treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 155
[linux-2.6-block.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
3095e8e3
HX
26#include <crypto/hash.h>
27#include <crypto/skcipher.h>
237fead6
MH
28#include <linux/fs.h>
29#include <linux/mount.h>
30#include <linux/pagemap.h>
31#include <linux/random.h>
32#include <linux/compiler.h>
33#include <linux/key.h>
34#include <linux/namei.h>
237fead6
MH
35#include <linux/file.h>
36#include <linux/scatterlist.h>
5a0e3ad6 37#include <linux/slab.h>
29335c6a 38#include <asm/unaligned.h>
02f9876e 39#include <linux/kernel.h>
237fead6
MH
40#include "ecryptfs_kernel.h"
41
00a69940
TH
42#define DECRYPT 0
43#define ENCRYPT 1
237fead6 44
237fead6
MH
45/**
46 * ecryptfs_from_hex
47 * @dst: Buffer to take the bytes from src hex; must be at least of
48 * size (src_size / 2)
5f9f2c2a 49 * @src: Buffer to be converted from a hex string representation to raw value
237fead6
MH
50 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
51 */
52void ecryptfs_from_hex(char *dst, char *src, int dst_size)
53{
54 int x;
55 char tmp[3] = { 0, };
56
57 for (x = 0; x < dst_size; x++) {
58 tmp[0] = src[x * 2];
59 tmp[1] = src[x * 2 + 1];
60 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
61 }
62}
63
3095e8e3
HX
64static int ecryptfs_hash_digest(struct crypto_shash *tfm,
65 char *src, int len, char *dst)
66{
67 SHASH_DESC_ON_STACK(desc, tfm);
68 int err;
69
70 desc->tfm = tfm;
3095e8e3
HX
71 err = crypto_shash_digest(desc, src, len, dst);
72 shash_desc_zero(desc);
73 return err;
74}
75
237fead6
MH
76/**
77 * ecryptfs_calculate_md5 - calculates the md5 of @src
78 * @dst: Pointer to 16 bytes of allocated memory
79 * @crypt_stat: Pointer to crypt_stat struct for the current inode
80 * @src: Data to be md5'd
81 * @len: Length of @src
82 *
83 * Uses the allocated crypto context that crypt_stat references to
84 * generate the MD5 sum of the contents of src.
85 */
86static int ecryptfs_calculate_md5(char *dst,
87 struct ecryptfs_crypt_stat *crypt_stat,
88 char *src, int len)
89{
3095e8e3 90 struct crypto_shash *tfm;
565d9724 91 int rc = 0;
237fead6 92
3095e8e3 93 tfm = crypt_stat->hash_tfm;
3095e8e3 94 rc = ecryptfs_hash_digest(tfm, src, len, dst);
8a29f2b0
MH
95 if (rc) {
96 printk(KERN_ERR
3095e8e3 97 "%s: Error computing crypto hash; rc = [%d]\n",
18d1dbf1 98 __func__, rc);
8a29f2b0
MH
99 goto out;
100 }
237fead6
MH
101out:
102 return rc;
103}
104
cd9d67df
MH
105static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
106 char *cipher_name,
107 char *chaining_modifier)
8bba066f
MH
108{
109 int cipher_name_len = strlen(cipher_name);
110 int chaining_modifier_len = strlen(chaining_modifier);
111 int algified_name_len;
112 int rc;
113
114 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
115 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 116 if (!(*algified_name)) {
8bba066f
MH
117 rc = -ENOMEM;
118 goto out;
119 }
120 snprintf((*algified_name), algified_name_len, "%s(%s)",
121 chaining_modifier, cipher_name);
122 rc = 0;
123out:
124 return rc;
125}
126
237fead6
MH
127/**
128 * ecryptfs_derive_iv
129 * @iv: destination for the derived iv vale
130 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 131 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
132 *
133 * Generate the initialization vector from the given root IV and page
134 * offset.
135 *
136 * Returns zero on success; non-zero on error.
137 */
a34f60f7
MH
138int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
139 loff_t offset)
237fead6
MH
140{
141 int rc = 0;
142 char dst[MD5_DIGEST_SIZE];
143 char src[ECRYPTFS_MAX_IV_BYTES + 16];
144
145 if (unlikely(ecryptfs_verbosity > 0)) {
146 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
147 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
148 }
149 /* TODO: It is probably secure to just cast the least
150 * significant bits of the root IV into an unsigned long and
151 * add the offset to that rather than go through all this
152 * hashing business. -Halcrow */
153 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
154 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 155 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
156 if (unlikely(ecryptfs_verbosity > 0)) {
157 ecryptfs_printk(KERN_DEBUG, "source:\n");
158 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
159 }
160 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
161 (crypt_stat->iv_bytes + 16));
162 if (rc) {
163 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
164 "MD5 while generating IV for a page\n");
165 goto out;
166 }
167 memcpy(iv, dst, crypt_stat->iv_bytes);
168 if (unlikely(ecryptfs_verbosity > 0)) {
169 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
170 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
171 }
172out:
173 return rc;
174}
175
176/**
177 * ecryptfs_init_crypt_stat
178 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
179 *
180 * Initialize the crypt_stat structure.
181 */
e81f3340 182int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 183{
e81f3340
HX
184 struct crypto_shash *tfm;
185 int rc;
186
187 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
188 if (IS_ERR(tfm)) {
189 rc = PTR_ERR(tfm);
190 ecryptfs_printk(KERN_ERR, "Error attempting to "
191 "allocate crypto context; rc = [%d]\n",
192 rc);
193 return rc;
194 }
195
237fead6 196 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
197 INIT_LIST_HEAD(&crypt_stat->keysig_list);
198 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
199 mutex_init(&crypt_stat->cs_mutex);
200 mutex_init(&crypt_stat->cs_tfm_mutex);
e81f3340 201 crypt_stat->hash_tfm = tfm;
e2bd99ec 202 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
e81f3340
HX
203
204 return 0;
237fead6
MH
205}
206
207/**
fcd12835 208 * ecryptfs_destroy_crypt_stat
237fead6
MH
209 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
210 *
211 * Releases all memory associated with a crypt_stat struct.
212 */
fcd12835 213void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 214{
f4aad16a
MH
215 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
216
3095e8e3
HX
217 crypto_free_skcipher(crypt_stat->tfm);
218 crypto_free_shash(crypt_stat->hash_tfm);
f4aad16a
MH
219 list_for_each_entry_safe(key_sig, key_sig_tmp,
220 &crypt_stat->keysig_list, crypt_stat_list) {
221 list_del(&key_sig->crypt_stat_list);
222 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
223 }
237fead6
MH
224 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
225}
226
fcd12835 227void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
228 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
229{
f4aad16a
MH
230 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
231
232 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
233 return;
234 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
235 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
236 &mount_crypt_stat->global_auth_tok_list,
237 mount_crypt_stat_list) {
238 list_del(&auth_tok->mount_crypt_stat_list);
0dad87fc 239 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
f4aad16a
MH
240 key_put(auth_tok->global_auth_tok_key);
241 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
242 }
243 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
244 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
245}
246
247/**
248 * virt_to_scatterlist
249 * @addr: Virtual address
250 * @size: Size of data; should be an even multiple of the block size
251 * @sg: Pointer to scatterlist array; set to NULL to obtain only
252 * the number of scatterlist structs required in array
253 * @sg_size: Max array size
254 *
255 * Fills in a scatterlist array with page references for a passed
256 * virtual address.
257 *
258 * Returns the number of scatterlist structs in array used
259 */
260int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
261 int sg_size)
262{
263 int i = 0;
264 struct page *pg;
265 int offset;
266 int remainder_of_page;
267
68e3f5dd
HX
268 sg_init_table(sg, sg_size);
269
237fead6
MH
270 while (size > 0 && i < sg_size) {
271 pg = virt_to_page(addr);
272 offset = offset_in_page(addr);
a07c48ad 273 sg_set_page(&sg[i], pg, 0, offset);
09cbfeaf 274 remainder_of_page = PAGE_SIZE - offset;
237fead6 275 if (size >= remainder_of_page) {
a07c48ad 276 sg[i].length = remainder_of_page;
237fead6
MH
277 addr += remainder_of_page;
278 size -= remainder_of_page;
279 } else {
a07c48ad 280 sg[i].length = size;
237fead6
MH
281 addr += size;
282 size = 0;
283 }
284 i++;
285 }
286 if (size > 0)
287 return -ENOMEM;
288 return i;
289}
290
4dfea4f0
TH
291struct extent_crypt_result {
292 struct completion completion;
293 int rc;
294};
295
296static void extent_crypt_complete(struct crypto_async_request *req, int rc)
297{
298 struct extent_crypt_result *ecr = req->data;
299
300 if (rc == -EINPROGRESS)
301 return;
302
303 ecr->rc = rc;
304 complete(&ecr->completion);
305}
306
237fead6 307/**
00a69940 308 * crypt_scatterlist
237fead6 309 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
0df5ed65 310 * @dst_sg: Destination of the data after performing the crypto operation
00a69940
TH
311 * @src_sg: Data to be encrypted or decrypted
312 * @size: Length of data
313 * @iv: IV to use
314 * @op: ENCRYPT or DECRYPT to indicate the desired operation
237fead6 315 *
00a69940 316 * Returns the number of bytes encrypted or decrypted; negative value on error
237fead6 317 */
00a69940 318static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
0df5ed65 319 struct scatterlist *dst_sg,
00a69940
TH
320 struct scatterlist *src_sg, int size,
321 unsigned char *iv, int op)
237fead6 322{
3095e8e3 323 struct skcipher_request *req = NULL;
4dfea4f0 324 struct extent_crypt_result ecr;
237fead6
MH
325 int rc = 0;
326
327 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 328 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6 329 if (unlikely(ecryptfs_verbosity > 0)) {
f24b3887 330 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
237fead6
MH
331 crypt_stat->key_size);
332 ecryptfs_dump_hex(crypt_stat->key,
333 crypt_stat->key_size);
334 }
4dfea4f0
TH
335
336 init_completion(&ecr.completion);
337
237fead6 338 mutex_lock(&crypt_stat->cs_tfm_mutex);
3095e8e3 339 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
4dfea4f0 340 if (!req) {
237fead6 341 mutex_unlock(&crypt_stat->cs_tfm_mutex);
4dfea4f0 342 rc = -ENOMEM;
237fead6
MH
343 goto out;
344 }
4dfea4f0 345
3095e8e3 346 skcipher_request_set_callback(req,
4dfea4f0
TH
347 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
348 extent_crypt_complete, &ecr);
349 /* Consider doing this once, when the file is opened */
350 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
3095e8e3
HX
351 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
352 crypt_stat->key_size);
4dfea4f0
TH
353 if (rc) {
354 ecryptfs_printk(KERN_ERR,
355 "Error setting key; rc = [%d]\n",
356 rc);
357 mutex_unlock(&crypt_stat->cs_tfm_mutex);
358 rc = -EINVAL;
359 goto out;
360 }
361 crypt_stat->flags |= ECRYPTFS_KEY_SET;
362 }
237fead6 363 mutex_unlock(&crypt_stat->cs_tfm_mutex);
3095e8e3
HX
364 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
365 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
366 crypto_skcipher_decrypt(req);
4dfea4f0
TH
367 if (rc == -EINPROGRESS || rc == -EBUSY) {
368 struct extent_crypt_result *ecr = req->base.data;
369
370 wait_for_completion(&ecr->completion);
371 rc = ecr->rc;
16735d02 372 reinit_completion(&ecr->completion);
4dfea4f0 373 }
237fead6 374out:
3095e8e3 375 skcipher_request_free(req);
237fead6
MH
376 return rc;
377}
378
0216f7f7 379/**
24d15266 380 * lower_offset_for_page
0216f7f7
MH
381 *
382 * Convert an eCryptfs page index into a lower byte offset
383 */
24d15266
TH
384static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
385 struct page *page)
0216f7f7 386{
24d15266 387 return ecryptfs_lower_header_size(crypt_stat) +
09cbfeaf 388 ((loff_t)page->index << PAGE_SHIFT);
0216f7f7
MH
389}
390
391/**
d78de618 392 * crypt_extent
0216f7f7
MH
393 * @crypt_stat: crypt_stat containing cryptographic context for the
394 * encryption operation
0df5ed65 395 * @dst_page: The page to write the result into
d78de618 396 * @src_page: The page to read from
0216f7f7 397 * @extent_offset: Page extent offset for use in generating IV
d78de618 398 * @op: ENCRYPT or DECRYPT to indicate the desired operation
0216f7f7 399 *
d78de618 400 * Encrypts or decrypts one extent of data.
0216f7f7
MH
401 *
402 * Return zero on success; non-zero otherwise
403 */
0df5ed65
TH
404static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
405 struct page *dst_page,
d78de618
TH
406 struct page *src_page,
407 unsigned long extent_offset, int op)
0216f7f7 408{
d78de618 409 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
d6a13c17 410 loff_t extent_base;
0216f7f7 411 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
406c93df
TH
412 struct scatterlist src_sg, dst_sg;
413 size_t extent_size = crypt_stat->extent_size;
0216f7f7
MH
414 int rc;
415
09cbfeaf 416 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
0216f7f7
MH
417 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
418 (extent_base + extent_offset));
419 if (rc) {
888d57bb
JP
420 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
421 "extent [0x%.16llx]; rc = [%d]\n",
422 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
423 goto out;
424 }
406c93df
TH
425
426 sg_init_table(&src_sg, 1);
427 sg_init_table(&dst_sg, 1);
428
429 sg_set_page(&src_sg, src_page, extent_size,
430 extent_offset * extent_size);
431 sg_set_page(&dst_sg, dst_page, extent_size,
432 extent_offset * extent_size);
433
434 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
435 extent_iv, op);
0216f7f7 436 if (rc < 0) {
d78de618
TH
437 printk(KERN_ERR "%s: Error attempting to crypt page with "
438 "page_index = [%ld], extent_offset = [%ld]; "
439 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
0216f7f7
MH
440 goto out;
441 }
442 rc = 0;
0216f7f7
MH
443out:
444 return rc;
445}
446
237fead6
MH
447/**
448 * ecryptfs_encrypt_page
0216f7f7
MH
449 * @page: Page mapped from the eCryptfs inode for the file; contains
450 * decrypted content that needs to be encrypted (to a temporary
451 * page; not in place) and written out to the lower file
237fead6
MH
452 *
453 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
454 * that eCryptfs pages may straddle the lower pages -- for instance,
455 * if the file was created on a machine with an 8K page size
456 * (resulting in an 8K header), and then the file is copied onto a
457 * host with a 32K page size, then when reading page 0 of the eCryptfs
458 * file, 24K of page 0 of the lower file will be read and decrypted,
459 * and then 8K of page 1 of the lower file will be read and decrypted.
460 *
237fead6
MH
461 * Returns zero on success; negative on error
462 */
0216f7f7 463int ecryptfs_encrypt_page(struct page *page)
237fead6 464{
0216f7f7 465 struct inode *ecryptfs_inode;
237fead6 466 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
467 char *enc_extent_virt;
468 struct page *enc_extent_page = NULL;
0216f7f7 469 loff_t extent_offset;
0f896176 470 loff_t lower_offset;
237fead6 471 int rc = 0;
0216f7f7
MH
472
473 ecryptfs_inode = page->mapping->host;
474 crypt_stat =
475 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 476 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
477 enc_extent_page = alloc_page(GFP_USER);
478 if (!enc_extent_page) {
0216f7f7
MH
479 rc = -ENOMEM;
480 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
481 "encrypted extent\n");
482 goto out;
483 }
0f896176 484
0216f7f7 485 for (extent_offset = 0;
09cbfeaf 486 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
0216f7f7 487 extent_offset++) {
0df5ed65 488 rc = crypt_extent(crypt_stat, enc_extent_page, page,
d78de618 489 extent_offset, ENCRYPT);
237fead6 490 if (rc) {
0216f7f7 491 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 492 "rc = [%d]\n", __func__, rc);
237fead6
MH
493 goto out;
494 }
7fcba054 495 }
0216f7f7 496
24d15266 497 lower_offset = lower_offset_for_page(crypt_stat, page);
0f896176
TH
498 enc_extent_virt = kmap(enc_extent_page);
499 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
09cbfeaf 500 PAGE_SIZE);
0f896176 501 kunmap(enc_extent_page);
0216f7f7 502 if (rc < 0) {
0f896176
TH
503 ecryptfs_printk(KERN_ERR,
504 "Error attempting to write lower page; rc = [%d]\n",
505 rc);
0216f7f7
MH
506 goto out;
507 }
508 rc = 0;
237fead6 509out:
7fcba054 510 if (enc_extent_page) {
7fcba054
ES
511 __free_page(enc_extent_page);
512 }
237fead6
MH
513 return rc;
514}
515
516/**
517 * ecryptfs_decrypt_page
0216f7f7
MH
518 * @page: Page mapped from the eCryptfs inode for the file; data read
519 * and decrypted from the lower file will be written into this
520 * page
237fead6
MH
521 *
522 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
523 * that eCryptfs pages may straddle the lower pages -- for instance,
524 * if the file was created on a machine with an 8K page size
525 * (resulting in an 8K header), and then the file is copied onto a
526 * host with a 32K page size, then when reading page 0 of the eCryptfs
527 * file, 24K of page 0 of the lower file will be read and decrypted,
528 * and then 8K of page 1 of the lower file will be read and decrypted.
529 *
530 * Returns zero on success; negative on error
531 */
0216f7f7 532int ecryptfs_decrypt_page(struct page *page)
237fead6 533{
0216f7f7 534 struct inode *ecryptfs_inode;
237fead6 535 struct ecryptfs_crypt_stat *crypt_stat;
9c6043f4 536 char *page_virt;
0216f7f7 537 unsigned long extent_offset;
0f896176 538 loff_t lower_offset;
237fead6 539 int rc = 0;
237fead6 540
0216f7f7
MH
541 ecryptfs_inode = page->mapping->host;
542 crypt_stat =
543 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 544 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
0f896176 545
24d15266 546 lower_offset = lower_offset_for_page(crypt_stat, page);
9c6043f4 547 page_virt = kmap(page);
09cbfeaf 548 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
0f896176 549 ecryptfs_inode);
9c6043f4 550 kunmap(page);
0f896176
TH
551 if (rc < 0) {
552 ecryptfs_printk(KERN_ERR,
553 "Error attempting to read lower page; rc = [%d]\n",
554 rc);
16a72c45 555 goto out;
237fead6 556 }
0f896176 557
0216f7f7 558 for (extent_offset = 0;
09cbfeaf 559 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
0216f7f7 560 extent_offset++) {
0df5ed65 561 rc = crypt_extent(crypt_stat, page, page,
d78de618 562 extent_offset, DECRYPT);
0216f7f7
MH
563 if (rc) {
564 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 565 "rc = [%d]\n", __func__, rc);
16a72c45 566 goto out;
237fead6 567 }
237fead6
MH
568 }
569out:
237fead6 570 return rc;
237fead6
MH
571}
572
573#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
574
575/**
576 * ecryptfs_init_crypt_ctx
421f91d2 577 * @crypt_stat: Uninitialized crypt stats structure
237fead6
MH
578 *
579 * Initialize the crypto context.
580 *
581 * TODO: Performance: Keep a cache of initialized cipher contexts;
582 * only init if needed
583 */
584int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
585{
8bba066f 586 char *full_alg_name;
237fead6
MH
587 int rc = -EINVAL;
588
237fead6
MH
589 ecryptfs_printk(KERN_DEBUG,
590 "Initializing cipher [%s]; strlen = [%d]; "
f24b3887 591 "key_size_bits = [%zd]\n",
237fead6
MH
592 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
593 crypt_stat->key_size << 3);
cb69f36b 594 mutex_lock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
595 if (crypt_stat->tfm) {
596 rc = 0;
cb69f36b 597 goto out_unlock;
237fead6 598 }
8bba066f
MH
599 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
600 crypt_stat->cipher, "cbc");
601 if (rc)
c8161f64 602 goto out_unlock;
3095e8e3 603 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
de88777e
AM
604 if (IS_ERR(crypt_stat->tfm)) {
605 rc = PTR_ERR(crypt_stat->tfm);
b0105eae 606 crypt_stat->tfm = NULL;
237fead6
MH
607 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
608 "Error initializing cipher [%s]\n",
cb69f36b
KC
609 full_alg_name);
610 goto out_free;
237fead6 611 }
231baecd
EB
612 crypto_skcipher_set_flags(crypt_stat->tfm,
613 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
237fead6 614 rc = 0;
cb69f36b
KC
615out_free:
616 kfree(full_alg_name);
c8161f64
ES
617out_unlock:
618 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
619 return rc;
620}
621
622static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
623{
624 int extent_size_tmp;
625
626 crypt_stat->extent_mask = 0xFFFFFFFF;
627 crypt_stat->extent_shift = 0;
628 if (crypt_stat->extent_size == 0)
629 return;
630 extent_size_tmp = crypt_stat->extent_size;
631 while ((extent_size_tmp & 0x01) == 0) {
632 extent_size_tmp >>= 1;
633 crypt_stat->extent_mask <<= 1;
634 crypt_stat->extent_shift++;
635 }
636}
637
638void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
639{
640 /* Default values; may be overwritten as we are parsing the
641 * packets. */
642 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
643 set_extent_mask_and_shift(crypt_stat);
644 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a 645 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
fa3ef1cb 646 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 647 else {
09cbfeaf 648 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
fa3ef1cb 649 crypt_stat->metadata_size =
cc11beff 650 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 651 else
09cbfeaf 652 crypt_stat->metadata_size = PAGE_SIZE;
45eaab79 653 }
237fead6
MH
654}
655
656/**
657 * ecryptfs_compute_root_iv
658 * @crypt_stats
659 *
660 * On error, sets the root IV to all 0's.
661 */
662int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
663{
664 int rc = 0;
665 char dst[MD5_DIGEST_SIZE];
666
667 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
668 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 669 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
670 rc = -EINVAL;
671 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
672 "cannot generate root IV\n");
673 goto out;
674 }
675 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
676 crypt_stat->key_size);
677 if (rc) {
678 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
679 "MD5 while generating root IV\n");
680 goto out;
681 }
682 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
683out:
684 if (rc) {
685 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 686 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
687 }
688 return rc;
689}
690
691static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
692{
693 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 694 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
695 ecryptfs_compute_root_iv(crypt_stat);
696 if (unlikely(ecryptfs_verbosity > 0)) {
697 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
698 ecryptfs_dump_hex(crypt_stat->key,
699 crypt_stat->key_size);
700 }
701}
702
17398957
MH
703/**
704 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
705 * @crypt_stat: The inode's cryptographic context
706 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
707 *
708 * This function propagates the mount-wide flags to individual inode
709 * flags.
710 */
711static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
712 struct ecryptfs_crypt_stat *crypt_stat,
713 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
714{
715 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
716 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
717 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
718 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
addd65ad
MH
719 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
720 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
721 if (mount_crypt_stat->flags
722 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
723 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
724 else if (mount_crypt_stat->flags
725 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
726 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
727 }
17398957
MH
728}
729
f4aad16a
MH
730static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
731 struct ecryptfs_crypt_stat *crypt_stat,
732 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
733{
734 struct ecryptfs_global_auth_tok *global_auth_tok;
735 int rc = 0;
736
aa06117f 737 mutex_lock(&crypt_stat->keysig_list_mutex);
f4aad16a 738 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
aa06117f 739
f4aad16a
MH
740 list_for_each_entry(global_auth_tok,
741 &mount_crypt_stat->global_auth_tok_list,
742 mount_crypt_stat_list) {
84814d64
TH
743 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
744 continue;
f4aad16a
MH
745 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
746 if (rc) {
747 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
f4aad16a
MH
748 goto out;
749 }
750 }
aa06117f 751
f4aad16a 752out:
aa06117f
RD
753 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
754 mutex_unlock(&crypt_stat->keysig_list_mutex);
f4aad16a
MH
755 return rc;
756}
757
237fead6
MH
758/**
759 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
760 * @crypt_stat: The inode's cryptographic context
761 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
762 *
763 * Default values in the event that policy does not override them.
764 */
765static void ecryptfs_set_default_crypt_stat_vals(
766 struct ecryptfs_crypt_stat *crypt_stat,
767 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
768{
17398957
MH
769 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
770 mount_crypt_stat);
237fead6
MH
771 ecryptfs_set_default_sizes(crypt_stat);
772 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
773 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 774 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
775 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
776 crypt_stat->mount_crypt_stat = mount_crypt_stat;
777}
778
779/**
780 * ecryptfs_new_file_context
b59db43a 781 * @ecryptfs_inode: The eCryptfs inode
237fead6
MH
782 *
783 * If the crypto context for the file has not yet been established,
784 * this is where we do that. Establishing a new crypto context
785 * involves the following decisions:
786 * - What cipher to use?
787 * - What set of authentication tokens to use?
788 * Here we just worry about getting enough information into the
789 * authentication tokens so that we know that they are available.
790 * We associate the available authentication tokens with the new file
791 * via the set of signatures in the crypt_stat struct. Later, when
792 * the headers are actually written out, we may again defer to
793 * userspace to perform the encryption of the session key; for the
794 * foreseeable future, this will be the case with public key packets.
795 *
796 * Returns zero on success; non-zero otherwise
797 */
b59db43a 798int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
237fead6 799{
237fead6 800 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 801 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
237fead6
MH
802 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
803 &ecryptfs_superblock_to_private(
b59db43a 804 ecryptfs_inode->i_sb)->mount_crypt_stat;
237fead6 805 int cipher_name_len;
f4aad16a 806 int rc = 0;
237fead6
MH
807
808 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 809 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
810 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
811 mount_crypt_stat);
812 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
813 mount_crypt_stat);
814 if (rc) {
815 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
816 "to the inode key sigs; rc = [%d]\n", rc);
817 goto out;
818 }
819 cipher_name_len =
820 strlen(mount_crypt_stat->global_default_cipher_name);
821 memcpy(crypt_stat->cipher,
822 mount_crypt_stat->global_default_cipher_name,
823 cipher_name_len);
824 crypt_stat->cipher[cipher_name_len] = '\0';
825 crypt_stat->key_size =
826 mount_crypt_stat->global_default_cipher_key_size;
827 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
828 rc = ecryptfs_init_crypt_ctx(crypt_stat);
829 if (rc)
830 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
831 "context for cipher [%s]: rc = [%d]\n",
832 crypt_stat->cipher, rc);
f4aad16a 833out:
237fead6
MH
834 return rc;
835}
836
837/**
7a86617e 838 * ecryptfs_validate_marker - check for the ecryptfs marker
237fead6
MH
839 * @data: The data block in which to check
840 *
7a86617e 841 * Returns zero if marker found; -EINVAL if not found
237fead6 842 */
7a86617e 843static int ecryptfs_validate_marker(char *data)
237fead6
MH
844{
845 u32 m_1, m_2;
846
29335c6a
HH
847 m_1 = get_unaligned_be32(data);
848 m_2 = get_unaligned_be32(data + 4);
237fead6 849 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
7a86617e 850 return 0;
237fead6
MH
851 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
852 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
853 MAGIC_ECRYPTFS_MARKER);
854 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
855 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
7a86617e 856 return -EINVAL;
237fead6
MH
857}
858
859struct ecryptfs_flag_map_elem {
860 u32 file_flag;
861 u32 local_flag;
862};
863
864/* Add support for additional flags by adding elements here. */
865static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
866 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a 867 {0x00000002, ECRYPTFS_ENCRYPTED},
addd65ad
MH
868 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
869 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
237fead6
MH
870};
871
872/**
873 * ecryptfs_process_flags
22e78faf 874 * @crypt_stat: The cryptographic context
237fead6
MH
875 * @page_virt: Source data to be parsed
876 * @bytes_read: Updated with the number of bytes read
877 *
878 * Returns zero on success; non-zero if the flag set is invalid
879 */
880static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
881 char *page_virt, int *bytes_read)
882{
883 int rc = 0;
884 int i;
885 u32 flags;
886
29335c6a 887 flags = get_unaligned_be32(page_virt);
02f9876e 888 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
237fead6 889 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 890 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 891 } else
e2bd99ec 892 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
893 /* Version is in top 8 bits of the 32-bit flag vector */
894 crypt_stat->file_version = ((flags >> 24) & 0xFF);
895 (*bytes_read) = 4;
896 return rc;
897}
898
899/**
900 * write_ecryptfs_marker
901 * @page_virt: The pointer to in a page to begin writing the marker
902 * @written: Number of bytes written
903 *
904 * Marker = 0x3c81b7f5
905 */
906static void write_ecryptfs_marker(char *page_virt, size_t *written)
907{
908 u32 m_1, m_2;
909
910 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
911 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
29335c6a
HH
912 put_unaligned_be32(m_1, page_virt);
913 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
914 put_unaligned_be32(m_2, page_virt);
237fead6
MH
915 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
916}
917
f4e60e6b
TH
918void ecryptfs_write_crypt_stat_flags(char *page_virt,
919 struct ecryptfs_crypt_stat *crypt_stat,
920 size_t *written)
237fead6
MH
921{
922 u32 flags = 0;
923 int i;
924
02f9876e 925 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
e2bd99ec 926 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
927 flags |= ecryptfs_flag_map[i].file_flag;
928 /* Version is in top 8 bits of the 32-bit flag vector */
929 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
29335c6a 930 put_unaligned_be32(flags, page_virt);
237fead6
MH
931 (*written) = 4;
932}
933
934struct ecryptfs_cipher_code_str_map_elem {
935 char cipher_str[16];
19e66a67 936 u8 cipher_code;
237fead6
MH
937};
938
939/* Add support for additional ciphers by adding elements here. The
40f0fd37 940 * cipher_code is whatever OpenPGP applications use to identify the
237fead6
MH
941 * ciphers. List in order of probability. */
942static struct ecryptfs_cipher_code_str_map_elem
943ecryptfs_cipher_code_str_map[] = {
944 {"aes",RFC2440_CIPHER_AES_128 },
945 {"blowfish", RFC2440_CIPHER_BLOWFISH},
946 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
947 {"cast5", RFC2440_CIPHER_CAST_5},
948 {"twofish", RFC2440_CIPHER_TWOFISH},
949 {"cast6", RFC2440_CIPHER_CAST_6},
950 {"aes", RFC2440_CIPHER_AES_192},
951 {"aes", RFC2440_CIPHER_AES_256}
952};
953
954/**
955 * ecryptfs_code_for_cipher_string
9c79f34f
MH
956 * @cipher_name: The string alias for the cipher
957 * @key_bytes: Length of key in bytes; used for AES code selection
237fead6
MH
958 *
959 * Returns zero on no match, or the cipher code on match
960 */
9c79f34f 961u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
237fead6
MH
962{
963 int i;
19e66a67 964 u8 code = 0;
237fead6
MH
965 struct ecryptfs_cipher_code_str_map_elem *map =
966 ecryptfs_cipher_code_str_map;
967
9c79f34f
MH
968 if (strcmp(cipher_name, "aes") == 0) {
969 switch (key_bytes) {
237fead6
MH
970 case 16:
971 code = RFC2440_CIPHER_AES_128;
972 break;
973 case 24:
974 code = RFC2440_CIPHER_AES_192;
975 break;
976 case 32:
977 code = RFC2440_CIPHER_AES_256;
978 }
979 } else {
980 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
9c79f34f 981 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
237fead6
MH
982 code = map[i].cipher_code;
983 break;
984 }
985 }
986 return code;
987}
988
989/**
990 * ecryptfs_cipher_code_to_string
991 * @str: Destination to write out the cipher name
992 * @cipher_code: The code to convert to cipher name string
993 *
994 * Returns zero on success
995 */
19e66a67 996int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
237fead6
MH
997{
998 int rc = 0;
999 int i;
1000
1001 str[0] = '\0';
1002 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1003 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1004 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1005 if (str[0] == '\0') {
1006 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1007 "[%d]\n", cipher_code);
1008 rc = -EINVAL;
1009 }
1010 return rc;
1011}
1012
778aeb42 1013int ecryptfs_read_and_validate_header_region(struct inode *inode)
dd2a3b7a 1014{
778aeb42
TH
1015 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1016 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1017 int rc;
1018
778aeb42
TH
1019 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1020 inode);
1021 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1022 return rc >= 0 ? -EINVAL : rc;
1023 rc = ecryptfs_validate_marker(marker);
1024 if (!rc)
1025 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1026 return rc;
1027}
1028
e77a56dd
MH
1029void
1030ecryptfs_write_header_metadata(char *virt,
1031 struct ecryptfs_crypt_stat *crypt_stat,
1032 size_t *written)
237fead6
MH
1033{
1034 u32 header_extent_size;
1035 u16 num_header_extents_at_front;
1036
45eaab79 1037 header_extent_size = (u32)crypt_stat->extent_size;
237fead6 1038 num_header_extents_at_front =
fa3ef1cb 1039 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
29335c6a 1040 put_unaligned_be32(header_extent_size, virt);
237fead6 1041 virt += 4;
29335c6a 1042 put_unaligned_be16(num_header_extents_at_front, virt);
237fead6
MH
1043 (*written) = 6;
1044}
1045
30632870 1046struct kmem_cache *ecryptfs_header_cache;
237fead6
MH
1047
1048/**
1049 * ecryptfs_write_headers_virt
22e78faf 1050 * @page_virt: The virtual address to write the headers to
87b811c3 1051 * @max: The size of memory allocated at page_virt
22e78faf
MH
1052 * @size: Set to the number of bytes written by this function
1053 * @crypt_stat: The cryptographic context
1054 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1055 *
1056 * Format version: 1
1057 *
1058 * Header Extent:
1059 * Octets 0-7: Unencrypted file size (big-endian)
1060 * Octets 8-15: eCryptfs special marker
1061 * Octets 16-19: Flags
1062 * Octet 16: File format version number (between 0 and 255)
1063 * Octets 17-18: Reserved
1064 * Octet 19: Bit 1 (lsb): Reserved
1065 * Bit 2: Encrypted?
1066 * Bits 3-8: Reserved
1067 * Octets 20-23: Header extent size (big-endian)
1068 * Octets 24-25: Number of header extents at front of file
1069 * (big-endian)
1070 * Octet 26: Begin RFC 2440 authentication token packet set
1071 * Data Extent 0:
1072 * Lower data (CBC encrypted)
1073 * Data Extent 1:
1074 * Lower data (CBC encrypted)
1075 * ...
1076 *
1077 * Returns zero on success
1078 */
87b811c3
ES
1079static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1080 size_t *size,
dd2a3b7a
MH
1081 struct ecryptfs_crypt_stat *crypt_stat,
1082 struct dentry *ecryptfs_dentry)
237fead6
MH
1083{
1084 int rc;
1085 size_t written;
1086 size_t offset;
1087
1088 offset = ECRYPTFS_FILE_SIZE_BYTES;
1089 write_ecryptfs_marker((page_virt + offset), &written);
1090 offset += written;
f4e60e6b
TH
1091 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1092 &written);
237fead6 1093 offset += written;
e77a56dd
MH
1094 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1095 &written);
237fead6
MH
1096 offset += written;
1097 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1098 ecryptfs_dentry, &written,
87b811c3 1099 max - offset);
237fead6
MH
1100 if (rc)
1101 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1102 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1103 if (size) {
1104 offset += written;
1105 *size = offset;
1106 }
1107 return rc;
1108}
1109
22e78faf 1110static int
b59db43a 1111ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
8faece5f 1112 char *virt, size_t virt_len)
dd2a3b7a 1113{
d7cdc5fe 1114 int rc;
dd2a3b7a 1115
b59db43a 1116 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
8faece5f 1117 0, virt_len);
96a7b9c2 1118 if (rc < 0)
d7cdc5fe 1119 printk(KERN_ERR "%s: Error attempting to write header "
96a7b9c2
TH
1120 "information to lower file; rc = [%d]\n", __func__, rc);
1121 else
1122 rc = 0;
70456600 1123 return rc;
dd2a3b7a
MH
1124}
1125
22e78faf
MH
1126static int
1127ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
3767e255 1128 struct inode *ecryptfs_inode,
22e78faf 1129 char *page_virt, size_t size)
dd2a3b7a
MH
1130{
1131 int rc;
1132
3767e255
AV
1133 rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1134 ECRYPTFS_XATTR_NAME, page_virt, size, 0);
237fead6
MH
1135 return rc;
1136}
1137
8faece5f
TH
1138static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1139 unsigned int order)
1140{
1141 struct page *page;
1142
1143 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1144 if (page)
1145 return (unsigned long) page_address(page);
1146 return 0;
1147}
1148
237fead6 1149/**
dd2a3b7a 1150 * ecryptfs_write_metadata
b59db43a
TH
1151 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1152 * @ecryptfs_inode: The newly created eCryptfs inode
237fead6
MH
1153 *
1154 * Write the file headers out. This will likely involve a userspace
1155 * callout, in which the session key is encrypted with one or more
1156 * public keys and/or the passphrase necessary to do the encryption is
1157 * retrieved via a prompt. Exactly what happens at this point should
1158 * be policy-dependent.
1159 *
1160 * Returns zero on success; non-zero on error
1161 */
b59db43a
TH
1162int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1163 struct inode *ecryptfs_inode)
237fead6 1164{
d7cdc5fe 1165 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 1166 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
8faece5f 1167 unsigned int order;
cc11beff 1168 char *virt;
8faece5f 1169 size_t virt_len;
d7cdc5fe 1170 size_t size = 0;
237fead6
MH
1171 int rc = 0;
1172
e2bd99ec
MH
1173 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1174 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1175 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1176 rc = -EINVAL;
1177 goto out;
1178 }
1179 } else {
cc11beff 1180 printk(KERN_WARNING "%s: Encrypted flag not set\n",
18d1dbf1 1181 __func__);
237fead6 1182 rc = -EINVAL;
237fead6
MH
1183 goto out;
1184 }
fa3ef1cb 1185 virt_len = crypt_stat->metadata_size;
8faece5f 1186 order = get_order(virt_len);
237fead6 1187 /* Released in this function */
8faece5f 1188 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
cc11beff 1189 if (!virt) {
18d1dbf1 1190 printk(KERN_ERR "%s: Out of memory\n", __func__);
237fead6
MH
1191 rc = -ENOMEM;
1192 goto out;
1193 }
bd4f0fe8 1194 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
8faece5f
TH
1195 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1196 ecryptfs_dentry);
237fead6 1197 if (unlikely(rc)) {
cc11beff 1198 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
18d1dbf1 1199 __func__, rc);
237fead6
MH
1200 goto out_free;
1201 }
dd2a3b7a 1202 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
3767e255
AV
1203 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1204 virt, size);
dd2a3b7a 1205 else
b59db43a 1206 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
8faece5f 1207 virt_len);
dd2a3b7a 1208 if (rc) {
cc11beff 1209 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
18d1dbf1 1210 "rc = [%d]\n", __func__, rc);
dd2a3b7a 1211 goto out_free;
237fead6 1212 }
237fead6 1213out_free:
8faece5f 1214 free_pages((unsigned long)virt, order);
237fead6
MH
1215out:
1216 return rc;
1217}
1218
dd2a3b7a
MH
1219#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1220#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1221static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1222 char *virt, int *bytes_read,
1223 int validate_header_size)
237fead6
MH
1224{
1225 int rc = 0;
1226 u32 header_extent_size;
1227 u16 num_header_extents_at_front;
1228
29335c6a
HH
1229 header_extent_size = get_unaligned_be32(virt);
1230 virt += sizeof(__be32);
1231 num_header_extents_at_front = get_unaligned_be16(virt);
fa3ef1cb
TH
1232 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1233 * (size_t)header_extent_size));
29335c6a 1234 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
dd2a3b7a 1235 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
fa3ef1cb 1236 && (crypt_stat->metadata_size
dd2a3b7a 1237 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1238 rc = -EINVAL;
cc11beff 1239 printk(KERN_WARNING "Invalid header size: [%zd]\n",
fa3ef1cb 1240 crypt_stat->metadata_size);
237fead6
MH
1241 }
1242 return rc;
1243}
1244
1245/**
1246 * set_default_header_data
22e78faf 1247 * @crypt_stat: The cryptographic context
237fead6
MH
1248 *
1249 * For version 0 file format; this function is only for backwards
1250 * compatibility for files created with the prior versions of
1251 * eCryptfs.
1252 */
1253static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1254{
fa3ef1cb 1255 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
237fead6
MH
1256}
1257
3aeb86ea
TH
1258void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1259{
1260 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1261 struct ecryptfs_crypt_stat *crypt_stat;
1262 u64 file_size;
1263
1264 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1265 mount_crypt_stat =
1266 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1267 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1268 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1269 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1270 file_size += crypt_stat->metadata_size;
1271 } else
1272 file_size = get_unaligned_be64(page_virt);
1273 i_size_write(inode, (loff_t)file_size);
1274 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1275}
1276
237fead6
MH
1277/**
1278 * ecryptfs_read_headers_virt
22e78faf
MH
1279 * @page_virt: The virtual address into which to read the headers
1280 * @crypt_stat: The cryptographic context
1281 * @ecryptfs_dentry: The eCryptfs dentry
1282 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1283 *
1284 * Read/parse the header data. The header format is detailed in the
1285 * comment block for the ecryptfs_write_headers_virt() function.
1286 *
1287 * Returns zero on success
1288 */
1289static int ecryptfs_read_headers_virt(char *page_virt,
1290 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1291 struct dentry *ecryptfs_dentry,
1292 int validate_header_size)
237fead6
MH
1293{
1294 int rc = 0;
1295 int offset;
1296 int bytes_read;
1297
1298 ecryptfs_set_default_sizes(crypt_stat);
1299 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1300 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1301 offset = ECRYPTFS_FILE_SIZE_BYTES;
7a86617e
TH
1302 rc = ecryptfs_validate_marker(page_virt + offset);
1303 if (rc)
237fead6 1304 goto out;
3aeb86ea 1305 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
2b0143b5 1306 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
237fead6
MH
1307 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1308 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1309 &bytes_read);
1310 if (rc) {
1311 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1312 goto out;
1313 }
1314 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1315 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1316 "file version [%d] is supported by this "
1317 "version of eCryptfs\n",
1318 crypt_stat->file_version,
1319 ECRYPTFS_SUPPORTED_FILE_VERSION);
1320 rc = -EINVAL;
1321 goto out;
1322 }
1323 offset += bytes_read;
1324 if (crypt_stat->file_version >= 1) {
1325 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1326 &bytes_read, validate_header_size);
237fead6
MH
1327 if (rc) {
1328 ecryptfs_printk(KERN_WARNING, "Error reading header "
1329 "metadata; rc = [%d]\n", rc);
1330 }
1331 offset += bytes_read;
1332 } else
1333 set_default_header_data(crypt_stat);
1334 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1335 ecryptfs_dentry);
1336out:
1337 return rc;
1338}
1339
1340/**
dd2a3b7a 1341 * ecryptfs_read_xattr_region
22e78faf 1342 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1343 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1344 *
1345 * Attempts to read the crypto metadata from the extended attribute
1346 * region of the lower file.
22e78faf
MH
1347 *
1348 * Returns zero on success; non-zero on error
dd2a3b7a 1349 */
d7cdc5fe 1350int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1351{
d7cdc5fe 1352 struct dentry *lower_dentry =
b583043e 1353 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
dd2a3b7a
MH
1354 ssize_t size;
1355 int rc = 0;
1356
ce23e640
AV
1357 size = ecryptfs_getxattr_lower(lower_dentry,
1358 ecryptfs_inode_to_lower(ecryptfs_inode),
1359 ECRYPTFS_XATTR_NAME,
d7cdc5fe 1360 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1361 if (size < 0) {
25bd8174
MH
1362 if (unlikely(ecryptfs_verbosity > 0))
1363 printk(KERN_INFO "Error attempting to read the [%s] "
1364 "xattr from the lower file; return value = "
1365 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
dd2a3b7a
MH
1366 rc = -EINVAL;
1367 goto out;
1368 }
1369out:
1370 return rc;
1371}
1372
778aeb42 1373int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
3b06b3eb 1374 struct inode *inode)
dd2a3b7a 1375{
778aeb42
TH
1376 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1377 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1378 int rc;
1379
778aeb42 1380 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
ce23e640 1381 ecryptfs_inode_to_lower(inode),
778aeb42
TH
1382 ECRYPTFS_XATTR_NAME, file_size,
1383 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1384 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1385 return rc >= 0 ? -EINVAL : rc;
1386 rc = ecryptfs_validate_marker(marker);
1387 if (!rc)
1388 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1389 return rc;
1390}
1391
1392/**
1393 * ecryptfs_read_metadata
1394 *
1395 * Common entry point for reading file metadata. From here, we could
1396 * retrieve the header information from the header region of the file,
40f0fd37 1397 * the xattr region of the file, or some other repository that is
dd2a3b7a
MH
1398 * stored separately from the file itself. The current implementation
1399 * supports retrieving the metadata information from the file contents
1400 * and from the xattr region.
237fead6
MH
1401 *
1402 * Returns zero if valid headers found and parsed; non-zero otherwise
1403 */
d7cdc5fe 1404int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6 1405{
bb450361
TG
1406 int rc;
1407 char *page_virt;
2b0143b5 1408 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
237fead6 1409 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1410 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1411 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1412 &ecryptfs_superblock_to_private(
1413 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1414
e77a56dd
MH
1415 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1416 mount_crypt_stat);
237fead6 1417 /* Read the first page from the underlying file */
30632870 1418 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
237fead6
MH
1419 if (!page_virt) {
1420 rc = -ENOMEM;
237fead6
MH
1421 goto out;
1422 }
d7cdc5fe
MH
1423 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1424 ecryptfs_inode);
96a7b9c2 1425 if (rc >= 0)
d7cdc5fe
MH
1426 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1427 ecryptfs_dentry,
1428 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1429 if (rc) {
bb450361 1430 /* metadata is not in the file header, so try xattrs */
09cbfeaf 1431 memset(page_virt, 0, PAGE_SIZE);
d7cdc5fe 1432 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1433 if (rc) {
1434 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1435 "file header region or xattr region, inode %lu\n",
1436 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1437 rc = -EINVAL;
1438 goto out;
1439 }
1440 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1441 ecryptfs_dentry,
1442 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1443 if (rc) {
1444 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1445 "file xattr region either, inode %lu\n",
1446 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1447 rc = -EINVAL;
1448 }
1449 if (crypt_stat->mount_crypt_stat->flags
1450 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1451 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1452 } else {
1453 printk(KERN_WARNING "Attempt to access file with "
1454 "crypto metadata only in the extended attribute "
1455 "region, but eCryptfs was mounted without "
1456 "xattr support enabled. eCryptfs will not treat "
30373dc0
TG
1457 "this like an encrypted file, inode %lu\n",
1458 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1459 rc = -EINVAL;
1460 }
237fead6
MH
1461 }
1462out:
1463 if (page_virt) {
09cbfeaf 1464 memset(page_virt, 0, PAGE_SIZE);
30632870 1465 kmem_cache_free(ecryptfs_header_cache, page_virt);
237fead6
MH
1466 }
1467 return rc;
1468}
1469
51ca58dc
MH
1470/**
1471 * ecryptfs_encrypt_filename - encrypt filename
1472 *
1473 * CBC-encrypts the filename. We do not want to encrypt the same
1474 * filename with the same key and IV, which may happen with hard
1475 * links, so we prepend random bits to each filename.
1476 *
1477 * Returns zero on success; non-zero otherwise
1478 */
1479static int
1480ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
51ca58dc
MH
1481 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1482{
1483 int rc = 0;
1484
1485 filename->encrypted_filename = NULL;
1486 filename->encrypted_filename_size = 0;
97c31606
AV
1487 if (mount_crypt_stat && (mount_crypt_stat->flags
1488 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
51ca58dc
MH
1489 size_t packet_size;
1490 size_t remaining_bytes;
1491
1492 rc = ecryptfs_write_tag_70_packet(
1493 NULL, NULL,
1494 &filename->encrypted_filename_size,
1495 mount_crypt_stat, NULL,
1496 filename->filename_size);
1497 if (rc) {
1498 printk(KERN_ERR "%s: Error attempting to get packet "
1499 "size for tag 72; rc = [%d]\n", __func__,
1500 rc);
1501 filename->encrypted_filename_size = 0;
1502 goto out;
1503 }
1504 filename->encrypted_filename =
1505 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1506 if (!filename->encrypted_filename) {
51ca58dc
MH
1507 rc = -ENOMEM;
1508 goto out;
1509 }
1510 remaining_bytes = filename->encrypted_filename_size;
1511 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1512 &remaining_bytes,
1513 &packet_size,
1514 mount_crypt_stat,
1515 filename->filename,
1516 filename->filename_size);
1517 if (rc) {
1518 printk(KERN_ERR "%s: Error attempting to generate "
1519 "tag 70 packet; rc = [%d]\n", __func__,
1520 rc);
1521 kfree(filename->encrypted_filename);
1522 filename->encrypted_filename = NULL;
1523 filename->encrypted_filename_size = 0;
1524 goto out;
1525 }
1526 filename->encrypted_filename_size = packet_size;
1527 } else {
1528 printk(KERN_ERR "%s: No support for requested filename "
1529 "encryption method in this release\n", __func__);
df6ad33b 1530 rc = -EOPNOTSUPP;
51ca58dc
MH
1531 goto out;
1532 }
1533out:
1534 return rc;
1535}
1536
1537static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1538 const char *name, size_t name_size)
1539{
1540 int rc = 0;
1541
fd9fc842 1542 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
51ca58dc
MH
1543 if (!(*copied_name)) {
1544 rc = -ENOMEM;
1545 goto out;
1546 }
1547 memcpy((void *)(*copied_name), (void *)name, name_size);
1548 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1549 * in printing out the
1550 * string in debug
1551 * messages */
fd9fc842 1552 (*copied_name_size) = name_size;
51ca58dc
MH
1553out:
1554 return rc;
1555}
1556
237fead6 1557/**
f4aad16a 1558 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1559 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1560 * @cipher_name: Name of the cipher
1561 * @key_size: Size of the key in bytes
237fead6
MH
1562 *
1563 * Returns zero on success. Any crypto_tfm structs allocated here
1564 * should be released by other functions, such as on a superblock put
1565 * event, regardless of whether this function succeeds for fails.
1566 */
cd9d67df 1567static int
3095e8e3 1568ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
f4aad16a 1569 char *cipher_name, size_t *key_size)
237fead6
MH
1570{
1571 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
ece550f5 1572 char *full_alg_name = NULL;
237fead6
MH
1573 int rc;
1574
e5d9cbde
MH
1575 *key_tfm = NULL;
1576 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6 1577 rc = -EINVAL;
df261c52 1578 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
e5d9cbde 1579 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1580 goto out;
1581 }
8bba066f
MH
1582 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1583 "ecb");
1584 if (rc)
1585 goto out;
3095e8e3 1586 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
8bba066f
MH
1587 if (IS_ERR(*key_tfm)) {
1588 rc = PTR_ERR(*key_tfm);
237fead6 1589 printk(KERN_ERR "Unable to allocate crypto cipher with name "
38268498 1590 "[%s]; rc = [%d]\n", full_alg_name, rc);
237fead6
MH
1591 goto out;
1592 }
231baecd 1593 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
3095e8e3
HX
1594 if (*key_size == 0)
1595 *key_size = crypto_skcipher_default_keysize(*key_tfm);
e5d9cbde 1596 get_random_bytes(dummy_key, *key_size);
3095e8e3 1597 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6 1598 if (rc) {
df261c52 1599 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
38268498
DH
1600 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1601 rc);
237fead6
MH
1602 rc = -EINVAL;
1603 goto out;
1604 }
1605out:
ece550f5 1606 kfree(full_alg_name);
237fead6
MH
1607 return rc;
1608}
f4aad16a
MH
1609
1610struct kmem_cache *ecryptfs_key_tfm_cache;
7896b631 1611static struct list_head key_tfm_list;
af440f52 1612struct mutex key_tfm_list_mutex;
f4aad16a 1613
7371a382 1614int __init ecryptfs_init_crypto(void)
f4aad16a
MH
1615{
1616 mutex_init(&key_tfm_list_mutex);
1617 INIT_LIST_HEAD(&key_tfm_list);
1618 return 0;
1619}
1620
af440f52
ES
1621/**
1622 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1623 *
1624 * Called only at module unload time
1625 */
fcd12835 1626int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1627{
1628 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1629
1630 mutex_lock(&key_tfm_list_mutex);
1631 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1632 key_tfm_list) {
1633 list_del(&key_tfm->key_tfm_list);
3095e8e3 1634 crypto_free_skcipher(key_tfm->key_tfm);
f4aad16a
MH
1635 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1636 }
1637 mutex_unlock(&key_tfm_list_mutex);
1638 return 0;
1639}
1640
1641int
1642ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1643 size_t key_size)
1644{
1645 struct ecryptfs_key_tfm *tmp_tfm;
1646 int rc = 0;
1647
af440f52
ES
1648 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1649
f4aad16a 1650 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
5032f360 1651 if (key_tfm)
f4aad16a
MH
1652 (*key_tfm) = tmp_tfm;
1653 if (!tmp_tfm) {
1654 rc = -ENOMEM;
f4aad16a
MH
1655 goto out;
1656 }
1657 mutex_init(&tmp_tfm->key_tfm_mutex);
1658 strncpy(tmp_tfm->cipher_name, cipher_name,
1659 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
b8862906 1660 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
f4aad16a 1661 tmp_tfm->key_size = key_size;
5dda6992
MH
1662 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1663 tmp_tfm->cipher_name,
1664 &tmp_tfm->key_size);
1665 if (rc) {
f4aad16a
MH
1666 printk(KERN_ERR "Error attempting to initialize key TFM "
1667 "cipher with name = [%s]; rc = [%d]\n",
1668 tmp_tfm->cipher_name, rc);
1669 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
5032f360 1670 if (key_tfm)
f4aad16a
MH
1671 (*key_tfm) = NULL;
1672 goto out;
1673 }
f4aad16a 1674 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
f4aad16a
MH
1675out:
1676 return rc;
1677}
1678
af440f52
ES
1679/**
1680 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1681 * @cipher_name: the name of the cipher to search for
1682 * @key_tfm: set to corresponding tfm if found
1683 *
1684 * Searches for cached key_tfm matching @cipher_name
1685 * Must be called with &key_tfm_list_mutex held
1686 * Returns 1 if found, with @key_tfm set
1687 * Returns 0 if not found, with @key_tfm set to NULL
1688 */
1689int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1690{
1691 struct ecryptfs_key_tfm *tmp_key_tfm;
1692
1693 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1694
1695 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1696 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1697 if (key_tfm)
1698 (*key_tfm) = tmp_key_tfm;
1699 return 1;
1700 }
1701 }
1702 if (key_tfm)
1703 (*key_tfm) = NULL;
1704 return 0;
1705}
1706
1707/**
1708 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1709 *
1710 * @tfm: set to cached tfm found, or new tfm created
1711 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1712 * @cipher_name: the name of the cipher to search for and/or add
1713 *
1714 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1715 * Searches for cached item first, and creates new if not found.
1716 * Returns 0 on success, non-zero if adding new cipher failed
1717 */
3095e8e3 1718int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
f4aad16a
MH
1719 struct mutex **tfm_mutex,
1720 char *cipher_name)
1721{
1722 struct ecryptfs_key_tfm *key_tfm;
1723 int rc = 0;
1724
1725 (*tfm) = NULL;
1726 (*tfm_mutex) = NULL;
af440f52 1727
f4aad16a 1728 mutex_lock(&key_tfm_list_mutex);
af440f52
ES
1729 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1730 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1731 if (rc) {
1732 printk(KERN_ERR "Error adding new key_tfm to list; "
1733 "rc = [%d]\n", rc);
f4aad16a
MH
1734 goto out;
1735 }
1736 }
f4aad16a
MH
1737 (*tfm) = key_tfm->key_tfm;
1738 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1739out:
71fd5179 1740 mutex_unlock(&key_tfm_list_mutex);
f4aad16a
MH
1741 return rc;
1742}
51ca58dc
MH
1743
1744/* 64 characters forming a 6-bit target field */
1745static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1746 "EFGHIJKLMNOPQRST"
1747 "UVWXYZabcdefghij"
1748 "klmnopqrstuvwxyz");
1749
1750/* We could either offset on every reverse map or just pad some 0x00's
1751 * at the front here */
0f751e64 1752static const unsigned char filename_rev_map[256] = {
51ca58dc
MH
1753 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1754 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1755 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1756 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1757 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1758 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1759 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1760 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1761 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1762 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1763 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1764 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1765 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1766 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1767 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
0f751e64 1768 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
51ca58dc
MH
1769};
1770
1771/**
1772 * ecryptfs_encode_for_filename
1773 * @dst: Destination location for encoded filename
1774 * @dst_size: Size of the encoded filename in bytes
1775 * @src: Source location for the filename to encode
1776 * @src_size: Size of the source in bytes
1777 */
37028758 1778static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
51ca58dc
MH
1779 unsigned char *src, size_t src_size)
1780{
1781 size_t num_blocks;
1782 size_t block_num = 0;
1783 size_t dst_offset = 0;
1784 unsigned char last_block[3];
1785
1786 if (src_size == 0) {
1787 (*dst_size) = 0;
1788 goto out;
1789 }
1790 num_blocks = (src_size / 3);
1791 if ((src_size % 3) == 0) {
1792 memcpy(last_block, (&src[src_size - 3]), 3);
1793 } else {
1794 num_blocks++;
1795 last_block[2] = 0x00;
1796 switch (src_size % 3) {
1797 case 1:
1798 last_block[0] = src[src_size - 1];
1799 last_block[1] = 0x00;
1800 break;
1801 case 2:
1802 last_block[0] = src[src_size - 2];
1803 last_block[1] = src[src_size - 1];
1804 }
1805 }
1806 (*dst_size) = (num_blocks * 4);
1807 if (!dst)
1808 goto out;
1809 while (block_num < num_blocks) {
1810 unsigned char *src_block;
1811 unsigned char dst_block[4];
1812
1813 if (block_num == (num_blocks - 1))
1814 src_block = last_block;
1815 else
1816 src_block = &src[block_num * 3];
1817 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1818 dst_block[1] = (((src_block[0] << 4) & 0x30)
1819 | ((src_block[1] >> 4) & 0x0F));
1820 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1821 | ((src_block[2] >> 6) & 0x03));
1822 dst_block[3] = (src_block[2] & 0x3F);
1823 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1824 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1825 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1826 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1827 block_num++;
1828 }
1829out:
1830 return;
1831}
1832
4a26620d
TH
1833static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1834{
1835 /* Not exact; conservatively long. Every block of 4
1836 * encoded characters decodes into a block of 3
1837 * decoded characters. This segment of code provides
1838 * the caller with the maximum amount of allocated
1839 * space that @dst will need to point to in a
1840 * subsequent call. */
1841 return ((encoded_size + 1) * 3) / 4;
1842}
1843
71c11c37
MH
1844/**
1845 * ecryptfs_decode_from_filename
1846 * @dst: If NULL, this function only sets @dst_size and returns. If
1847 * non-NULL, this function decodes the encoded octets in @src
1848 * into the memory that @dst points to.
1849 * @dst_size: Set to the size of the decoded string.
1850 * @src: The encoded set of octets to decode.
1851 * @src_size: The size of the encoded set of octets to decode.
1852 */
1853static void
1854ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1855 const unsigned char *src, size_t src_size)
51ca58dc
MH
1856{
1857 u8 current_bit_offset = 0;
1858 size_t src_byte_offset = 0;
1859 size_t dst_byte_offset = 0;
51ca58dc 1860
5032f360 1861 if (!dst) {
4a26620d 1862 (*dst_size) = ecryptfs_max_decoded_size(src_size);
51ca58dc
MH
1863 goto out;
1864 }
1865 while (src_byte_offset < src_size) {
1866 unsigned char src_byte =
1867 filename_rev_map[(int)src[src_byte_offset]];
1868
1869 switch (current_bit_offset) {
1870 case 0:
1871 dst[dst_byte_offset] = (src_byte << 2);
1872 current_bit_offset = 6;
1873 break;
1874 case 6:
1875 dst[dst_byte_offset++] |= (src_byte >> 4);
1876 dst[dst_byte_offset] = ((src_byte & 0xF)
1877 << 4);
1878 current_bit_offset = 4;
1879 break;
1880 case 4:
1881 dst[dst_byte_offset++] |= (src_byte >> 2);
1882 dst[dst_byte_offset] = (src_byte << 6);
1883 current_bit_offset = 2;
1884 break;
1885 case 2:
1886 dst[dst_byte_offset++] |= (src_byte);
51ca58dc
MH
1887 current_bit_offset = 0;
1888 break;
1889 }
1890 src_byte_offset++;
1891 }
1892 (*dst_size) = dst_byte_offset;
1893out:
71c11c37 1894 return;
51ca58dc
MH
1895}
1896
1897/**
1898 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1899 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1900 * @name: The plaintext name
1901 * @length: The length of the plaintext
1902 * @encoded_name: The encypted name
1903 *
1904 * Encrypts and encodes a filename into something that constitutes a
1905 * valid filename for a filesystem, with printable characters.
1906 *
1907 * We assume that we have a properly initialized crypto context,
1908 * pointed to by crypt_stat->tfm.
1909 *
1910 * Returns zero on success; non-zero on otherwise
1911 */
1912int ecryptfs_encrypt_and_encode_filename(
1913 char **encoded_name,
1914 size_t *encoded_name_size,
51ca58dc
MH
1915 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1916 const char *name, size_t name_size)
1917{
1918 size_t encoded_name_no_prefix_size;
1919 int rc = 0;
1920
1921 (*encoded_name) = NULL;
1922 (*encoded_name_size) = 0;
97c31606
AV
1923 if (mount_crypt_stat && (mount_crypt_stat->flags
1924 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
51ca58dc
MH
1925 struct ecryptfs_filename *filename;
1926
1927 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1928 if (!filename) {
51ca58dc
MH
1929 rc = -ENOMEM;
1930 goto out;
1931 }
1932 filename->filename = (char *)name;
1933 filename->filename_size = name_size;
97c31606 1934 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
51ca58dc
MH
1935 if (rc) {
1936 printk(KERN_ERR "%s: Error attempting to encrypt "
1937 "filename; rc = [%d]\n", __func__, rc);
1938 kfree(filename);
1939 goto out;
1940 }
1941 ecryptfs_encode_for_filename(
1942 NULL, &encoded_name_no_prefix_size,
1943 filename->encrypted_filename,
1944 filename->encrypted_filename_size);
97c31606 1945 if (mount_crypt_stat
51ca58dc 1946 && (mount_crypt_stat->flags
97c31606 1947 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
51ca58dc
MH
1948 (*encoded_name_size) =
1949 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1950 + encoded_name_no_prefix_size);
1951 else
1952 (*encoded_name_size) =
1953 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1954 + encoded_name_no_prefix_size);
1955 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1956 if (!(*encoded_name)) {
51ca58dc
MH
1957 rc = -ENOMEM;
1958 kfree(filename->encrypted_filename);
1959 kfree(filename);
1960 goto out;
1961 }
97c31606 1962 if (mount_crypt_stat
51ca58dc 1963 && (mount_crypt_stat->flags
97c31606 1964 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
51ca58dc
MH
1965 memcpy((*encoded_name),
1966 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1967 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1968 ecryptfs_encode_for_filename(
1969 ((*encoded_name)
1970 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1971 &encoded_name_no_prefix_size,
1972 filename->encrypted_filename,
1973 filename->encrypted_filename_size);
1974 (*encoded_name_size) =
1975 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1976 + encoded_name_no_prefix_size);
1977 (*encoded_name)[(*encoded_name_size)] = '\0';
51ca58dc 1978 } else {
df6ad33b 1979 rc = -EOPNOTSUPP;
51ca58dc
MH
1980 }
1981 if (rc) {
1982 printk(KERN_ERR "%s: Error attempting to encode "
1983 "encrypted filename; rc = [%d]\n", __func__,
1984 rc);
1985 kfree((*encoded_name));
1986 (*encoded_name) = NULL;
1987 (*encoded_name_size) = 0;
1988 }
1989 kfree(filename->encrypted_filename);
1990 kfree(filename);
1991 } else {
1992 rc = ecryptfs_copy_filename(encoded_name,
1993 encoded_name_size,
1994 name, name_size);
1995 }
1996out:
1997 return rc;
1998}
1999
e86281e7
TH
2000static bool is_dot_dotdot(const char *name, size_t name_size)
2001{
2002 if (name_size == 1 && name[0] == '.')
2003 return true;
2004 else if (name_size == 2 && name[0] == '.' && name[1] == '.')
2005 return true;
2006
2007 return false;
2008}
2009
51ca58dc
MH
2010/**
2011 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2012 * @plaintext_name: The plaintext name
2013 * @plaintext_name_size: The plaintext name size
2014 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2015 * @name: The filename in cipher text
2016 * @name_size: The cipher text name size
2017 *
2018 * Decrypts and decodes the filename.
2019 *
2020 * Returns zero on error; non-zero otherwise
2021 */
2022int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2023 size_t *plaintext_name_size,
0747fdb2 2024 struct super_block *sb,
51ca58dc
MH
2025 const char *name, size_t name_size)
2026{
2aac0cf8 2027 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
0747fdb2 2028 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
51ca58dc
MH
2029 char *decoded_name;
2030 size_t decoded_name_size;
2031 size_t packet_size;
2032 int rc = 0;
2033
e86281e7
TH
2034 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2035 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2036 if (is_dot_dotdot(name, name_size)) {
2037 rc = ecryptfs_copy_filename(plaintext_name,
2038 plaintext_name_size,
2039 name, name_size);
2040 goto out;
2041 }
2042
2043 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2044 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2045 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2046 rc = -EINVAL;
2047 goto out;
2048 }
51ca58dc
MH
2049
2050 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2051 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
71c11c37
MH
2052 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2053 name, name_size);
51ca58dc
MH
2054 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2055 if (!decoded_name) {
51ca58dc
MH
2056 rc = -ENOMEM;
2057 goto out;
2058 }
71c11c37
MH
2059 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2060 name, name_size);
51ca58dc
MH
2061 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2062 plaintext_name_size,
2063 &packet_size,
2064 mount_crypt_stat,
2065 decoded_name,
2066 decoded_name_size);
2067 if (rc) {
e86281e7
TH
2068 ecryptfs_printk(KERN_DEBUG,
2069 "%s: Could not parse tag 70 packet from filename\n",
2070 __func__);
51ca58dc
MH
2071 goto out_free;
2072 }
2073 } else {
2074 rc = ecryptfs_copy_filename(plaintext_name,
2075 plaintext_name_size,
2076 name, name_size);
2077 goto out;
2078 }
2079out_free:
2080 kfree(decoded_name);
2081out:
2082 return rc;
2083}
4a26620d
TH
2084
2085#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2086
2087int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2088 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2089{
3095e8e3 2090 struct crypto_skcipher *tfm;
4a26620d
TH
2091 struct mutex *tfm_mutex;
2092 size_t cipher_blocksize;
2093 int rc;
2094
2095 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2096 (*namelen) = lower_namelen;
2097 return 0;
2098 }
2099
3095e8e3 2100 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
4a26620d
TH
2101 mount_crypt_stat->global_default_fn_cipher_name);
2102 if (unlikely(rc)) {
2103 (*namelen) = 0;
2104 return rc;
2105 }
2106
2107 mutex_lock(tfm_mutex);
3095e8e3 2108 cipher_blocksize = crypto_skcipher_blocksize(tfm);
4a26620d
TH
2109 mutex_unlock(tfm_mutex);
2110
2111 /* Return an exact amount for the common cases */
2112 if (lower_namelen == NAME_MAX
2113 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2114 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2115 return 0;
2116 }
2117
2118 /* Return a safe estimate for the uncommon cases */
2119 (*namelen) = lower_namelen;
2120 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2121 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2122 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2123 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2124 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2125 /* Worst case is that the filename is padded nearly a full block size */
2126 (*namelen) -= cipher_blocksize - 1;
2127
2128 if ((*namelen) < 0)
2129 (*namelen) = 0;
2130
2131 return 0;
2132}