expand dentry_kill(dentry, 0) in shrink_dentry_list()
[linux-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
482db906
AV
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
ceb5bdc2
NP
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3942c07c 118static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 119static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
122
123/*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
3942c07c 135static long get_nr_dentry(void)
3e880fb5
NP
136{
137 int i;
3942c07c 138 long sum = 0;
3e880fb5
NP
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142}
143
62d36c77
DC
144static long get_nr_dentry_unused(void)
145{
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151}
152
312d3ca8
CH
153int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155{
3e880fb5 156 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 157 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
159}
160#endif
161
5483f18e
LT
162/*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
e419b4cc
LT
166#ifdef CONFIG_DCACHE_WORD_ACCESS
167
168#include <asm/word-at-a-time.h>
169/*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
94753db5 178static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 179{
bfcfaa77 180 unsigned long a,b,mask;
bfcfaa77
LT
181
182 for (;;) {
12f8ad4b 183 a = *(unsigned long *)cs;
e419b4cc 184 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
a5c21dce 195 mask = bytemask_from_count(tcount);
bfcfaa77 196 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
197}
198
bfcfaa77 199#else
e419b4cc 200
94753db5 201static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 202{
5483f18e
LT
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211}
212
e419b4cc
LT
213#endif
214
94753db5
LT
215static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216{
6326c71f 217 const unsigned char *cs;
94753db5
LT
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
6326c71f
LT
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
237}
238
9c82ab9c 239static void __d_free(struct rcu_head *head)
1da177e4 240{
9c82ab9c
CH
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
b3d9b7a3 243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247}
248
b4f0354e
AV
249static void dentry_free(struct dentry *dentry)
250{
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
256}
257
31e6b01f
NP
258/**
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 260 * @dentry: the target dentry
31e6b01f
NP
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
264 */
265static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266{
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
270}
271
1da177e4
LT
272/*
273 * Release the dentry's inode, using the filesystem
31e6b01f
NP
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
1da177e4 276 */
858119e1 277static void dentry_iput(struct dentry * dentry)
31f3e0b3 278 __releases(dentry->d_lock)
873feea0 279 __releases(dentry->d_inode->i_lock)
1da177e4
LT
280{
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
b3d9b7a3 284 hlist_del_init(&dentry->d_alias);
1da177e4 285 spin_unlock(&dentry->d_lock);
873feea0 286 spin_unlock(&inode->i_lock);
f805fbda
LT
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
1da177e4
LT
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
1da177e4
LT
295 }
296}
297
31e6b01f
NP
298/*
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
301 */
302static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
305{
306 struct inode *inode = dentry->d_inode;
b18825a7 307 __d_clear_type(dentry);
31e6b01f 308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
873feea0 312 spin_unlock(&inode->i_lock);
31e6b01f
NP
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
319}
320
89dc77bc
LT
321/*
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 *
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
328 *
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
331 *
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
334 */
335#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336static void d_lru_add(struct dentry *dentry)
337{
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342}
343
344static void d_lru_del(struct dentry *dentry)
345{
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350}
351
352static void d_shrink_del(struct dentry *dentry)
353{
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
358}
359
360static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361{
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366}
367
368/*
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
373 */
374static void d_lru_isolate(struct dentry *dentry)
375{
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
380}
381
382static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383{
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
387}
388
da3bbdd4 389/*
f6041567 390 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
391 */
392static void dentry_lru_add(struct dentry *dentry)
393{
89dc77bc
LT
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
da3bbdd4
KM
396}
397
789680d1
NP
398/**
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
401 *
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
407 *
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
410 *
411 * __d_drop requires dentry->d_lock.
412 */
413void __d_drop(struct dentry *dentry)
414{
dea3667b 415 if (!d_unhashed(dentry)) {
b61625d2 416 struct hlist_bl_head *b;
7632e465
BF
417 /*
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
421 */
422 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
423 b = &dentry->d_sb->s_anon;
424 else
425 b = d_hash(dentry->d_parent, dentry->d_name.hash);
426
427 hlist_bl_lock(b);
428 __hlist_bl_del(&dentry->d_hash);
429 dentry->d_hash.pprev = NULL;
430 hlist_bl_unlock(b);
dea3667b 431 dentry_rcuwalk_barrier(dentry);
789680d1
NP
432 }
433}
434EXPORT_SYMBOL(__d_drop);
435
436void d_drop(struct dentry *dentry)
437{
789680d1
NP
438 spin_lock(&dentry->d_lock);
439 __d_drop(dentry);
440 spin_unlock(&dentry->d_lock);
789680d1
NP
441}
442EXPORT_SYMBOL(d_drop);
443
e55fd011 444static void __dentry_kill(struct dentry *dentry)
77812a1e 445{
41edf278
AV
446 struct dentry *parent = NULL;
447 bool can_free = true;
41edf278 448 if (!IS_ROOT(dentry))
77812a1e 449 parent = dentry->d_parent;
31e6b01f 450
0d98439e
LT
451 /*
452 * The dentry is now unrecoverably dead to the world.
453 */
454 lockref_mark_dead(&dentry->d_lockref);
455
f0023bc6 456 /*
f0023bc6
SW
457 * inform the fs via d_prune that this dentry is about to be
458 * unhashed and destroyed.
459 */
590fb51f 460 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
461 dentry->d_op->d_prune(dentry);
462
01b60351
AV
463 if (dentry->d_flags & DCACHE_LRU_LIST) {
464 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
465 d_lru_del(dentry);
01b60351 466 }
77812a1e
NP
467 /* if it was on the hash then remove it */
468 __d_drop(dentry);
03b3b889
AV
469 list_del(&dentry->d_u.d_child);
470 /*
471 * Inform d_walk() that we are no longer attached to the
472 * dentry tree
473 */
474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 if (parent)
476 spin_unlock(&parent->d_lock);
477 dentry_iput(dentry);
478 /*
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
481 */
482 BUG_ON((int)dentry->d_lockref.count > 0);
483 this_cpu_dec(nr_dentry);
484 if (dentry->d_op && dentry->d_op->d_release)
485 dentry->d_op->d_release(dentry);
486
41edf278
AV
487 spin_lock(&dentry->d_lock);
488 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
489 dentry->d_flags |= DCACHE_MAY_FREE;
490 can_free = false;
491 }
492 spin_unlock(&dentry->d_lock);
41edf278
AV
493 if (likely(can_free))
494 dentry_free(dentry);
e55fd011
AV
495}
496
497/*
498 * Finish off a dentry we've decided to kill.
499 * dentry->d_lock must be held, returns with it unlocked.
500 * If ref is non-zero, then decrement the refcount too.
501 * Returns dentry requiring refcount drop, or NULL if we're done.
502 */
503static struct dentry *
504dentry_kill(struct dentry *dentry, int unlock_on_failure)
505 __releases(dentry->d_lock)
506{
507 struct inode *inode = dentry->d_inode;
508 struct dentry *parent = NULL;
509
510 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
511 goto failed;
512
513 if (!IS_ROOT(dentry)) {
514 parent = dentry->d_parent;
515 if (unlikely(!spin_trylock(&parent->d_lock))) {
516 if (inode)
517 spin_unlock(&inode->i_lock);
518 goto failed;
519 }
520 }
521
522 __dentry_kill(dentry);
03b3b889 523 return parent;
e55fd011
AV
524
525failed:
526 if (unlock_on_failure) {
527 spin_unlock(&dentry->d_lock);
528 cpu_relax();
529 }
530 return dentry; /* try again with same dentry */
77812a1e
NP
531}
532
1da177e4
LT
533/*
534 * This is dput
535 *
536 * This is complicated by the fact that we do not want to put
537 * dentries that are no longer on any hash chain on the unused
538 * list: we'd much rather just get rid of them immediately.
539 *
540 * However, that implies that we have to traverse the dentry
541 * tree upwards to the parents which might _also_ now be
542 * scheduled for deletion (it may have been only waiting for
543 * its last child to go away).
544 *
545 * This tail recursion is done by hand as we don't want to depend
546 * on the compiler to always get this right (gcc generally doesn't).
547 * Real recursion would eat up our stack space.
548 */
549
550/*
551 * dput - release a dentry
552 * @dentry: dentry to release
553 *
554 * Release a dentry. This will drop the usage count and if appropriate
555 * call the dentry unlink method as well as removing it from the queues and
556 * releasing its resources. If the parent dentries were scheduled for release
557 * they too may now get deleted.
1da177e4 558 */
1da177e4
LT
559void dput(struct dentry *dentry)
560{
8aab6a27 561 if (unlikely(!dentry))
1da177e4
LT
562 return;
563
564repeat:
98474236 565 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 566 return;
1da177e4 567
8aab6a27
LT
568 /* Unreachable? Get rid of it */
569 if (unlikely(d_unhashed(dentry)))
570 goto kill_it;
571
572 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 573 if (dentry->d_op->d_delete(dentry))
61f3dee4 574 goto kill_it;
1da177e4 575 }
265ac902 576
358eec18
LT
577 if (!(dentry->d_flags & DCACHE_REFERENCED))
578 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 579 dentry_lru_add(dentry);
265ac902 580
98474236 581 dentry->d_lockref.count--;
61f3dee4 582 spin_unlock(&dentry->d_lock);
1da177e4
LT
583 return;
584
d52b9086 585kill_it:
dd1f6b2e 586 dentry = dentry_kill(dentry, 1);
d52b9086
MS
587 if (dentry)
588 goto repeat;
1da177e4 589}
ec4f8605 590EXPORT_SYMBOL(dput);
1da177e4
LT
591
592/**
593 * d_invalidate - invalidate a dentry
594 * @dentry: dentry to invalidate
595 *
596 * Try to invalidate the dentry if it turns out to be
597 * possible. If there are other dentries that can be
598 * reached through this one we can't delete it and we
599 * return -EBUSY. On success we return 0.
600 *
601 * no dcache lock.
602 */
603
604int d_invalidate(struct dentry * dentry)
605{
606 /*
607 * If it's already been dropped, return OK.
608 */
da502956 609 spin_lock(&dentry->d_lock);
1da177e4 610 if (d_unhashed(dentry)) {
da502956 611 spin_unlock(&dentry->d_lock);
1da177e4
LT
612 return 0;
613 }
614 /*
615 * Check whether to do a partial shrink_dcache
616 * to get rid of unused child entries.
617 */
618 if (!list_empty(&dentry->d_subdirs)) {
da502956 619 spin_unlock(&dentry->d_lock);
1da177e4 620 shrink_dcache_parent(dentry);
da502956 621 spin_lock(&dentry->d_lock);
1da177e4
LT
622 }
623
624 /*
625 * Somebody else still using it?
626 *
627 * If it's a directory, we can't drop it
628 * for fear of somebody re-populating it
629 * with children (even though dropping it
630 * would make it unreachable from the root,
631 * we might still populate it if it was a
632 * working directory or similar).
50e69630
AV
633 * We also need to leave mountpoints alone,
634 * directory or not.
1da177e4 635 */
98474236 636 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 637 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 638 spin_unlock(&dentry->d_lock);
1da177e4
LT
639 return -EBUSY;
640 }
641 }
642
643 __d_drop(dentry);
644 spin_unlock(&dentry->d_lock);
1da177e4
LT
645 return 0;
646}
ec4f8605 647EXPORT_SYMBOL(d_invalidate);
1da177e4 648
b5c84bf6 649/* This must be called with d_lock held */
dc0474be 650static inline void __dget_dlock(struct dentry *dentry)
23044507 651{
98474236 652 dentry->d_lockref.count++;
23044507
NP
653}
654
dc0474be 655static inline void __dget(struct dentry *dentry)
1da177e4 656{
98474236 657 lockref_get(&dentry->d_lockref);
1da177e4
LT
658}
659
b7ab39f6
NP
660struct dentry *dget_parent(struct dentry *dentry)
661{
df3d0bbc 662 int gotref;
b7ab39f6
NP
663 struct dentry *ret;
664
df3d0bbc
WL
665 /*
666 * Do optimistic parent lookup without any
667 * locking.
668 */
669 rcu_read_lock();
670 ret = ACCESS_ONCE(dentry->d_parent);
671 gotref = lockref_get_not_zero(&ret->d_lockref);
672 rcu_read_unlock();
673 if (likely(gotref)) {
674 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
675 return ret;
676 dput(ret);
677 }
678
b7ab39f6 679repeat:
a734eb45
NP
680 /*
681 * Don't need rcu_dereference because we re-check it was correct under
682 * the lock.
683 */
684 rcu_read_lock();
b7ab39f6 685 ret = dentry->d_parent;
a734eb45
NP
686 spin_lock(&ret->d_lock);
687 if (unlikely(ret != dentry->d_parent)) {
688 spin_unlock(&ret->d_lock);
689 rcu_read_unlock();
b7ab39f6
NP
690 goto repeat;
691 }
a734eb45 692 rcu_read_unlock();
98474236
WL
693 BUG_ON(!ret->d_lockref.count);
694 ret->d_lockref.count++;
b7ab39f6 695 spin_unlock(&ret->d_lock);
b7ab39f6
NP
696 return ret;
697}
698EXPORT_SYMBOL(dget_parent);
699
1da177e4
LT
700/**
701 * d_find_alias - grab a hashed alias of inode
702 * @inode: inode in question
32ba9c3f
LT
703 * @want_discon: flag, used by d_splice_alias, to request
704 * that only a DISCONNECTED alias be returned.
1da177e4
LT
705 *
706 * If inode has a hashed alias, or is a directory and has any alias,
707 * acquire the reference to alias and return it. Otherwise return NULL.
708 * Notice that if inode is a directory there can be only one alias and
709 * it can be unhashed only if it has no children, or if it is the root
710 * of a filesystem.
711 *
21c0d8fd 712 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
713 * any other hashed alias over that one unless @want_discon is set,
714 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 715 */
32ba9c3f 716static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 717{
da502956 718 struct dentry *alias, *discon_alias;
1da177e4 719
da502956
NP
720again:
721 discon_alias = NULL;
b67bfe0d 722 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 723 spin_lock(&alias->d_lock);
1da177e4 724 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 725 if (IS_ROOT(alias) &&
da502956 726 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 727 discon_alias = alias;
32ba9c3f 728 } else if (!want_discon) {
dc0474be 729 __dget_dlock(alias);
da502956
NP
730 spin_unlock(&alias->d_lock);
731 return alias;
732 }
733 }
734 spin_unlock(&alias->d_lock);
735 }
736 if (discon_alias) {
737 alias = discon_alias;
738 spin_lock(&alias->d_lock);
739 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
740 if (IS_ROOT(alias) &&
741 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 742 __dget_dlock(alias);
da502956 743 spin_unlock(&alias->d_lock);
1da177e4
LT
744 return alias;
745 }
746 }
da502956
NP
747 spin_unlock(&alias->d_lock);
748 goto again;
1da177e4 749 }
da502956 750 return NULL;
1da177e4
LT
751}
752
da502956 753struct dentry *d_find_alias(struct inode *inode)
1da177e4 754{
214fda1f
DH
755 struct dentry *de = NULL;
756
b3d9b7a3 757 if (!hlist_empty(&inode->i_dentry)) {
873feea0 758 spin_lock(&inode->i_lock);
32ba9c3f 759 de = __d_find_alias(inode, 0);
873feea0 760 spin_unlock(&inode->i_lock);
214fda1f 761 }
1da177e4
LT
762 return de;
763}
ec4f8605 764EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
765
766/*
767 * Try to kill dentries associated with this inode.
768 * WARNING: you must own a reference to inode.
769 */
770void d_prune_aliases(struct inode *inode)
771{
0cdca3f9 772 struct dentry *dentry;
1da177e4 773restart:
873feea0 774 spin_lock(&inode->i_lock);
b67bfe0d 775 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 776 spin_lock(&dentry->d_lock);
98474236 777 if (!dentry->d_lockref.count) {
590fb51f
YZ
778 /*
779 * inform the fs via d_prune that this dentry
780 * is about to be unhashed and destroyed.
781 */
782 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
783 !d_unhashed(dentry))
784 dentry->d_op->d_prune(dentry);
785
dc0474be 786 __dget_dlock(dentry);
1da177e4
LT
787 __d_drop(dentry);
788 spin_unlock(&dentry->d_lock);
873feea0 789 spin_unlock(&inode->i_lock);
1da177e4
LT
790 dput(dentry);
791 goto restart;
792 }
793 spin_unlock(&dentry->d_lock);
794 }
873feea0 795 spin_unlock(&inode->i_lock);
1da177e4 796}
ec4f8605 797EXPORT_SYMBOL(d_prune_aliases);
1da177e4 798
3049cfe2 799static void shrink_dentry_list(struct list_head *list)
1da177e4 800{
5c47e6d0 801 struct dentry *dentry, *parent;
da3bbdd4 802
60942f2f 803 while (!list_empty(list)) {
ff2fde99 804 struct inode *inode;
60942f2f 805 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 806 spin_lock(&dentry->d_lock);
dd1f6b2e
DC
807 /*
808 * The dispose list is isolated and dentries are not accounted
809 * to the LRU here, so we can simply remove it from the list
810 * here regardless of whether it is referenced or not.
811 */
89dc77bc 812 d_shrink_del(dentry);
dd1f6b2e 813
1da177e4
LT
814 /*
815 * We found an inuse dentry which was not removed from
dd1f6b2e 816 * the LRU because of laziness during lookup. Do not free it.
1da177e4 817 */
41edf278 818 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 819 spin_unlock(&dentry->d_lock);
1da177e4
LT
820 continue;
821 }
77812a1e 822
64fd72e0
AV
823
824 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
825 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
826 spin_unlock(&dentry->d_lock);
827 if (can_free)
828 dentry_free(dentry);
829 continue;
830 }
831
ff2fde99
AV
832 inode = dentry->d_inode;
833 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 834 d_shrink_add(dentry, list);
dd1f6b2e 835 spin_unlock(&dentry->d_lock);
5c47e6d0 836 continue;
dd1f6b2e 837 }
ff2fde99
AV
838
839 parent = NULL;
840 if (!IS_ROOT(dentry)) {
841 parent = dentry->d_parent;
842 if (unlikely(!spin_trylock(&parent->d_lock))) {
843 if (inode)
844 spin_unlock(&inode->i_lock);
845 d_shrink_add(dentry, list);
846 spin_unlock(&dentry->d_lock);
847 continue;
848 }
849 }
850
851 __dentry_kill(dentry);
5c47e6d0
AV
852 /*
853 * We need to prune ancestors too. This is necessary to prevent
854 * quadratic behavior of shrink_dcache_parent(), but is also
855 * expected to be beneficial in reducing dentry cache
856 * fragmentation.
857 */
858 dentry = parent;
859 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
860 dentry = dentry_kill(dentry, 1);
da3bbdd4 861 }
3049cfe2
CH
862}
863
f6041567
DC
864static enum lru_status
865dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
866{
867 struct list_head *freeable = arg;
868 struct dentry *dentry = container_of(item, struct dentry, d_lru);
869
870
871 /*
872 * we are inverting the lru lock/dentry->d_lock here,
873 * so use a trylock. If we fail to get the lock, just skip
874 * it
875 */
876 if (!spin_trylock(&dentry->d_lock))
877 return LRU_SKIP;
878
879 /*
880 * Referenced dentries are still in use. If they have active
881 * counts, just remove them from the LRU. Otherwise give them
882 * another pass through the LRU.
883 */
884 if (dentry->d_lockref.count) {
89dc77bc 885 d_lru_isolate(dentry);
f6041567
DC
886 spin_unlock(&dentry->d_lock);
887 return LRU_REMOVED;
888 }
889
890 if (dentry->d_flags & DCACHE_REFERENCED) {
891 dentry->d_flags &= ~DCACHE_REFERENCED;
892 spin_unlock(&dentry->d_lock);
893
894 /*
895 * The list move itself will be made by the common LRU code. At
896 * this point, we've dropped the dentry->d_lock but keep the
897 * lru lock. This is safe to do, since every list movement is
898 * protected by the lru lock even if both locks are held.
899 *
900 * This is guaranteed by the fact that all LRU management
901 * functions are intermediated by the LRU API calls like
902 * list_lru_add and list_lru_del. List movement in this file
903 * only ever occur through this functions or through callbacks
904 * like this one, that are called from the LRU API.
905 *
906 * The only exceptions to this are functions like
907 * shrink_dentry_list, and code that first checks for the
908 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
909 * operating only with stack provided lists after they are
910 * properly isolated from the main list. It is thus, always a
911 * local access.
912 */
913 return LRU_ROTATE;
914 }
915
89dc77bc 916 d_lru_shrink_move(dentry, freeable);
f6041567
DC
917 spin_unlock(&dentry->d_lock);
918
919 return LRU_REMOVED;
920}
921
3049cfe2 922/**
b48f03b3
DC
923 * prune_dcache_sb - shrink the dcache
924 * @sb: superblock
f6041567 925 * @nr_to_scan : number of entries to try to free
9b17c623 926 * @nid: which node to scan for freeable entities
b48f03b3 927 *
f6041567 928 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
929 * done when we need more memory an called from the superblock shrinker
930 * function.
3049cfe2 931 *
b48f03b3
DC
932 * This function may fail to free any resources if all the dentries are in
933 * use.
3049cfe2 934 */
9b17c623
DC
935long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
936 int nid)
3049cfe2 937{
f6041567
DC
938 LIST_HEAD(dispose);
939 long freed;
3049cfe2 940
9b17c623
DC
941 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
942 &dispose, &nr_to_scan);
f6041567 943 shrink_dentry_list(&dispose);
0a234c6d 944 return freed;
da3bbdd4 945}
23044507 946
4e717f5c
GC
947static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
948 spinlock_t *lru_lock, void *arg)
dd1f6b2e 949{
4e717f5c
GC
950 struct list_head *freeable = arg;
951 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 952
4e717f5c
GC
953 /*
954 * we are inverting the lru lock/dentry->d_lock here,
955 * so use a trylock. If we fail to get the lock, just skip
956 * it
957 */
958 if (!spin_trylock(&dentry->d_lock))
959 return LRU_SKIP;
960
89dc77bc 961 d_lru_shrink_move(dentry, freeable);
4e717f5c 962 spin_unlock(&dentry->d_lock);
ec33679d 963
4e717f5c 964 return LRU_REMOVED;
da3bbdd4
KM
965}
966
4e717f5c 967
1da177e4
LT
968/**
969 * shrink_dcache_sb - shrink dcache for a superblock
970 * @sb: superblock
971 *
3049cfe2
CH
972 * Shrink the dcache for the specified super block. This is used to free
973 * the dcache before unmounting a file system.
1da177e4 974 */
3049cfe2 975void shrink_dcache_sb(struct super_block *sb)
1da177e4 976{
4e717f5c
GC
977 long freed;
978
979 do {
980 LIST_HEAD(dispose);
981
982 freed = list_lru_walk(&sb->s_dentry_lru,
983 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 984
4e717f5c
GC
985 this_cpu_sub(nr_dentry_unused, freed);
986 shrink_dentry_list(&dispose);
987 } while (freed > 0);
1da177e4 988}
ec4f8605 989EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 990
db14fc3a
MS
991/**
992 * enum d_walk_ret - action to talke during tree walk
993 * @D_WALK_CONTINUE: contrinue walk
994 * @D_WALK_QUIT: quit walk
995 * @D_WALK_NORETRY: quit when retry is needed
996 * @D_WALK_SKIP: skip this dentry and its children
997 */
998enum d_walk_ret {
999 D_WALK_CONTINUE,
1000 D_WALK_QUIT,
1001 D_WALK_NORETRY,
1002 D_WALK_SKIP,
1003};
c826cb7d 1004
1da177e4 1005/**
db14fc3a
MS
1006 * d_walk - walk the dentry tree
1007 * @parent: start of walk
1008 * @data: data passed to @enter() and @finish()
1009 * @enter: callback when first entering the dentry
1010 * @finish: callback when successfully finished the walk
1da177e4 1011 *
db14fc3a 1012 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1013 */
db14fc3a
MS
1014static void d_walk(struct dentry *parent, void *data,
1015 enum d_walk_ret (*enter)(void *, struct dentry *),
1016 void (*finish)(void *))
1da177e4 1017{
949854d0 1018 struct dentry *this_parent;
1da177e4 1019 struct list_head *next;
48f5ec21 1020 unsigned seq = 0;
db14fc3a
MS
1021 enum d_walk_ret ret;
1022 bool retry = true;
949854d0 1023
58db63d0 1024again:
48f5ec21 1025 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1026 this_parent = parent;
2fd6b7f5 1027 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1028
1029 ret = enter(data, this_parent);
1030 switch (ret) {
1031 case D_WALK_CONTINUE:
1032 break;
1033 case D_WALK_QUIT:
1034 case D_WALK_SKIP:
1035 goto out_unlock;
1036 case D_WALK_NORETRY:
1037 retry = false;
1038 break;
1039 }
1da177e4
LT
1040repeat:
1041 next = this_parent->d_subdirs.next;
1042resume:
1043 while (next != &this_parent->d_subdirs) {
1044 struct list_head *tmp = next;
5160ee6f 1045 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1046 next = tmp->next;
2fd6b7f5
NP
1047
1048 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1049
1050 ret = enter(data, dentry);
1051 switch (ret) {
1052 case D_WALK_CONTINUE:
1053 break;
1054 case D_WALK_QUIT:
2fd6b7f5 1055 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1056 goto out_unlock;
1057 case D_WALK_NORETRY:
1058 retry = false;
1059 break;
1060 case D_WALK_SKIP:
1061 spin_unlock(&dentry->d_lock);
1062 continue;
2fd6b7f5 1063 }
db14fc3a 1064
1da177e4 1065 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1066 spin_unlock(&this_parent->d_lock);
1067 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1068 this_parent = dentry;
2fd6b7f5 1069 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1070 goto repeat;
1071 }
2fd6b7f5 1072 spin_unlock(&dentry->d_lock);
1da177e4
LT
1073 }
1074 /*
1075 * All done at this level ... ascend and resume the search.
1076 */
1077 if (this_parent != parent) {
c826cb7d 1078 struct dentry *child = this_parent;
31dec132
AV
1079 this_parent = child->d_parent;
1080
1081 rcu_read_lock();
1082 spin_unlock(&child->d_lock);
1083 spin_lock(&this_parent->d_lock);
1084
1085 /*
1086 * might go back up the wrong parent if we have had a rename
1087 * or deletion
1088 */
1089 if (this_parent != child->d_parent ||
1090 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1091 need_seqretry(&rename_lock, seq)) {
1092 spin_unlock(&this_parent->d_lock);
1093 rcu_read_unlock();
949854d0 1094 goto rename_retry;
31dec132
AV
1095 }
1096 rcu_read_unlock();
949854d0 1097 next = child->d_u.d_child.next;
1da177e4
LT
1098 goto resume;
1099 }
48f5ec21 1100 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1101 spin_unlock(&this_parent->d_lock);
949854d0 1102 goto rename_retry;
db14fc3a
MS
1103 }
1104 if (finish)
1105 finish(data);
1106
1107out_unlock:
1108 spin_unlock(&this_parent->d_lock);
48f5ec21 1109 done_seqretry(&rename_lock, seq);
db14fc3a 1110 return;
58db63d0
NP
1111
1112rename_retry:
db14fc3a
MS
1113 if (!retry)
1114 return;
48f5ec21 1115 seq = 1;
58db63d0 1116 goto again;
1da177e4 1117}
db14fc3a
MS
1118
1119/*
1120 * Search for at least 1 mount point in the dentry's subdirs.
1121 * We descend to the next level whenever the d_subdirs
1122 * list is non-empty and continue searching.
1123 */
1124
db14fc3a
MS
1125static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1126{
1127 int *ret = data;
1128 if (d_mountpoint(dentry)) {
1129 *ret = 1;
1130 return D_WALK_QUIT;
1131 }
1132 return D_WALK_CONTINUE;
1133}
1134
69c88dc7
RD
1135/**
1136 * have_submounts - check for mounts over a dentry
1137 * @parent: dentry to check.
1138 *
1139 * Return true if the parent or its subdirectories contain
1140 * a mount point
1141 */
db14fc3a
MS
1142int have_submounts(struct dentry *parent)
1143{
1144 int ret = 0;
1145
1146 d_walk(parent, &ret, check_mount, NULL);
1147
1148 return ret;
1149}
ec4f8605 1150EXPORT_SYMBOL(have_submounts);
1da177e4 1151
eed81007
MS
1152/*
1153 * Called by mount code to set a mountpoint and check if the mountpoint is
1154 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1155 * subtree can become unreachable).
1156 *
1157 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1158 * this reason take rename_lock and d_lock on dentry and ancestors.
1159 */
1160int d_set_mounted(struct dentry *dentry)
1161{
1162 struct dentry *p;
1163 int ret = -ENOENT;
1164 write_seqlock(&rename_lock);
1165 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1166 /* Need exclusion wrt. check_submounts_and_drop() */
1167 spin_lock(&p->d_lock);
1168 if (unlikely(d_unhashed(p))) {
1169 spin_unlock(&p->d_lock);
1170 goto out;
1171 }
1172 spin_unlock(&p->d_lock);
1173 }
1174 spin_lock(&dentry->d_lock);
1175 if (!d_unlinked(dentry)) {
1176 dentry->d_flags |= DCACHE_MOUNTED;
1177 ret = 0;
1178 }
1179 spin_unlock(&dentry->d_lock);
1180out:
1181 write_sequnlock(&rename_lock);
1182 return ret;
1183}
1184
1da177e4 1185/*
fd517909 1186 * Search the dentry child list of the specified parent,
1da177e4
LT
1187 * and move any unused dentries to the end of the unused
1188 * list for prune_dcache(). We descend to the next level
1189 * whenever the d_subdirs list is non-empty and continue
1190 * searching.
1191 *
1192 * It returns zero iff there are no unused children,
1193 * otherwise it returns the number of children moved to
1194 * the end of the unused list. This may not be the total
1195 * number of unused children, because select_parent can
1196 * drop the lock and return early due to latency
1197 * constraints.
1198 */
1da177e4 1199
db14fc3a
MS
1200struct select_data {
1201 struct dentry *start;
1202 struct list_head dispose;
1203 int found;
1204};
23044507 1205
db14fc3a
MS
1206static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1207{
1208 struct select_data *data = _data;
1209 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1210
db14fc3a
MS
1211 if (data->start == dentry)
1212 goto out;
2fd6b7f5 1213
fe91522a 1214 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1215 data->found++;
fe91522a
AV
1216 } else {
1217 if (dentry->d_flags & DCACHE_LRU_LIST)
1218 d_lru_del(dentry);
1219 if (!dentry->d_lockref.count) {
1220 d_shrink_add(dentry, &data->dispose);
1221 data->found++;
1222 }
1da177e4 1223 }
db14fc3a
MS
1224 /*
1225 * We can return to the caller if we have found some (this
1226 * ensures forward progress). We'll be coming back to find
1227 * the rest.
1228 */
fe91522a
AV
1229 if (!list_empty(&data->dispose))
1230 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1231out:
db14fc3a 1232 return ret;
1da177e4
LT
1233}
1234
1235/**
1236 * shrink_dcache_parent - prune dcache
1237 * @parent: parent of entries to prune
1238 *
1239 * Prune the dcache to remove unused children of the parent dentry.
1240 */
db14fc3a 1241void shrink_dcache_parent(struct dentry *parent)
1da177e4 1242{
db14fc3a
MS
1243 for (;;) {
1244 struct select_data data;
1da177e4 1245
db14fc3a
MS
1246 INIT_LIST_HEAD(&data.dispose);
1247 data.start = parent;
1248 data.found = 0;
1249
1250 d_walk(parent, &data, select_collect, NULL);
1251 if (!data.found)
1252 break;
1253
1254 shrink_dentry_list(&data.dispose);
421348f1
GT
1255 cond_resched();
1256 }
1da177e4 1257}
ec4f8605 1258EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1259
9c8c10e2 1260static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1261{
9c8c10e2
AV
1262 /* it has busy descendents; complain about those instead */
1263 if (!list_empty(&dentry->d_subdirs))
1264 return D_WALK_CONTINUE;
42c32608 1265
9c8c10e2
AV
1266 /* root with refcount 1 is fine */
1267 if (dentry == _data && dentry->d_lockref.count == 1)
1268 return D_WALK_CONTINUE;
1269
1270 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1271 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1272 dentry,
1273 dentry->d_inode ?
1274 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1275 dentry,
42c32608
AV
1276 dentry->d_lockref.count,
1277 dentry->d_sb->s_type->name,
1278 dentry->d_sb->s_id);
9c8c10e2
AV
1279 WARN_ON(1);
1280 return D_WALK_CONTINUE;
1281}
1282
1283static void do_one_tree(struct dentry *dentry)
1284{
1285 shrink_dcache_parent(dentry);
1286 d_walk(dentry, dentry, umount_check, NULL);
1287 d_drop(dentry);
1288 dput(dentry);
42c32608
AV
1289}
1290
1291/*
1292 * destroy the dentries attached to a superblock on unmounting
1293 */
1294void shrink_dcache_for_umount(struct super_block *sb)
1295{
1296 struct dentry *dentry;
1297
9c8c10e2 1298 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1299
1300 dentry = sb->s_root;
1301 sb->s_root = NULL;
9c8c10e2 1302 do_one_tree(dentry);
42c32608
AV
1303
1304 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1305 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1306 do_one_tree(dentry);
42c32608
AV
1307 }
1308}
1309
848ac114
MS
1310static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1311{
1312 struct select_data *data = _data;
1313
1314 if (d_mountpoint(dentry)) {
1315 data->found = -EBUSY;
1316 return D_WALK_QUIT;
1317 }
1318
1319 return select_collect(_data, dentry);
1320}
1321
1322static void check_and_drop(void *_data)
1323{
1324 struct select_data *data = _data;
1325
1326 if (d_mountpoint(data->start))
1327 data->found = -EBUSY;
1328 if (!data->found)
1329 __d_drop(data->start);
1330}
1331
1332/**
1333 * check_submounts_and_drop - prune dcache, check for submounts and drop
1334 *
1335 * All done as a single atomic operation relative to has_unlinked_ancestor().
1336 * Returns 0 if successfully unhashed @parent. If there were submounts then
1337 * return -EBUSY.
1338 *
1339 * @dentry: dentry to prune and drop
1340 */
1341int check_submounts_and_drop(struct dentry *dentry)
1342{
1343 int ret = 0;
1344
1345 /* Negative dentries can be dropped without further checks */
1346 if (!dentry->d_inode) {
1347 d_drop(dentry);
1348 goto out;
1349 }
1350
1351 for (;;) {
1352 struct select_data data;
1353
1354 INIT_LIST_HEAD(&data.dispose);
1355 data.start = dentry;
1356 data.found = 0;
1357
1358 d_walk(dentry, &data, check_and_collect, check_and_drop);
1359 ret = data.found;
1360
1361 if (!list_empty(&data.dispose))
1362 shrink_dentry_list(&data.dispose);
1363
1364 if (ret <= 0)
1365 break;
1366
1367 cond_resched();
1368 }
1369
1370out:
1371 return ret;
1372}
1373EXPORT_SYMBOL(check_submounts_and_drop);
1374
1da177e4 1375/**
a4464dbc
AV
1376 * __d_alloc - allocate a dcache entry
1377 * @sb: filesystem it will belong to
1da177e4
LT
1378 * @name: qstr of the name
1379 *
1380 * Allocates a dentry. It returns %NULL if there is insufficient memory
1381 * available. On a success the dentry is returned. The name passed in is
1382 * copied and the copy passed in may be reused after this call.
1383 */
1384
a4464dbc 1385struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1386{
1387 struct dentry *dentry;
1388 char *dname;
1389
e12ba74d 1390 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1391 if (!dentry)
1392 return NULL;
1393
6326c71f
LT
1394 /*
1395 * We guarantee that the inline name is always NUL-terminated.
1396 * This way the memcpy() done by the name switching in rename
1397 * will still always have a NUL at the end, even if we might
1398 * be overwriting an internal NUL character
1399 */
1400 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1401 if (name->len > DNAME_INLINE_LEN-1) {
1402 dname = kmalloc(name->len + 1, GFP_KERNEL);
1403 if (!dname) {
1404 kmem_cache_free(dentry_cache, dentry);
1405 return NULL;
1406 }
1407 } else {
1408 dname = dentry->d_iname;
1409 }
1da177e4
LT
1410
1411 dentry->d_name.len = name->len;
1412 dentry->d_name.hash = name->hash;
1413 memcpy(dname, name->name, name->len);
1414 dname[name->len] = 0;
1415
6326c71f
LT
1416 /* Make sure we always see the terminating NUL character */
1417 smp_wmb();
1418 dentry->d_name.name = dname;
1419
98474236 1420 dentry->d_lockref.count = 1;
dea3667b 1421 dentry->d_flags = 0;
1da177e4 1422 spin_lock_init(&dentry->d_lock);
31e6b01f 1423 seqcount_init(&dentry->d_seq);
1da177e4 1424 dentry->d_inode = NULL;
a4464dbc
AV
1425 dentry->d_parent = dentry;
1426 dentry->d_sb = sb;
1da177e4
LT
1427 dentry->d_op = NULL;
1428 dentry->d_fsdata = NULL;
ceb5bdc2 1429 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1430 INIT_LIST_HEAD(&dentry->d_lru);
1431 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1432 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1433 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1434 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1435
3e880fb5 1436 this_cpu_inc(nr_dentry);
312d3ca8 1437
1da177e4
LT
1438 return dentry;
1439}
a4464dbc
AV
1440
1441/**
1442 * d_alloc - allocate a dcache entry
1443 * @parent: parent of entry to allocate
1444 * @name: qstr of the name
1445 *
1446 * Allocates a dentry. It returns %NULL if there is insufficient memory
1447 * available. On a success the dentry is returned. The name passed in is
1448 * copied and the copy passed in may be reused after this call.
1449 */
1450struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1451{
1452 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1453 if (!dentry)
1454 return NULL;
1455
1456 spin_lock(&parent->d_lock);
1457 /*
1458 * don't need child lock because it is not subject
1459 * to concurrency here
1460 */
1461 __dget_dlock(parent);
1462 dentry->d_parent = parent;
1463 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1464 spin_unlock(&parent->d_lock);
1465
1466 return dentry;
1467}
ec4f8605 1468EXPORT_SYMBOL(d_alloc);
1da177e4 1469
e1a24bb0
BF
1470/**
1471 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1472 * @sb: the superblock
1473 * @name: qstr of the name
1474 *
1475 * For a filesystem that just pins its dentries in memory and never
1476 * performs lookups at all, return an unhashed IS_ROOT dentry.
1477 */
4b936885
NP
1478struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1479{
e1a24bb0 1480 return __d_alloc(sb, name);
4b936885
NP
1481}
1482EXPORT_SYMBOL(d_alloc_pseudo);
1483
1da177e4
LT
1484struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1485{
1486 struct qstr q;
1487
1488 q.name = name;
1489 q.len = strlen(name);
1490 q.hash = full_name_hash(q.name, q.len);
1491 return d_alloc(parent, &q);
1492}
ef26ca97 1493EXPORT_SYMBOL(d_alloc_name);
1da177e4 1494
fb045adb
NP
1495void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1496{
6f7f7caa
LT
1497 WARN_ON_ONCE(dentry->d_op);
1498 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1499 DCACHE_OP_COMPARE |
1500 DCACHE_OP_REVALIDATE |
ecf3d1f1 1501 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1502 DCACHE_OP_DELETE ));
1503 dentry->d_op = op;
1504 if (!op)
1505 return;
1506 if (op->d_hash)
1507 dentry->d_flags |= DCACHE_OP_HASH;
1508 if (op->d_compare)
1509 dentry->d_flags |= DCACHE_OP_COMPARE;
1510 if (op->d_revalidate)
1511 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1512 if (op->d_weak_revalidate)
1513 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1514 if (op->d_delete)
1515 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1516 if (op->d_prune)
1517 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1518
1519}
1520EXPORT_SYMBOL(d_set_d_op);
1521
b18825a7
DH
1522static unsigned d_flags_for_inode(struct inode *inode)
1523{
1524 unsigned add_flags = DCACHE_FILE_TYPE;
1525
1526 if (!inode)
1527 return DCACHE_MISS_TYPE;
1528
1529 if (S_ISDIR(inode->i_mode)) {
1530 add_flags = DCACHE_DIRECTORY_TYPE;
1531 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1532 if (unlikely(!inode->i_op->lookup))
1533 add_flags = DCACHE_AUTODIR_TYPE;
1534 else
1535 inode->i_opflags |= IOP_LOOKUP;
1536 }
1537 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1538 if (unlikely(inode->i_op->follow_link))
1539 add_flags = DCACHE_SYMLINK_TYPE;
1540 else
1541 inode->i_opflags |= IOP_NOFOLLOW;
1542 }
1543
1544 if (unlikely(IS_AUTOMOUNT(inode)))
1545 add_flags |= DCACHE_NEED_AUTOMOUNT;
1546 return add_flags;
1547}
1548
360da900
OH
1549static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1550{
b18825a7
DH
1551 unsigned add_flags = d_flags_for_inode(inode);
1552
b23fb0a6 1553 spin_lock(&dentry->d_lock);
22213318 1554 __d_set_type(dentry, add_flags);
b18825a7 1555 if (inode)
b3d9b7a3 1556 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1557 dentry->d_inode = inode;
31e6b01f 1558 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1559 spin_unlock(&dentry->d_lock);
360da900
OH
1560 fsnotify_d_instantiate(dentry, inode);
1561}
1562
1da177e4
LT
1563/**
1564 * d_instantiate - fill in inode information for a dentry
1565 * @entry: dentry to complete
1566 * @inode: inode to attach to this dentry
1567 *
1568 * Fill in inode information in the entry.
1569 *
1570 * This turns negative dentries into productive full members
1571 * of society.
1572 *
1573 * NOTE! This assumes that the inode count has been incremented
1574 * (or otherwise set) by the caller to indicate that it is now
1575 * in use by the dcache.
1576 */
1577
1578void d_instantiate(struct dentry *entry, struct inode * inode)
1579{
b3d9b7a3 1580 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1581 if (inode)
1582 spin_lock(&inode->i_lock);
360da900 1583 __d_instantiate(entry, inode);
873feea0
NP
1584 if (inode)
1585 spin_unlock(&inode->i_lock);
1da177e4
LT
1586 security_d_instantiate(entry, inode);
1587}
ec4f8605 1588EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1589
1590/**
1591 * d_instantiate_unique - instantiate a non-aliased dentry
1592 * @entry: dentry to instantiate
1593 * @inode: inode to attach to this dentry
1594 *
1595 * Fill in inode information in the entry. On success, it returns NULL.
1596 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1597 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1598 *
1599 * Note that in order to avoid conflicts with rename() etc, the caller
1600 * had better be holding the parent directory semaphore.
e866cfa9
OD
1601 *
1602 * This also assumes that the inode count has been incremented
1603 * (or otherwise set) by the caller to indicate that it is now
1604 * in use by the dcache.
1da177e4 1605 */
770bfad8
DH
1606static struct dentry *__d_instantiate_unique(struct dentry *entry,
1607 struct inode *inode)
1da177e4
LT
1608{
1609 struct dentry *alias;
1610 int len = entry->d_name.len;
1611 const char *name = entry->d_name.name;
1612 unsigned int hash = entry->d_name.hash;
1613
770bfad8 1614 if (!inode) {
360da900 1615 __d_instantiate(entry, NULL);
770bfad8
DH
1616 return NULL;
1617 }
1618
b67bfe0d 1619 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1620 /*
1621 * Don't need alias->d_lock here, because aliases with
1622 * d_parent == entry->d_parent are not subject to name or
1623 * parent changes, because the parent inode i_mutex is held.
1624 */
12f8ad4b 1625 if (alias->d_name.hash != hash)
1da177e4
LT
1626 continue;
1627 if (alias->d_parent != entry->d_parent)
1628 continue;
ee983e89
LT
1629 if (alias->d_name.len != len)
1630 continue;
12f8ad4b 1631 if (dentry_cmp(alias, name, len))
1da177e4 1632 continue;
dc0474be 1633 __dget(alias);
1da177e4
LT
1634 return alias;
1635 }
770bfad8 1636
360da900 1637 __d_instantiate(entry, inode);
1da177e4
LT
1638 return NULL;
1639}
770bfad8
DH
1640
1641struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1642{
1643 struct dentry *result;
1644
b3d9b7a3 1645 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1646
873feea0
NP
1647 if (inode)
1648 spin_lock(&inode->i_lock);
770bfad8 1649 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1650 if (inode)
1651 spin_unlock(&inode->i_lock);
770bfad8
DH
1652
1653 if (!result) {
1654 security_d_instantiate(entry, inode);
1655 return NULL;
1656 }
1657
1658 BUG_ON(!d_unhashed(result));
1659 iput(inode);
1660 return result;
1661}
1662
1da177e4
LT
1663EXPORT_SYMBOL(d_instantiate_unique);
1664
b70a80e7
MS
1665/**
1666 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1667 * @entry: dentry to complete
1668 * @inode: inode to attach to this dentry
1669 *
1670 * Fill in inode information in the entry. If a directory alias is found, then
1671 * return an error (and drop inode). Together with d_materialise_unique() this
1672 * guarantees that a directory inode may never have more than one alias.
1673 */
1674int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1675{
1676 BUG_ON(!hlist_unhashed(&entry->d_alias));
1677
1678 spin_lock(&inode->i_lock);
1679 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1680 spin_unlock(&inode->i_lock);
1681 iput(inode);
1682 return -EBUSY;
1683 }
1684 __d_instantiate(entry, inode);
1685 spin_unlock(&inode->i_lock);
1686 security_d_instantiate(entry, inode);
1687
1688 return 0;
1689}
1690EXPORT_SYMBOL(d_instantiate_no_diralias);
1691
adc0e91a
AV
1692struct dentry *d_make_root(struct inode *root_inode)
1693{
1694 struct dentry *res = NULL;
1695
1696 if (root_inode) {
26fe5750 1697 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1698
1699 res = __d_alloc(root_inode->i_sb, &name);
1700 if (res)
1701 d_instantiate(res, root_inode);
1702 else
1703 iput(root_inode);
1704 }
1705 return res;
1706}
1707EXPORT_SYMBOL(d_make_root);
1708
d891eedb
BF
1709static struct dentry * __d_find_any_alias(struct inode *inode)
1710{
1711 struct dentry *alias;
1712
b3d9b7a3 1713 if (hlist_empty(&inode->i_dentry))
d891eedb 1714 return NULL;
b3d9b7a3 1715 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1716 __dget(alias);
1717 return alias;
1718}
1719
46f72b34
SW
1720/**
1721 * d_find_any_alias - find any alias for a given inode
1722 * @inode: inode to find an alias for
1723 *
1724 * If any aliases exist for the given inode, take and return a
1725 * reference for one of them. If no aliases exist, return %NULL.
1726 */
1727struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1728{
1729 struct dentry *de;
1730
1731 spin_lock(&inode->i_lock);
1732 de = __d_find_any_alias(inode);
1733 spin_unlock(&inode->i_lock);
1734 return de;
1735}
46f72b34 1736EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1737
4ea3ada2
CH
1738/**
1739 * d_obtain_alias - find or allocate a dentry for a given inode
1740 * @inode: inode to allocate the dentry for
1741 *
1742 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1743 * similar open by handle operations. The returned dentry may be anonymous,
1744 * or may have a full name (if the inode was already in the cache).
1745 *
1746 * When called on a directory inode, we must ensure that the inode only ever
1747 * has one dentry. If a dentry is found, that is returned instead of
1748 * allocating a new one.
1749 *
1750 * On successful return, the reference to the inode has been transferred
44003728
CH
1751 * to the dentry. In case of an error the reference on the inode is released.
1752 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1753 * be passed in and will be the error will be propagate to the return value,
1754 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1755 */
1756struct dentry *d_obtain_alias(struct inode *inode)
1757{
b911a6bd 1758 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1759 struct dentry *tmp;
1760 struct dentry *res;
b18825a7 1761 unsigned add_flags;
4ea3ada2
CH
1762
1763 if (!inode)
44003728 1764 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1765 if (IS_ERR(inode))
1766 return ERR_CAST(inode);
1767
d891eedb 1768 res = d_find_any_alias(inode);
9308a612
CH
1769 if (res)
1770 goto out_iput;
1771
a4464dbc 1772 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1773 if (!tmp) {
1774 res = ERR_PTR(-ENOMEM);
1775 goto out_iput;
4ea3ada2 1776 }
b5c84bf6 1777
873feea0 1778 spin_lock(&inode->i_lock);
d891eedb 1779 res = __d_find_any_alias(inode);
9308a612 1780 if (res) {
873feea0 1781 spin_unlock(&inode->i_lock);
9308a612
CH
1782 dput(tmp);
1783 goto out_iput;
1784 }
1785
1786 /* attach a disconnected dentry */
b18825a7
DH
1787 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1788
9308a612 1789 spin_lock(&tmp->d_lock);
9308a612 1790 tmp->d_inode = inode;
b18825a7 1791 tmp->d_flags |= add_flags;
b3d9b7a3 1792 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1793 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1794 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1795 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1796 spin_unlock(&tmp->d_lock);
873feea0 1797 spin_unlock(&inode->i_lock);
24ff6663 1798 security_d_instantiate(tmp, inode);
9308a612 1799
9308a612
CH
1800 return tmp;
1801
1802 out_iput:
24ff6663
JB
1803 if (res && !IS_ERR(res))
1804 security_d_instantiate(res, inode);
9308a612
CH
1805 iput(inode);
1806 return res;
4ea3ada2 1807}
adc48720 1808EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1809
1810/**
1811 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1812 * @inode: the inode which may have a disconnected dentry
1813 * @dentry: a negative dentry which we want to point to the inode.
1814 *
1815 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1816 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1817 * and return it, else simply d_add the inode to the dentry and return NULL.
1818 *
1819 * This is needed in the lookup routine of any filesystem that is exportable
1820 * (via knfsd) so that we can build dcache paths to directories effectively.
1821 *
1822 * If a dentry was found and moved, then it is returned. Otherwise NULL
1823 * is returned. This matches the expected return value of ->lookup.
1824 *
6d4ade98
SW
1825 * Cluster filesystems may call this function with a negative, hashed dentry.
1826 * In that case, we know that the inode will be a regular file, and also this
1827 * will only occur during atomic_open. So we need to check for the dentry
1828 * being already hashed only in the final case.
1da177e4
LT
1829 */
1830struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1831{
1832 struct dentry *new = NULL;
1833
a9049376
AV
1834 if (IS_ERR(inode))
1835 return ERR_CAST(inode);
1836
21c0d8fd 1837 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1838 spin_lock(&inode->i_lock);
32ba9c3f 1839 new = __d_find_alias(inode, 1);
1da177e4 1840 if (new) {
32ba9c3f 1841 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1842 spin_unlock(&inode->i_lock);
1da177e4 1843 security_d_instantiate(new, inode);
1da177e4
LT
1844 d_move(new, dentry);
1845 iput(inode);
1846 } else {
873feea0 1847 /* already taking inode->i_lock, so d_add() by hand */
360da900 1848 __d_instantiate(dentry, inode);
873feea0 1849 spin_unlock(&inode->i_lock);
1da177e4
LT
1850 security_d_instantiate(dentry, inode);
1851 d_rehash(dentry);
1852 }
6d4ade98
SW
1853 } else {
1854 d_instantiate(dentry, inode);
1855 if (d_unhashed(dentry))
1856 d_rehash(dentry);
1857 }
1da177e4
LT
1858 return new;
1859}
ec4f8605 1860EXPORT_SYMBOL(d_splice_alias);
1da177e4 1861
9403540c
BN
1862/**
1863 * d_add_ci - lookup or allocate new dentry with case-exact name
1864 * @inode: the inode case-insensitive lookup has found
1865 * @dentry: the negative dentry that was passed to the parent's lookup func
1866 * @name: the case-exact name to be associated with the returned dentry
1867 *
1868 * This is to avoid filling the dcache with case-insensitive names to the
1869 * same inode, only the actual correct case is stored in the dcache for
1870 * case-insensitive filesystems.
1871 *
1872 * For a case-insensitive lookup match and if the the case-exact dentry
1873 * already exists in in the dcache, use it and return it.
1874 *
1875 * If no entry exists with the exact case name, allocate new dentry with
1876 * the exact case, and return the spliced entry.
1877 */
e45b590b 1878struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1879 struct qstr *name)
1880{
9403540c
BN
1881 struct dentry *found;
1882 struct dentry *new;
1883
b6520c81
CH
1884 /*
1885 * First check if a dentry matching the name already exists,
1886 * if not go ahead and create it now.
1887 */
9403540c 1888 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1889 if (unlikely(IS_ERR(found)))
1890 goto err_out;
9403540c
BN
1891 if (!found) {
1892 new = d_alloc(dentry->d_parent, name);
1893 if (!new) {
4f522a24 1894 found = ERR_PTR(-ENOMEM);
9403540c
BN
1895 goto err_out;
1896 }
b6520c81 1897
9403540c
BN
1898 found = d_splice_alias(inode, new);
1899 if (found) {
1900 dput(new);
1901 return found;
1902 }
1903 return new;
1904 }
b6520c81
CH
1905
1906 /*
1907 * If a matching dentry exists, and it's not negative use it.
1908 *
1909 * Decrement the reference count to balance the iget() done
1910 * earlier on.
1911 */
9403540c
BN
1912 if (found->d_inode) {
1913 if (unlikely(found->d_inode != inode)) {
1914 /* This can't happen because bad inodes are unhashed. */
1915 BUG_ON(!is_bad_inode(inode));
1916 BUG_ON(!is_bad_inode(found->d_inode));
1917 }
9403540c
BN
1918 iput(inode);
1919 return found;
1920 }
b6520c81 1921
9403540c 1922 /*
9403540c 1923 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1924 * already has a dentry.
9403540c 1925 */
4513d899
AV
1926 new = d_splice_alias(inode, found);
1927 if (new) {
1928 dput(found);
1929 found = new;
9403540c 1930 }
4513d899 1931 return found;
9403540c
BN
1932
1933err_out:
1934 iput(inode);
4f522a24 1935 return found;
9403540c 1936}
ec4f8605 1937EXPORT_SYMBOL(d_add_ci);
1da177e4 1938
12f8ad4b
LT
1939/*
1940 * Do the slow-case of the dentry name compare.
1941 *
1942 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1943 * load the name and length information, so that the
12f8ad4b
LT
1944 * filesystem can rely on them, and can use the 'name' and
1945 * 'len' information without worrying about walking off the
1946 * end of memory etc.
1947 *
1948 * Thus the read_seqcount_retry() and the "duplicate" info
1949 * in arguments (the low-level filesystem should not look
1950 * at the dentry inode or name contents directly, since
1951 * rename can change them while we're in RCU mode).
1952 */
1953enum slow_d_compare {
1954 D_COMP_OK,
1955 D_COMP_NOMATCH,
1956 D_COMP_SEQRETRY,
1957};
1958
1959static noinline enum slow_d_compare slow_dentry_cmp(
1960 const struct dentry *parent,
12f8ad4b
LT
1961 struct dentry *dentry,
1962 unsigned int seq,
1963 const struct qstr *name)
1964{
1965 int tlen = dentry->d_name.len;
1966 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1967
1968 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1969 cpu_relax();
1970 return D_COMP_SEQRETRY;
1971 }
da53be12 1972 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1973 return D_COMP_NOMATCH;
1974 return D_COMP_OK;
1975}
1976
31e6b01f
NP
1977/**
1978 * __d_lookup_rcu - search for a dentry (racy, store-free)
1979 * @parent: parent dentry
1980 * @name: qstr of name we wish to find
1f1e6e52 1981 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1982 * Returns: dentry, or NULL
1983 *
1984 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1985 * resolution (store-free path walking) design described in
1986 * Documentation/filesystems/path-lookup.txt.
1987 *
1988 * This is not to be used outside core vfs.
1989 *
1990 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1991 * held, and rcu_read_lock held. The returned dentry must not be stored into
1992 * without taking d_lock and checking d_seq sequence count against @seq
1993 * returned here.
1994 *
15570086 1995 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
1996 * function.
1997 *
1998 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1999 * the returned dentry, so long as its parent's seqlock is checked after the
2000 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2001 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2002 *
2003 * NOTE! The caller *has* to check the resulting dentry against the sequence
2004 * number we've returned before using any of the resulting dentry state!
31e6b01f 2005 */
8966be90
LT
2006struct dentry *__d_lookup_rcu(const struct dentry *parent,
2007 const struct qstr *name,
da53be12 2008 unsigned *seqp)
31e6b01f 2009{
26fe5750 2010 u64 hashlen = name->hash_len;
31e6b01f 2011 const unsigned char *str = name->name;
26fe5750 2012 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2013 struct hlist_bl_node *node;
31e6b01f
NP
2014 struct dentry *dentry;
2015
2016 /*
2017 * Note: There is significant duplication with __d_lookup_rcu which is
2018 * required to prevent single threaded performance regressions
2019 * especially on architectures where smp_rmb (in seqcounts) are costly.
2020 * Keep the two functions in sync.
2021 */
2022
2023 /*
2024 * The hash list is protected using RCU.
2025 *
2026 * Carefully use d_seq when comparing a candidate dentry, to avoid
2027 * races with d_move().
2028 *
2029 * It is possible that concurrent renames can mess up our list
2030 * walk here and result in missing our dentry, resulting in the
2031 * false-negative result. d_lookup() protects against concurrent
2032 * renames using rename_lock seqlock.
2033 *
b0a4bb83 2034 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2035 */
b07ad996 2036 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2037 unsigned seq;
31e6b01f 2038
31e6b01f 2039seqretry:
12f8ad4b
LT
2040 /*
2041 * The dentry sequence count protects us from concurrent
da53be12 2042 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2043 *
2044 * The caller must perform a seqcount check in order
da53be12 2045 * to do anything useful with the returned dentry.
12f8ad4b
LT
2046 *
2047 * NOTE! We do a "raw" seqcount_begin here. That means that
2048 * we don't wait for the sequence count to stabilize if it
2049 * is in the middle of a sequence change. If we do the slow
2050 * dentry compare, we will do seqretries until it is stable,
2051 * and if we end up with a successful lookup, we actually
2052 * want to exit RCU lookup anyway.
2053 */
2054 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2055 if (dentry->d_parent != parent)
2056 continue;
2e321806
LT
2057 if (d_unhashed(dentry))
2058 continue;
12f8ad4b 2059
830c0f0e 2060 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2061 if (dentry->d_name.hash != hashlen_hash(hashlen))
2062 continue;
da53be12
LT
2063 *seqp = seq;
2064 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2065 case D_COMP_OK:
2066 return dentry;
2067 case D_COMP_NOMATCH:
31e6b01f 2068 continue;
12f8ad4b
LT
2069 default:
2070 goto seqretry;
2071 }
31e6b01f 2072 }
12f8ad4b 2073
26fe5750 2074 if (dentry->d_name.hash_len != hashlen)
ee983e89 2075 continue;
da53be12 2076 *seqp = seq;
26fe5750 2077 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2078 return dentry;
31e6b01f
NP
2079 }
2080 return NULL;
2081}
2082
1da177e4
LT
2083/**
2084 * d_lookup - search for a dentry
2085 * @parent: parent dentry
2086 * @name: qstr of name we wish to find
b04f784e 2087 * Returns: dentry, or NULL
1da177e4 2088 *
b04f784e
NP
2089 * d_lookup searches the children of the parent dentry for the name in
2090 * question. If the dentry is found its reference count is incremented and the
2091 * dentry is returned. The caller must use dput to free the entry when it has
2092 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2093 */
da2d8455 2094struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2095{
31e6b01f 2096 struct dentry *dentry;
949854d0 2097 unsigned seq;
1da177e4
LT
2098
2099 do {
2100 seq = read_seqbegin(&rename_lock);
2101 dentry = __d_lookup(parent, name);
2102 if (dentry)
2103 break;
2104 } while (read_seqretry(&rename_lock, seq));
2105 return dentry;
2106}
ec4f8605 2107EXPORT_SYMBOL(d_lookup);
1da177e4 2108
31e6b01f 2109/**
b04f784e
NP
2110 * __d_lookup - search for a dentry (racy)
2111 * @parent: parent dentry
2112 * @name: qstr of name we wish to find
2113 * Returns: dentry, or NULL
2114 *
2115 * __d_lookup is like d_lookup, however it may (rarely) return a
2116 * false-negative result due to unrelated rename activity.
2117 *
2118 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2119 * however it must be used carefully, eg. with a following d_lookup in
2120 * the case of failure.
2121 *
2122 * __d_lookup callers must be commented.
2123 */
a713ca2a 2124struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2125{
2126 unsigned int len = name->len;
2127 unsigned int hash = name->hash;
2128 const unsigned char *str = name->name;
b07ad996 2129 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2130 struct hlist_bl_node *node;
31e6b01f 2131 struct dentry *found = NULL;
665a7583 2132 struct dentry *dentry;
1da177e4 2133
31e6b01f
NP
2134 /*
2135 * Note: There is significant duplication with __d_lookup_rcu which is
2136 * required to prevent single threaded performance regressions
2137 * especially on architectures where smp_rmb (in seqcounts) are costly.
2138 * Keep the two functions in sync.
2139 */
2140
b04f784e
NP
2141 /*
2142 * The hash list is protected using RCU.
2143 *
2144 * Take d_lock when comparing a candidate dentry, to avoid races
2145 * with d_move().
2146 *
2147 * It is possible that concurrent renames can mess up our list
2148 * walk here and result in missing our dentry, resulting in the
2149 * false-negative result. d_lookup() protects against concurrent
2150 * renames using rename_lock seqlock.
2151 *
b0a4bb83 2152 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2153 */
1da177e4
LT
2154 rcu_read_lock();
2155
b07ad996 2156 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2157
1da177e4
LT
2158 if (dentry->d_name.hash != hash)
2159 continue;
1da177e4
LT
2160
2161 spin_lock(&dentry->d_lock);
1da177e4
LT
2162 if (dentry->d_parent != parent)
2163 goto next;
d0185c08
LT
2164 if (d_unhashed(dentry))
2165 goto next;
2166
1da177e4
LT
2167 /*
2168 * It is safe to compare names since d_move() cannot
2169 * change the qstr (protected by d_lock).
2170 */
fb045adb 2171 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2172 int tlen = dentry->d_name.len;
2173 const char *tname = dentry->d_name.name;
da53be12 2174 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2175 goto next;
2176 } else {
ee983e89
LT
2177 if (dentry->d_name.len != len)
2178 goto next;
12f8ad4b 2179 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2180 goto next;
2181 }
2182
98474236 2183 dentry->d_lockref.count++;
d0185c08 2184 found = dentry;
1da177e4
LT
2185 spin_unlock(&dentry->d_lock);
2186 break;
2187next:
2188 spin_unlock(&dentry->d_lock);
2189 }
2190 rcu_read_unlock();
2191
2192 return found;
2193}
2194
3e7e241f
EB
2195/**
2196 * d_hash_and_lookup - hash the qstr then search for a dentry
2197 * @dir: Directory to search in
2198 * @name: qstr of name we wish to find
2199 *
4f522a24 2200 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2201 */
2202struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2203{
3e7e241f
EB
2204 /*
2205 * Check for a fs-specific hash function. Note that we must
2206 * calculate the standard hash first, as the d_op->d_hash()
2207 * routine may choose to leave the hash value unchanged.
2208 */
2209 name->hash = full_name_hash(name->name, name->len);
fb045adb 2210 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2211 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2212 if (unlikely(err < 0))
2213 return ERR_PTR(err);
3e7e241f 2214 }
4f522a24 2215 return d_lookup(dir, name);
3e7e241f 2216}
4f522a24 2217EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2218
1da177e4 2219/**
786a5e15 2220 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2221 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2222 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2223 *
2224 * An insecure source has sent us a dentry, here we verify it and dget() it.
2225 * This is used by ncpfs in its readdir implementation.
2226 * Zero is returned in the dentry is invalid.
786a5e15
NP
2227 *
2228 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2229 */
d3a23e16 2230int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2231{
786a5e15 2232 struct dentry *child;
d3a23e16 2233
2fd6b7f5 2234 spin_lock(&dparent->d_lock);
786a5e15
NP
2235 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2236 if (dentry == child) {
2fd6b7f5 2237 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2238 __dget_dlock(dentry);
2fd6b7f5
NP
2239 spin_unlock(&dentry->d_lock);
2240 spin_unlock(&dparent->d_lock);
1da177e4
LT
2241 return 1;
2242 }
2243 }
2fd6b7f5 2244 spin_unlock(&dparent->d_lock);
786a5e15 2245
1da177e4
LT
2246 return 0;
2247}
ec4f8605 2248EXPORT_SYMBOL(d_validate);
1da177e4
LT
2249
2250/*
2251 * When a file is deleted, we have two options:
2252 * - turn this dentry into a negative dentry
2253 * - unhash this dentry and free it.
2254 *
2255 * Usually, we want to just turn this into
2256 * a negative dentry, but if anybody else is
2257 * currently using the dentry or the inode
2258 * we can't do that and we fall back on removing
2259 * it from the hash queues and waiting for
2260 * it to be deleted later when it has no users
2261 */
2262
2263/**
2264 * d_delete - delete a dentry
2265 * @dentry: The dentry to delete
2266 *
2267 * Turn the dentry into a negative dentry if possible, otherwise
2268 * remove it from the hash queues so it can be deleted later
2269 */
2270
2271void d_delete(struct dentry * dentry)
2272{
873feea0 2273 struct inode *inode;
7a91bf7f 2274 int isdir = 0;
1da177e4
LT
2275 /*
2276 * Are we the only user?
2277 */
357f8e65 2278again:
1da177e4 2279 spin_lock(&dentry->d_lock);
873feea0
NP
2280 inode = dentry->d_inode;
2281 isdir = S_ISDIR(inode->i_mode);
98474236 2282 if (dentry->d_lockref.count == 1) {
1fe0c023 2283 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2284 spin_unlock(&dentry->d_lock);
2285 cpu_relax();
2286 goto again;
2287 }
13e3c5e5 2288 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2289 dentry_unlink_inode(dentry);
7a91bf7f 2290 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2291 return;
2292 }
2293
2294 if (!d_unhashed(dentry))
2295 __d_drop(dentry);
2296
2297 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2298
2299 fsnotify_nameremove(dentry, isdir);
1da177e4 2300}
ec4f8605 2301EXPORT_SYMBOL(d_delete);
1da177e4 2302
b07ad996 2303static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2304{
ceb5bdc2 2305 BUG_ON(!d_unhashed(entry));
1879fd6a 2306 hlist_bl_lock(b);
dea3667b 2307 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2308 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2309 hlist_bl_unlock(b);
1da177e4
LT
2310}
2311
770bfad8
DH
2312static void _d_rehash(struct dentry * entry)
2313{
2314 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2315}
2316
1da177e4
LT
2317/**
2318 * d_rehash - add an entry back to the hash
2319 * @entry: dentry to add to the hash
2320 *
2321 * Adds a dentry to the hash according to its name.
2322 */
2323
2324void d_rehash(struct dentry * entry)
2325{
1da177e4 2326 spin_lock(&entry->d_lock);
770bfad8 2327 _d_rehash(entry);
1da177e4 2328 spin_unlock(&entry->d_lock);
1da177e4 2329}
ec4f8605 2330EXPORT_SYMBOL(d_rehash);
1da177e4 2331
fb2d5b86
NP
2332/**
2333 * dentry_update_name_case - update case insensitive dentry with a new name
2334 * @dentry: dentry to be updated
2335 * @name: new name
2336 *
2337 * Update a case insensitive dentry with new case of name.
2338 *
2339 * dentry must have been returned by d_lookup with name @name. Old and new
2340 * name lengths must match (ie. no d_compare which allows mismatched name
2341 * lengths).
2342 *
2343 * Parent inode i_mutex must be held over d_lookup and into this call (to
2344 * keep renames and concurrent inserts, and readdir(2) away).
2345 */
2346void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2347{
7ebfa57f 2348 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2349 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2350
fb2d5b86 2351 spin_lock(&dentry->d_lock);
31e6b01f 2352 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2353 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2354 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2355 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2356}
2357EXPORT_SYMBOL(dentry_update_name_case);
2358
1da177e4
LT
2359static void switch_names(struct dentry *dentry, struct dentry *target)
2360{
2361 if (dname_external(target)) {
2362 if (dname_external(dentry)) {
2363 /*
2364 * Both external: swap the pointers
2365 */
9a8d5bb4 2366 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2367 } else {
2368 /*
2369 * dentry:internal, target:external. Steal target's
2370 * storage and make target internal.
2371 */
321bcf92
BF
2372 memcpy(target->d_iname, dentry->d_name.name,
2373 dentry->d_name.len + 1);
1da177e4
LT
2374 dentry->d_name.name = target->d_name.name;
2375 target->d_name.name = target->d_iname;
2376 }
2377 } else {
2378 if (dname_external(dentry)) {
2379 /*
2380 * dentry:external, target:internal. Give dentry's
2381 * storage to target and make dentry internal
2382 */
2383 memcpy(dentry->d_iname, target->d_name.name,
2384 target->d_name.len + 1);
2385 target->d_name.name = dentry->d_name.name;
2386 dentry->d_name.name = dentry->d_iname;
2387 } else {
2388 /*
da1ce067 2389 * Both are internal.
1da177e4 2390 */
da1ce067
MS
2391 unsigned int i;
2392 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2393 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2394 swap(((long *) &dentry->d_iname)[i],
2395 ((long *) &target->d_iname)[i]);
2396 }
1da177e4
LT
2397 }
2398 }
9a8d5bb4 2399 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2400}
2401
2fd6b7f5
NP
2402static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2403{
2404 /*
2405 * XXXX: do we really need to take target->d_lock?
2406 */
2407 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2408 spin_lock(&target->d_parent->d_lock);
2409 else {
2410 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2411 spin_lock(&dentry->d_parent->d_lock);
2412 spin_lock_nested(&target->d_parent->d_lock,
2413 DENTRY_D_LOCK_NESTED);
2414 } else {
2415 spin_lock(&target->d_parent->d_lock);
2416 spin_lock_nested(&dentry->d_parent->d_lock,
2417 DENTRY_D_LOCK_NESTED);
2418 }
2419 }
2420 if (target < dentry) {
2421 spin_lock_nested(&target->d_lock, 2);
2422 spin_lock_nested(&dentry->d_lock, 3);
2423 } else {
2424 spin_lock_nested(&dentry->d_lock, 2);
2425 spin_lock_nested(&target->d_lock, 3);
2426 }
2427}
2428
2429static void dentry_unlock_parents_for_move(struct dentry *dentry,
2430 struct dentry *target)
2431{
2432 if (target->d_parent != dentry->d_parent)
2433 spin_unlock(&dentry->d_parent->d_lock);
2434 if (target->d_parent != target)
2435 spin_unlock(&target->d_parent->d_lock);
2436}
2437
1da177e4 2438/*
2fd6b7f5
NP
2439 * When switching names, the actual string doesn't strictly have to
2440 * be preserved in the target - because we're dropping the target
2441 * anyway. As such, we can just do a simple memcpy() to copy over
2442 * the new name before we switch.
2443 *
2444 * Note that we have to be a lot more careful about getting the hash
2445 * switched - we have to switch the hash value properly even if it
2446 * then no longer matches the actual (corrupted) string of the target.
2447 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2448 */
9eaef27b 2449/*
18367501 2450 * __d_move - move a dentry
1da177e4
LT
2451 * @dentry: entry to move
2452 * @target: new dentry
da1ce067 2453 * @exchange: exchange the two dentries
1da177e4
LT
2454 *
2455 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2456 * dcache entries should not be moved in this way. Caller must hold
2457 * rename_lock, the i_mutex of the source and target directories,
2458 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2459 */
da1ce067
MS
2460static void __d_move(struct dentry *dentry, struct dentry *target,
2461 bool exchange)
1da177e4 2462{
1da177e4
LT
2463 if (!dentry->d_inode)
2464 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2465
2fd6b7f5
NP
2466 BUG_ON(d_ancestor(dentry, target));
2467 BUG_ON(d_ancestor(target, dentry));
2468
2fd6b7f5 2469 dentry_lock_for_move(dentry, target);
1da177e4 2470
31e6b01f 2471 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2472 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2473
ceb5bdc2
NP
2474 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2475
2476 /*
2477 * Move the dentry to the target hash queue. Don't bother checking
2478 * for the same hash queue because of how unlikely it is.
2479 */
2480 __d_drop(dentry);
789680d1 2481 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2482
da1ce067
MS
2483 /*
2484 * Unhash the target (d_delete() is not usable here). If exchanging
2485 * the two dentries, then rehash onto the other's hash queue.
2486 */
1da177e4 2487 __d_drop(target);
da1ce067
MS
2488 if (exchange) {
2489 __d_rehash(target,
2490 d_hash(dentry->d_parent, dentry->d_name.hash));
2491 }
1da177e4 2492
5160ee6f
ED
2493 list_del(&dentry->d_u.d_child);
2494 list_del(&target->d_u.d_child);
1da177e4
LT
2495
2496 /* Switch the names.. */
2497 switch_names(dentry, target);
9a8d5bb4 2498 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2499
2500 /* ... and switch the parents */
2501 if (IS_ROOT(dentry)) {
2502 dentry->d_parent = target->d_parent;
2503 target->d_parent = target;
5160ee6f 2504 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2505 } else {
9a8d5bb4 2506 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2507
2508 /* And add them back to the (new) parent lists */
5160ee6f 2509 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2510 }
2511
5160ee6f 2512 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2513
31e6b01f
NP
2514 write_seqcount_end(&target->d_seq);
2515 write_seqcount_end(&dentry->d_seq);
2516
2fd6b7f5 2517 dentry_unlock_parents_for_move(dentry, target);
da1ce067
MS
2518 if (exchange)
2519 fsnotify_d_move(target);
1da177e4 2520 spin_unlock(&target->d_lock);
c32ccd87 2521 fsnotify_d_move(dentry);
1da177e4 2522 spin_unlock(&dentry->d_lock);
18367501
AV
2523}
2524
2525/*
2526 * d_move - move a dentry
2527 * @dentry: entry to move
2528 * @target: new dentry
2529 *
2530 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2531 * dcache entries should not be moved in this way. See the locking
2532 * requirements for __d_move.
18367501
AV
2533 */
2534void d_move(struct dentry *dentry, struct dentry *target)
2535{
2536 write_seqlock(&rename_lock);
da1ce067 2537 __d_move(dentry, target, false);
1da177e4 2538 write_sequnlock(&rename_lock);
9eaef27b 2539}
ec4f8605 2540EXPORT_SYMBOL(d_move);
1da177e4 2541
da1ce067
MS
2542/*
2543 * d_exchange - exchange two dentries
2544 * @dentry1: first dentry
2545 * @dentry2: second dentry
2546 */
2547void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2548{
2549 write_seqlock(&rename_lock);
2550
2551 WARN_ON(!dentry1->d_inode);
2552 WARN_ON(!dentry2->d_inode);
2553 WARN_ON(IS_ROOT(dentry1));
2554 WARN_ON(IS_ROOT(dentry2));
2555
2556 __d_move(dentry1, dentry2, true);
2557
2558 write_sequnlock(&rename_lock);
2559}
2560
e2761a11
OH
2561/**
2562 * d_ancestor - search for an ancestor
2563 * @p1: ancestor dentry
2564 * @p2: child dentry
2565 *
2566 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2567 * an ancestor of p2, else NULL.
9eaef27b 2568 */
e2761a11 2569struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2570{
2571 struct dentry *p;
2572
871c0067 2573 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2574 if (p->d_parent == p1)
e2761a11 2575 return p;
9eaef27b 2576 }
e2761a11 2577 return NULL;
9eaef27b
TM
2578}
2579
2580/*
2581 * This helper attempts to cope with remotely renamed directories
2582 *
2583 * It assumes that the caller is already holding
18367501 2584 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2585 *
2586 * Note: If ever the locking in lock_rename() changes, then please
2587 * remember to update this too...
9eaef27b 2588 */
873feea0
NP
2589static struct dentry *__d_unalias(struct inode *inode,
2590 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2591{
2592 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2593 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2594
2595 /* If alias and dentry share a parent, then no extra locks required */
2596 if (alias->d_parent == dentry->d_parent)
2597 goto out_unalias;
2598
9eaef27b 2599 /* See lock_rename() */
9eaef27b
TM
2600 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2601 goto out_err;
2602 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2603 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2604 goto out_err;
2605 m2 = &alias->d_parent->d_inode->i_mutex;
2606out_unalias:
ee3efa91 2607 if (likely(!d_mountpoint(alias))) {
da1ce067 2608 __d_move(alias, dentry, false);
ee3efa91
AV
2609 ret = alias;
2610 }
9eaef27b 2611out_err:
873feea0 2612 spin_unlock(&inode->i_lock);
9eaef27b
TM
2613 if (m2)
2614 mutex_unlock(m2);
2615 if (m1)
2616 mutex_unlock(m1);
2617 return ret;
2618}
2619
770bfad8
DH
2620/*
2621 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2622 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2623 * returns with anon->d_lock held!
770bfad8
DH
2624 */
2625static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2626{
740da42e 2627 struct dentry *dparent;
770bfad8 2628
2fd6b7f5 2629 dentry_lock_for_move(anon, dentry);
770bfad8 2630
31e6b01f 2631 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2632 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2633
770bfad8 2634 dparent = dentry->d_parent;
770bfad8 2635
2fd6b7f5
NP
2636 switch_names(dentry, anon);
2637 swap(dentry->d_name.hash, anon->d_name.hash);
2638
740da42e
AV
2639 dentry->d_parent = dentry;
2640 list_del_init(&dentry->d_u.d_child);
2641 anon->d_parent = dparent;
9ed53b12 2642 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2643
31e6b01f
NP
2644 write_seqcount_end(&dentry->d_seq);
2645 write_seqcount_end(&anon->d_seq);
2646
2fd6b7f5
NP
2647 dentry_unlock_parents_for_move(anon, dentry);
2648 spin_unlock(&dentry->d_lock);
2649
2650 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2651}
2652
2653/**
2654 * d_materialise_unique - introduce an inode into the tree
2655 * @dentry: candidate dentry
2656 * @inode: inode to bind to the dentry, to which aliases may be attached
2657 *
2658 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2659 * root directory alias in its place if there is one. Caller must hold the
2660 * i_mutex of the parent directory.
770bfad8
DH
2661 */
2662struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2663{
9eaef27b 2664 struct dentry *actual;
770bfad8
DH
2665
2666 BUG_ON(!d_unhashed(dentry));
2667
770bfad8
DH
2668 if (!inode) {
2669 actual = dentry;
360da900 2670 __d_instantiate(dentry, NULL);
357f8e65
NP
2671 d_rehash(actual);
2672 goto out_nolock;
770bfad8
DH
2673 }
2674
873feea0 2675 spin_lock(&inode->i_lock);
357f8e65 2676
9eaef27b
TM
2677 if (S_ISDIR(inode->i_mode)) {
2678 struct dentry *alias;
2679
2680 /* Does an aliased dentry already exist? */
32ba9c3f 2681 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2682 if (alias) {
2683 actual = alias;
18367501
AV
2684 write_seqlock(&rename_lock);
2685
2686 if (d_ancestor(alias, dentry)) {
2687 /* Check for loops */
2688 actual = ERR_PTR(-ELOOP);
b18dafc8 2689 spin_unlock(&inode->i_lock);
18367501
AV
2690 } else if (IS_ROOT(alias)) {
2691 /* Is this an anonymous mountpoint that we
2692 * could splice into our tree? */
9eaef27b 2693 __d_materialise_dentry(dentry, alias);
18367501 2694 write_sequnlock(&rename_lock);
9eaef27b
TM
2695 __d_drop(alias);
2696 goto found;
18367501
AV
2697 } else {
2698 /* Nope, but we must(!) avoid directory
b18dafc8 2699 * aliasing. This drops inode->i_lock */
18367501 2700 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2701 }
18367501 2702 write_sequnlock(&rename_lock);
dd179946
DH
2703 if (IS_ERR(actual)) {
2704 if (PTR_ERR(actual) == -ELOOP)
2705 pr_warn_ratelimited(
2706 "VFS: Lookup of '%s' in %s %s"
2707 " would have caused loop\n",
2708 dentry->d_name.name,
2709 inode->i_sb->s_type->name,
2710 inode->i_sb->s_id);
9eaef27b 2711 dput(alias);
dd179946 2712 }
9eaef27b
TM
2713 goto out_nolock;
2714 }
770bfad8
DH
2715 }
2716
2717 /* Add a unique reference */
2718 actual = __d_instantiate_unique(dentry, inode);
2719 if (!actual)
2720 actual = dentry;
357f8e65
NP
2721 else
2722 BUG_ON(!d_unhashed(actual));
770bfad8 2723
770bfad8
DH
2724 spin_lock(&actual->d_lock);
2725found:
2726 _d_rehash(actual);
2727 spin_unlock(&actual->d_lock);
873feea0 2728 spin_unlock(&inode->i_lock);
9eaef27b 2729out_nolock:
770bfad8
DH
2730 if (actual == dentry) {
2731 security_d_instantiate(dentry, inode);
2732 return NULL;
2733 }
2734
2735 iput(inode);
2736 return actual;
770bfad8 2737}
ec4f8605 2738EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2739
cdd16d02 2740static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2741{
2742 *buflen -= namelen;
2743 if (*buflen < 0)
2744 return -ENAMETOOLONG;
2745 *buffer -= namelen;
2746 memcpy(*buffer, str, namelen);
2747 return 0;
2748}
2749
232d2d60
WL
2750/**
2751 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2752 * @buffer: buffer pointer
2753 * @buflen: allocated length of the buffer
2754 * @name: name string and length qstr structure
232d2d60
WL
2755 *
2756 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2757 * make sure that either the old or the new name pointer and length are
2758 * fetched. However, there may be mismatch between length and pointer.
2759 * The length cannot be trusted, we need to copy it byte-by-byte until
2760 * the length is reached or a null byte is found. It also prepends "/" at
2761 * the beginning of the name. The sequence number check at the caller will
2762 * retry it again when a d_move() does happen. So any garbage in the buffer
2763 * due to mismatched pointer and length will be discarded.
2764 */
cdd16d02
MS
2765static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2766{
232d2d60
WL
2767 const char *dname = ACCESS_ONCE(name->name);
2768 u32 dlen = ACCESS_ONCE(name->len);
2769 char *p;
2770
232d2d60 2771 *buflen -= dlen + 1;
e825196d
AV
2772 if (*buflen < 0)
2773 return -ENAMETOOLONG;
232d2d60
WL
2774 p = *buffer -= dlen + 1;
2775 *p++ = '/';
2776 while (dlen--) {
2777 char c = *dname++;
2778 if (!c)
2779 break;
2780 *p++ = c;
2781 }
2782 return 0;
cdd16d02
MS
2783}
2784
1da177e4 2785/**
208898c1 2786 * prepend_path - Prepend path string to a buffer
9d1bc601 2787 * @path: the dentry/vfsmount to report
02125a82 2788 * @root: root vfsmnt/dentry
f2eb6575
MS
2789 * @buffer: pointer to the end of the buffer
2790 * @buflen: pointer to buffer length
552ce544 2791 *
18129977
WL
2792 * The function will first try to write out the pathname without taking any
2793 * lock other than the RCU read lock to make sure that dentries won't go away.
2794 * It only checks the sequence number of the global rename_lock as any change
2795 * in the dentry's d_seq will be preceded by changes in the rename_lock
2796 * sequence number. If the sequence number had been changed, it will restart
2797 * the whole pathname back-tracing sequence again by taking the rename_lock.
2798 * In this case, there is no need to take the RCU read lock as the recursive
2799 * parent pointer references will keep the dentry chain alive as long as no
2800 * rename operation is performed.
1da177e4 2801 */
02125a82
AV
2802static int prepend_path(const struct path *path,
2803 const struct path *root,
f2eb6575 2804 char **buffer, int *buflen)
1da177e4 2805{
ede4cebc
AV
2806 struct dentry *dentry;
2807 struct vfsmount *vfsmnt;
2808 struct mount *mnt;
f2eb6575 2809 int error = 0;
48a066e7 2810 unsigned seq, m_seq = 0;
232d2d60
WL
2811 char *bptr;
2812 int blen;
6092d048 2813
48f5ec21 2814 rcu_read_lock();
48a066e7
AV
2815restart_mnt:
2816 read_seqbegin_or_lock(&mount_lock, &m_seq);
2817 seq = 0;
4ec6c2ae 2818 rcu_read_lock();
232d2d60
WL
2819restart:
2820 bptr = *buffer;
2821 blen = *buflen;
48a066e7 2822 error = 0;
ede4cebc
AV
2823 dentry = path->dentry;
2824 vfsmnt = path->mnt;
2825 mnt = real_mount(vfsmnt);
232d2d60 2826 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2827 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2828 struct dentry * parent;
2829
1da177e4 2830 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2831 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2832 /* Global root? */
48a066e7
AV
2833 if (mnt != parent) {
2834 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2835 mnt = parent;
232d2d60
WL
2836 vfsmnt = &mnt->mnt;
2837 continue;
2838 }
2839 /*
2840 * Filesystems needing to implement special "root names"
2841 * should do so with ->d_dname()
2842 */
2843 if (IS_ROOT(dentry) &&
2844 (dentry->d_name.len != 1 ||
2845 dentry->d_name.name[0] != '/')) {
2846 WARN(1, "Root dentry has weird name <%.*s>\n",
2847 (int) dentry->d_name.len,
2848 dentry->d_name.name);
2849 }
2850 if (!error)
2851 error = is_mounted(vfsmnt) ? 1 : 2;
2852 break;
1da177e4
LT
2853 }
2854 parent = dentry->d_parent;
2855 prefetch(parent);
232d2d60 2856 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2857 if (error)
2858 break;
2859
1da177e4
LT
2860 dentry = parent;
2861 }
48f5ec21
AV
2862 if (!(seq & 1))
2863 rcu_read_unlock();
2864 if (need_seqretry(&rename_lock, seq)) {
2865 seq = 1;
232d2d60 2866 goto restart;
48f5ec21
AV
2867 }
2868 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2869
2870 if (!(m_seq & 1))
2871 rcu_read_unlock();
48a066e7
AV
2872 if (need_seqretry(&mount_lock, m_seq)) {
2873 m_seq = 1;
2874 goto restart_mnt;
2875 }
2876 done_seqretry(&mount_lock, m_seq);
1da177e4 2877
232d2d60
WL
2878 if (error >= 0 && bptr == *buffer) {
2879 if (--blen < 0)
2880 error = -ENAMETOOLONG;
2881 else
2882 *--bptr = '/';
2883 }
2884 *buffer = bptr;
2885 *buflen = blen;
7ea600b5 2886 return error;
f2eb6575 2887}
be285c71 2888
f2eb6575
MS
2889/**
2890 * __d_path - return the path of a dentry
2891 * @path: the dentry/vfsmount to report
02125a82 2892 * @root: root vfsmnt/dentry
cd956a1c 2893 * @buf: buffer to return value in
f2eb6575
MS
2894 * @buflen: buffer length
2895 *
ffd1f4ed 2896 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2897 *
2898 * Returns a pointer into the buffer or an error code if the
2899 * path was too long.
2900 *
be148247 2901 * "buflen" should be positive.
f2eb6575 2902 *
02125a82 2903 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2904 */
02125a82
AV
2905char *__d_path(const struct path *path,
2906 const struct path *root,
f2eb6575
MS
2907 char *buf, int buflen)
2908{
2909 char *res = buf + buflen;
2910 int error;
2911
2912 prepend(&res, &buflen, "\0", 1);
f2eb6575 2913 error = prepend_path(path, root, &res, &buflen);
be148247 2914
02125a82
AV
2915 if (error < 0)
2916 return ERR_PTR(error);
2917 if (error > 0)
2918 return NULL;
2919 return res;
2920}
2921
2922char *d_absolute_path(const struct path *path,
2923 char *buf, int buflen)
2924{
2925 struct path root = {};
2926 char *res = buf + buflen;
2927 int error;
2928
2929 prepend(&res, &buflen, "\0", 1);
02125a82 2930 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2931
2932 if (error > 1)
2933 error = -EINVAL;
2934 if (error < 0)
f2eb6575 2935 return ERR_PTR(error);
f2eb6575 2936 return res;
1da177e4
LT
2937}
2938
ffd1f4ed
MS
2939/*
2940 * same as __d_path but appends "(deleted)" for unlinked files.
2941 */
02125a82
AV
2942static int path_with_deleted(const struct path *path,
2943 const struct path *root,
2944 char **buf, int *buflen)
ffd1f4ed
MS
2945{
2946 prepend(buf, buflen, "\0", 1);
2947 if (d_unlinked(path->dentry)) {
2948 int error = prepend(buf, buflen, " (deleted)", 10);
2949 if (error)
2950 return error;
2951 }
2952
2953 return prepend_path(path, root, buf, buflen);
2954}
2955
8df9d1a4
MS
2956static int prepend_unreachable(char **buffer, int *buflen)
2957{
2958 return prepend(buffer, buflen, "(unreachable)", 13);
2959}
2960
68f0d9d9
LT
2961static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
2962{
2963 unsigned seq;
2964
2965 do {
2966 seq = read_seqcount_begin(&fs->seq);
2967 *root = fs->root;
2968 } while (read_seqcount_retry(&fs->seq, seq));
2969}
2970
a03a8a70
JB
2971/**
2972 * d_path - return the path of a dentry
cf28b486 2973 * @path: path to report
a03a8a70
JB
2974 * @buf: buffer to return value in
2975 * @buflen: buffer length
2976 *
2977 * Convert a dentry into an ASCII path name. If the entry has been deleted
2978 * the string " (deleted)" is appended. Note that this is ambiguous.
2979 *
52afeefb
AV
2980 * Returns a pointer into the buffer or an error code if the path was
2981 * too long. Note: Callers should use the returned pointer, not the passed
2982 * in buffer, to use the name! The implementation often starts at an offset
2983 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2984 *
31f3e0b3 2985 * "buflen" should be positive.
a03a8a70 2986 */
20d4fdc1 2987char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2988{
ffd1f4ed 2989 char *res = buf + buflen;
6ac08c39 2990 struct path root;
ffd1f4ed 2991 int error;
1da177e4 2992
c23fbb6b
ED
2993 /*
2994 * We have various synthetic filesystems that never get mounted. On
2995 * these filesystems dentries are never used for lookup purposes, and
2996 * thus don't need to be hashed. They also don't need a name until a
2997 * user wants to identify the object in /proc/pid/fd/. The little hack
2998 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
2999 *
3000 * Some pseudo inodes are mountable. When they are mounted
3001 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3002 * and instead have d_path return the mounted path.
c23fbb6b 3003 */
f48cfddc
EB
3004 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3005 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3006 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3007
68f0d9d9
LT
3008 rcu_read_lock();
3009 get_fs_root_rcu(current->fs, &root);
02125a82 3010 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3011 rcu_read_unlock();
3012
02125a82 3013 if (error < 0)
ffd1f4ed 3014 res = ERR_PTR(error);
1da177e4
LT
3015 return res;
3016}
ec4f8605 3017EXPORT_SYMBOL(d_path);
1da177e4 3018
c23fbb6b
ED
3019/*
3020 * Helper function for dentry_operations.d_dname() members
3021 */
3022char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3023 const char *fmt, ...)
3024{
3025 va_list args;
3026 char temp[64];
3027 int sz;
3028
3029 va_start(args, fmt);
3030 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3031 va_end(args);
3032
3033 if (sz > sizeof(temp) || sz > buflen)
3034 return ERR_PTR(-ENAMETOOLONG);
3035
3036 buffer += buflen - sz;
3037 return memcpy(buffer, temp, sz);
3038}
3039
118b2302
AV
3040char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3041{
3042 char *end = buffer + buflen;
3043 /* these dentries are never renamed, so d_lock is not needed */
3044 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3045 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3046 prepend(&end, &buflen, "/", 1))
3047 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3048 return end;
118b2302 3049}
31bbe16f 3050EXPORT_SYMBOL(simple_dname);
118b2302 3051
6092d048
RP
3052/*
3053 * Write full pathname from the root of the filesystem into the buffer.
3054 */
f6500801 3055static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3056{
f6500801 3057 struct dentry *dentry;
232d2d60
WL
3058 char *end, *retval;
3059 int len, seq = 0;
3060 int error = 0;
6092d048 3061
f6500801
AV
3062 if (buflen < 2)
3063 goto Elong;
3064
48f5ec21 3065 rcu_read_lock();
232d2d60 3066restart:
f6500801 3067 dentry = d;
232d2d60
WL
3068 end = buf + buflen;
3069 len = buflen;
3070 prepend(&end, &len, "\0", 1);
6092d048
RP
3071 /* Get '/' right */
3072 retval = end-1;
3073 *retval = '/';
232d2d60 3074 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3075 while (!IS_ROOT(dentry)) {
3076 struct dentry *parent = dentry->d_parent;
6092d048 3077
6092d048 3078 prefetch(parent);
232d2d60
WL
3079 error = prepend_name(&end, &len, &dentry->d_name);
3080 if (error)
3081 break;
6092d048
RP
3082
3083 retval = end;
3084 dentry = parent;
3085 }
48f5ec21
AV
3086 if (!(seq & 1))
3087 rcu_read_unlock();
3088 if (need_seqretry(&rename_lock, seq)) {
3089 seq = 1;
232d2d60 3090 goto restart;
48f5ec21
AV
3091 }
3092 done_seqretry(&rename_lock, seq);
232d2d60
WL
3093 if (error)
3094 goto Elong;
c103135c
AV
3095 return retval;
3096Elong:
3097 return ERR_PTR(-ENAMETOOLONG);
3098}
ec2447c2
NP
3099
3100char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3101{
232d2d60 3102 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3103}
3104EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3105
3106char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3107{
3108 char *p = NULL;
3109 char *retval;
3110
c103135c
AV
3111 if (d_unlinked(dentry)) {
3112 p = buf + buflen;
3113 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3114 goto Elong;
3115 buflen++;
3116 }
3117 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3118 if (!IS_ERR(retval) && p)
3119 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3120 return retval;
3121Elong:
6092d048
RP
3122 return ERR_PTR(-ENAMETOOLONG);
3123}
3124
8b19e341
LT
3125static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3126 struct path *pwd)
5762482f 3127{
8b19e341
LT
3128 unsigned seq;
3129
3130 do {
3131 seq = read_seqcount_begin(&fs->seq);
3132 *root = fs->root;
3133 *pwd = fs->pwd;
3134 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3135}
3136
1da177e4
LT
3137/*
3138 * NOTE! The user-level library version returns a
3139 * character pointer. The kernel system call just
3140 * returns the length of the buffer filled (which
3141 * includes the ending '\0' character), or a negative
3142 * error value. So libc would do something like
3143 *
3144 * char *getcwd(char * buf, size_t size)
3145 * {
3146 * int retval;
3147 *
3148 * retval = sys_getcwd(buf, size);
3149 * if (retval >= 0)
3150 * return buf;
3151 * errno = -retval;
3152 * return NULL;
3153 * }
3154 */
3cdad428 3155SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3156{
552ce544 3157 int error;
6ac08c39 3158 struct path pwd, root;
3272c544 3159 char *page = __getname();
1da177e4
LT
3160
3161 if (!page)
3162 return -ENOMEM;
3163
8b19e341
LT
3164 rcu_read_lock();
3165 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3166
552ce544 3167 error = -ENOENT;
f3da392e 3168 if (!d_unlinked(pwd.dentry)) {
552ce544 3169 unsigned long len;
3272c544
LT
3170 char *cwd = page + PATH_MAX;
3171 int buflen = PATH_MAX;
1da177e4 3172
8df9d1a4 3173 prepend(&cwd, &buflen, "\0", 1);
02125a82 3174 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3175 rcu_read_unlock();
552ce544 3176
02125a82 3177 if (error < 0)
552ce544
LT
3178 goto out;
3179
8df9d1a4 3180 /* Unreachable from current root */
02125a82 3181 if (error > 0) {
8df9d1a4
MS
3182 error = prepend_unreachable(&cwd, &buflen);
3183 if (error)
3184 goto out;
3185 }
3186
552ce544 3187 error = -ERANGE;
3272c544 3188 len = PATH_MAX + page - cwd;
552ce544
LT
3189 if (len <= size) {
3190 error = len;
3191 if (copy_to_user(buf, cwd, len))
3192 error = -EFAULT;
3193 }
949854d0 3194 } else {
ff812d72 3195 rcu_read_unlock();
949854d0 3196 }
1da177e4
LT
3197
3198out:
3272c544 3199 __putname(page);
1da177e4
LT
3200 return error;
3201}
3202
3203/*
3204 * Test whether new_dentry is a subdirectory of old_dentry.
3205 *
3206 * Trivially implemented using the dcache structure
3207 */
3208
3209/**
3210 * is_subdir - is new dentry a subdirectory of old_dentry
3211 * @new_dentry: new dentry
3212 * @old_dentry: old dentry
3213 *
3214 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3215 * Returns 0 otherwise.
3216 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3217 */
3218
e2761a11 3219int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3220{
3221 int result;
949854d0 3222 unsigned seq;
1da177e4 3223
e2761a11
OH
3224 if (new_dentry == old_dentry)
3225 return 1;
3226
e2761a11 3227 do {
1da177e4 3228 /* for restarting inner loop in case of seq retry */
1da177e4 3229 seq = read_seqbegin(&rename_lock);
949854d0
NP
3230 /*
3231 * Need rcu_readlock to protect against the d_parent trashing
3232 * due to d_move
3233 */
3234 rcu_read_lock();
e2761a11 3235 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3236 result = 1;
e2761a11
OH
3237 else
3238 result = 0;
949854d0 3239 rcu_read_unlock();
1da177e4 3240 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3241
3242 return result;
3243}
3244
db14fc3a 3245static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3246{
db14fc3a
MS
3247 struct dentry *root = data;
3248 if (dentry != root) {
3249 if (d_unhashed(dentry) || !dentry->d_inode)
3250 return D_WALK_SKIP;
1da177e4 3251
01ddc4ed
MS
3252 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3253 dentry->d_flags |= DCACHE_GENOCIDE;
3254 dentry->d_lockref.count--;
3255 }
1da177e4 3256 }
db14fc3a
MS
3257 return D_WALK_CONTINUE;
3258}
58db63d0 3259
db14fc3a
MS
3260void d_genocide(struct dentry *parent)
3261{
3262 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3263}
3264
60545d0d 3265void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3266{
60545d0d
AV
3267 inode_dec_link_count(inode);
3268 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3269 !hlist_unhashed(&dentry->d_alias) ||
3270 !d_unlinked(dentry));
3271 spin_lock(&dentry->d_parent->d_lock);
3272 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3273 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3274 (unsigned long long)inode->i_ino);
3275 spin_unlock(&dentry->d_lock);
3276 spin_unlock(&dentry->d_parent->d_lock);
3277 d_instantiate(dentry, inode);
1da177e4 3278}
60545d0d 3279EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3280
3281static __initdata unsigned long dhash_entries;
3282static int __init set_dhash_entries(char *str)
3283{
3284 if (!str)
3285 return 0;
3286 dhash_entries = simple_strtoul(str, &str, 0);
3287 return 1;
3288}
3289__setup("dhash_entries=", set_dhash_entries);
3290
3291static void __init dcache_init_early(void)
3292{
074b8517 3293 unsigned int loop;
1da177e4
LT
3294
3295 /* If hashes are distributed across NUMA nodes, defer
3296 * hash allocation until vmalloc space is available.
3297 */
3298 if (hashdist)
3299 return;
3300
3301 dentry_hashtable =
3302 alloc_large_system_hash("Dentry cache",
b07ad996 3303 sizeof(struct hlist_bl_head),
1da177e4
LT
3304 dhash_entries,
3305 13,
3306 HASH_EARLY,
3307 &d_hash_shift,
3308 &d_hash_mask,
31fe62b9 3309 0,
1da177e4
LT
3310 0);
3311
074b8517 3312 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3313 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3314}
3315
74bf17cf 3316static void __init dcache_init(void)
1da177e4 3317{
074b8517 3318 unsigned int loop;
1da177e4
LT
3319
3320 /*
3321 * A constructor could be added for stable state like the lists,
3322 * but it is probably not worth it because of the cache nature
3323 * of the dcache.
3324 */
0a31bd5f
CL
3325 dentry_cache = KMEM_CACHE(dentry,
3326 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3327
3328 /* Hash may have been set up in dcache_init_early */
3329 if (!hashdist)
3330 return;
3331
3332 dentry_hashtable =
3333 alloc_large_system_hash("Dentry cache",
b07ad996 3334 sizeof(struct hlist_bl_head),
1da177e4
LT
3335 dhash_entries,
3336 13,
3337 0,
3338 &d_hash_shift,
3339 &d_hash_mask,
31fe62b9 3340 0,
1da177e4
LT
3341 0);
3342
074b8517 3343 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3344 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3345}
3346
3347/* SLAB cache for __getname() consumers */
e18b890b 3348struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3349EXPORT_SYMBOL(names_cachep);
1da177e4 3350
1da177e4
LT
3351EXPORT_SYMBOL(d_genocide);
3352
1da177e4
LT
3353void __init vfs_caches_init_early(void)
3354{
3355 dcache_init_early();
3356 inode_init_early();
3357}
3358
3359void __init vfs_caches_init(unsigned long mempages)
3360{
3361 unsigned long reserve;
3362
3363 /* Base hash sizes on available memory, with a reserve equal to
3364 150% of current kernel size */
3365
3366 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3367 mempages -= reserve;
3368
3369 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3370 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3371
74bf17cf
DC
3372 dcache_init();
3373 inode_init();
1da177e4 3374 files_init(mempages);
74bf17cf 3375 mnt_init();
1da177e4
LT
3376 bdev_cache_init();
3377 chrdev_init();
3378}