epoll: simplify and optimize busy loop logic
[linux-block.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
bf3b9f63 40#include <net/busy_poll.h>
1da177e4 41
1da177e4
LT
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
144efe3e 46 * 1) epmutex (mutex)
c7ea7630 47 * 2) ep->mtx (mutex)
a218cc49 48 * 3) ep->lock (rwlock)
1da177e4
LT
49 *
50 * The acquire order is the one listed above, from 1 to 3.
a218cc49 51 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
1da177e4
LT
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
bf6a41db 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
22bacca4
DL
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
d8805e63
NE
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
d47de16c 82 * It is possible to drop the "ep->mtx" and to use the global
a218cc49 83 * mutex "epmutex" (together with "ep->lock") to have it working,
d47de16c 84 * but having "ep->mtx" will make the interface more scalable.
144efe3e 85 * Events that require holding "epmutex" are very rare, while for
d47de16c
DL
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
1da177e4
LT
88 */
89
1da177e4 90/* Epoll private bits inside the event mask */
df0108c5 91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 92
a9a08845 93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 94
a9a08845 95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
5071f97e
DL
98/* Maximum number of nesting allowed inside epoll sets */
99#define EP_MAX_NESTS 4
1da177e4 100
b611967d
DL
101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
d47de16c
DL
103#define EP_UNACTIVE_PTR ((void *) -1L)
104
7ef9964e
DL
105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
1da177e4
LT
107struct epoll_filefd {
108 struct file *file;
109 int fd;
39732ca5 110} __packed;
1da177e4 111
80285b75
AV
112/* Wait structure used by the poll hooks */
113struct eppoll_entry {
114 /* List header used to link this structure to the "struct epitem" */
115 struct eppoll_entry *next;
1da177e4 116
80285b75
AV
117 /* The "base" pointer is set to the container "struct epitem" */
118 struct epitem *base;
119
120 /*
121 * Wait queue item that will be linked to the target file wait
122 * queue head.
123 */
124 wait_queue_entry_t wait;
125
126 /* The wait queue head that linked the "wait" wait queue item */
127 wait_queue_head_t *whead;
1da177e4
LT
128};
129
d47de16c
DL
130/*
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
135 */
136struct epitem {
ae10b2b4
JB
137 union {
138 /* RB tree node links this structure to the eventpoll RB tree */
139 struct rb_node rbn;
140 /* Used to free the struct epitem */
141 struct rcu_head rcu;
142 };
d47de16c
DL
143
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
146
c7ea7630
DL
147 /*
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
150 */
151 struct epitem *next;
152
d47de16c
DL
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
155
d47de16c 156 /* List containing poll wait queues */
80285b75 157 struct eppoll_entry *pwqlist;
d47de16c
DL
158
159 /* The "container" of this item */
160 struct eventpoll *ep;
161
d47de16c 162 /* List header used to link this item to the "struct file" items list */
44cdc1d9 163 struct hlist_node fllink;
d47de16c 164
4d7e30d9 165 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 166 struct wakeup_source __rcu *ws;
4d7e30d9 167
c7ea7630
DL
168 /* The structure that describe the interested events and the source fd */
169 struct epoll_event event;
d47de16c
DL
170};
171
1da177e4
LT
172/*
173 * This structure is stored inside the "private_data" member of the file
bf6a41db 174 * structure and represents the main data structure for the eventpoll
1da177e4
LT
175 * interface.
176 */
177struct eventpoll {
1da177e4 178 /*
d47de16c
DL
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
1da177e4 183 */
d47de16c 184 struct mutex mtx;
1da177e4
LT
185
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
188
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
191
192 /* List of ready file descriptors */
193 struct list_head rdllist;
194
a218cc49
RP
195 /* Lock which protects rdllist and ovflist */
196 rwlock_t lock;
197
67647d0f 198 /* RB tree root used to store monitored fd structs */
b2ac2ea6 199 struct rb_root_cached rbr;
d47de16c
DL
200
201 /*
202 * This is a single linked list that chains all the "struct epitem" that
25985edc 203 * happened while transferring ready events to userspace w/out
a218cc49 204 * holding ->lock.
d47de16c
DL
205 */
206 struct epitem *ovflist;
7ef9964e 207
4d7e30d9
AH
208 /* wakeup_source used when ep_scan_ready_list is running */
209 struct wakeup_source *ws;
210
7ef9964e
DL
211 /* The user that created the eventpoll descriptor */
212 struct user_struct *user;
28d82dc1
JB
213
214 struct file *file;
215
216 /* used to optimize loop detection check */
18306c40 217 u64 gen;
319c1517 218 struct hlist_head refs;
bf3b9f63
SS
219
220#ifdef CONFIG_NET_RX_BUSY_POLL
221 /* used to track busy poll napi_id */
222 unsigned int napi_id;
223#endif
efcdd350
JB
224
225#ifdef CONFIG_DEBUG_LOCK_ALLOC
226 /* tracks wakeup nests for lockdep validation */
227 u8 nests;
228#endif
1da177e4
LT
229};
230
1da177e4
LT
231/* Wrapper struct used by poll queueing */
232struct ep_pqueue {
233 poll_table pt;
234 struct epitem *epi;
235};
236
7ef9964e
DL
237/*
238 * Configuration options available inside /proc/sys/fs/epoll/
239 */
7ef9964e 240/* Maximum number of epoll watched descriptors, per user */
52bd19f7 241static long max_user_watches __read_mostly;
7ef9964e 242
1da177e4 243/*
d47de16c 244 * This mutex is used to serialize ep_free() and eventpoll_release_file().
1da177e4 245 */
7ef9964e 246static DEFINE_MUTEX(epmutex);
1da177e4 247
18306c40
AV
248static u64 loop_check_gen = 0;
249
22bacca4 250/* Used to check for epoll file descriptor inclusion loops */
6a3890c4 251static struct eventpoll *inserting_into;
22bacca4 252
1da177e4 253/* Slab cache used to allocate "struct epitem" */
e18b890b 254static struct kmem_cache *epi_cache __read_mostly;
1da177e4
LT
255
256/* Slab cache used to allocate "struct eppoll_entry" */
e18b890b 257static struct kmem_cache *pwq_cache __read_mostly;
1da177e4 258
28d82dc1
JB
259/*
260 * List of files with newly added links, where we may need to limit the number
261 * of emanating paths. Protected by the epmutex.
262 */
319c1517
AV
263struct epitems_head {
264 struct hlist_head epitems;
265 struct epitems_head *next;
266};
267static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268
269static struct kmem_cache *ephead_cache __read_mostly;
270
271static inline void free_ephead(struct epitems_head *head)
272{
273 if (head)
274 kmem_cache_free(ephead_cache, head);
275}
276
277static void list_file(struct file *file)
278{
279 struct epitems_head *head;
280
281 head = container_of(file->f_ep, struct epitems_head, epitems);
282 if (!head->next) {
283 head->next = tfile_check_list;
284 tfile_check_list = head;
285 }
286}
287
288static void unlist_file(struct epitems_head *head)
289{
290 struct epitems_head *to_free = head;
291 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 if (p) {
293 struct epitem *epi= container_of(p, struct epitem, fllink);
294 spin_lock(&epi->ffd.file->f_lock);
295 if (!hlist_empty(&head->epitems))
296 to_free = NULL;
297 head->next = NULL;
298 spin_unlock(&epi->ffd.file->f_lock);
299 }
300 free_ephead(to_free);
301}
28d82dc1 302
7ef9964e
DL
303#ifdef CONFIG_SYSCTL
304
305#include <linux/sysctl.h>
306
eec4844f 307static long long_zero;
52bd19f7 308static long long_max = LONG_MAX;
7ef9964e 309
1f7e0616 310struct ctl_table epoll_table[] = {
7ef9964e
DL
311 {
312 .procname = "max_user_watches",
313 .data = &max_user_watches,
52bd19f7 314 .maxlen = sizeof(max_user_watches),
7ef9964e 315 .mode = 0644,
52bd19f7 316 .proc_handler = proc_doulongvec_minmax,
eec4844f 317 .extra1 = &long_zero,
52bd19f7 318 .extra2 = &long_max,
7ef9964e 319 },
ab09203e 320 { }
7ef9964e
DL
321};
322#endif /* CONFIG_SYSCTL */
323
28d82dc1
JB
324static const struct file_operations eventpoll_fops;
325
326static inline int is_file_epoll(struct file *f)
327{
328 return f->f_op == &eventpoll_fops;
329}
b030a4dd 330
67647d0f 331/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
332static inline void ep_set_ffd(struct epoll_filefd *ffd,
333 struct file *file, int fd)
334{
335 ffd->file = file;
336 ffd->fd = fd;
337}
338
67647d0f 339/* Compare RB tree keys */
b030a4dd
PE
340static inline int ep_cmp_ffd(struct epoll_filefd *p1,
341 struct epoll_filefd *p2)
342{
343 return (p1->file > p2->file ? +1:
344 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
345}
346
b030a4dd 347/* Tells us if the item is currently linked */
992991c0 348static inline int ep_is_linked(struct epitem *epi)
b030a4dd 349{
992991c0 350 return !list_empty(&epi->rdllink);
b030a4dd
PE
351}
352
ac6424b9 353static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
354{
355 return container_of(p, struct eppoll_entry, wait);
356}
357
b030a4dd 358/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 359static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
360{
361 return container_of(p, struct eppoll_entry, wait)->base;
362}
363
3fb0e584
DL
364/**
365 * ep_events_available - Checks if ready events might be available.
366 *
367 * @ep: Pointer to the eventpoll context.
368 *
369 * Returns: Returns a value different than zero if ready events are available,
370 * or zero otherwise.
371 */
372static inline int ep_events_available(struct eventpoll *ep)
373{
c5a282e9
DB
374 return !list_empty_careful(&ep->rdllist) ||
375 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
376}
377
bf3b9f63
SS
378#ifdef CONFIG_NET_RX_BUSY_POLL
379static bool ep_busy_loop_end(void *p, unsigned long start_time)
380{
381 struct eventpoll *ep = p;
382
383 return ep_events_available(ep) || busy_loop_timeout(start_time);
384}
bf3b9f63
SS
385
386/*
387 * Busy poll if globally on and supporting sockets found && no events,
388 * busy loop will return if need_resched or ep_events_available.
389 *
390 * we must do our busy polling with irqs enabled
391 */
1493c47f 392static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
bf3b9f63 393{
bf3b9f63
SS
394 unsigned int napi_id = READ_ONCE(ep->napi_id);
395
1493c47f 396 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
7c951caf
BT
397 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
398 BUSY_POLL_BUDGET);
1493c47f
SHY
399 if (ep_events_available(ep))
400 return true;
401 /*
402 * Busy poll timed out. Drop NAPI ID for now, we can add
403 * it back in when we have moved a socket with a valid NAPI
404 * ID onto the ready list.
405 */
bf3b9f63 406 ep->napi_id = 0;
1493c47f
SHY
407 return false;
408 }
409 return false;
bf3b9f63
SS
410}
411
412/*
413 * Set epoll busy poll NAPI ID from sk.
414 */
415static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
416{
bf3b9f63
SS
417 struct eventpoll *ep;
418 unsigned int napi_id;
419 struct socket *sock;
420 struct sock *sk;
bf3b9f63
SS
421
422 if (!net_busy_loop_on())
423 return;
424
dba4a925 425 sock = sock_from_file(epi->ffd.file);
bf3b9f63
SS
426 if (!sock)
427 return;
428
429 sk = sock->sk;
430 if (!sk)
431 return;
432
433 napi_id = READ_ONCE(sk->sk_napi_id);
434 ep = epi->ep;
435
436 /* Non-NAPI IDs can be rejected
437 * or
438 * Nothing to do if we already have this ID
439 */
440 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
441 return;
442
443 /* record NAPI ID for use in next busy poll */
444 ep->napi_id = napi_id;
bf3b9f63
SS
445}
446
514056d5
DB
447#else
448
1493c47f 449static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
514056d5 450{
1493c47f 451 return false;
514056d5
DB
452}
453
454static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
455{
456}
457
458#endif /* CONFIG_NET_RX_BUSY_POLL */
459
02edc6fc
SR
460/*
461 * As described in commit 0ccf831cb lockdep: annotate epoll
462 * the use of wait queues used by epoll is done in a very controlled
463 * manner. Wake ups can nest inside each other, but are never done
464 * with the same locking. For example:
465 *
466 * dfd = socket(...);
467 * efd1 = epoll_create();
468 * efd2 = epoll_create();
469 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
470 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
471 *
472 * When a packet arrives to the device underneath "dfd", the net code will
473 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
474 * callback wakeup entry on that queue, and the wake_up() performed by the
475 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
476 * (efd1) notices that it may have some event ready, so it needs to wake up
477 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
478 * that ends up in another wake_up(), after having checked about the
479 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
480 * avoid stack blasting.
481 *
482 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
483 * this special case of epoll.
484 */
2dfa4eea 485#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd 486
efcdd350 487static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
5071f97e 488{
efcdd350 489 struct eventpoll *ep_src;
f6520c52 490 unsigned long flags;
efcdd350
JB
491 u8 nests = 0;
492
493 /*
494 * To set the subclass or nesting level for spin_lock_irqsave_nested()
495 * it might be natural to create a per-cpu nest count. However, since
496 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
497 * schedule() in the -rt kernel, the per-cpu variable are no longer
498 * protected. Thus, we are introducing a per eventpoll nest field.
499 * If we are not being call from ep_poll_callback(), epi is NULL and
500 * we are at the first level of nesting, 0. Otherwise, we are being
501 * called from ep_poll_callback() and if a previous wakeup source is
502 * not an epoll file itself, we are at depth 1 since the wakeup source
503 * is depth 0. If the wakeup source is a previous epoll file in the
504 * wakeup chain then we use its nests value and record ours as
505 * nests + 1. The previous epoll file nests value is stable since its
506 * already holding its own poll_wait.lock.
507 */
508 if (epi) {
509 if ((is_file_epoll(epi->ffd.file))) {
510 ep_src = epi->ffd.file->private_data;
511 nests = ep_src->nests;
512 } else {
513 nests = 1;
514 }
515 }
516 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
517 ep->nests = nests + 1;
518 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
519 ep->nests = 0;
520 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
1da177e4
LT
521}
522
57a173bd
JB
523#else
524
efcdd350 525static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
57a173bd 526{
efcdd350 527 wake_up_poll(&ep->poll_wait, EPOLLIN);
57a173bd
JB
528}
529
530#endif
531
971316f0
ON
532static void ep_remove_wait_queue(struct eppoll_entry *pwq)
533{
534 wait_queue_head_t *whead;
535
536 rcu_read_lock();
138e4ad6
ON
537 /*
538 * If it is cleared by POLLFREE, it should be rcu-safe.
539 * If we read NULL we need a barrier paired with
540 * smp_store_release() in ep_poll_callback(), otherwise
541 * we rely on whead->lock.
542 */
543 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
544 if (whead)
545 remove_wait_queue(whead, &pwq->wait);
546 rcu_read_unlock();
547}
548
1da177e4 549/*
d1bc90dd
TB
550 * This function unregisters poll callbacks from the associated file
551 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
552 * ep_free).
1da177e4 553 */
7699acd1 554static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 555{
80285b75 556 struct eppoll_entry **p = &epi->pwqlist;
7699acd1 557 struct eppoll_entry *pwq;
1da177e4 558
80285b75
AV
559 while ((pwq = *p) != NULL) {
560 *p = pwq->next;
971316f0 561 ep_remove_wait_queue(pwq);
d1bc90dd 562 kmem_cache_free(pwq_cache, pwq);
1da177e4 563 }
1da177e4
LT
564}
565
eea1d585
EW
566/* call only when ep->mtx is held */
567static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
568{
569 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
570}
571
572/* call only when ep->mtx is held */
573static inline void ep_pm_stay_awake(struct epitem *epi)
574{
575 struct wakeup_source *ws = ep_wakeup_source(epi);
576
577 if (ws)
578 __pm_stay_awake(ws);
579}
580
581static inline bool ep_has_wakeup_source(struct epitem *epi)
582{
583 return rcu_access_pointer(epi->ws) ? true : false;
584}
585
586/* call when ep->mtx cannot be held (ep_poll_callback) */
587static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
588{
589 struct wakeup_source *ws;
590
591 rcu_read_lock();
592 ws = rcu_dereference(epi->ws);
593 if (ws)
594 __pm_stay_awake(ws);
595 rcu_read_unlock();
596}
597
5071f97e 598
57804b1c
AV
599/*
600 * ep->mutex needs to be held because we could be hit by
601 * eventpoll_release_file() and epoll_ctl().
5071f97e 602 */
57804b1c 603static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
5071f97e 604{
5071f97e
DL
605 /*
606 * Steal the ready list, and re-init the original one to the
607 * empty list. Also, set ep->ovflist to NULL so that events
608 * happening while looping w/out locks, are not lost. We cannot
609 * have the poll callback to queue directly on ep->rdllist,
610 * because we want the "sproc" callback to be able to do it
611 * in a lockless way.
612 */
57804b1c 613 lockdep_assert_irqs_enabled();
a218cc49 614 write_lock_irq(&ep->lock);
db502f8a 615 list_splice_init(&ep->rdllist, txlist);
c5a282e9 616 WRITE_ONCE(ep->ovflist, NULL);
a218cc49 617 write_unlock_irq(&ep->lock);
db502f8a 618}
5071f97e 619
db502f8a 620static void ep_done_scan(struct eventpoll *ep,
db502f8a
AV
621 struct list_head *txlist)
622{
623 struct epitem *epi, *nepi;
5071f97e 624
a218cc49 625 write_lock_irq(&ep->lock);
5071f97e
DL
626 /*
627 * During the time we spent inside the "sproc" callback, some
628 * other events might have been queued by the poll callback.
629 * We re-insert them inside the main ready-list here.
630 */
c5a282e9 631 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
5071f97e
DL
632 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
633 /*
634 * We need to check if the item is already in the list.
635 * During the "sproc" callback execution time, items are
636 * queued into ->ovflist but the "txlist" might already
637 * contain them, and the list_splice() below takes care of them.
638 */
992991c0 639 if (!ep_is_linked(epi)) {
c141175d
RP
640 /*
641 * ->ovflist is LIFO, so we have to reverse it in order
642 * to keep in FIFO.
643 */
644 list_add(&epi->rdllink, &ep->rdllist);
eea1d585 645 ep_pm_stay_awake(epi);
4d7e30d9 646 }
5071f97e
DL
647 }
648 /*
649 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
650 * releasing the lock, events will be queued in the normal way inside
651 * ep->rdllist.
652 */
c5a282e9 653 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
5071f97e
DL
654
655 /*
656 * Quickly re-inject items left on "txlist".
657 */
db502f8a 658 list_splice(txlist, &ep->rdllist);
4d7e30d9 659 __pm_relax(ep->ws);
a218cc49 660 write_unlock_irq(&ep->lock);
5071f97e
DL
661}
662
ae10b2b4
JB
663static void epi_rcu_free(struct rcu_head *head)
664{
665 struct epitem *epi = container_of(head, struct epitem, rcu);
666 kmem_cache_free(epi_cache, epi);
667}
668
7699acd1
DL
669/*
670 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 671 * all the associated resources. Must be called with "mtx" held.
7699acd1
DL
672 */
673static int ep_remove(struct eventpoll *ep, struct epitem *epi)
674{
7699acd1 675 struct file *file = epi->ffd.file;
319c1517
AV
676 struct epitems_head *to_free;
677 struct hlist_head *head;
1da177e4 678
92e64178
DB
679 lockdep_assert_irqs_enabled();
680
1da177e4 681 /*
ee8ef0a4 682 * Removes poll wait queue hooks.
1da177e4 683 */
7699acd1 684 ep_unregister_pollwait(ep, epi);
1da177e4 685
7699acd1 686 /* Remove the current item from the list of epoll hooks */
68499914 687 spin_lock(&file->f_lock);
319c1517
AV
688 to_free = NULL;
689 head = file->f_ep;
690 if (head->first == &epi->fllink && !epi->fllink.next) {
691 file->f_ep = NULL;
692 if (!is_file_epoll(file)) {
693 struct epitems_head *v;
694 v = container_of(head, struct epitems_head, epitems);
695 if (!smp_load_acquire(&v->next))
696 to_free = v;
697 }
698 }
44cdc1d9 699 hlist_del_rcu(&epi->fllink);
68499914 700 spin_unlock(&file->f_lock);
319c1517 701 free_ephead(to_free);
1da177e4 702
b2ac2ea6 703 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 704
a218cc49 705 write_lock_irq(&ep->lock);
992991c0 706 if (ep_is_linked(epi))
c7ea7630 707 list_del_init(&epi->rdllink);
a218cc49 708 write_unlock_irq(&ep->lock);
1da177e4 709
eea1d585 710 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
711 /*
712 * At this point it is safe to free the eventpoll item. Use the union
713 * field epi->rcu, since we are trying to minimize the size of
714 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
715 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
716 * use of the rbn field.
717 */
718 call_rcu(&epi->rcu, epi_rcu_free);
1da177e4 719
52bd19f7 720 atomic_long_dec(&ep->user->epoll_watches);
7ef9964e 721
c7ea7630 722 return 0;
1da177e4
LT
723}
724
7699acd1 725static void ep_free(struct eventpoll *ep)
1da177e4 726{
7699acd1
DL
727 struct rb_node *rbp;
728 struct epitem *epi;
1da177e4 729
7699acd1
DL
730 /* We need to release all tasks waiting for these file */
731 if (waitqueue_active(&ep->poll_wait))
efcdd350 732 ep_poll_safewake(ep, NULL);
1da177e4 733
7699acd1
DL
734 /*
735 * We need to lock this because we could be hit by
736 * eventpoll_release_file() while we're freeing the "struct eventpoll".
d47de16c 737 * We do not need to hold "ep->mtx" here because the epoll file
7699acd1
DL
738 * is on the way to be removed and no one has references to it
739 * anymore. The only hit might come from eventpoll_release_file() but
25985edc 740 * holding "epmutex" is sufficient here.
7699acd1
DL
741 */
742 mutex_lock(&epmutex);
1da177e4
LT
743
744 /*
7699acd1 745 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 746 */
b2ac2ea6 747 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
748 epi = rb_entry(rbp, struct epitem, rbn);
749
750 ep_unregister_pollwait(ep, epi);
91cf5ab6 751 cond_resched();
7699acd1 752 }
1da177e4
LT
753
754 /*
7699acd1
DL
755 * Walks through the whole tree by freeing each "struct epitem". At this
756 * point we are sure no poll callbacks will be lingering around, and also by
d47de16c 757 * holding "epmutex" we can be sure that no file cleanup code will hit
a218cc49 758 * us during this operation. So we can avoid the lock on "ep->lock".
ddf676c3
EW
759 * We do not need to lock ep->mtx, either, we only do it to prevent
760 * a lockdep warning.
1da177e4 761 */
ddf676c3 762 mutex_lock(&ep->mtx);
b2ac2ea6 763 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
7699acd1
DL
764 epi = rb_entry(rbp, struct epitem, rbn);
765 ep_remove(ep, epi);
91cf5ab6 766 cond_resched();
7699acd1 767 }
ddf676c3 768 mutex_unlock(&ep->mtx);
1da177e4 769
7699acd1 770 mutex_unlock(&epmutex);
d47de16c 771 mutex_destroy(&ep->mtx);
7ef9964e 772 free_uid(ep->user);
4d7e30d9 773 wakeup_source_unregister(ep->ws);
f0ee9aab 774 kfree(ep);
7699acd1 775}
1da177e4 776
7699acd1
DL
777static int ep_eventpoll_release(struct inode *inode, struct file *file)
778{
779 struct eventpoll *ep = file->private_data;
1da177e4 780
f0ee9aab 781 if (ep)
7699acd1 782 ep_free(ep);
7699acd1 783
7699acd1 784 return 0;
1da177e4
LT
785}
786
2c0b71c1 787static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
37b5e521 788
ad9366b1 789static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
5071f97e 790{
ad9366b1
AV
791 struct eventpoll *ep = file->private_data;
792 LIST_HEAD(txlist);
5071f97e 793 struct epitem *epi, *tmp;
626cf236 794 poll_table pt;
2c0b71c1 795 __poll_t res = 0;
5071f97e 796
626cf236 797 init_poll_funcptr(&pt, NULL);
450d89ec 798
ad9366b1
AV
799 /* Insert inside our poll wait queue */
800 poll_wait(file, &ep->poll_wait, wait);
801
802 /*
803 * Proceed to find out if wanted events are really available inside
804 * the ready list.
805 */
806 mutex_lock_nested(&ep->mtx, depth);
807 ep_start_scan(ep, &txlist);
2c0b71c1
AV
808 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
809 if (ep_item_poll(epi, &pt, depth + 1)) {
810 res = EPOLLIN | EPOLLRDNORM;
811 break;
37b5e521 812 } else {
5071f97e
DL
813 /*
814 * Item has been dropped into the ready list by the poll
815 * callback, but it's not actually ready, as far as
816 * caller requested events goes. We can remove it here.
817 */
eea1d585 818 __pm_relax(ep_wakeup_source(epi));
5071f97e 819 list_del_init(&epi->rdllink);
296e236e 820 }
5071f97e 821 }
ad9366b1
AV
822 ep_done_scan(ep, &txlist);
823 mutex_unlock(&ep->mtx);
824 return res;
5071f97e
DL
825}
826
37b5e521
JB
827/*
828 * Differs from ep_eventpoll_poll() in that internal callers already have
829 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
830 * is correctly annotated.
831 */
d85e2aa2 832static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 833 int depth)
11c5ad0e 834{
ad9366b1 835 struct file *file = epi->ffd.file;
1ec09974 836 __poll_t res;
7699acd1 837
450d89ec 838 pt->_key = epi->event.events;
ad9366b1
AV
839 if (!is_file_epoll(file))
840 res = vfs_poll(file, pt);
841 else
842 res = __ep_eventpoll_poll(file, pt, depth);
1ec09974 843 return res & epi->event.events;
450d89ec 844}
a11e1d43 845
a11e1d43 846static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e 847{
ad9366b1 848 return __ep_eventpoll_poll(file, wait, 0);
7699acd1
DL
849}
850
138d22b5 851#ifdef CONFIG_PROC_FS
a3816ab0 852static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
853{
854 struct eventpoll *ep = f->private_data;
855 struct rb_node *rbp;
138d22b5
CG
856
857 mutex_lock(&ep->mtx);
b2ac2ea6 858 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 859 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 860 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 861
77493f04
CG
862 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
863 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 864 epi->ffd.fd, epi->event.events,
77493f04
CG
865 (long long)epi->event.data,
866 (long long)epi->ffd.file->f_pos,
867 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 868 if (seq_has_overflowed(m))
138d22b5
CG
869 break;
870 }
871 mutex_unlock(&ep->mtx);
138d22b5
CG
872}
873#endif
874
7699acd1
DL
875/* File callbacks that implement the eventpoll file behaviour */
876static const struct file_operations eventpoll_fops = {
138d22b5
CG
877#ifdef CONFIG_PROC_FS
878 .show_fdinfo = ep_show_fdinfo,
879#endif
7699acd1 880 .release = ep_eventpoll_release,
a11e1d43 881 .poll = ep_eventpoll_poll,
6038f373 882 .llseek = noop_llseek,
7699acd1
DL
883};
884
b611967d 885/*
7699acd1
DL
886 * This is called from eventpoll_release() to unlink files from the eventpoll
887 * interface. We need to have this facility to cleanup correctly files that are
888 * closed without being removed from the eventpoll interface.
b611967d 889 */
7699acd1 890void eventpoll_release_file(struct file *file)
b611967d 891{
7699acd1 892 struct eventpoll *ep;
44cdc1d9
AV
893 struct epitem *epi;
894 struct hlist_node *next;
b611967d
DL
895
896 /*
68499914 897 * We don't want to get "file->f_lock" because it is not
7699acd1 898 * necessary. It is not necessary because we're in the "struct file"
25985edc 899 * cleanup path, and this means that no one is using this file anymore.
5071f97e 900 * So, for example, epoll_ctl() cannot hit here since if we reach this
67647d0f 901 * point, the file counter already went to zero and fget() would fail.
d47de16c 902 * The only hit might come from ep_free() but by holding the mutex
7699acd1 903 * will correctly serialize the operation. We do need to acquire
d47de16c 904 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
7699acd1 905 * from anywhere but ep_free().
68499914
JC
906 *
907 * Besides, ep_remove() acquires the lock, so we can't hold it here.
b611967d 908 */
7699acd1 909 mutex_lock(&epmutex);
319c1517
AV
910 if (unlikely(!file->f_ep)) {
911 mutex_unlock(&epmutex);
912 return;
913 }
914 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
7699acd1 915 ep = epi->ep;
d8805e63 916 mutex_lock_nested(&ep->mtx, 0);
7699acd1 917 ep_remove(ep, epi);
d47de16c 918 mutex_unlock(&ep->mtx);
b611967d 919 }
7699acd1 920 mutex_unlock(&epmutex);
b611967d
DL
921}
922
53d2be79 923static int ep_alloc(struct eventpoll **pep)
1da177e4 924{
7ef9964e
DL
925 int error;
926 struct user_struct *user;
927 struct eventpoll *ep;
1da177e4 928
7ef9964e 929 user = get_current_user();
7ef9964e
DL
930 error = -ENOMEM;
931 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
932 if (unlikely(!ep))
933 goto free_uid;
1da177e4 934
d47de16c 935 mutex_init(&ep->mtx);
a218cc49 936 rwlock_init(&ep->lock);
1da177e4
LT
937 init_waitqueue_head(&ep->wq);
938 init_waitqueue_head(&ep->poll_wait);
939 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 940 ep->rbr = RB_ROOT_CACHED;
d47de16c 941 ep->ovflist = EP_UNACTIVE_PTR;
7ef9964e 942 ep->user = user;
1da177e4 943
53d2be79 944 *pep = ep;
1da177e4 945
1da177e4 946 return 0;
7ef9964e
DL
947
948free_uid:
949 free_uid(user);
950 return error;
1da177e4
LT
951}
952
1da177e4 953/*
c7ea7630
DL
954 * Search the file inside the eventpoll tree. The RB tree operations
955 * are protected by the "mtx" mutex, and ep_find() must be called with
956 * "mtx" held.
1da177e4
LT
957 */
958static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
959{
960 int kcmp;
1da177e4
LT
961 struct rb_node *rbp;
962 struct epitem *epi, *epir = NULL;
963 struct epoll_filefd ffd;
964
b030a4dd 965 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 966 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 967 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 968 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
969 if (kcmp > 0)
970 rbp = rbp->rb_right;
971 else if (kcmp < 0)
972 rbp = rbp->rb_left;
973 else {
1da177e4
LT
974 epir = epi;
975 break;
976 }
977 }
1da177e4 978
1da177e4
LT
979 return epir;
980}
981
92ef6da3 982#ifdef CONFIG_CHECKPOINT_RESTORE
0791e364
CG
983static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
984{
985 struct rb_node *rbp;
986 struct epitem *epi;
987
b2ac2ea6 988 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
989 epi = rb_entry(rbp, struct epitem, rbn);
990 if (epi->ffd.fd == tfd) {
991 if (toff == 0)
992 return epi;
993 else
994 toff--;
995 }
996 cond_resched();
997 }
998
999 return NULL;
1000}
1001
1002struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1003 unsigned long toff)
1004{
1005 struct file *file_raw;
1006 struct eventpoll *ep;
1007 struct epitem *epi;
1008
1009 if (!is_file_epoll(file))
1010 return ERR_PTR(-EINVAL);
1011
1012 ep = file->private_data;
1013
1014 mutex_lock(&ep->mtx);
1015 epi = ep_find_tfd(ep, tfd, toff);
1016 if (epi)
1017 file_raw = epi->ffd.file;
1018 else
1019 file_raw = ERR_PTR(-ENOENT);
1020 mutex_unlock(&ep->mtx);
1021
1022 return file_raw;
1023}
92ef6da3 1024#endif /* CONFIG_CHECKPOINT_RESTORE */
0791e364 1025
a218cc49
RP
1026/**
1027 * Adds a new entry to the tail of the list in a lockless way, i.e.
1028 * multiple CPUs are allowed to call this function concurrently.
1029 *
1030 * Beware: it is necessary to prevent any other modifications of the
1031 * existing list until all changes are completed, in other words
1032 * concurrent list_add_tail_lockless() calls should be protected
1033 * with a read lock, where write lock acts as a barrier which
1034 * makes sure all list_add_tail_lockless() calls are fully
1035 * completed.
1036 *
1037 * Also an element can be locklessly added to the list only in one
1038 * direction i.e. either to the tail either to the head, otherwise
1039 * concurrent access will corrupt the list.
1040 *
1041 * Returns %false if element has been already added to the list, %true
1042 * otherwise.
1043 */
1044static inline bool list_add_tail_lockless(struct list_head *new,
1045 struct list_head *head)
1046{
1047 struct list_head *prev;
1048
1049 /*
1050 * This is simple 'new->next = head' operation, but cmpxchg()
1051 * is used in order to detect that same element has been just
1052 * added to the list from another CPU: the winner observes
1053 * new->next == new.
1054 */
1055 if (cmpxchg(&new->next, new, head) != new)
1056 return false;
1057
1058 /*
1059 * Initially ->next of a new element must be updated with the head
1060 * (we are inserting to the tail) and only then pointers are atomically
1061 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1062 * updated before pointers are actually swapped and pointers are
1063 * swapped before prev->next is updated.
1064 */
1065
1066 prev = xchg(&head->prev, new);
1067
1068 /*
1069 * It is safe to modify prev->next and new->prev, because a new element
1070 * is added only to the tail and new->next is updated before XCHG.
1071 */
1072
1073 prev->next = new;
1074 new->prev = prev;
1075
1076 return true;
1077}
1078
1079/**
1080 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1081 * i.e. multiple CPUs are allowed to call this function concurrently.
1082 *
1083 * Returns %false if epi element has been already chained, %true otherwise.
1084 */
1085static inline bool chain_epi_lockless(struct epitem *epi)
1086{
1087 struct eventpoll *ep = epi->ep;
1088
0c54a6a4
KK
1089 /* Fast preliminary check */
1090 if (epi->next != EP_UNACTIVE_PTR)
1091 return false;
1092
a218cc49
RP
1093 /* Check that the same epi has not been just chained from another CPU */
1094 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1095 return false;
1096
1097 /* Atomically exchange tail */
1098 epi->next = xchg(&ep->ovflist, epi);
1099
1100 return true;
1101}
1102
1da177e4 1103/*
7699acd1 1104 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1105 * mechanism. It is called by the stored file descriptors when they
7699acd1 1106 * have events to report.
a218cc49
RP
1107 *
1108 * This callback takes a read lock in order not to content with concurrent
1109 * events from another file descriptors, thus all modifications to ->rdllist
1110 * or ->ovflist are lockless. Read lock is paired with the write lock from
1111 * ep_scan_ready_list(), which stops all list modifications and guarantees
1112 * that lists state is seen correctly.
1113 *
1114 * Another thing worth to mention is that ep_poll_callback() can be called
1115 * concurrently for the same @epi from different CPUs if poll table was inited
1116 * with several wait queues entries. Plural wakeup from different CPUs of a
1117 * single wait queue is serialized by wq.lock, but the case when multiple wait
1118 * queues are used should be detected accordingly. This is detected using
1119 * cmpxchg() operation.
1da177e4 1120 */
ac6424b9 1121static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1122{
7699acd1 1123 int pwake = 0;
7699acd1
DL
1124 struct epitem *epi = ep_item_from_wait(wait);
1125 struct eventpoll *ep = epi->ep;
3ad6f93e 1126 __poll_t pollflags = key_to_poll(key);
a218cc49 1127 unsigned long flags;
df0108c5 1128 int ewake = 0;
1da177e4 1129
a218cc49 1130 read_lock_irqsave(&ep->lock, flags);
1da177e4 1131
bf3b9f63
SS
1132 ep_set_busy_poll_napi_id(epi);
1133
7699acd1
DL
1134 /*
1135 * If the event mask does not contain any poll(2) event, we consider the
1136 * descriptor to be disabled. This condition is likely the effect of the
1137 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1138 * until the next EPOLL_CTL_MOD will be issued.
1139 */
1140 if (!(epi->event.events & ~EP_PRIVATE_BITS))
d47de16c
DL
1141 goto out_unlock;
1142
2dfa4eea
DL
1143 /*
1144 * Check the events coming with the callback. At this stage, not
1145 * every device reports the events in the "key" parameter of the
1146 * callback. We need to be able to handle both cases here, hence the
1147 * test for "key" != NULL before the event match test.
1148 */
3ad6f93e 1149 if (pollflags && !(pollflags & epi->event.events))
2dfa4eea
DL
1150 goto out_unlock;
1151
d47de16c 1152 /*
bf6a41db 1153 * If we are transferring events to userspace, we can hold no locks
d47de16c 1154 * (because we're accessing user memory, and because of linux f_op->poll()
bf6a41db 1155 * semantics). All the events that happen during that period of time are
d47de16c
DL
1156 * chained in ep->ovflist and requeued later on.
1157 */
c5a282e9 1158 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
0c54a6a4
KK
1159 if (chain_epi_lockless(epi))
1160 ep_pm_stay_awake_rcu(epi);
1161 } else if (!ep_is_linked(epi)) {
1162 /* In the usual case, add event to ready list. */
1163 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
c3e320b6 1164 ep_pm_stay_awake_rcu(epi);
4d7e30d9 1165 }
7699acd1 1166
7699acd1
DL
1167 /*
1168 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1169 * wait list.
1170 */
df0108c5 1171 if (waitqueue_active(&ep->wq)) {
b6a515c8 1172 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1173 !(pollflags & POLLFREE)) {
1174 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1175 case EPOLLIN:
1176 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1177 ewake = 1;
1178 break;
a9a08845
LT
1179 case EPOLLOUT:
1180 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1181 ewake = 1;
1182 break;
1183 case 0:
1184 ewake = 1;
1185 break;
1186 }
1187 }
a218cc49 1188 wake_up(&ep->wq);
df0108c5 1189 }
7699acd1
DL
1190 if (waitqueue_active(&ep->poll_wait))
1191 pwake++;
1192
d47de16c 1193out_unlock:
a218cc49 1194 read_unlock_irqrestore(&ep->lock, flags);
1da177e4 1195
7699acd1
DL
1196 /* We have to call this outside the lock */
1197 if (pwake)
efcdd350 1198 ep_poll_safewake(ep, epi);
7699acd1 1199
138e4ad6
ON
1200 if (!(epi->event.events & EPOLLEXCLUSIVE))
1201 ewake = 1;
1202
3ad6f93e 1203 if (pollflags & POLLFREE) {
138e4ad6
ON
1204 /*
1205 * If we race with ep_remove_wait_queue() it can miss
1206 * ->whead = NULL and do another remove_wait_queue() after
1207 * us, so we can't use __remove_wait_queue().
1208 */
1209 list_del_init(&wait->entry);
1210 /*
1211 * ->whead != NULL protects us from the race with ep_free()
1212 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1213 * held by the caller. Once we nullify it, nothing protects
1214 * ep/epi or even wait.
1215 */
1216 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1217 }
df0108c5 1218
138e4ad6 1219 return ewake;
7699acd1 1220}
1da177e4
LT
1221
1222/*
1223 * This is the callback that is used to add our wait queue to the
1224 * target file wakeup lists.
1225 */
1226static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1227 poll_table *pt)
1228{
364f374f
AV
1229 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1230 struct epitem *epi = epq->epi;
1da177e4
LT
1231 struct eppoll_entry *pwq;
1232
364f374f
AV
1233 if (unlikely(!epi)) // an earlier allocation has failed
1234 return;
1235
1236 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1237 if (unlikely(!pwq)) {
1238 epq->epi = NULL;
1239 return;
296e236e 1240 }
364f374f
AV
1241
1242 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1243 pwq->whead = whead;
1244 pwq->base = epi;
1245 if (epi->event.events & EPOLLEXCLUSIVE)
1246 add_wait_queue_exclusive(whead, &pwq->wait);
1247 else
1248 add_wait_queue(whead, &pwq->wait);
1249 pwq->next = epi->pwqlist;
1250 epi->pwqlist = pwq;
1da177e4
LT
1251}
1252
1da177e4
LT
1253static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1254{
1255 int kcmp;
b2ac2ea6 1256 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1257 struct epitem *epic;
b2ac2ea6 1258 bool leftmost = true;
1da177e4
LT
1259
1260 while (*p) {
1261 parent = *p;
1262 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1263 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1264 if (kcmp > 0) {
1da177e4 1265 p = &parent->rb_right;
b2ac2ea6
DB
1266 leftmost = false;
1267 } else
1da177e4
LT
1268 p = &parent->rb_left;
1269 }
1270 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1271 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1272}
1273
a80a6b85
AM
1274
1275
28d82dc1
JB
1276#define PATH_ARR_SIZE 5
1277/*
1278 * These are the number paths of length 1 to 5, that we are allowing to emanate
1279 * from a single file of interest. For example, we allow 1000 paths of length
1280 * 1, to emanate from each file of interest. This essentially represents the
1281 * potential wakeup paths, which need to be limited in order to avoid massive
1282 * uncontrolled wakeup storms. The common use case should be a single ep which
1283 * is connected to n file sources. In this case each file source has 1 path
1284 * of length 1. Thus, the numbers below should be more than sufficient. These
1285 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1286 * and delete can't add additional paths. Protected by the epmutex.
1287 */
1288static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1289static int path_count[PATH_ARR_SIZE];
1290
1291static int path_count_inc(int nests)
1292{
93dc6107
JB
1293 /* Allow an arbitrary number of depth 1 paths */
1294 if (nests == 0)
1295 return 0;
1296
28d82dc1
JB
1297 if (++path_count[nests] > path_limits[nests])
1298 return -1;
1299 return 0;
1300}
1301
1302static void path_count_init(void)
1303{
1304 int i;
1305
1306 for (i = 0; i < PATH_ARR_SIZE; i++)
1307 path_count[i] = 0;
1308}
1309
319c1517 1310static int reverse_path_check_proc(struct hlist_head *refs, int depth)
28d82dc1
JB
1311{
1312 int error = 0;
28d82dc1
JB
1313 struct epitem *epi;
1314
0c320f77 1315 if (depth > EP_MAX_NESTS) /* too deep nesting */
99d84d43
AV
1316 return -1;
1317
ae10b2b4 1318 /* CTL_DEL can remove links here, but that can't increase our count */
319c1517
AV
1319 hlist_for_each_entry_rcu(epi, refs, fllink) {
1320 struct hlist_head *refs = &epi->ep->refs;
1321 if (hlist_empty(refs))
d16312a4
AV
1322 error = path_count_inc(depth);
1323 else
319c1517 1324 error = reverse_path_check_proc(refs, depth + 1);
d16312a4
AV
1325 if (error != 0)
1326 break;
28d82dc1
JB
1327 }
1328 return error;
1329}
1330
1331/**
319c1517 1332 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
28d82dc1
JB
1333 * links that are proposed to be newly added. We need to
1334 * make sure that those added links don't add too many
1335 * paths such that we will spend all our time waking up
1336 * eventpoll objects.
1337 *
1338 * Returns: Returns zero if the proposed links don't create too many paths,
1339 * -1 otherwise.
1340 */
1341static int reverse_path_check(void)
1342{
319c1517 1343 struct epitems_head *p;
28d82dc1 1344
319c1517
AV
1345 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1346 int error;
28d82dc1 1347 path_count_init();
b62d2706 1348 rcu_read_lock();
319c1517 1349 error = reverse_path_check_proc(&p->epitems, 0);
b62d2706 1350 rcu_read_unlock();
28d82dc1 1351 if (error)
319c1517 1352 return error;
28d82dc1 1353 }
319c1517 1354 return 0;
28d82dc1
JB
1355}
1356
4d7e30d9
AH
1357static int ep_create_wakeup_source(struct epitem *epi)
1358{
3701cb59 1359 struct name_snapshot n;
eea1d585 1360 struct wakeup_source *ws;
4d7e30d9
AH
1361
1362 if (!epi->ep->ws) {
c8377adf 1363 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1364 if (!epi->ep->ws)
1365 return -ENOMEM;
1366 }
1367
3701cb59
AV
1368 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1369 ws = wakeup_source_register(NULL, n.name.name);
1370 release_dentry_name_snapshot(&n);
eea1d585
EW
1371
1372 if (!ws)
4d7e30d9 1373 return -ENOMEM;
eea1d585 1374 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1375
1376 return 0;
1377}
1378
eea1d585
EW
1379/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1380static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1381{
eea1d585
EW
1382 struct wakeup_source *ws = ep_wakeup_source(epi);
1383
d6d67e72 1384 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1385
1386 /*
1387 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1388 * used internally by wakeup_source_remove, too (called by
1389 * wakeup_source_unregister), so we cannot use call_rcu
1390 */
1391 synchronize_rcu();
1392 wakeup_source_unregister(ws);
4d7e30d9
AH
1393}
1394
319c1517
AV
1395static int attach_epitem(struct file *file, struct epitem *epi)
1396{
1397 struct epitems_head *to_free = NULL;
1398 struct hlist_head *head = NULL;
1399 struct eventpoll *ep = NULL;
1400
1401 if (is_file_epoll(file))
1402 ep = file->private_data;
1403
1404 if (ep) {
1405 head = &ep->refs;
1406 } else if (!READ_ONCE(file->f_ep)) {
1407allocate:
1408 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1409 if (!to_free)
1410 return -ENOMEM;
1411 head = &to_free->epitems;
1412 }
1413 spin_lock(&file->f_lock);
1414 if (!file->f_ep) {
1415 if (unlikely(!head)) {
1416 spin_unlock(&file->f_lock);
1417 goto allocate;
1418 }
1419 file->f_ep = head;
1420 to_free = NULL;
1421 }
1422 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1423 spin_unlock(&file->f_lock);
1424 free_ephead(to_free);
1425 return 0;
1426}
1427
c7ea7630
DL
1428/*
1429 * Must be called with "mtx" held.
1430 */
bec1a502 1431static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1432 struct file *tfile, int fd, int full_check)
1da177e4 1433{
d85e2aa2
AV
1434 int error, pwake = 0;
1435 __poll_t revents;
52bd19f7 1436 long user_watches;
1da177e4
LT
1437 struct epitem *epi;
1438 struct ep_pqueue epq;
85353e91
AV
1439 struct eventpoll *tep = NULL;
1440
1441 if (is_file_epoll(tfile))
1442 tep = tfile->private_data;
1da177e4 1443
92e64178
DB
1444 lockdep_assert_irqs_enabled();
1445
52bd19f7
RH
1446 user_watches = atomic_long_read(&ep->user->epoll_watches);
1447 if (unlikely(user_watches >= max_user_watches))
7ef9964e 1448 return -ENOSPC;
d1ec50ad 1449 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL)))
7ef9964e 1450 return -ENOMEM;
1da177e4
LT
1451
1452 /* Item initialization follow here ... */
1da177e4 1453 INIT_LIST_HEAD(&epi->rdllink);
1da177e4 1454 epi->ep = ep;
b030a4dd 1455 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1456 epi->event = *event;
d47de16c 1457 epi->next = EP_UNACTIVE_PTR;
1da177e4 1458
85353e91
AV
1459 if (tep)
1460 mutex_lock_nested(&tep->mtx, 1);
f8d4f44d 1461 /* Add the current item to the list of active epoll hook for this file */
319c1517
AV
1462 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1463 kmem_cache_free(epi_cache, epi);
1464 if (tep)
1465 mutex_unlock(&tep->mtx);
1466 return -ENOMEM;
d9f41e3c 1467 }
f8d4f44d 1468
319c1517
AV
1469 if (full_check && !tep)
1470 list_file(tfile);
1471
1472 atomic_long_inc(&ep->user->epoll_watches);
f8d4f44d
AV
1473
1474 /*
1475 * Add the current item to the RB tree. All RB tree operations are
1476 * protected by "mtx", and ep_insert() is called with "mtx" held.
1477 */
1478 ep_rbtree_insert(ep, epi);
85353e91
AV
1479 if (tep)
1480 mutex_unlock(&tep->mtx);
f8d4f44d
AV
1481
1482 /* now check if we've created too many backpaths */
e3e096e7
AV
1483 if (unlikely(full_check && reverse_path_check())) {
1484 ep_remove(ep, epi);
1485 return -EINVAL;
1486 }
f8d4f44d 1487
d1ec50ad
AV
1488 if (epi->event.events & EPOLLWAKEUP) {
1489 error = ep_create_wakeup_source(epi);
1490 if (error) {
1491 ep_remove(ep, epi);
1492 return error;
1493 }
1494 }
f8d4f44d 1495
1da177e4
LT
1496 /* Initialize the poll table using the queue callback */
1497 epq.epi = epi;
1498 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1499
1500 /*
1501 * Attach the item to the poll hooks and get current event bits.
1502 * We can safely use the file* here because its usage count has
c7ea7630
DL
1503 * been increased by the caller of this function. Note that after
1504 * this operation completes, the poll callback can start hitting
1505 * the new item.
1da177e4 1506 */
37b5e521 1507 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1508
1509 /*
1510 * We have to check if something went wrong during the poll wait queue
1511 * install process. Namely an allocation for a wait queue failed due
1512 * high memory pressure.
1513 */
e3e096e7
AV
1514 if (unlikely(!epq.epi)) {
1515 ep_remove(ep, epi);
1516 return -ENOMEM;
1517 }
1da177e4 1518
c7ea7630 1519 /* We have to drop the new item inside our item list to keep track of it */
a218cc49 1520 write_lock_irq(&ep->lock);
c7ea7630 1521
bf3b9f63
SS
1522 /* record NAPI ID of new item if present */
1523 ep_set_busy_poll_napi_id(epi);
1524
1da177e4 1525 /* If the file is already "ready" we drop it inside the ready list */
992991c0 1526 if (revents && !ep_is_linked(epi)) {
1da177e4 1527 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1528 ep_pm_stay_awake(epi);
1da177e4
LT
1529
1530 /* Notify waiting tasks that events are available */
1531 if (waitqueue_active(&ep->wq))
a218cc49 1532 wake_up(&ep->wq);
1da177e4
LT
1533 if (waitqueue_active(&ep->poll_wait))
1534 pwake++;
1535 }
1536
a218cc49 1537 write_unlock_irq(&ep->lock);
1da177e4
LT
1538
1539 /* We have to call this outside the lock */
1540 if (pwake)
efcdd350 1541 ep_poll_safewake(ep, NULL);
1da177e4 1542
1da177e4 1543 return 0;
1da177e4
LT
1544}
1545
1da177e4
LT
1546/*
1547 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1548 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1549 */
bec1a502
AV
1550static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1551 const struct epoll_event *event)
1da177e4
LT
1552{
1553 int pwake = 0;
626cf236
HV
1554 poll_table pt;
1555
92e64178
DB
1556 lockdep_assert_irqs_enabled();
1557
626cf236 1558 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1559
1560 /*
e057e15f
TB
1561 * Set the new event interest mask before calling f_op->poll();
1562 * otherwise we might miss an event that happens between the
1563 * f_op->poll() call and the new event set registering.
1da177e4 1564 */
128dd175 1565 epi->event.events = event->events; /* need barrier below */
e057e15f 1566 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1567 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1568 if (!ep_has_wakeup_source(epi))
4d7e30d9 1569 ep_create_wakeup_source(epi);
eea1d585 1570 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1571 ep_destroy_wakeup_source(epi);
1572 }
1da177e4 1573
128dd175
EW
1574 /*
1575 * The following barrier has two effects:
1576 *
1577 * 1) Flush epi changes above to other CPUs. This ensures
1578 * we do not miss events from ep_poll_callback if an
1579 * event occurs immediately after we call f_op->poll().
a218cc49 1580 * We need this because we did not take ep->lock while
128dd175 1581 * changing epi above (but ep_poll_callback does take
a218cc49 1582 * ep->lock).
128dd175
EW
1583 *
1584 * 2) We also need to ensure we do not miss _past_ events
1585 * when calling f_op->poll(). This barrier also
1586 * pairs with the barrier in wq_has_sleeper (see
1587 * comments for wq_has_sleeper).
1588 *
1589 * This barrier will now guarantee ep_poll_callback or f_op->poll
1590 * (or both) will notice the readiness of an item.
1591 */
1592 smp_mb();
1593
1da177e4
LT
1594 /*
1595 * Get current event bits. We can safely use the file* here because
1596 * its usage count has been increased by the caller of this function.
c7ea7630 1597 * If the item is "hot" and it is not registered inside the ready
67647d0f 1598 * list, push it inside.
1da177e4 1599 */
69112736 1600 if (ep_item_poll(epi, &pt, 1)) {
a218cc49 1601 write_lock_irq(&ep->lock);
992991c0 1602 if (!ep_is_linked(epi)) {
c7ea7630 1603 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1604 ep_pm_stay_awake(epi);
c7ea7630
DL
1605
1606 /* Notify waiting tasks that events are available */
1607 if (waitqueue_active(&ep->wq))
a218cc49 1608 wake_up(&ep->wq);
c7ea7630
DL
1609 if (waitqueue_active(&ep->poll_wait))
1610 pwake++;
7699acd1 1611 }
a218cc49 1612 write_unlock_irq(&ep->lock);
7699acd1 1613 }
1da177e4 1614
7699acd1
DL
1615 /* We have to call this outside the lock */
1616 if (pwake)
efcdd350 1617 ep_poll_safewake(ep, NULL);
1da177e4 1618
7699acd1 1619 return 0;
1da177e4
LT
1620}
1621
ff07952a
AV
1622static int ep_send_events(struct eventpoll *ep,
1623 struct epoll_event __user *events, int maxevents)
1da177e4 1624{
4e0982a0 1625 struct epitem *epi, *tmp;
ff07952a 1626 LIST_HEAD(txlist);
626cf236 1627 poll_table pt;
ff07952a 1628 int res = 0;
626cf236 1629
cccd29bf
SHY
1630 /*
1631 * Always short-circuit for fatal signals to allow threads to make a
1632 * timely exit without the chance of finding more events available and
1633 * fetching repeatedly.
1634 */
1635 if (fatal_signal_pending(current))
1636 return -EINTR;
1637
626cf236 1638 init_poll_funcptr(&pt, NULL);
ff07952a 1639
57804b1c
AV
1640 mutex_lock(&ep->mtx);
1641 ep_start_scan(ep, &txlist);
1da177e4 1642
296e236e 1643 /*
5071f97e 1644 * We can loop without lock because we are passed a task private list.
57804b1c 1645 * Items cannot vanish during the loop we are holding ep->mtx.
296e236e 1646 */
ff07952a
AV
1647 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1648 struct wakeup_source *ws;
1649 __poll_t revents;
21877e1a 1650
ff07952a 1651 if (res >= maxevents)
4e0982a0 1652 break;
d47de16c 1653
4d7e30d9
AH
1654 /*
1655 * Activate ep->ws before deactivating epi->ws to prevent
1656 * triggering auto-suspend here (in case we reactive epi->ws
1657 * below).
1658 *
1659 * This could be rearranged to delay the deactivation of epi->ws
1660 * instead, but then epi->ws would temporarily be out of sync
1661 * with ep_is_linked().
1662 */
eea1d585
EW
1663 ws = ep_wakeup_source(epi);
1664 if (ws) {
1665 if (ws->active)
1666 __pm_stay_awake(ep->ws);
1667 __pm_relax(ws);
1668 }
1669
d47de16c 1670 list_del_init(&epi->rdllink);
1da177e4 1671
296e236e 1672 /*
5071f97e 1673 * If the event mask intersect the caller-requested one,
57804b1c
AV
1674 * deliver the event to userspace. Again, we are holding ep->mtx,
1675 * so no operations coming from userspace can change the item.
296e236e 1676 */
4e0982a0
DB
1677 revents = ep_item_poll(epi, &pt, 1);
1678 if (!revents)
1679 continue;
1680
ff07952a
AV
1681 if (__put_user(revents, &events->events) ||
1682 __put_user(epi->event.data, &events->data)) {
1683 list_add(&epi->rdllink, &txlist);
4e0982a0 1684 ep_pm_stay_awake(epi);
ff07952a
AV
1685 if (!res)
1686 res = -EFAULT;
1687 break;
4e0982a0 1688 }
ff07952a
AV
1689 res++;
1690 events++;
4e0982a0
DB
1691 if (epi->event.events & EPOLLONESHOT)
1692 epi->event.events &= EP_PRIVATE_BITS;
1693 else if (!(epi->event.events & EPOLLET)) {
1694 /*
1695 * If this file has been added with Level
1696 * Trigger mode, we need to insert back inside
1697 * the ready list, so that the next call to
1698 * epoll_wait() will check again the events
1699 * availability. At this point, no one can insert
1700 * into ep->rdllist besides us. The epoll_ctl()
1701 * callers are locked out by
1702 * ep_scan_ready_list() holding "mtx" and the
1703 * poll callback will queue them in ep->ovflist.
1704 */
1705 list_add_tail(&epi->rdllink, &ep->rdllist);
1706 ep_pm_stay_awake(epi);
296e236e
DL
1707 }
1708 }
57804b1c
AV
1709 ep_done_scan(ep, &txlist);
1710 mutex_unlock(&ep->mtx);
5071f97e 1711
ff07952a 1712 return res;
1da177e4
LT
1713}
1714
766b9f92 1715static inline struct timespec64 ep_set_mstimeout(long ms)
0781b909 1716{
766b9f92 1717 struct timespec64 now, ts = {
0781b909
ED
1718 .tv_sec = ms / MSEC_PER_SEC,
1719 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1720 };
1721
766b9f92
DD
1722 ktime_get_ts64(&now);
1723 return timespec64_add_safe(now, ts);
0781b909
ED
1724}
1725
f4d93ad7
SB
1726/**
1727 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1728 * event buffer.
1729 *
1730 * @ep: Pointer to the eventpoll context.
1731 * @events: Pointer to the userspace buffer where the ready events should be
1732 * stored.
1733 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1734 * @timeout: Maximum timeout for the ready events fetch operation, in
1735 * milliseconds. If the @timeout is zero, the function will not block,
1736 * while if the @timeout is less than zero, the function will block
1737 * until at least one event has been retrieved (or an error
1738 * occurred).
1739 *
1740 * Returns: Returns the number of ready events which have been fetched, or an
1741 * error code, in case of error.
1742 */
1da177e4
LT
1743static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1744 int maxevents, long timeout)
1745{
2efdaf76 1746 int res, eavail, timed_out = 0;
da8b44d5 1747 u64 slack = 0;
ac6424b9 1748 wait_queue_entry_t wait;
95aac7b1
SB
1749 ktime_t expires, *to = NULL;
1750
679abf38
DB
1751 lockdep_assert_irqs_enabled();
1752
95aac7b1 1753 if (timeout > 0) {
766b9f92 1754 struct timespec64 end_time = ep_set_mstimeout(timeout);
0781b909 1755
95aac7b1
SB
1756 slack = select_estimate_accuracy(&end_time);
1757 to = &expires;
766b9f92 1758 *to = timespec64_to_ktime(end_time);
95aac7b1 1759 } else if (timeout == 0) {
f4d93ad7
SB
1760 /*
1761 * Avoid the unnecessary trip to the wait queue loop, if the
c5a282e9
DB
1762 * caller specified a non blocking operation. We still need
1763 * lock because we could race and not see an epi being added
1764 * to the ready list while in irq callback. Thus incorrectly
1765 * returning 0 back to userspace.
f4d93ad7 1766 */
95aac7b1 1767 timed_out = 1;
c5a282e9 1768
a218cc49 1769 write_lock_irq(&ep->lock);
c5a282e9 1770 eavail = ep_events_available(ep);
a218cc49 1771 write_unlock_irq(&ep->lock);
c5a282e9 1772
35cff1a6 1773 goto send_events;
95aac7b1 1774 }
1da177e4 1775
f4d93ad7 1776fetch_events:
c5a282e9 1777 eavail = ep_events_available(ep);
1493c47f
SHY
1778 if (!eavail)
1779 eavail = ep_busy_loop(ep, timed_out);
1780
c5a282e9 1781 if (eavail)
35cff1a6 1782 goto send_events;
1da177e4 1783
412895f0 1784 do {
2efdaf76
SHY
1785 if (signal_pending(current))
1786 return -EINTR;
1787
412895f0
RP
1788 /*
1789 * Internally init_wait() uses autoremove_wake_function(),
1790 * thus wait entry is removed from the wait queue on each
1791 * wakeup. Why it is important? In case of several waiters
1792 * each new wakeup will hit the next waiter, giving it the
1793 * chance to harvest new event. Otherwise wakeup can be
1794 * lost. This is also good performance-wise, because on
1795 * normal wakeup path no need to call __remove_wait_queue()
1796 * explicitly, thus ep->lock is not taken, which halts the
1797 * event delivery.
1798 */
1799 init_wait(&wait);
1da177e4 1800
65759097 1801 write_lock_irq(&ep->lock);
bf3b9f63 1802 /*
65759097
RP
1803 * Barrierless variant, waitqueue_active() is called under
1804 * the same lock on wakeup ep_poll_callback() side, so it
1805 * is safe to avoid an explicit barrier.
bf3b9f63 1806 */
65759097
RP
1807 __set_current_state(TASK_INTERRUPTIBLE);
1808
1da177e4 1809 /*
65759097
RP
1810 * Do the final check under the lock. ep_scan_ready_list()
1811 * plays with two lists (->rdllist and ->ovflist) and there
1812 * is always a race when both lists are empty for short
1813 * period of time although events are pending, so lock is
1814 * important.
1da177e4 1815 */
65759097 1816 eavail = ep_events_available(ep);
2efdaf76
SHY
1817 if (!eavail)
1818 __add_wait_queue_exclusive(&ep->wq, &wait);
1819
65759097 1820 write_unlock_irq(&ep->lock);
95aac7b1 1821
2efdaf76 1822 if (!eavail)
289caf5d
SHY
1823 timed_out = !schedule_hrtimeout_range(to, slack,
1824 HRTIMER_MODE_ABS);
e411596d 1825 __set_current_state(TASK_RUNNING);
1da177e4 1826
289caf5d
SHY
1827 /*
1828 * We were woken up, thus go and try to harvest some events.
1829 * If timed out and still on the wait queue, recheck eavail
1830 * carefully under lock, below.
1831 */
412895f0 1832 eavail = 1;
412895f0 1833 } while (0);
1da177e4 1834
412895f0
RP
1835 if (!list_empty_careful(&wait.entry)) {
1836 write_lock_irq(&ep->lock);
289caf5d
SHY
1837 /*
1838 * If the thread timed out and is not on the wait queue, it
1839 * means that the thread was woken up after its timeout expired
1840 * before it could reacquire the lock. Thus, when wait.entry is
1841 * empty, it needs to harvest events.
1842 */
1843 if (timed_out)
1844 eavail = list_empty(&wait.entry);
412895f0
RP
1845 __remove_wait_queue(&ep->wq, &wait);
1846 write_unlock_irq(&ep->lock);
1847 }
1848
35cff1a6 1849send_events:
1da177e4
LT
1850 /*
1851 * Try to transfer events to user space. In case we get 0 events and
1852 * there's still timeout left over, we go trying again in search of
1853 * more luck.
1854 */
2efdaf76 1855 if (eavail &&
95aac7b1 1856 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
f4d93ad7 1857 goto fetch_events;
1da177e4
LT
1858
1859 return res;
1860}
1861
22bacca4 1862/**
773318ed 1863 * ep_loop_check_proc - verify that adding an epoll file inside another
22bacca4
DL
1864 * epoll structure, does not violate the constraints, in
1865 * terms of closed loops, or too deep chains (which can
1866 * result in excessive stack usage).
1867 *
1868 * @priv: Pointer to the epoll file to be currently checked.
bde03c4c 1869 * @depth: Current depth of the path being checked.
22bacca4
DL
1870 *
1871 * Returns: Returns zero if adding the epoll @file inside current epoll
1872 * structure @ep does not violate the constraints, or -1 otherwise.
1873 */
bde03c4c 1874static int ep_loop_check_proc(struct eventpoll *ep, int depth)
22bacca4
DL
1875{
1876 int error = 0;
22bacca4
DL
1877 struct rb_node *rbp;
1878 struct epitem *epi;
1879
773318ed 1880 mutex_lock_nested(&ep->mtx, depth + 1);
18306c40 1881 ep->gen = loop_check_gen;
b2ac2ea6 1882 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
1883 epi = rb_entry(rbp, struct epitem, rbn);
1884 if (unlikely(is_file_epoll(epi->ffd.file))) {
bde03c4c 1885 struct eventpoll *ep_tovisit;
28d82dc1 1886 ep_tovisit = epi->ffd.file->private_data;
18306c40 1887 if (ep_tovisit->gen == loop_check_gen)
28d82dc1 1888 continue;
bde03c4c 1889 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
56c428ca 1890 error = -1;
bde03c4c
AV
1891 else
1892 error = ep_loop_check_proc(ep_tovisit, depth + 1);
22bacca4
DL
1893 if (error != 0)
1894 break;
28d82dc1
JB
1895 } else {
1896 /*
1897 * If we've reached a file that is not associated with
1898 * an ep, then we need to check if the newly added
1899 * links are going to add too many wakeup paths. We do
1900 * this by adding it to the tfile_check_list, if it's
1901 * not already there, and calling reverse_path_check()
1902 * during ep_insert().
1903 */
319c1517 1904 list_file(epi->ffd.file);
22bacca4
DL
1905 }
1906 }
1907 mutex_unlock(&ep->mtx);
1908
1909 return error;
1910}
1911
1912/**
bde03c4c
AV
1913 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1914 * into another epoll file (represented by @from) does not create
22bacca4
DL
1915 * closed loops or too deep chains.
1916 *
bde03c4c
AV
1917 * @from: Pointer to the epoll we are inserting into.
1918 * @to: Pointer to the epoll to be inserted.
22bacca4 1919 *
bde03c4c
AV
1920 * Returns: Returns zero if adding the epoll @to inside the epoll @from
1921 * does not violate the constraints, or -1 otherwise.
22bacca4 1922 */
bde03c4c 1923static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
22bacca4 1924{
6a3890c4 1925 inserting_into = ep;
bde03c4c 1926 return ep_loop_check_proc(to, 0);
28d82dc1
JB
1927}
1928
1929static void clear_tfile_check_list(void)
1930{
319c1517
AV
1931 rcu_read_lock();
1932 while (tfile_check_list != EP_UNACTIVE_PTR) {
1933 struct epitems_head *head = tfile_check_list;
1934 tfile_check_list = head->next;
1935 unlist_file(head);
28d82dc1 1936 }
319c1517 1937 rcu_read_unlock();
22bacca4
DL
1938}
1939
7699acd1 1940/*
523723bb 1941 * Open an eventpoll file descriptor.
7699acd1 1942 */
791eb22e 1943static int do_epoll_create(int flags)
7699acd1 1944{
28d82dc1 1945 int error, fd;
bb57c3ed 1946 struct eventpoll *ep = NULL;
28d82dc1 1947 struct file *file;
7699acd1 1948
e38b36f3
UD
1949 /* Check the EPOLL_* constant for consistency. */
1950 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1951
296e236e
DL
1952 if (flags & ~EPOLL_CLOEXEC)
1953 return -EINVAL;
7699acd1 1954 /*
bb57c3ed 1955 * Create the internal data structure ("struct eventpoll").
7699acd1 1956 */
9fe5ad9c 1957 error = ep_alloc(&ep);
bb57c3ed
DL
1958 if (error < 0)
1959 return error;
7699acd1
DL
1960 /*
1961 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 1962 * a file structure and a free file descriptor.
7699acd1 1963 */
28d82dc1
JB
1964 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1965 if (fd < 0) {
1966 error = fd;
1967 goto out_free_ep;
1968 }
1969 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 1970 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
1971 if (IS_ERR(file)) {
1972 error = PTR_ERR(file);
1973 goto out_free_fd;
1974 }
28d82dc1 1975 ep->file = file;
98022748 1976 fd_install(fd, file);
28d82dc1
JB
1977 return fd;
1978
1979out_free_fd:
1980 put_unused_fd(fd);
1981out_free_ep:
1982 ep_free(ep);
bb57c3ed 1983 return error;
7699acd1
DL
1984}
1985
791eb22e
DB
1986SYSCALL_DEFINE1(epoll_create1, int, flags)
1987{
1988 return do_epoll_create(flags);
1989}
1990
5a8a82b1 1991SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 1992{
bfe3891a 1993 if (size <= 0)
9fe5ad9c
UD
1994 return -EINVAL;
1995
791eb22e 1996 return do_epoll_create(0);
a0998b50
UD
1997}
1998
39220e8d
JA
1999static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2000 bool nonblock)
2001{
2002 if (!nonblock) {
2003 mutex_lock_nested(mutex, depth);
2004 return 0;
2005 }
2006 if (mutex_trylock(mutex))
2007 return 0;
2008 return -EAGAIN;
2009}
2010
2011int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2012 bool nonblock)
7699acd1
DL
2013{
2014 int error;
67347fe4 2015 int full_check = 0;
7e3fb584 2016 struct fd f, tf;
7699acd1
DL
2017 struct eventpoll *ep;
2018 struct epitem *epi;
67347fe4 2019 struct eventpoll *tep = NULL;
7699acd1 2020
7699acd1 2021 error = -EBADF;
7e3fb584
AV
2022 f = fdget(epfd);
2023 if (!f.file)
7699acd1
DL
2024 goto error_return;
2025
2026 /* Get the "struct file *" for the target file */
7e3fb584
AV
2027 tf = fdget(fd);
2028 if (!tf.file)
7699acd1
DL
2029 goto error_fput;
2030
2031 /* The target file descriptor must support poll */
2032 error = -EPERM;
9965ed17 2033 if (!file_can_poll(tf.file))
7699acd1
DL
2034 goto error_tgt_fput;
2035
4d7e30d9 2036 /* Check if EPOLLWAKEUP is allowed */
c680e41b 2037 if (ep_op_has_event(op))
58e41a44 2038 ep_take_care_of_epollwakeup(epds);
4d7e30d9 2039
7699acd1
DL
2040 /*
2041 * We have to check that the file structure underneath the file descriptor
2042 * the user passed to us _is_ an eventpoll file. And also we do not permit
2043 * adding an epoll file descriptor inside itself.
2044 */
2045 error = -EINVAL;
7e3fb584 2046 if (f.file == tf.file || !is_file_epoll(f.file))
7699acd1
DL
2047 goto error_tgt_fput;
2048
df0108c5
JB
2049 /*
2050 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2051 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2052 * Also, we do not currently supported nested exclusive wakeups.
2053 */
58e41a44 2054 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2055 if (op == EPOLL_CTL_MOD)
2056 goto error_tgt_fput;
2057 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
58e41a44 2058 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
b6a515c8
JB
2059 goto error_tgt_fput;
2060 }
df0108c5 2061
7699acd1
DL
2062 /*
2063 * At this point it is safe to assume that the "private_data" contains
2064 * our own data structure.
2065 */
7e3fb584 2066 ep = f.file->private_data;
7699acd1 2067
22bacca4
DL
2068 /*
2069 * When we insert an epoll file descriptor, inside another epoll file
2070 * descriptor, there is the change of creating closed loops, which are
28d82dc1
JB
2071 * better be handled here, than in more critical paths. While we are
2072 * checking for loops we also determine the list of files reachable
2073 * and hang them on the tfile_check_list, so we can check that we
2074 * haven't created too many possible wakeup paths.
22bacca4 2075 *
67347fe4
JB
2076 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2077 * the epoll file descriptor is attaching directly to a wakeup source,
2078 * unless the epoll file descriptor is nested. The purpose of taking the
2079 * 'epmutex' on add is to prevent complex toplogies such as loops and
2080 * deep wakeup paths from forming in parallel through multiple
2081 * EPOLL_CTL_ADD operations.
22bacca4 2082 */
39220e8d
JA
2083 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2084 if (error)
2085 goto error_tgt_fput;
28d82dc1 2086 if (op == EPOLL_CTL_ADD) {
319c1517
AV
2087 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2088 is_file_epoll(tf.file)) {
67347fe4 2089 mutex_unlock(&ep->mtx);
39220e8d
JA
2090 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2091 if (error)
2092 goto error_tgt_fput;
18306c40 2093 loop_check_gen++;
39220e8d 2094 full_check = 1;
67347fe4 2095 if (is_file_epoll(tf.file)) {
bde03c4c 2096 tep = tf.file->private_data;
67347fe4 2097 error = -ELOOP;
bde03c4c 2098 if (ep_loop_check(ep, tep) != 0)
67347fe4 2099 goto error_tgt_fput;
a9ed4a65 2100 }
39220e8d 2101 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
52c47969 2102 if (error)
39220e8d 2103 goto error_tgt_fput;
67347fe4
JB
2104 }
2105 }
7699acd1 2106
67647d0f
DL
2107 /*
2108 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2109 * above, we can be sure to be able to use the item looked up by
2110 * ep_find() till we release the mutex.
2111 */
7e3fb584 2112 epi = ep_find(ep, tf.file, fd);
7699acd1
DL
2113
2114 error = -EINVAL;
2115 switch (op) {
2116 case EPOLL_CTL_ADD:
2117 if (!epi) {
58e41a44
JA
2118 epds->events |= EPOLLERR | EPOLLHUP;
2119 error = ep_insert(ep, epds, tf.file, fd, full_check);
7699acd1
DL
2120 } else
2121 error = -EEXIST;
2122 break;
2123 case EPOLL_CTL_DEL:
2124 if (epi)
2125 error = ep_remove(ep, epi);
2126 else
2127 error = -ENOENT;
2128 break;
2129 case EPOLL_CTL_MOD:
2130 if (epi) {
b6a515c8 2131 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
58e41a44
JA
2132 epds->events |= EPOLLERR | EPOLLHUP;
2133 error = ep_modify(ep, epi, epds);
b6a515c8 2134 }
7699acd1
DL
2135 } else
2136 error = -ENOENT;
2137 break;
2138 }
d47de16c 2139 mutex_unlock(&ep->mtx);
7699acd1
DL
2140
2141error_tgt_fput:
52c47969
AV
2142 if (full_check) {
2143 clear_tfile_check_list();
18306c40 2144 loop_check_gen++;
22bacca4 2145 mutex_unlock(&epmutex);
52c47969 2146 }
22bacca4 2147
7e3fb584 2148 fdput(tf);
7699acd1 2149error_fput:
7e3fb584 2150 fdput(f);
7699acd1 2151error_return:
7699acd1
DL
2152
2153 return error;
2154}
2155
58e41a44
JA
2156/*
2157 * The following function implements the controller interface for
2158 * the eventpoll file that enables the insertion/removal/change of
2159 * file descriptors inside the interest set.
2160 */
2161SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2162 struct epoll_event __user *, event)
2163{
2164 struct epoll_event epds;
2165
2166 if (ep_op_has_event(op) &&
2167 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2168 return -EFAULT;
2169
39220e8d 2170 return do_epoll_ctl(epfd, op, fd, &epds, false);
58e41a44
JA
2171}
2172
7699acd1
DL
2173/*
2174 * Implement the event wait interface for the eventpoll file. It is the kernel
2175 * part of the user space epoll_wait(2).
2176 */
791eb22e
DB
2177static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2178 int maxevents, int timeout)
7699acd1 2179{
2903ff01
AV
2180 int error;
2181 struct fd f;
7699acd1
DL
2182 struct eventpoll *ep;
2183
7699acd1
DL
2184 /* The maximum number of event must be greater than zero */
2185 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2186 return -EINVAL;
2187
2188 /* Verify that the area passed by the user is writeable */
96d4f267 2189 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2903ff01 2190 return -EFAULT;
7699acd1
DL
2191
2192 /* Get the "struct file *" for the eventpoll file */
2903ff01
AV
2193 f = fdget(epfd);
2194 if (!f.file)
2195 return -EBADF;
7699acd1
DL
2196
2197 /*
2198 * We have to check that the file structure underneath the fd
2199 * the user passed to us _is_ an eventpoll file.
2200 */
2201 error = -EINVAL;
2903ff01 2202 if (!is_file_epoll(f.file))
7699acd1
DL
2203 goto error_fput;
2204
2205 /*
2206 * At this point it is safe to assume that the "private_data" contains
2207 * our own data structure.
2208 */
2903ff01 2209 ep = f.file->private_data;
7699acd1
DL
2210
2211 /* Time to fish for events ... */
2212 error = ep_poll(ep, events, maxevents, timeout);
2213
2214error_fput:
2903ff01 2215 fdput(f);
7699acd1
DL
2216 return error;
2217}
2218
791eb22e
DB
2219SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2220 int, maxevents, int, timeout)
2221{
2222 return do_epoll_wait(epfd, events, maxevents, timeout);
2223}
2224
7699acd1
DL
2225/*
2226 * Implement the event wait interface for the eventpoll file. It is the kernel
2227 * part of the user space epoll_pwait(2).
2228 */
5a8a82b1
HC
2229SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2230 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2231 size_t, sigsetsize)
7699acd1
DL
2232{
2233 int error;
7699acd1
DL
2234
2235 /*
2236 * If the caller wants a certain signal mask to be set during the wait,
2237 * we apply it here.
2238 */
b772434b 2239 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2240 if (error)
2241 return error;
7699acd1 2242
791eb22e 2243 error = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2244 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2245
2246 return error;
2247}
2248
35280bd4
AV
2249#ifdef CONFIG_COMPAT
2250COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2251 struct epoll_event __user *, events,
2252 int, maxevents, int, timeout,
2253 const compat_sigset_t __user *, sigmask,
2254 compat_size_t, sigsetsize)
2255{
2256 long err;
35280bd4
AV
2257
2258 /*
2259 * If the caller wants a certain signal mask to be set during the wait,
2260 * we apply it here.
2261 */
b772434b 2262 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2263 if (err)
2264 return err;
35280bd4 2265
791eb22e 2266 err = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2267 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2268
2269 return err;
2270}
2271#endif
2272
1da177e4
LT
2273static int __init eventpoll_init(void)
2274{
7ef9964e
DL
2275 struct sysinfo si;
2276
2277 si_meminfo(&si);
9df04e1f
DL
2278 /*
2279 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2280 */
2281 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2282 EP_ITEM_COST;
52bd19f7 2283 BUG_ON(max_user_watches < 0);
1da177e4 2284
39732ca5
EW
2285 /*
2286 * We can have many thousands of epitems, so prevent this from
2287 * using an extra cache line on 64-bit (and smaller) CPUs
2288 */
2289 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2290
1da177e4
LT
2291 /* Allocates slab cache used to allocate "struct epitem" items */
2292 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2293 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2294
2295 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2296 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2297 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 2298
319c1517
AV
2299 ephead_cache = kmem_cache_create("ep_head",
2300 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2301
1da177e4 2302 return 0;
1da177e4 2303}
cea69241 2304fs_initcall(eventpoll_init);