Merge tag 'drm-fixes-2019-12-21' of git://anongit.freedesktop.org/drm/drm
[linux-block.git] / fs / direct-io.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
e1f8e874 9 * 04Jul2002 Andrew Morton
1da177e4
LT
10 * Initial version
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
e1f8e874 13 * 29Oct2002 Andrew Morton
1da177e4
LT
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
21 */
22
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/mm.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/pagemap.h>
98c4d57d 31#include <linux/task_io_accounting_ops.h>
1da177e4
LT
32#include <linux/bio.h>
33#include <linux/wait.h>
34#include <linux/err.h>
35#include <linux/blkdev.h>
36#include <linux/buffer_head.h>
37#include <linux/rwsem.h>
38#include <linux/uio.h>
60063497 39#include <linux/atomic.h>
65dd2aa9 40#include <linux/prefetch.h>
1da177e4
LT
41
42/*
43 * How many user pages to map in one call to get_user_pages(). This determines
cde1ecb3 44 * the size of a structure in the slab cache
1da177e4
LT
45 */
46#define DIO_PAGES 64
47
ffe51f01
LC
48/*
49 * Flags for dio_complete()
50 */
51#define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
52#define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
53
1da177e4
LT
54/*
55 * This code generally works in units of "dio_blocks". A dio_block is
56 * somewhere between the hard sector size and the filesystem block size. it
57 * is determined on a per-invocation basis. When talking to the filesystem
58 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
59 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
60 * to bio_block quantities by shifting left by blkfactor.
61 *
62 * If blkfactor is zero then the user's request was aligned to the filesystem's
63 * blocksize.
1da177e4
LT
64 */
65
eb28be2b
AK
66/* dio_state only used in the submission path */
67
68struct dio_submit {
1da177e4 69 struct bio *bio; /* bio under assembly */
1da177e4
LT
70 unsigned blkbits; /* doesn't change */
71 unsigned blkfactor; /* When we're using an alignment which
72 is finer than the filesystem's soft
73 blocksize, this specifies how much
74 finer. blkfactor=2 means 1/4-block
75 alignment. Does not change */
76 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
77 been performed at the start of a
78 write */
79 int pages_in_io; /* approximate total IO pages */
1da177e4
LT
80 sector_t block_in_file; /* Current offset into the underlying
81 file in dio_block units. */
82 unsigned blocks_available; /* At block_in_file. changes */
0dc2bc49 83 int reap_counter; /* rate limit reaping */
1da177e4 84 sector_t final_block_in_request;/* doesn't change */
1da177e4 85 int boundary; /* prev block is at a boundary */
1d8fa7a2 86 get_block_t *get_block; /* block mapping function */
facd07b0 87 dio_submit_t *submit_io; /* IO submition function */
eb28be2b 88
facd07b0 89 loff_t logical_offset_in_bio; /* current first logical block in bio */
1da177e4
LT
90 sector_t final_block_in_bio; /* current final block in bio + 1 */
91 sector_t next_block_for_io; /* next block to be put under IO,
92 in dio_blocks units */
1da177e4
LT
93
94 /*
95 * Deferred addition of a page to the dio. These variables are
96 * private to dio_send_cur_page(), submit_page_section() and
97 * dio_bio_add_page().
98 */
99 struct page *cur_page; /* The page */
100 unsigned cur_page_offset; /* Offset into it, in bytes */
101 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
102 sector_t cur_page_block; /* Where it starts */
facd07b0 103 loff_t cur_page_fs_offset; /* Offset in file */
1da177e4 104
7b2c99d1 105 struct iov_iter *iter;
1da177e4
LT
106 /*
107 * Page queue. These variables belong to dio_refill_pages() and
108 * dio_get_page().
109 */
1da177e4
LT
110 unsigned head; /* next page to process */
111 unsigned tail; /* last valid page + 1 */
7b2c99d1 112 size_t from, to;
eb28be2b
AK
113};
114
115/* dio_state communicated between submission path and end_io */
116struct dio {
117 int flags; /* doesn't change */
8a4c1e42
MC
118 int op;
119 int op_flags;
15c4f638 120 blk_qc_t bio_cookie;
74d46992 121 struct gendisk *bio_disk;
0dc2bc49 122 struct inode *inode;
eb28be2b
AK
123 loff_t i_size; /* i_size when submitted */
124 dio_iodone_t *end_io; /* IO completion function */
eb28be2b 125
18772641 126 void *private; /* copy from map_bh.b_private */
eb28be2b
AK
127
128 /* BIO completion state */
129 spinlock_t bio_lock; /* protects BIO fields below */
0dc2bc49
AK
130 int page_errors; /* errno from get_user_pages() */
131 int is_async; /* is IO async ? */
7b7a8665 132 bool defer_completion; /* defer AIO completion to workqueue? */
53cbf3b1 133 bool should_dirty; /* if pages should be dirtied */
0dc2bc49 134 int io_error; /* IO error in completion path */
eb28be2b
AK
135 unsigned long refcount; /* direct_io_worker() and bios */
136 struct bio *bio_list; /* singly linked via bi_private */
137 struct task_struct *waiter; /* waiting task (NULL if none) */
138
139 /* AIO related stuff */
140 struct kiocb *iocb; /* kiocb */
eb28be2b
AK
141 ssize_t result; /* IO result */
142
23aee091
JM
143 /*
144 * pages[] (and any fields placed after it) are not zeroed out at
145 * allocation time. Don't add new fields after pages[] unless you
146 * wish that they not be zeroed.
147 */
7b7a8665
CH
148 union {
149 struct page *pages[DIO_PAGES]; /* page buffer */
150 struct work_struct complete_work;/* deferred AIO completion */
151 };
6e8267f5
AK
152} ____cacheline_aligned_in_smp;
153
154static struct kmem_cache *dio_cache __read_mostly;
1da177e4
LT
155
156/*
157 * How many pages are in the queue?
158 */
eb28be2b 159static inline unsigned dio_pages_present(struct dio_submit *sdio)
1da177e4 160{
eb28be2b 161 return sdio->tail - sdio->head;
1da177e4
LT
162}
163
164/*
165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
166 */
ba253fbf 167static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
1da177e4 168{
7b2c99d1 169 ssize_t ret;
1da177e4 170
2c80929c 171 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
7b2c99d1 172 &sdio->from);
1da177e4 173
8a4c1e42 174 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
557ed1fa 175 struct page *page = ZERO_PAGE(0);
1da177e4
LT
176 /*
177 * A memory fault, but the filesystem has some outstanding
178 * mapped blocks. We need to use those blocks up to avoid
179 * leaking stale data in the file.
180 */
181 if (dio->page_errors == 0)
182 dio->page_errors = ret;
09cbfeaf 183 get_page(page);
b5810039 184 dio->pages[0] = page;
eb28be2b
AK
185 sdio->head = 0;
186 sdio->tail = 1;
7b2c99d1
AV
187 sdio->from = 0;
188 sdio->to = PAGE_SIZE;
189 return 0;
1da177e4
LT
190 }
191
192 if (ret >= 0) {
7b2c99d1
AV
193 iov_iter_advance(sdio->iter, ret);
194 ret += sdio->from;
eb28be2b 195 sdio->head = 0;
7b2c99d1
AV
196 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
197 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
198 return 0;
1da177e4 199 }
1da177e4
LT
200 return ret;
201}
202
203/*
204 * Get another userspace page. Returns an ERR_PTR on error. Pages are
205 * buffered inside the dio so that we can call get_user_pages() against a
206 * decent number of pages, less frequently. To provide nicer use of the
207 * L1 cache.
208 */
ba253fbf 209static inline struct page *dio_get_page(struct dio *dio,
6fcc5420 210 struct dio_submit *sdio)
1da177e4 211{
eb28be2b 212 if (dio_pages_present(sdio) == 0) {
1da177e4
LT
213 int ret;
214
eb28be2b 215 ret = dio_refill_pages(dio, sdio);
1da177e4
LT
216 if (ret)
217 return ERR_PTR(ret);
eb28be2b 218 BUG_ON(dio_pages_present(sdio) == 0);
1da177e4 219 }
6fcc5420 220 return dio->pages[sdio->head];
1da177e4
LT
221}
222
c70d868f 223/*
6d544bb4 224 * dio_complete() - called when all DIO BIO I/O has been completed
6d544bb4 225 *
7b7a8665
CH
226 * This drops i_dio_count, lets interested parties know that a DIO operation
227 * has completed, and calculates the resulting return code for the operation.
6d544bb4
ZB
228 *
229 * It lets the filesystem know if it registered an interest earlier via
230 * get_block. Pass the private field of the map buffer_head so that
231 * filesystems can use it to hold additional state between get_block calls and
232 * dio_complete.
1da177e4 233 */
ffe51f01 234static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
1da177e4 235{
716b9bc0 236 loff_t offset = dio->iocb->ki_pos;
6d544bb4 237 ssize_t transferred = 0;
332391a9 238 int err;
6d544bb4 239
8459d86a
ZB
240 /*
241 * AIO submission can race with bio completion to get here while
242 * expecting to have the last io completed by bio completion.
243 * In that case -EIOCBQUEUED is in fact not an error we want
244 * to preserve through this call.
245 */
246 if (ret == -EIOCBQUEUED)
247 ret = 0;
248
6d544bb4
ZB
249 if (dio->result) {
250 transferred = dio->result;
251
252 /* Check for short read case */
8a4c1e42
MC
253 if ((dio->op == REQ_OP_READ) &&
254 ((offset + transferred) > dio->i_size))
6d544bb4 255 transferred = dio->i_size - offset;
4038acdb
AV
256 /* ignore EFAULT if some IO has been done */
257 if (unlikely(ret == -EFAULT) && transferred)
258 ret = 0;
6d544bb4
ZB
259 }
260
6d544bb4
ZB
261 if (ret == 0)
262 ret = dio->page_errors;
263 if (ret == 0)
264 ret = dio->io_error;
265 if (ret == 0)
266 ret = transferred;
267
5e25c269
EG
268 if (dio->end_io) {
269 // XXX: ki_pos??
270 err = dio->end_io(dio->iocb, offset, ret, dio->private);
271 if (err)
272 ret = err;
273 }
274
332391a9
LC
275 /*
276 * Try again to invalidate clean pages which might have been cached by
277 * non-direct readahead, or faulted in by get_user_pages() if the source
278 * of the write was an mmap'ed region of the file we're writing. Either
279 * one is a pretty crazy thing to do, so we don't support it 100%. If
280 * this invalidation fails, tough, the write still worked...
5e25c269
EG
281 *
282 * And this page cache invalidation has to be after dio->end_io(), as
283 * some filesystems convert unwritten extents to real allocations in
284 * end_io() when necessary, otherwise a racing buffer read would cache
285 * zeros from unwritten extents.
332391a9 286 */
ffe51f01
LC
287 if (flags & DIO_COMPLETE_INVALIDATE &&
288 ret > 0 && dio->op == REQ_OP_WRITE &&
332391a9
LC
289 dio->inode->i_mapping->nrpages) {
290 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
291 offset >> PAGE_SHIFT,
292 (offset + ret - 1) >> PAGE_SHIFT);
5a9d929d
DW
293 if (err)
294 dio_warn_stale_pagecache(dio->iocb->ki_filp);
332391a9
LC
295 }
296
ce3077ee 297 inode_dio_end(dio->inode);
fe0f07d0 298
ffe51f01 299 if (flags & DIO_COMPLETE_ASYNC) {
e2592217
CH
300 /*
301 * generic_write_sync expects ki_pos to have been updated
302 * already, but the submission path only does this for
303 * synchronous I/O.
304 */
305 dio->iocb->ki_pos += transferred;
02afc27f 306
41e817bc
MH
307 if (ret > 0 && dio->op == REQ_OP_WRITE)
308 ret = generic_write_sync(dio->iocb, ret);
04b2fa9f 309 dio->iocb->ki_complete(dio->iocb, ret, 0);
02afc27f 310 }
40e2e973 311
7b7a8665 312 kmem_cache_free(dio_cache, dio);
6d544bb4 313 return ret;
1da177e4
LT
314}
315
7b7a8665
CH
316static void dio_aio_complete_work(struct work_struct *work)
317{
318 struct dio *dio = container_of(work, struct dio, complete_work);
319
ffe51f01 320 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
7b7a8665
CH
321}
322
4e4cbee9 323static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
7b7a8665 324
1da177e4
LT
325/*
326 * Asynchronous IO callback.
327 */
4246a0b6 328static void dio_bio_end_aio(struct bio *bio)
1da177e4
LT
329{
330 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
331 unsigned long remaining;
332 unsigned long flags;
332391a9 333 bool defer_completion = false;
1da177e4 334
1da177e4
LT
335 /* cleanup the bio */
336 dio_bio_complete(dio, bio);
0273201e 337
5eb6c7a2
ZB
338 spin_lock_irqsave(&dio->bio_lock, flags);
339 remaining = --dio->refcount;
340 if (remaining == 1 && dio->waiter)
20258b2b 341 wake_up_process(dio->waiter);
5eb6c7a2 342 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 343
8459d86a 344 if (remaining == 0) {
332391a9
LC
345 /*
346 * Defer completion when defer_completion is set or
347 * when the inode has pages mapped and this is AIO write.
348 * We need to invalidate those pages because there is a
349 * chance they contain stale data in the case buffered IO
350 * went in between AIO submission and completion into the
351 * same region.
352 */
353 if (dio->result)
354 defer_completion = dio->defer_completion ||
355 (dio->op == REQ_OP_WRITE &&
356 dio->inode->i_mapping->nrpages);
357 if (defer_completion) {
7b7a8665
CH
358 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
359 queue_work(dio->inode->i_sb->s_dio_done_wq,
360 &dio->complete_work);
361 } else {
ffe51f01 362 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
7b7a8665 363 }
8459d86a 364 }
1da177e4
LT
365}
366
367/*
368 * The BIO completion handler simply queues the BIO up for the process-context
369 * handler.
370 *
371 * During I/O bi_private points at the dio. After I/O, bi_private is used to
372 * implement a singly-linked list of completed BIOs, at dio->bio_list.
373 */
4246a0b6 374static void dio_bio_end_io(struct bio *bio)
1da177e4
LT
375{
376 struct dio *dio = bio->bi_private;
377 unsigned long flags;
378
1da177e4
LT
379 spin_lock_irqsave(&dio->bio_lock, flags);
380 bio->bi_private = dio->bio_list;
381 dio->bio_list = bio;
5eb6c7a2 382 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
383 wake_up_process(dio->waiter);
384 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
385}
386
facd07b0
JB
387/**
388 * dio_end_io - handle the end io action for the given bio
389 * @bio: The direct io bio thats being completed
facd07b0
JB
390 *
391 * This is meant to be called by any filesystem that uses their own dio_submit_t
392 * so that the DIO specific endio actions are dealt with after the filesystem
393 * has done it's completion work.
394 */
4055351c 395void dio_end_io(struct bio *bio)
facd07b0
JB
396{
397 struct dio *dio = bio->bi_private;
398
399 if (dio->is_async)
4246a0b6 400 dio_bio_end_aio(bio);
facd07b0 401 else
4246a0b6 402 dio_bio_end_io(bio);
facd07b0
JB
403}
404EXPORT_SYMBOL_GPL(dio_end_io);
405
ba253fbf 406static inline void
eb28be2b
AK
407dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
408 struct block_device *bdev,
409 sector_t first_sector, int nr_vecs)
1da177e4
LT
410{
411 struct bio *bio;
412
20d9600c 413 /*
0eb0b63c
CH
414 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
415 * we request a valid number of vectors.
20d9600c 416 */
1da177e4 417 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4 418
74d46992 419 bio_set_dev(bio, bdev);
4f024f37 420 bio->bi_iter.bi_sector = first_sector;
8a4c1e42 421 bio_set_op_attrs(bio, dio->op, dio->op_flags);
1da177e4
LT
422 if (dio->is_async)
423 bio->bi_end_io = dio_bio_end_aio;
424 else
425 bio->bi_end_io = dio_bio_end_io;
426
45d06cf7
JA
427 bio->bi_write_hint = dio->iocb->ki_hint;
428
eb28be2b
AK
429 sdio->bio = bio;
430 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
1da177e4
LT
431}
432
433/*
434 * In the AIO read case we speculatively dirty the pages before starting IO.
435 * During IO completion, any of these pages which happen to have been written
436 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
437 *
438 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4 439 */
ba253fbf 440static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
1da177e4 441{
eb28be2b 442 struct bio *bio = sdio->bio;
5eb6c7a2 443 unsigned long flags;
1da177e4
LT
444
445 bio->bi_private = dio;
5eb6c7a2
ZB
446
447 spin_lock_irqsave(&dio->bio_lock, flags);
448 dio->refcount++;
449 spin_unlock_irqrestore(&dio->bio_lock, flags);
450
8a4c1e42 451 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
1da177e4 452 bio_set_pages_dirty(bio);
5eb6c7a2 453
74d46992 454 dio->bio_disk = bio->bi_disk;
c1c53460 455
15c4f638 456 if (sdio->submit_io) {
8a4c1e42 457 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
15c4f638 458 dio->bio_cookie = BLK_QC_T_NONE;
c1c53460 459 } else
4e49ea4a 460 dio->bio_cookie = submit_bio(bio);
1da177e4 461
eb28be2b
AK
462 sdio->bio = NULL;
463 sdio->boundary = 0;
464 sdio->logical_offset_in_bio = 0;
1da177e4
LT
465}
466
467/*
468 * Release any resources in case of a failure
469 */
ba253fbf 470static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
1da177e4 471{
7b2c99d1 472 while (sdio->head < sdio->tail)
09cbfeaf 473 put_page(dio->pages[sdio->head++]);
1da177e4
LT
474}
475
476/*
0273201e
ZB
477 * Wait for the next BIO to complete. Remove it and return it. NULL is
478 * returned once all BIOs have been completed. This must only be called once
479 * all bios have been issued so that dio->refcount can only decrease. This
480 * requires that that the caller hold a reference on the dio.
1da177e4
LT
481 */
482static struct bio *dio_await_one(struct dio *dio)
483{
484 unsigned long flags;
0273201e 485 struct bio *bio = NULL;
1da177e4
LT
486
487 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
488
489 /*
490 * Wait as long as the list is empty and there are bios in flight. bio
491 * completion drops the count, maybe adds to the list, and wakes while
492 * holding the bio_lock so we don't need set_current_state()'s barrier
493 * and can call it after testing our condition.
494 */
495 while (dio->refcount > 1 && dio->bio_list == NULL) {
496 __set_current_state(TASK_UNINTERRUPTIBLE);
497 dio->waiter = current;
498 spin_unlock_irqrestore(&dio->bio_lock, flags);
c43c83a2 499 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
0a1b8b87 500 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
15c4f638 501 io_schedule();
5eb6c7a2
ZB
502 /* wake up sets us TASK_RUNNING */
503 spin_lock_irqsave(&dio->bio_lock, flags);
504 dio->waiter = NULL;
1da177e4 505 }
0273201e
ZB
506 if (dio->bio_list) {
507 bio = dio->bio_list;
508 dio->bio_list = bio->bi_private;
509 }
1da177e4
LT
510 spin_unlock_irqrestore(&dio->bio_lock, flags);
511 return bio;
512}
513
514/*
515 * Process one completed BIO. No locks are held.
516 */
4e4cbee9 517static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
1da177e4 518{
4e4cbee9 519 blk_status_t err = bio->bi_status;
d7c8aa85 520 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
1da177e4 521
03a07c92
GR
522 if (err) {
523 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
524 dio->io_error = -EAGAIN;
525 else
526 dio->io_error = -EIO;
527 }
1da177e4 528
d7c8aa85 529 if (dio->is_async && should_dirty) {
7ddc971f 530 bio_check_pages_dirty(bio); /* transfers ownership */
1da177e4 531 } else {
d7c8aa85 532 bio_release_pages(bio, should_dirty);
1da177e4
LT
533 bio_put(bio);
534 }
9b81c842 535 return err;
1da177e4
LT
536}
537
538/*
0273201e
ZB
539 * Wait on and process all in-flight BIOs. This must only be called once
540 * all bios have been issued so that the refcount can only decrease.
541 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 542 * errors are propagated through dio->io_error and should be propagated via
0273201e 543 * dio_complete().
1da177e4 544 */
6d544bb4 545static void dio_await_completion(struct dio *dio)
1da177e4 546{
0273201e
ZB
547 struct bio *bio;
548 do {
549 bio = dio_await_one(dio);
550 if (bio)
551 dio_bio_complete(dio, bio);
552 } while (bio);
1da177e4
LT
553}
554
555/*
556 * A really large O_DIRECT read or write can generate a lot of BIOs. So
557 * to keep the memory consumption sane we periodically reap any completed BIOs
558 * during the BIO generation phase.
559 *
560 * This also helps to limit the peak amount of pinned userspace memory.
561 */
ba253fbf 562static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
563{
564 int ret = 0;
565
eb28be2b 566 if (sdio->reap_counter++ >= 64) {
1da177e4
LT
567 while (dio->bio_list) {
568 unsigned long flags;
569 struct bio *bio;
570 int ret2;
571
572 spin_lock_irqsave(&dio->bio_lock, flags);
573 bio = dio->bio_list;
574 dio->bio_list = bio->bi_private;
575 spin_unlock_irqrestore(&dio->bio_lock, flags);
4e4cbee9 576 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
1da177e4
LT
577 if (ret == 0)
578 ret = ret2;
579 }
eb28be2b 580 sdio->reap_counter = 0;
1da177e4
LT
581 }
582 return ret;
583}
584
7b7a8665
CH
585/*
586 * Create workqueue for deferred direct IO completions. We allocate the
587 * workqueue when it's first needed. This avoids creating workqueue for
588 * filesystems that don't need it and also allows us to create the workqueue
589 * late enough so the we can include s_id in the name of the workqueue.
590 */
ec1b8260 591int sb_init_dio_done_wq(struct super_block *sb)
7b7a8665 592{
45150c43 593 struct workqueue_struct *old;
7b7a8665
CH
594 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
595 WQ_MEM_RECLAIM, 0,
596 sb->s_id);
597 if (!wq)
598 return -ENOMEM;
599 /*
600 * This has to be atomic as more DIOs can race to create the workqueue
601 */
45150c43 602 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
7b7a8665 603 /* Someone created workqueue before us? Free ours... */
45150c43 604 if (old)
7b7a8665
CH
605 destroy_workqueue(wq);
606 return 0;
607}
608
609static int dio_set_defer_completion(struct dio *dio)
610{
611 struct super_block *sb = dio->inode->i_sb;
612
613 if (dio->defer_completion)
614 return 0;
615 dio->defer_completion = true;
616 if (!sb->s_dio_done_wq)
617 return sb_init_dio_done_wq(sb);
618 return 0;
619}
620
1da177e4
LT
621/*
622 * Call into the fs to map some more disk blocks. We record the current number
eb28be2b 623 * of available blocks at sdio->blocks_available. These are in units of the
93407472 624 * fs blocksize, i_blocksize(inode).
1da177e4
LT
625 *
626 * The fs is allowed to map lots of blocks at once. If it wants to do that,
627 * it uses the passed inode-relative block number as the file offset, as usual.
628 *
1d8fa7a2 629 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
630 * has remaining to do. The fs should not map more than this number of blocks.
631 *
632 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
633 * indicate how much contiguous disk space has been made available at
634 * bh->b_blocknr.
635 *
636 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
637 * This isn't very efficient...
638 *
639 * In the case of filesystem holes: the fs may return an arbitrarily-large
640 * hole by returning an appropriate value in b_size and by clearing
641 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 642 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4 643 */
18772641
AK
644static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
645 struct buffer_head *map_bh)
1da177e4
LT
646{
647 int ret;
1da177e4 648 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
ae55e1aa 649 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
1da177e4 650 unsigned long fs_count; /* Number of filesystem-sized blocks */
1da177e4 651 int create;
ab73857e 652 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
8b9433eb 653 loff_t i_size;
1da177e4
LT
654
655 /*
656 * If there was a memory error and we've overwritten all the
657 * mapped blocks then we can now return that memory error
658 */
659 ret = dio->page_errors;
660 if (ret == 0) {
eb28be2b
AK
661 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
662 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
ae55e1aa
TM
663 fs_endblk = (sdio->final_block_in_request - 1) >>
664 sdio->blkfactor;
665 fs_count = fs_endblk - fs_startblk + 1;
1da177e4 666
3c674e74 667 map_bh->b_state = 0;
ab73857e 668 map_bh->b_size = fs_count << i_blkbits;
3c674e74 669
5fe878ae 670 /*
9ecd10b7
EG
671 * For writes that could fill holes inside i_size on a
672 * DIO_SKIP_HOLES filesystem we forbid block creations: only
673 * overwrites are permitted. We will return early to the caller
674 * once we see an unmapped buffer head returned, and the caller
675 * will fall back to buffered I/O.
5fe878ae
CH
676 *
677 * Otherwise the decision is left to the get_blocks method,
678 * which may decide to handle it or also return an unmapped
679 * buffer head.
680 */
8a4c1e42 681 create = dio->op == REQ_OP_WRITE;
5fe878ae 682 if (dio->flags & DIO_SKIP_HOLES) {
8b9433eb
EF
683 i_size = i_size_read(dio->inode);
684 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
1da177e4 685 create = 0;
1da177e4 686 }
3c674e74 687
eb28be2b 688 ret = (*sdio->get_block)(dio->inode, fs_startblk,
1da177e4 689 map_bh, create);
18772641
AK
690
691 /* Store for completion */
692 dio->private = map_bh->b_private;
7b7a8665
CH
693
694 if (ret == 0 && buffer_defer_completion(map_bh))
695 ret = dio_set_defer_completion(dio);
1da177e4
LT
696 }
697 return ret;
698}
699
700/*
701 * There is no bio. Make one now.
702 */
ba253fbf
AK
703static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
704 sector_t start_sector, struct buffer_head *map_bh)
1da177e4
LT
705{
706 sector_t sector;
707 int ret, nr_pages;
708
eb28be2b 709 ret = dio_bio_reap(dio, sdio);
1da177e4
LT
710 if (ret)
711 goto out;
eb28be2b 712 sector = start_sector << (sdio->blkbits - 9);
b54ffb73 713 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
1da177e4 714 BUG_ON(nr_pages <= 0);
18772641 715 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
eb28be2b 716 sdio->boundary = 0;
1da177e4
LT
717out:
718 return ret;
719}
720
721/*
722 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
723 * that was successful then update final_block_in_bio and take a ref against
724 * the just-added page.
725 *
726 * Return zero on success. Non-zero means the caller needs to start a new BIO.
727 */
ba253fbf 728static inline int dio_bio_add_page(struct dio_submit *sdio)
1da177e4
LT
729{
730 int ret;
731
eb28be2b
AK
732 ret = bio_add_page(sdio->bio, sdio->cur_page,
733 sdio->cur_page_len, sdio->cur_page_offset);
734 if (ret == sdio->cur_page_len) {
1da177e4
LT
735 /*
736 * Decrement count only, if we are done with this page
737 */
eb28be2b
AK
738 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
739 sdio->pages_in_io--;
09cbfeaf 740 get_page(sdio->cur_page);
eb28be2b
AK
741 sdio->final_block_in_bio = sdio->cur_page_block +
742 (sdio->cur_page_len >> sdio->blkbits);
1da177e4
LT
743 ret = 0;
744 } else {
745 ret = 1;
746 }
747 return ret;
748}
749
750/*
751 * Put cur_page under IO. The section of cur_page which is described by
752 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
753 * starts on-disk at cur_page_block.
754 *
755 * We take a ref against the page here (on behalf of its presence in the bio).
756 *
757 * The caller of this function is responsible for removing cur_page from the
758 * dio, and for dropping the refcount which came from that presence.
759 */
ba253fbf
AK
760static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
761 struct buffer_head *map_bh)
1da177e4
LT
762{
763 int ret = 0;
764
eb28be2b
AK
765 if (sdio->bio) {
766 loff_t cur_offset = sdio->cur_page_fs_offset;
767 loff_t bio_next_offset = sdio->logical_offset_in_bio +
4f024f37 768 sdio->bio->bi_iter.bi_size;
c2c6ca41 769
1da177e4 770 /*
c2c6ca41
JB
771 * See whether this new request is contiguous with the old.
772 *
f0940cee
NK
773 * Btrfs cannot handle having logically non-contiguous requests
774 * submitted. For example if you have
c2c6ca41
JB
775 *
776 * Logical: [0-4095][HOLE][8192-12287]
f0940cee 777 * Physical: [0-4095] [4096-8191]
c2c6ca41
JB
778 *
779 * We cannot submit those pages together as one BIO. So if our
780 * current logical offset in the file does not equal what would
781 * be the next logical offset in the bio, submit the bio we
782 * have.
1da177e4 783 */
eb28be2b 784 if (sdio->final_block_in_bio != sdio->cur_page_block ||
c2c6ca41 785 cur_offset != bio_next_offset)
eb28be2b 786 dio_bio_submit(dio, sdio);
1da177e4
LT
787 }
788
eb28be2b 789 if (sdio->bio == NULL) {
18772641 790 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4
LT
791 if (ret)
792 goto out;
793 }
794
eb28be2b
AK
795 if (dio_bio_add_page(sdio) != 0) {
796 dio_bio_submit(dio, sdio);
18772641 797 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4 798 if (ret == 0) {
eb28be2b 799 ret = dio_bio_add_page(sdio);
1da177e4
LT
800 BUG_ON(ret != 0);
801 }
802 }
803out:
804 return ret;
805}
806
807/*
808 * An autonomous function to put a chunk of a page under deferred IO.
809 *
810 * The caller doesn't actually know (or care) whether this piece of page is in
811 * a BIO, or is under IO or whatever. We just take care of all possible
812 * situations here. The separation between the logic of do_direct_IO() and
813 * that of submit_page_section() is important for clarity. Please don't break.
814 *
815 * The chunk of page starts on-disk at blocknr.
816 *
817 * We perform deferred IO, by recording the last-submitted page inside our
818 * private part of the dio structure. If possible, we just expand the IO
819 * across that page here.
820 *
821 * If that doesn't work out then we put the old page into the bio and add this
822 * page to the dio instead.
823 */
ba253fbf 824static inline int
eb28be2b 825submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
18772641
AK
826 unsigned offset, unsigned len, sector_t blocknr,
827 struct buffer_head *map_bh)
1da177e4
LT
828{
829 int ret = 0;
830
8a4c1e42 831 if (dio->op == REQ_OP_WRITE) {
98c4d57d
AM
832 /*
833 * Read accounting is performed in submit_bio()
834 */
835 task_io_account_write(len);
836 }
837
1da177e4
LT
838 /*
839 * Can we just grow the current page's presence in the dio?
840 */
eb28be2b
AK
841 if (sdio->cur_page == page &&
842 sdio->cur_page_offset + sdio->cur_page_len == offset &&
843 sdio->cur_page_block +
844 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
845 sdio->cur_page_len += len;
1da177e4
LT
846 goto out;
847 }
848
849 /*
850 * If there's a deferred page already there then send it.
851 */
eb28be2b 852 if (sdio->cur_page) {
18772641 853 ret = dio_send_cur_page(dio, sdio, map_bh);
09cbfeaf 854 put_page(sdio->cur_page);
eb28be2b 855 sdio->cur_page = NULL;
1da177e4 856 if (ret)
b1058b98 857 return ret;
1da177e4
LT
858 }
859
09cbfeaf 860 get_page(page); /* It is in dio */
eb28be2b
AK
861 sdio->cur_page = page;
862 sdio->cur_page_offset = offset;
863 sdio->cur_page_len = len;
864 sdio->cur_page_block = blocknr;
865 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
1da177e4 866out:
b1058b98
JK
867 /*
868 * If sdio->boundary then we want to schedule the IO now to
869 * avoid metadata seeks.
870 */
871 if (sdio->boundary) {
872 ret = dio_send_cur_page(dio, sdio, map_bh);
899f0429
AG
873 if (sdio->bio)
874 dio_bio_submit(dio, sdio);
09cbfeaf 875 put_page(sdio->cur_page);
b1058b98
JK
876 sdio->cur_page = NULL;
877 }
1da177e4
LT
878 return ret;
879}
880
1da177e4
LT
881/*
882 * If we are not writing the entire block and get_block() allocated
883 * the block for us, we need to fill-in the unused portion of the
884 * block with zeros. This happens only if user-buffer, fileoffset or
885 * io length is not filesystem block-size multiple.
886 *
887 * `end' is zero if we're doing the start of the IO, 1 at the end of the
888 * IO.
889 */
ba253fbf
AK
890static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
891 int end, struct buffer_head *map_bh)
1da177e4
LT
892{
893 unsigned dio_blocks_per_fs_block;
894 unsigned this_chunk_blocks; /* In dio_blocks */
895 unsigned this_chunk_bytes;
896 struct page *page;
897
eb28be2b 898 sdio->start_zero_done = 1;
18772641 899 if (!sdio->blkfactor || !buffer_new(map_bh))
1da177e4
LT
900 return;
901
eb28be2b
AK
902 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
903 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
1da177e4
LT
904
905 if (!this_chunk_blocks)
906 return;
907
908 /*
909 * We need to zero out part of an fs block. It is either at the
910 * beginning or the end of the fs block.
911 */
912 if (end)
913 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
914
eb28be2b 915 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
1da177e4 916
557ed1fa 917 page = ZERO_PAGE(0);
eb28be2b 918 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
18772641 919 sdio->next_block_for_io, map_bh))
1da177e4
LT
920 return;
921
eb28be2b 922 sdio->next_block_for_io += this_chunk_blocks;
1da177e4
LT
923}
924
925/*
926 * Walk the user pages, and the file, mapping blocks to disk and generating
927 * a sequence of (page,offset,len,block) mappings. These mappings are injected
928 * into submit_page_section(), which takes care of the next stage of submission
929 *
930 * Direct IO against a blockdev is different from a file. Because we can
931 * happily perform page-sized but 512-byte aligned IOs. It is important that
932 * blockdev IO be able to have fine alignment and large sizes.
933 *
1d8fa7a2 934 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
935 * with the size of IO which is permitted at this offset and this i_blkbits.
936 *
937 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 938 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
939 * fine alignment but still allows this function to work in PAGE_SIZE units.
940 */
18772641
AK
941static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
942 struct buffer_head *map_bh)
1da177e4 943{
eb28be2b 944 const unsigned blkbits = sdio->blkbits;
dd545b52 945 const unsigned i_blkbits = blkbits + sdio->blkfactor;
1da177e4
LT
946 int ret = 0;
947
eb28be2b 948 while (sdio->block_in_file < sdio->final_block_in_request) {
7b2c99d1
AV
949 struct page *page;
950 size_t from, to;
6fcc5420
BH
951
952 page = dio_get_page(dio, sdio);
1da177e4
LT
953 if (IS_ERR(page)) {
954 ret = PTR_ERR(page);
955 goto out;
956 }
6fcc5420
BH
957 from = sdio->head ? 0 : sdio->from;
958 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
959 sdio->head++;
1da177e4 960
7b2c99d1 961 while (from < to) {
1da177e4
LT
962 unsigned this_chunk_bytes; /* # of bytes mapped */
963 unsigned this_chunk_blocks; /* # of blocks */
964 unsigned u;
965
eb28be2b 966 if (sdio->blocks_available == 0) {
1da177e4
LT
967 /*
968 * Need to go and map some more disk
969 */
970 unsigned long blkmask;
971 unsigned long dio_remainder;
972
18772641 973 ret = get_more_blocks(dio, sdio, map_bh);
1da177e4 974 if (ret) {
09cbfeaf 975 put_page(page);
1da177e4
LT
976 goto out;
977 }
978 if (!buffer_mapped(map_bh))
979 goto do_holes;
980
eb28be2b 981 sdio->blocks_available =
f734c89c 982 map_bh->b_size >> blkbits;
eb28be2b
AK
983 sdio->next_block_for_io =
984 map_bh->b_blocknr << sdio->blkfactor;
f734c89c
JK
985 if (buffer_new(map_bh)) {
986 clean_bdev_aliases(
987 map_bh->b_bdev,
988 map_bh->b_blocknr,
dd545b52 989 map_bh->b_size >> i_blkbits);
f734c89c 990 }
1da177e4 991
eb28be2b 992 if (!sdio->blkfactor)
1da177e4
LT
993 goto do_holes;
994
eb28be2b
AK
995 blkmask = (1 << sdio->blkfactor) - 1;
996 dio_remainder = (sdio->block_in_file & blkmask);
1da177e4
LT
997
998 /*
999 * If we are at the start of IO and that IO
1000 * starts partway into a fs-block,
1001 * dio_remainder will be non-zero. If the IO
1002 * is a read then we can simply advance the IO
1003 * cursor to the first block which is to be
1004 * read. But if the IO is a write and the
1005 * block was newly allocated we cannot do that;
1006 * the start of the fs block must be zeroed out
1007 * on-disk
1008 */
1009 if (!buffer_new(map_bh))
eb28be2b
AK
1010 sdio->next_block_for_io += dio_remainder;
1011 sdio->blocks_available -= dio_remainder;
1da177e4
LT
1012 }
1013do_holes:
1014 /* Handle holes */
1015 if (!buffer_mapped(map_bh)) {
35dc8161 1016 loff_t i_size_aligned;
1da177e4
LT
1017
1018 /* AKPM: eargh, -ENOTBLK is a hack */
8a4c1e42 1019 if (dio->op == REQ_OP_WRITE) {
09cbfeaf 1020 put_page(page);
1da177e4
LT
1021 return -ENOTBLK;
1022 }
1023
35dc8161
JM
1024 /*
1025 * Be sure to account for a partial block as the
1026 * last block in the file
1027 */
1028 i_size_aligned = ALIGN(i_size_read(dio->inode),
1029 1 << blkbits);
eb28be2b 1030 if (sdio->block_in_file >=
35dc8161 1031 i_size_aligned >> blkbits) {
1da177e4 1032 /* We hit eof */
09cbfeaf 1033 put_page(page);
1da177e4
LT
1034 goto out;
1035 }
7b2c99d1 1036 zero_user(page, from, 1 << blkbits);
eb28be2b 1037 sdio->block_in_file++;
7b2c99d1 1038 from += 1 << blkbits;
3320c60b 1039 dio->result += 1 << blkbits;
1da177e4
LT
1040 goto next_block;
1041 }
1042
1043 /*
1044 * If we're performing IO which has an alignment which
1045 * is finer than the underlying fs, go check to see if
1046 * we must zero out the start of this block.
1047 */
eb28be2b 1048 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
18772641 1049 dio_zero_block(dio, sdio, 0, map_bh);
1da177e4
LT
1050
1051 /*
1052 * Work out, in this_chunk_blocks, how much disk we
1053 * can add to this page
1054 */
eb28be2b 1055 this_chunk_blocks = sdio->blocks_available;
7b2c99d1 1056 u = (to - from) >> blkbits;
1da177e4
LT
1057 if (this_chunk_blocks > u)
1058 this_chunk_blocks = u;
eb28be2b 1059 u = sdio->final_block_in_request - sdio->block_in_file;
1da177e4
LT
1060 if (this_chunk_blocks > u)
1061 this_chunk_blocks = u;
1062 this_chunk_bytes = this_chunk_blocks << blkbits;
1063 BUG_ON(this_chunk_bytes == 0);
1064
092c8d46
JK
1065 if (this_chunk_blocks == sdio->blocks_available)
1066 sdio->boundary = buffer_boundary(map_bh);
eb28be2b 1067 ret = submit_page_section(dio, sdio, page,
7b2c99d1 1068 from,
eb28be2b 1069 this_chunk_bytes,
18772641
AK
1070 sdio->next_block_for_io,
1071 map_bh);
1da177e4 1072 if (ret) {
09cbfeaf 1073 put_page(page);
1da177e4
LT
1074 goto out;
1075 }
eb28be2b 1076 sdio->next_block_for_io += this_chunk_blocks;
1da177e4 1077
eb28be2b 1078 sdio->block_in_file += this_chunk_blocks;
7b2c99d1
AV
1079 from += this_chunk_bytes;
1080 dio->result += this_chunk_bytes;
eb28be2b 1081 sdio->blocks_available -= this_chunk_blocks;
1da177e4 1082next_block:
eb28be2b
AK
1083 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1084 if (sdio->block_in_file == sdio->final_block_in_request)
1da177e4
LT
1085 break;
1086 }
1087
1088 /* Drop the ref which was taken in get_user_pages() */
09cbfeaf 1089 put_page(page);
1da177e4
LT
1090 }
1091out:
1092 return ret;
1093}
1094
847cc637 1095static inline int drop_refcount(struct dio *dio)
1da177e4 1096{
847cc637 1097 int ret2;
5eb6c7a2 1098 unsigned long flags;
1da177e4 1099
8459d86a
ZB
1100 /*
1101 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1102 * operation. AIO can if it was a broken operation described above or
1103 * in fact if all the bios race to complete before we get here. In
1104 * that case dio_complete() translates the EIOCBQUEUED into the proper
04b2fa9f 1105 * return code that the caller will hand to ->complete().
5eb6c7a2
ZB
1106 *
1107 * This is managed by the bio_lock instead of being an atomic_t so that
1108 * completion paths can drop their ref and use the remaining count to
1109 * decide to wake the submission path atomically.
8459d86a 1110 */
5eb6c7a2
ZB
1111 spin_lock_irqsave(&dio->bio_lock, flags);
1112 ret2 = --dio->refcount;
1113 spin_unlock_irqrestore(&dio->bio_lock, flags);
847cc637 1114 return ret2;
1da177e4
LT
1115}
1116
eafdc7d1
CH
1117/*
1118 * This is a library function for use by filesystem drivers.
1119 *
1120 * The locking rules are governed by the flags parameter:
1121 * - if the flags value contains DIO_LOCKING we use a fancy locking
1122 * scheme for dumb filesystems.
1123 * For writes this function is called under i_mutex and returns with
1124 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1125 * taken and dropped again before returning.
eafdc7d1
CH
1126 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1127 * internal locking but rather rely on the filesystem to synchronize
1128 * direct I/O reads/writes versus each other and truncate.
df2d6f26
CH
1129 *
1130 * To help with locking against truncate we incremented the i_dio_count
1131 * counter before starting direct I/O, and decrement it once we are done.
1132 * Truncate can wait for it to reach zero to provide exclusion. It is
1133 * expected that filesystem provide exclusion between new direct I/O
1134 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1135 * but other filesystems need to take care of this on their own.
ba253fbf
AK
1136 *
1137 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1138 * is always inlined. Otherwise gcc is unable to split the structure into
1139 * individual fields and will generate much worse code. This is important
1140 * for the whole file.
eafdc7d1 1141 */
65dd2aa9 1142static inline ssize_t
17f8c842
OS
1143do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1144 struct block_device *bdev, struct iov_iter *iter,
c8b8e32d 1145 get_block_t get_block, dio_iodone_t end_io,
17f8c842 1146 dio_submit_t submit_io, int flags)
1da177e4 1147{
6aa7de05 1148 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
ab73857e 1149 unsigned blkbits = i_blkbits;
1da177e4
LT
1150 unsigned blocksize_mask = (1 << blkbits) - 1;
1151 ssize_t retval = -EINVAL;
1c0ff0f1 1152 const size_t count = iov_iter_count(iter);
c8b8e32d 1153 loff_t offset = iocb->ki_pos;
1c0ff0f1 1154 const loff_t end = offset + count;
1da177e4 1155 struct dio *dio;
eb28be2b 1156 struct dio_submit sdio = { 0, };
847cc637 1157 struct buffer_head map_bh = { 0, };
647d1e4c 1158 struct blk_plug plug;
886a3911 1159 unsigned long align = offset | iov_iter_alignment(iter);
1da177e4 1160
65dd2aa9
AK
1161 /*
1162 * Avoid references to bdev if not absolutely needed to give
1163 * the early prefetch in the caller enough time.
1164 */
1da177e4 1165
886a3911 1166 if (align & blocksize_mask) {
1da177e4 1167 if (bdev)
65dd2aa9 1168 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1da177e4 1169 blocksize_mask = (1 << blkbits) - 1;
886a3911 1170 if (align & blocksize_mask)
1da177e4
LT
1171 goto out;
1172 }
1173
f9b5570d 1174 /* watch out for a 0 len io from a tricksy fs */
1c0ff0f1 1175 if (iov_iter_rw(iter) == READ && !count)
f9b5570d
CH
1176 return 0;
1177
6e8267f5 1178 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1da177e4
LT
1179 retval = -ENOMEM;
1180 if (!dio)
1181 goto out;
23aee091
JM
1182 /*
1183 * Believe it or not, zeroing out the page array caused a .5%
1184 * performance regression in a database benchmark. So, we take
1185 * care to only zero out what's needed.
1186 */
1187 memset(dio, 0, offsetof(struct dio, pages));
1da177e4 1188
5fe878ae
CH
1189 dio->flags = flags;
1190 if (dio->flags & DIO_LOCKING) {
17f8c842 1191 if (iov_iter_rw(iter) == READ) {
5fe878ae
CH
1192 struct address_space *mapping =
1193 iocb->ki_filp->f_mapping;
1da177e4 1194
5fe878ae 1195 /* will be released by direct_io_worker */
5955102c 1196 inode_lock(inode);
1da177e4
LT
1197
1198 retval = filemap_write_and_wait_range(mapping, offset,
1199 end - 1);
1200 if (retval) {
5955102c 1201 inode_unlock(inode);
6e8267f5 1202 kmem_cache_free(dio_cache, dio);
1da177e4
LT
1203 goto out;
1204 }
1da177e4 1205 }
1da177e4
LT
1206 }
1207
74cedf9b
JK
1208 /* Once we sampled i_size check for reads beyond EOF */
1209 dio->i_size = i_size_read(inode);
1210 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1211 if (dio->flags & DIO_LOCKING)
5955102c 1212 inode_unlock(inode);
74cedf9b 1213 kmem_cache_free(dio_cache, dio);
2d4594ac 1214 retval = 0;
74cedf9b
JK
1215 goto out;
1216 }
1217
1da177e4 1218 /*
60392573
CH
1219 * For file extending writes updating i_size before data writeouts
1220 * complete can expose uninitialized blocks in dumb filesystems.
1221 * In that case we need to wait for I/O completion even if asked
1222 * for an asynchronous write.
1da177e4 1223 */
60392573
CH
1224 if (is_sync_kiocb(iocb))
1225 dio->is_async = false;
c8f4c36f 1226 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
60392573
CH
1227 dio->is_async = false;
1228 else
1229 dio->is_async = true;
1230
847cc637 1231 dio->inode = inode;
8a4c1e42
MC
1232 if (iov_iter_rw(iter) == WRITE) {
1233 dio->op = REQ_OP_WRITE;
70fd7614 1234 dio->op_flags = REQ_SYNC | REQ_IDLE;
03a07c92
GR
1235 if (iocb->ki_flags & IOCB_NOWAIT)
1236 dio->op_flags |= REQ_NOWAIT;
8a4c1e42
MC
1237 } else {
1238 dio->op = REQ_OP_READ;
1239 }
d1e36282
JA
1240 if (iocb->ki_flags & IOCB_HIPRI)
1241 dio->op_flags |= REQ_HIPRI;
02afc27f
CH
1242
1243 /*
1244 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1245 * so that we can call ->fsync.
1246 */
332391a9
LC
1247 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1248 retval = 0;
d9c10e5b 1249 if (iocb->ki_flags & IOCB_DSYNC)
332391a9
LC
1250 retval = dio_set_defer_completion(dio);
1251 else if (!dio->inode->i_sb->s_dio_done_wq) {
1252 /*
1253 * In case of AIO write racing with buffered read we
1254 * need to defer completion. We can't decide this now,
1255 * however the workqueue needs to be initialized here.
1256 */
1257 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1258 }
02afc27f
CH
1259 if (retval) {
1260 /*
1261 * We grab i_mutex only for reads so we don't have
1262 * to release it here
1263 */
1264 kmem_cache_free(dio_cache, dio);
1265 goto out;
1266 }
1267 }
1268
1269 /*
1270 * Will be decremented at I/O completion time.
1271 */
ce3077ee 1272 inode_dio_begin(inode);
02afc27f
CH
1273
1274 retval = 0;
847cc637 1275 sdio.blkbits = blkbits;
ab73857e 1276 sdio.blkfactor = i_blkbits - blkbits;
847cc637
AK
1277 sdio.block_in_file = offset >> blkbits;
1278
1279 sdio.get_block = get_block;
1280 dio->end_io = end_io;
1281 sdio.submit_io = submit_io;
1282 sdio.final_block_in_bio = -1;
1283 sdio.next_block_for_io = -1;
1284
1285 dio->iocb = iocb;
847cc637
AK
1286
1287 spin_lock_init(&dio->bio_lock);
1288 dio->refcount = 1;
1289
00e23707 1290 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
7b2c99d1 1291 sdio.iter = iter;
1c0ff0f1 1292 sdio.final_block_in_request = end >> blkbits;
7b2c99d1 1293
847cc637
AK
1294 /*
1295 * In case of non-aligned buffers, we may need 2 more
1296 * pages since we need to zero out first and last block.
1297 */
1298 if (unlikely(sdio.blkfactor))
1299 sdio.pages_in_io = 2;
1300
f67da30c 1301 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
847cc637 1302
647d1e4c
FW
1303 blk_start_plug(&plug);
1304
7b2c99d1
AV
1305 retval = do_direct_IO(dio, &sdio, &map_bh);
1306 if (retval)
1307 dio_cleanup(dio, &sdio);
847cc637
AK
1308
1309 if (retval == -ENOTBLK) {
1310 /*
1311 * The remaining part of the request will be
1312 * be handled by buffered I/O when we return
1313 */
1314 retval = 0;
1315 }
1316 /*
1317 * There may be some unwritten disk at the end of a part-written
1318 * fs-block-sized block. Go zero that now.
1319 */
1320 dio_zero_block(dio, &sdio, 1, &map_bh);
1321
1322 if (sdio.cur_page) {
1323 ssize_t ret2;
1324
1325 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1326 if (retval == 0)
1327 retval = ret2;
09cbfeaf 1328 put_page(sdio.cur_page);
847cc637
AK
1329 sdio.cur_page = NULL;
1330 }
1331 if (sdio.bio)
1332 dio_bio_submit(dio, &sdio);
1333
647d1e4c
FW
1334 blk_finish_plug(&plug);
1335
847cc637
AK
1336 /*
1337 * It is possible that, we return short IO due to end of file.
1338 * In that case, we need to release all the pages we got hold on.
1339 */
1340 dio_cleanup(dio, &sdio);
1341
1342 /*
1343 * All block lookups have been performed. For READ requests
1344 * we can let i_mutex go now that its achieved its purpose
1345 * of protecting us from looking up uninitialized blocks.
1346 */
17f8c842 1347 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
5955102c 1348 inode_unlock(dio->inode);
847cc637
AK
1349
1350 /*
1351 * The only time we want to leave bios in flight is when a successful
1352 * partial aio read or full aio write have been setup. In that case
1353 * bio completion will call aio_complete. The only time it's safe to
1354 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1355 * This had *better* be the only place that raises -EIOCBQUEUED.
1356 */
1357 BUG_ON(retval == -EIOCBQUEUED);
1358 if (dio->is_async && retval == 0 && dio->result &&
17f8c842 1359 (iov_iter_rw(iter) == READ || dio->result == count))
847cc637 1360 retval = -EIOCBQUEUED;
af436472 1361 else
847cc637
AK
1362 dio_await_completion(dio);
1363
1364 if (drop_refcount(dio) == 0) {
ffe51f01 1365 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
847cc637
AK
1366 } else
1367 BUG_ON(retval != -EIOCBQUEUED);
1da177e4 1368
7bb46a67 1369out:
1370 return retval;
1371}
65dd2aa9 1372
17f8c842
OS
1373ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1374 struct block_device *bdev, struct iov_iter *iter,
c8b8e32d 1375 get_block_t get_block,
17f8c842
OS
1376 dio_iodone_t end_io, dio_submit_t submit_io,
1377 int flags)
65dd2aa9
AK
1378{
1379 /*
1380 * The block device state is needed in the end to finally
1381 * submit everything. Since it's likely to be cache cold
1382 * prefetch it here as first thing to hide some of the
1383 * latency.
1384 *
1385 * Attempt to prefetch the pieces we likely need later.
1386 */
1387 prefetch(&bdev->bd_disk->part_tbl);
1388 prefetch(bdev->bd_queue);
1389 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1390
c8b8e32d 1391 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
17f8c842 1392 end_io, submit_io, flags);
65dd2aa9
AK
1393}
1394
1da177e4 1395EXPORT_SYMBOL(__blockdev_direct_IO);
6e8267f5
AK
1396
1397static __init int dio_init(void)
1398{
1399 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1400 return 0;
1401}
1402module_init(dio_init)