untangling ep_call_nested(): move push/pop of cookie into the callbacks
[linux-block.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
bf3b9f63 40#include <net/busy_poll.h>
1da177e4 41
1da177e4
LT
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
144efe3e 46 * 1) epmutex (mutex)
c7ea7630 47 * 2) ep->mtx (mutex)
a218cc49 48 * 3) ep->lock (rwlock)
1da177e4
LT
49 *
50 * The acquire order is the one listed above, from 1 to 3.
a218cc49 51 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
1da177e4
LT
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
bf6a41db 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
22bacca4
DL
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
d8805e63
NE
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
d47de16c 82 * It is possible to drop the "ep->mtx" and to use the global
a218cc49 83 * mutex "epmutex" (together with "ep->lock") to have it working,
d47de16c 84 * but having "ep->mtx" will make the interface more scalable.
144efe3e 85 * Events that require holding "epmutex" are very rare, while for
d47de16c
DL
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
1da177e4
LT
88 */
89
1da177e4 90/* Epoll private bits inside the event mask */
df0108c5 91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 92
a9a08845 93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 94
a9a08845 95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
5071f97e
DL
98/* Maximum number of nesting allowed inside epoll sets */
99#define EP_MAX_NESTS 4
1da177e4 100
b611967d
DL
101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
d47de16c
DL
103#define EP_UNACTIVE_PTR ((void *) -1L)
104
7ef9964e
DL
105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
1da177e4
LT
107struct epoll_filefd {
108 struct file *file;
109 int fd;
39732ca5 110} __packed;
1da177e4 111
80285b75
AV
112/* Wait structure used by the poll hooks */
113struct eppoll_entry {
114 /* List header used to link this structure to the "struct epitem" */
115 struct eppoll_entry *next;
116
117 /* The "base" pointer is set to the container "struct epitem" */
118 struct epitem *base;
119
120 /*
121 * Wait queue item that will be linked to the target file wait
122 * queue head.
123 */
124 wait_queue_entry_t wait;
125
126 /* The wait queue head that linked the "wait" wait queue item */
127 wait_queue_head_t *whead;
128};
129
d47de16c
DL
130/*
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
135 */
136struct epitem {
ae10b2b4
JB
137 union {
138 /* RB tree node links this structure to the eventpoll RB tree */
139 struct rb_node rbn;
140 /* Used to free the struct epitem */
141 struct rcu_head rcu;
142 };
d47de16c
DL
143
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
146
c7ea7630
DL
147 /*
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
150 */
151 struct epitem *next;
152
d47de16c
DL
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
155
d47de16c 156 /* List containing poll wait queues */
80285b75 157 struct eppoll_entry *pwqlist;
d47de16c
DL
158
159 /* The "container" of this item */
160 struct eventpoll *ep;
161
d47de16c
DL
162 /* List header used to link this item to the "struct file" items list */
163 struct list_head fllink;
164
4d7e30d9 165 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 166 struct wakeup_source __rcu *ws;
4d7e30d9 167
c7ea7630
DL
168 /* The structure that describe the interested events and the source fd */
169 struct epoll_event event;
d47de16c
DL
170};
171
1da177e4
LT
172/*
173 * This structure is stored inside the "private_data" member of the file
bf6a41db 174 * structure and represents the main data structure for the eventpoll
1da177e4
LT
175 * interface.
176 */
177struct eventpoll {
1da177e4 178 /*
d47de16c
DL
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
1da177e4 183 */
d47de16c 184 struct mutex mtx;
1da177e4
LT
185
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
188
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
191
192 /* List of ready file descriptors */
193 struct list_head rdllist;
194
a218cc49
RP
195 /* Lock which protects rdllist and ovflist */
196 rwlock_t lock;
197
67647d0f 198 /* RB tree root used to store monitored fd structs */
b2ac2ea6 199 struct rb_root_cached rbr;
d47de16c
DL
200
201 /*
202 * This is a single linked list that chains all the "struct epitem" that
25985edc 203 * happened while transferring ready events to userspace w/out
a218cc49 204 * holding ->lock.
d47de16c
DL
205 */
206 struct epitem *ovflist;
7ef9964e 207
4d7e30d9
AH
208 /* wakeup_source used when ep_scan_ready_list is running */
209 struct wakeup_source *ws;
210
7ef9964e
DL
211 /* The user that created the eventpoll descriptor */
212 struct user_struct *user;
28d82dc1
JB
213
214 struct file *file;
215
216 /* used to optimize loop detection check */
18306c40 217 u64 gen;
bf3b9f63
SS
218
219#ifdef CONFIG_NET_RX_BUSY_POLL
220 /* used to track busy poll napi_id */
221 unsigned int napi_id;
222#endif
efcdd350
JB
223
224#ifdef CONFIG_DEBUG_LOCK_ALLOC
225 /* tracks wakeup nests for lockdep validation */
226 u8 nests;
227#endif
1da177e4
LT
228};
229
1da177e4
LT
230/* Wrapper struct used by poll queueing */
231struct ep_pqueue {
232 poll_table pt;
233 struct epitem *epi;
234};
235
5071f97e
DL
236/* Used by the ep_send_events() function as callback private data */
237struct ep_send_events_data {
238 int maxevents;
239 struct epoll_event __user *events;
d7ebbe46 240 int res;
5071f97e
DL
241};
242
7ef9964e
DL
243/*
244 * Configuration options available inside /proc/sys/fs/epoll/
245 */
7ef9964e 246/* Maximum number of epoll watched descriptors, per user */
52bd19f7 247static long max_user_watches __read_mostly;
7ef9964e 248
1da177e4 249/*
d47de16c 250 * This mutex is used to serialize ep_free() and eventpoll_release_file().
1da177e4 251 */
7ef9964e 252static DEFINE_MUTEX(epmutex);
1da177e4 253
18306c40
AV
254static u64 loop_check_gen = 0;
255
22bacca4 256/* Used to check for epoll file descriptor inclusion loops */
d01f0594
AV
257static void *cookies[EP_MAX_NESTS + 1];
258static int nesting;
22bacca4 259
1da177e4 260/* Slab cache used to allocate "struct epitem" */
e18b890b 261static struct kmem_cache *epi_cache __read_mostly;
1da177e4
LT
262
263/* Slab cache used to allocate "struct eppoll_entry" */
e18b890b 264static struct kmem_cache *pwq_cache __read_mostly;
1da177e4 265
28d82dc1
JB
266/*
267 * List of files with newly added links, where we may need to limit the number
268 * of emanating paths. Protected by the epmutex.
269 */
270static LIST_HEAD(tfile_check_list);
271
7ef9964e
DL
272#ifdef CONFIG_SYSCTL
273
274#include <linux/sysctl.h>
275
eec4844f 276static long long_zero;
52bd19f7 277static long long_max = LONG_MAX;
7ef9964e 278
1f7e0616 279struct ctl_table epoll_table[] = {
7ef9964e
DL
280 {
281 .procname = "max_user_watches",
282 .data = &max_user_watches,
52bd19f7 283 .maxlen = sizeof(max_user_watches),
7ef9964e 284 .mode = 0644,
52bd19f7 285 .proc_handler = proc_doulongvec_minmax,
eec4844f 286 .extra1 = &long_zero,
52bd19f7 287 .extra2 = &long_max,
7ef9964e 288 },
ab09203e 289 { }
7ef9964e
DL
290};
291#endif /* CONFIG_SYSCTL */
292
28d82dc1
JB
293static const struct file_operations eventpoll_fops;
294
295static inline int is_file_epoll(struct file *f)
296{
297 return f->f_op == &eventpoll_fops;
298}
b030a4dd 299
67647d0f 300/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
301static inline void ep_set_ffd(struct epoll_filefd *ffd,
302 struct file *file, int fd)
303{
304 ffd->file = file;
305 ffd->fd = fd;
306}
307
67647d0f 308/* Compare RB tree keys */
b030a4dd
PE
309static inline int ep_cmp_ffd(struct epoll_filefd *p1,
310 struct epoll_filefd *p2)
311{
312 return (p1->file > p2->file ? +1:
313 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
314}
315
b030a4dd 316/* Tells us if the item is currently linked */
992991c0 317static inline int ep_is_linked(struct epitem *epi)
b030a4dd 318{
992991c0 319 return !list_empty(&epi->rdllink);
b030a4dd
PE
320}
321
ac6424b9 322static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
323{
324 return container_of(p, struct eppoll_entry, wait);
325}
326
b030a4dd 327/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 328static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
329{
330 return container_of(p, struct eppoll_entry, wait)->base;
331}
332
3fb0e584
DL
333/**
334 * ep_events_available - Checks if ready events might be available.
335 *
336 * @ep: Pointer to the eventpoll context.
337 *
338 * Returns: Returns a value different than zero if ready events are available,
339 * or zero otherwise.
340 */
341static inline int ep_events_available(struct eventpoll *ep)
342{
c5a282e9
DB
343 return !list_empty_careful(&ep->rdllist) ||
344 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
345}
346
bf3b9f63
SS
347#ifdef CONFIG_NET_RX_BUSY_POLL
348static bool ep_busy_loop_end(void *p, unsigned long start_time)
349{
350 struct eventpoll *ep = p;
351
352 return ep_events_available(ep) || busy_loop_timeout(start_time);
353}
bf3b9f63
SS
354
355/*
356 * Busy poll if globally on and supporting sockets found && no events,
357 * busy loop will return if need_resched or ep_events_available.
358 *
359 * we must do our busy polling with irqs enabled
360 */
361static void ep_busy_loop(struct eventpoll *ep, int nonblock)
362{
bf3b9f63
SS
363 unsigned int napi_id = READ_ONCE(ep->napi_id);
364
365 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
366 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
bf3b9f63
SS
367}
368
369static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
370{
bf3b9f63
SS
371 if (ep->napi_id)
372 ep->napi_id = 0;
bf3b9f63
SS
373}
374
375/*
376 * Set epoll busy poll NAPI ID from sk.
377 */
378static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
379{
bf3b9f63
SS
380 struct eventpoll *ep;
381 unsigned int napi_id;
382 struct socket *sock;
383 struct sock *sk;
384 int err;
385
386 if (!net_busy_loop_on())
387 return;
388
389 sock = sock_from_file(epi->ffd.file, &err);
390 if (!sock)
391 return;
392
393 sk = sock->sk;
394 if (!sk)
395 return;
396
397 napi_id = READ_ONCE(sk->sk_napi_id);
398 ep = epi->ep;
399
400 /* Non-NAPI IDs can be rejected
401 * or
402 * Nothing to do if we already have this ID
403 */
404 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
405 return;
406
407 /* record NAPI ID for use in next busy poll */
408 ep->napi_id = napi_id;
bf3b9f63
SS
409}
410
514056d5
DB
411#else
412
413static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
414{
415}
416
417static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
418{
419}
420
421static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
422{
423}
424
425#endif /* CONFIG_NET_RX_BUSY_POLL */
426
3b1688ef
AV
427static bool ep_push_nested(void *cookie)
428{
429 int i;
430
431 if (nesting > EP_MAX_NESTS) /* too deep nesting */
432 return false;
433
434 for (i = 0; i < nesting; i++) {
435 if (cookies[i] == cookie) /* loop detected */
436 return false;
437 }
438 cookies[nesting++] = cookie;
439 return true;
440}
441
5071f97e
DL
442/**
443 * ep_call_nested - Perform a bound (possibly) nested call, by checking
444 * that the recursion limit is not exceeded, and that
445 * the same nested call (by the meaning of same cookie) is
446 * no re-entered.
447 *
5071f97e
DL
448 * @nproc: Nested call core function pointer.
449 * @priv: Opaque data to be passed to the @nproc callback.
450 * @cookie: Cookie to be used to identify this nested call.
451 *
452 * Returns: Returns the code returned by the @nproc callback, or -1 if
453 * the maximum recursion limit has been exceeded.
1da177e4 454 */
8677600d
AV
455static int ep_call_nested(int (*nproc)(void *, void *, int), void *priv,
456 void *cookie)
1da177e4 457{
99d84d43 458 return (*nproc)(priv, cookie, nesting);
5071f97e
DL
459}
460
02edc6fc
SR
461/*
462 * As described in commit 0ccf831cb lockdep: annotate epoll
463 * the use of wait queues used by epoll is done in a very controlled
464 * manner. Wake ups can nest inside each other, but are never done
465 * with the same locking. For example:
466 *
467 * dfd = socket(...);
468 * efd1 = epoll_create();
469 * efd2 = epoll_create();
470 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
471 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
472 *
473 * When a packet arrives to the device underneath "dfd", the net code will
474 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
475 * callback wakeup entry on that queue, and the wake_up() performed by the
476 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
477 * (efd1) notices that it may have some event ready, so it needs to wake up
478 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
479 * that ends up in another wake_up(), after having checked about the
480 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
481 * avoid stack blasting.
482 *
483 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
484 * this special case of epoll.
485 */
2dfa4eea 486#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd 487
efcdd350 488static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
5071f97e 489{
efcdd350 490 struct eventpoll *ep_src;
f6520c52 491 unsigned long flags;
efcdd350
JB
492 u8 nests = 0;
493
494 /*
495 * To set the subclass or nesting level for spin_lock_irqsave_nested()
496 * it might be natural to create a per-cpu nest count. However, since
497 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
498 * schedule() in the -rt kernel, the per-cpu variable are no longer
499 * protected. Thus, we are introducing a per eventpoll nest field.
500 * If we are not being call from ep_poll_callback(), epi is NULL and
501 * we are at the first level of nesting, 0. Otherwise, we are being
502 * called from ep_poll_callback() and if a previous wakeup source is
503 * not an epoll file itself, we are at depth 1 since the wakeup source
504 * is depth 0. If the wakeup source is a previous epoll file in the
505 * wakeup chain then we use its nests value and record ours as
506 * nests + 1. The previous epoll file nests value is stable since its
507 * already holding its own poll_wait.lock.
508 */
509 if (epi) {
510 if ((is_file_epoll(epi->ffd.file))) {
511 ep_src = epi->ffd.file->private_data;
512 nests = ep_src->nests;
513 } else {
514 nests = 1;
515 }
516 }
517 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
518 ep->nests = nests + 1;
519 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
520 ep->nests = 0;
521 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
1da177e4
LT
522}
523
57a173bd
JB
524#else
525
efcdd350 526static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
57a173bd 527{
efcdd350 528 wake_up_poll(&ep->poll_wait, EPOLLIN);
57a173bd
JB
529}
530
531#endif
532
971316f0
ON
533static void ep_remove_wait_queue(struct eppoll_entry *pwq)
534{
535 wait_queue_head_t *whead;
536
537 rcu_read_lock();
138e4ad6
ON
538 /*
539 * If it is cleared by POLLFREE, it should be rcu-safe.
540 * If we read NULL we need a barrier paired with
541 * smp_store_release() in ep_poll_callback(), otherwise
542 * we rely on whead->lock.
543 */
544 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
545 if (whead)
546 remove_wait_queue(whead, &pwq->wait);
547 rcu_read_unlock();
548}
549
1da177e4 550/*
d1bc90dd
TB
551 * This function unregisters poll callbacks from the associated file
552 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
553 * ep_free).
1da177e4 554 */
7699acd1 555static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 556{
80285b75 557 struct eppoll_entry **p = &epi->pwqlist;
7699acd1 558 struct eppoll_entry *pwq;
1da177e4 559
80285b75
AV
560 while ((pwq = *p) != NULL) {
561 *p = pwq->next;
971316f0 562 ep_remove_wait_queue(pwq);
d1bc90dd 563 kmem_cache_free(pwq_cache, pwq);
1da177e4 564 }
1da177e4
LT
565}
566
eea1d585
EW
567/* call only when ep->mtx is held */
568static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
569{
570 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
571}
572
573/* call only when ep->mtx is held */
574static inline void ep_pm_stay_awake(struct epitem *epi)
575{
576 struct wakeup_source *ws = ep_wakeup_source(epi);
577
578 if (ws)
579 __pm_stay_awake(ws);
580}
581
582static inline bool ep_has_wakeup_source(struct epitem *epi)
583{
584 return rcu_access_pointer(epi->ws) ? true : false;
585}
586
587/* call when ep->mtx cannot be held (ep_poll_callback) */
588static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
589{
590 struct wakeup_source *ws;
591
592 rcu_read_lock();
593 ws = rcu_dereference(epi->ws);
594 if (ws)
595 __pm_stay_awake(ws);
596 rcu_read_unlock();
597}
598
5071f97e
DL
599/**
600 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
601 * the scan code, to call f_op->poll(). Also allows for
602 * O(NumReady) performance.
603 *
604 * @ep: Pointer to the epoll private data structure.
605 * @sproc: Pointer to the scan callback.
606 * @priv: Private opaque data passed to the @sproc callback.
d8805e63 607 * @depth: The current depth of recursive f_op->poll calls.
67347fe4 608 * @ep_locked: caller already holds ep->mtx
5071f97e
DL
609 *
610 * Returns: The same integer error code returned by the @sproc callback.
611 */
d85e2aa2
AV
612static __poll_t ep_scan_ready_list(struct eventpoll *ep,
613 __poll_t (*sproc)(struct eventpoll *,
5071f97e 614 struct list_head *, void *),
67347fe4 615 void *priv, int depth, bool ep_locked)
5071f97e 616{
d85e2aa2 617 __poll_t res;
5071f97e 618 struct epitem *epi, *nepi;
296e236e 619 LIST_HEAD(txlist);
5071f97e 620
92e64178
DB
621 lockdep_assert_irqs_enabled();
622
5071f97e
DL
623 /*
624 * We need to lock this because we could be hit by
e057e15f 625 * eventpoll_release_file() and epoll_ctl().
5071f97e 626 */
67347fe4
JB
627
628 if (!ep_locked)
629 mutex_lock_nested(&ep->mtx, depth);
5071f97e
DL
630
631 /*
632 * Steal the ready list, and re-init the original one to the
633 * empty list. Also, set ep->ovflist to NULL so that events
634 * happening while looping w/out locks, are not lost. We cannot
635 * have the poll callback to queue directly on ep->rdllist,
636 * because we want the "sproc" callback to be able to do it
637 * in a lockless way.
638 */
a218cc49 639 write_lock_irq(&ep->lock);
296e236e 640 list_splice_init(&ep->rdllist, &txlist);
c5a282e9 641 WRITE_ONCE(ep->ovflist, NULL);
a218cc49 642 write_unlock_irq(&ep->lock);
5071f97e
DL
643
644 /*
645 * Now call the callback function.
646 */
d85e2aa2 647 res = (*sproc)(ep, &txlist, priv);
5071f97e 648
a218cc49 649 write_lock_irq(&ep->lock);
5071f97e
DL
650 /*
651 * During the time we spent inside the "sproc" callback, some
652 * other events might have been queued by the poll callback.
653 * We re-insert them inside the main ready-list here.
654 */
c5a282e9 655 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
5071f97e
DL
656 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
657 /*
658 * We need to check if the item is already in the list.
659 * During the "sproc" callback execution time, items are
660 * queued into ->ovflist but the "txlist" might already
661 * contain them, and the list_splice() below takes care of them.
662 */
992991c0 663 if (!ep_is_linked(epi)) {
c141175d
RP
664 /*
665 * ->ovflist is LIFO, so we have to reverse it in order
666 * to keep in FIFO.
667 */
668 list_add(&epi->rdllink, &ep->rdllist);
eea1d585 669 ep_pm_stay_awake(epi);
4d7e30d9 670 }
5071f97e
DL
671 }
672 /*
673 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
674 * releasing the lock, events will be queued in the normal way inside
675 * ep->rdllist.
676 */
c5a282e9 677 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
5071f97e
DL
678
679 /*
680 * Quickly re-inject items left on "txlist".
681 */
682 list_splice(&txlist, &ep->rdllist);
4d7e30d9 683 __pm_relax(ep->ws);
a218cc49 684 write_unlock_irq(&ep->lock);
5071f97e 685
67347fe4
JB
686 if (!ep_locked)
687 mutex_unlock(&ep->mtx);
5071f97e 688
d85e2aa2 689 return res;
5071f97e
DL
690}
691
ae10b2b4
JB
692static void epi_rcu_free(struct rcu_head *head)
693{
694 struct epitem *epi = container_of(head, struct epitem, rcu);
695 kmem_cache_free(epi_cache, epi);
696}
697
7699acd1
DL
698/*
699 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 700 * all the associated resources. Must be called with "mtx" held.
7699acd1
DL
701 */
702static int ep_remove(struct eventpoll *ep, struct epitem *epi)
703{
7699acd1 704 struct file *file = epi->ffd.file;
1da177e4 705
92e64178
DB
706 lockdep_assert_irqs_enabled();
707
1da177e4 708 /*
ee8ef0a4 709 * Removes poll wait queue hooks.
1da177e4 710 */
7699acd1 711 ep_unregister_pollwait(ep, epi);
1da177e4 712
7699acd1 713 /* Remove the current item from the list of epoll hooks */
68499914 714 spin_lock(&file->f_lock);
ae10b2b4 715 list_del_rcu(&epi->fllink);
68499914 716 spin_unlock(&file->f_lock);
1da177e4 717
b2ac2ea6 718 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 719
a218cc49 720 write_lock_irq(&ep->lock);
992991c0 721 if (ep_is_linked(epi))
c7ea7630 722 list_del_init(&epi->rdllink);
a218cc49 723 write_unlock_irq(&ep->lock);
1da177e4 724
eea1d585 725 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
726 /*
727 * At this point it is safe to free the eventpoll item. Use the union
728 * field epi->rcu, since we are trying to minimize the size of
729 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
730 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
731 * use of the rbn field.
732 */
733 call_rcu(&epi->rcu, epi_rcu_free);
1da177e4 734
52bd19f7 735 atomic_long_dec(&ep->user->epoll_watches);
7ef9964e 736
c7ea7630 737 return 0;
1da177e4
LT
738}
739
7699acd1 740static void ep_free(struct eventpoll *ep)
1da177e4 741{
7699acd1
DL
742 struct rb_node *rbp;
743 struct epitem *epi;
1da177e4 744
7699acd1
DL
745 /* We need to release all tasks waiting for these file */
746 if (waitqueue_active(&ep->poll_wait))
efcdd350 747 ep_poll_safewake(ep, NULL);
1da177e4 748
7699acd1
DL
749 /*
750 * We need to lock this because we could be hit by
751 * eventpoll_release_file() while we're freeing the "struct eventpoll".
d47de16c 752 * We do not need to hold "ep->mtx" here because the epoll file
7699acd1
DL
753 * is on the way to be removed and no one has references to it
754 * anymore. The only hit might come from eventpoll_release_file() but
25985edc 755 * holding "epmutex" is sufficient here.
7699acd1
DL
756 */
757 mutex_lock(&epmutex);
1da177e4
LT
758
759 /*
7699acd1 760 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 761 */
b2ac2ea6 762 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
763 epi = rb_entry(rbp, struct epitem, rbn);
764
765 ep_unregister_pollwait(ep, epi);
91cf5ab6 766 cond_resched();
7699acd1 767 }
1da177e4
LT
768
769 /*
7699acd1
DL
770 * Walks through the whole tree by freeing each "struct epitem". At this
771 * point we are sure no poll callbacks will be lingering around, and also by
d47de16c 772 * holding "epmutex" we can be sure that no file cleanup code will hit
a218cc49 773 * us during this operation. So we can avoid the lock on "ep->lock".
ddf676c3
EW
774 * We do not need to lock ep->mtx, either, we only do it to prevent
775 * a lockdep warning.
1da177e4 776 */
ddf676c3 777 mutex_lock(&ep->mtx);
b2ac2ea6 778 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
7699acd1
DL
779 epi = rb_entry(rbp, struct epitem, rbn);
780 ep_remove(ep, epi);
91cf5ab6 781 cond_resched();
7699acd1 782 }
ddf676c3 783 mutex_unlock(&ep->mtx);
1da177e4 784
7699acd1 785 mutex_unlock(&epmutex);
d47de16c 786 mutex_destroy(&ep->mtx);
7ef9964e 787 free_uid(ep->user);
4d7e30d9 788 wakeup_source_unregister(ep->ws);
f0ee9aab 789 kfree(ep);
7699acd1 790}
1da177e4 791
7699acd1
DL
792static int ep_eventpoll_release(struct inode *inode, struct file *file)
793{
794 struct eventpoll *ep = file->private_data;
1da177e4 795
f0ee9aab 796 if (ep)
7699acd1 797 ep_free(ep);
7699acd1 798
7699acd1 799 return 0;
1da177e4
LT
800}
801
d85e2aa2 802static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
37b5e521
JB
803 void *priv);
804static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
805 poll_table *pt);
806
807/*
808 * Differs from ep_eventpoll_poll() in that internal callers already have
809 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
810 * is correctly annotated.
811 */
d85e2aa2 812static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 813 int depth)
450d89ec 814{
37b5e521
JB
815 struct eventpoll *ep;
816 bool locked;
817
450d89ec 818 pt->_key = epi->event.events;
37b5e521 819 if (!is_file_epoll(epi->ffd.file))
9965ed17 820 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
450d89ec 821
37b5e521
JB
822 ep = epi->ffd.file->private_data;
823 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
824 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
450d89ec 825
37b5e521
JB
826 return ep_scan_ready_list(epi->ffd.file->private_data,
827 ep_read_events_proc, &depth, depth,
828 locked) & epi->event.events;
450d89ec
EW
829}
830
d85e2aa2 831static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 832 void *priv)
5071f97e
DL
833{
834 struct epitem *epi, *tmp;
626cf236 835 poll_table pt;
37b5e521 836 int depth = *(int *)priv;
5071f97e 837
626cf236 838 init_poll_funcptr(&pt, NULL);
37b5e521 839 depth++;
450d89ec 840
5071f97e 841 list_for_each_entry_safe(epi, tmp, head, rdllink) {
37b5e521 842 if (ep_item_poll(epi, &pt, depth)) {
a9a08845 843 return EPOLLIN | EPOLLRDNORM;
37b5e521 844 } else {
5071f97e
DL
845 /*
846 * Item has been dropped into the ready list by the poll
847 * callback, but it's not actually ready, as far as
848 * caller requested events goes. We can remove it here.
849 */
eea1d585 850 __pm_relax(ep_wakeup_source(epi));
5071f97e 851 list_del_init(&epi->rdllink);
296e236e 852 }
5071f97e
DL
853 }
854
855 return 0;
856}
857
a11e1d43 858static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e
BN
859{
860 struct eventpoll *ep = file->private_data;
861 int depth = 0;
7699acd1 862
a11e1d43
LT
863 /* Insert inside our poll wait queue */
864 poll_wait(file, &ep->poll_wait, wait);
865
5071f97e
DL
866 /*
867 * Proceed to find out if wanted events are really available inside
37b5e521 868 * the ready list.
5071f97e 869 */
37b5e521
JB
870 return ep_scan_ready_list(ep, ep_read_events_proc,
871 &depth, depth, false);
7699acd1
DL
872}
873
138d22b5 874#ifdef CONFIG_PROC_FS
a3816ab0 875static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
876{
877 struct eventpoll *ep = f->private_data;
878 struct rb_node *rbp;
138d22b5
CG
879
880 mutex_lock(&ep->mtx);
b2ac2ea6 881 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 882 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 883 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 884
77493f04
CG
885 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
886 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 887 epi->ffd.fd, epi->event.events,
77493f04
CG
888 (long long)epi->event.data,
889 (long long)epi->ffd.file->f_pos,
890 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 891 if (seq_has_overflowed(m))
138d22b5
CG
892 break;
893 }
894 mutex_unlock(&ep->mtx);
138d22b5
CG
895}
896#endif
897
7699acd1
DL
898/* File callbacks that implement the eventpoll file behaviour */
899static const struct file_operations eventpoll_fops = {
138d22b5
CG
900#ifdef CONFIG_PROC_FS
901 .show_fdinfo = ep_show_fdinfo,
902#endif
7699acd1 903 .release = ep_eventpoll_release,
a11e1d43 904 .poll = ep_eventpoll_poll,
6038f373 905 .llseek = noop_llseek,
7699acd1
DL
906};
907
b611967d 908/*
7699acd1
DL
909 * This is called from eventpoll_release() to unlink files from the eventpoll
910 * interface. We need to have this facility to cleanup correctly files that are
911 * closed without being removed from the eventpoll interface.
b611967d 912 */
7699acd1 913void eventpoll_release_file(struct file *file)
b611967d 914{
7699acd1 915 struct eventpoll *ep;
ebe06187 916 struct epitem *epi, *next;
b611967d
DL
917
918 /*
68499914 919 * We don't want to get "file->f_lock" because it is not
7699acd1 920 * necessary. It is not necessary because we're in the "struct file"
25985edc 921 * cleanup path, and this means that no one is using this file anymore.
5071f97e 922 * So, for example, epoll_ctl() cannot hit here since if we reach this
67647d0f 923 * point, the file counter already went to zero and fget() would fail.
d47de16c 924 * The only hit might come from ep_free() but by holding the mutex
7699acd1 925 * will correctly serialize the operation. We do need to acquire
d47de16c 926 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
7699acd1 927 * from anywhere but ep_free().
68499914
JC
928 *
929 * Besides, ep_remove() acquires the lock, so we can't hold it here.
b611967d 930 */
7699acd1 931 mutex_lock(&epmutex);
ebe06187 932 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
7699acd1 933 ep = epi->ep;
d8805e63 934 mutex_lock_nested(&ep->mtx, 0);
7699acd1 935 ep_remove(ep, epi);
d47de16c 936 mutex_unlock(&ep->mtx);
b611967d 937 }
7699acd1 938 mutex_unlock(&epmutex);
b611967d
DL
939}
940
53d2be79 941static int ep_alloc(struct eventpoll **pep)
1da177e4 942{
7ef9964e
DL
943 int error;
944 struct user_struct *user;
945 struct eventpoll *ep;
1da177e4 946
7ef9964e 947 user = get_current_user();
7ef9964e
DL
948 error = -ENOMEM;
949 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
950 if (unlikely(!ep))
951 goto free_uid;
1da177e4 952
d47de16c 953 mutex_init(&ep->mtx);
a218cc49 954 rwlock_init(&ep->lock);
1da177e4
LT
955 init_waitqueue_head(&ep->wq);
956 init_waitqueue_head(&ep->poll_wait);
957 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 958 ep->rbr = RB_ROOT_CACHED;
d47de16c 959 ep->ovflist = EP_UNACTIVE_PTR;
7ef9964e 960 ep->user = user;
1da177e4 961
53d2be79 962 *pep = ep;
1da177e4 963
1da177e4 964 return 0;
7ef9964e
DL
965
966free_uid:
967 free_uid(user);
968 return error;
1da177e4
LT
969}
970
1da177e4 971/*
c7ea7630
DL
972 * Search the file inside the eventpoll tree. The RB tree operations
973 * are protected by the "mtx" mutex, and ep_find() must be called with
974 * "mtx" held.
1da177e4
LT
975 */
976static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
977{
978 int kcmp;
1da177e4
LT
979 struct rb_node *rbp;
980 struct epitem *epi, *epir = NULL;
981 struct epoll_filefd ffd;
982
b030a4dd 983 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 984 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 985 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 986 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
987 if (kcmp > 0)
988 rbp = rbp->rb_right;
989 else if (kcmp < 0)
990 rbp = rbp->rb_left;
991 else {
1da177e4
LT
992 epir = epi;
993 break;
994 }
995 }
1da177e4 996
1da177e4
LT
997 return epir;
998}
999
92ef6da3 1000#ifdef CONFIG_CHECKPOINT_RESTORE
0791e364
CG
1001static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1002{
1003 struct rb_node *rbp;
1004 struct epitem *epi;
1005
b2ac2ea6 1006 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
1007 epi = rb_entry(rbp, struct epitem, rbn);
1008 if (epi->ffd.fd == tfd) {
1009 if (toff == 0)
1010 return epi;
1011 else
1012 toff--;
1013 }
1014 cond_resched();
1015 }
1016
1017 return NULL;
1018}
1019
1020struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1021 unsigned long toff)
1022{
1023 struct file *file_raw;
1024 struct eventpoll *ep;
1025 struct epitem *epi;
1026
1027 if (!is_file_epoll(file))
1028 return ERR_PTR(-EINVAL);
1029
1030 ep = file->private_data;
1031
1032 mutex_lock(&ep->mtx);
1033 epi = ep_find_tfd(ep, tfd, toff);
1034 if (epi)
1035 file_raw = epi->ffd.file;
1036 else
1037 file_raw = ERR_PTR(-ENOENT);
1038 mutex_unlock(&ep->mtx);
1039
1040 return file_raw;
1041}
92ef6da3 1042#endif /* CONFIG_CHECKPOINT_RESTORE */
0791e364 1043
a218cc49
RP
1044/**
1045 * Adds a new entry to the tail of the list in a lockless way, i.e.
1046 * multiple CPUs are allowed to call this function concurrently.
1047 *
1048 * Beware: it is necessary to prevent any other modifications of the
1049 * existing list until all changes are completed, in other words
1050 * concurrent list_add_tail_lockless() calls should be protected
1051 * with a read lock, where write lock acts as a barrier which
1052 * makes sure all list_add_tail_lockless() calls are fully
1053 * completed.
1054 *
1055 * Also an element can be locklessly added to the list only in one
1056 * direction i.e. either to the tail either to the head, otherwise
1057 * concurrent access will corrupt the list.
1058 *
1059 * Returns %false if element has been already added to the list, %true
1060 * otherwise.
1061 */
1062static inline bool list_add_tail_lockless(struct list_head *new,
1063 struct list_head *head)
1064{
1065 struct list_head *prev;
1066
1067 /*
1068 * This is simple 'new->next = head' operation, but cmpxchg()
1069 * is used in order to detect that same element has been just
1070 * added to the list from another CPU: the winner observes
1071 * new->next == new.
1072 */
1073 if (cmpxchg(&new->next, new, head) != new)
1074 return false;
1075
1076 /*
1077 * Initially ->next of a new element must be updated with the head
1078 * (we are inserting to the tail) and only then pointers are atomically
1079 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1080 * updated before pointers are actually swapped and pointers are
1081 * swapped before prev->next is updated.
1082 */
1083
1084 prev = xchg(&head->prev, new);
1085
1086 /*
1087 * It is safe to modify prev->next and new->prev, because a new element
1088 * is added only to the tail and new->next is updated before XCHG.
1089 */
1090
1091 prev->next = new;
1092 new->prev = prev;
1093
1094 return true;
1095}
1096
1097/**
1098 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1099 * i.e. multiple CPUs are allowed to call this function concurrently.
1100 *
1101 * Returns %false if epi element has been already chained, %true otherwise.
1102 */
1103static inline bool chain_epi_lockless(struct epitem *epi)
1104{
1105 struct eventpoll *ep = epi->ep;
1106
0c54a6a4
KK
1107 /* Fast preliminary check */
1108 if (epi->next != EP_UNACTIVE_PTR)
1109 return false;
1110
a218cc49
RP
1111 /* Check that the same epi has not been just chained from another CPU */
1112 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1113 return false;
1114
1115 /* Atomically exchange tail */
1116 epi->next = xchg(&ep->ovflist, epi);
1117
1118 return true;
1119}
1120
1da177e4 1121/*
7699acd1 1122 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1123 * mechanism. It is called by the stored file descriptors when they
7699acd1 1124 * have events to report.
a218cc49
RP
1125 *
1126 * This callback takes a read lock in order not to content with concurrent
1127 * events from another file descriptors, thus all modifications to ->rdllist
1128 * or ->ovflist are lockless. Read lock is paired with the write lock from
1129 * ep_scan_ready_list(), which stops all list modifications and guarantees
1130 * that lists state is seen correctly.
1131 *
1132 * Another thing worth to mention is that ep_poll_callback() can be called
1133 * concurrently for the same @epi from different CPUs if poll table was inited
1134 * with several wait queues entries. Plural wakeup from different CPUs of a
1135 * single wait queue is serialized by wq.lock, but the case when multiple wait
1136 * queues are used should be detected accordingly. This is detected using
1137 * cmpxchg() operation.
1da177e4 1138 */
ac6424b9 1139static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1140{
7699acd1 1141 int pwake = 0;
7699acd1
DL
1142 struct epitem *epi = ep_item_from_wait(wait);
1143 struct eventpoll *ep = epi->ep;
3ad6f93e 1144 __poll_t pollflags = key_to_poll(key);
a218cc49 1145 unsigned long flags;
df0108c5 1146 int ewake = 0;
1da177e4 1147
a218cc49 1148 read_lock_irqsave(&ep->lock, flags);
1da177e4 1149
bf3b9f63
SS
1150 ep_set_busy_poll_napi_id(epi);
1151
7699acd1
DL
1152 /*
1153 * If the event mask does not contain any poll(2) event, we consider the
1154 * descriptor to be disabled. This condition is likely the effect of the
1155 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1156 * until the next EPOLL_CTL_MOD will be issued.
1157 */
1158 if (!(epi->event.events & ~EP_PRIVATE_BITS))
d47de16c
DL
1159 goto out_unlock;
1160
2dfa4eea
DL
1161 /*
1162 * Check the events coming with the callback. At this stage, not
1163 * every device reports the events in the "key" parameter of the
1164 * callback. We need to be able to handle both cases here, hence the
1165 * test for "key" != NULL before the event match test.
1166 */
3ad6f93e 1167 if (pollflags && !(pollflags & epi->event.events))
2dfa4eea
DL
1168 goto out_unlock;
1169
d47de16c 1170 /*
bf6a41db 1171 * If we are transferring events to userspace, we can hold no locks
d47de16c 1172 * (because we're accessing user memory, and because of linux f_op->poll()
bf6a41db 1173 * semantics). All the events that happen during that period of time are
d47de16c
DL
1174 * chained in ep->ovflist and requeued later on.
1175 */
c5a282e9 1176 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
0c54a6a4
KK
1177 if (chain_epi_lockless(epi))
1178 ep_pm_stay_awake_rcu(epi);
1179 } else if (!ep_is_linked(epi)) {
1180 /* In the usual case, add event to ready list. */
1181 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
c3e320b6 1182 ep_pm_stay_awake_rcu(epi);
4d7e30d9 1183 }
7699acd1 1184
7699acd1
DL
1185 /*
1186 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1187 * wait list.
1188 */
df0108c5 1189 if (waitqueue_active(&ep->wq)) {
b6a515c8 1190 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1191 !(pollflags & POLLFREE)) {
1192 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1193 case EPOLLIN:
1194 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1195 ewake = 1;
1196 break;
a9a08845
LT
1197 case EPOLLOUT:
1198 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1199 ewake = 1;
1200 break;
1201 case 0:
1202 ewake = 1;
1203 break;
1204 }
1205 }
a218cc49 1206 wake_up(&ep->wq);
df0108c5 1207 }
7699acd1
DL
1208 if (waitqueue_active(&ep->poll_wait))
1209 pwake++;
1210
d47de16c 1211out_unlock:
a218cc49 1212 read_unlock_irqrestore(&ep->lock, flags);
1da177e4 1213
7699acd1
DL
1214 /* We have to call this outside the lock */
1215 if (pwake)
efcdd350 1216 ep_poll_safewake(ep, epi);
7699acd1 1217
138e4ad6
ON
1218 if (!(epi->event.events & EPOLLEXCLUSIVE))
1219 ewake = 1;
1220
3ad6f93e 1221 if (pollflags & POLLFREE) {
138e4ad6
ON
1222 /*
1223 * If we race with ep_remove_wait_queue() it can miss
1224 * ->whead = NULL and do another remove_wait_queue() after
1225 * us, so we can't use __remove_wait_queue().
1226 */
1227 list_del_init(&wait->entry);
1228 /*
1229 * ->whead != NULL protects us from the race with ep_free()
1230 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1231 * held by the caller. Once we nullify it, nothing protects
1232 * ep/epi or even wait.
1233 */
1234 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1235 }
df0108c5 1236
138e4ad6 1237 return ewake;
7699acd1 1238}
1da177e4
LT
1239
1240/*
1241 * This is the callback that is used to add our wait queue to the
1242 * target file wakeup lists.
1243 */
1244static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1245 poll_table *pt)
1246{
364f374f
AV
1247 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1248 struct epitem *epi = epq->epi;
1da177e4
LT
1249 struct eppoll_entry *pwq;
1250
364f374f
AV
1251 if (unlikely(!epi)) // an earlier allocation has failed
1252 return;
1253
1254 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1255 if (unlikely(!pwq)) {
1256 epq->epi = NULL;
1257 return;
296e236e 1258 }
364f374f
AV
1259
1260 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1261 pwq->whead = whead;
1262 pwq->base = epi;
1263 if (epi->event.events & EPOLLEXCLUSIVE)
1264 add_wait_queue_exclusive(whead, &pwq->wait);
1265 else
1266 add_wait_queue(whead, &pwq->wait);
1267 pwq->next = epi->pwqlist;
1268 epi->pwqlist = pwq;
1da177e4
LT
1269}
1270
1da177e4
LT
1271static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1272{
1273 int kcmp;
b2ac2ea6 1274 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1275 struct epitem *epic;
b2ac2ea6 1276 bool leftmost = true;
1da177e4
LT
1277
1278 while (*p) {
1279 parent = *p;
1280 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1281 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1282 if (kcmp > 0) {
1da177e4 1283 p = &parent->rb_right;
b2ac2ea6
DB
1284 leftmost = false;
1285 } else
1da177e4
LT
1286 p = &parent->rb_left;
1287 }
1288 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1289 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1290}
1291
a80a6b85
AM
1292
1293
28d82dc1
JB
1294#define PATH_ARR_SIZE 5
1295/*
1296 * These are the number paths of length 1 to 5, that we are allowing to emanate
1297 * from a single file of interest. For example, we allow 1000 paths of length
1298 * 1, to emanate from each file of interest. This essentially represents the
1299 * potential wakeup paths, which need to be limited in order to avoid massive
1300 * uncontrolled wakeup storms. The common use case should be a single ep which
1301 * is connected to n file sources. In this case each file source has 1 path
1302 * of length 1. Thus, the numbers below should be more than sufficient. These
1303 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1304 * and delete can't add additional paths. Protected by the epmutex.
1305 */
1306static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1307static int path_count[PATH_ARR_SIZE];
1308
1309static int path_count_inc(int nests)
1310{
93dc6107
JB
1311 /* Allow an arbitrary number of depth 1 paths */
1312 if (nests == 0)
1313 return 0;
1314
28d82dc1
JB
1315 if (++path_count[nests] > path_limits[nests])
1316 return -1;
1317 return 0;
1318}
1319
1320static void path_count_init(void)
1321{
1322 int i;
1323
1324 for (i = 0; i < PATH_ARR_SIZE; i++)
1325 path_count[i] = 0;
1326}
1327
1328static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1329{
1330 int error = 0;
1331 struct file *file = priv;
1332 struct file *child_file;
1333 struct epitem *epi;
1334
99d84d43
AV
1335 if (!ep_push_nested(cookie)) /* limits recursion */
1336 return -1;
1337
ae10b2b4
JB
1338 /* CTL_DEL can remove links here, but that can't increase our count */
1339 rcu_read_lock();
1340 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
28d82dc1
JB
1341 child_file = epi->ep->file;
1342 if (is_file_epoll(child_file)) {
1343 if (list_empty(&child_file->f_ep_links)) {
1344 if (path_count_inc(call_nests)) {
1345 error = -1;
1346 break;
1347 }
1348 } else {
8677600d
AV
1349 error = ep_call_nested(reverse_path_check_proc,
1350 child_file, child_file);
28d82dc1
JB
1351 }
1352 if (error != 0)
1353 break;
1354 } else {
1355 printk(KERN_ERR "reverse_path_check_proc: "
1356 "file is not an ep!\n");
1357 }
1358 }
ae10b2b4 1359 rcu_read_unlock();
99d84d43 1360 nesting--; /* pop */
28d82dc1
JB
1361 return error;
1362}
1363
1364/**
1365 * reverse_path_check - The tfile_check_list is list of file *, which have
1366 * links that are proposed to be newly added. We need to
1367 * make sure that those added links don't add too many
1368 * paths such that we will spend all our time waking up
1369 * eventpoll objects.
1370 *
1371 * Returns: Returns zero if the proposed links don't create too many paths,
1372 * -1 otherwise.
1373 */
1374static int reverse_path_check(void)
1375{
28d82dc1
JB
1376 int error = 0;
1377 struct file *current_file;
1378
1379 /* let's call this for all tfiles */
1380 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
28d82dc1 1381 path_count_init();
8677600d
AV
1382 error = ep_call_nested(reverse_path_check_proc, current_file,
1383 current_file);
28d82dc1
JB
1384 if (error)
1385 break;
1386 }
1387 return error;
1388}
1389
4d7e30d9
AH
1390static int ep_create_wakeup_source(struct epitem *epi)
1391{
3701cb59 1392 struct name_snapshot n;
eea1d585 1393 struct wakeup_source *ws;
4d7e30d9
AH
1394
1395 if (!epi->ep->ws) {
c8377adf 1396 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1397 if (!epi->ep->ws)
1398 return -ENOMEM;
1399 }
1400
3701cb59
AV
1401 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1402 ws = wakeup_source_register(NULL, n.name.name);
1403 release_dentry_name_snapshot(&n);
eea1d585
EW
1404
1405 if (!ws)
4d7e30d9 1406 return -ENOMEM;
eea1d585 1407 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1408
1409 return 0;
1410}
1411
eea1d585
EW
1412/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1413static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1414{
eea1d585
EW
1415 struct wakeup_source *ws = ep_wakeup_source(epi);
1416
d6d67e72 1417 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1418
1419 /*
1420 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1421 * used internally by wakeup_source_remove, too (called by
1422 * wakeup_source_unregister), so we cannot use call_rcu
1423 */
1424 synchronize_rcu();
1425 wakeup_source_unregister(ws);
4d7e30d9
AH
1426}
1427
c7ea7630
DL
1428/*
1429 * Must be called with "mtx" held.
1430 */
bec1a502 1431static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1432 struct file *tfile, int fd, int full_check)
1da177e4 1433{
d85e2aa2
AV
1434 int error, pwake = 0;
1435 __poll_t revents;
52bd19f7 1436 long user_watches;
1da177e4
LT
1437 struct epitem *epi;
1438 struct ep_pqueue epq;
1439
92e64178
DB
1440 lockdep_assert_irqs_enabled();
1441
52bd19f7
RH
1442 user_watches = atomic_long_read(&ep->user->epoll_watches);
1443 if (unlikely(user_watches >= max_user_watches))
7ef9964e 1444 return -ENOSPC;
e94b1766 1445 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
7ef9964e 1446 return -ENOMEM;
1da177e4
LT
1447
1448 /* Item initialization follow here ... */
1da177e4
LT
1449 INIT_LIST_HEAD(&epi->rdllink);
1450 INIT_LIST_HEAD(&epi->fllink);
80285b75 1451 epi->pwqlist = NULL;
1da177e4 1452 epi->ep = ep;
b030a4dd 1453 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1454 epi->event = *event;
d47de16c 1455 epi->next = EP_UNACTIVE_PTR;
4d7e30d9
AH
1456 if (epi->event.events & EPOLLWAKEUP) {
1457 error = ep_create_wakeup_source(epi);
1458 if (error)
1459 goto error_create_wakeup_source;
1460 } else {
eea1d585 1461 RCU_INIT_POINTER(epi->ws, NULL);
4d7e30d9 1462 }
1da177e4 1463
f8d4f44d
AV
1464 /* Add the current item to the list of active epoll hook for this file */
1465 spin_lock(&tfile->f_lock);
1466 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1467 spin_unlock(&tfile->f_lock);
1468
1469 /*
1470 * Add the current item to the RB tree. All RB tree operations are
1471 * protected by "mtx", and ep_insert() is called with "mtx" held.
1472 */
1473 ep_rbtree_insert(ep, epi);
1474
1475 /* now check if we've created too many backpaths */
1476 error = -EINVAL;
1477 if (full_check && reverse_path_check())
1478 goto error_remove_epi;
1479
1da177e4
LT
1480 /* Initialize the poll table using the queue callback */
1481 epq.epi = epi;
1482 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1483
1484 /*
1485 * Attach the item to the poll hooks and get current event bits.
1486 * We can safely use the file* here because its usage count has
c7ea7630
DL
1487 * been increased by the caller of this function. Note that after
1488 * this operation completes, the poll callback can start hitting
1489 * the new item.
1da177e4 1490 */
37b5e521 1491 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1492
1493 /*
1494 * We have to check if something went wrong during the poll wait queue
1495 * install process. Namely an allocation for a wait queue failed due
1496 * high memory pressure.
1497 */
7ef9964e 1498 error = -ENOMEM;
364f374f 1499 if (!epq.epi)
7699acd1 1500 goto error_unregister;
1da177e4 1501
c7ea7630 1502 /* We have to drop the new item inside our item list to keep track of it */
a218cc49 1503 write_lock_irq(&ep->lock);
c7ea7630 1504
bf3b9f63
SS
1505 /* record NAPI ID of new item if present */
1506 ep_set_busy_poll_napi_id(epi);
1507
1da177e4 1508 /* If the file is already "ready" we drop it inside the ready list */
992991c0 1509 if (revents && !ep_is_linked(epi)) {
1da177e4 1510 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1511 ep_pm_stay_awake(epi);
1da177e4
LT
1512
1513 /* Notify waiting tasks that events are available */
1514 if (waitqueue_active(&ep->wq))
a218cc49 1515 wake_up(&ep->wq);
1da177e4
LT
1516 if (waitqueue_active(&ep->poll_wait))
1517 pwake++;
1518 }
1519
a218cc49 1520 write_unlock_irq(&ep->lock);
1da177e4 1521
52bd19f7 1522 atomic_long_inc(&ep->user->epoll_watches);
7ef9964e 1523
1da177e4
LT
1524 /* We have to call this outside the lock */
1525 if (pwake)
efcdd350 1526 ep_poll_safewake(ep, NULL);
1da177e4 1527
1da177e4
LT
1528 return 0;
1529
f8d4f44d
AV
1530error_unregister:
1531 ep_unregister_pollwait(ep, epi);
28d82dc1
JB
1532error_remove_epi:
1533 spin_lock(&tfile->f_lock);
ae10b2b4 1534 list_del_rcu(&epi->fllink);
28d82dc1
JB
1535 spin_unlock(&tfile->f_lock);
1536
b2ac2ea6 1537 rb_erase_cached(&epi->rbn, &ep->rbr);
28d82dc1 1538
1da177e4
LT
1539 /*
1540 * We need to do this because an event could have been arrived on some
67647d0f
DL
1541 * allocated wait queue. Note that we don't care about the ep->ovflist
1542 * list, since that is used/cleaned only inside a section bound by "mtx".
1543 * And ep_insert() is called with "mtx" held.
1da177e4 1544 */
a218cc49 1545 write_lock_irq(&ep->lock);
992991c0 1546 if (ep_is_linked(epi))
6192bd53 1547 list_del_init(&epi->rdllink);
a218cc49 1548 write_unlock_irq(&ep->lock);
1da177e4 1549
eea1d585 1550 wakeup_source_unregister(ep_wakeup_source(epi));
4d7e30d9
AH
1551
1552error_create_wakeup_source:
b030a4dd 1553 kmem_cache_free(epi_cache, epi);
7ef9964e 1554
1da177e4
LT
1555 return error;
1556}
1557
1da177e4
LT
1558/*
1559 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1560 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1561 */
bec1a502
AV
1562static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1563 const struct epoll_event *event)
1da177e4
LT
1564{
1565 int pwake = 0;
626cf236
HV
1566 poll_table pt;
1567
92e64178
DB
1568 lockdep_assert_irqs_enabled();
1569
626cf236 1570 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1571
1572 /*
e057e15f
TB
1573 * Set the new event interest mask before calling f_op->poll();
1574 * otherwise we might miss an event that happens between the
1575 * f_op->poll() call and the new event set registering.
1da177e4 1576 */
128dd175 1577 epi->event.events = event->events; /* need barrier below */
e057e15f 1578 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1579 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1580 if (!ep_has_wakeup_source(epi))
4d7e30d9 1581 ep_create_wakeup_source(epi);
eea1d585 1582 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1583 ep_destroy_wakeup_source(epi);
1584 }
1da177e4 1585
128dd175
EW
1586 /*
1587 * The following barrier has two effects:
1588 *
1589 * 1) Flush epi changes above to other CPUs. This ensures
1590 * we do not miss events from ep_poll_callback if an
1591 * event occurs immediately after we call f_op->poll().
a218cc49 1592 * We need this because we did not take ep->lock while
128dd175 1593 * changing epi above (but ep_poll_callback does take
a218cc49 1594 * ep->lock).
128dd175
EW
1595 *
1596 * 2) We also need to ensure we do not miss _past_ events
1597 * when calling f_op->poll(). This barrier also
1598 * pairs with the barrier in wq_has_sleeper (see
1599 * comments for wq_has_sleeper).
1600 *
1601 * This barrier will now guarantee ep_poll_callback or f_op->poll
1602 * (or both) will notice the readiness of an item.
1603 */
1604 smp_mb();
1605
1da177e4
LT
1606 /*
1607 * Get current event bits. We can safely use the file* here because
1608 * its usage count has been increased by the caller of this function.
c7ea7630 1609 * If the item is "hot" and it is not registered inside the ready
67647d0f 1610 * list, push it inside.
1da177e4 1611 */
69112736 1612 if (ep_item_poll(epi, &pt, 1)) {
a218cc49 1613 write_lock_irq(&ep->lock);
992991c0 1614 if (!ep_is_linked(epi)) {
c7ea7630 1615 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1616 ep_pm_stay_awake(epi);
c7ea7630
DL
1617
1618 /* Notify waiting tasks that events are available */
1619 if (waitqueue_active(&ep->wq))
a218cc49 1620 wake_up(&ep->wq);
c7ea7630
DL
1621 if (waitqueue_active(&ep->poll_wait))
1622 pwake++;
7699acd1 1623 }
a218cc49 1624 write_unlock_irq(&ep->lock);
7699acd1 1625 }
1da177e4 1626
7699acd1
DL
1627 /* We have to call this outside the lock */
1628 if (pwake)
efcdd350 1629 ep_poll_safewake(ep, NULL);
1da177e4 1630
7699acd1 1631 return 0;
1da177e4
LT
1632}
1633
d85e2aa2 1634static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 1635 void *priv)
1da177e4 1636{
5071f97e 1637 struct ep_send_events_data *esed = priv;
d85e2aa2 1638 __poll_t revents;
4e0982a0
DB
1639 struct epitem *epi, *tmp;
1640 struct epoll_event __user *uevent = esed->events;
eea1d585 1641 struct wakeup_source *ws;
626cf236
HV
1642 poll_table pt;
1643
1644 init_poll_funcptr(&pt, NULL);
4e0982a0 1645 esed->res = 0;
1da177e4 1646
296e236e 1647 /*
5071f97e
DL
1648 * We can loop without lock because we are passed a task private list.
1649 * Items cannot vanish during the loop because ep_scan_ready_list() is
1650 * holding "mtx" during this call.
296e236e 1651 */
21877e1a
DB
1652 lockdep_assert_held(&ep->mtx);
1653
4e0982a0
DB
1654 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1655 if (esed->res >= esed->maxevents)
1656 break;
d47de16c 1657
4d7e30d9
AH
1658 /*
1659 * Activate ep->ws before deactivating epi->ws to prevent
1660 * triggering auto-suspend here (in case we reactive epi->ws
1661 * below).
1662 *
1663 * This could be rearranged to delay the deactivation of epi->ws
1664 * instead, but then epi->ws would temporarily be out of sync
1665 * with ep_is_linked().
1666 */
eea1d585
EW
1667 ws = ep_wakeup_source(epi);
1668 if (ws) {
1669 if (ws->active)
1670 __pm_stay_awake(ep->ws);
1671 __pm_relax(ws);
1672 }
1673
d47de16c 1674 list_del_init(&epi->rdllink);
1da177e4 1675
296e236e 1676 /*
5071f97e
DL
1677 * If the event mask intersect the caller-requested one,
1678 * deliver the event to userspace. Again, ep_scan_ready_list()
4e0982a0 1679 * is holding ep->mtx, so no operations coming from userspace
5071f97e 1680 * can change the item.
296e236e 1681 */
4e0982a0
DB
1682 revents = ep_item_poll(epi, &pt, 1);
1683 if (!revents)
1684 continue;
1685
1686 if (__put_user(revents, &uevent->events) ||
1687 __put_user(epi->event.data, &uevent->data)) {
1688 list_add(&epi->rdllink, head);
1689 ep_pm_stay_awake(epi);
1690 if (!esed->res)
1691 esed->res = -EFAULT;
1692 return 0;
1693 }
1694 esed->res++;
1695 uevent++;
1696 if (epi->event.events & EPOLLONESHOT)
1697 epi->event.events &= EP_PRIVATE_BITS;
1698 else if (!(epi->event.events & EPOLLET)) {
1699 /*
1700 * If this file has been added with Level
1701 * Trigger mode, we need to insert back inside
1702 * the ready list, so that the next call to
1703 * epoll_wait() will check again the events
1704 * availability. At this point, no one can insert
1705 * into ep->rdllist besides us. The epoll_ctl()
1706 * callers are locked out by
1707 * ep_scan_ready_list() holding "mtx" and the
1708 * poll callback will queue them in ep->ovflist.
1709 */
1710 list_add_tail(&epi->rdllink, &ep->rdllist);
1711 ep_pm_stay_awake(epi);
296e236e
DL
1712 }
1713 }
5071f97e 1714
d7ebbe46 1715 return 0;
5071f97e 1716}
d47de16c 1717
296e236e
DL
1718static int ep_send_events(struct eventpoll *ep,
1719 struct epoll_event __user *events, int maxevents)
5071f97e
DL
1720{
1721 struct ep_send_events_data esed;
1da177e4 1722
5071f97e
DL
1723 esed.maxevents = maxevents;
1724 esed.events = events;
6192bd53 1725
d7ebbe46
AV
1726 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1727 return esed.res;
1da177e4
LT
1728}
1729
766b9f92 1730static inline struct timespec64 ep_set_mstimeout(long ms)
0781b909 1731{
766b9f92 1732 struct timespec64 now, ts = {
0781b909
ED
1733 .tv_sec = ms / MSEC_PER_SEC,
1734 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1735 };
1736
766b9f92
DD
1737 ktime_get_ts64(&now);
1738 return timespec64_add_safe(now, ts);
0781b909
ED
1739}
1740
f4d93ad7
SB
1741/**
1742 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1743 * event buffer.
1744 *
1745 * @ep: Pointer to the eventpoll context.
1746 * @events: Pointer to the userspace buffer where the ready events should be
1747 * stored.
1748 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1749 * @timeout: Maximum timeout for the ready events fetch operation, in
1750 * milliseconds. If the @timeout is zero, the function will not block,
1751 * while if the @timeout is less than zero, the function will block
1752 * until at least one event has been retrieved (or an error
1753 * occurred).
1754 *
1755 * Returns: Returns the number of ready events which have been fetched, or an
1756 * error code, in case of error.
1757 */
1da177e4
LT
1758static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1759 int maxevents, long timeout)
1760{
f4d93ad7 1761 int res = 0, eavail, timed_out = 0;
da8b44d5 1762 u64 slack = 0;
ac6424b9 1763 wait_queue_entry_t wait;
95aac7b1
SB
1764 ktime_t expires, *to = NULL;
1765
679abf38
DB
1766 lockdep_assert_irqs_enabled();
1767
95aac7b1 1768 if (timeout > 0) {
766b9f92 1769 struct timespec64 end_time = ep_set_mstimeout(timeout);
0781b909 1770
95aac7b1
SB
1771 slack = select_estimate_accuracy(&end_time);
1772 to = &expires;
766b9f92 1773 *to = timespec64_to_ktime(end_time);
95aac7b1 1774 } else if (timeout == 0) {
f4d93ad7
SB
1775 /*
1776 * Avoid the unnecessary trip to the wait queue loop, if the
c5a282e9
DB
1777 * caller specified a non blocking operation. We still need
1778 * lock because we could race and not see an epi being added
1779 * to the ready list while in irq callback. Thus incorrectly
1780 * returning 0 back to userspace.
f4d93ad7 1781 */
95aac7b1 1782 timed_out = 1;
c5a282e9 1783
a218cc49 1784 write_lock_irq(&ep->lock);
c5a282e9 1785 eavail = ep_events_available(ep);
a218cc49 1786 write_unlock_irq(&ep->lock);
c5a282e9 1787
35cff1a6 1788 goto send_events;
95aac7b1 1789 }
1da177e4 1790
f4d93ad7 1791fetch_events:
bf3b9f63
SS
1792
1793 if (!ep_events_available(ep))
1794 ep_busy_loop(ep, timed_out);
1795
c5a282e9
DB
1796 eavail = ep_events_available(ep);
1797 if (eavail)
35cff1a6 1798 goto send_events;
1da177e4 1799
c5a282e9
DB
1800 /*
1801 * Busy poll timed out. Drop NAPI ID for now, we can add
1802 * it back in when we have moved a socket with a valid NAPI
1803 * ID onto the ready list.
1804 */
1805 ep_reset_busy_poll_napi_id(ep);
bf3b9f63 1806
412895f0
RP
1807 do {
1808 /*
1809 * Internally init_wait() uses autoremove_wake_function(),
1810 * thus wait entry is removed from the wait queue on each
1811 * wakeup. Why it is important? In case of several waiters
1812 * each new wakeup will hit the next waiter, giving it the
1813 * chance to harvest new event. Otherwise wakeup can be
1814 * lost. This is also good performance-wise, because on
1815 * normal wakeup path no need to call __remove_wait_queue()
1816 * explicitly, thus ep->lock is not taken, which halts the
1817 * event delivery.
1818 */
1819 init_wait(&wait);
1da177e4 1820
65759097 1821 write_lock_irq(&ep->lock);
bf3b9f63 1822 /*
65759097
RP
1823 * Barrierless variant, waitqueue_active() is called under
1824 * the same lock on wakeup ep_poll_callback() side, so it
1825 * is safe to avoid an explicit barrier.
bf3b9f63 1826 */
65759097
RP
1827 __set_current_state(TASK_INTERRUPTIBLE);
1828
1da177e4 1829 /*
65759097
RP
1830 * Do the final check under the lock. ep_scan_ready_list()
1831 * plays with two lists (->rdllist and ->ovflist) and there
1832 * is always a race when both lists are empty for short
1833 * period of time although events are pending, so lock is
1834 * important.
1da177e4 1835 */
65759097
RP
1836 eavail = ep_events_available(ep);
1837 if (!eavail) {
1838 if (signal_pending(current))
1839 res = -EINTR;
1840 else
1841 __add_wait_queue_exclusive(&ep->wq, &wait);
c5a282e9 1842 }
65759097 1843 write_unlock_irq(&ep->lock);
95aac7b1 1844
65759097 1845 if (eavail || res)
c5a282e9 1846 break;
1da177e4 1847
abc610e0 1848 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
c5a282e9 1849 timed_out = 1;
abc610e0
DB
1850 break;
1851 }
412895f0
RP
1852
1853 /* We were woken up, thus go and try to harvest some events */
1854 eavail = 1;
1855
1856 } while (0);
1da177e4 1857
c5a282e9 1858 __set_current_state(TASK_RUNNING);
1da177e4 1859
412895f0
RP
1860 if (!list_empty_careful(&wait.entry)) {
1861 write_lock_irq(&ep->lock);
1862 __remove_wait_queue(&ep->wq, &wait);
1863 write_unlock_irq(&ep->lock);
1864 }
1865
35cff1a6 1866send_events:
65759097
RP
1867 if (fatal_signal_pending(current)) {
1868 /*
1869 * Always short-circuit for fatal signals to allow
1870 * threads to make a timely exit without the chance of
1871 * finding more events available and fetching
1872 * repeatedly.
1873 */
1874 res = -EINTR;
1875 }
1da177e4
LT
1876 /*
1877 * Try to transfer events to user space. In case we get 0 events and
1878 * there's still timeout left over, we go trying again in search of
1879 * more luck.
1880 */
1881 if (!res && eavail &&
95aac7b1 1882 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
f4d93ad7 1883 goto fetch_events;
1da177e4
LT
1884
1885 return res;
1886}
1887
22bacca4
DL
1888/**
1889 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1890 * API, to verify that adding an epoll file inside another
1891 * epoll structure, does not violate the constraints, in
1892 * terms of closed loops, or too deep chains (which can
1893 * result in excessive stack usage).
1894 *
1895 * @priv: Pointer to the epoll file to be currently checked.
1896 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1897 * data structure pointer.
1898 * @call_nests: Current dept of the @ep_call_nested() call stack.
1899 *
1900 * Returns: Returns zero if adding the epoll @file inside current epoll
1901 * structure @ep does not violate the constraints, or -1 otherwise.
1902 */
1903static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1904{
1905 int error = 0;
1906 struct file *file = priv;
1907 struct eventpoll *ep = file->private_data;
28d82dc1 1908 struct eventpoll *ep_tovisit;
22bacca4
DL
1909 struct rb_node *rbp;
1910 struct epitem *epi;
1911
99d84d43
AV
1912 if (!ep_push_nested(cookie)) /* limits recursion */
1913 return -1;
1914
d8805e63 1915 mutex_lock_nested(&ep->mtx, call_nests + 1);
18306c40 1916 ep->gen = loop_check_gen;
b2ac2ea6 1917 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
1918 epi = rb_entry(rbp, struct epitem, rbn);
1919 if (unlikely(is_file_epoll(epi->ffd.file))) {
28d82dc1 1920 ep_tovisit = epi->ffd.file->private_data;
18306c40 1921 if (ep_tovisit->gen == loop_check_gen)
28d82dc1 1922 continue;
8677600d
AV
1923 error = ep_call_nested(ep_loop_check_proc, epi->ffd.file,
1924 ep_tovisit);
22bacca4
DL
1925 if (error != 0)
1926 break;
28d82dc1
JB
1927 } else {
1928 /*
1929 * If we've reached a file that is not associated with
1930 * an ep, then we need to check if the newly added
1931 * links are going to add too many wakeup paths. We do
1932 * this by adding it to the tfile_check_list, if it's
1933 * not already there, and calling reverse_path_check()
1934 * during ep_insert().
1935 */
a9ed4a65 1936 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
77f4689d
AV
1937 if (get_file_rcu(epi->ffd.file))
1938 list_add(&epi->ffd.file->f_tfile_llink,
1939 &tfile_check_list);
a9ed4a65 1940 }
22bacca4
DL
1941 }
1942 }
1943 mutex_unlock(&ep->mtx);
99d84d43 1944 nesting--; /* pop */
22bacca4
DL
1945
1946 return error;
1947}
1948
1949/**
1950 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1951 * another epoll file (represented by @ep) does not create
1952 * closed loops or too deep chains.
1953 *
1954 * @ep: Pointer to the epoll private data structure.
1955 * @file: Pointer to the epoll file to be checked.
1956 *
1957 * Returns: Returns zero if adding the epoll @file inside current epoll
1958 * structure @ep does not violate the constraints, or -1 otherwise.
1959 */
1960static int ep_loop_check(struct eventpoll *ep, struct file *file)
1961{
8677600d 1962 return ep_call_nested(ep_loop_check_proc, file, ep);
28d82dc1
JB
1963}
1964
1965static void clear_tfile_check_list(void)
1966{
1967 struct file *file;
1968
1969 /* first clear the tfile_check_list */
1970 while (!list_empty(&tfile_check_list)) {
1971 file = list_first_entry(&tfile_check_list, struct file,
1972 f_tfile_llink);
1973 list_del_init(&file->f_tfile_llink);
a9ed4a65 1974 fput(file);
28d82dc1
JB
1975 }
1976 INIT_LIST_HEAD(&tfile_check_list);
22bacca4
DL
1977}
1978
7699acd1 1979/*
523723bb 1980 * Open an eventpoll file descriptor.
7699acd1 1981 */
791eb22e 1982static int do_epoll_create(int flags)
7699acd1 1983{
28d82dc1 1984 int error, fd;
bb57c3ed 1985 struct eventpoll *ep = NULL;
28d82dc1 1986 struct file *file;
7699acd1 1987
e38b36f3
UD
1988 /* Check the EPOLL_* constant for consistency. */
1989 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1990
296e236e
DL
1991 if (flags & ~EPOLL_CLOEXEC)
1992 return -EINVAL;
7699acd1 1993 /*
bb57c3ed 1994 * Create the internal data structure ("struct eventpoll").
7699acd1 1995 */
9fe5ad9c 1996 error = ep_alloc(&ep);
bb57c3ed
DL
1997 if (error < 0)
1998 return error;
7699acd1
DL
1999 /*
2000 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 2001 * a file structure and a free file descriptor.
7699acd1 2002 */
28d82dc1
JB
2003 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2004 if (fd < 0) {
2005 error = fd;
2006 goto out_free_ep;
2007 }
2008 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 2009 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
2010 if (IS_ERR(file)) {
2011 error = PTR_ERR(file);
2012 goto out_free_fd;
2013 }
28d82dc1 2014 ep->file = file;
98022748 2015 fd_install(fd, file);
28d82dc1
JB
2016 return fd;
2017
2018out_free_fd:
2019 put_unused_fd(fd);
2020out_free_ep:
2021 ep_free(ep);
bb57c3ed 2022 return error;
7699acd1
DL
2023}
2024
791eb22e
DB
2025SYSCALL_DEFINE1(epoll_create1, int, flags)
2026{
2027 return do_epoll_create(flags);
2028}
2029
5a8a82b1 2030SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 2031{
bfe3891a 2032 if (size <= 0)
9fe5ad9c
UD
2033 return -EINVAL;
2034
791eb22e 2035 return do_epoll_create(0);
a0998b50
UD
2036}
2037
39220e8d
JA
2038static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2039 bool nonblock)
2040{
2041 if (!nonblock) {
2042 mutex_lock_nested(mutex, depth);
2043 return 0;
2044 }
2045 if (mutex_trylock(mutex))
2046 return 0;
2047 return -EAGAIN;
2048}
2049
2050int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2051 bool nonblock)
7699acd1
DL
2052{
2053 int error;
67347fe4 2054 int full_check = 0;
7e3fb584 2055 struct fd f, tf;
7699acd1
DL
2056 struct eventpoll *ep;
2057 struct epitem *epi;
67347fe4 2058 struct eventpoll *tep = NULL;
7699acd1 2059
7699acd1 2060 error = -EBADF;
7e3fb584
AV
2061 f = fdget(epfd);
2062 if (!f.file)
7699acd1
DL
2063 goto error_return;
2064
2065 /* Get the "struct file *" for the target file */
7e3fb584
AV
2066 tf = fdget(fd);
2067 if (!tf.file)
7699acd1
DL
2068 goto error_fput;
2069
2070 /* The target file descriptor must support poll */
2071 error = -EPERM;
9965ed17 2072 if (!file_can_poll(tf.file))
7699acd1
DL
2073 goto error_tgt_fput;
2074
4d7e30d9 2075 /* Check if EPOLLWAKEUP is allowed */
c680e41b 2076 if (ep_op_has_event(op))
58e41a44 2077 ep_take_care_of_epollwakeup(epds);
4d7e30d9 2078
7699acd1
DL
2079 /*
2080 * We have to check that the file structure underneath the file descriptor
2081 * the user passed to us _is_ an eventpoll file. And also we do not permit
2082 * adding an epoll file descriptor inside itself.
2083 */
2084 error = -EINVAL;
7e3fb584 2085 if (f.file == tf.file || !is_file_epoll(f.file))
7699acd1
DL
2086 goto error_tgt_fput;
2087
df0108c5
JB
2088 /*
2089 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2090 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2091 * Also, we do not currently supported nested exclusive wakeups.
2092 */
58e41a44 2093 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2094 if (op == EPOLL_CTL_MOD)
2095 goto error_tgt_fput;
2096 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
58e41a44 2097 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
b6a515c8
JB
2098 goto error_tgt_fput;
2099 }
df0108c5 2100
7699acd1
DL
2101 /*
2102 * At this point it is safe to assume that the "private_data" contains
2103 * our own data structure.
2104 */
7e3fb584 2105 ep = f.file->private_data;
7699acd1 2106
22bacca4
DL
2107 /*
2108 * When we insert an epoll file descriptor, inside another epoll file
2109 * descriptor, there is the change of creating closed loops, which are
28d82dc1
JB
2110 * better be handled here, than in more critical paths. While we are
2111 * checking for loops we also determine the list of files reachable
2112 * and hang them on the tfile_check_list, so we can check that we
2113 * haven't created too many possible wakeup paths.
22bacca4 2114 *
67347fe4
JB
2115 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2116 * the epoll file descriptor is attaching directly to a wakeup source,
2117 * unless the epoll file descriptor is nested. The purpose of taking the
2118 * 'epmutex' on add is to prevent complex toplogies such as loops and
2119 * deep wakeup paths from forming in parallel through multiple
2120 * EPOLL_CTL_ADD operations.
22bacca4 2121 */
39220e8d
JA
2122 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2123 if (error)
2124 goto error_tgt_fput;
28d82dc1 2125 if (op == EPOLL_CTL_ADD) {
67347fe4 2126 if (!list_empty(&f.file->f_ep_links) ||
fe0a916c 2127 ep->gen == loop_check_gen ||
67347fe4 2128 is_file_epoll(tf.file)) {
67347fe4 2129 mutex_unlock(&ep->mtx);
39220e8d
JA
2130 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2131 if (error)
2132 goto error_tgt_fput;
18306c40 2133 loop_check_gen++;
39220e8d 2134 full_check = 1;
67347fe4
JB
2135 if (is_file_epoll(tf.file)) {
2136 error = -ELOOP;
52c47969 2137 if (ep_loop_check(ep, tf.file) != 0)
67347fe4 2138 goto error_tgt_fput;
a9ed4a65
MZ
2139 } else {
2140 get_file(tf.file);
67347fe4
JB
2141 list_add(&tf.file->f_tfile_llink,
2142 &tfile_check_list);
a9ed4a65 2143 }
39220e8d 2144 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
52c47969 2145 if (error)
39220e8d 2146 goto error_tgt_fput;
67347fe4
JB
2147 if (is_file_epoll(tf.file)) {
2148 tep = tf.file->private_data;
39220e8d
JA
2149 error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2150 if (error) {
2151 mutex_unlock(&ep->mtx);
52c47969 2152 goto error_tgt_fput;
39220e8d 2153 }
13d51807 2154 }
67347fe4
JB
2155 }
2156 }
7699acd1 2157
67647d0f
DL
2158 /*
2159 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2160 * above, we can be sure to be able to use the item looked up by
2161 * ep_find() till we release the mutex.
2162 */
7e3fb584 2163 epi = ep_find(ep, tf.file, fd);
7699acd1
DL
2164
2165 error = -EINVAL;
2166 switch (op) {
2167 case EPOLL_CTL_ADD:
2168 if (!epi) {
58e41a44
JA
2169 epds->events |= EPOLLERR | EPOLLHUP;
2170 error = ep_insert(ep, epds, tf.file, fd, full_check);
7699acd1
DL
2171 } else
2172 error = -EEXIST;
2173 break;
2174 case EPOLL_CTL_DEL:
2175 if (epi)
2176 error = ep_remove(ep, epi);
2177 else
2178 error = -ENOENT;
2179 break;
2180 case EPOLL_CTL_MOD:
2181 if (epi) {
b6a515c8 2182 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
58e41a44
JA
2183 epds->events |= EPOLLERR | EPOLLHUP;
2184 error = ep_modify(ep, epi, epds);
b6a515c8 2185 }
7699acd1
DL
2186 } else
2187 error = -ENOENT;
2188 break;
2189 }
67347fe4
JB
2190 if (tep != NULL)
2191 mutex_unlock(&tep->mtx);
d47de16c 2192 mutex_unlock(&ep->mtx);
7699acd1
DL
2193
2194error_tgt_fput:
52c47969
AV
2195 if (full_check) {
2196 clear_tfile_check_list();
18306c40 2197 loop_check_gen++;
22bacca4 2198 mutex_unlock(&epmutex);
52c47969 2199 }
22bacca4 2200
7e3fb584 2201 fdput(tf);
7699acd1 2202error_fput:
7e3fb584 2203 fdput(f);
7699acd1 2204error_return:
7699acd1
DL
2205
2206 return error;
2207}
2208
58e41a44
JA
2209/*
2210 * The following function implements the controller interface for
2211 * the eventpoll file that enables the insertion/removal/change of
2212 * file descriptors inside the interest set.
2213 */
2214SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2215 struct epoll_event __user *, event)
2216{
2217 struct epoll_event epds;
2218
2219 if (ep_op_has_event(op) &&
2220 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2221 return -EFAULT;
2222
39220e8d 2223 return do_epoll_ctl(epfd, op, fd, &epds, false);
58e41a44
JA
2224}
2225
7699acd1
DL
2226/*
2227 * Implement the event wait interface for the eventpoll file. It is the kernel
2228 * part of the user space epoll_wait(2).
2229 */
791eb22e
DB
2230static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2231 int maxevents, int timeout)
7699acd1 2232{
2903ff01
AV
2233 int error;
2234 struct fd f;
7699acd1
DL
2235 struct eventpoll *ep;
2236
7699acd1
DL
2237 /* The maximum number of event must be greater than zero */
2238 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2239 return -EINVAL;
2240
2241 /* Verify that the area passed by the user is writeable */
96d4f267 2242 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2903ff01 2243 return -EFAULT;
7699acd1
DL
2244
2245 /* Get the "struct file *" for the eventpoll file */
2903ff01
AV
2246 f = fdget(epfd);
2247 if (!f.file)
2248 return -EBADF;
7699acd1
DL
2249
2250 /*
2251 * We have to check that the file structure underneath the fd
2252 * the user passed to us _is_ an eventpoll file.
2253 */
2254 error = -EINVAL;
2903ff01 2255 if (!is_file_epoll(f.file))
7699acd1
DL
2256 goto error_fput;
2257
2258 /*
2259 * At this point it is safe to assume that the "private_data" contains
2260 * our own data structure.
2261 */
2903ff01 2262 ep = f.file->private_data;
7699acd1
DL
2263
2264 /* Time to fish for events ... */
2265 error = ep_poll(ep, events, maxevents, timeout);
2266
2267error_fput:
2903ff01 2268 fdput(f);
7699acd1
DL
2269 return error;
2270}
2271
791eb22e
DB
2272SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2273 int, maxevents, int, timeout)
2274{
2275 return do_epoll_wait(epfd, events, maxevents, timeout);
2276}
2277
7699acd1
DL
2278/*
2279 * Implement the event wait interface for the eventpoll file. It is the kernel
2280 * part of the user space epoll_pwait(2).
2281 */
5a8a82b1
HC
2282SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2283 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2284 size_t, sigsetsize)
7699acd1
DL
2285{
2286 int error;
7699acd1
DL
2287
2288 /*
2289 * If the caller wants a certain signal mask to be set during the wait,
2290 * we apply it here.
2291 */
b772434b 2292 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2293 if (error)
2294 return error;
7699acd1 2295
791eb22e 2296 error = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2297 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2298
2299 return error;
2300}
2301
35280bd4
AV
2302#ifdef CONFIG_COMPAT
2303COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2304 struct epoll_event __user *, events,
2305 int, maxevents, int, timeout,
2306 const compat_sigset_t __user *, sigmask,
2307 compat_size_t, sigsetsize)
2308{
2309 long err;
35280bd4
AV
2310
2311 /*
2312 * If the caller wants a certain signal mask to be set during the wait,
2313 * we apply it here.
2314 */
b772434b 2315 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2316 if (err)
2317 return err;
35280bd4 2318
791eb22e 2319 err = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2320 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2321
2322 return err;
2323}
2324#endif
2325
1da177e4
LT
2326static int __init eventpoll_init(void)
2327{
7ef9964e
DL
2328 struct sysinfo si;
2329
2330 si_meminfo(&si);
9df04e1f
DL
2331 /*
2332 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2333 */
2334 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2335 EP_ITEM_COST;
52bd19f7 2336 BUG_ON(max_user_watches < 0);
1da177e4 2337
39732ca5
EW
2338 /*
2339 * We can have many thousands of epitems, so prevent this from
2340 * using an extra cache line on 64-bit (and smaller) CPUs
2341 */
2342 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2343
1da177e4
LT
2344 /* Allocates slab cache used to allocate "struct epitem" items */
2345 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2346 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2347
2348 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2349 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2350 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 2351
1da177e4 2352 return 0;
1da177e4 2353}
cea69241 2354fs_initcall(eventpoll_init);