;
1da177e4 1782
c5a282e9
DB
1783 /*
1784 * Busy poll timed out. Drop NAPI ID for now, we can add
1785 * it back in when we have moved a socket with a valid NAPI
1786 * ID onto the ready list.
1787 */
1788 ep_reset_busy_poll_napi_id(ep);
bf3b9f63 1789
412895f0 1790 do {
2efdaf76
SHY
1791 if (signal_pending(current))
1792 return -EINTR;
1793
412895f0
RP
1794 /*
1795 * Internally init_wait() uses autoremove_wake_function(),
1796 * thus wait entry is removed from the wait queue on each
1797 * wakeup. Why it is important? In case of several waiters
1798 * each new wakeup will hit the next waiter, giving it the
1799 * chance to harvest new event. Otherwise wakeup can be
1800 * lost. This is also good performance-wise, because on
1801 * normal wakeup path no need to call __remove_wait_queue()
1802 * explicitly, thus ep->lock is not taken, which halts the
1803 * event delivery.
1804 */
1805 init_wait(&wait);
1da177e4 1806
65759097 1807 write_lock_irq(&ep->lock);
bf3b9f63 1808 /*
65759097
RP
1809 * Barrierless variant, waitqueue_active() is called under
1810 * the same lock on wakeup ep_poll_callback() side, so it
1811 * is safe to avoid an explicit barrier.
bf3b9f63 1812 */
65759097
RP
1813 __set_current_state(TASK_INTERRUPTIBLE);
1814
1da177e4 1815 /*
65759097
RP
1816 * Do the final check under the lock. ep_scan_ready_list()
1817 * plays with two lists (->rdllist and ->ovflist) and there
1818 * is always a race when both lists are empty for short
1819 * period of time although events are pending, so lock is
1820 * important.
1da177e4 1821 */
65759097 1822 eavail = ep_events_available(ep);
2efdaf76
SHY
1823 if (!eavail)
1824 __add_wait_queue_exclusive(&ep->wq, &wait);
1825
65759097 1826 write_unlock_irq(&ep->lock);
95aac7b1 1827
2efdaf76 1828 if (!eavail)
289caf5d
SHY
1829 timed_out = !schedule_hrtimeout_range(to, slack,
1830 HRTIMER_MODE_ABS);
1da177e4 1831
289caf5d
SHY
1832 /*
1833 * We were woken up, thus go and try to harvest some events.
1834 * If timed out and still on the wait queue, recheck eavail
1835 * carefully under lock, below.
1836 */
412895f0 1837 eavail = 1;
412895f0 1838 } while (0);
1da177e4 1839
c5a282e9 1840 __set_current_state(TASK_RUNNING);
1da177e4 1841
412895f0
RP
1842 if (!list_empty_careful(&wait.entry)) {
1843 write_lock_irq(&ep->lock);
289caf5d
SHY
1844 /*
1845 * If the thread timed out and is not on the wait queue, it
1846 * means that the thread was woken up after its timeout expired
1847 * before it could reacquire the lock. Thus, when wait.entry is
1848 * empty, it needs to harvest events.
1849 */
1850 if (timed_out)
1851 eavail = list_empty(&wait.entry);
412895f0
RP
1852 __remove_wait_queue(&ep->wq, &wait);
1853 write_unlock_irq(&ep->lock);
1854 }
1855
35cff1a6 1856send_events:
1da177e4
LT
1857 /*
1858 * Try to transfer events to user space. In case we get 0 events and
1859 * there's still timeout left over, we go trying again in search of
1860 * more luck.
1861 */
2efdaf76 1862 if (eavail &&
95aac7b1 1863 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
f4d93ad7 1864 goto fetch_events;
1da177e4
LT
1865
1866 return res;
1867}
1868
22bacca4 1869/**
773318ed 1870 * ep_loop_check_proc - verify that adding an epoll file inside another
22bacca4
DL
1871 * epoll structure, does not violate the constraints, in
1872 * terms of closed loops, or too deep chains (which can
1873 * result in excessive stack usage).
1874 *
1875 * @priv: Pointer to the epoll file to be currently checked.
bde03c4c 1876 * @depth: Current depth of the path being checked.
22bacca4
DL
1877 *
1878 * Returns: Returns zero if adding the epoll @file inside current epoll
1879 * structure @ep does not violate the constraints, or -1 otherwise.
1880 */
bde03c4c 1881static int ep_loop_check_proc(struct eventpoll *ep, int depth)
22bacca4
DL
1882{
1883 int error = 0;
22bacca4
DL
1884 struct rb_node *rbp;
1885 struct epitem *epi;
1886
773318ed 1887 mutex_lock_nested(&ep->mtx, depth + 1);
18306c40 1888 ep->gen = loop_check_gen;
b2ac2ea6 1889 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
1890 epi = rb_entry(rbp, struct epitem, rbn);
1891 if (unlikely(is_file_epoll(epi->ffd.file))) {
bde03c4c 1892 struct eventpoll *ep_tovisit;
28d82dc1 1893 ep_tovisit = epi->ffd.file->private_data;
18306c40 1894 if (ep_tovisit->gen == loop_check_gen)
28d82dc1 1895 continue;
bde03c4c 1896 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
56c428ca 1897 error = -1;
bde03c4c
AV
1898 else
1899 error = ep_loop_check_proc(ep_tovisit, depth + 1);
22bacca4
DL
1900 if (error != 0)
1901 break;
28d82dc1
JB
1902 } else {
1903 /*
1904 * If we've reached a file that is not associated with
1905 * an ep, then we need to check if the newly added
1906 * links are going to add too many wakeup paths. We do
1907 * this by adding it to the tfile_check_list, if it's
1908 * not already there, and calling reverse_path_check()
1909 * during ep_insert().
1910 */
319c1517 1911 list_file(epi->ffd.file);
22bacca4
DL
1912 }
1913 }
1914 mutex_unlock(&ep->mtx);
1915
1916 return error;
1917}
1918
1919/**
bde03c4c
AV
1920 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1921 * into another epoll file (represented by @from) does not create
22bacca4
DL
1922 * closed loops or too deep chains.
1923 *
bde03c4c
AV
1924 * @from: Pointer to the epoll we are inserting into.
1925 * @to: Pointer to the epoll to be inserted.
22bacca4 1926 *
bde03c4c
AV
1927 * Returns: Returns zero if adding the epoll @to inside the epoll @from
1928 * does not violate the constraints, or -1 otherwise.
22bacca4 1929 */
bde03c4c 1930static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
22bacca4 1931{
6a3890c4 1932 inserting_into = ep;
bde03c4c 1933 return ep_loop_check_proc(to, 0);
28d82dc1
JB
1934}
1935
1936static void clear_tfile_check_list(void)
1937{
319c1517
AV
1938 rcu_read_lock();
1939 while (tfile_check_list != EP_UNACTIVE_PTR) {
1940 struct epitems_head *head = tfile_check_list;
1941 tfile_check_list = head->next;
1942 unlist_file(head);
28d82dc1 1943 }
319c1517 1944 rcu_read_unlock();
22bacca4
DL
1945}
1946
7699acd1 1947/*
523723bb 1948 * Open an eventpoll file descriptor.
7699acd1 1949 */
791eb22e 1950static int do_epoll_create(int flags)
7699acd1 1951{
28d82dc1 1952 int error, fd;
bb57c3ed 1953 struct eventpoll *ep = NULL;
28d82dc1 1954 struct file *file;
7699acd1 1955
e38b36f3
UD
1956 /* Check the EPOLL_* constant for consistency. */
1957 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1958
296e236e
DL
1959 if (flags & ~EPOLL_CLOEXEC)
1960 return -EINVAL;
7699acd1 1961 /*
bb57c3ed 1962 * Create the internal data structure ("struct eventpoll").
7699acd1 1963 */
9fe5ad9c 1964 error = ep_alloc(&ep);
bb57c3ed
DL
1965 if (error < 0)
1966 return error;
7699acd1
DL
1967 /*
1968 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 1969 * a file structure and a free file descriptor.
7699acd1 1970 */
28d82dc1
JB
1971 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1972 if (fd < 0) {
1973 error = fd;
1974 goto out_free_ep;
1975 }
1976 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 1977 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
1978 if (IS_ERR(file)) {
1979 error = PTR_ERR(file);
1980 goto out_free_fd;
1981 }
28d82dc1 1982 ep->file = file;
98022748 1983 fd_install(fd, file);
28d82dc1
JB
1984 return fd;
1985
1986out_free_fd:
1987 put_unused_fd(fd);
1988out_free_ep:
1989 ep_free(ep);
bb57c3ed 1990 return error;
7699acd1
DL
1991}
1992
791eb22e
DB
1993SYSCALL_DEFINE1(epoll_create1, int, flags)
1994{
1995 return do_epoll_create(flags);
1996}
1997
5a8a82b1 1998SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 1999{
bfe3891a 2000 if (size <= 0)
9fe5ad9c
UD
2001 return -EINVAL;
2002
791eb22e 2003 return do_epoll_create(0);
a0998b50
UD
2004}
2005
39220e8d
JA
2006static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2007 bool nonblock)
2008{
2009 if (!nonblock) {
2010 mutex_lock_nested(mutex, depth);
2011 return 0;
2012 }
2013 if (mutex_trylock(mutex))
2014 return 0;
2015 return -EAGAIN;
2016}
2017
2018int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2019 bool nonblock)
7699acd1
DL
2020{
2021 int error;
67347fe4 2022 int full_check = 0;
7e3fb584 2023 struct fd f, tf;
7699acd1
DL
2024 struct eventpoll *ep;
2025 struct epitem *epi;
67347fe4 2026 struct eventpoll *tep = NULL;
7699acd1 2027
7699acd1 2028 error = -EBADF;
7e3fb584
AV
2029 f = fdget(epfd);
2030 if (!f.file)
7699acd1
DL
2031 goto error_return;
2032
2033 /* Get the "struct file *" for the target file */
7e3fb584
AV
2034 tf = fdget(fd);
2035 if (!tf.file)
7699acd1
DL
2036 goto error_fput;
2037
2038 /* The target file descriptor must support poll */
2039 error = -EPERM;
9965ed17 2040 if (!file_can_poll(tf.file))
7699acd1
DL
2041 goto error_tgt_fput;
2042
4d7e30d9 2043 /* Check if EPOLLWAKEUP is allowed */
c680e41b 2044 if (ep_op_has_event(op))
58e41a44 2045 ep_take_care_of_epollwakeup(epds);
4d7e30d9 2046
7699acd1
DL
2047 /*
2048 * We have to check that the file structure underneath the file descriptor
2049 * the user passed to us _is_ an eventpoll file. And also we do not permit
2050 * adding an epoll file descriptor inside itself.
2051 */
2052 error = -EINVAL;
7e3fb584 2053 if (f.file == tf.file || !is_file_epoll(f.file))
7699acd1
DL
2054 goto error_tgt_fput;
2055
df0108c5
JB
2056 /*
2057 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2058 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2059 * Also, we do not currently supported nested exclusive wakeups.
2060 */
58e41a44 2061 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2062 if (op == EPOLL_CTL_MOD)
2063 goto error_tgt_fput;
2064 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
58e41a44 2065 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
b6a515c8
JB
2066 goto error_tgt_fput;
2067 }
df0108c5 2068
7699acd1
DL
2069 /*
2070 * At this point it is safe to assume that the "private_data" contains
2071 * our own data structure.
2072 */
7e3fb584 2073 ep = f.file->private_data;
7699acd1 2074
22bacca4
DL
2075 /*
2076 * When we insert an epoll file descriptor, inside another epoll file
2077 * descriptor, there is the change of creating closed loops, which are
28d82dc1
JB
2078 * better be handled here, than in more critical paths. While we are
2079 * checking for loops we also determine the list of files reachable
2080 * and hang them on the tfile_check_list, so we can check that we
2081 * haven't created too many possible wakeup paths.
22bacca4 2082 *
67347fe4
JB
2083 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2084 * the epoll file descriptor is attaching directly to a wakeup source,
2085 * unless the epoll file descriptor is nested. The purpose of taking the
2086 * 'epmutex' on add is to prevent complex toplogies such as loops and
2087 * deep wakeup paths from forming in parallel through multiple
2088 * EPOLL_CTL_ADD operations.
22bacca4 2089 */
39220e8d
JA
2090 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2091 if (error)
2092 goto error_tgt_fput;
28d82dc1 2093 if (op == EPOLL_CTL_ADD) {
319c1517
AV
2094 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2095 is_file_epoll(tf.file)) {
67347fe4 2096 mutex_unlock(&ep->mtx);
39220e8d
JA
2097 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2098 if (error)
2099 goto error_tgt_fput;
18306c40 2100 loop_check_gen++;
39220e8d 2101 full_check = 1;
67347fe4 2102 if (is_file_epoll(tf.file)) {
bde03c4c 2103 tep = tf.file->private_data;
67347fe4 2104 error = -ELOOP;
bde03c4c 2105 if (ep_loop_check(ep, tep) != 0)
67347fe4 2106 goto error_tgt_fput;
a9ed4a65 2107 }
39220e8d 2108 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
52c47969 2109 if (error)
39220e8d 2110 goto error_tgt_fput;
67347fe4
JB
2111 }
2112 }
7699acd1 2113
67647d0f
DL
2114 /*
2115 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2116 * above, we can be sure to be able to use the item looked up by
2117 * ep_find() till we release the mutex.
2118 */
7e3fb584 2119 epi = ep_find(ep, tf.file, fd);
7699acd1
DL
2120
2121 error = -EINVAL;
2122 switch (op) {
2123 case EPOLL_CTL_ADD:
2124 if (!epi) {
58e41a44
JA
2125 epds->events |= EPOLLERR | EPOLLHUP;
2126 error = ep_insert(ep, epds, tf.file, fd, full_check);
7699acd1
DL
2127 } else
2128 error = -EEXIST;
2129 break;
2130 case EPOLL_CTL_DEL:
2131 if (epi)
2132 error = ep_remove(ep, epi);
2133 else
2134 error = -ENOENT;
2135 break;
2136 case EPOLL_CTL_MOD:
2137 if (epi) {
b6a515c8 2138 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
58e41a44
JA
2139 epds->events |= EPOLLERR | EPOLLHUP;
2140 error = ep_modify(ep, epi, epds);
b6a515c8 2141 }
7699acd1
DL
2142 } else
2143 error = -ENOENT;
2144 break;
2145 }
d47de16c 2146 mutex_unlock(&ep->mtx);
7699acd1
DL
2147
2148error_tgt_fput:
52c47969
AV
2149 if (full_check) {
2150 clear_tfile_check_list();
18306c40 2151 loop_check_gen++;
22bacca4 2152 mutex_unlock(&epmutex);
52c47969 2153 }
22bacca4 2154
7e3fb584 2155 fdput(tf);
7699acd1 2156error_fput:
7e3fb584 2157 fdput(f);
7699acd1 2158error_return:
7699acd1
DL
2159
2160 return error;
2161}
2162
58e41a44
JA
2163/*
2164 * The following function implements the controller interface for
2165 * the eventpoll file that enables the insertion/removal/change of
2166 * file descriptors inside the interest set.
2167 */
2168SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2169 struct epoll_event __user *, event)
2170{
2171 struct epoll_event epds;
2172
2173 if (ep_op_has_event(op) &&
2174 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2175 return -EFAULT;
2176
39220e8d 2177 return do_epoll_ctl(epfd, op, fd, &epds, false);
58e41a44
JA
2178}
2179
7699acd1
DL
2180/*
2181 * Implement the event wait interface for the eventpoll file. It is the kernel
2182 * part of the user space epoll_wait(2).
2183 */
791eb22e
DB
2184static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2185 int maxevents, int timeout)
7699acd1 2186{
2903ff01
AV
2187 int error;
2188 struct fd f;
7699acd1
DL
2189 struct eventpoll *ep;
2190
7699acd1
DL
2191 /* The maximum number of event must be greater than zero */
2192 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2193 return -EINVAL;
2194
2195 /* Verify that the area passed by the user is writeable */
96d4f267 2196 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2903ff01 2197 return -EFAULT;
7699acd1
DL
2198
2199 /* Get the "struct file *" for the eventpoll file */
2903ff01
AV
2200 f = fdget(epfd);
2201 if (!f.file)
2202 return -EBADF;
7699acd1
DL
2203
2204 /*
2205 * We have to check that the file structure underneath the fd
2206 * the user passed to us _is_ an eventpoll file.
2207 */
2208 error = -EINVAL;
2903ff01 2209 if (!is_file_epoll(f.file))
7699acd1
DL
2210 goto error_fput;
2211
2212 /*
2213 * At this point it is safe to assume that the "private_data" contains
2214 * our own data structure.
2215 */
2903ff01 2216 ep = f.file->private_data;
7699acd1
DL
2217
2218 /* Time to fish for events ... */
2219 error = ep_poll(ep, events, maxevents, timeout);
2220
2221error_fput:
2903ff01 2222 fdput(f);
7699acd1
DL
2223 return error;
2224}
2225
791eb22e
DB
2226SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2227 int, maxevents, int, timeout)
2228{
2229 return do_epoll_wait(epfd, events, maxevents, timeout);
2230}
2231
7699acd1
DL
2232/*
2233 * Implement the event wait interface for the eventpoll file. It is the kernel
2234 * part of the user space epoll_pwait(2).
2235 */
5a8a82b1
HC
2236SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2237 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2238 size_t, sigsetsize)
7699acd1
DL
2239{
2240 int error;
7699acd1
DL
2241
2242 /*
2243 * If the caller wants a certain signal mask to be set during the wait,
2244 * we apply it here.
2245 */
b772434b 2246 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2247 if (error)
2248 return error;
7699acd1 2249
791eb22e 2250 error = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2251 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2252
2253 return error;
2254}
2255
35280bd4
AV
2256#ifdef CONFIG_COMPAT
2257COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2258 struct epoll_event __user *, events,
2259 int, maxevents, int, timeout,
2260 const compat_sigset_t __user *, sigmask,
2261 compat_size_t, sigsetsize)
2262{
2263 long err;
35280bd4
AV
2264
2265 /*
2266 * If the caller wants a certain signal mask to be set during the wait,
2267 * we apply it here.
2268 */
b772434b 2269 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2270 if (err)
2271 return err;
35280bd4 2272
791eb22e 2273 err = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2274 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2275
2276 return err;
2277}
2278#endif
2279
1da177e4
LT
2280static int __init eventpoll_init(void)
2281{
7ef9964e
DL
2282 struct sysinfo si;
2283
2284 si_meminfo(&si);
9df04e1f
DL
2285 /*
2286 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2287 */
2288 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2289 EP_ITEM_COST;
52bd19f7 2290 BUG_ON(max_user_watches < 0);
1da177e4 2291
39732ca5
EW
2292 /*
2293 * We can have many thousands of epitems, so prevent this from
2294 * using an extra cache line on 64-bit (and smaller) CPUs
2295 */
2296 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2297
1da177e4
LT
2298 /* Allocates slab cache used to allocate "struct epitem" items */
2299 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2300 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2301
2302 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2303 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2304 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 2305
319c1517
AV
2306 ephead_cache = kmem_cache_create("ep_head",
2307 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2308
1da177e4 2309 return 0;
1da177e4 2310}
cea69241 2311fs_initcall(eventpoll_init);