reverse_path_check_proc(): sane arguments
[linux-block.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
bf3b9f63 40#include <net/busy_poll.h>
1da177e4 41
1da177e4
LT
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
144efe3e 46 * 1) epmutex (mutex)
c7ea7630 47 * 2) ep->mtx (mutex)
a218cc49 48 * 3) ep->lock (rwlock)
1da177e4
LT
49 *
50 * The acquire order is the one listed above, from 1 to 3.
a218cc49 51 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
1da177e4
LT
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
bf6a41db 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
22bacca4
DL
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
d8805e63
NE
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
d47de16c 82 * It is possible to drop the "ep->mtx" and to use the global
a218cc49 83 * mutex "epmutex" (together with "ep->lock") to have it working,
d47de16c 84 * but having "ep->mtx" will make the interface more scalable.
144efe3e 85 * Events that require holding "epmutex" are very rare, while for
d47de16c
DL
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
1da177e4
LT
88 */
89
1da177e4 90/* Epoll private bits inside the event mask */
df0108c5 91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 92
a9a08845 93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 94
a9a08845 95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
5071f97e
DL
98/* Maximum number of nesting allowed inside epoll sets */
99#define EP_MAX_NESTS 4
1da177e4 100
b611967d
DL
101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
d47de16c
DL
103#define EP_UNACTIVE_PTR ((void *) -1L)
104
7ef9964e
DL
105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
1da177e4
LT
107struct epoll_filefd {
108 struct file *file;
109 int fd;
39732ca5 110} __packed;
1da177e4 111
80285b75
AV
112/* Wait structure used by the poll hooks */
113struct eppoll_entry {
114 /* List header used to link this structure to the "struct epitem" */
115 struct eppoll_entry *next;
116
117 /* The "base" pointer is set to the container "struct epitem" */
118 struct epitem *base;
119
120 /*
121 * Wait queue item that will be linked to the target file wait
122 * queue head.
123 */
124 wait_queue_entry_t wait;
125
126 /* The wait queue head that linked the "wait" wait queue item */
127 wait_queue_head_t *whead;
128};
129
d47de16c
DL
130/*
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
135 */
136struct epitem {
ae10b2b4
JB
137 union {
138 /* RB tree node links this structure to the eventpoll RB tree */
139 struct rb_node rbn;
140 /* Used to free the struct epitem */
141 struct rcu_head rcu;
142 };
d47de16c
DL
143
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
146
c7ea7630
DL
147 /*
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
150 */
151 struct epitem *next;
152
d47de16c
DL
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
155
d47de16c 156 /* List containing poll wait queues */
80285b75 157 struct eppoll_entry *pwqlist;
d47de16c
DL
158
159 /* The "container" of this item */
160 struct eventpoll *ep;
161
d47de16c
DL
162 /* List header used to link this item to the "struct file" items list */
163 struct list_head fllink;
164
4d7e30d9 165 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 166 struct wakeup_source __rcu *ws;
4d7e30d9 167
c7ea7630
DL
168 /* The structure that describe the interested events and the source fd */
169 struct epoll_event event;
d47de16c
DL
170};
171
1da177e4
LT
172/*
173 * This structure is stored inside the "private_data" member of the file
bf6a41db 174 * structure and represents the main data structure for the eventpoll
1da177e4
LT
175 * interface.
176 */
177struct eventpoll {
1da177e4 178 /*
d47de16c
DL
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
1da177e4 183 */
d47de16c 184 struct mutex mtx;
1da177e4
LT
185
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
188
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
191
192 /* List of ready file descriptors */
193 struct list_head rdllist;
194
a218cc49
RP
195 /* Lock which protects rdllist and ovflist */
196 rwlock_t lock;
197
67647d0f 198 /* RB tree root used to store monitored fd structs */
b2ac2ea6 199 struct rb_root_cached rbr;
d47de16c
DL
200
201 /*
202 * This is a single linked list that chains all the "struct epitem" that
25985edc 203 * happened while transferring ready events to userspace w/out
a218cc49 204 * holding ->lock.
d47de16c
DL
205 */
206 struct epitem *ovflist;
7ef9964e 207
4d7e30d9
AH
208 /* wakeup_source used when ep_scan_ready_list is running */
209 struct wakeup_source *ws;
210
7ef9964e
DL
211 /* The user that created the eventpoll descriptor */
212 struct user_struct *user;
28d82dc1
JB
213
214 struct file *file;
215
216 /* used to optimize loop detection check */
18306c40 217 u64 gen;
bf3b9f63
SS
218
219#ifdef CONFIG_NET_RX_BUSY_POLL
220 /* used to track busy poll napi_id */
221 unsigned int napi_id;
222#endif
efcdd350
JB
223
224#ifdef CONFIG_DEBUG_LOCK_ALLOC
225 /* tracks wakeup nests for lockdep validation */
226 u8 nests;
227#endif
1da177e4
LT
228};
229
1da177e4
LT
230/* Wrapper struct used by poll queueing */
231struct ep_pqueue {
232 poll_table pt;
233 struct epitem *epi;
234};
235
5071f97e
DL
236/* Used by the ep_send_events() function as callback private data */
237struct ep_send_events_data {
238 int maxevents;
239 struct epoll_event __user *events;
d7ebbe46 240 int res;
5071f97e
DL
241};
242
7ef9964e
DL
243/*
244 * Configuration options available inside /proc/sys/fs/epoll/
245 */
7ef9964e 246/* Maximum number of epoll watched descriptors, per user */
52bd19f7 247static long max_user_watches __read_mostly;
7ef9964e 248
1da177e4 249/*
d47de16c 250 * This mutex is used to serialize ep_free() and eventpoll_release_file().
1da177e4 251 */
7ef9964e 252static DEFINE_MUTEX(epmutex);
1da177e4 253
18306c40
AV
254static u64 loop_check_gen = 0;
255
22bacca4 256/* Used to check for epoll file descriptor inclusion loops */
d01f0594
AV
257static void *cookies[EP_MAX_NESTS + 1];
258static int nesting;
22bacca4 259
1da177e4 260/* Slab cache used to allocate "struct epitem" */
e18b890b 261static struct kmem_cache *epi_cache __read_mostly;
1da177e4
LT
262
263/* Slab cache used to allocate "struct eppoll_entry" */
e18b890b 264static struct kmem_cache *pwq_cache __read_mostly;
1da177e4 265
28d82dc1
JB
266/*
267 * List of files with newly added links, where we may need to limit the number
268 * of emanating paths. Protected by the epmutex.
269 */
270static LIST_HEAD(tfile_check_list);
271
7ef9964e
DL
272#ifdef CONFIG_SYSCTL
273
274#include <linux/sysctl.h>
275
eec4844f 276static long long_zero;
52bd19f7 277static long long_max = LONG_MAX;
7ef9964e 278
1f7e0616 279struct ctl_table epoll_table[] = {
7ef9964e
DL
280 {
281 .procname = "max_user_watches",
282 .data = &max_user_watches,
52bd19f7 283 .maxlen = sizeof(max_user_watches),
7ef9964e 284 .mode = 0644,
52bd19f7 285 .proc_handler = proc_doulongvec_minmax,
eec4844f 286 .extra1 = &long_zero,
52bd19f7 287 .extra2 = &long_max,
7ef9964e 288 },
ab09203e 289 { }
7ef9964e
DL
290};
291#endif /* CONFIG_SYSCTL */
292
28d82dc1
JB
293static const struct file_operations eventpoll_fops;
294
295static inline int is_file_epoll(struct file *f)
296{
297 return f->f_op == &eventpoll_fops;
298}
b030a4dd 299
67647d0f 300/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
301static inline void ep_set_ffd(struct epoll_filefd *ffd,
302 struct file *file, int fd)
303{
304 ffd->file = file;
305 ffd->fd = fd;
306}
307
67647d0f 308/* Compare RB tree keys */
b030a4dd
PE
309static inline int ep_cmp_ffd(struct epoll_filefd *p1,
310 struct epoll_filefd *p2)
311{
312 return (p1->file > p2->file ? +1:
313 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
314}
315
b030a4dd 316/* Tells us if the item is currently linked */
992991c0 317static inline int ep_is_linked(struct epitem *epi)
b030a4dd 318{
992991c0 319 return !list_empty(&epi->rdllink);
b030a4dd
PE
320}
321
ac6424b9 322static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
323{
324 return container_of(p, struct eppoll_entry, wait);
325}
326
b030a4dd 327/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 328static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
329{
330 return container_of(p, struct eppoll_entry, wait)->base;
331}
332
3fb0e584
DL
333/**
334 * ep_events_available - Checks if ready events might be available.
335 *
336 * @ep: Pointer to the eventpoll context.
337 *
338 * Returns: Returns a value different than zero if ready events are available,
339 * or zero otherwise.
340 */
341static inline int ep_events_available(struct eventpoll *ep)
342{
c5a282e9
DB
343 return !list_empty_careful(&ep->rdllist) ||
344 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
345}
346
bf3b9f63
SS
347#ifdef CONFIG_NET_RX_BUSY_POLL
348static bool ep_busy_loop_end(void *p, unsigned long start_time)
349{
350 struct eventpoll *ep = p;
351
352 return ep_events_available(ep) || busy_loop_timeout(start_time);
353}
bf3b9f63
SS
354
355/*
356 * Busy poll if globally on and supporting sockets found && no events,
357 * busy loop will return if need_resched or ep_events_available.
358 *
359 * we must do our busy polling with irqs enabled
360 */
361static void ep_busy_loop(struct eventpoll *ep, int nonblock)
362{
bf3b9f63
SS
363 unsigned int napi_id = READ_ONCE(ep->napi_id);
364
365 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
366 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
bf3b9f63
SS
367}
368
369static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
370{
bf3b9f63
SS
371 if (ep->napi_id)
372 ep->napi_id = 0;
bf3b9f63
SS
373}
374
375/*
376 * Set epoll busy poll NAPI ID from sk.
377 */
378static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
379{
bf3b9f63
SS
380 struct eventpoll *ep;
381 unsigned int napi_id;
382 struct socket *sock;
383 struct sock *sk;
384 int err;
385
386 if (!net_busy_loop_on())
387 return;
388
389 sock = sock_from_file(epi->ffd.file, &err);
390 if (!sock)
391 return;
392
393 sk = sock->sk;
394 if (!sk)
395 return;
396
397 napi_id = READ_ONCE(sk->sk_napi_id);
398 ep = epi->ep;
399
400 /* Non-NAPI IDs can be rejected
401 * or
402 * Nothing to do if we already have this ID
403 */
404 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
405 return;
406
407 /* record NAPI ID for use in next busy poll */
408 ep->napi_id = napi_id;
bf3b9f63
SS
409}
410
514056d5
DB
411#else
412
413static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
414{
415}
416
417static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
418{
419}
420
421static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
422{
423}
424
425#endif /* CONFIG_NET_RX_BUSY_POLL */
426
3b1688ef
AV
427static bool ep_push_nested(void *cookie)
428{
429 int i;
430
431 if (nesting > EP_MAX_NESTS) /* too deep nesting */
432 return false;
433
434 for (i = 0; i < nesting; i++) {
435 if (cookies[i] == cookie) /* loop detected */
436 return false;
437 }
438 cookies[nesting++] = cookie;
439 return true;
440}
441
02edc6fc
SR
442/*
443 * As described in commit 0ccf831cb lockdep: annotate epoll
444 * the use of wait queues used by epoll is done in a very controlled
445 * manner. Wake ups can nest inside each other, but are never done
446 * with the same locking. For example:
447 *
448 * dfd = socket(...);
449 * efd1 = epoll_create();
450 * efd2 = epoll_create();
451 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
452 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
453 *
454 * When a packet arrives to the device underneath "dfd", the net code will
455 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
456 * callback wakeup entry on that queue, and the wake_up() performed by the
457 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
458 * (efd1) notices that it may have some event ready, so it needs to wake up
459 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
460 * that ends up in another wake_up(), after having checked about the
461 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
462 * avoid stack blasting.
463 *
464 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
465 * this special case of epoll.
466 */
2dfa4eea 467#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd 468
efcdd350 469static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
5071f97e 470{
efcdd350 471 struct eventpoll *ep_src;
f6520c52 472 unsigned long flags;
efcdd350
JB
473 u8 nests = 0;
474
475 /*
476 * To set the subclass or nesting level for spin_lock_irqsave_nested()
477 * it might be natural to create a per-cpu nest count. However, since
478 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
479 * schedule() in the -rt kernel, the per-cpu variable are no longer
480 * protected. Thus, we are introducing a per eventpoll nest field.
481 * If we are not being call from ep_poll_callback(), epi is NULL and
482 * we are at the first level of nesting, 0. Otherwise, we are being
483 * called from ep_poll_callback() and if a previous wakeup source is
484 * not an epoll file itself, we are at depth 1 since the wakeup source
485 * is depth 0. If the wakeup source is a previous epoll file in the
486 * wakeup chain then we use its nests value and record ours as
487 * nests + 1. The previous epoll file nests value is stable since its
488 * already holding its own poll_wait.lock.
489 */
490 if (epi) {
491 if ((is_file_epoll(epi->ffd.file))) {
492 ep_src = epi->ffd.file->private_data;
493 nests = ep_src->nests;
494 } else {
495 nests = 1;
496 }
497 }
498 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
499 ep->nests = nests + 1;
500 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
501 ep->nests = 0;
502 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
1da177e4
LT
503}
504
57a173bd
JB
505#else
506
efcdd350 507static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
57a173bd 508{
efcdd350 509 wake_up_poll(&ep->poll_wait, EPOLLIN);
57a173bd
JB
510}
511
512#endif
513
971316f0
ON
514static void ep_remove_wait_queue(struct eppoll_entry *pwq)
515{
516 wait_queue_head_t *whead;
517
518 rcu_read_lock();
138e4ad6
ON
519 /*
520 * If it is cleared by POLLFREE, it should be rcu-safe.
521 * If we read NULL we need a barrier paired with
522 * smp_store_release() in ep_poll_callback(), otherwise
523 * we rely on whead->lock.
524 */
525 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
526 if (whead)
527 remove_wait_queue(whead, &pwq->wait);
528 rcu_read_unlock();
529}
530
1da177e4 531/*
d1bc90dd
TB
532 * This function unregisters poll callbacks from the associated file
533 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
534 * ep_free).
1da177e4 535 */
7699acd1 536static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 537{
80285b75 538 struct eppoll_entry **p = &epi->pwqlist;
7699acd1 539 struct eppoll_entry *pwq;
1da177e4 540
80285b75
AV
541 while ((pwq = *p) != NULL) {
542 *p = pwq->next;
971316f0 543 ep_remove_wait_queue(pwq);
d1bc90dd 544 kmem_cache_free(pwq_cache, pwq);
1da177e4 545 }
1da177e4
LT
546}
547
eea1d585
EW
548/* call only when ep->mtx is held */
549static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
550{
551 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
552}
553
554/* call only when ep->mtx is held */
555static inline void ep_pm_stay_awake(struct epitem *epi)
556{
557 struct wakeup_source *ws = ep_wakeup_source(epi);
558
559 if (ws)
560 __pm_stay_awake(ws);
561}
562
563static inline bool ep_has_wakeup_source(struct epitem *epi)
564{
565 return rcu_access_pointer(epi->ws) ? true : false;
566}
567
568/* call when ep->mtx cannot be held (ep_poll_callback) */
569static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
570{
571 struct wakeup_source *ws;
572
573 rcu_read_lock();
574 ws = rcu_dereference(epi->ws);
575 if (ws)
576 __pm_stay_awake(ws);
577 rcu_read_unlock();
578}
579
5071f97e
DL
580/**
581 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
582 * the scan code, to call f_op->poll(). Also allows for
583 * O(NumReady) performance.
584 *
585 * @ep: Pointer to the epoll private data structure.
586 * @sproc: Pointer to the scan callback.
587 * @priv: Private opaque data passed to the @sproc callback.
d8805e63 588 * @depth: The current depth of recursive f_op->poll calls.
67347fe4 589 * @ep_locked: caller already holds ep->mtx
5071f97e
DL
590 *
591 * Returns: The same integer error code returned by the @sproc callback.
592 */
d85e2aa2
AV
593static __poll_t ep_scan_ready_list(struct eventpoll *ep,
594 __poll_t (*sproc)(struct eventpoll *,
5071f97e 595 struct list_head *, void *),
67347fe4 596 void *priv, int depth, bool ep_locked)
5071f97e 597{
d85e2aa2 598 __poll_t res;
5071f97e 599 struct epitem *epi, *nepi;
296e236e 600 LIST_HEAD(txlist);
5071f97e 601
92e64178
DB
602 lockdep_assert_irqs_enabled();
603
5071f97e
DL
604 /*
605 * We need to lock this because we could be hit by
e057e15f 606 * eventpoll_release_file() and epoll_ctl().
5071f97e 607 */
67347fe4
JB
608
609 if (!ep_locked)
610 mutex_lock_nested(&ep->mtx, depth);
5071f97e
DL
611
612 /*
613 * Steal the ready list, and re-init the original one to the
614 * empty list. Also, set ep->ovflist to NULL so that events
615 * happening while looping w/out locks, are not lost. We cannot
616 * have the poll callback to queue directly on ep->rdllist,
617 * because we want the "sproc" callback to be able to do it
618 * in a lockless way.
619 */
a218cc49 620 write_lock_irq(&ep->lock);
296e236e 621 list_splice_init(&ep->rdllist, &txlist);
c5a282e9 622 WRITE_ONCE(ep->ovflist, NULL);
a218cc49 623 write_unlock_irq(&ep->lock);
5071f97e
DL
624
625 /*
626 * Now call the callback function.
627 */
d85e2aa2 628 res = (*sproc)(ep, &txlist, priv);
5071f97e 629
a218cc49 630 write_lock_irq(&ep->lock);
5071f97e
DL
631 /*
632 * During the time we spent inside the "sproc" callback, some
633 * other events might have been queued by the poll callback.
634 * We re-insert them inside the main ready-list here.
635 */
c5a282e9 636 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
5071f97e
DL
637 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
638 /*
639 * We need to check if the item is already in the list.
640 * During the "sproc" callback execution time, items are
641 * queued into ->ovflist but the "txlist" might already
642 * contain them, and the list_splice() below takes care of them.
643 */
992991c0 644 if (!ep_is_linked(epi)) {
c141175d
RP
645 /*
646 * ->ovflist is LIFO, so we have to reverse it in order
647 * to keep in FIFO.
648 */
649 list_add(&epi->rdllink, &ep->rdllist);
eea1d585 650 ep_pm_stay_awake(epi);
4d7e30d9 651 }
5071f97e
DL
652 }
653 /*
654 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
655 * releasing the lock, events will be queued in the normal way inside
656 * ep->rdllist.
657 */
c5a282e9 658 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
5071f97e
DL
659
660 /*
661 * Quickly re-inject items left on "txlist".
662 */
663 list_splice(&txlist, &ep->rdllist);
4d7e30d9 664 __pm_relax(ep->ws);
a218cc49 665 write_unlock_irq(&ep->lock);
5071f97e 666
67347fe4
JB
667 if (!ep_locked)
668 mutex_unlock(&ep->mtx);
5071f97e 669
d85e2aa2 670 return res;
5071f97e
DL
671}
672
ae10b2b4
JB
673static void epi_rcu_free(struct rcu_head *head)
674{
675 struct epitem *epi = container_of(head, struct epitem, rcu);
676 kmem_cache_free(epi_cache, epi);
677}
678
7699acd1
DL
679/*
680 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 681 * all the associated resources. Must be called with "mtx" held.
7699acd1
DL
682 */
683static int ep_remove(struct eventpoll *ep, struct epitem *epi)
684{
7699acd1 685 struct file *file = epi->ffd.file;
1da177e4 686
92e64178
DB
687 lockdep_assert_irqs_enabled();
688
1da177e4 689 /*
ee8ef0a4 690 * Removes poll wait queue hooks.
1da177e4 691 */
7699acd1 692 ep_unregister_pollwait(ep, epi);
1da177e4 693
7699acd1 694 /* Remove the current item from the list of epoll hooks */
68499914 695 spin_lock(&file->f_lock);
ae10b2b4 696 list_del_rcu(&epi->fllink);
68499914 697 spin_unlock(&file->f_lock);
1da177e4 698
b2ac2ea6 699 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 700
a218cc49 701 write_lock_irq(&ep->lock);
992991c0 702 if (ep_is_linked(epi))
c7ea7630 703 list_del_init(&epi->rdllink);
a218cc49 704 write_unlock_irq(&ep->lock);
1da177e4 705
eea1d585 706 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
707 /*
708 * At this point it is safe to free the eventpoll item. Use the union
709 * field epi->rcu, since we are trying to minimize the size of
710 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
711 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
712 * use of the rbn field.
713 */
714 call_rcu(&epi->rcu, epi_rcu_free);
1da177e4 715
52bd19f7 716 atomic_long_dec(&ep->user->epoll_watches);
7ef9964e 717
c7ea7630 718 return 0;
1da177e4
LT
719}
720
7699acd1 721static void ep_free(struct eventpoll *ep)
1da177e4 722{
7699acd1
DL
723 struct rb_node *rbp;
724 struct epitem *epi;
1da177e4 725
7699acd1
DL
726 /* We need to release all tasks waiting for these file */
727 if (waitqueue_active(&ep->poll_wait))
efcdd350 728 ep_poll_safewake(ep, NULL);
1da177e4 729
7699acd1
DL
730 /*
731 * We need to lock this because we could be hit by
732 * eventpoll_release_file() while we're freeing the "struct eventpoll".
d47de16c 733 * We do not need to hold "ep->mtx" here because the epoll file
7699acd1
DL
734 * is on the way to be removed and no one has references to it
735 * anymore. The only hit might come from eventpoll_release_file() but
25985edc 736 * holding "epmutex" is sufficient here.
7699acd1
DL
737 */
738 mutex_lock(&epmutex);
1da177e4
LT
739
740 /*
7699acd1 741 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 742 */
b2ac2ea6 743 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
744 epi = rb_entry(rbp, struct epitem, rbn);
745
746 ep_unregister_pollwait(ep, epi);
91cf5ab6 747 cond_resched();
7699acd1 748 }
1da177e4
LT
749
750 /*
7699acd1
DL
751 * Walks through the whole tree by freeing each "struct epitem". At this
752 * point we are sure no poll callbacks will be lingering around, and also by
d47de16c 753 * holding "epmutex" we can be sure that no file cleanup code will hit
a218cc49 754 * us during this operation. So we can avoid the lock on "ep->lock".
ddf676c3
EW
755 * We do not need to lock ep->mtx, either, we only do it to prevent
756 * a lockdep warning.
1da177e4 757 */
ddf676c3 758 mutex_lock(&ep->mtx);
b2ac2ea6 759 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
7699acd1
DL
760 epi = rb_entry(rbp, struct epitem, rbn);
761 ep_remove(ep, epi);
91cf5ab6 762 cond_resched();
7699acd1 763 }
ddf676c3 764 mutex_unlock(&ep->mtx);
1da177e4 765
7699acd1 766 mutex_unlock(&epmutex);
d47de16c 767 mutex_destroy(&ep->mtx);
7ef9964e 768 free_uid(ep->user);
4d7e30d9 769 wakeup_source_unregister(ep->ws);
f0ee9aab 770 kfree(ep);
7699acd1 771}
1da177e4 772
7699acd1
DL
773static int ep_eventpoll_release(struct inode *inode, struct file *file)
774{
775 struct eventpoll *ep = file->private_data;
1da177e4 776
f0ee9aab 777 if (ep)
7699acd1 778 ep_free(ep);
7699acd1 779
7699acd1 780 return 0;
1da177e4
LT
781}
782
d85e2aa2 783static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
37b5e521
JB
784 void *priv);
785static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
786 poll_table *pt);
787
788/*
789 * Differs from ep_eventpoll_poll() in that internal callers already have
790 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
791 * is correctly annotated.
792 */
d85e2aa2 793static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 794 int depth)
450d89ec 795{
37b5e521
JB
796 struct eventpoll *ep;
797 bool locked;
798
450d89ec 799 pt->_key = epi->event.events;
37b5e521 800 if (!is_file_epoll(epi->ffd.file))
9965ed17 801 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
450d89ec 802
37b5e521
JB
803 ep = epi->ffd.file->private_data;
804 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
805 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
450d89ec 806
37b5e521
JB
807 return ep_scan_ready_list(epi->ffd.file->private_data,
808 ep_read_events_proc, &depth, depth,
809 locked) & epi->event.events;
450d89ec
EW
810}
811
d85e2aa2 812static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 813 void *priv)
5071f97e
DL
814{
815 struct epitem *epi, *tmp;
626cf236 816 poll_table pt;
37b5e521 817 int depth = *(int *)priv;
5071f97e 818
626cf236 819 init_poll_funcptr(&pt, NULL);
37b5e521 820 depth++;
450d89ec 821
5071f97e 822 list_for_each_entry_safe(epi, tmp, head, rdllink) {
37b5e521 823 if (ep_item_poll(epi, &pt, depth)) {
a9a08845 824 return EPOLLIN | EPOLLRDNORM;
37b5e521 825 } else {
5071f97e
DL
826 /*
827 * Item has been dropped into the ready list by the poll
828 * callback, but it's not actually ready, as far as
829 * caller requested events goes. We can remove it here.
830 */
eea1d585 831 __pm_relax(ep_wakeup_source(epi));
5071f97e 832 list_del_init(&epi->rdllink);
296e236e 833 }
5071f97e
DL
834 }
835
836 return 0;
837}
838
a11e1d43 839static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e
BN
840{
841 struct eventpoll *ep = file->private_data;
842 int depth = 0;
7699acd1 843
a11e1d43
LT
844 /* Insert inside our poll wait queue */
845 poll_wait(file, &ep->poll_wait, wait);
846
5071f97e
DL
847 /*
848 * Proceed to find out if wanted events are really available inside
37b5e521 849 * the ready list.
5071f97e 850 */
37b5e521
JB
851 return ep_scan_ready_list(ep, ep_read_events_proc,
852 &depth, depth, false);
7699acd1
DL
853}
854
138d22b5 855#ifdef CONFIG_PROC_FS
a3816ab0 856static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
857{
858 struct eventpoll *ep = f->private_data;
859 struct rb_node *rbp;
138d22b5
CG
860
861 mutex_lock(&ep->mtx);
b2ac2ea6 862 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 863 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 864 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 865
77493f04
CG
866 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
867 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 868 epi->ffd.fd, epi->event.events,
77493f04
CG
869 (long long)epi->event.data,
870 (long long)epi->ffd.file->f_pos,
871 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 872 if (seq_has_overflowed(m))
138d22b5
CG
873 break;
874 }
875 mutex_unlock(&ep->mtx);
138d22b5
CG
876}
877#endif
878
7699acd1
DL
879/* File callbacks that implement the eventpoll file behaviour */
880static const struct file_operations eventpoll_fops = {
138d22b5
CG
881#ifdef CONFIG_PROC_FS
882 .show_fdinfo = ep_show_fdinfo,
883#endif
7699acd1 884 .release = ep_eventpoll_release,
a11e1d43 885 .poll = ep_eventpoll_poll,
6038f373 886 .llseek = noop_llseek,
7699acd1
DL
887};
888
b611967d 889/*
7699acd1
DL
890 * This is called from eventpoll_release() to unlink files from the eventpoll
891 * interface. We need to have this facility to cleanup correctly files that are
892 * closed without being removed from the eventpoll interface.
b611967d 893 */
7699acd1 894void eventpoll_release_file(struct file *file)
b611967d 895{
7699acd1 896 struct eventpoll *ep;
ebe06187 897 struct epitem *epi, *next;
b611967d
DL
898
899 /*
68499914 900 * We don't want to get "file->f_lock" because it is not
7699acd1 901 * necessary. It is not necessary because we're in the "struct file"
25985edc 902 * cleanup path, and this means that no one is using this file anymore.
5071f97e 903 * So, for example, epoll_ctl() cannot hit here since if we reach this
67647d0f 904 * point, the file counter already went to zero and fget() would fail.
d47de16c 905 * The only hit might come from ep_free() but by holding the mutex
7699acd1 906 * will correctly serialize the operation. We do need to acquire
d47de16c 907 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
7699acd1 908 * from anywhere but ep_free().
68499914
JC
909 *
910 * Besides, ep_remove() acquires the lock, so we can't hold it here.
b611967d 911 */
7699acd1 912 mutex_lock(&epmutex);
ebe06187 913 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
7699acd1 914 ep = epi->ep;
d8805e63 915 mutex_lock_nested(&ep->mtx, 0);
7699acd1 916 ep_remove(ep, epi);
d47de16c 917 mutex_unlock(&ep->mtx);
b611967d 918 }
7699acd1 919 mutex_unlock(&epmutex);
b611967d
DL
920}
921
53d2be79 922static int ep_alloc(struct eventpoll **pep)
1da177e4 923{
7ef9964e
DL
924 int error;
925 struct user_struct *user;
926 struct eventpoll *ep;
1da177e4 927
7ef9964e 928 user = get_current_user();
7ef9964e
DL
929 error = -ENOMEM;
930 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
931 if (unlikely(!ep))
932 goto free_uid;
1da177e4 933
d47de16c 934 mutex_init(&ep->mtx);
a218cc49 935 rwlock_init(&ep->lock);
1da177e4
LT
936 init_waitqueue_head(&ep->wq);
937 init_waitqueue_head(&ep->poll_wait);
938 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 939 ep->rbr = RB_ROOT_CACHED;
d47de16c 940 ep->ovflist = EP_UNACTIVE_PTR;
7ef9964e 941 ep->user = user;
1da177e4 942
53d2be79 943 *pep = ep;
1da177e4 944
1da177e4 945 return 0;
7ef9964e
DL
946
947free_uid:
948 free_uid(user);
949 return error;
1da177e4
LT
950}
951
1da177e4 952/*
c7ea7630
DL
953 * Search the file inside the eventpoll tree. The RB tree operations
954 * are protected by the "mtx" mutex, and ep_find() must be called with
955 * "mtx" held.
1da177e4
LT
956 */
957static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
958{
959 int kcmp;
1da177e4
LT
960 struct rb_node *rbp;
961 struct epitem *epi, *epir = NULL;
962 struct epoll_filefd ffd;
963
b030a4dd 964 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 965 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 966 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 967 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
968 if (kcmp > 0)
969 rbp = rbp->rb_right;
970 else if (kcmp < 0)
971 rbp = rbp->rb_left;
972 else {
1da177e4
LT
973 epir = epi;
974 break;
975 }
976 }
1da177e4 977
1da177e4
LT
978 return epir;
979}
980
92ef6da3 981#ifdef CONFIG_CHECKPOINT_RESTORE
0791e364
CG
982static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
983{
984 struct rb_node *rbp;
985 struct epitem *epi;
986
b2ac2ea6 987 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
988 epi = rb_entry(rbp, struct epitem, rbn);
989 if (epi->ffd.fd == tfd) {
990 if (toff == 0)
991 return epi;
992 else
993 toff--;
994 }
995 cond_resched();
996 }
997
998 return NULL;
999}
1000
1001struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1002 unsigned long toff)
1003{
1004 struct file *file_raw;
1005 struct eventpoll *ep;
1006 struct epitem *epi;
1007
1008 if (!is_file_epoll(file))
1009 return ERR_PTR(-EINVAL);
1010
1011 ep = file->private_data;
1012
1013 mutex_lock(&ep->mtx);
1014 epi = ep_find_tfd(ep, tfd, toff);
1015 if (epi)
1016 file_raw = epi->ffd.file;
1017 else
1018 file_raw = ERR_PTR(-ENOENT);
1019 mutex_unlock(&ep->mtx);
1020
1021 return file_raw;
1022}
92ef6da3 1023#endif /* CONFIG_CHECKPOINT_RESTORE */
0791e364 1024
a218cc49
RP
1025/**
1026 * Adds a new entry to the tail of the list in a lockless way, i.e.
1027 * multiple CPUs are allowed to call this function concurrently.
1028 *
1029 * Beware: it is necessary to prevent any other modifications of the
1030 * existing list until all changes are completed, in other words
1031 * concurrent list_add_tail_lockless() calls should be protected
1032 * with a read lock, where write lock acts as a barrier which
1033 * makes sure all list_add_tail_lockless() calls are fully
1034 * completed.
1035 *
1036 * Also an element can be locklessly added to the list only in one
1037 * direction i.e. either to the tail either to the head, otherwise
1038 * concurrent access will corrupt the list.
1039 *
1040 * Returns %false if element has been already added to the list, %true
1041 * otherwise.
1042 */
1043static inline bool list_add_tail_lockless(struct list_head *new,
1044 struct list_head *head)
1045{
1046 struct list_head *prev;
1047
1048 /*
1049 * This is simple 'new->next = head' operation, but cmpxchg()
1050 * is used in order to detect that same element has been just
1051 * added to the list from another CPU: the winner observes
1052 * new->next == new.
1053 */
1054 if (cmpxchg(&new->next, new, head) != new)
1055 return false;
1056
1057 /*
1058 * Initially ->next of a new element must be updated with the head
1059 * (we are inserting to the tail) and only then pointers are atomically
1060 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1061 * updated before pointers are actually swapped and pointers are
1062 * swapped before prev->next is updated.
1063 */
1064
1065 prev = xchg(&head->prev, new);
1066
1067 /*
1068 * It is safe to modify prev->next and new->prev, because a new element
1069 * is added only to the tail and new->next is updated before XCHG.
1070 */
1071
1072 prev->next = new;
1073 new->prev = prev;
1074
1075 return true;
1076}
1077
1078/**
1079 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1080 * i.e. multiple CPUs are allowed to call this function concurrently.
1081 *
1082 * Returns %false if epi element has been already chained, %true otherwise.
1083 */
1084static inline bool chain_epi_lockless(struct epitem *epi)
1085{
1086 struct eventpoll *ep = epi->ep;
1087
0c54a6a4
KK
1088 /* Fast preliminary check */
1089 if (epi->next != EP_UNACTIVE_PTR)
1090 return false;
1091
a218cc49
RP
1092 /* Check that the same epi has not been just chained from another CPU */
1093 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1094 return false;
1095
1096 /* Atomically exchange tail */
1097 epi->next = xchg(&ep->ovflist, epi);
1098
1099 return true;
1100}
1101
1da177e4 1102/*
7699acd1 1103 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1104 * mechanism. It is called by the stored file descriptors when they
7699acd1 1105 * have events to report.
a218cc49
RP
1106 *
1107 * This callback takes a read lock in order not to content with concurrent
1108 * events from another file descriptors, thus all modifications to ->rdllist
1109 * or ->ovflist are lockless. Read lock is paired with the write lock from
1110 * ep_scan_ready_list(), which stops all list modifications and guarantees
1111 * that lists state is seen correctly.
1112 *
1113 * Another thing worth to mention is that ep_poll_callback() can be called
1114 * concurrently for the same @epi from different CPUs if poll table was inited
1115 * with several wait queues entries. Plural wakeup from different CPUs of a
1116 * single wait queue is serialized by wq.lock, but the case when multiple wait
1117 * queues are used should be detected accordingly. This is detected using
1118 * cmpxchg() operation.
1da177e4 1119 */
ac6424b9 1120static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1121{
7699acd1 1122 int pwake = 0;
7699acd1
DL
1123 struct epitem *epi = ep_item_from_wait(wait);
1124 struct eventpoll *ep = epi->ep;
3ad6f93e 1125 __poll_t pollflags = key_to_poll(key);
a218cc49 1126 unsigned long flags;
df0108c5 1127 int ewake = 0;
1da177e4 1128
a218cc49 1129 read_lock_irqsave(&ep->lock, flags);
1da177e4 1130
bf3b9f63
SS
1131 ep_set_busy_poll_napi_id(epi);
1132
7699acd1
DL
1133 /*
1134 * If the event mask does not contain any poll(2) event, we consider the
1135 * descriptor to be disabled. This condition is likely the effect of the
1136 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1137 * until the next EPOLL_CTL_MOD will be issued.
1138 */
1139 if (!(epi->event.events & ~EP_PRIVATE_BITS))
d47de16c
DL
1140 goto out_unlock;
1141
2dfa4eea
DL
1142 /*
1143 * Check the events coming with the callback. At this stage, not
1144 * every device reports the events in the "key" parameter of the
1145 * callback. We need to be able to handle both cases here, hence the
1146 * test for "key" != NULL before the event match test.
1147 */
3ad6f93e 1148 if (pollflags && !(pollflags & epi->event.events))
2dfa4eea
DL
1149 goto out_unlock;
1150
d47de16c 1151 /*
bf6a41db 1152 * If we are transferring events to userspace, we can hold no locks
d47de16c 1153 * (because we're accessing user memory, and because of linux f_op->poll()
bf6a41db 1154 * semantics). All the events that happen during that period of time are
d47de16c
DL
1155 * chained in ep->ovflist and requeued later on.
1156 */
c5a282e9 1157 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
0c54a6a4
KK
1158 if (chain_epi_lockless(epi))
1159 ep_pm_stay_awake_rcu(epi);
1160 } else if (!ep_is_linked(epi)) {
1161 /* In the usual case, add event to ready list. */
1162 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
c3e320b6 1163 ep_pm_stay_awake_rcu(epi);
4d7e30d9 1164 }
7699acd1 1165
7699acd1
DL
1166 /*
1167 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1168 * wait list.
1169 */
df0108c5 1170 if (waitqueue_active(&ep->wq)) {
b6a515c8 1171 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1172 !(pollflags & POLLFREE)) {
1173 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1174 case EPOLLIN:
1175 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1176 ewake = 1;
1177 break;
a9a08845
LT
1178 case EPOLLOUT:
1179 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1180 ewake = 1;
1181 break;
1182 case 0:
1183 ewake = 1;
1184 break;
1185 }
1186 }
a218cc49 1187 wake_up(&ep->wq);
df0108c5 1188 }
7699acd1
DL
1189 if (waitqueue_active(&ep->poll_wait))
1190 pwake++;
1191
d47de16c 1192out_unlock:
a218cc49 1193 read_unlock_irqrestore(&ep->lock, flags);
1da177e4 1194
7699acd1
DL
1195 /* We have to call this outside the lock */
1196 if (pwake)
efcdd350 1197 ep_poll_safewake(ep, epi);
7699acd1 1198
138e4ad6
ON
1199 if (!(epi->event.events & EPOLLEXCLUSIVE))
1200 ewake = 1;
1201
3ad6f93e 1202 if (pollflags & POLLFREE) {
138e4ad6
ON
1203 /*
1204 * If we race with ep_remove_wait_queue() it can miss
1205 * ->whead = NULL and do another remove_wait_queue() after
1206 * us, so we can't use __remove_wait_queue().
1207 */
1208 list_del_init(&wait->entry);
1209 /*
1210 * ->whead != NULL protects us from the race with ep_free()
1211 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1212 * held by the caller. Once we nullify it, nothing protects
1213 * ep/epi or even wait.
1214 */
1215 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1216 }
df0108c5 1217
138e4ad6 1218 return ewake;
7699acd1 1219}
1da177e4
LT
1220
1221/*
1222 * This is the callback that is used to add our wait queue to the
1223 * target file wakeup lists.
1224 */
1225static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1226 poll_table *pt)
1227{
364f374f
AV
1228 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1229 struct epitem *epi = epq->epi;
1da177e4
LT
1230 struct eppoll_entry *pwq;
1231
364f374f
AV
1232 if (unlikely(!epi)) // an earlier allocation has failed
1233 return;
1234
1235 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1236 if (unlikely(!pwq)) {
1237 epq->epi = NULL;
1238 return;
296e236e 1239 }
364f374f
AV
1240
1241 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1242 pwq->whead = whead;
1243 pwq->base = epi;
1244 if (epi->event.events & EPOLLEXCLUSIVE)
1245 add_wait_queue_exclusive(whead, &pwq->wait);
1246 else
1247 add_wait_queue(whead, &pwq->wait);
1248 pwq->next = epi->pwqlist;
1249 epi->pwqlist = pwq;
1da177e4
LT
1250}
1251
1da177e4
LT
1252static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1253{
1254 int kcmp;
b2ac2ea6 1255 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1256 struct epitem *epic;
b2ac2ea6 1257 bool leftmost = true;
1da177e4
LT
1258
1259 while (*p) {
1260 parent = *p;
1261 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1262 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1263 if (kcmp > 0) {
1da177e4 1264 p = &parent->rb_right;
b2ac2ea6
DB
1265 leftmost = false;
1266 } else
1da177e4
LT
1267 p = &parent->rb_left;
1268 }
1269 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1270 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1271}
1272
a80a6b85
AM
1273
1274
28d82dc1
JB
1275#define PATH_ARR_SIZE 5
1276/*
1277 * These are the number paths of length 1 to 5, that we are allowing to emanate
1278 * from a single file of interest. For example, we allow 1000 paths of length
1279 * 1, to emanate from each file of interest. This essentially represents the
1280 * potential wakeup paths, which need to be limited in order to avoid massive
1281 * uncontrolled wakeup storms. The common use case should be a single ep which
1282 * is connected to n file sources. In this case each file source has 1 path
1283 * of length 1. Thus, the numbers below should be more than sufficient. These
1284 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1285 * and delete can't add additional paths. Protected by the epmutex.
1286 */
1287static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1288static int path_count[PATH_ARR_SIZE];
1289
1290static int path_count_inc(int nests)
1291{
93dc6107
JB
1292 /* Allow an arbitrary number of depth 1 paths */
1293 if (nests == 0)
1294 return 0;
1295
28d82dc1
JB
1296 if (++path_count[nests] > path_limits[nests])
1297 return -1;
1298 return 0;
1299}
1300
1301static void path_count_init(void)
1302{
1303 int i;
1304
1305 for (i = 0; i < PATH_ARR_SIZE; i++)
1306 path_count[i] = 0;
1307}
1308
aebf15f0 1309static int reverse_path_check_proc(struct file *file, int depth)
28d82dc1
JB
1310{
1311 int error = 0;
28d82dc1
JB
1312 struct epitem *epi;
1313
aebf15f0 1314 if (!ep_push_nested(file)) /* limits recursion */
99d84d43
AV
1315 return -1;
1316
ae10b2b4
JB
1317 /* CTL_DEL can remove links here, but that can't increase our count */
1318 rcu_read_lock();
1319 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
aebf15f0 1320 struct file *child_file = epi->ep->file;
28d82dc1
JB
1321 if (is_file_epoll(child_file)) {
1322 if (list_empty(&child_file->f_ep_links)) {
773318ed 1323 if (path_count_inc(depth)) {
28d82dc1
JB
1324 error = -1;
1325 break;
1326 }
1327 } else {
aebf15f0 1328 error = reverse_path_check_proc(child_file,
773318ed 1329 depth + 1);
28d82dc1
JB
1330 }
1331 if (error != 0)
1332 break;
1333 } else {
1334 printk(KERN_ERR "reverse_path_check_proc: "
1335 "file is not an ep!\n");
1336 }
1337 }
ae10b2b4 1338 rcu_read_unlock();
99d84d43 1339 nesting--; /* pop */
28d82dc1
JB
1340 return error;
1341}
1342
1343/**
1344 * reverse_path_check - The tfile_check_list is list of file *, which have
1345 * links that are proposed to be newly added. We need to
1346 * make sure that those added links don't add too many
1347 * paths such that we will spend all our time waking up
1348 * eventpoll objects.
1349 *
1350 * Returns: Returns zero if the proposed links don't create too many paths,
1351 * -1 otherwise.
1352 */
1353static int reverse_path_check(void)
1354{
28d82dc1
JB
1355 int error = 0;
1356 struct file *current_file;
1357
1358 /* let's call this for all tfiles */
1359 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
28d82dc1 1360 path_count_init();
aebf15f0 1361 error = reverse_path_check_proc(current_file, 0);
28d82dc1
JB
1362 if (error)
1363 break;
1364 }
1365 return error;
1366}
1367
4d7e30d9
AH
1368static int ep_create_wakeup_source(struct epitem *epi)
1369{
3701cb59 1370 struct name_snapshot n;
eea1d585 1371 struct wakeup_source *ws;
4d7e30d9
AH
1372
1373 if (!epi->ep->ws) {
c8377adf 1374 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1375 if (!epi->ep->ws)
1376 return -ENOMEM;
1377 }
1378
3701cb59
AV
1379 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1380 ws = wakeup_source_register(NULL, n.name.name);
1381 release_dentry_name_snapshot(&n);
eea1d585
EW
1382
1383 if (!ws)
4d7e30d9 1384 return -ENOMEM;
eea1d585 1385 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1386
1387 return 0;
1388}
1389
eea1d585
EW
1390/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1391static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1392{
eea1d585
EW
1393 struct wakeup_source *ws = ep_wakeup_source(epi);
1394
d6d67e72 1395 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1396
1397 /*
1398 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1399 * used internally by wakeup_source_remove, too (called by
1400 * wakeup_source_unregister), so we cannot use call_rcu
1401 */
1402 synchronize_rcu();
1403 wakeup_source_unregister(ws);
4d7e30d9
AH
1404}
1405
c7ea7630
DL
1406/*
1407 * Must be called with "mtx" held.
1408 */
bec1a502 1409static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1410 struct file *tfile, int fd, int full_check)
1da177e4 1411{
d85e2aa2
AV
1412 int error, pwake = 0;
1413 __poll_t revents;
52bd19f7 1414 long user_watches;
1da177e4
LT
1415 struct epitem *epi;
1416 struct ep_pqueue epq;
1417
92e64178
DB
1418 lockdep_assert_irqs_enabled();
1419
52bd19f7
RH
1420 user_watches = atomic_long_read(&ep->user->epoll_watches);
1421 if (unlikely(user_watches >= max_user_watches))
7ef9964e 1422 return -ENOSPC;
e94b1766 1423 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
7ef9964e 1424 return -ENOMEM;
1da177e4
LT
1425
1426 /* Item initialization follow here ... */
1da177e4
LT
1427 INIT_LIST_HEAD(&epi->rdllink);
1428 INIT_LIST_HEAD(&epi->fllink);
80285b75 1429 epi->pwqlist = NULL;
1da177e4 1430 epi->ep = ep;
b030a4dd 1431 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1432 epi->event = *event;
d47de16c 1433 epi->next = EP_UNACTIVE_PTR;
4d7e30d9
AH
1434 if (epi->event.events & EPOLLWAKEUP) {
1435 error = ep_create_wakeup_source(epi);
1436 if (error)
1437 goto error_create_wakeup_source;
1438 } else {
eea1d585 1439 RCU_INIT_POINTER(epi->ws, NULL);
4d7e30d9 1440 }
1da177e4 1441
f8d4f44d
AV
1442 /* Add the current item to the list of active epoll hook for this file */
1443 spin_lock(&tfile->f_lock);
1444 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1445 spin_unlock(&tfile->f_lock);
1446
1447 /*
1448 * Add the current item to the RB tree. All RB tree operations are
1449 * protected by "mtx", and ep_insert() is called with "mtx" held.
1450 */
1451 ep_rbtree_insert(ep, epi);
1452
1453 /* now check if we've created too many backpaths */
1454 error = -EINVAL;
1455 if (full_check && reverse_path_check())
1456 goto error_remove_epi;
1457
1da177e4
LT
1458 /* Initialize the poll table using the queue callback */
1459 epq.epi = epi;
1460 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1461
1462 /*
1463 * Attach the item to the poll hooks and get current event bits.
1464 * We can safely use the file* here because its usage count has
c7ea7630
DL
1465 * been increased by the caller of this function. Note that after
1466 * this operation completes, the poll callback can start hitting
1467 * the new item.
1da177e4 1468 */
37b5e521 1469 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1470
1471 /*
1472 * We have to check if something went wrong during the poll wait queue
1473 * install process. Namely an allocation for a wait queue failed due
1474 * high memory pressure.
1475 */
7ef9964e 1476 error = -ENOMEM;
364f374f 1477 if (!epq.epi)
7699acd1 1478 goto error_unregister;
1da177e4 1479
c7ea7630 1480 /* We have to drop the new item inside our item list to keep track of it */
a218cc49 1481 write_lock_irq(&ep->lock);
c7ea7630 1482
bf3b9f63
SS
1483 /* record NAPI ID of new item if present */
1484 ep_set_busy_poll_napi_id(epi);
1485
1da177e4 1486 /* If the file is already "ready" we drop it inside the ready list */
992991c0 1487 if (revents && !ep_is_linked(epi)) {
1da177e4 1488 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1489 ep_pm_stay_awake(epi);
1da177e4
LT
1490
1491 /* Notify waiting tasks that events are available */
1492 if (waitqueue_active(&ep->wq))
a218cc49 1493 wake_up(&ep->wq);
1da177e4
LT
1494 if (waitqueue_active(&ep->poll_wait))
1495 pwake++;
1496 }
1497
a218cc49 1498 write_unlock_irq(&ep->lock);
1da177e4 1499
52bd19f7 1500 atomic_long_inc(&ep->user->epoll_watches);
7ef9964e 1501
1da177e4
LT
1502 /* We have to call this outside the lock */
1503 if (pwake)
efcdd350 1504 ep_poll_safewake(ep, NULL);
1da177e4 1505
1da177e4
LT
1506 return 0;
1507
f8d4f44d
AV
1508error_unregister:
1509 ep_unregister_pollwait(ep, epi);
28d82dc1
JB
1510error_remove_epi:
1511 spin_lock(&tfile->f_lock);
ae10b2b4 1512 list_del_rcu(&epi->fllink);
28d82dc1
JB
1513 spin_unlock(&tfile->f_lock);
1514
b2ac2ea6 1515 rb_erase_cached(&epi->rbn, &ep->rbr);
28d82dc1 1516
1da177e4
LT
1517 /*
1518 * We need to do this because an event could have been arrived on some
67647d0f
DL
1519 * allocated wait queue. Note that we don't care about the ep->ovflist
1520 * list, since that is used/cleaned only inside a section bound by "mtx".
1521 * And ep_insert() is called with "mtx" held.
1da177e4 1522 */
a218cc49 1523 write_lock_irq(&ep->lock);
992991c0 1524 if (ep_is_linked(epi))
6192bd53 1525 list_del_init(&epi->rdllink);
a218cc49 1526 write_unlock_irq(&ep->lock);
1da177e4 1527
eea1d585 1528 wakeup_source_unregister(ep_wakeup_source(epi));
4d7e30d9
AH
1529
1530error_create_wakeup_source:
b030a4dd 1531 kmem_cache_free(epi_cache, epi);
7ef9964e 1532
1da177e4
LT
1533 return error;
1534}
1535
1da177e4
LT
1536/*
1537 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1538 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1539 */
bec1a502
AV
1540static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1541 const struct epoll_event *event)
1da177e4
LT
1542{
1543 int pwake = 0;
626cf236
HV
1544 poll_table pt;
1545
92e64178
DB
1546 lockdep_assert_irqs_enabled();
1547
626cf236 1548 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1549
1550 /*
e057e15f
TB
1551 * Set the new event interest mask before calling f_op->poll();
1552 * otherwise we might miss an event that happens between the
1553 * f_op->poll() call and the new event set registering.
1da177e4 1554 */
128dd175 1555 epi->event.events = event->events; /* need barrier below */
e057e15f 1556 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1557 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1558 if (!ep_has_wakeup_source(epi))
4d7e30d9 1559 ep_create_wakeup_source(epi);
eea1d585 1560 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1561 ep_destroy_wakeup_source(epi);
1562 }
1da177e4 1563
128dd175
EW
1564 /*
1565 * The following barrier has two effects:
1566 *
1567 * 1) Flush epi changes above to other CPUs. This ensures
1568 * we do not miss events from ep_poll_callback if an
1569 * event occurs immediately after we call f_op->poll().
a218cc49 1570 * We need this because we did not take ep->lock while
128dd175 1571 * changing epi above (but ep_poll_callback does take
a218cc49 1572 * ep->lock).
128dd175
EW
1573 *
1574 * 2) We also need to ensure we do not miss _past_ events
1575 * when calling f_op->poll(). This barrier also
1576 * pairs with the barrier in wq_has_sleeper (see
1577 * comments for wq_has_sleeper).
1578 *
1579 * This barrier will now guarantee ep_poll_callback or f_op->poll
1580 * (or both) will notice the readiness of an item.
1581 */
1582 smp_mb();
1583
1da177e4
LT
1584 /*
1585 * Get current event bits. We can safely use the file* here because
1586 * its usage count has been increased by the caller of this function.
c7ea7630 1587 * If the item is "hot" and it is not registered inside the ready
67647d0f 1588 * list, push it inside.
1da177e4 1589 */
69112736 1590 if (ep_item_poll(epi, &pt, 1)) {
a218cc49 1591 write_lock_irq(&ep->lock);
992991c0 1592 if (!ep_is_linked(epi)) {
c7ea7630 1593 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1594 ep_pm_stay_awake(epi);
c7ea7630
DL
1595
1596 /* Notify waiting tasks that events are available */
1597 if (waitqueue_active(&ep->wq))
a218cc49 1598 wake_up(&ep->wq);
c7ea7630
DL
1599 if (waitqueue_active(&ep->poll_wait))
1600 pwake++;
7699acd1 1601 }
a218cc49 1602 write_unlock_irq(&ep->lock);
7699acd1 1603 }
1da177e4 1604
7699acd1
DL
1605 /* We have to call this outside the lock */
1606 if (pwake)
efcdd350 1607 ep_poll_safewake(ep, NULL);
1da177e4 1608
7699acd1 1609 return 0;
1da177e4
LT
1610}
1611
d85e2aa2 1612static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 1613 void *priv)
1da177e4 1614{
5071f97e 1615 struct ep_send_events_data *esed = priv;
d85e2aa2 1616 __poll_t revents;
4e0982a0
DB
1617 struct epitem *epi, *tmp;
1618 struct epoll_event __user *uevent = esed->events;
eea1d585 1619 struct wakeup_source *ws;
626cf236
HV
1620 poll_table pt;
1621
1622 init_poll_funcptr(&pt, NULL);
4e0982a0 1623 esed->res = 0;
1da177e4 1624
296e236e 1625 /*
5071f97e
DL
1626 * We can loop without lock because we are passed a task private list.
1627 * Items cannot vanish during the loop because ep_scan_ready_list() is
1628 * holding "mtx" during this call.
296e236e 1629 */
21877e1a
DB
1630 lockdep_assert_held(&ep->mtx);
1631
4e0982a0
DB
1632 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1633 if (esed->res >= esed->maxevents)
1634 break;
d47de16c 1635
4d7e30d9
AH
1636 /*
1637 * Activate ep->ws before deactivating epi->ws to prevent
1638 * triggering auto-suspend here (in case we reactive epi->ws
1639 * below).
1640 *
1641 * This could be rearranged to delay the deactivation of epi->ws
1642 * instead, but then epi->ws would temporarily be out of sync
1643 * with ep_is_linked().
1644 */
eea1d585
EW
1645 ws = ep_wakeup_source(epi);
1646 if (ws) {
1647 if (ws->active)
1648 __pm_stay_awake(ep->ws);
1649 __pm_relax(ws);
1650 }
1651
d47de16c 1652 list_del_init(&epi->rdllink);
1da177e4 1653
296e236e 1654 /*
5071f97e
DL
1655 * If the event mask intersect the caller-requested one,
1656 * deliver the event to userspace. Again, ep_scan_ready_list()
4e0982a0 1657 * is holding ep->mtx, so no operations coming from userspace
5071f97e 1658 * can change the item.
296e236e 1659 */
4e0982a0
DB
1660 revents = ep_item_poll(epi, &pt, 1);
1661 if (!revents)
1662 continue;
1663
1664 if (__put_user(revents, &uevent->events) ||
1665 __put_user(epi->event.data, &uevent->data)) {
1666 list_add(&epi->rdllink, head);
1667 ep_pm_stay_awake(epi);
1668 if (!esed->res)
1669 esed->res = -EFAULT;
1670 return 0;
1671 }
1672 esed->res++;
1673 uevent++;
1674 if (epi->event.events & EPOLLONESHOT)
1675 epi->event.events &= EP_PRIVATE_BITS;
1676 else if (!(epi->event.events & EPOLLET)) {
1677 /*
1678 * If this file has been added with Level
1679 * Trigger mode, we need to insert back inside
1680 * the ready list, so that the next call to
1681 * epoll_wait() will check again the events
1682 * availability. At this point, no one can insert
1683 * into ep->rdllist besides us. The epoll_ctl()
1684 * callers are locked out by
1685 * ep_scan_ready_list() holding "mtx" and the
1686 * poll callback will queue them in ep->ovflist.
1687 */
1688 list_add_tail(&epi->rdllink, &ep->rdllist);
1689 ep_pm_stay_awake(epi);
296e236e
DL
1690 }
1691 }
5071f97e 1692
d7ebbe46 1693 return 0;
5071f97e 1694}
d47de16c 1695
296e236e
DL
1696static int ep_send_events(struct eventpoll *ep,
1697 struct epoll_event __user *events, int maxevents)
5071f97e
DL
1698{
1699 struct ep_send_events_data esed;
1da177e4 1700
5071f97e
DL
1701 esed.maxevents = maxevents;
1702 esed.events = events;
6192bd53 1703
d7ebbe46
AV
1704 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1705 return esed.res;
1da177e4
LT
1706}
1707
766b9f92 1708static inline struct timespec64 ep_set_mstimeout(long ms)
0781b909 1709{
766b9f92 1710 struct timespec64 now, ts = {
0781b909
ED
1711 .tv_sec = ms / MSEC_PER_SEC,
1712 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1713 };
1714
766b9f92
DD
1715 ktime_get_ts64(&now);
1716 return timespec64_add_safe(now, ts);
0781b909
ED
1717}
1718
f4d93ad7
SB
1719/**
1720 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1721 * event buffer.
1722 *
1723 * @ep: Pointer to the eventpoll context.
1724 * @events: Pointer to the userspace buffer where the ready events should be
1725 * stored.
1726 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1727 * @timeout: Maximum timeout for the ready events fetch operation, in
1728 * milliseconds. If the @timeout is zero, the function will not block,
1729 * while if the @timeout is less than zero, the function will block
1730 * until at least one event has been retrieved (or an error
1731 * occurred).
1732 *
1733 * Returns: Returns the number of ready events which have been fetched, or an
1734 * error code, in case of error.
1735 */
1da177e4
LT
1736static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1737 int maxevents, long timeout)
1738{
f4d93ad7 1739 int res = 0, eavail, timed_out = 0;
da8b44d5 1740 u64 slack = 0;
ac6424b9 1741 wait_queue_entry_t wait;
95aac7b1
SB
1742 ktime_t expires, *to = NULL;
1743
679abf38
DB
1744 lockdep_assert_irqs_enabled();
1745
95aac7b1 1746 if (timeout > 0) {
766b9f92 1747 struct timespec64 end_time = ep_set_mstimeout(timeout);
0781b909 1748
95aac7b1
SB
1749 slack = select_estimate_accuracy(&end_time);
1750 to = &expires;
766b9f92 1751 *to = timespec64_to_ktime(end_time);
95aac7b1 1752 } else if (timeout == 0) {
f4d93ad7
SB
1753 /*
1754 * Avoid the unnecessary trip to the wait queue loop, if the
c5a282e9
DB
1755 * caller specified a non blocking operation. We still need
1756 * lock because we could race and not see an epi being added
1757 * to the ready list while in irq callback. Thus incorrectly
1758 * returning 0 back to userspace.
f4d93ad7 1759 */
95aac7b1 1760 timed_out = 1;
c5a282e9 1761
a218cc49 1762 write_lock_irq(&ep->lock);
c5a282e9 1763 eavail = ep_events_available(ep);
a218cc49 1764 write_unlock_irq(&ep->lock);
c5a282e9 1765
35cff1a6 1766 goto send_events;
95aac7b1 1767 }
1da177e4 1768
f4d93ad7 1769fetch_events:
bf3b9f63
SS
1770
1771 if (!ep_events_available(ep))
1772 ep_busy_loop(ep, timed_out);
1773
c5a282e9
DB
1774 eavail = ep_events_available(ep);
1775 if (eavail)
35cff1a6 1776 goto send_events;
1da177e4 1777
c5a282e9
DB
1778 /*
1779 * Busy poll timed out. Drop NAPI ID for now, we can add
1780 * it back in when we have moved a socket with a valid NAPI
1781 * ID onto the ready list.
1782 */
1783 ep_reset_busy_poll_napi_id(ep);
bf3b9f63 1784
412895f0
RP
1785 do {
1786 /*
1787 * Internally init_wait() uses autoremove_wake_function(),
1788 * thus wait entry is removed from the wait queue on each
1789 * wakeup. Why it is important? In case of several waiters
1790 * each new wakeup will hit the next waiter, giving it the
1791 * chance to harvest new event. Otherwise wakeup can be
1792 * lost. This is also good performance-wise, because on
1793 * normal wakeup path no need to call __remove_wait_queue()
1794 * explicitly, thus ep->lock is not taken, which halts the
1795 * event delivery.
1796 */
1797 init_wait(&wait);
1da177e4 1798
65759097 1799 write_lock_irq(&ep->lock);
bf3b9f63 1800 /*
65759097
RP
1801 * Barrierless variant, waitqueue_active() is called under
1802 * the same lock on wakeup ep_poll_callback() side, so it
1803 * is safe to avoid an explicit barrier.
bf3b9f63 1804 */
65759097
RP
1805 __set_current_state(TASK_INTERRUPTIBLE);
1806
1da177e4 1807 /*
65759097
RP
1808 * Do the final check under the lock. ep_scan_ready_list()
1809 * plays with two lists (->rdllist and ->ovflist) and there
1810 * is always a race when both lists are empty for short
1811 * period of time although events are pending, so lock is
1812 * important.
1da177e4 1813 */
65759097
RP
1814 eavail = ep_events_available(ep);
1815 if (!eavail) {
1816 if (signal_pending(current))
1817 res = -EINTR;
1818 else
1819 __add_wait_queue_exclusive(&ep->wq, &wait);
c5a282e9 1820 }
65759097 1821 write_unlock_irq(&ep->lock);
95aac7b1 1822
65759097 1823 if (eavail || res)
c5a282e9 1824 break;
1da177e4 1825
abc610e0 1826 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
c5a282e9 1827 timed_out = 1;
abc610e0
DB
1828 break;
1829 }
412895f0
RP
1830
1831 /* We were woken up, thus go and try to harvest some events */
1832 eavail = 1;
1833
1834 } while (0);
1da177e4 1835
c5a282e9 1836 __set_current_state(TASK_RUNNING);
1da177e4 1837
412895f0
RP
1838 if (!list_empty_careful(&wait.entry)) {
1839 write_lock_irq(&ep->lock);
1840 __remove_wait_queue(&ep->wq, &wait);
1841 write_unlock_irq(&ep->lock);
1842 }
1843
35cff1a6 1844send_events:
65759097
RP
1845 if (fatal_signal_pending(current)) {
1846 /*
1847 * Always short-circuit for fatal signals to allow
1848 * threads to make a timely exit without the chance of
1849 * finding more events available and fetching
1850 * repeatedly.
1851 */
1852 res = -EINTR;
1853 }
1da177e4
LT
1854 /*
1855 * Try to transfer events to user space. In case we get 0 events and
1856 * there's still timeout left over, we go trying again in search of
1857 * more luck.
1858 */
1859 if (!res && eavail &&
95aac7b1 1860 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
f4d93ad7 1861 goto fetch_events;
1da177e4
LT
1862
1863 return res;
1864}
1865
22bacca4 1866/**
773318ed 1867 * ep_loop_check_proc - verify that adding an epoll file inside another
22bacca4
DL
1868 * epoll structure, does not violate the constraints, in
1869 * terms of closed loops, or too deep chains (which can
1870 * result in excessive stack usage).
1871 *
1872 * @priv: Pointer to the epoll file to be currently checked.
1873 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1874 * data structure pointer.
1875 * @call_nests: Current dept of the @ep_call_nested() call stack.
1876 *
1877 * Returns: Returns zero if adding the epoll @file inside current epoll
1878 * structure @ep does not violate the constraints, or -1 otherwise.
1879 */
773318ed 1880static int ep_loop_check_proc(void *priv, void *cookie, int depth)
22bacca4
DL
1881{
1882 int error = 0;
1883 struct file *file = priv;
1884 struct eventpoll *ep = file->private_data;
28d82dc1 1885 struct eventpoll *ep_tovisit;
22bacca4
DL
1886 struct rb_node *rbp;
1887 struct epitem *epi;
1888
99d84d43
AV
1889 if (!ep_push_nested(cookie)) /* limits recursion */
1890 return -1;
1891
773318ed 1892 mutex_lock_nested(&ep->mtx, depth + 1);
18306c40 1893 ep->gen = loop_check_gen;
b2ac2ea6 1894 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
1895 epi = rb_entry(rbp, struct epitem, rbn);
1896 if (unlikely(is_file_epoll(epi->ffd.file))) {
28d82dc1 1897 ep_tovisit = epi->ffd.file->private_data;
18306c40 1898 if (ep_tovisit->gen == loop_check_gen)
28d82dc1 1899 continue;
773318ed
AV
1900 error = ep_loop_check_proc(epi->ffd.file, ep_tovisit,
1901 depth + 1);
22bacca4
DL
1902 if (error != 0)
1903 break;
28d82dc1
JB
1904 } else {
1905 /*
1906 * If we've reached a file that is not associated with
1907 * an ep, then we need to check if the newly added
1908 * links are going to add too many wakeup paths. We do
1909 * this by adding it to the tfile_check_list, if it's
1910 * not already there, and calling reverse_path_check()
1911 * during ep_insert().
1912 */
a9ed4a65 1913 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
77f4689d
AV
1914 if (get_file_rcu(epi->ffd.file))
1915 list_add(&epi->ffd.file->f_tfile_llink,
1916 &tfile_check_list);
a9ed4a65 1917 }
22bacca4
DL
1918 }
1919 }
1920 mutex_unlock(&ep->mtx);
99d84d43 1921 nesting--; /* pop */
22bacca4
DL
1922
1923 return error;
1924}
1925
1926/**
1927 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1928 * another epoll file (represented by @ep) does not create
1929 * closed loops or too deep chains.
1930 *
1931 * @ep: Pointer to the epoll private data structure.
1932 * @file: Pointer to the epoll file to be checked.
1933 *
1934 * Returns: Returns zero if adding the epoll @file inside current epoll
1935 * structure @ep does not violate the constraints, or -1 otherwise.
1936 */
1937static int ep_loop_check(struct eventpoll *ep, struct file *file)
1938{
773318ed 1939 return ep_loop_check_proc(file, ep, 0);
28d82dc1
JB
1940}
1941
1942static void clear_tfile_check_list(void)
1943{
1944 struct file *file;
1945
1946 /* first clear the tfile_check_list */
1947 while (!list_empty(&tfile_check_list)) {
1948 file = list_first_entry(&tfile_check_list, struct file,
1949 f_tfile_llink);
1950 list_del_init(&file->f_tfile_llink);
a9ed4a65 1951 fput(file);
28d82dc1
JB
1952 }
1953 INIT_LIST_HEAD(&tfile_check_list);
22bacca4
DL
1954}
1955
7699acd1 1956/*
523723bb 1957 * Open an eventpoll file descriptor.
7699acd1 1958 */
791eb22e 1959static int do_epoll_create(int flags)
7699acd1 1960{
28d82dc1 1961 int error, fd;
bb57c3ed 1962 struct eventpoll *ep = NULL;
28d82dc1 1963 struct file *file;
7699acd1 1964
e38b36f3
UD
1965 /* Check the EPOLL_* constant for consistency. */
1966 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1967
296e236e
DL
1968 if (flags & ~EPOLL_CLOEXEC)
1969 return -EINVAL;
7699acd1 1970 /*
bb57c3ed 1971 * Create the internal data structure ("struct eventpoll").
7699acd1 1972 */
9fe5ad9c 1973 error = ep_alloc(&ep);
bb57c3ed
DL
1974 if (error < 0)
1975 return error;
7699acd1
DL
1976 /*
1977 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 1978 * a file structure and a free file descriptor.
7699acd1 1979 */
28d82dc1
JB
1980 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1981 if (fd < 0) {
1982 error = fd;
1983 goto out_free_ep;
1984 }
1985 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 1986 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
1987 if (IS_ERR(file)) {
1988 error = PTR_ERR(file);
1989 goto out_free_fd;
1990 }
28d82dc1 1991 ep->file = file;
98022748 1992 fd_install(fd, file);
28d82dc1
JB
1993 return fd;
1994
1995out_free_fd:
1996 put_unused_fd(fd);
1997out_free_ep:
1998 ep_free(ep);
bb57c3ed 1999 return error;
7699acd1
DL
2000}
2001
791eb22e
DB
2002SYSCALL_DEFINE1(epoll_create1, int, flags)
2003{
2004 return do_epoll_create(flags);
2005}
2006
5a8a82b1 2007SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 2008{
bfe3891a 2009 if (size <= 0)
9fe5ad9c
UD
2010 return -EINVAL;
2011
791eb22e 2012 return do_epoll_create(0);
a0998b50
UD
2013}
2014
39220e8d
JA
2015static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2016 bool nonblock)
2017{
2018 if (!nonblock) {
2019 mutex_lock_nested(mutex, depth);
2020 return 0;
2021 }
2022 if (mutex_trylock(mutex))
2023 return 0;
2024 return -EAGAIN;
2025}
2026
2027int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2028 bool nonblock)
7699acd1
DL
2029{
2030 int error;
67347fe4 2031 int full_check = 0;
7e3fb584 2032 struct fd f, tf;
7699acd1
DL
2033 struct eventpoll *ep;
2034 struct epitem *epi;
67347fe4 2035 struct eventpoll *tep = NULL;
7699acd1 2036
7699acd1 2037 error = -EBADF;
7e3fb584
AV
2038 f = fdget(epfd);
2039 if (!f.file)
7699acd1
DL
2040 goto error_return;
2041
2042 /* Get the "struct file *" for the target file */
7e3fb584
AV
2043 tf = fdget(fd);
2044 if (!tf.file)
7699acd1
DL
2045 goto error_fput;
2046
2047 /* The target file descriptor must support poll */
2048 error = -EPERM;
9965ed17 2049 if (!file_can_poll(tf.file))
7699acd1
DL
2050 goto error_tgt_fput;
2051
4d7e30d9 2052 /* Check if EPOLLWAKEUP is allowed */
c680e41b 2053 if (ep_op_has_event(op))
58e41a44 2054 ep_take_care_of_epollwakeup(epds);
4d7e30d9 2055
7699acd1
DL
2056 /*
2057 * We have to check that the file structure underneath the file descriptor
2058 * the user passed to us _is_ an eventpoll file. And also we do not permit
2059 * adding an epoll file descriptor inside itself.
2060 */
2061 error = -EINVAL;
7e3fb584 2062 if (f.file == tf.file || !is_file_epoll(f.file))
7699acd1
DL
2063 goto error_tgt_fput;
2064
df0108c5
JB
2065 /*
2066 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2067 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2068 * Also, we do not currently supported nested exclusive wakeups.
2069 */
58e41a44 2070 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2071 if (op == EPOLL_CTL_MOD)
2072 goto error_tgt_fput;
2073 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
58e41a44 2074 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
b6a515c8
JB
2075 goto error_tgt_fput;
2076 }
df0108c5 2077
7699acd1
DL
2078 /*
2079 * At this point it is safe to assume that the "private_data" contains
2080 * our own data structure.
2081 */
7e3fb584 2082 ep = f.file->private_data;
7699acd1 2083
22bacca4
DL
2084 /*
2085 * When we insert an epoll file descriptor, inside another epoll file
2086 * descriptor, there is the change of creating closed loops, which are
28d82dc1
JB
2087 * better be handled here, than in more critical paths. While we are
2088 * checking for loops we also determine the list of files reachable
2089 * and hang them on the tfile_check_list, so we can check that we
2090 * haven't created too many possible wakeup paths.
22bacca4 2091 *
67347fe4
JB
2092 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2093 * the epoll file descriptor is attaching directly to a wakeup source,
2094 * unless the epoll file descriptor is nested. The purpose of taking the
2095 * 'epmutex' on add is to prevent complex toplogies such as loops and
2096 * deep wakeup paths from forming in parallel through multiple
2097 * EPOLL_CTL_ADD operations.
22bacca4 2098 */
39220e8d
JA
2099 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2100 if (error)
2101 goto error_tgt_fput;
28d82dc1 2102 if (op == EPOLL_CTL_ADD) {
67347fe4 2103 if (!list_empty(&f.file->f_ep_links) ||
fe0a916c 2104 ep->gen == loop_check_gen ||
67347fe4 2105 is_file_epoll(tf.file)) {
67347fe4 2106 mutex_unlock(&ep->mtx);
39220e8d
JA
2107 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2108 if (error)
2109 goto error_tgt_fput;
18306c40 2110 loop_check_gen++;
39220e8d 2111 full_check = 1;
67347fe4
JB
2112 if (is_file_epoll(tf.file)) {
2113 error = -ELOOP;
52c47969 2114 if (ep_loop_check(ep, tf.file) != 0)
67347fe4 2115 goto error_tgt_fput;
a9ed4a65
MZ
2116 } else {
2117 get_file(tf.file);
67347fe4
JB
2118 list_add(&tf.file->f_tfile_llink,
2119 &tfile_check_list);
a9ed4a65 2120 }
39220e8d 2121 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
52c47969 2122 if (error)
39220e8d 2123 goto error_tgt_fput;
67347fe4
JB
2124 if (is_file_epoll(tf.file)) {
2125 tep = tf.file->private_data;
39220e8d
JA
2126 error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2127 if (error) {
2128 mutex_unlock(&ep->mtx);
52c47969 2129 goto error_tgt_fput;
39220e8d 2130 }
13d51807 2131 }
67347fe4
JB
2132 }
2133 }
7699acd1 2134
67647d0f
DL
2135 /*
2136 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2137 * above, we can be sure to be able to use the item looked up by
2138 * ep_find() till we release the mutex.
2139 */
7e3fb584 2140 epi = ep_find(ep, tf.file, fd);
7699acd1
DL
2141
2142 error = -EINVAL;
2143 switch (op) {
2144 case EPOLL_CTL_ADD:
2145 if (!epi) {
58e41a44
JA
2146 epds->events |= EPOLLERR | EPOLLHUP;
2147 error = ep_insert(ep, epds, tf.file, fd, full_check);
7699acd1
DL
2148 } else
2149 error = -EEXIST;
2150 break;
2151 case EPOLL_CTL_DEL:
2152 if (epi)
2153 error = ep_remove(ep, epi);
2154 else
2155 error = -ENOENT;
2156 break;
2157 case EPOLL_CTL_MOD:
2158 if (epi) {
b6a515c8 2159 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
58e41a44
JA
2160 epds->events |= EPOLLERR | EPOLLHUP;
2161 error = ep_modify(ep, epi, epds);
b6a515c8 2162 }
7699acd1
DL
2163 } else
2164 error = -ENOENT;
2165 break;
2166 }
67347fe4
JB
2167 if (tep != NULL)
2168 mutex_unlock(&tep->mtx);
d47de16c 2169 mutex_unlock(&ep->mtx);
7699acd1
DL
2170
2171error_tgt_fput:
52c47969
AV
2172 if (full_check) {
2173 clear_tfile_check_list();
18306c40 2174 loop_check_gen++;
22bacca4 2175 mutex_unlock(&epmutex);
52c47969 2176 }
22bacca4 2177
7e3fb584 2178 fdput(tf);
7699acd1 2179error_fput:
7e3fb584 2180 fdput(f);
7699acd1 2181error_return:
7699acd1
DL
2182
2183 return error;
2184}
2185
58e41a44
JA
2186/*
2187 * The following function implements the controller interface for
2188 * the eventpoll file that enables the insertion/removal/change of
2189 * file descriptors inside the interest set.
2190 */
2191SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2192 struct epoll_event __user *, event)
2193{
2194 struct epoll_event epds;
2195
2196 if (ep_op_has_event(op) &&
2197 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2198 return -EFAULT;
2199
39220e8d 2200 return do_epoll_ctl(epfd, op, fd, &epds, false);
58e41a44
JA
2201}
2202
7699acd1
DL
2203/*
2204 * Implement the event wait interface for the eventpoll file. It is the kernel
2205 * part of the user space epoll_wait(2).
2206 */
791eb22e
DB
2207static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2208 int maxevents, int timeout)
7699acd1 2209{
2903ff01
AV
2210 int error;
2211 struct fd f;
7699acd1
DL
2212 struct eventpoll *ep;
2213
7699acd1
DL
2214 /* The maximum number of event must be greater than zero */
2215 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2216 return -EINVAL;
2217
2218 /* Verify that the area passed by the user is writeable */
96d4f267 2219 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2903ff01 2220 return -EFAULT;
7699acd1
DL
2221
2222 /* Get the "struct file *" for the eventpoll file */
2903ff01
AV
2223 f = fdget(epfd);
2224 if (!f.file)
2225 return -EBADF;
7699acd1
DL
2226
2227 /*
2228 * We have to check that the file structure underneath the fd
2229 * the user passed to us _is_ an eventpoll file.
2230 */
2231 error = -EINVAL;
2903ff01 2232 if (!is_file_epoll(f.file))
7699acd1
DL
2233 goto error_fput;
2234
2235 /*
2236 * At this point it is safe to assume that the "private_data" contains
2237 * our own data structure.
2238 */
2903ff01 2239 ep = f.file->private_data;
7699acd1
DL
2240
2241 /* Time to fish for events ... */
2242 error = ep_poll(ep, events, maxevents, timeout);
2243
2244error_fput:
2903ff01 2245 fdput(f);
7699acd1
DL
2246 return error;
2247}
2248
791eb22e
DB
2249SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2250 int, maxevents, int, timeout)
2251{
2252 return do_epoll_wait(epfd, events, maxevents, timeout);
2253}
2254
7699acd1
DL
2255/*
2256 * Implement the event wait interface for the eventpoll file. It is the kernel
2257 * part of the user space epoll_pwait(2).
2258 */
5a8a82b1
HC
2259SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2260 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2261 size_t, sigsetsize)
7699acd1
DL
2262{
2263 int error;
7699acd1
DL
2264
2265 /*
2266 * If the caller wants a certain signal mask to be set during the wait,
2267 * we apply it here.
2268 */
b772434b 2269 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2270 if (error)
2271 return error;
7699acd1 2272
791eb22e 2273 error = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2274 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2275
2276 return error;
2277}
2278
35280bd4
AV
2279#ifdef CONFIG_COMPAT
2280COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2281 struct epoll_event __user *, events,
2282 int, maxevents, int, timeout,
2283 const compat_sigset_t __user *, sigmask,
2284 compat_size_t, sigsetsize)
2285{
2286 long err;
35280bd4
AV
2287
2288 /*
2289 * If the caller wants a certain signal mask to be set during the wait,
2290 * we apply it here.
2291 */
b772434b 2292 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2293 if (err)
2294 return err;
35280bd4 2295
791eb22e 2296 err = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2297 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2298
2299 return err;
2300}
2301#endif
2302
1da177e4
LT
2303static int __init eventpoll_init(void)
2304{
7ef9964e
DL
2305 struct sysinfo si;
2306
2307 si_meminfo(&si);
9df04e1f
DL
2308 /*
2309 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2310 */
2311 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2312 EP_ITEM_COST;
52bd19f7 2313 BUG_ON(max_user_watches < 0);
1da177e4 2314
39732ca5
EW
2315 /*
2316 * We can have many thousands of epitems, so prevent this from
2317 * using an extra cache line on 64-bit (and smaller) CPUs
2318 */
2319 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2320
1da177e4
LT
2321 /* Allocates slab cache used to allocate "struct epitem" items */
2322 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2323 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2324
2325 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2326 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2327 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 2328
1da177e4 2329 return 0;
1da177e4 2330}
cea69241 2331fs_initcall(eventpoll_init);