ecryptfs: Adjust four checks for null pointers
[linux-2.6-block.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
3095e8e3
HX
26#include <crypto/hash.h>
27#include <crypto/skcipher.h>
237fead6
MH
28#include <linux/fs.h>
29#include <linux/mount.h>
30#include <linux/pagemap.h>
31#include <linux/random.h>
32#include <linux/compiler.h>
33#include <linux/key.h>
34#include <linux/namei.h>
237fead6
MH
35#include <linux/file.h>
36#include <linux/scatterlist.h>
5a0e3ad6 37#include <linux/slab.h>
29335c6a 38#include <asm/unaligned.h>
237fead6
MH
39#include "ecryptfs_kernel.h"
40
00a69940
TH
41#define DECRYPT 0
42#define ENCRYPT 1
237fead6 43
237fead6
MH
44/**
45 * ecryptfs_from_hex
46 * @dst: Buffer to take the bytes from src hex; must be at least of
47 * size (src_size / 2)
5f9f2c2a 48 * @src: Buffer to be converted from a hex string representation to raw value
237fead6
MH
49 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
50 */
51void ecryptfs_from_hex(char *dst, char *src, int dst_size)
52{
53 int x;
54 char tmp[3] = { 0, };
55
56 for (x = 0; x < dst_size; x++) {
57 tmp[0] = src[x * 2];
58 tmp[1] = src[x * 2 + 1];
59 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
60 }
61}
62
3095e8e3
HX
63static int ecryptfs_hash_digest(struct crypto_shash *tfm,
64 char *src, int len, char *dst)
65{
66 SHASH_DESC_ON_STACK(desc, tfm);
67 int err;
68
69 desc->tfm = tfm;
70 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
71 err = crypto_shash_digest(desc, src, len, dst);
72 shash_desc_zero(desc);
73 return err;
74}
75
237fead6
MH
76/**
77 * ecryptfs_calculate_md5 - calculates the md5 of @src
78 * @dst: Pointer to 16 bytes of allocated memory
79 * @crypt_stat: Pointer to crypt_stat struct for the current inode
80 * @src: Data to be md5'd
81 * @len: Length of @src
82 *
83 * Uses the allocated crypto context that crypt_stat references to
84 * generate the MD5 sum of the contents of src.
85 */
86static int ecryptfs_calculate_md5(char *dst,
87 struct ecryptfs_crypt_stat *crypt_stat,
88 char *src, int len)
89{
3095e8e3 90 struct crypto_shash *tfm;
565d9724 91 int rc = 0;
237fead6 92
3095e8e3 93 tfm = crypt_stat->hash_tfm;
3095e8e3 94 rc = ecryptfs_hash_digest(tfm, src, len, dst);
8a29f2b0
MH
95 if (rc) {
96 printk(KERN_ERR
3095e8e3 97 "%s: Error computing crypto hash; rc = [%d]\n",
18d1dbf1 98 __func__, rc);
8a29f2b0
MH
99 goto out;
100 }
237fead6
MH
101out:
102 return rc;
103}
104
cd9d67df
MH
105static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
106 char *cipher_name,
107 char *chaining_modifier)
8bba066f
MH
108{
109 int cipher_name_len = strlen(cipher_name);
110 int chaining_modifier_len = strlen(chaining_modifier);
111 int algified_name_len;
112 int rc;
113
114 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
115 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 116 if (!(*algified_name)) {
8bba066f
MH
117 rc = -ENOMEM;
118 goto out;
119 }
120 snprintf((*algified_name), algified_name_len, "%s(%s)",
121 chaining_modifier, cipher_name);
122 rc = 0;
123out:
124 return rc;
125}
126
237fead6
MH
127/**
128 * ecryptfs_derive_iv
129 * @iv: destination for the derived iv vale
130 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 131 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
132 *
133 * Generate the initialization vector from the given root IV and page
134 * offset.
135 *
136 * Returns zero on success; non-zero on error.
137 */
a34f60f7
MH
138int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
139 loff_t offset)
237fead6
MH
140{
141 int rc = 0;
142 char dst[MD5_DIGEST_SIZE];
143 char src[ECRYPTFS_MAX_IV_BYTES + 16];
144
145 if (unlikely(ecryptfs_verbosity > 0)) {
146 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
147 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
148 }
149 /* TODO: It is probably secure to just cast the least
150 * significant bits of the root IV into an unsigned long and
151 * add the offset to that rather than go through all this
152 * hashing business. -Halcrow */
153 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
154 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 155 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
156 if (unlikely(ecryptfs_verbosity > 0)) {
157 ecryptfs_printk(KERN_DEBUG, "source:\n");
158 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
159 }
160 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
161 (crypt_stat->iv_bytes + 16));
162 if (rc) {
163 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
164 "MD5 while generating IV for a page\n");
165 goto out;
166 }
167 memcpy(iv, dst, crypt_stat->iv_bytes);
168 if (unlikely(ecryptfs_verbosity > 0)) {
169 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
170 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
171 }
172out:
173 return rc;
174}
175
176/**
177 * ecryptfs_init_crypt_stat
178 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
179 *
180 * Initialize the crypt_stat structure.
181 */
e81f3340 182int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 183{
e81f3340
HX
184 struct crypto_shash *tfm;
185 int rc;
186
187 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
188 if (IS_ERR(tfm)) {
189 rc = PTR_ERR(tfm);
190 ecryptfs_printk(KERN_ERR, "Error attempting to "
191 "allocate crypto context; rc = [%d]\n",
192 rc);
193 return rc;
194 }
195
237fead6 196 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
197 INIT_LIST_HEAD(&crypt_stat->keysig_list);
198 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
199 mutex_init(&crypt_stat->cs_mutex);
200 mutex_init(&crypt_stat->cs_tfm_mutex);
e81f3340 201 crypt_stat->hash_tfm = tfm;
e2bd99ec 202 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
e81f3340
HX
203
204 return 0;
237fead6
MH
205}
206
207/**
fcd12835 208 * ecryptfs_destroy_crypt_stat
237fead6
MH
209 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
210 *
211 * Releases all memory associated with a crypt_stat struct.
212 */
fcd12835 213void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 214{
f4aad16a
MH
215 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
216
3095e8e3
HX
217 crypto_free_skcipher(crypt_stat->tfm);
218 crypto_free_shash(crypt_stat->hash_tfm);
f4aad16a
MH
219 list_for_each_entry_safe(key_sig, key_sig_tmp,
220 &crypt_stat->keysig_list, crypt_stat_list) {
221 list_del(&key_sig->crypt_stat_list);
222 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
223 }
237fead6
MH
224 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
225}
226
fcd12835 227void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
228 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
229{
f4aad16a
MH
230 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
231
232 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
233 return;
234 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
235 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
236 &mount_crypt_stat->global_auth_tok_list,
237 mount_crypt_stat_list) {
238 list_del(&auth_tok->mount_crypt_stat_list);
0dad87fc 239 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
f4aad16a
MH
240 key_put(auth_tok->global_auth_tok_key);
241 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
242 }
243 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
244 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
245}
246
247/**
248 * virt_to_scatterlist
249 * @addr: Virtual address
250 * @size: Size of data; should be an even multiple of the block size
251 * @sg: Pointer to scatterlist array; set to NULL to obtain only
252 * the number of scatterlist structs required in array
253 * @sg_size: Max array size
254 *
255 * Fills in a scatterlist array with page references for a passed
256 * virtual address.
257 *
258 * Returns the number of scatterlist structs in array used
259 */
260int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
261 int sg_size)
262{
263 int i = 0;
264 struct page *pg;
265 int offset;
266 int remainder_of_page;
267
68e3f5dd
HX
268 sg_init_table(sg, sg_size);
269
237fead6
MH
270 while (size > 0 && i < sg_size) {
271 pg = virt_to_page(addr);
272 offset = offset_in_page(addr);
a07c48ad 273 sg_set_page(&sg[i], pg, 0, offset);
09cbfeaf 274 remainder_of_page = PAGE_SIZE - offset;
237fead6 275 if (size >= remainder_of_page) {
a07c48ad 276 sg[i].length = remainder_of_page;
237fead6
MH
277 addr += remainder_of_page;
278 size -= remainder_of_page;
279 } else {
a07c48ad 280 sg[i].length = size;
237fead6
MH
281 addr += size;
282 size = 0;
283 }
284 i++;
285 }
286 if (size > 0)
287 return -ENOMEM;
288 return i;
289}
290
4dfea4f0
TH
291struct extent_crypt_result {
292 struct completion completion;
293 int rc;
294};
295
296static void extent_crypt_complete(struct crypto_async_request *req, int rc)
297{
298 struct extent_crypt_result *ecr = req->data;
299
300 if (rc == -EINPROGRESS)
301 return;
302
303 ecr->rc = rc;
304 complete(&ecr->completion);
305}
306
237fead6 307/**
00a69940 308 * crypt_scatterlist
237fead6 309 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
0df5ed65 310 * @dst_sg: Destination of the data after performing the crypto operation
00a69940
TH
311 * @src_sg: Data to be encrypted or decrypted
312 * @size: Length of data
313 * @iv: IV to use
314 * @op: ENCRYPT or DECRYPT to indicate the desired operation
237fead6 315 *
00a69940 316 * Returns the number of bytes encrypted or decrypted; negative value on error
237fead6 317 */
00a69940 318static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
0df5ed65 319 struct scatterlist *dst_sg,
00a69940
TH
320 struct scatterlist *src_sg, int size,
321 unsigned char *iv, int op)
237fead6 322{
3095e8e3 323 struct skcipher_request *req = NULL;
4dfea4f0 324 struct extent_crypt_result ecr;
237fead6
MH
325 int rc = 0;
326
327 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 328 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6 329 if (unlikely(ecryptfs_verbosity > 0)) {
f24b3887 330 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
237fead6
MH
331 crypt_stat->key_size);
332 ecryptfs_dump_hex(crypt_stat->key,
333 crypt_stat->key_size);
334 }
4dfea4f0
TH
335
336 init_completion(&ecr.completion);
337
237fead6 338 mutex_lock(&crypt_stat->cs_tfm_mutex);
3095e8e3 339 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
4dfea4f0 340 if (!req) {
237fead6 341 mutex_unlock(&crypt_stat->cs_tfm_mutex);
4dfea4f0 342 rc = -ENOMEM;
237fead6
MH
343 goto out;
344 }
4dfea4f0 345
3095e8e3 346 skcipher_request_set_callback(req,
4dfea4f0
TH
347 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
348 extent_crypt_complete, &ecr);
349 /* Consider doing this once, when the file is opened */
350 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
3095e8e3
HX
351 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
352 crypt_stat->key_size);
4dfea4f0
TH
353 if (rc) {
354 ecryptfs_printk(KERN_ERR,
355 "Error setting key; rc = [%d]\n",
356 rc);
357 mutex_unlock(&crypt_stat->cs_tfm_mutex);
358 rc = -EINVAL;
359 goto out;
360 }
361 crypt_stat->flags |= ECRYPTFS_KEY_SET;
362 }
237fead6 363 mutex_unlock(&crypt_stat->cs_tfm_mutex);
3095e8e3
HX
364 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
365 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
366 crypto_skcipher_decrypt(req);
4dfea4f0
TH
367 if (rc == -EINPROGRESS || rc == -EBUSY) {
368 struct extent_crypt_result *ecr = req->base.data;
369
370 wait_for_completion(&ecr->completion);
371 rc = ecr->rc;
16735d02 372 reinit_completion(&ecr->completion);
4dfea4f0 373 }
237fead6 374out:
3095e8e3 375 skcipher_request_free(req);
237fead6
MH
376 return rc;
377}
378
0216f7f7 379/**
24d15266 380 * lower_offset_for_page
0216f7f7
MH
381 *
382 * Convert an eCryptfs page index into a lower byte offset
383 */
24d15266
TH
384static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
385 struct page *page)
0216f7f7 386{
24d15266 387 return ecryptfs_lower_header_size(crypt_stat) +
09cbfeaf 388 ((loff_t)page->index << PAGE_SHIFT);
0216f7f7
MH
389}
390
391/**
d78de618 392 * crypt_extent
0216f7f7
MH
393 * @crypt_stat: crypt_stat containing cryptographic context for the
394 * encryption operation
0df5ed65 395 * @dst_page: The page to write the result into
d78de618 396 * @src_page: The page to read from
0216f7f7 397 * @extent_offset: Page extent offset for use in generating IV
d78de618 398 * @op: ENCRYPT or DECRYPT to indicate the desired operation
0216f7f7 399 *
d78de618 400 * Encrypts or decrypts one extent of data.
0216f7f7
MH
401 *
402 * Return zero on success; non-zero otherwise
403 */
0df5ed65
TH
404static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
405 struct page *dst_page,
d78de618
TH
406 struct page *src_page,
407 unsigned long extent_offset, int op)
0216f7f7 408{
d78de618 409 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
d6a13c17 410 loff_t extent_base;
0216f7f7 411 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
406c93df
TH
412 struct scatterlist src_sg, dst_sg;
413 size_t extent_size = crypt_stat->extent_size;
0216f7f7
MH
414 int rc;
415
09cbfeaf 416 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
0216f7f7
MH
417 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
418 (extent_base + extent_offset));
419 if (rc) {
888d57bb
JP
420 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
421 "extent [0x%.16llx]; rc = [%d]\n",
422 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
423 goto out;
424 }
406c93df
TH
425
426 sg_init_table(&src_sg, 1);
427 sg_init_table(&dst_sg, 1);
428
429 sg_set_page(&src_sg, src_page, extent_size,
430 extent_offset * extent_size);
431 sg_set_page(&dst_sg, dst_page, extent_size,
432 extent_offset * extent_size);
433
434 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
435 extent_iv, op);
0216f7f7 436 if (rc < 0) {
d78de618
TH
437 printk(KERN_ERR "%s: Error attempting to crypt page with "
438 "page_index = [%ld], extent_offset = [%ld]; "
439 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
0216f7f7
MH
440 goto out;
441 }
442 rc = 0;
0216f7f7
MH
443out:
444 return rc;
445}
446
237fead6
MH
447/**
448 * ecryptfs_encrypt_page
0216f7f7
MH
449 * @page: Page mapped from the eCryptfs inode for the file; contains
450 * decrypted content that needs to be encrypted (to a temporary
451 * page; not in place) and written out to the lower file
237fead6
MH
452 *
453 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
454 * that eCryptfs pages may straddle the lower pages -- for instance,
455 * if the file was created on a machine with an 8K page size
456 * (resulting in an 8K header), and then the file is copied onto a
457 * host with a 32K page size, then when reading page 0 of the eCryptfs
458 * file, 24K of page 0 of the lower file will be read and decrypted,
459 * and then 8K of page 1 of the lower file will be read and decrypted.
460 *
237fead6
MH
461 * Returns zero on success; negative on error
462 */
0216f7f7 463int ecryptfs_encrypt_page(struct page *page)
237fead6 464{
0216f7f7 465 struct inode *ecryptfs_inode;
237fead6 466 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
467 char *enc_extent_virt;
468 struct page *enc_extent_page = NULL;
0216f7f7 469 loff_t extent_offset;
0f896176 470 loff_t lower_offset;
237fead6 471 int rc = 0;
0216f7f7
MH
472
473 ecryptfs_inode = page->mapping->host;
474 crypt_stat =
475 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 476 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
477 enc_extent_page = alloc_page(GFP_USER);
478 if (!enc_extent_page) {
0216f7f7
MH
479 rc = -ENOMEM;
480 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
481 "encrypted extent\n");
482 goto out;
483 }
0f896176 484
0216f7f7 485 for (extent_offset = 0;
09cbfeaf 486 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
0216f7f7 487 extent_offset++) {
0df5ed65 488 rc = crypt_extent(crypt_stat, enc_extent_page, page,
d78de618 489 extent_offset, ENCRYPT);
237fead6 490 if (rc) {
0216f7f7 491 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 492 "rc = [%d]\n", __func__, rc);
237fead6
MH
493 goto out;
494 }
7fcba054 495 }
0216f7f7 496
24d15266 497 lower_offset = lower_offset_for_page(crypt_stat, page);
0f896176
TH
498 enc_extent_virt = kmap(enc_extent_page);
499 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
09cbfeaf 500 PAGE_SIZE);
0f896176 501 kunmap(enc_extent_page);
0216f7f7 502 if (rc < 0) {
0f896176
TH
503 ecryptfs_printk(KERN_ERR,
504 "Error attempting to write lower page; rc = [%d]\n",
505 rc);
0216f7f7
MH
506 goto out;
507 }
508 rc = 0;
237fead6 509out:
7fcba054 510 if (enc_extent_page) {
7fcba054
ES
511 __free_page(enc_extent_page);
512 }
237fead6
MH
513 return rc;
514}
515
516/**
517 * ecryptfs_decrypt_page
0216f7f7
MH
518 * @page: Page mapped from the eCryptfs inode for the file; data read
519 * and decrypted from the lower file will be written into this
520 * page
237fead6
MH
521 *
522 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
523 * that eCryptfs pages may straddle the lower pages -- for instance,
524 * if the file was created on a machine with an 8K page size
525 * (resulting in an 8K header), and then the file is copied onto a
526 * host with a 32K page size, then when reading page 0 of the eCryptfs
527 * file, 24K of page 0 of the lower file will be read and decrypted,
528 * and then 8K of page 1 of the lower file will be read and decrypted.
529 *
530 * Returns zero on success; negative on error
531 */
0216f7f7 532int ecryptfs_decrypt_page(struct page *page)
237fead6 533{
0216f7f7 534 struct inode *ecryptfs_inode;
237fead6 535 struct ecryptfs_crypt_stat *crypt_stat;
9c6043f4 536 char *page_virt;
0216f7f7 537 unsigned long extent_offset;
0f896176 538 loff_t lower_offset;
237fead6 539 int rc = 0;
237fead6 540
0216f7f7
MH
541 ecryptfs_inode = page->mapping->host;
542 crypt_stat =
543 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 544 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
0f896176 545
24d15266 546 lower_offset = lower_offset_for_page(crypt_stat, page);
9c6043f4 547 page_virt = kmap(page);
09cbfeaf 548 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
0f896176 549 ecryptfs_inode);
9c6043f4 550 kunmap(page);
0f896176
TH
551 if (rc < 0) {
552 ecryptfs_printk(KERN_ERR,
553 "Error attempting to read lower page; rc = [%d]\n",
554 rc);
16a72c45 555 goto out;
237fead6 556 }
0f896176 557
0216f7f7 558 for (extent_offset = 0;
09cbfeaf 559 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
0216f7f7 560 extent_offset++) {
0df5ed65 561 rc = crypt_extent(crypt_stat, page, page,
d78de618 562 extent_offset, DECRYPT);
0216f7f7
MH
563 if (rc) {
564 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 565 "rc = [%d]\n", __func__, rc);
16a72c45 566 goto out;
237fead6 567 }
237fead6
MH
568 }
569out:
237fead6 570 return rc;
237fead6
MH
571}
572
573#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
574
575/**
576 * ecryptfs_init_crypt_ctx
421f91d2 577 * @crypt_stat: Uninitialized crypt stats structure
237fead6
MH
578 *
579 * Initialize the crypto context.
580 *
581 * TODO: Performance: Keep a cache of initialized cipher contexts;
582 * only init if needed
583 */
584int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
585{
8bba066f 586 char *full_alg_name;
237fead6
MH
587 int rc = -EINVAL;
588
237fead6
MH
589 ecryptfs_printk(KERN_DEBUG,
590 "Initializing cipher [%s]; strlen = [%d]; "
f24b3887 591 "key_size_bits = [%zd]\n",
237fead6
MH
592 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
593 crypt_stat->key_size << 3);
cb69f36b 594 mutex_lock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
595 if (crypt_stat->tfm) {
596 rc = 0;
cb69f36b 597 goto out_unlock;
237fead6 598 }
8bba066f
MH
599 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
600 crypt_stat->cipher, "cbc");
601 if (rc)
c8161f64 602 goto out_unlock;
3095e8e3 603 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
de88777e
AM
604 if (IS_ERR(crypt_stat->tfm)) {
605 rc = PTR_ERR(crypt_stat->tfm);
b0105eae 606 crypt_stat->tfm = NULL;
237fead6
MH
607 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
608 "Error initializing cipher [%s]\n",
cb69f36b
KC
609 full_alg_name);
610 goto out_free;
237fead6 611 }
3095e8e3 612 crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
237fead6 613 rc = 0;
cb69f36b
KC
614out_free:
615 kfree(full_alg_name);
c8161f64
ES
616out_unlock:
617 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
618 return rc;
619}
620
621static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
622{
623 int extent_size_tmp;
624
625 crypt_stat->extent_mask = 0xFFFFFFFF;
626 crypt_stat->extent_shift = 0;
627 if (crypt_stat->extent_size == 0)
628 return;
629 extent_size_tmp = crypt_stat->extent_size;
630 while ((extent_size_tmp & 0x01) == 0) {
631 extent_size_tmp >>= 1;
632 crypt_stat->extent_mask <<= 1;
633 crypt_stat->extent_shift++;
634 }
635}
636
637void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
638{
639 /* Default values; may be overwritten as we are parsing the
640 * packets. */
641 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
642 set_extent_mask_and_shift(crypt_stat);
643 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a 644 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
fa3ef1cb 645 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 646 else {
09cbfeaf 647 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
fa3ef1cb 648 crypt_stat->metadata_size =
cc11beff 649 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 650 else
09cbfeaf 651 crypt_stat->metadata_size = PAGE_SIZE;
45eaab79 652 }
237fead6
MH
653}
654
655/**
656 * ecryptfs_compute_root_iv
657 * @crypt_stats
658 *
659 * On error, sets the root IV to all 0's.
660 */
661int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
662{
663 int rc = 0;
664 char dst[MD5_DIGEST_SIZE];
665
666 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
667 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 668 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
669 rc = -EINVAL;
670 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
671 "cannot generate root IV\n");
672 goto out;
673 }
674 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
675 crypt_stat->key_size);
676 if (rc) {
677 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
678 "MD5 while generating root IV\n");
679 goto out;
680 }
681 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
682out:
683 if (rc) {
684 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 685 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
686 }
687 return rc;
688}
689
690static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
691{
692 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 693 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
694 ecryptfs_compute_root_iv(crypt_stat);
695 if (unlikely(ecryptfs_verbosity > 0)) {
696 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
697 ecryptfs_dump_hex(crypt_stat->key,
698 crypt_stat->key_size);
699 }
700}
701
17398957
MH
702/**
703 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
704 * @crypt_stat: The inode's cryptographic context
705 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
706 *
707 * This function propagates the mount-wide flags to individual inode
708 * flags.
709 */
710static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
711 struct ecryptfs_crypt_stat *crypt_stat,
712 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
713{
714 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
715 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
716 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
717 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
addd65ad
MH
718 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
719 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
720 if (mount_crypt_stat->flags
721 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
722 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
723 else if (mount_crypt_stat->flags
724 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
725 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
726 }
17398957
MH
727}
728
f4aad16a
MH
729static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
730 struct ecryptfs_crypt_stat *crypt_stat,
731 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
732{
733 struct ecryptfs_global_auth_tok *global_auth_tok;
734 int rc = 0;
735
aa06117f 736 mutex_lock(&crypt_stat->keysig_list_mutex);
f4aad16a 737 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
aa06117f 738
f4aad16a
MH
739 list_for_each_entry(global_auth_tok,
740 &mount_crypt_stat->global_auth_tok_list,
741 mount_crypt_stat_list) {
84814d64
TH
742 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
743 continue;
f4aad16a
MH
744 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
745 if (rc) {
746 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
f4aad16a
MH
747 goto out;
748 }
749 }
aa06117f 750
f4aad16a 751out:
aa06117f
RD
752 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
753 mutex_unlock(&crypt_stat->keysig_list_mutex);
f4aad16a
MH
754 return rc;
755}
756
237fead6
MH
757/**
758 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
759 * @crypt_stat: The inode's cryptographic context
760 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
761 *
762 * Default values in the event that policy does not override them.
763 */
764static void ecryptfs_set_default_crypt_stat_vals(
765 struct ecryptfs_crypt_stat *crypt_stat,
766 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
767{
17398957
MH
768 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
769 mount_crypt_stat);
237fead6
MH
770 ecryptfs_set_default_sizes(crypt_stat);
771 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
772 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 773 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
774 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
775 crypt_stat->mount_crypt_stat = mount_crypt_stat;
776}
777
778/**
779 * ecryptfs_new_file_context
b59db43a 780 * @ecryptfs_inode: The eCryptfs inode
237fead6
MH
781 *
782 * If the crypto context for the file has not yet been established,
783 * this is where we do that. Establishing a new crypto context
784 * involves the following decisions:
785 * - What cipher to use?
786 * - What set of authentication tokens to use?
787 * Here we just worry about getting enough information into the
788 * authentication tokens so that we know that they are available.
789 * We associate the available authentication tokens with the new file
790 * via the set of signatures in the crypt_stat struct. Later, when
791 * the headers are actually written out, we may again defer to
792 * userspace to perform the encryption of the session key; for the
793 * foreseeable future, this will be the case with public key packets.
794 *
795 * Returns zero on success; non-zero otherwise
796 */
b59db43a 797int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
237fead6 798{
237fead6 799 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 800 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
237fead6
MH
801 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
802 &ecryptfs_superblock_to_private(
b59db43a 803 ecryptfs_inode->i_sb)->mount_crypt_stat;
237fead6 804 int cipher_name_len;
f4aad16a 805 int rc = 0;
237fead6
MH
806
807 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 808 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
809 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
810 mount_crypt_stat);
811 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
812 mount_crypt_stat);
813 if (rc) {
814 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
815 "to the inode key sigs; rc = [%d]\n", rc);
816 goto out;
817 }
818 cipher_name_len =
819 strlen(mount_crypt_stat->global_default_cipher_name);
820 memcpy(crypt_stat->cipher,
821 mount_crypt_stat->global_default_cipher_name,
822 cipher_name_len);
823 crypt_stat->cipher[cipher_name_len] = '\0';
824 crypt_stat->key_size =
825 mount_crypt_stat->global_default_cipher_key_size;
826 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
827 rc = ecryptfs_init_crypt_ctx(crypt_stat);
828 if (rc)
829 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
830 "context for cipher [%s]: rc = [%d]\n",
831 crypt_stat->cipher, rc);
f4aad16a 832out:
237fead6
MH
833 return rc;
834}
835
836/**
7a86617e 837 * ecryptfs_validate_marker - check for the ecryptfs marker
237fead6
MH
838 * @data: The data block in which to check
839 *
7a86617e 840 * Returns zero if marker found; -EINVAL if not found
237fead6 841 */
7a86617e 842static int ecryptfs_validate_marker(char *data)
237fead6
MH
843{
844 u32 m_1, m_2;
845
29335c6a
HH
846 m_1 = get_unaligned_be32(data);
847 m_2 = get_unaligned_be32(data + 4);
237fead6 848 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
7a86617e 849 return 0;
237fead6
MH
850 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
851 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
852 MAGIC_ECRYPTFS_MARKER);
853 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
854 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
7a86617e 855 return -EINVAL;
237fead6
MH
856}
857
858struct ecryptfs_flag_map_elem {
859 u32 file_flag;
860 u32 local_flag;
861};
862
863/* Add support for additional flags by adding elements here. */
864static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
865 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a 866 {0x00000002, ECRYPTFS_ENCRYPTED},
addd65ad
MH
867 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
868 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
237fead6
MH
869};
870
871/**
872 * ecryptfs_process_flags
22e78faf 873 * @crypt_stat: The cryptographic context
237fead6
MH
874 * @page_virt: Source data to be parsed
875 * @bytes_read: Updated with the number of bytes read
876 *
877 * Returns zero on success; non-zero if the flag set is invalid
878 */
879static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
880 char *page_virt, int *bytes_read)
881{
882 int rc = 0;
883 int i;
884 u32 flags;
885
29335c6a 886 flags = get_unaligned_be32(page_virt);
237fead6
MH
887 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
888 / sizeof(struct ecryptfs_flag_map_elem))); i++)
889 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 890 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 891 } else
e2bd99ec 892 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
893 /* Version is in top 8 bits of the 32-bit flag vector */
894 crypt_stat->file_version = ((flags >> 24) & 0xFF);
895 (*bytes_read) = 4;
896 return rc;
897}
898
899/**
900 * write_ecryptfs_marker
901 * @page_virt: The pointer to in a page to begin writing the marker
902 * @written: Number of bytes written
903 *
904 * Marker = 0x3c81b7f5
905 */
906static void write_ecryptfs_marker(char *page_virt, size_t *written)
907{
908 u32 m_1, m_2;
909
910 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
911 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
29335c6a
HH
912 put_unaligned_be32(m_1, page_virt);
913 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
914 put_unaligned_be32(m_2, page_virt);
237fead6
MH
915 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
916}
917
f4e60e6b
TH
918void ecryptfs_write_crypt_stat_flags(char *page_virt,
919 struct ecryptfs_crypt_stat *crypt_stat,
920 size_t *written)
237fead6
MH
921{
922 u32 flags = 0;
923 int i;
924
925 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
926 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 927 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
928 flags |= ecryptfs_flag_map[i].file_flag;
929 /* Version is in top 8 bits of the 32-bit flag vector */
930 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
29335c6a 931 put_unaligned_be32(flags, page_virt);
237fead6
MH
932 (*written) = 4;
933}
934
935struct ecryptfs_cipher_code_str_map_elem {
936 char cipher_str[16];
19e66a67 937 u8 cipher_code;
237fead6
MH
938};
939
940/* Add support for additional ciphers by adding elements here. The
40f0fd37 941 * cipher_code is whatever OpenPGP applications use to identify the
237fead6
MH
942 * ciphers. List in order of probability. */
943static struct ecryptfs_cipher_code_str_map_elem
944ecryptfs_cipher_code_str_map[] = {
945 {"aes",RFC2440_CIPHER_AES_128 },
946 {"blowfish", RFC2440_CIPHER_BLOWFISH},
947 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
948 {"cast5", RFC2440_CIPHER_CAST_5},
949 {"twofish", RFC2440_CIPHER_TWOFISH},
950 {"cast6", RFC2440_CIPHER_CAST_6},
951 {"aes", RFC2440_CIPHER_AES_192},
952 {"aes", RFC2440_CIPHER_AES_256}
953};
954
955/**
956 * ecryptfs_code_for_cipher_string
9c79f34f
MH
957 * @cipher_name: The string alias for the cipher
958 * @key_bytes: Length of key in bytes; used for AES code selection
237fead6
MH
959 *
960 * Returns zero on no match, or the cipher code on match
961 */
9c79f34f 962u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
237fead6
MH
963{
964 int i;
19e66a67 965 u8 code = 0;
237fead6
MH
966 struct ecryptfs_cipher_code_str_map_elem *map =
967 ecryptfs_cipher_code_str_map;
968
9c79f34f
MH
969 if (strcmp(cipher_name, "aes") == 0) {
970 switch (key_bytes) {
237fead6
MH
971 case 16:
972 code = RFC2440_CIPHER_AES_128;
973 break;
974 case 24:
975 code = RFC2440_CIPHER_AES_192;
976 break;
977 case 32:
978 code = RFC2440_CIPHER_AES_256;
979 }
980 } else {
981 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
9c79f34f 982 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
237fead6
MH
983 code = map[i].cipher_code;
984 break;
985 }
986 }
987 return code;
988}
989
990/**
991 * ecryptfs_cipher_code_to_string
992 * @str: Destination to write out the cipher name
993 * @cipher_code: The code to convert to cipher name string
994 *
995 * Returns zero on success
996 */
19e66a67 997int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
237fead6
MH
998{
999 int rc = 0;
1000 int i;
1001
1002 str[0] = '\0';
1003 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1004 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1005 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1006 if (str[0] == '\0') {
1007 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1008 "[%d]\n", cipher_code);
1009 rc = -EINVAL;
1010 }
1011 return rc;
1012}
1013
778aeb42 1014int ecryptfs_read_and_validate_header_region(struct inode *inode)
dd2a3b7a 1015{
778aeb42
TH
1016 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1017 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1018 int rc;
1019
778aeb42
TH
1020 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1021 inode);
1022 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1023 return rc >= 0 ? -EINVAL : rc;
1024 rc = ecryptfs_validate_marker(marker);
1025 if (!rc)
1026 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1027 return rc;
1028}
1029
e77a56dd
MH
1030void
1031ecryptfs_write_header_metadata(char *virt,
1032 struct ecryptfs_crypt_stat *crypt_stat,
1033 size_t *written)
237fead6
MH
1034{
1035 u32 header_extent_size;
1036 u16 num_header_extents_at_front;
1037
45eaab79 1038 header_extent_size = (u32)crypt_stat->extent_size;
237fead6 1039 num_header_extents_at_front =
fa3ef1cb 1040 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
29335c6a 1041 put_unaligned_be32(header_extent_size, virt);
237fead6 1042 virt += 4;
29335c6a 1043 put_unaligned_be16(num_header_extents_at_front, virt);
237fead6
MH
1044 (*written) = 6;
1045}
1046
30632870 1047struct kmem_cache *ecryptfs_header_cache;
237fead6
MH
1048
1049/**
1050 * ecryptfs_write_headers_virt
22e78faf 1051 * @page_virt: The virtual address to write the headers to
87b811c3 1052 * @max: The size of memory allocated at page_virt
22e78faf
MH
1053 * @size: Set to the number of bytes written by this function
1054 * @crypt_stat: The cryptographic context
1055 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1056 *
1057 * Format version: 1
1058 *
1059 * Header Extent:
1060 * Octets 0-7: Unencrypted file size (big-endian)
1061 * Octets 8-15: eCryptfs special marker
1062 * Octets 16-19: Flags
1063 * Octet 16: File format version number (between 0 and 255)
1064 * Octets 17-18: Reserved
1065 * Octet 19: Bit 1 (lsb): Reserved
1066 * Bit 2: Encrypted?
1067 * Bits 3-8: Reserved
1068 * Octets 20-23: Header extent size (big-endian)
1069 * Octets 24-25: Number of header extents at front of file
1070 * (big-endian)
1071 * Octet 26: Begin RFC 2440 authentication token packet set
1072 * Data Extent 0:
1073 * Lower data (CBC encrypted)
1074 * Data Extent 1:
1075 * Lower data (CBC encrypted)
1076 * ...
1077 *
1078 * Returns zero on success
1079 */
87b811c3
ES
1080static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1081 size_t *size,
dd2a3b7a
MH
1082 struct ecryptfs_crypt_stat *crypt_stat,
1083 struct dentry *ecryptfs_dentry)
237fead6
MH
1084{
1085 int rc;
1086 size_t written;
1087 size_t offset;
1088
1089 offset = ECRYPTFS_FILE_SIZE_BYTES;
1090 write_ecryptfs_marker((page_virt + offset), &written);
1091 offset += written;
f4e60e6b
TH
1092 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1093 &written);
237fead6 1094 offset += written;
e77a56dd
MH
1095 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1096 &written);
237fead6
MH
1097 offset += written;
1098 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1099 ecryptfs_dentry, &written,
87b811c3 1100 max - offset);
237fead6
MH
1101 if (rc)
1102 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1103 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1104 if (size) {
1105 offset += written;
1106 *size = offset;
1107 }
1108 return rc;
1109}
1110
22e78faf 1111static int
b59db43a 1112ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
8faece5f 1113 char *virt, size_t virt_len)
dd2a3b7a 1114{
d7cdc5fe 1115 int rc;
dd2a3b7a 1116
b59db43a 1117 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
8faece5f 1118 0, virt_len);
96a7b9c2 1119 if (rc < 0)
d7cdc5fe 1120 printk(KERN_ERR "%s: Error attempting to write header "
96a7b9c2
TH
1121 "information to lower file; rc = [%d]\n", __func__, rc);
1122 else
1123 rc = 0;
70456600 1124 return rc;
dd2a3b7a
MH
1125}
1126
22e78faf
MH
1127static int
1128ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
3767e255 1129 struct inode *ecryptfs_inode,
22e78faf 1130 char *page_virt, size_t size)
dd2a3b7a
MH
1131{
1132 int rc;
1133
3767e255
AV
1134 rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1135 ECRYPTFS_XATTR_NAME, page_virt, size, 0);
237fead6
MH
1136 return rc;
1137}
1138
8faece5f
TH
1139static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1140 unsigned int order)
1141{
1142 struct page *page;
1143
1144 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1145 if (page)
1146 return (unsigned long) page_address(page);
1147 return 0;
1148}
1149
237fead6 1150/**
dd2a3b7a 1151 * ecryptfs_write_metadata
b59db43a
TH
1152 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1153 * @ecryptfs_inode: The newly created eCryptfs inode
237fead6
MH
1154 *
1155 * Write the file headers out. This will likely involve a userspace
1156 * callout, in which the session key is encrypted with one or more
1157 * public keys and/or the passphrase necessary to do the encryption is
1158 * retrieved via a prompt. Exactly what happens at this point should
1159 * be policy-dependent.
1160 *
1161 * Returns zero on success; non-zero on error
1162 */
b59db43a
TH
1163int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1164 struct inode *ecryptfs_inode)
237fead6 1165{
d7cdc5fe 1166 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 1167 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
8faece5f 1168 unsigned int order;
cc11beff 1169 char *virt;
8faece5f 1170 size_t virt_len;
d7cdc5fe 1171 size_t size = 0;
237fead6
MH
1172 int rc = 0;
1173
e2bd99ec
MH
1174 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1175 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1176 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1177 rc = -EINVAL;
1178 goto out;
1179 }
1180 } else {
cc11beff 1181 printk(KERN_WARNING "%s: Encrypted flag not set\n",
18d1dbf1 1182 __func__);
237fead6 1183 rc = -EINVAL;
237fead6
MH
1184 goto out;
1185 }
fa3ef1cb 1186 virt_len = crypt_stat->metadata_size;
8faece5f 1187 order = get_order(virt_len);
237fead6 1188 /* Released in this function */
8faece5f 1189 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
cc11beff 1190 if (!virt) {
18d1dbf1 1191 printk(KERN_ERR "%s: Out of memory\n", __func__);
237fead6
MH
1192 rc = -ENOMEM;
1193 goto out;
1194 }
bd4f0fe8 1195 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
8faece5f
TH
1196 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1197 ecryptfs_dentry);
237fead6 1198 if (unlikely(rc)) {
cc11beff 1199 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
18d1dbf1 1200 __func__, rc);
237fead6
MH
1201 goto out_free;
1202 }
dd2a3b7a 1203 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
3767e255
AV
1204 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1205 virt, size);
dd2a3b7a 1206 else
b59db43a 1207 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
8faece5f 1208 virt_len);
dd2a3b7a 1209 if (rc) {
cc11beff 1210 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
18d1dbf1 1211 "rc = [%d]\n", __func__, rc);
dd2a3b7a 1212 goto out_free;
237fead6 1213 }
237fead6 1214out_free:
8faece5f 1215 free_pages((unsigned long)virt, order);
237fead6
MH
1216out:
1217 return rc;
1218}
1219
dd2a3b7a
MH
1220#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1221#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1222static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1223 char *virt, int *bytes_read,
1224 int validate_header_size)
237fead6
MH
1225{
1226 int rc = 0;
1227 u32 header_extent_size;
1228 u16 num_header_extents_at_front;
1229
29335c6a
HH
1230 header_extent_size = get_unaligned_be32(virt);
1231 virt += sizeof(__be32);
1232 num_header_extents_at_front = get_unaligned_be16(virt);
fa3ef1cb
TH
1233 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1234 * (size_t)header_extent_size));
29335c6a 1235 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
dd2a3b7a 1236 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
fa3ef1cb 1237 && (crypt_stat->metadata_size
dd2a3b7a 1238 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1239 rc = -EINVAL;
cc11beff 1240 printk(KERN_WARNING "Invalid header size: [%zd]\n",
fa3ef1cb 1241 crypt_stat->metadata_size);
237fead6
MH
1242 }
1243 return rc;
1244}
1245
1246/**
1247 * set_default_header_data
22e78faf 1248 * @crypt_stat: The cryptographic context
237fead6
MH
1249 *
1250 * For version 0 file format; this function is only for backwards
1251 * compatibility for files created with the prior versions of
1252 * eCryptfs.
1253 */
1254static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1255{
fa3ef1cb 1256 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
237fead6
MH
1257}
1258
3aeb86ea
TH
1259void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1260{
1261 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1262 struct ecryptfs_crypt_stat *crypt_stat;
1263 u64 file_size;
1264
1265 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1266 mount_crypt_stat =
1267 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1268 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1269 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1270 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1271 file_size += crypt_stat->metadata_size;
1272 } else
1273 file_size = get_unaligned_be64(page_virt);
1274 i_size_write(inode, (loff_t)file_size);
1275 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1276}
1277
237fead6
MH
1278/**
1279 * ecryptfs_read_headers_virt
22e78faf
MH
1280 * @page_virt: The virtual address into which to read the headers
1281 * @crypt_stat: The cryptographic context
1282 * @ecryptfs_dentry: The eCryptfs dentry
1283 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1284 *
1285 * Read/parse the header data. The header format is detailed in the
1286 * comment block for the ecryptfs_write_headers_virt() function.
1287 *
1288 * Returns zero on success
1289 */
1290static int ecryptfs_read_headers_virt(char *page_virt,
1291 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1292 struct dentry *ecryptfs_dentry,
1293 int validate_header_size)
237fead6
MH
1294{
1295 int rc = 0;
1296 int offset;
1297 int bytes_read;
1298
1299 ecryptfs_set_default_sizes(crypt_stat);
1300 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1301 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1302 offset = ECRYPTFS_FILE_SIZE_BYTES;
7a86617e
TH
1303 rc = ecryptfs_validate_marker(page_virt + offset);
1304 if (rc)
237fead6 1305 goto out;
3aeb86ea 1306 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
2b0143b5 1307 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
237fead6
MH
1308 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1309 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1310 &bytes_read);
1311 if (rc) {
1312 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1313 goto out;
1314 }
1315 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1316 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1317 "file version [%d] is supported by this "
1318 "version of eCryptfs\n",
1319 crypt_stat->file_version,
1320 ECRYPTFS_SUPPORTED_FILE_VERSION);
1321 rc = -EINVAL;
1322 goto out;
1323 }
1324 offset += bytes_read;
1325 if (crypt_stat->file_version >= 1) {
1326 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1327 &bytes_read, validate_header_size);
237fead6
MH
1328 if (rc) {
1329 ecryptfs_printk(KERN_WARNING, "Error reading header "
1330 "metadata; rc = [%d]\n", rc);
1331 }
1332 offset += bytes_read;
1333 } else
1334 set_default_header_data(crypt_stat);
1335 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1336 ecryptfs_dentry);
1337out:
1338 return rc;
1339}
1340
1341/**
dd2a3b7a 1342 * ecryptfs_read_xattr_region
22e78faf 1343 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1344 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1345 *
1346 * Attempts to read the crypto metadata from the extended attribute
1347 * region of the lower file.
22e78faf
MH
1348 *
1349 * Returns zero on success; non-zero on error
dd2a3b7a 1350 */
d7cdc5fe 1351int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1352{
d7cdc5fe 1353 struct dentry *lower_dentry =
b583043e 1354 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
dd2a3b7a
MH
1355 ssize_t size;
1356 int rc = 0;
1357
ce23e640
AV
1358 size = ecryptfs_getxattr_lower(lower_dentry,
1359 ecryptfs_inode_to_lower(ecryptfs_inode),
1360 ECRYPTFS_XATTR_NAME,
d7cdc5fe 1361 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1362 if (size < 0) {
25bd8174
MH
1363 if (unlikely(ecryptfs_verbosity > 0))
1364 printk(KERN_INFO "Error attempting to read the [%s] "
1365 "xattr from the lower file; return value = "
1366 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
dd2a3b7a
MH
1367 rc = -EINVAL;
1368 goto out;
1369 }
1370out:
1371 return rc;
1372}
1373
778aeb42 1374int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
3b06b3eb 1375 struct inode *inode)
dd2a3b7a 1376{
778aeb42
TH
1377 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1378 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1379 int rc;
1380
778aeb42 1381 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
ce23e640 1382 ecryptfs_inode_to_lower(inode),
778aeb42
TH
1383 ECRYPTFS_XATTR_NAME, file_size,
1384 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1385 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1386 return rc >= 0 ? -EINVAL : rc;
1387 rc = ecryptfs_validate_marker(marker);
1388 if (!rc)
1389 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1390 return rc;
1391}
1392
1393/**
1394 * ecryptfs_read_metadata
1395 *
1396 * Common entry point for reading file metadata. From here, we could
1397 * retrieve the header information from the header region of the file,
40f0fd37 1398 * the xattr region of the file, or some other repository that is
dd2a3b7a
MH
1399 * stored separately from the file itself. The current implementation
1400 * supports retrieving the metadata information from the file contents
1401 * and from the xattr region.
237fead6
MH
1402 *
1403 * Returns zero if valid headers found and parsed; non-zero otherwise
1404 */
d7cdc5fe 1405int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6 1406{
bb450361
TG
1407 int rc;
1408 char *page_virt;
2b0143b5 1409 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
237fead6 1410 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1411 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1412 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1413 &ecryptfs_superblock_to_private(
1414 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1415
e77a56dd
MH
1416 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1417 mount_crypt_stat);
237fead6 1418 /* Read the first page from the underlying file */
30632870 1419 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
237fead6
MH
1420 if (!page_virt) {
1421 rc = -ENOMEM;
237fead6
MH
1422 goto out;
1423 }
d7cdc5fe
MH
1424 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1425 ecryptfs_inode);
96a7b9c2 1426 if (rc >= 0)
d7cdc5fe
MH
1427 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1428 ecryptfs_dentry,
1429 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1430 if (rc) {
bb450361 1431 /* metadata is not in the file header, so try xattrs */
09cbfeaf 1432 memset(page_virt, 0, PAGE_SIZE);
d7cdc5fe 1433 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1434 if (rc) {
1435 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1436 "file header region or xattr region, inode %lu\n",
1437 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1438 rc = -EINVAL;
1439 goto out;
1440 }
1441 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1442 ecryptfs_dentry,
1443 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1444 if (rc) {
1445 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1446 "file xattr region either, inode %lu\n",
1447 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1448 rc = -EINVAL;
1449 }
1450 if (crypt_stat->mount_crypt_stat->flags
1451 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1452 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1453 } else {
1454 printk(KERN_WARNING "Attempt to access file with "
1455 "crypto metadata only in the extended attribute "
1456 "region, but eCryptfs was mounted without "
1457 "xattr support enabled. eCryptfs will not treat "
30373dc0
TG
1458 "this like an encrypted file, inode %lu\n",
1459 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1460 rc = -EINVAL;
1461 }
237fead6
MH
1462 }
1463out:
1464 if (page_virt) {
09cbfeaf 1465 memset(page_virt, 0, PAGE_SIZE);
30632870 1466 kmem_cache_free(ecryptfs_header_cache, page_virt);
237fead6
MH
1467 }
1468 return rc;
1469}
1470
51ca58dc
MH
1471/**
1472 * ecryptfs_encrypt_filename - encrypt filename
1473 *
1474 * CBC-encrypts the filename. We do not want to encrypt the same
1475 * filename with the same key and IV, which may happen with hard
1476 * links, so we prepend random bits to each filename.
1477 *
1478 * Returns zero on success; non-zero otherwise
1479 */
1480static int
1481ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
51ca58dc
MH
1482 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1483{
1484 int rc = 0;
1485
1486 filename->encrypted_filename = NULL;
1487 filename->encrypted_filename_size = 0;
97c31606
AV
1488 if (mount_crypt_stat && (mount_crypt_stat->flags
1489 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
51ca58dc
MH
1490 size_t packet_size;
1491 size_t remaining_bytes;
1492
1493 rc = ecryptfs_write_tag_70_packet(
1494 NULL, NULL,
1495 &filename->encrypted_filename_size,
1496 mount_crypt_stat, NULL,
1497 filename->filename_size);
1498 if (rc) {
1499 printk(KERN_ERR "%s: Error attempting to get packet "
1500 "size for tag 72; rc = [%d]\n", __func__,
1501 rc);
1502 filename->encrypted_filename_size = 0;
1503 goto out;
1504 }
1505 filename->encrypted_filename =
1506 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1507 if (!filename->encrypted_filename) {
51ca58dc
MH
1508 rc = -ENOMEM;
1509 goto out;
1510 }
1511 remaining_bytes = filename->encrypted_filename_size;
1512 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1513 &remaining_bytes,
1514 &packet_size,
1515 mount_crypt_stat,
1516 filename->filename,
1517 filename->filename_size);
1518 if (rc) {
1519 printk(KERN_ERR "%s: Error attempting to generate "
1520 "tag 70 packet; rc = [%d]\n", __func__,
1521 rc);
1522 kfree(filename->encrypted_filename);
1523 filename->encrypted_filename = NULL;
1524 filename->encrypted_filename_size = 0;
1525 goto out;
1526 }
1527 filename->encrypted_filename_size = packet_size;
1528 } else {
1529 printk(KERN_ERR "%s: No support for requested filename "
1530 "encryption method in this release\n", __func__);
df6ad33b 1531 rc = -EOPNOTSUPP;
51ca58dc
MH
1532 goto out;
1533 }
1534out:
1535 return rc;
1536}
1537
1538static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1539 const char *name, size_t name_size)
1540{
1541 int rc = 0;
1542
fd9fc842 1543 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
51ca58dc
MH
1544 if (!(*copied_name)) {
1545 rc = -ENOMEM;
1546 goto out;
1547 }
1548 memcpy((void *)(*copied_name), (void *)name, name_size);
1549 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1550 * in printing out the
1551 * string in debug
1552 * messages */
fd9fc842 1553 (*copied_name_size) = name_size;
51ca58dc
MH
1554out:
1555 return rc;
1556}
1557
237fead6 1558/**
f4aad16a 1559 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1560 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1561 * @cipher_name: Name of the cipher
1562 * @key_size: Size of the key in bytes
237fead6
MH
1563 *
1564 * Returns zero on success. Any crypto_tfm structs allocated here
1565 * should be released by other functions, such as on a superblock put
1566 * event, regardless of whether this function succeeds for fails.
1567 */
cd9d67df 1568static int
3095e8e3 1569ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
f4aad16a 1570 char *cipher_name, size_t *key_size)
237fead6
MH
1571{
1572 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
ece550f5 1573 char *full_alg_name = NULL;
237fead6
MH
1574 int rc;
1575
e5d9cbde
MH
1576 *key_tfm = NULL;
1577 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6 1578 rc = -EINVAL;
df261c52 1579 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
e5d9cbde 1580 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1581 goto out;
1582 }
8bba066f
MH
1583 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1584 "ecb");
1585 if (rc)
1586 goto out;
3095e8e3 1587 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
8bba066f
MH
1588 if (IS_ERR(*key_tfm)) {
1589 rc = PTR_ERR(*key_tfm);
237fead6 1590 printk(KERN_ERR "Unable to allocate crypto cipher with name "
38268498 1591 "[%s]; rc = [%d]\n", full_alg_name, rc);
237fead6
MH
1592 goto out;
1593 }
3095e8e3
HX
1594 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1595 if (*key_size == 0)
1596 *key_size = crypto_skcipher_default_keysize(*key_tfm);
e5d9cbde 1597 get_random_bytes(dummy_key, *key_size);
3095e8e3 1598 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6 1599 if (rc) {
df261c52 1600 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
38268498
DH
1601 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1602 rc);
237fead6
MH
1603 rc = -EINVAL;
1604 goto out;
1605 }
1606out:
ece550f5 1607 kfree(full_alg_name);
237fead6
MH
1608 return rc;
1609}
f4aad16a
MH
1610
1611struct kmem_cache *ecryptfs_key_tfm_cache;
7896b631 1612static struct list_head key_tfm_list;
af440f52 1613struct mutex key_tfm_list_mutex;
f4aad16a 1614
7371a382 1615int __init ecryptfs_init_crypto(void)
f4aad16a
MH
1616{
1617 mutex_init(&key_tfm_list_mutex);
1618 INIT_LIST_HEAD(&key_tfm_list);
1619 return 0;
1620}
1621
af440f52
ES
1622/**
1623 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1624 *
1625 * Called only at module unload time
1626 */
fcd12835 1627int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1628{
1629 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1630
1631 mutex_lock(&key_tfm_list_mutex);
1632 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1633 key_tfm_list) {
1634 list_del(&key_tfm->key_tfm_list);
3095e8e3 1635 crypto_free_skcipher(key_tfm->key_tfm);
f4aad16a
MH
1636 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1637 }
1638 mutex_unlock(&key_tfm_list_mutex);
1639 return 0;
1640}
1641
1642int
1643ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1644 size_t key_size)
1645{
1646 struct ecryptfs_key_tfm *tmp_tfm;
1647 int rc = 0;
1648
af440f52
ES
1649 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1650
f4aad16a 1651 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
5032f360 1652 if (key_tfm)
f4aad16a
MH
1653 (*key_tfm) = tmp_tfm;
1654 if (!tmp_tfm) {
1655 rc = -ENOMEM;
f4aad16a
MH
1656 goto out;
1657 }
1658 mutex_init(&tmp_tfm->key_tfm_mutex);
1659 strncpy(tmp_tfm->cipher_name, cipher_name,
1660 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
b8862906 1661 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
f4aad16a 1662 tmp_tfm->key_size = key_size;
5dda6992
MH
1663 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1664 tmp_tfm->cipher_name,
1665 &tmp_tfm->key_size);
1666 if (rc) {
f4aad16a
MH
1667 printk(KERN_ERR "Error attempting to initialize key TFM "
1668 "cipher with name = [%s]; rc = [%d]\n",
1669 tmp_tfm->cipher_name, rc);
1670 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
5032f360 1671 if (key_tfm)
f4aad16a
MH
1672 (*key_tfm) = NULL;
1673 goto out;
1674 }
f4aad16a 1675 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
f4aad16a
MH
1676out:
1677 return rc;
1678}
1679
af440f52
ES
1680/**
1681 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1682 * @cipher_name: the name of the cipher to search for
1683 * @key_tfm: set to corresponding tfm if found
1684 *
1685 * Searches for cached key_tfm matching @cipher_name
1686 * Must be called with &key_tfm_list_mutex held
1687 * Returns 1 if found, with @key_tfm set
1688 * Returns 0 if not found, with @key_tfm set to NULL
1689 */
1690int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1691{
1692 struct ecryptfs_key_tfm *tmp_key_tfm;
1693
1694 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1695
1696 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1697 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1698 if (key_tfm)
1699 (*key_tfm) = tmp_key_tfm;
1700 return 1;
1701 }
1702 }
1703 if (key_tfm)
1704 (*key_tfm) = NULL;
1705 return 0;
1706}
1707
1708/**
1709 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1710 *
1711 * @tfm: set to cached tfm found, or new tfm created
1712 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1713 * @cipher_name: the name of the cipher to search for and/or add
1714 *
1715 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1716 * Searches for cached item first, and creates new if not found.
1717 * Returns 0 on success, non-zero if adding new cipher failed
1718 */
3095e8e3 1719int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
f4aad16a
MH
1720 struct mutex **tfm_mutex,
1721 char *cipher_name)
1722{
1723 struct ecryptfs_key_tfm *key_tfm;
1724 int rc = 0;
1725
1726 (*tfm) = NULL;
1727 (*tfm_mutex) = NULL;
af440f52 1728
f4aad16a 1729 mutex_lock(&key_tfm_list_mutex);
af440f52
ES
1730 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1731 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1732 if (rc) {
1733 printk(KERN_ERR "Error adding new key_tfm to list; "
1734 "rc = [%d]\n", rc);
f4aad16a
MH
1735 goto out;
1736 }
1737 }
f4aad16a
MH
1738 (*tfm) = key_tfm->key_tfm;
1739 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1740out:
71fd5179 1741 mutex_unlock(&key_tfm_list_mutex);
f4aad16a
MH
1742 return rc;
1743}
51ca58dc
MH
1744
1745/* 64 characters forming a 6-bit target field */
1746static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1747 "EFGHIJKLMNOPQRST"
1748 "UVWXYZabcdefghij"
1749 "klmnopqrstuvwxyz");
1750
1751/* We could either offset on every reverse map or just pad some 0x00's
1752 * at the front here */
0f751e64 1753static const unsigned char filename_rev_map[256] = {
51ca58dc
MH
1754 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1755 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1756 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1757 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1758 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1759 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1760 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1761 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1762 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1763 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1764 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1765 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1766 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1767 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1768 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
0f751e64 1769 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
51ca58dc
MH
1770};
1771
1772/**
1773 * ecryptfs_encode_for_filename
1774 * @dst: Destination location for encoded filename
1775 * @dst_size: Size of the encoded filename in bytes
1776 * @src: Source location for the filename to encode
1777 * @src_size: Size of the source in bytes
1778 */
37028758 1779static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
51ca58dc
MH
1780 unsigned char *src, size_t src_size)
1781{
1782 size_t num_blocks;
1783 size_t block_num = 0;
1784 size_t dst_offset = 0;
1785 unsigned char last_block[3];
1786
1787 if (src_size == 0) {
1788 (*dst_size) = 0;
1789 goto out;
1790 }
1791 num_blocks = (src_size / 3);
1792 if ((src_size % 3) == 0) {
1793 memcpy(last_block, (&src[src_size - 3]), 3);
1794 } else {
1795 num_blocks++;
1796 last_block[2] = 0x00;
1797 switch (src_size % 3) {
1798 case 1:
1799 last_block[0] = src[src_size - 1];
1800 last_block[1] = 0x00;
1801 break;
1802 case 2:
1803 last_block[0] = src[src_size - 2];
1804 last_block[1] = src[src_size - 1];
1805 }
1806 }
1807 (*dst_size) = (num_blocks * 4);
1808 if (!dst)
1809 goto out;
1810 while (block_num < num_blocks) {
1811 unsigned char *src_block;
1812 unsigned char dst_block[4];
1813
1814 if (block_num == (num_blocks - 1))
1815 src_block = last_block;
1816 else
1817 src_block = &src[block_num * 3];
1818 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1819 dst_block[1] = (((src_block[0] << 4) & 0x30)
1820 | ((src_block[1] >> 4) & 0x0F));
1821 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1822 | ((src_block[2] >> 6) & 0x03));
1823 dst_block[3] = (src_block[2] & 0x3F);
1824 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1825 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1826 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1827 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1828 block_num++;
1829 }
1830out:
1831 return;
1832}
1833
4a26620d
TH
1834static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1835{
1836 /* Not exact; conservatively long. Every block of 4
1837 * encoded characters decodes into a block of 3
1838 * decoded characters. This segment of code provides
1839 * the caller with the maximum amount of allocated
1840 * space that @dst will need to point to in a
1841 * subsequent call. */
1842 return ((encoded_size + 1) * 3) / 4;
1843}
1844
71c11c37
MH
1845/**
1846 * ecryptfs_decode_from_filename
1847 * @dst: If NULL, this function only sets @dst_size and returns. If
1848 * non-NULL, this function decodes the encoded octets in @src
1849 * into the memory that @dst points to.
1850 * @dst_size: Set to the size of the decoded string.
1851 * @src: The encoded set of octets to decode.
1852 * @src_size: The size of the encoded set of octets to decode.
1853 */
1854static void
1855ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1856 const unsigned char *src, size_t src_size)
51ca58dc
MH
1857{
1858 u8 current_bit_offset = 0;
1859 size_t src_byte_offset = 0;
1860 size_t dst_byte_offset = 0;
51ca58dc 1861
5032f360 1862 if (!dst) {
4a26620d 1863 (*dst_size) = ecryptfs_max_decoded_size(src_size);
51ca58dc
MH
1864 goto out;
1865 }
1866 while (src_byte_offset < src_size) {
1867 unsigned char src_byte =
1868 filename_rev_map[(int)src[src_byte_offset]];
1869
1870 switch (current_bit_offset) {
1871 case 0:
1872 dst[dst_byte_offset] = (src_byte << 2);
1873 current_bit_offset = 6;
1874 break;
1875 case 6:
1876 dst[dst_byte_offset++] |= (src_byte >> 4);
1877 dst[dst_byte_offset] = ((src_byte & 0xF)
1878 << 4);
1879 current_bit_offset = 4;
1880 break;
1881 case 4:
1882 dst[dst_byte_offset++] |= (src_byte >> 2);
1883 dst[dst_byte_offset] = (src_byte << 6);
1884 current_bit_offset = 2;
1885 break;
1886 case 2:
1887 dst[dst_byte_offset++] |= (src_byte);
51ca58dc
MH
1888 current_bit_offset = 0;
1889 break;
1890 }
1891 src_byte_offset++;
1892 }
1893 (*dst_size) = dst_byte_offset;
1894out:
71c11c37 1895 return;
51ca58dc
MH
1896}
1897
1898/**
1899 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1900 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1901 * @name: The plaintext name
1902 * @length: The length of the plaintext
1903 * @encoded_name: The encypted name
1904 *
1905 * Encrypts and encodes a filename into something that constitutes a
1906 * valid filename for a filesystem, with printable characters.
1907 *
1908 * We assume that we have a properly initialized crypto context,
1909 * pointed to by crypt_stat->tfm.
1910 *
1911 * Returns zero on success; non-zero on otherwise
1912 */
1913int ecryptfs_encrypt_and_encode_filename(
1914 char **encoded_name,
1915 size_t *encoded_name_size,
51ca58dc
MH
1916 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1917 const char *name, size_t name_size)
1918{
1919 size_t encoded_name_no_prefix_size;
1920 int rc = 0;
1921
1922 (*encoded_name) = NULL;
1923 (*encoded_name_size) = 0;
97c31606
AV
1924 if (mount_crypt_stat && (mount_crypt_stat->flags
1925 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
51ca58dc
MH
1926 struct ecryptfs_filename *filename;
1927
1928 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1929 if (!filename) {
51ca58dc
MH
1930 rc = -ENOMEM;
1931 goto out;
1932 }
1933 filename->filename = (char *)name;
1934 filename->filename_size = name_size;
97c31606 1935 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
51ca58dc
MH
1936 if (rc) {
1937 printk(KERN_ERR "%s: Error attempting to encrypt "
1938 "filename; rc = [%d]\n", __func__, rc);
1939 kfree(filename);
1940 goto out;
1941 }
1942 ecryptfs_encode_for_filename(
1943 NULL, &encoded_name_no_prefix_size,
1944 filename->encrypted_filename,
1945 filename->encrypted_filename_size);
97c31606 1946 if (mount_crypt_stat
51ca58dc 1947 && (mount_crypt_stat->flags
97c31606 1948 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
51ca58dc
MH
1949 (*encoded_name_size) =
1950 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1951 + encoded_name_no_prefix_size);
1952 else
1953 (*encoded_name_size) =
1954 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1955 + encoded_name_no_prefix_size);
1956 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1957 if (!(*encoded_name)) {
51ca58dc
MH
1958 rc = -ENOMEM;
1959 kfree(filename->encrypted_filename);
1960 kfree(filename);
1961 goto out;
1962 }
97c31606 1963 if (mount_crypt_stat
51ca58dc 1964 && (mount_crypt_stat->flags
97c31606 1965 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
51ca58dc
MH
1966 memcpy((*encoded_name),
1967 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1968 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1969 ecryptfs_encode_for_filename(
1970 ((*encoded_name)
1971 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1972 &encoded_name_no_prefix_size,
1973 filename->encrypted_filename,
1974 filename->encrypted_filename_size);
1975 (*encoded_name_size) =
1976 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1977 + encoded_name_no_prefix_size);
1978 (*encoded_name)[(*encoded_name_size)] = '\0';
51ca58dc 1979 } else {
df6ad33b 1980 rc = -EOPNOTSUPP;
51ca58dc
MH
1981 }
1982 if (rc) {
1983 printk(KERN_ERR "%s: Error attempting to encode "
1984 "encrypted filename; rc = [%d]\n", __func__,
1985 rc);
1986 kfree((*encoded_name));
1987 (*encoded_name) = NULL;
1988 (*encoded_name_size) = 0;
1989 }
1990 kfree(filename->encrypted_filename);
1991 kfree(filename);
1992 } else {
1993 rc = ecryptfs_copy_filename(encoded_name,
1994 encoded_name_size,
1995 name, name_size);
1996 }
1997out:
1998 return rc;
1999}
2000
2001/**
2002 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2003 * @plaintext_name: The plaintext name
2004 * @plaintext_name_size: The plaintext name size
2005 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2006 * @name: The filename in cipher text
2007 * @name_size: The cipher text name size
2008 *
2009 * Decrypts and decodes the filename.
2010 *
2011 * Returns zero on error; non-zero otherwise
2012 */
2013int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2014 size_t *plaintext_name_size,
0747fdb2 2015 struct super_block *sb,
51ca58dc
MH
2016 const char *name, size_t name_size)
2017{
2aac0cf8 2018 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
0747fdb2 2019 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
51ca58dc
MH
2020 char *decoded_name;
2021 size_t decoded_name_size;
2022 size_t packet_size;
2023 int rc = 0;
2024
2aac0cf8
TH
2025 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2026 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2027 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
51ca58dc
MH
2028 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2029 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
51ca58dc
MH
2030 const char *orig_name = name;
2031 size_t orig_name_size = name_size;
2032
2033 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2034 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
71c11c37
MH
2035 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2036 name, name_size);
51ca58dc
MH
2037 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2038 if (!decoded_name) {
51ca58dc
MH
2039 rc = -ENOMEM;
2040 goto out;
2041 }
71c11c37
MH
2042 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2043 name, name_size);
51ca58dc
MH
2044 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2045 plaintext_name_size,
2046 &packet_size,
2047 mount_crypt_stat,
2048 decoded_name,
2049 decoded_name_size);
2050 if (rc) {
2051 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2052 "from filename; copying through filename "
2053 "as-is\n", __func__);
2054 rc = ecryptfs_copy_filename(plaintext_name,
2055 plaintext_name_size,
2056 orig_name, orig_name_size);
2057 goto out_free;
2058 }
2059 } else {
2060 rc = ecryptfs_copy_filename(plaintext_name,
2061 plaintext_name_size,
2062 name, name_size);
2063 goto out;
2064 }
2065out_free:
2066 kfree(decoded_name);
2067out:
2068 return rc;
2069}
4a26620d
TH
2070
2071#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2072
2073int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2074 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2075{
3095e8e3 2076 struct crypto_skcipher *tfm;
4a26620d
TH
2077 struct mutex *tfm_mutex;
2078 size_t cipher_blocksize;
2079 int rc;
2080
2081 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2082 (*namelen) = lower_namelen;
2083 return 0;
2084 }
2085
3095e8e3 2086 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
4a26620d
TH
2087 mount_crypt_stat->global_default_fn_cipher_name);
2088 if (unlikely(rc)) {
2089 (*namelen) = 0;
2090 return rc;
2091 }
2092
2093 mutex_lock(tfm_mutex);
3095e8e3 2094 cipher_blocksize = crypto_skcipher_blocksize(tfm);
4a26620d
TH
2095 mutex_unlock(tfm_mutex);
2096
2097 /* Return an exact amount for the common cases */
2098 if (lower_namelen == NAME_MAX
2099 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2100 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2101 return 0;
2102 }
2103
2104 /* Return a safe estimate for the uncommon cases */
2105 (*namelen) = lower_namelen;
2106 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2107 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2108 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2109 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2110 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2111 /* Worst case is that the filename is padded nearly a full block size */
2112 (*namelen) -= cipher_blocksize - 1;
2113
2114 if ((*namelen) < 0)
2115 (*namelen) = 0;
2116
2117 return 0;
2118}