treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
[linux-block.git] / fs / ecryptfs / crypto.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
237fead6
MH
2/**
3 * eCryptfs: Linux filesystem encryption layer
4 *
5 * Copyright (C) 1997-2004 Erez Zadok
6 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 7 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
237fead6
MH
10 */
11
3095e8e3
HX
12#include <crypto/hash.h>
13#include <crypto/skcipher.h>
237fead6
MH
14#include <linux/fs.h>
15#include <linux/mount.h>
16#include <linux/pagemap.h>
17#include <linux/random.h>
18#include <linux/compiler.h>
19#include <linux/key.h>
20#include <linux/namei.h>
237fead6
MH
21#include <linux/file.h>
22#include <linux/scatterlist.h>
5a0e3ad6 23#include <linux/slab.h>
29335c6a 24#include <asm/unaligned.h>
02f9876e 25#include <linux/kernel.h>
237fead6
MH
26#include "ecryptfs_kernel.h"
27
00a69940
TH
28#define DECRYPT 0
29#define ENCRYPT 1
237fead6 30
237fead6
MH
31/**
32 * ecryptfs_from_hex
33 * @dst: Buffer to take the bytes from src hex; must be at least of
34 * size (src_size / 2)
5f9f2c2a 35 * @src: Buffer to be converted from a hex string representation to raw value
237fead6
MH
36 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
37 */
38void ecryptfs_from_hex(char *dst, char *src, int dst_size)
39{
40 int x;
41 char tmp[3] = { 0, };
42
43 for (x = 0; x < dst_size; x++) {
44 tmp[0] = src[x * 2];
45 tmp[1] = src[x * 2 + 1];
46 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
47 }
48}
49
3095e8e3
HX
50static int ecryptfs_hash_digest(struct crypto_shash *tfm,
51 char *src, int len, char *dst)
52{
53 SHASH_DESC_ON_STACK(desc, tfm);
54 int err;
55
56 desc->tfm = tfm;
3095e8e3
HX
57 err = crypto_shash_digest(desc, src, len, dst);
58 shash_desc_zero(desc);
59 return err;
60}
61
237fead6
MH
62/**
63 * ecryptfs_calculate_md5 - calculates the md5 of @src
64 * @dst: Pointer to 16 bytes of allocated memory
65 * @crypt_stat: Pointer to crypt_stat struct for the current inode
66 * @src: Data to be md5'd
67 * @len: Length of @src
68 *
69 * Uses the allocated crypto context that crypt_stat references to
70 * generate the MD5 sum of the contents of src.
71 */
72static int ecryptfs_calculate_md5(char *dst,
73 struct ecryptfs_crypt_stat *crypt_stat,
74 char *src, int len)
75{
3095e8e3 76 struct crypto_shash *tfm;
565d9724 77 int rc = 0;
237fead6 78
3095e8e3 79 tfm = crypt_stat->hash_tfm;
3095e8e3 80 rc = ecryptfs_hash_digest(tfm, src, len, dst);
8a29f2b0
MH
81 if (rc) {
82 printk(KERN_ERR
3095e8e3 83 "%s: Error computing crypto hash; rc = [%d]\n",
18d1dbf1 84 __func__, rc);
8a29f2b0
MH
85 goto out;
86 }
237fead6
MH
87out:
88 return rc;
89}
90
cd9d67df
MH
91static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
92 char *cipher_name,
93 char *chaining_modifier)
8bba066f
MH
94{
95 int cipher_name_len = strlen(cipher_name);
96 int chaining_modifier_len = strlen(chaining_modifier);
97 int algified_name_len;
98 int rc;
99
100 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
101 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 102 if (!(*algified_name)) {
8bba066f
MH
103 rc = -ENOMEM;
104 goto out;
105 }
106 snprintf((*algified_name), algified_name_len, "%s(%s)",
107 chaining_modifier, cipher_name);
108 rc = 0;
109out:
110 return rc;
111}
112
237fead6
MH
113/**
114 * ecryptfs_derive_iv
115 * @iv: destination for the derived iv vale
116 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 117 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
118 *
119 * Generate the initialization vector from the given root IV and page
120 * offset.
121 *
122 * Returns zero on success; non-zero on error.
123 */
a34f60f7
MH
124int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
125 loff_t offset)
237fead6
MH
126{
127 int rc = 0;
128 char dst[MD5_DIGEST_SIZE];
129 char src[ECRYPTFS_MAX_IV_BYTES + 16];
130
131 if (unlikely(ecryptfs_verbosity > 0)) {
132 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
133 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
134 }
135 /* TODO: It is probably secure to just cast the least
136 * significant bits of the root IV into an unsigned long and
137 * add the offset to that rather than go through all this
138 * hashing business. -Halcrow */
139 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
140 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 141 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
142 if (unlikely(ecryptfs_verbosity > 0)) {
143 ecryptfs_printk(KERN_DEBUG, "source:\n");
144 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
145 }
146 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
147 (crypt_stat->iv_bytes + 16));
148 if (rc) {
149 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
150 "MD5 while generating IV for a page\n");
151 goto out;
152 }
153 memcpy(iv, dst, crypt_stat->iv_bytes);
154 if (unlikely(ecryptfs_verbosity > 0)) {
155 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
156 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
157 }
158out:
159 return rc;
160}
161
162/**
163 * ecryptfs_init_crypt_stat
164 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
165 *
166 * Initialize the crypt_stat structure.
167 */
e81f3340 168int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 169{
e81f3340
HX
170 struct crypto_shash *tfm;
171 int rc;
172
173 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
174 if (IS_ERR(tfm)) {
175 rc = PTR_ERR(tfm);
176 ecryptfs_printk(KERN_ERR, "Error attempting to "
177 "allocate crypto context; rc = [%d]\n",
178 rc);
179 return rc;
180 }
181
237fead6 182 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
183 INIT_LIST_HEAD(&crypt_stat->keysig_list);
184 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
185 mutex_init(&crypt_stat->cs_mutex);
186 mutex_init(&crypt_stat->cs_tfm_mutex);
e81f3340 187 crypt_stat->hash_tfm = tfm;
e2bd99ec 188 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
e81f3340
HX
189
190 return 0;
237fead6
MH
191}
192
193/**
fcd12835 194 * ecryptfs_destroy_crypt_stat
237fead6
MH
195 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
196 *
197 * Releases all memory associated with a crypt_stat struct.
198 */
fcd12835 199void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 200{
f4aad16a
MH
201 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
202
3095e8e3
HX
203 crypto_free_skcipher(crypt_stat->tfm);
204 crypto_free_shash(crypt_stat->hash_tfm);
f4aad16a
MH
205 list_for_each_entry_safe(key_sig, key_sig_tmp,
206 &crypt_stat->keysig_list, crypt_stat_list) {
207 list_del(&key_sig->crypt_stat_list);
208 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
209 }
237fead6
MH
210 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
211}
212
fcd12835 213void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
214 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
215{
f4aad16a
MH
216 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
217
218 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
219 return;
220 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
221 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
222 &mount_crypt_stat->global_auth_tok_list,
223 mount_crypt_stat_list) {
224 list_del(&auth_tok->mount_crypt_stat_list);
0dad87fc 225 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
f4aad16a
MH
226 key_put(auth_tok->global_auth_tok_key);
227 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
228 }
229 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
230 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
231}
232
233/**
234 * virt_to_scatterlist
235 * @addr: Virtual address
236 * @size: Size of data; should be an even multiple of the block size
237 * @sg: Pointer to scatterlist array; set to NULL to obtain only
238 * the number of scatterlist structs required in array
239 * @sg_size: Max array size
240 *
241 * Fills in a scatterlist array with page references for a passed
242 * virtual address.
243 *
244 * Returns the number of scatterlist structs in array used
245 */
246int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
247 int sg_size)
248{
249 int i = 0;
250 struct page *pg;
251 int offset;
252 int remainder_of_page;
253
68e3f5dd
HX
254 sg_init_table(sg, sg_size);
255
237fead6
MH
256 while (size > 0 && i < sg_size) {
257 pg = virt_to_page(addr);
258 offset = offset_in_page(addr);
a07c48ad 259 sg_set_page(&sg[i], pg, 0, offset);
09cbfeaf 260 remainder_of_page = PAGE_SIZE - offset;
237fead6 261 if (size >= remainder_of_page) {
a07c48ad 262 sg[i].length = remainder_of_page;
237fead6
MH
263 addr += remainder_of_page;
264 size -= remainder_of_page;
265 } else {
a07c48ad 266 sg[i].length = size;
237fead6
MH
267 addr += size;
268 size = 0;
269 }
270 i++;
271 }
272 if (size > 0)
273 return -ENOMEM;
274 return i;
275}
276
4dfea4f0
TH
277struct extent_crypt_result {
278 struct completion completion;
279 int rc;
280};
281
282static void extent_crypt_complete(struct crypto_async_request *req, int rc)
283{
284 struct extent_crypt_result *ecr = req->data;
285
286 if (rc == -EINPROGRESS)
287 return;
288
289 ecr->rc = rc;
290 complete(&ecr->completion);
291}
292
237fead6 293/**
00a69940 294 * crypt_scatterlist
237fead6 295 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
0df5ed65 296 * @dst_sg: Destination of the data after performing the crypto operation
00a69940
TH
297 * @src_sg: Data to be encrypted or decrypted
298 * @size: Length of data
299 * @iv: IV to use
300 * @op: ENCRYPT or DECRYPT to indicate the desired operation
237fead6 301 *
00a69940 302 * Returns the number of bytes encrypted or decrypted; negative value on error
237fead6 303 */
00a69940 304static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
0df5ed65 305 struct scatterlist *dst_sg,
00a69940
TH
306 struct scatterlist *src_sg, int size,
307 unsigned char *iv, int op)
237fead6 308{
3095e8e3 309 struct skcipher_request *req = NULL;
4dfea4f0 310 struct extent_crypt_result ecr;
237fead6
MH
311 int rc = 0;
312
313 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 314 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6 315 if (unlikely(ecryptfs_verbosity > 0)) {
f24b3887 316 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
237fead6
MH
317 crypt_stat->key_size);
318 ecryptfs_dump_hex(crypt_stat->key,
319 crypt_stat->key_size);
320 }
4dfea4f0
TH
321
322 init_completion(&ecr.completion);
323
237fead6 324 mutex_lock(&crypt_stat->cs_tfm_mutex);
3095e8e3 325 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
4dfea4f0 326 if (!req) {
237fead6 327 mutex_unlock(&crypt_stat->cs_tfm_mutex);
4dfea4f0 328 rc = -ENOMEM;
237fead6
MH
329 goto out;
330 }
4dfea4f0 331
3095e8e3 332 skcipher_request_set_callback(req,
4dfea4f0
TH
333 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
334 extent_crypt_complete, &ecr);
335 /* Consider doing this once, when the file is opened */
336 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
3095e8e3
HX
337 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
338 crypt_stat->key_size);
4dfea4f0
TH
339 if (rc) {
340 ecryptfs_printk(KERN_ERR,
341 "Error setting key; rc = [%d]\n",
342 rc);
343 mutex_unlock(&crypt_stat->cs_tfm_mutex);
344 rc = -EINVAL;
345 goto out;
346 }
347 crypt_stat->flags |= ECRYPTFS_KEY_SET;
348 }
237fead6 349 mutex_unlock(&crypt_stat->cs_tfm_mutex);
3095e8e3
HX
350 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
351 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
352 crypto_skcipher_decrypt(req);
4dfea4f0
TH
353 if (rc == -EINPROGRESS || rc == -EBUSY) {
354 struct extent_crypt_result *ecr = req->base.data;
355
356 wait_for_completion(&ecr->completion);
357 rc = ecr->rc;
16735d02 358 reinit_completion(&ecr->completion);
4dfea4f0 359 }
237fead6 360out:
3095e8e3 361 skcipher_request_free(req);
237fead6
MH
362 return rc;
363}
364
0216f7f7 365/**
24d15266 366 * lower_offset_for_page
0216f7f7
MH
367 *
368 * Convert an eCryptfs page index into a lower byte offset
369 */
24d15266
TH
370static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
371 struct page *page)
0216f7f7 372{
24d15266 373 return ecryptfs_lower_header_size(crypt_stat) +
09cbfeaf 374 ((loff_t)page->index << PAGE_SHIFT);
0216f7f7
MH
375}
376
377/**
d78de618 378 * crypt_extent
0216f7f7
MH
379 * @crypt_stat: crypt_stat containing cryptographic context for the
380 * encryption operation
0df5ed65 381 * @dst_page: The page to write the result into
d78de618 382 * @src_page: The page to read from
0216f7f7 383 * @extent_offset: Page extent offset for use in generating IV
d78de618 384 * @op: ENCRYPT or DECRYPT to indicate the desired operation
0216f7f7 385 *
d78de618 386 * Encrypts or decrypts one extent of data.
0216f7f7
MH
387 *
388 * Return zero on success; non-zero otherwise
389 */
0df5ed65
TH
390static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
391 struct page *dst_page,
d78de618
TH
392 struct page *src_page,
393 unsigned long extent_offset, int op)
0216f7f7 394{
d78de618 395 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
d6a13c17 396 loff_t extent_base;
0216f7f7 397 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
406c93df
TH
398 struct scatterlist src_sg, dst_sg;
399 size_t extent_size = crypt_stat->extent_size;
0216f7f7
MH
400 int rc;
401
09cbfeaf 402 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
0216f7f7
MH
403 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
404 (extent_base + extent_offset));
405 if (rc) {
888d57bb
JP
406 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
407 "extent [0x%.16llx]; rc = [%d]\n",
408 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
409 goto out;
410 }
406c93df
TH
411
412 sg_init_table(&src_sg, 1);
413 sg_init_table(&dst_sg, 1);
414
415 sg_set_page(&src_sg, src_page, extent_size,
416 extent_offset * extent_size);
417 sg_set_page(&dst_sg, dst_page, extent_size,
418 extent_offset * extent_size);
419
420 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
421 extent_iv, op);
0216f7f7 422 if (rc < 0) {
d78de618
TH
423 printk(KERN_ERR "%s: Error attempting to crypt page with "
424 "page_index = [%ld], extent_offset = [%ld]; "
425 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
0216f7f7
MH
426 goto out;
427 }
428 rc = 0;
0216f7f7
MH
429out:
430 return rc;
431}
432
237fead6
MH
433/**
434 * ecryptfs_encrypt_page
0216f7f7
MH
435 * @page: Page mapped from the eCryptfs inode for the file; contains
436 * decrypted content that needs to be encrypted (to a temporary
437 * page; not in place) and written out to the lower file
237fead6
MH
438 *
439 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
440 * that eCryptfs pages may straddle the lower pages -- for instance,
441 * if the file was created on a machine with an 8K page size
442 * (resulting in an 8K header), and then the file is copied onto a
443 * host with a 32K page size, then when reading page 0 of the eCryptfs
444 * file, 24K of page 0 of the lower file will be read and decrypted,
445 * and then 8K of page 1 of the lower file will be read and decrypted.
446 *
237fead6
MH
447 * Returns zero on success; negative on error
448 */
0216f7f7 449int ecryptfs_encrypt_page(struct page *page)
237fead6 450{
0216f7f7 451 struct inode *ecryptfs_inode;
237fead6 452 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
453 char *enc_extent_virt;
454 struct page *enc_extent_page = NULL;
0216f7f7 455 loff_t extent_offset;
0f896176 456 loff_t lower_offset;
237fead6 457 int rc = 0;
0216f7f7
MH
458
459 ecryptfs_inode = page->mapping->host;
460 crypt_stat =
461 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 462 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
463 enc_extent_page = alloc_page(GFP_USER);
464 if (!enc_extent_page) {
0216f7f7
MH
465 rc = -ENOMEM;
466 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
467 "encrypted extent\n");
468 goto out;
469 }
0f896176 470
0216f7f7 471 for (extent_offset = 0;
09cbfeaf 472 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
0216f7f7 473 extent_offset++) {
0df5ed65 474 rc = crypt_extent(crypt_stat, enc_extent_page, page,
d78de618 475 extent_offset, ENCRYPT);
237fead6 476 if (rc) {
0216f7f7 477 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 478 "rc = [%d]\n", __func__, rc);
237fead6
MH
479 goto out;
480 }
7fcba054 481 }
0216f7f7 482
24d15266 483 lower_offset = lower_offset_for_page(crypt_stat, page);
0f896176
TH
484 enc_extent_virt = kmap(enc_extent_page);
485 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
09cbfeaf 486 PAGE_SIZE);
0f896176 487 kunmap(enc_extent_page);
0216f7f7 488 if (rc < 0) {
0f896176
TH
489 ecryptfs_printk(KERN_ERR,
490 "Error attempting to write lower page; rc = [%d]\n",
491 rc);
0216f7f7
MH
492 goto out;
493 }
494 rc = 0;
237fead6 495out:
7fcba054 496 if (enc_extent_page) {
7fcba054
ES
497 __free_page(enc_extent_page);
498 }
237fead6
MH
499 return rc;
500}
501
502/**
503 * ecryptfs_decrypt_page
0216f7f7
MH
504 * @page: Page mapped from the eCryptfs inode for the file; data read
505 * and decrypted from the lower file will be written into this
506 * page
237fead6
MH
507 *
508 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
509 * that eCryptfs pages may straddle the lower pages -- for instance,
510 * if the file was created on a machine with an 8K page size
511 * (resulting in an 8K header), and then the file is copied onto a
512 * host with a 32K page size, then when reading page 0 of the eCryptfs
513 * file, 24K of page 0 of the lower file will be read and decrypted,
514 * and then 8K of page 1 of the lower file will be read and decrypted.
515 *
516 * Returns zero on success; negative on error
517 */
0216f7f7 518int ecryptfs_decrypt_page(struct page *page)
237fead6 519{
0216f7f7 520 struct inode *ecryptfs_inode;
237fead6 521 struct ecryptfs_crypt_stat *crypt_stat;
9c6043f4 522 char *page_virt;
0216f7f7 523 unsigned long extent_offset;
0f896176 524 loff_t lower_offset;
237fead6 525 int rc = 0;
237fead6 526
0216f7f7
MH
527 ecryptfs_inode = page->mapping->host;
528 crypt_stat =
529 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 530 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
0f896176 531
24d15266 532 lower_offset = lower_offset_for_page(crypt_stat, page);
9c6043f4 533 page_virt = kmap(page);
09cbfeaf 534 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
0f896176 535 ecryptfs_inode);
9c6043f4 536 kunmap(page);
0f896176
TH
537 if (rc < 0) {
538 ecryptfs_printk(KERN_ERR,
539 "Error attempting to read lower page; rc = [%d]\n",
540 rc);
16a72c45 541 goto out;
237fead6 542 }
0f896176 543
0216f7f7 544 for (extent_offset = 0;
09cbfeaf 545 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
0216f7f7 546 extent_offset++) {
0df5ed65 547 rc = crypt_extent(crypt_stat, page, page,
d78de618 548 extent_offset, DECRYPT);
0216f7f7
MH
549 if (rc) {
550 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 551 "rc = [%d]\n", __func__, rc);
16a72c45 552 goto out;
237fead6 553 }
237fead6
MH
554 }
555out:
237fead6 556 return rc;
237fead6
MH
557}
558
559#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
560
561/**
562 * ecryptfs_init_crypt_ctx
421f91d2 563 * @crypt_stat: Uninitialized crypt stats structure
237fead6
MH
564 *
565 * Initialize the crypto context.
566 *
567 * TODO: Performance: Keep a cache of initialized cipher contexts;
568 * only init if needed
569 */
570int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
571{
8bba066f 572 char *full_alg_name;
237fead6
MH
573 int rc = -EINVAL;
574
237fead6
MH
575 ecryptfs_printk(KERN_DEBUG,
576 "Initializing cipher [%s]; strlen = [%d]; "
f24b3887 577 "key_size_bits = [%zd]\n",
237fead6
MH
578 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
579 crypt_stat->key_size << 3);
cb69f36b 580 mutex_lock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
581 if (crypt_stat->tfm) {
582 rc = 0;
cb69f36b 583 goto out_unlock;
237fead6 584 }
8bba066f
MH
585 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
586 crypt_stat->cipher, "cbc");
587 if (rc)
c8161f64 588 goto out_unlock;
3095e8e3 589 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
de88777e
AM
590 if (IS_ERR(crypt_stat->tfm)) {
591 rc = PTR_ERR(crypt_stat->tfm);
b0105eae 592 crypt_stat->tfm = NULL;
237fead6
MH
593 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
594 "Error initializing cipher [%s]\n",
cb69f36b
KC
595 full_alg_name);
596 goto out_free;
237fead6 597 }
231baecd
EB
598 crypto_skcipher_set_flags(crypt_stat->tfm,
599 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
237fead6 600 rc = 0;
cb69f36b
KC
601out_free:
602 kfree(full_alg_name);
c8161f64
ES
603out_unlock:
604 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
605 return rc;
606}
607
608static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
609{
610 int extent_size_tmp;
611
612 crypt_stat->extent_mask = 0xFFFFFFFF;
613 crypt_stat->extent_shift = 0;
614 if (crypt_stat->extent_size == 0)
615 return;
616 extent_size_tmp = crypt_stat->extent_size;
617 while ((extent_size_tmp & 0x01) == 0) {
618 extent_size_tmp >>= 1;
619 crypt_stat->extent_mask <<= 1;
620 crypt_stat->extent_shift++;
621 }
622}
623
624void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
625{
626 /* Default values; may be overwritten as we are parsing the
627 * packets. */
628 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
629 set_extent_mask_and_shift(crypt_stat);
630 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a 631 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
fa3ef1cb 632 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 633 else {
09cbfeaf 634 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
fa3ef1cb 635 crypt_stat->metadata_size =
cc11beff 636 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 637 else
09cbfeaf 638 crypt_stat->metadata_size = PAGE_SIZE;
45eaab79 639 }
237fead6
MH
640}
641
642/**
643 * ecryptfs_compute_root_iv
644 * @crypt_stats
645 *
646 * On error, sets the root IV to all 0's.
647 */
648int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
649{
650 int rc = 0;
651 char dst[MD5_DIGEST_SIZE];
652
653 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
654 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 655 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
656 rc = -EINVAL;
657 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
658 "cannot generate root IV\n");
659 goto out;
660 }
661 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
662 crypt_stat->key_size);
663 if (rc) {
664 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
665 "MD5 while generating root IV\n");
666 goto out;
667 }
668 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
669out:
670 if (rc) {
671 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 672 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
673 }
674 return rc;
675}
676
677static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
678{
679 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 680 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
681 ecryptfs_compute_root_iv(crypt_stat);
682 if (unlikely(ecryptfs_verbosity > 0)) {
683 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
684 ecryptfs_dump_hex(crypt_stat->key,
685 crypt_stat->key_size);
686 }
687}
688
17398957
MH
689/**
690 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
691 * @crypt_stat: The inode's cryptographic context
692 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
693 *
694 * This function propagates the mount-wide flags to individual inode
695 * flags.
696 */
697static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
698 struct ecryptfs_crypt_stat *crypt_stat,
699 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
700{
701 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
702 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
703 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
704 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
addd65ad
MH
705 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
706 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
707 if (mount_crypt_stat->flags
708 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
709 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
710 else if (mount_crypt_stat->flags
711 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
712 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
713 }
17398957
MH
714}
715
f4aad16a
MH
716static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
717 struct ecryptfs_crypt_stat *crypt_stat,
718 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
719{
720 struct ecryptfs_global_auth_tok *global_auth_tok;
721 int rc = 0;
722
aa06117f 723 mutex_lock(&crypt_stat->keysig_list_mutex);
f4aad16a 724 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
aa06117f 725
f4aad16a
MH
726 list_for_each_entry(global_auth_tok,
727 &mount_crypt_stat->global_auth_tok_list,
728 mount_crypt_stat_list) {
84814d64
TH
729 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
730 continue;
f4aad16a
MH
731 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
732 if (rc) {
733 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
f4aad16a
MH
734 goto out;
735 }
736 }
aa06117f 737
f4aad16a 738out:
aa06117f
RD
739 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
740 mutex_unlock(&crypt_stat->keysig_list_mutex);
f4aad16a
MH
741 return rc;
742}
743
237fead6
MH
744/**
745 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
746 * @crypt_stat: The inode's cryptographic context
747 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
748 *
749 * Default values in the event that policy does not override them.
750 */
751static void ecryptfs_set_default_crypt_stat_vals(
752 struct ecryptfs_crypt_stat *crypt_stat,
753 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
754{
17398957
MH
755 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
756 mount_crypt_stat);
237fead6
MH
757 ecryptfs_set_default_sizes(crypt_stat);
758 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
759 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 760 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
761 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
762 crypt_stat->mount_crypt_stat = mount_crypt_stat;
763}
764
765/**
766 * ecryptfs_new_file_context
b59db43a 767 * @ecryptfs_inode: The eCryptfs inode
237fead6
MH
768 *
769 * If the crypto context for the file has not yet been established,
770 * this is where we do that. Establishing a new crypto context
771 * involves the following decisions:
772 * - What cipher to use?
773 * - What set of authentication tokens to use?
774 * Here we just worry about getting enough information into the
775 * authentication tokens so that we know that they are available.
776 * We associate the available authentication tokens with the new file
777 * via the set of signatures in the crypt_stat struct. Later, when
778 * the headers are actually written out, we may again defer to
779 * userspace to perform the encryption of the session key; for the
780 * foreseeable future, this will be the case with public key packets.
781 *
782 * Returns zero on success; non-zero otherwise
783 */
b59db43a 784int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
237fead6 785{
237fead6 786 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 787 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
237fead6
MH
788 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
789 &ecryptfs_superblock_to_private(
b59db43a 790 ecryptfs_inode->i_sb)->mount_crypt_stat;
237fead6 791 int cipher_name_len;
f4aad16a 792 int rc = 0;
237fead6
MH
793
794 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 795 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
796 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
797 mount_crypt_stat);
798 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
799 mount_crypt_stat);
800 if (rc) {
801 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
802 "to the inode key sigs; rc = [%d]\n", rc);
803 goto out;
804 }
805 cipher_name_len =
806 strlen(mount_crypt_stat->global_default_cipher_name);
807 memcpy(crypt_stat->cipher,
808 mount_crypt_stat->global_default_cipher_name,
809 cipher_name_len);
810 crypt_stat->cipher[cipher_name_len] = '\0';
811 crypt_stat->key_size =
812 mount_crypt_stat->global_default_cipher_key_size;
813 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
814 rc = ecryptfs_init_crypt_ctx(crypt_stat);
815 if (rc)
816 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
817 "context for cipher [%s]: rc = [%d]\n",
818 crypt_stat->cipher, rc);
f4aad16a 819out:
237fead6
MH
820 return rc;
821}
822
823/**
7a86617e 824 * ecryptfs_validate_marker - check for the ecryptfs marker
237fead6
MH
825 * @data: The data block in which to check
826 *
7a86617e 827 * Returns zero if marker found; -EINVAL if not found
237fead6 828 */
7a86617e 829static int ecryptfs_validate_marker(char *data)
237fead6
MH
830{
831 u32 m_1, m_2;
832
29335c6a
HH
833 m_1 = get_unaligned_be32(data);
834 m_2 = get_unaligned_be32(data + 4);
237fead6 835 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
7a86617e 836 return 0;
237fead6
MH
837 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
838 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
839 MAGIC_ECRYPTFS_MARKER);
840 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
841 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
7a86617e 842 return -EINVAL;
237fead6
MH
843}
844
845struct ecryptfs_flag_map_elem {
846 u32 file_flag;
847 u32 local_flag;
848};
849
850/* Add support for additional flags by adding elements here. */
851static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
852 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a 853 {0x00000002, ECRYPTFS_ENCRYPTED},
addd65ad
MH
854 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
855 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
237fead6
MH
856};
857
858/**
859 * ecryptfs_process_flags
22e78faf 860 * @crypt_stat: The cryptographic context
237fead6
MH
861 * @page_virt: Source data to be parsed
862 * @bytes_read: Updated with the number of bytes read
863 *
864 * Returns zero on success; non-zero if the flag set is invalid
865 */
866static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
867 char *page_virt, int *bytes_read)
868{
869 int rc = 0;
870 int i;
871 u32 flags;
872
29335c6a 873 flags = get_unaligned_be32(page_virt);
02f9876e 874 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
237fead6 875 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 876 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 877 } else
e2bd99ec 878 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
879 /* Version is in top 8 bits of the 32-bit flag vector */
880 crypt_stat->file_version = ((flags >> 24) & 0xFF);
881 (*bytes_read) = 4;
882 return rc;
883}
884
885/**
886 * write_ecryptfs_marker
887 * @page_virt: The pointer to in a page to begin writing the marker
888 * @written: Number of bytes written
889 *
890 * Marker = 0x3c81b7f5
891 */
892static void write_ecryptfs_marker(char *page_virt, size_t *written)
893{
894 u32 m_1, m_2;
895
896 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
897 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
29335c6a
HH
898 put_unaligned_be32(m_1, page_virt);
899 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
900 put_unaligned_be32(m_2, page_virt);
237fead6
MH
901 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
902}
903
f4e60e6b
TH
904void ecryptfs_write_crypt_stat_flags(char *page_virt,
905 struct ecryptfs_crypt_stat *crypt_stat,
906 size_t *written)
237fead6
MH
907{
908 u32 flags = 0;
909 int i;
910
02f9876e 911 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
e2bd99ec 912 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
913 flags |= ecryptfs_flag_map[i].file_flag;
914 /* Version is in top 8 bits of the 32-bit flag vector */
915 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
29335c6a 916 put_unaligned_be32(flags, page_virt);
237fead6
MH
917 (*written) = 4;
918}
919
920struct ecryptfs_cipher_code_str_map_elem {
921 char cipher_str[16];
19e66a67 922 u8 cipher_code;
237fead6
MH
923};
924
925/* Add support for additional ciphers by adding elements here. The
40f0fd37 926 * cipher_code is whatever OpenPGP applications use to identify the
237fead6
MH
927 * ciphers. List in order of probability. */
928static struct ecryptfs_cipher_code_str_map_elem
929ecryptfs_cipher_code_str_map[] = {
930 {"aes",RFC2440_CIPHER_AES_128 },
931 {"blowfish", RFC2440_CIPHER_BLOWFISH},
932 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
933 {"cast5", RFC2440_CIPHER_CAST_5},
934 {"twofish", RFC2440_CIPHER_TWOFISH},
935 {"cast6", RFC2440_CIPHER_CAST_6},
936 {"aes", RFC2440_CIPHER_AES_192},
937 {"aes", RFC2440_CIPHER_AES_256}
938};
939
940/**
941 * ecryptfs_code_for_cipher_string
9c79f34f
MH
942 * @cipher_name: The string alias for the cipher
943 * @key_bytes: Length of key in bytes; used for AES code selection
237fead6
MH
944 *
945 * Returns zero on no match, or the cipher code on match
946 */
9c79f34f 947u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
237fead6
MH
948{
949 int i;
19e66a67 950 u8 code = 0;
237fead6
MH
951 struct ecryptfs_cipher_code_str_map_elem *map =
952 ecryptfs_cipher_code_str_map;
953
9c79f34f
MH
954 if (strcmp(cipher_name, "aes") == 0) {
955 switch (key_bytes) {
237fead6
MH
956 case 16:
957 code = RFC2440_CIPHER_AES_128;
958 break;
959 case 24:
960 code = RFC2440_CIPHER_AES_192;
961 break;
962 case 32:
963 code = RFC2440_CIPHER_AES_256;
964 }
965 } else {
966 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
9c79f34f 967 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
237fead6
MH
968 code = map[i].cipher_code;
969 break;
970 }
971 }
972 return code;
973}
974
975/**
976 * ecryptfs_cipher_code_to_string
977 * @str: Destination to write out the cipher name
978 * @cipher_code: The code to convert to cipher name string
979 *
980 * Returns zero on success
981 */
19e66a67 982int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
237fead6
MH
983{
984 int rc = 0;
985 int i;
986
987 str[0] = '\0';
988 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
989 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
990 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
991 if (str[0] == '\0') {
992 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
993 "[%d]\n", cipher_code);
994 rc = -EINVAL;
995 }
996 return rc;
997}
998
778aeb42 999int ecryptfs_read_and_validate_header_region(struct inode *inode)
dd2a3b7a 1000{
778aeb42
TH
1001 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1002 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1003 int rc;
1004
778aeb42
TH
1005 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1006 inode);
1007 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1008 return rc >= 0 ? -EINVAL : rc;
1009 rc = ecryptfs_validate_marker(marker);
1010 if (!rc)
1011 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1012 return rc;
1013}
1014
e77a56dd
MH
1015void
1016ecryptfs_write_header_metadata(char *virt,
1017 struct ecryptfs_crypt_stat *crypt_stat,
1018 size_t *written)
237fead6
MH
1019{
1020 u32 header_extent_size;
1021 u16 num_header_extents_at_front;
1022
45eaab79 1023 header_extent_size = (u32)crypt_stat->extent_size;
237fead6 1024 num_header_extents_at_front =
fa3ef1cb 1025 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
29335c6a 1026 put_unaligned_be32(header_extent_size, virt);
237fead6 1027 virt += 4;
29335c6a 1028 put_unaligned_be16(num_header_extents_at_front, virt);
237fead6
MH
1029 (*written) = 6;
1030}
1031
30632870 1032struct kmem_cache *ecryptfs_header_cache;
237fead6
MH
1033
1034/**
1035 * ecryptfs_write_headers_virt
22e78faf 1036 * @page_virt: The virtual address to write the headers to
87b811c3 1037 * @max: The size of memory allocated at page_virt
22e78faf
MH
1038 * @size: Set to the number of bytes written by this function
1039 * @crypt_stat: The cryptographic context
1040 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1041 *
1042 * Format version: 1
1043 *
1044 * Header Extent:
1045 * Octets 0-7: Unencrypted file size (big-endian)
1046 * Octets 8-15: eCryptfs special marker
1047 * Octets 16-19: Flags
1048 * Octet 16: File format version number (between 0 and 255)
1049 * Octets 17-18: Reserved
1050 * Octet 19: Bit 1 (lsb): Reserved
1051 * Bit 2: Encrypted?
1052 * Bits 3-8: Reserved
1053 * Octets 20-23: Header extent size (big-endian)
1054 * Octets 24-25: Number of header extents at front of file
1055 * (big-endian)
1056 * Octet 26: Begin RFC 2440 authentication token packet set
1057 * Data Extent 0:
1058 * Lower data (CBC encrypted)
1059 * Data Extent 1:
1060 * Lower data (CBC encrypted)
1061 * ...
1062 *
1063 * Returns zero on success
1064 */
87b811c3
ES
1065static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1066 size_t *size,
dd2a3b7a
MH
1067 struct ecryptfs_crypt_stat *crypt_stat,
1068 struct dentry *ecryptfs_dentry)
237fead6
MH
1069{
1070 int rc;
1071 size_t written;
1072 size_t offset;
1073
1074 offset = ECRYPTFS_FILE_SIZE_BYTES;
1075 write_ecryptfs_marker((page_virt + offset), &written);
1076 offset += written;
f4e60e6b
TH
1077 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1078 &written);
237fead6 1079 offset += written;
e77a56dd
MH
1080 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1081 &written);
237fead6
MH
1082 offset += written;
1083 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1084 ecryptfs_dentry, &written,
87b811c3 1085 max - offset);
237fead6
MH
1086 if (rc)
1087 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1088 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1089 if (size) {
1090 offset += written;
1091 *size = offset;
1092 }
1093 return rc;
1094}
1095
22e78faf 1096static int
b59db43a 1097ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
8faece5f 1098 char *virt, size_t virt_len)
dd2a3b7a 1099{
d7cdc5fe 1100 int rc;
dd2a3b7a 1101
b59db43a 1102 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
8faece5f 1103 0, virt_len);
96a7b9c2 1104 if (rc < 0)
d7cdc5fe 1105 printk(KERN_ERR "%s: Error attempting to write header "
96a7b9c2
TH
1106 "information to lower file; rc = [%d]\n", __func__, rc);
1107 else
1108 rc = 0;
70456600 1109 return rc;
dd2a3b7a
MH
1110}
1111
22e78faf
MH
1112static int
1113ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
3767e255 1114 struct inode *ecryptfs_inode,
22e78faf 1115 char *page_virt, size_t size)
dd2a3b7a
MH
1116{
1117 int rc;
1118
3767e255
AV
1119 rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1120 ECRYPTFS_XATTR_NAME, page_virt, size, 0);
237fead6
MH
1121 return rc;
1122}
1123
8faece5f
TH
1124static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1125 unsigned int order)
1126{
1127 struct page *page;
1128
1129 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1130 if (page)
1131 return (unsigned long) page_address(page);
1132 return 0;
1133}
1134
237fead6 1135/**
dd2a3b7a 1136 * ecryptfs_write_metadata
b59db43a
TH
1137 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1138 * @ecryptfs_inode: The newly created eCryptfs inode
237fead6
MH
1139 *
1140 * Write the file headers out. This will likely involve a userspace
1141 * callout, in which the session key is encrypted with one or more
1142 * public keys and/or the passphrase necessary to do the encryption is
1143 * retrieved via a prompt. Exactly what happens at this point should
1144 * be policy-dependent.
1145 *
1146 * Returns zero on success; non-zero on error
1147 */
b59db43a
TH
1148int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1149 struct inode *ecryptfs_inode)
237fead6 1150{
d7cdc5fe 1151 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 1152 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
8faece5f 1153 unsigned int order;
cc11beff 1154 char *virt;
8faece5f 1155 size_t virt_len;
d7cdc5fe 1156 size_t size = 0;
237fead6
MH
1157 int rc = 0;
1158
e2bd99ec
MH
1159 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1160 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1161 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1162 rc = -EINVAL;
1163 goto out;
1164 }
1165 } else {
cc11beff 1166 printk(KERN_WARNING "%s: Encrypted flag not set\n",
18d1dbf1 1167 __func__);
237fead6 1168 rc = -EINVAL;
237fead6
MH
1169 goto out;
1170 }
fa3ef1cb 1171 virt_len = crypt_stat->metadata_size;
8faece5f 1172 order = get_order(virt_len);
237fead6 1173 /* Released in this function */
8faece5f 1174 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
cc11beff 1175 if (!virt) {
18d1dbf1 1176 printk(KERN_ERR "%s: Out of memory\n", __func__);
237fead6
MH
1177 rc = -ENOMEM;
1178 goto out;
1179 }
bd4f0fe8 1180 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
8faece5f
TH
1181 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1182 ecryptfs_dentry);
237fead6 1183 if (unlikely(rc)) {
cc11beff 1184 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
18d1dbf1 1185 __func__, rc);
237fead6
MH
1186 goto out_free;
1187 }
dd2a3b7a 1188 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
3767e255
AV
1189 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1190 virt, size);
dd2a3b7a 1191 else
b59db43a 1192 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
8faece5f 1193 virt_len);
dd2a3b7a 1194 if (rc) {
cc11beff 1195 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
18d1dbf1 1196 "rc = [%d]\n", __func__, rc);
dd2a3b7a 1197 goto out_free;
237fead6 1198 }
237fead6 1199out_free:
8faece5f 1200 free_pages((unsigned long)virt, order);
237fead6
MH
1201out:
1202 return rc;
1203}
1204
dd2a3b7a
MH
1205#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1206#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1207static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1208 char *virt, int *bytes_read,
1209 int validate_header_size)
237fead6
MH
1210{
1211 int rc = 0;
1212 u32 header_extent_size;
1213 u16 num_header_extents_at_front;
1214
29335c6a
HH
1215 header_extent_size = get_unaligned_be32(virt);
1216 virt += sizeof(__be32);
1217 num_header_extents_at_front = get_unaligned_be16(virt);
fa3ef1cb
TH
1218 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1219 * (size_t)header_extent_size));
29335c6a 1220 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
dd2a3b7a 1221 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
fa3ef1cb 1222 && (crypt_stat->metadata_size
dd2a3b7a 1223 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1224 rc = -EINVAL;
cc11beff 1225 printk(KERN_WARNING "Invalid header size: [%zd]\n",
fa3ef1cb 1226 crypt_stat->metadata_size);
237fead6
MH
1227 }
1228 return rc;
1229}
1230
1231/**
1232 * set_default_header_data
22e78faf 1233 * @crypt_stat: The cryptographic context
237fead6
MH
1234 *
1235 * For version 0 file format; this function is only for backwards
1236 * compatibility for files created with the prior versions of
1237 * eCryptfs.
1238 */
1239static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1240{
fa3ef1cb 1241 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
237fead6
MH
1242}
1243
3aeb86ea
TH
1244void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1245{
1246 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1247 struct ecryptfs_crypt_stat *crypt_stat;
1248 u64 file_size;
1249
1250 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1251 mount_crypt_stat =
1252 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1253 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1254 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1255 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1256 file_size += crypt_stat->metadata_size;
1257 } else
1258 file_size = get_unaligned_be64(page_virt);
1259 i_size_write(inode, (loff_t)file_size);
1260 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1261}
1262
237fead6
MH
1263/**
1264 * ecryptfs_read_headers_virt
22e78faf
MH
1265 * @page_virt: The virtual address into which to read the headers
1266 * @crypt_stat: The cryptographic context
1267 * @ecryptfs_dentry: The eCryptfs dentry
1268 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1269 *
1270 * Read/parse the header data. The header format is detailed in the
1271 * comment block for the ecryptfs_write_headers_virt() function.
1272 *
1273 * Returns zero on success
1274 */
1275static int ecryptfs_read_headers_virt(char *page_virt,
1276 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1277 struct dentry *ecryptfs_dentry,
1278 int validate_header_size)
237fead6
MH
1279{
1280 int rc = 0;
1281 int offset;
1282 int bytes_read;
1283
1284 ecryptfs_set_default_sizes(crypt_stat);
1285 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1286 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1287 offset = ECRYPTFS_FILE_SIZE_BYTES;
7a86617e
TH
1288 rc = ecryptfs_validate_marker(page_virt + offset);
1289 if (rc)
237fead6 1290 goto out;
3aeb86ea 1291 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
2b0143b5 1292 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
237fead6
MH
1293 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1294 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1295 &bytes_read);
1296 if (rc) {
1297 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1298 goto out;
1299 }
1300 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1301 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1302 "file version [%d] is supported by this "
1303 "version of eCryptfs\n",
1304 crypt_stat->file_version,
1305 ECRYPTFS_SUPPORTED_FILE_VERSION);
1306 rc = -EINVAL;
1307 goto out;
1308 }
1309 offset += bytes_read;
1310 if (crypt_stat->file_version >= 1) {
1311 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1312 &bytes_read, validate_header_size);
237fead6
MH
1313 if (rc) {
1314 ecryptfs_printk(KERN_WARNING, "Error reading header "
1315 "metadata; rc = [%d]\n", rc);
1316 }
1317 offset += bytes_read;
1318 } else
1319 set_default_header_data(crypt_stat);
1320 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1321 ecryptfs_dentry);
1322out:
1323 return rc;
1324}
1325
1326/**
dd2a3b7a 1327 * ecryptfs_read_xattr_region
22e78faf 1328 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1329 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1330 *
1331 * Attempts to read the crypto metadata from the extended attribute
1332 * region of the lower file.
22e78faf
MH
1333 *
1334 * Returns zero on success; non-zero on error
dd2a3b7a 1335 */
d7cdc5fe 1336int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1337{
d7cdc5fe 1338 struct dentry *lower_dentry =
b583043e 1339 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
dd2a3b7a
MH
1340 ssize_t size;
1341 int rc = 0;
1342
ce23e640
AV
1343 size = ecryptfs_getxattr_lower(lower_dentry,
1344 ecryptfs_inode_to_lower(ecryptfs_inode),
1345 ECRYPTFS_XATTR_NAME,
d7cdc5fe 1346 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1347 if (size < 0) {
25bd8174
MH
1348 if (unlikely(ecryptfs_verbosity > 0))
1349 printk(KERN_INFO "Error attempting to read the [%s] "
1350 "xattr from the lower file; return value = "
1351 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
dd2a3b7a
MH
1352 rc = -EINVAL;
1353 goto out;
1354 }
1355out:
1356 return rc;
1357}
1358
778aeb42 1359int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
3b06b3eb 1360 struct inode *inode)
dd2a3b7a 1361{
778aeb42
TH
1362 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1363 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1364 int rc;
1365
778aeb42 1366 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
ce23e640 1367 ecryptfs_inode_to_lower(inode),
778aeb42
TH
1368 ECRYPTFS_XATTR_NAME, file_size,
1369 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1370 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1371 return rc >= 0 ? -EINVAL : rc;
1372 rc = ecryptfs_validate_marker(marker);
1373 if (!rc)
1374 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1375 return rc;
1376}
1377
1378/**
1379 * ecryptfs_read_metadata
1380 *
1381 * Common entry point for reading file metadata. From here, we could
1382 * retrieve the header information from the header region of the file,
40f0fd37 1383 * the xattr region of the file, or some other repository that is
dd2a3b7a
MH
1384 * stored separately from the file itself. The current implementation
1385 * supports retrieving the metadata information from the file contents
1386 * and from the xattr region.
237fead6
MH
1387 *
1388 * Returns zero if valid headers found and parsed; non-zero otherwise
1389 */
d7cdc5fe 1390int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6 1391{
bb450361
TG
1392 int rc;
1393 char *page_virt;
2b0143b5 1394 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
237fead6 1395 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1396 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1397 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1398 &ecryptfs_superblock_to_private(
1399 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1400
e77a56dd
MH
1401 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1402 mount_crypt_stat);
237fead6 1403 /* Read the first page from the underlying file */
30632870 1404 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
237fead6
MH
1405 if (!page_virt) {
1406 rc = -ENOMEM;
237fead6
MH
1407 goto out;
1408 }
d7cdc5fe
MH
1409 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1410 ecryptfs_inode);
96a7b9c2 1411 if (rc >= 0)
d7cdc5fe
MH
1412 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1413 ecryptfs_dentry,
1414 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1415 if (rc) {
bb450361 1416 /* metadata is not in the file header, so try xattrs */
09cbfeaf 1417 memset(page_virt, 0, PAGE_SIZE);
d7cdc5fe 1418 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1419 if (rc) {
1420 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1421 "file header region or xattr region, inode %lu\n",
1422 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1423 rc = -EINVAL;
1424 goto out;
1425 }
1426 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1427 ecryptfs_dentry,
1428 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1429 if (rc) {
1430 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1431 "file xattr region either, inode %lu\n",
1432 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1433 rc = -EINVAL;
1434 }
1435 if (crypt_stat->mount_crypt_stat->flags
1436 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1437 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1438 } else {
1439 printk(KERN_WARNING "Attempt to access file with "
1440 "crypto metadata only in the extended attribute "
1441 "region, but eCryptfs was mounted without "
1442 "xattr support enabled. eCryptfs will not treat "
30373dc0
TG
1443 "this like an encrypted file, inode %lu\n",
1444 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1445 rc = -EINVAL;
1446 }
237fead6
MH
1447 }
1448out:
1449 if (page_virt) {
09cbfeaf 1450 memset(page_virt, 0, PAGE_SIZE);
30632870 1451 kmem_cache_free(ecryptfs_header_cache, page_virt);
237fead6
MH
1452 }
1453 return rc;
1454}
1455
51ca58dc
MH
1456/**
1457 * ecryptfs_encrypt_filename - encrypt filename
1458 *
1459 * CBC-encrypts the filename. We do not want to encrypt the same
1460 * filename with the same key and IV, which may happen with hard
1461 * links, so we prepend random bits to each filename.
1462 *
1463 * Returns zero on success; non-zero otherwise
1464 */
1465static int
1466ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
51ca58dc
MH
1467 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1468{
1469 int rc = 0;
1470
1471 filename->encrypted_filename = NULL;
1472 filename->encrypted_filename_size = 0;
97c31606
AV
1473 if (mount_crypt_stat && (mount_crypt_stat->flags
1474 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
51ca58dc
MH
1475 size_t packet_size;
1476 size_t remaining_bytes;
1477
1478 rc = ecryptfs_write_tag_70_packet(
1479 NULL, NULL,
1480 &filename->encrypted_filename_size,
1481 mount_crypt_stat, NULL,
1482 filename->filename_size);
1483 if (rc) {
1484 printk(KERN_ERR "%s: Error attempting to get packet "
1485 "size for tag 72; rc = [%d]\n", __func__,
1486 rc);
1487 filename->encrypted_filename_size = 0;
1488 goto out;
1489 }
1490 filename->encrypted_filename =
1491 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1492 if (!filename->encrypted_filename) {
51ca58dc
MH
1493 rc = -ENOMEM;
1494 goto out;
1495 }
1496 remaining_bytes = filename->encrypted_filename_size;
1497 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1498 &remaining_bytes,
1499 &packet_size,
1500 mount_crypt_stat,
1501 filename->filename,
1502 filename->filename_size);
1503 if (rc) {
1504 printk(KERN_ERR "%s: Error attempting to generate "
1505 "tag 70 packet; rc = [%d]\n", __func__,
1506 rc);
1507 kfree(filename->encrypted_filename);
1508 filename->encrypted_filename = NULL;
1509 filename->encrypted_filename_size = 0;
1510 goto out;
1511 }
1512 filename->encrypted_filename_size = packet_size;
1513 } else {
1514 printk(KERN_ERR "%s: No support for requested filename "
1515 "encryption method in this release\n", __func__);
df6ad33b 1516 rc = -EOPNOTSUPP;
51ca58dc
MH
1517 goto out;
1518 }
1519out:
1520 return rc;
1521}
1522
1523static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1524 const char *name, size_t name_size)
1525{
1526 int rc = 0;
1527
fd9fc842 1528 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
51ca58dc
MH
1529 if (!(*copied_name)) {
1530 rc = -ENOMEM;
1531 goto out;
1532 }
1533 memcpy((void *)(*copied_name), (void *)name, name_size);
1534 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1535 * in printing out the
1536 * string in debug
1537 * messages */
fd9fc842 1538 (*copied_name_size) = name_size;
51ca58dc
MH
1539out:
1540 return rc;
1541}
1542
237fead6 1543/**
f4aad16a 1544 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1545 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1546 * @cipher_name: Name of the cipher
1547 * @key_size: Size of the key in bytes
237fead6
MH
1548 *
1549 * Returns zero on success. Any crypto_tfm structs allocated here
1550 * should be released by other functions, such as on a superblock put
1551 * event, regardless of whether this function succeeds for fails.
1552 */
cd9d67df 1553static int
3095e8e3 1554ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
f4aad16a 1555 char *cipher_name, size_t *key_size)
237fead6
MH
1556{
1557 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
ece550f5 1558 char *full_alg_name = NULL;
237fead6
MH
1559 int rc;
1560
e5d9cbde
MH
1561 *key_tfm = NULL;
1562 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6 1563 rc = -EINVAL;
df261c52 1564 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
e5d9cbde 1565 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1566 goto out;
1567 }
8bba066f
MH
1568 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1569 "ecb");
1570 if (rc)
1571 goto out;
3095e8e3 1572 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
8bba066f
MH
1573 if (IS_ERR(*key_tfm)) {
1574 rc = PTR_ERR(*key_tfm);
237fead6 1575 printk(KERN_ERR "Unable to allocate crypto cipher with name "
38268498 1576 "[%s]; rc = [%d]\n", full_alg_name, rc);
237fead6
MH
1577 goto out;
1578 }
231baecd 1579 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
3095e8e3
HX
1580 if (*key_size == 0)
1581 *key_size = crypto_skcipher_default_keysize(*key_tfm);
e5d9cbde 1582 get_random_bytes(dummy_key, *key_size);
3095e8e3 1583 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6 1584 if (rc) {
df261c52 1585 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
38268498
DH
1586 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1587 rc);
237fead6
MH
1588 rc = -EINVAL;
1589 goto out;
1590 }
1591out:
ece550f5 1592 kfree(full_alg_name);
237fead6
MH
1593 return rc;
1594}
f4aad16a
MH
1595
1596struct kmem_cache *ecryptfs_key_tfm_cache;
7896b631 1597static struct list_head key_tfm_list;
af440f52 1598struct mutex key_tfm_list_mutex;
f4aad16a 1599
7371a382 1600int __init ecryptfs_init_crypto(void)
f4aad16a
MH
1601{
1602 mutex_init(&key_tfm_list_mutex);
1603 INIT_LIST_HEAD(&key_tfm_list);
1604 return 0;
1605}
1606
af440f52
ES
1607/**
1608 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1609 *
1610 * Called only at module unload time
1611 */
fcd12835 1612int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1613{
1614 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1615
1616 mutex_lock(&key_tfm_list_mutex);
1617 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1618 key_tfm_list) {
1619 list_del(&key_tfm->key_tfm_list);
3095e8e3 1620 crypto_free_skcipher(key_tfm->key_tfm);
f4aad16a
MH
1621 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1622 }
1623 mutex_unlock(&key_tfm_list_mutex);
1624 return 0;
1625}
1626
1627int
1628ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1629 size_t key_size)
1630{
1631 struct ecryptfs_key_tfm *tmp_tfm;
1632 int rc = 0;
1633
af440f52
ES
1634 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1635
f4aad16a 1636 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
5032f360 1637 if (key_tfm)
f4aad16a
MH
1638 (*key_tfm) = tmp_tfm;
1639 if (!tmp_tfm) {
1640 rc = -ENOMEM;
f4aad16a
MH
1641 goto out;
1642 }
1643 mutex_init(&tmp_tfm->key_tfm_mutex);
1644 strncpy(tmp_tfm->cipher_name, cipher_name,
1645 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
b8862906 1646 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
f4aad16a 1647 tmp_tfm->key_size = key_size;
5dda6992
MH
1648 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1649 tmp_tfm->cipher_name,
1650 &tmp_tfm->key_size);
1651 if (rc) {
f4aad16a
MH
1652 printk(KERN_ERR "Error attempting to initialize key TFM "
1653 "cipher with name = [%s]; rc = [%d]\n",
1654 tmp_tfm->cipher_name, rc);
1655 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
5032f360 1656 if (key_tfm)
f4aad16a
MH
1657 (*key_tfm) = NULL;
1658 goto out;
1659 }
f4aad16a 1660 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
f4aad16a
MH
1661out:
1662 return rc;
1663}
1664
af440f52
ES
1665/**
1666 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1667 * @cipher_name: the name of the cipher to search for
1668 * @key_tfm: set to corresponding tfm if found
1669 *
1670 * Searches for cached key_tfm matching @cipher_name
1671 * Must be called with &key_tfm_list_mutex held
1672 * Returns 1 if found, with @key_tfm set
1673 * Returns 0 if not found, with @key_tfm set to NULL
1674 */
1675int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1676{
1677 struct ecryptfs_key_tfm *tmp_key_tfm;
1678
1679 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1680
1681 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1682 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1683 if (key_tfm)
1684 (*key_tfm) = tmp_key_tfm;
1685 return 1;
1686 }
1687 }
1688 if (key_tfm)
1689 (*key_tfm) = NULL;
1690 return 0;
1691}
1692
1693/**
1694 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1695 *
1696 * @tfm: set to cached tfm found, or new tfm created
1697 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1698 * @cipher_name: the name of the cipher to search for and/or add
1699 *
1700 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1701 * Searches for cached item first, and creates new if not found.
1702 * Returns 0 on success, non-zero if adding new cipher failed
1703 */
3095e8e3 1704int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
f4aad16a
MH
1705 struct mutex **tfm_mutex,
1706 char *cipher_name)
1707{
1708 struct ecryptfs_key_tfm *key_tfm;
1709 int rc = 0;
1710
1711 (*tfm) = NULL;
1712 (*tfm_mutex) = NULL;
af440f52 1713
f4aad16a 1714 mutex_lock(&key_tfm_list_mutex);
af440f52
ES
1715 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1716 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1717 if (rc) {
1718 printk(KERN_ERR "Error adding new key_tfm to list; "
1719 "rc = [%d]\n", rc);
f4aad16a
MH
1720 goto out;
1721 }
1722 }
f4aad16a
MH
1723 (*tfm) = key_tfm->key_tfm;
1724 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1725out:
71fd5179 1726 mutex_unlock(&key_tfm_list_mutex);
f4aad16a
MH
1727 return rc;
1728}
51ca58dc
MH
1729
1730/* 64 characters forming a 6-bit target field */
1731static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1732 "EFGHIJKLMNOPQRST"
1733 "UVWXYZabcdefghij"
1734 "klmnopqrstuvwxyz");
1735
1736/* We could either offset on every reverse map or just pad some 0x00's
1737 * at the front here */
0f751e64 1738static const unsigned char filename_rev_map[256] = {
51ca58dc
MH
1739 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1740 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1741 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1742 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1743 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1744 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1745 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1746 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1747 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1748 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1749 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1750 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1751 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1752 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1753 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
0f751e64 1754 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
51ca58dc
MH
1755};
1756
1757/**
1758 * ecryptfs_encode_for_filename
1759 * @dst: Destination location for encoded filename
1760 * @dst_size: Size of the encoded filename in bytes
1761 * @src: Source location for the filename to encode
1762 * @src_size: Size of the source in bytes
1763 */
37028758 1764static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
51ca58dc
MH
1765 unsigned char *src, size_t src_size)
1766{
1767 size_t num_blocks;
1768 size_t block_num = 0;
1769 size_t dst_offset = 0;
1770 unsigned char last_block[3];
1771
1772 if (src_size == 0) {
1773 (*dst_size) = 0;
1774 goto out;
1775 }
1776 num_blocks = (src_size / 3);
1777 if ((src_size % 3) == 0) {
1778 memcpy(last_block, (&src[src_size - 3]), 3);
1779 } else {
1780 num_blocks++;
1781 last_block[2] = 0x00;
1782 switch (src_size % 3) {
1783 case 1:
1784 last_block[0] = src[src_size - 1];
1785 last_block[1] = 0x00;
1786 break;
1787 case 2:
1788 last_block[0] = src[src_size - 2];
1789 last_block[1] = src[src_size - 1];
1790 }
1791 }
1792 (*dst_size) = (num_blocks * 4);
1793 if (!dst)
1794 goto out;
1795 while (block_num < num_blocks) {
1796 unsigned char *src_block;
1797 unsigned char dst_block[4];
1798
1799 if (block_num == (num_blocks - 1))
1800 src_block = last_block;
1801 else
1802 src_block = &src[block_num * 3];
1803 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1804 dst_block[1] = (((src_block[0] << 4) & 0x30)
1805 | ((src_block[1] >> 4) & 0x0F));
1806 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1807 | ((src_block[2] >> 6) & 0x03));
1808 dst_block[3] = (src_block[2] & 0x3F);
1809 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1810 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1811 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1812 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1813 block_num++;
1814 }
1815out:
1816 return;
1817}
1818
4a26620d
TH
1819static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1820{
1821 /* Not exact; conservatively long. Every block of 4
1822 * encoded characters decodes into a block of 3
1823 * decoded characters. This segment of code provides
1824 * the caller with the maximum amount of allocated
1825 * space that @dst will need to point to in a
1826 * subsequent call. */
1827 return ((encoded_size + 1) * 3) / 4;
1828}
1829
71c11c37
MH
1830/**
1831 * ecryptfs_decode_from_filename
1832 * @dst: If NULL, this function only sets @dst_size and returns. If
1833 * non-NULL, this function decodes the encoded octets in @src
1834 * into the memory that @dst points to.
1835 * @dst_size: Set to the size of the decoded string.
1836 * @src: The encoded set of octets to decode.
1837 * @src_size: The size of the encoded set of octets to decode.
1838 */
1839static void
1840ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1841 const unsigned char *src, size_t src_size)
51ca58dc
MH
1842{
1843 u8 current_bit_offset = 0;
1844 size_t src_byte_offset = 0;
1845 size_t dst_byte_offset = 0;
51ca58dc 1846
5032f360 1847 if (!dst) {
4a26620d 1848 (*dst_size) = ecryptfs_max_decoded_size(src_size);
51ca58dc
MH
1849 goto out;
1850 }
1851 while (src_byte_offset < src_size) {
1852 unsigned char src_byte =
1853 filename_rev_map[(int)src[src_byte_offset]];
1854
1855 switch (current_bit_offset) {
1856 case 0:
1857 dst[dst_byte_offset] = (src_byte << 2);
1858 current_bit_offset = 6;
1859 break;
1860 case 6:
1861 dst[dst_byte_offset++] |= (src_byte >> 4);
1862 dst[dst_byte_offset] = ((src_byte & 0xF)
1863 << 4);
1864 current_bit_offset = 4;
1865 break;
1866 case 4:
1867 dst[dst_byte_offset++] |= (src_byte >> 2);
1868 dst[dst_byte_offset] = (src_byte << 6);
1869 current_bit_offset = 2;
1870 break;
1871 case 2:
1872 dst[dst_byte_offset++] |= (src_byte);
51ca58dc
MH
1873 current_bit_offset = 0;
1874 break;
1875 }
1876 src_byte_offset++;
1877 }
1878 (*dst_size) = dst_byte_offset;
1879out:
71c11c37 1880 return;
51ca58dc
MH
1881}
1882
1883/**
1884 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1885 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1886 * @name: The plaintext name
1887 * @length: The length of the plaintext
1888 * @encoded_name: The encypted name
1889 *
1890 * Encrypts and encodes a filename into something that constitutes a
1891 * valid filename for a filesystem, with printable characters.
1892 *
1893 * We assume that we have a properly initialized crypto context,
1894 * pointed to by crypt_stat->tfm.
1895 *
1896 * Returns zero on success; non-zero on otherwise
1897 */
1898int ecryptfs_encrypt_and_encode_filename(
1899 char **encoded_name,
1900 size_t *encoded_name_size,
51ca58dc
MH
1901 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1902 const char *name, size_t name_size)
1903{
1904 size_t encoded_name_no_prefix_size;
1905 int rc = 0;
1906
1907 (*encoded_name) = NULL;
1908 (*encoded_name_size) = 0;
97c31606
AV
1909 if (mount_crypt_stat && (mount_crypt_stat->flags
1910 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
51ca58dc
MH
1911 struct ecryptfs_filename *filename;
1912
1913 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1914 if (!filename) {
51ca58dc
MH
1915 rc = -ENOMEM;
1916 goto out;
1917 }
1918 filename->filename = (char *)name;
1919 filename->filename_size = name_size;
97c31606 1920 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
51ca58dc
MH
1921 if (rc) {
1922 printk(KERN_ERR "%s: Error attempting to encrypt "
1923 "filename; rc = [%d]\n", __func__, rc);
1924 kfree(filename);
1925 goto out;
1926 }
1927 ecryptfs_encode_for_filename(
1928 NULL, &encoded_name_no_prefix_size,
1929 filename->encrypted_filename,
1930 filename->encrypted_filename_size);
97c31606 1931 if (mount_crypt_stat
51ca58dc 1932 && (mount_crypt_stat->flags
97c31606 1933 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
51ca58dc
MH
1934 (*encoded_name_size) =
1935 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1936 + encoded_name_no_prefix_size);
1937 else
1938 (*encoded_name_size) =
1939 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1940 + encoded_name_no_prefix_size);
1941 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1942 if (!(*encoded_name)) {
51ca58dc
MH
1943 rc = -ENOMEM;
1944 kfree(filename->encrypted_filename);
1945 kfree(filename);
1946 goto out;
1947 }
97c31606 1948 if (mount_crypt_stat
51ca58dc 1949 && (mount_crypt_stat->flags
97c31606 1950 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
51ca58dc
MH
1951 memcpy((*encoded_name),
1952 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1953 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1954 ecryptfs_encode_for_filename(
1955 ((*encoded_name)
1956 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1957 &encoded_name_no_prefix_size,
1958 filename->encrypted_filename,
1959 filename->encrypted_filename_size);
1960 (*encoded_name_size) =
1961 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1962 + encoded_name_no_prefix_size);
1963 (*encoded_name)[(*encoded_name_size)] = '\0';
51ca58dc 1964 } else {
df6ad33b 1965 rc = -EOPNOTSUPP;
51ca58dc
MH
1966 }
1967 if (rc) {
1968 printk(KERN_ERR "%s: Error attempting to encode "
1969 "encrypted filename; rc = [%d]\n", __func__,
1970 rc);
1971 kfree((*encoded_name));
1972 (*encoded_name) = NULL;
1973 (*encoded_name_size) = 0;
1974 }
1975 kfree(filename->encrypted_filename);
1976 kfree(filename);
1977 } else {
1978 rc = ecryptfs_copy_filename(encoded_name,
1979 encoded_name_size,
1980 name, name_size);
1981 }
1982out:
1983 return rc;
1984}
1985
e86281e7
TH
1986static bool is_dot_dotdot(const char *name, size_t name_size)
1987{
1988 if (name_size == 1 && name[0] == '.')
1989 return true;
1990 else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1991 return true;
1992
1993 return false;
1994}
1995
51ca58dc
MH
1996/**
1997 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1998 * @plaintext_name: The plaintext name
1999 * @plaintext_name_size: The plaintext name size
2000 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2001 * @name: The filename in cipher text
2002 * @name_size: The cipher text name size
2003 *
2004 * Decrypts and decodes the filename.
2005 *
2006 * Returns zero on error; non-zero otherwise
2007 */
2008int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2009 size_t *plaintext_name_size,
0747fdb2 2010 struct super_block *sb,
51ca58dc
MH
2011 const char *name, size_t name_size)
2012{
2aac0cf8 2013 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
0747fdb2 2014 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
51ca58dc
MH
2015 char *decoded_name;
2016 size_t decoded_name_size;
2017 size_t packet_size;
2018 int rc = 0;
2019
e86281e7
TH
2020 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2021 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2022 if (is_dot_dotdot(name, name_size)) {
2023 rc = ecryptfs_copy_filename(plaintext_name,
2024 plaintext_name_size,
2025 name, name_size);
2026 goto out;
2027 }
2028
2029 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2030 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2031 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2032 rc = -EINVAL;
2033 goto out;
2034 }
51ca58dc
MH
2035
2036 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2037 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
71c11c37
MH
2038 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2039 name, name_size);
51ca58dc
MH
2040 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2041 if (!decoded_name) {
51ca58dc
MH
2042 rc = -ENOMEM;
2043 goto out;
2044 }
71c11c37
MH
2045 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2046 name, name_size);
51ca58dc
MH
2047 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2048 plaintext_name_size,
2049 &packet_size,
2050 mount_crypt_stat,
2051 decoded_name,
2052 decoded_name_size);
2053 if (rc) {
e86281e7
TH
2054 ecryptfs_printk(KERN_DEBUG,
2055 "%s: Could not parse tag 70 packet from filename\n",
2056 __func__);
51ca58dc
MH
2057 goto out_free;
2058 }
2059 } else {
2060 rc = ecryptfs_copy_filename(plaintext_name,
2061 plaintext_name_size,
2062 name, name_size);
2063 goto out;
2064 }
2065out_free:
2066 kfree(decoded_name);
2067out:
2068 return rc;
2069}
4a26620d
TH
2070
2071#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2072
2073int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2074 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2075{
3095e8e3 2076 struct crypto_skcipher *tfm;
4a26620d
TH
2077 struct mutex *tfm_mutex;
2078 size_t cipher_blocksize;
2079 int rc;
2080
2081 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2082 (*namelen) = lower_namelen;
2083 return 0;
2084 }
2085
3095e8e3 2086 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
4a26620d
TH
2087 mount_crypt_stat->global_default_fn_cipher_name);
2088 if (unlikely(rc)) {
2089 (*namelen) = 0;
2090 return rc;
2091 }
2092
2093 mutex_lock(tfm_mutex);
3095e8e3 2094 cipher_blocksize = crypto_skcipher_blocksize(tfm);
4a26620d
TH
2095 mutex_unlock(tfm_mutex);
2096
2097 /* Return an exact amount for the common cases */
2098 if (lower_namelen == NAME_MAX
2099 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2100 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2101 return 0;
2102 }
2103
2104 /* Return a safe estimate for the uncommon cases */
2105 (*namelen) = lower_namelen;
2106 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2107 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2108 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2109 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2110 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2111 /* Worst case is that the filename is padded nearly a full block size */
2112 (*namelen) -= cipher_blocksize - 1;
2113
2114 if ((*namelen) < 0)
2115 (*namelen) = 0;
2116
2117 return 0;
2118}