d_alloc_parallel(): in-lookup hash insertion doesn't need an RCU variant
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
7a5cf791 18#include <linux/ratelimit.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
0bf3d5c1 22#include <linux/fscrypt.h>
7a91bf7f 23#include <linux/fsnotify.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/hash.h>
27#include <linux/cache.h>
630d9c47 28#include <linux/export.h>
1da177e4
LT
29#include <linux/security.h>
30#include <linux/seqlock.h>
57c8a661 31#include <linux/memblock.h>
ceb5bdc2
NP
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
f6041567 34#include <linux/list_lru.h>
07f3f05c 35#include "internal.h"
b2dba1af 36#include "mount.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
873feea0 40 * dcache->d_inode->i_lock protects:
946e51f2 41 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
f1ee6162
N
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
19156840 46 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
b7ab39f6 52 * - d_count
da502956 53 * - d_unhashed()
2fd6b7f5
NP
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
946e51f2 56 * - d_u.d_alias, d_inode
789680d1
NP
57 *
58 * Ordering:
873feea0 59 * dentry->d_inode->i_lock
b5c84bf6 60 * dentry->d_lock
19156840 61 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 62 * dcache_hash_bucket lock
f1ee6162 63 * s_roots lock
789680d1 64 *
da502956
NP
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
076515fc 72 * arbitrary, since it's serialized on rename_lock
789680d1 73 */
fa3536cc 74int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
74c3cbe3 77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 78
949854d0 79EXPORT_SYMBOL(rename_lock);
1da177e4 80
68279f9c 81static struct kmem_cache *dentry_cache __ro_after_init;
1da177e4 82
cdf01226
DH
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
80e5d1ff
AV
87const struct qstr dotdot_name = QSTR_INIT("..", 2);
88EXPORT_SYMBOL(dotdot_name);
cdf01226 89
1da177e4
LT
90/*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
1da177e4 98
68279f9c 99static unsigned int d_hash_shift __ro_after_init;
ceb5bdc2 100
68279f9c 101static struct hlist_bl_head *dentry_hashtable __ro_after_init;
ceb5bdc2 102
8387ff25 103static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 104{
854d3e63 105 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
106}
107
94bdd655
AV
108#define IN_LOOKUP_SHIFT 10
109static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 unsigned int hash)
113{
114 hash += (unsigned long) parent / L1_CACHE_BYTES;
115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116}
117
c8c0c239
LC
118struct dentry_stat_t {
119 long nr_dentry;
120 long nr_unused;
121 long age_limit; /* age in seconds */
122 long want_pages; /* pages requested by system */
123 long nr_negative; /* # of unused negative dentries */
124 long dummy; /* Reserved for future use */
1da177e4
LT
125};
126
3942c07c 127static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 128static DEFINE_PER_CPU(long, nr_dentry_unused);
af0c9af1 129static DEFINE_PER_CPU(long, nr_dentry_negative);
312d3ca8
CH
130
131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
c8c0c239
LC
132/* Statistics gathering. */
133static struct dentry_stat_t dentry_stat = {
134 .age_limit = 45,
135};
62d36c77
DC
136
137/*
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
141 *
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
145 *
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
148 */
3942c07c 149static long get_nr_dentry(void)
3e880fb5
NP
150{
151 int i;
3942c07c 152 long sum = 0;
3e880fb5
NP
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry, i);
155 return sum < 0 ? 0 : sum;
156}
157
62d36c77
DC
158static long get_nr_dentry_unused(void)
159{
160 int i;
161 long sum = 0;
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_unused, i);
164 return sum < 0 ? 0 : sum;
165}
166
af0c9af1
WL
167static long get_nr_dentry_negative(void)
168{
169 int i;
170 long sum = 0;
171
172 for_each_possible_cpu(i)
173 sum += per_cpu(nr_dentry_negative, i);
174 return sum < 0 ? 0 : sum;
175}
176
c8c0c239
LC
177static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 size_t *lenp, loff_t *ppos)
312d3ca8 179{
3e880fb5 180 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 181 dentry_stat.nr_unused = get_nr_dentry_unused();
af0c9af1 182 dentry_stat.nr_negative = get_nr_dentry_negative();
3942c07c 183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8 184}
c8c0c239
LC
185
186static struct ctl_table fs_dcache_sysctls[] = {
187 {
188 .procname = "dentry-state",
189 .data = &dentry_stat,
190 .maxlen = 6*sizeof(long),
191 .mode = 0444,
192 .proc_handler = proc_nr_dentry,
193 },
194 { }
195};
196
197static int __init init_fs_dcache_sysctls(void)
198{
199 register_sysctl_init("fs", fs_dcache_sysctls);
200 return 0;
201}
202fs_initcall(init_fs_dcache_sysctls);
312d3ca8
CH
203#endif
204
5483f18e
LT
205/*
206 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207 * The strings are both count bytes long, and count is non-zero.
208 */
e419b4cc
LT
209#ifdef CONFIG_DCACHE_WORD_ACCESS
210
211#include <asm/word-at-a-time.h>
212/*
213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214 * aligned allocation for this particular component. We don't
215 * strictly need the load_unaligned_zeropad() safety, but it
216 * doesn't hurt either.
217 *
218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219 * need the careful unaligned handling.
220 */
94753db5 221static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 222{
bfcfaa77 223 unsigned long a,b,mask;
bfcfaa77
LT
224
225 for (;;) {
bfe7aa6c 226 a = read_word_at_a_time(cs);
e419b4cc 227 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
228 if (tcount < sizeof(unsigned long))
229 break;
230 if (unlikely(a != b))
231 return 1;
232 cs += sizeof(unsigned long);
233 ct += sizeof(unsigned long);
234 tcount -= sizeof(unsigned long);
235 if (!tcount)
236 return 0;
237 }
a5c21dce 238 mask = bytemask_from_count(tcount);
bfcfaa77 239 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
240}
241
bfcfaa77 242#else
e419b4cc 243
94753db5 244static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 245{
5483f18e
LT
246 do {
247 if (*cs != *ct)
248 return 1;
249 cs++;
250 ct++;
251 tcount--;
252 } while (tcount);
253 return 0;
254}
255
e419b4cc
LT
256#endif
257
94753db5
LT
258static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259{
94753db5
LT
260 /*
261 * Be careful about RCU walk racing with rename:
506458ef 262 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
263 *
264 * NOTE! Even if a rename will mean that the length
265 * was not loaded atomically, we don't care. The
266 * RCU walk will check the sequence count eventually,
267 * and catch it. And we won't overrun the buffer,
268 * because we're reading the name pointer atomically,
269 * and a dentry name is guaranteed to be properly
270 * terminated with a NUL byte.
271 *
272 * End result: even if 'len' is wrong, we'll exit
273 * early because the data cannot match (there can
274 * be no NUL in the ct/tcount data)
275 */
506458ef 276 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 277
6326c71f 278 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
279}
280
8d85b484
AV
281struct external_name {
282 union {
283 atomic_t count;
284 struct rcu_head head;
285 } u;
286 unsigned char name[];
287};
288
289static inline struct external_name *external_name(struct dentry *dentry)
290{
291 return container_of(dentry->d_name.name, struct external_name, name[0]);
292}
293
9c82ab9c 294static void __d_free(struct rcu_head *head)
1da177e4 295{
9c82ab9c
CH
296 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297
8d85b484
AV
298 kmem_cache_free(dentry_cache, dentry);
299}
300
301static void __d_free_external(struct rcu_head *head)
302{
303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
2e03b4bc 304 kfree(external_name(dentry));
f1782c9b 305 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
306}
307
810bb172
AV
308static inline int dname_external(const struct dentry *dentry)
309{
310 return dentry->d_name.name != dentry->d_iname;
311}
312
49d31c2f
AV
313void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314{
315 spin_lock(&dentry->d_lock);
230c6402 316 name->name = dentry->d_name;
49d31c2f 317 if (unlikely(dname_external(dentry))) {
230c6402 318 atomic_inc(&external_name(dentry)->u.count);
49d31c2f 319 } else {
6cd00a01
TH
320 memcpy(name->inline_name, dentry->d_iname,
321 dentry->d_name.len + 1);
230c6402 322 name->name.name = name->inline_name;
49d31c2f 323 }
230c6402 324 spin_unlock(&dentry->d_lock);
49d31c2f
AV
325}
326EXPORT_SYMBOL(take_dentry_name_snapshot);
327
328void release_dentry_name_snapshot(struct name_snapshot *name)
329{
230c6402 330 if (unlikely(name->name.name != name->inline_name)) {
49d31c2f 331 struct external_name *p;
230c6402 332 p = container_of(name->name.name, struct external_name, name[0]);
49d31c2f 333 if (unlikely(atomic_dec_and_test(&p->u.count)))
2e03b4bc 334 kfree_rcu(p, u.head);
49d31c2f
AV
335 }
336}
337EXPORT_SYMBOL(release_dentry_name_snapshot);
338
4bf46a27
DH
339static inline void __d_set_inode_and_type(struct dentry *dentry,
340 struct inode *inode,
341 unsigned type_flags)
342{
343 unsigned flags;
344
345 dentry->d_inode = inode;
4bf46a27 346 flags = READ_ONCE(dentry->d_flags);
8219cb58 347 flags &= ~DCACHE_ENTRY_TYPE;
4bf46a27 348 flags |= type_flags;
2fa6b1e0 349 smp_store_release(&dentry->d_flags, flags);
4bf46a27
DH
350}
351
4bf46a27
DH
352static inline void __d_clear_type_and_inode(struct dentry *dentry)
353{
354 unsigned flags = READ_ONCE(dentry->d_flags);
355
8219cb58 356 flags &= ~DCACHE_ENTRY_TYPE;
4bf46a27 357 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27 358 dentry->d_inode = NULL;
af0c9af1
WL
359 if (dentry->d_flags & DCACHE_LRU_LIST)
360 this_cpu_inc(nr_dentry_negative);
4bf46a27
DH
361}
362
b4f0354e
AV
363static void dentry_free(struct dentry *dentry)
364{
946e51f2 365 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
366 if (unlikely(dname_external(dentry))) {
367 struct external_name *p = external_name(dentry);
368 if (likely(atomic_dec_and_test(&p->u.count))) {
369 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
370 return;
371 }
372 }
b4f0354e 373 /* if dentry was never visible to RCU, immediate free is OK */
5467a68c 374 if (dentry->d_flags & DCACHE_NORCU)
b4f0354e
AV
375 __d_free(&dentry->d_u.d_rcu);
376 else
377 call_rcu(&dentry->d_u.d_rcu, __d_free);
378}
379
1da177e4
LT
380/*
381 * Release the dentry's inode, using the filesystem
550dce01 382 * d_iput() operation if defined.
31e6b01f
NP
383 */
384static void dentry_unlink_inode(struct dentry * dentry)
385 __releases(dentry->d_lock)
873feea0 386 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
387{
388 struct inode *inode = dentry->d_inode;
a528aca7 389
4c0d7cd5 390 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 391 __d_clear_type_and_inode(dentry);
946e51f2 392 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 393 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 394 spin_unlock(&dentry->d_lock);
873feea0 395 spin_unlock(&inode->i_lock);
31e6b01f
NP
396 if (!inode->i_nlink)
397 fsnotify_inoderemove(inode);
398 if (dentry->d_op && dentry->d_op->d_iput)
399 dentry->d_op->d_iput(dentry, inode);
400 else
401 iput(inode);
402}
403
89dc77bc
LT
404/*
405 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406 * is in use - which includes both the "real" per-superblock
407 * LRU list _and_ the DCACHE_SHRINK_LIST use.
408 *
409 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410 * on the shrink list (ie not on the superblock LRU list).
411 *
412 * The per-cpu "nr_dentry_unused" counters are updated with
413 * the DCACHE_LRU_LIST bit.
414 *
af0c9af1
WL
415 * The per-cpu "nr_dentry_negative" counters are only updated
416 * when deleted from or added to the per-superblock LRU list, not
417 * from/to the shrink list. That is to avoid an unneeded dec/inc
418 * pair when moving from LRU to shrink list in select_collect().
419 *
89dc77bc
LT
420 * These helper functions make sure we always follow the
421 * rules. d_lock must be held by the caller.
422 */
423#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424static void d_lru_add(struct dentry *dentry)
425{
426 D_FLAG_VERIFY(dentry, 0);
427 dentry->d_flags |= DCACHE_LRU_LIST;
428 this_cpu_inc(nr_dentry_unused);
af0c9af1
WL
429 if (d_is_negative(dentry))
430 this_cpu_inc(nr_dentry_negative);
89dc77bc
LT
431 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432}
433
434static void d_lru_del(struct dentry *dentry)
435{
436 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437 dentry->d_flags &= ~DCACHE_LRU_LIST;
438 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
439 if (d_is_negative(dentry))
440 this_cpu_dec(nr_dentry_negative);
89dc77bc
LT
441 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
442}
443
444static void d_shrink_del(struct dentry *dentry)
445{
446 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
447 list_del_init(&dentry->d_lru);
448 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449 this_cpu_dec(nr_dentry_unused);
450}
451
452static void d_shrink_add(struct dentry *dentry, struct list_head *list)
453{
454 D_FLAG_VERIFY(dentry, 0);
455 list_add(&dentry->d_lru, list);
456 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
457 this_cpu_inc(nr_dentry_unused);
458}
459
460/*
461 * These can only be called under the global LRU lock, ie during the
462 * callback for freeing the LRU list. "isolate" removes it from the
463 * LRU lists entirely, while shrink_move moves it to the indicated
464 * private list.
465 */
3f97b163 466static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
467{
468 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
469 dentry->d_flags &= ~DCACHE_LRU_LIST;
470 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
471 if (d_is_negative(dentry))
472 this_cpu_dec(nr_dentry_negative);
3f97b163 473 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
474}
475
3f97b163
VD
476static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
477 struct list_head *list)
89dc77bc
LT
478{
479 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
480 dentry->d_flags |= DCACHE_SHRINK_LIST;
af0c9af1
WL
481 if (d_is_negative(dentry))
482 this_cpu_dec(nr_dentry_negative);
3f97b163 483 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
484}
485
61647823 486static void ___d_drop(struct dentry *dentry)
789680d1 487{
0632a9ac
AV
488 struct hlist_bl_head *b;
489 /*
490 * Hashed dentries are normally on the dentry hashtable,
491 * with the exception of those newly allocated by
492 * d_obtain_root, which are always IS_ROOT:
493 */
494 if (unlikely(IS_ROOT(dentry)))
495 b = &dentry->d_sb->s_roots;
496 else
497 b = d_hash(dentry->d_name.hash);
b61625d2 498
0632a9ac
AV
499 hlist_bl_lock(b);
500 __hlist_bl_del(&dentry->d_hash);
501 hlist_bl_unlock(b);
789680d1 502}
61647823
N
503
504void __d_drop(struct dentry *dentry)
505{
0632a9ac
AV
506 if (!d_unhashed(dentry)) {
507 ___d_drop(dentry);
508 dentry->d_hash.pprev = NULL;
509 write_seqcount_invalidate(&dentry->d_seq);
510 }
61647823 511}
789680d1
NP
512EXPORT_SYMBOL(__d_drop);
513
961f3c89
MCC
514/**
515 * d_drop - drop a dentry
516 * @dentry: dentry to drop
517 *
518 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
519 * be found through a VFS lookup any more. Note that this is different from
520 * deleting the dentry - d_delete will try to mark the dentry negative if
521 * possible, giving a successful _negative_ lookup, while d_drop will
522 * just make the cache lookup fail.
523 *
524 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
525 * reason (NFS timeouts or autofs deletes).
526 *
527 * __d_drop requires dentry->d_lock
528 *
529 * ___d_drop doesn't mark dentry as "unhashed"
530 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
531 */
789680d1
NP
532void d_drop(struct dentry *dentry)
533{
789680d1
NP
534 spin_lock(&dentry->d_lock);
535 __d_drop(dentry);
536 spin_unlock(&dentry->d_lock);
789680d1
NP
537}
538EXPORT_SYMBOL(d_drop);
539
ba65dc5e
AV
540static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
541{
542 struct dentry *next;
543 /*
544 * Inform d_walk() and shrink_dentry_list() that we are no longer
545 * attached to the dentry tree
546 */
547 dentry->d_flags |= DCACHE_DENTRY_KILLED;
548 if (unlikely(list_empty(&dentry->d_child)))
549 return;
550 __list_del_entry(&dentry->d_child);
551 /*
552 * Cursors can move around the list of children. While we'd been
553 * a normal list member, it didn't matter - ->d_child.next would've
554 * been updated. However, from now on it won't be and for the
555 * things like d_walk() it might end up with a nasty surprise.
556 * Normally d_walk() doesn't care about cursors moving around -
557 * ->d_lock on parent prevents that and since a cursor has no children
558 * of its own, we get through it without ever unlocking the parent.
559 * There is one exception, though - if we ascend from a child that
560 * gets killed as soon as we unlock it, the next sibling is found
561 * using the value left in its ->d_child.next. And if _that_
562 * pointed to a cursor, and cursor got moved (e.g. by lseek())
563 * before d_walk() regains parent->d_lock, we'll end up skipping
564 * everything the cursor had been moved past.
565 *
566 * Solution: make sure that the pointer left behind in ->d_child.next
567 * points to something that won't be moving around. I.e. skip the
568 * cursors.
569 */
570 while (dentry->d_child.next != &parent->d_subdirs) {
571 next = list_entry(dentry->d_child.next, struct dentry, d_child);
572 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
573 break;
574 dentry->d_child.next = next->d_child.next;
575 }
576}
577
e55fd011 578static void __dentry_kill(struct dentry *dentry)
77812a1e 579{
41edf278
AV
580 struct dentry *parent = NULL;
581 bool can_free = true;
41edf278 582 if (!IS_ROOT(dentry))
77812a1e 583 parent = dentry->d_parent;
31e6b01f 584
0d98439e
LT
585 /*
586 * The dentry is now unrecoverably dead to the world.
587 */
588 lockref_mark_dead(&dentry->d_lockref);
589
f0023bc6 590 /*
f0023bc6
SW
591 * inform the fs via d_prune that this dentry is about to be
592 * unhashed and destroyed.
593 */
29266201 594 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
595 dentry->d_op->d_prune(dentry);
596
01b60351
AV
597 if (dentry->d_flags & DCACHE_LRU_LIST) {
598 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
599 d_lru_del(dentry);
01b60351 600 }
77812a1e
NP
601 /* if it was on the hash then remove it */
602 __d_drop(dentry);
ba65dc5e 603 dentry_unlist(dentry, parent);
03b3b889
AV
604 if (parent)
605 spin_unlock(&parent->d_lock);
550dce01
AV
606 if (dentry->d_inode)
607 dentry_unlink_inode(dentry);
608 else
609 spin_unlock(&dentry->d_lock);
03b3b889
AV
610 this_cpu_dec(nr_dentry);
611 if (dentry->d_op && dentry->d_op->d_release)
612 dentry->d_op->d_release(dentry);
613
41edf278
AV
614 spin_lock(&dentry->d_lock);
615 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
616 dentry->d_flags |= DCACHE_MAY_FREE;
617 can_free = false;
618 }
619 spin_unlock(&dentry->d_lock);
41edf278
AV
620 if (likely(can_free))
621 dentry_free(dentry);
9c5f1d30 622 cond_resched();
e55fd011
AV
623}
624
8b987a46 625static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 626{
8b987a46 627 struct dentry *parent;
046b961b 628 rcu_read_lock();
c2338f2d 629 spin_unlock(&dentry->d_lock);
046b961b 630again:
66702eb5 631 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
632 spin_lock(&parent->d_lock);
633 /*
634 * We can't blindly lock dentry until we are sure
635 * that we won't violate the locking order.
636 * Any changes of dentry->d_parent must have
637 * been done with parent->d_lock held, so
638 * spin_lock() above is enough of a barrier
639 * for checking if it's still our child.
640 */
641 if (unlikely(parent != dentry->d_parent)) {
642 spin_unlock(&parent->d_lock);
643 goto again;
644 }
65d8eb5a
AV
645 rcu_read_unlock();
646 if (parent != dentry)
9f12600f 647 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 648 else
046b961b
AV
649 parent = NULL;
650 return parent;
651}
652
8b987a46
AV
653static inline struct dentry *lock_parent(struct dentry *dentry)
654{
655 struct dentry *parent = dentry->d_parent;
656 if (IS_ROOT(dentry))
657 return NULL;
658 if (likely(spin_trylock(&parent->d_lock)))
659 return parent;
660 return __lock_parent(dentry);
661}
662
a338579f
AV
663static inline bool retain_dentry(struct dentry *dentry)
664{
665 WARN_ON(d_in_lookup(dentry));
666
667 /* Unreachable? Get rid of it */
668 if (unlikely(d_unhashed(dentry)))
669 return false;
670
671 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
672 return false;
673
674 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
675 if (dentry->d_op->d_delete(dentry))
676 return false;
677 }
2c567af4
IW
678
679 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
680 return false;
681
62d9956c
AV
682 /* retain; LRU fodder */
683 dentry->d_lockref.count--;
684 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
685 d_lru_add(dentry);
686 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
687 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
688 return true;
689}
690
2c567af4
IW
691void d_mark_dontcache(struct inode *inode)
692{
693 struct dentry *de;
694
695 spin_lock(&inode->i_lock);
696 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
697 spin_lock(&de->d_lock);
698 de->d_flags |= DCACHE_DONTCACHE;
699 spin_unlock(&de->d_lock);
700 }
701 inode->i_state |= I_DONTCACHE;
702 spin_unlock(&inode->i_lock);
703}
704EXPORT_SYMBOL(d_mark_dontcache);
705
c1d0c1a2
JO
706/*
707 * Finish off a dentry we've decided to kill.
708 * dentry->d_lock must be held, returns with it unlocked.
709 * Returns dentry requiring refcount drop, or NULL if we're done.
710 */
711static struct dentry *dentry_kill(struct dentry *dentry)
712 __releases(dentry->d_lock)
713{
714 struct inode *inode = dentry->d_inode;
715 struct dentry *parent = NULL;
716
717 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 718 goto slow_positive;
c1d0c1a2
JO
719
720 if (!IS_ROOT(dentry)) {
721 parent = dentry->d_parent;
722 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
723 parent = __lock_parent(dentry);
724 if (likely(inode || !dentry->d_inode))
725 goto got_locks;
726 /* negative that became positive */
727 if (parent)
728 spin_unlock(&parent->d_lock);
729 inode = dentry->d_inode;
730 goto slow_positive;
c1d0c1a2
JO
731 }
732 }
c1d0c1a2
JO
733 __dentry_kill(dentry);
734 return parent;
735
f657a666
AV
736slow_positive:
737 spin_unlock(&dentry->d_lock);
738 spin_lock(&inode->i_lock);
739 spin_lock(&dentry->d_lock);
740 parent = lock_parent(dentry);
741got_locks:
742 if (unlikely(dentry->d_lockref.count != 1)) {
743 dentry->d_lockref.count--;
744 } else if (likely(!retain_dentry(dentry))) {
745 __dentry_kill(dentry);
746 return parent;
747 }
748 /* we are keeping it, after all */
749 if (inode)
750 spin_unlock(&inode->i_lock);
751 if (parent)
752 spin_unlock(&parent->d_lock);
c1d0c1a2 753 spin_unlock(&dentry->d_lock);
f657a666 754 return NULL;
c1d0c1a2
JO
755}
756
360f5479
LT
757/*
758 * Try to do a lockless dput(), and return whether that was successful.
759 *
760 * If unsuccessful, we return false, having already taken the dentry lock.
761 *
762 * The caller needs to hold the RCU read lock, so that the dentry is
763 * guaranteed to stay around even if the refcount goes down to zero!
764 */
765static inline bool fast_dput(struct dentry *dentry)
766{
767 int ret;
768 unsigned int d_flags;
769
770 /*
771 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 772 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
773 */
774 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
775 return lockref_put_or_lock(&dentry->d_lockref);
776
777 /*
778 * .. otherwise, we can try to just decrement the
779 * lockref optimistically.
780 */
781 ret = lockref_put_return(&dentry->d_lockref);
782
783 /*
784 * If the lockref_put_return() failed due to the lock being held
785 * by somebody else, the fast path has failed. We will need to
786 * get the lock, and then check the count again.
787 */
788 if (unlikely(ret < 0)) {
789 spin_lock(&dentry->d_lock);
790 if (dentry->d_lockref.count > 1) {
791 dentry->d_lockref.count--;
792 spin_unlock(&dentry->d_lock);
7964410f 793 return true;
360f5479 794 }
7964410f 795 return false;
360f5479
LT
796 }
797
798 /*
799 * If we weren't the last ref, we're done.
800 */
801 if (ret)
7964410f 802 return true;
360f5479
LT
803
804 /*
805 * Careful, careful. The reference count went down
806 * to zero, but we don't hold the dentry lock, so
807 * somebody else could get it again, and do another
808 * dput(), and we need to not race with that.
809 *
810 * However, there is a very special and common case
811 * where we don't care, because there is nothing to
812 * do: the dentry is still hashed, it does not have
813 * a 'delete' op, and it's referenced and already on
814 * the LRU list.
815 *
816 * NOTE! Since we aren't locked, these values are
817 * not "stable". However, it is sufficient that at
818 * some point after we dropped the reference the
819 * dentry was hashed and the flags had the proper
820 * value. Other dentry users may have re-gotten
821 * a reference to the dentry and change that, but
822 * our work is done - we can leave the dentry
823 * around with a zero refcount.
77573fa3
HL
824 *
825 * Nevertheless, there are two cases that we should kill
826 * the dentry anyway.
827 * 1. free disconnected dentries as soon as their refcount
828 * reached zero.
829 * 2. free dentries if they should not be cached.
360f5479
LT
830 */
831 smp_rmb();
66702eb5 832 d_flags = READ_ONCE(dentry->d_flags);
77573fa3
HL
833 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
834 DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
360f5479
LT
835
836 /* Nothing to do? Dropping the reference was all we needed? */
837 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
7964410f 838 return true;
360f5479
LT
839
840 /*
841 * Not the fast normal case? Get the lock. We've already decremented
842 * the refcount, but we'll need to re-check the situation after
843 * getting the lock.
844 */
845 spin_lock(&dentry->d_lock);
846
847 /*
848 * Did somebody else grab a reference to it in the meantime, and
849 * we're no longer the last user after all? Alternatively, somebody
850 * else could have killed it and marked it dead. Either way, we
851 * don't need to do anything else.
852 */
853 if (dentry->d_lockref.count) {
854 spin_unlock(&dentry->d_lock);
7964410f 855 return true;
360f5479
LT
856 }
857
858 /*
859 * Re-get the reference we optimistically dropped. We hold the
860 * lock, and we just tested that it was zero, so we can just
861 * set it to 1.
862 */
863 dentry->d_lockref.count = 1;
7964410f 864 return false;
360f5479
LT
865}
866
867
1da177e4
LT
868/*
869 * This is dput
870 *
871 * This is complicated by the fact that we do not want to put
872 * dentries that are no longer on any hash chain on the unused
873 * list: we'd much rather just get rid of them immediately.
874 *
875 * However, that implies that we have to traverse the dentry
876 * tree upwards to the parents which might _also_ now be
877 * scheduled for deletion (it may have been only waiting for
878 * its last child to go away).
879 *
880 * This tail recursion is done by hand as we don't want to depend
881 * on the compiler to always get this right (gcc generally doesn't).
882 * Real recursion would eat up our stack space.
883 */
884
885/*
886 * dput - release a dentry
887 * @dentry: dentry to release
888 *
889 * Release a dentry. This will drop the usage count and if appropriate
890 * call the dentry unlink method as well as removing it from the queues and
891 * releasing its resources. If the parent dentries were scheduled for release
892 * they too may now get deleted.
1da177e4 893 */
1da177e4
LT
894void dput(struct dentry *dentry)
895{
1088a640
AV
896 while (dentry) {
897 might_sleep();
1da177e4 898
1088a640
AV
899 rcu_read_lock();
900 if (likely(fast_dput(dentry))) {
901 rcu_read_unlock();
902 return;
903 }
47be6184 904
1088a640 905 /* Slow case: now with the dentry lock held */
360f5479 906 rcu_read_unlock();
360f5479 907
1088a640
AV
908 if (likely(retain_dentry(dentry))) {
909 spin_unlock(&dentry->d_lock);
910 return;
911 }
265ac902 912
1088a640 913 dentry = dentry_kill(dentry);
47be6184 914 }
1da177e4 915}
ec4f8605 916EXPORT_SYMBOL(dput);
1da177e4 917
9bdebc2b
AV
918static void __dput_to_list(struct dentry *dentry, struct list_head *list)
919__must_hold(&dentry->d_lock)
920{
921 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
922 /* let the owner of the list it's on deal with it */
923 --dentry->d_lockref.count;
924 } else {
925 if (dentry->d_flags & DCACHE_LRU_LIST)
926 d_lru_del(dentry);
927 if (!--dentry->d_lockref.count)
928 d_shrink_add(dentry, list);
929 }
930}
931
932void dput_to_list(struct dentry *dentry, struct list_head *list)
933{
934 rcu_read_lock();
935 if (likely(fast_dput(dentry))) {
936 rcu_read_unlock();
937 return;
938 }
939 rcu_read_unlock();
940 if (!retain_dentry(dentry))
941 __dput_to_list(dentry, list);
942 spin_unlock(&dentry->d_lock);
943}
1da177e4 944
b5c84bf6 945/* This must be called with d_lock held */
dc0474be 946static inline void __dget_dlock(struct dentry *dentry)
23044507 947{
98474236 948 dentry->d_lockref.count++;
23044507
NP
949}
950
b7ab39f6
NP
951struct dentry *dget_parent(struct dentry *dentry)
952{
df3d0bbc 953 int gotref;
b7ab39f6 954 struct dentry *ret;
e8400933 955 unsigned seq;
b7ab39f6 956
df3d0bbc
WL
957 /*
958 * Do optimistic parent lookup without any
959 * locking.
960 */
961 rcu_read_lock();
e8400933 962 seq = raw_seqcount_begin(&dentry->d_seq);
66702eb5 963 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
964 gotref = lockref_get_not_zero(&ret->d_lockref);
965 rcu_read_unlock();
966 if (likely(gotref)) {
e8400933 967 if (!read_seqcount_retry(&dentry->d_seq, seq))
df3d0bbc
WL
968 return ret;
969 dput(ret);
970 }
971
b7ab39f6 972repeat:
a734eb45
NP
973 /*
974 * Don't need rcu_dereference because we re-check it was correct under
975 * the lock.
976 */
977 rcu_read_lock();
b7ab39f6 978 ret = dentry->d_parent;
a734eb45
NP
979 spin_lock(&ret->d_lock);
980 if (unlikely(ret != dentry->d_parent)) {
981 spin_unlock(&ret->d_lock);
982 rcu_read_unlock();
b7ab39f6
NP
983 goto repeat;
984 }
a734eb45 985 rcu_read_unlock();
98474236
WL
986 BUG_ON(!ret->d_lockref.count);
987 ret->d_lockref.count++;
b7ab39f6 988 spin_unlock(&ret->d_lock);
b7ab39f6
NP
989 return ret;
990}
991EXPORT_SYMBOL(dget_parent);
992
61fec493
AV
993static struct dentry * __d_find_any_alias(struct inode *inode)
994{
995 struct dentry *alias;
996
997 if (hlist_empty(&inode->i_dentry))
998 return NULL;
999 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
6d73c9ce 1000 lockref_get(&alias->d_lockref);
61fec493
AV
1001 return alias;
1002}
1003
1004/**
1005 * d_find_any_alias - find any alias for a given inode
1006 * @inode: inode to find an alias for
1007 *
1008 * If any aliases exist for the given inode, take and return a
1009 * reference for one of them. If no aliases exist, return %NULL.
1010 */
1011struct dentry *d_find_any_alias(struct inode *inode)
1012{
1013 struct dentry *de;
1014
1015 spin_lock(&inode->i_lock);
1016 de = __d_find_any_alias(inode);
1017 spin_unlock(&inode->i_lock);
1018 return de;
1019}
1020EXPORT_SYMBOL(d_find_any_alias);
1021
52ed46f0 1022static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 1023{
61fec493
AV
1024 struct dentry *alias;
1025
1026 if (S_ISDIR(inode->i_mode))
1027 return __d_find_any_alias(inode);
1da177e4 1028
946e51f2 1029 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 1030 spin_lock(&alias->d_lock);
61fec493 1031 if (!d_unhashed(alias)) {
8d80d7da
BF
1032 __dget_dlock(alias);
1033 spin_unlock(&alias->d_lock);
1034 return alias;
1da177e4 1035 }
da502956 1036 spin_unlock(&alias->d_lock);
1da177e4 1037 }
da502956 1038 return NULL;
1da177e4
LT
1039}
1040
961f3c89
MCC
1041/**
1042 * d_find_alias - grab a hashed alias of inode
1043 * @inode: inode in question
1044 *
1045 * If inode has a hashed alias, or is a directory and has any alias,
1046 * acquire the reference to alias and return it. Otherwise return NULL.
1047 * Notice that if inode is a directory there can be only one alias and
1048 * it can be unhashed only if it has no children, or if it is the root
1049 * of a filesystem, or if the directory was renamed and d_revalidate
1050 * was the first vfs operation to notice.
1051 *
1052 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1053 * any other hashed alias over that one.
1054 */
da502956 1055struct dentry *d_find_alias(struct inode *inode)
1da177e4 1056{
214fda1f
DH
1057 struct dentry *de = NULL;
1058
b3d9b7a3 1059 if (!hlist_empty(&inode->i_dentry)) {
873feea0 1060 spin_lock(&inode->i_lock);
52ed46f0 1061 de = __d_find_alias(inode);
873feea0 1062 spin_unlock(&inode->i_lock);
214fda1f 1063 }
1da177e4
LT
1064 return de;
1065}
ec4f8605 1066EXPORT_SYMBOL(d_find_alias);
1da177e4 1067
bca585d2
AV
1068/*
1069 * Caller MUST be holding rcu_read_lock() and be guaranteed
1070 * that inode won't get freed until rcu_read_unlock().
1071 */
1072struct dentry *d_find_alias_rcu(struct inode *inode)
1073{
1074 struct hlist_head *l = &inode->i_dentry;
1075 struct dentry *de = NULL;
1076
1077 spin_lock(&inode->i_lock);
1078 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1079 // used without having I_FREEING set, which means no aliases left
1080 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1081 if (S_ISDIR(inode->i_mode)) {
1082 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1083 } else {
1084 hlist_for_each_entry(de, l, d_u.d_alias)
1085 if (!d_unhashed(de))
1086 break;
1087 }
1088 }
1089 spin_unlock(&inode->i_lock);
1090 return de;
1091}
1092
1da177e4
LT
1093/*
1094 * Try to kill dentries associated with this inode.
1095 * WARNING: you must own a reference to inode.
1096 */
1097void d_prune_aliases(struct inode *inode)
1098{
0cdca3f9 1099 struct dentry *dentry;
1da177e4 1100restart:
873feea0 1101 spin_lock(&inode->i_lock);
946e51f2 1102 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 1103 spin_lock(&dentry->d_lock);
98474236 1104 if (!dentry->d_lockref.count) {
29355c39
AV
1105 struct dentry *parent = lock_parent(dentry);
1106 if (likely(!dentry->d_lockref.count)) {
1107 __dentry_kill(dentry);
4a7795d3 1108 dput(parent);
29355c39
AV
1109 goto restart;
1110 }
1111 if (parent)
1112 spin_unlock(&parent->d_lock);
1da177e4
LT
1113 }
1114 spin_unlock(&dentry->d_lock);
1115 }
873feea0 1116 spin_unlock(&inode->i_lock);
1da177e4 1117}
ec4f8605 1118EXPORT_SYMBOL(d_prune_aliases);
1da177e4 1119
3b3f09f4
AV
1120/*
1121 * Lock a dentry from shrink list.
8f04da2a
JO
1122 * Called under rcu_read_lock() and dentry->d_lock; the former
1123 * guarantees that nothing we access will be freed under us.
3b3f09f4 1124 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
1125 * d_delete(), etc.
1126 *
3b3f09f4
AV
1127 * Return false if dentry has been disrupted or grabbed, leaving
1128 * the caller to kick it off-list. Otherwise, return true and have
1129 * that dentry's inode and parent both locked.
1130 */
1131static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1132{
3b3f09f4
AV
1133 struct inode *inode;
1134 struct dentry *parent;
da3bbdd4 1135
3b3f09f4
AV
1136 if (dentry->d_lockref.count)
1137 return false;
1138
1139 inode = dentry->d_inode;
1140 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1141 spin_unlock(&dentry->d_lock);
1142 spin_lock(&inode->i_lock);
ec33679d 1143 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1144 if (unlikely(dentry->d_lockref.count))
1145 goto out;
1146 /* changed inode means that somebody had grabbed it */
1147 if (unlikely(inode != dentry->d_inode))
1148 goto out;
3b3f09f4 1149 }
046b961b 1150
3b3f09f4
AV
1151 parent = dentry->d_parent;
1152 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1153 return true;
dd1f6b2e 1154
3b3f09f4 1155 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1156 spin_lock(&parent->d_lock);
1157 if (unlikely(parent != dentry->d_parent)) {
1158 spin_unlock(&parent->d_lock);
1159 spin_lock(&dentry->d_lock);
1160 goto out;
1161 }
1162 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1163 if (likely(!dentry->d_lockref.count))
3b3f09f4 1164 return true;
3b3f09f4
AV
1165 spin_unlock(&parent->d_lock);
1166out:
1167 if (inode)
1168 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1169 return false;
1170}
77812a1e 1171
9bdebc2b 1172void shrink_dentry_list(struct list_head *list)
3b3f09f4
AV
1173{
1174 while (!list_empty(list)) {
1175 struct dentry *dentry, *parent;
64fd72e0 1176
3b3f09f4
AV
1177 dentry = list_entry(list->prev, struct dentry, d_lru);
1178 spin_lock(&dentry->d_lock);
8f04da2a 1179 rcu_read_lock();
3b3f09f4
AV
1180 if (!shrink_lock_dentry(dentry)) {
1181 bool can_free = false;
8f04da2a 1182 rcu_read_unlock();
3b3f09f4
AV
1183 d_shrink_del(dentry);
1184 if (dentry->d_lockref.count < 0)
1185 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1186 spin_unlock(&dentry->d_lock);
1187 if (can_free)
1188 dentry_free(dentry);
1189 continue;
1190 }
8f04da2a 1191 rcu_read_unlock();
3b3f09f4
AV
1192 d_shrink_del(dentry);
1193 parent = dentry->d_parent;
9bdebc2b
AV
1194 if (parent != dentry)
1195 __dput_to_list(parent, list);
ff2fde99 1196 __dentry_kill(dentry);
da3bbdd4 1197 }
3049cfe2
CH
1198}
1199
3f97b163
VD
1200static enum lru_status dentry_lru_isolate(struct list_head *item,
1201 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1202{
1203 struct list_head *freeable = arg;
1204 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1205
1206
1207 /*
1208 * we are inverting the lru lock/dentry->d_lock here,
1209 * so use a trylock. If we fail to get the lock, just skip
1210 * it
1211 */
1212 if (!spin_trylock(&dentry->d_lock))
1213 return LRU_SKIP;
1214
1215 /*
1216 * Referenced dentries are still in use. If they have active
1217 * counts, just remove them from the LRU. Otherwise give them
1218 * another pass through the LRU.
1219 */
1220 if (dentry->d_lockref.count) {
3f97b163 1221 d_lru_isolate(lru, dentry);
f6041567
DC
1222 spin_unlock(&dentry->d_lock);
1223 return LRU_REMOVED;
1224 }
1225
1226 if (dentry->d_flags & DCACHE_REFERENCED) {
1227 dentry->d_flags &= ~DCACHE_REFERENCED;
1228 spin_unlock(&dentry->d_lock);
1229
1230 /*
1231 * The list move itself will be made by the common LRU code. At
1232 * this point, we've dropped the dentry->d_lock but keep the
1233 * lru lock. This is safe to do, since every list movement is
1234 * protected by the lru lock even if both locks are held.
1235 *
1236 * This is guaranteed by the fact that all LRU management
1237 * functions are intermediated by the LRU API calls like
1238 * list_lru_add and list_lru_del. List movement in this file
1239 * only ever occur through this functions or through callbacks
1240 * like this one, that are called from the LRU API.
1241 *
1242 * The only exceptions to this are functions like
1243 * shrink_dentry_list, and code that first checks for the
1244 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1245 * operating only with stack provided lists after they are
1246 * properly isolated from the main list. It is thus, always a
1247 * local access.
1248 */
1249 return LRU_ROTATE;
1250 }
1251
3f97b163 1252 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1253 spin_unlock(&dentry->d_lock);
1254
1255 return LRU_REMOVED;
1256}
1257
3049cfe2 1258/**
b48f03b3
DC
1259 * prune_dcache_sb - shrink the dcache
1260 * @sb: superblock
503c358c 1261 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1262 *
503c358c
VD
1263 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1264 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1265 * function.
3049cfe2 1266 *
b48f03b3
DC
1267 * This function may fail to free any resources if all the dentries are in
1268 * use.
3049cfe2 1269 */
503c358c 1270long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1271{
f6041567
DC
1272 LIST_HEAD(dispose);
1273 long freed;
3049cfe2 1274
503c358c
VD
1275 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1276 dentry_lru_isolate, &dispose);
f6041567 1277 shrink_dentry_list(&dispose);
0a234c6d 1278 return freed;
da3bbdd4 1279}
23044507 1280
4e717f5c 1281static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1282 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1283{
4e717f5c
GC
1284 struct list_head *freeable = arg;
1285 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1286
4e717f5c
GC
1287 /*
1288 * we are inverting the lru lock/dentry->d_lock here,
1289 * so use a trylock. If we fail to get the lock, just skip
1290 * it
1291 */
1292 if (!spin_trylock(&dentry->d_lock))
1293 return LRU_SKIP;
1294
3f97b163 1295 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1296 spin_unlock(&dentry->d_lock);
ec33679d 1297
4e717f5c 1298 return LRU_REMOVED;
da3bbdd4
KM
1299}
1300
4e717f5c 1301
1da177e4
LT
1302/**
1303 * shrink_dcache_sb - shrink dcache for a superblock
1304 * @sb: superblock
1305 *
3049cfe2
CH
1306 * Shrink the dcache for the specified super block. This is used to free
1307 * the dcache before unmounting a file system.
1da177e4 1308 */
3049cfe2 1309void shrink_dcache_sb(struct super_block *sb)
1da177e4 1310{
4e717f5c
GC
1311 do {
1312 LIST_HEAD(dispose);
1313
1dbd449c 1314 list_lru_walk(&sb->s_dentry_lru,
b17c070f 1315 dentry_lru_isolate_shrink, &dispose, 1024);
4e717f5c 1316 shrink_dentry_list(&dispose);
b17c070f 1317 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1318}
ec4f8605 1319EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1320
db14fc3a
MS
1321/**
1322 * enum d_walk_ret - action to talke during tree walk
1323 * @D_WALK_CONTINUE: contrinue walk
1324 * @D_WALK_QUIT: quit walk
1325 * @D_WALK_NORETRY: quit when retry is needed
1326 * @D_WALK_SKIP: skip this dentry and its children
1327 */
1328enum d_walk_ret {
1329 D_WALK_CONTINUE,
1330 D_WALK_QUIT,
1331 D_WALK_NORETRY,
1332 D_WALK_SKIP,
1333};
c826cb7d 1334
1da177e4 1335/**
db14fc3a
MS
1336 * d_walk - walk the dentry tree
1337 * @parent: start of walk
1338 * @data: data passed to @enter() and @finish()
1339 * @enter: callback when first entering the dentry
1da177e4 1340 *
3a8e3611 1341 * The @enter() callbacks are called with d_lock held.
1da177e4 1342 */
db14fc3a 1343static void d_walk(struct dentry *parent, void *data,
3a8e3611 1344 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1345{
949854d0 1346 struct dentry *this_parent;
1da177e4 1347 struct list_head *next;
48f5ec21 1348 unsigned seq = 0;
db14fc3a
MS
1349 enum d_walk_ret ret;
1350 bool retry = true;
949854d0 1351
58db63d0 1352again:
48f5ec21 1353 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1354 this_parent = parent;
2fd6b7f5 1355 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1356
1357 ret = enter(data, this_parent);
1358 switch (ret) {
1359 case D_WALK_CONTINUE:
1360 break;
1361 case D_WALK_QUIT:
1362 case D_WALK_SKIP:
1363 goto out_unlock;
1364 case D_WALK_NORETRY:
1365 retry = false;
1366 break;
1367 }
1da177e4
LT
1368repeat:
1369 next = this_parent->d_subdirs.next;
1370resume:
1371 while (next != &this_parent->d_subdirs) {
1372 struct list_head *tmp = next;
946e51f2 1373 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1374 next = tmp->next;
2fd6b7f5 1375
ba65dc5e
AV
1376 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1377 continue;
1378
2fd6b7f5 1379 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1380
1381 ret = enter(data, dentry);
1382 switch (ret) {
1383 case D_WALK_CONTINUE:
1384 break;
1385 case D_WALK_QUIT:
2fd6b7f5 1386 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1387 goto out_unlock;
1388 case D_WALK_NORETRY:
1389 retry = false;
1390 break;
1391 case D_WALK_SKIP:
1392 spin_unlock(&dentry->d_lock);
1393 continue;
2fd6b7f5 1394 }
db14fc3a 1395
1da177e4 1396 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5 1397 spin_unlock(&this_parent->d_lock);
5facae4f 1398 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1da177e4 1399 this_parent = dentry;
2fd6b7f5 1400 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1401 goto repeat;
1402 }
2fd6b7f5 1403 spin_unlock(&dentry->d_lock);
1da177e4
LT
1404 }
1405 /*
1406 * All done at this level ... ascend and resume the search.
1407 */
ca5358ef
AV
1408 rcu_read_lock();
1409ascend:
1da177e4 1410 if (this_parent != parent) {
c826cb7d 1411 struct dentry *child = this_parent;
31dec132
AV
1412 this_parent = child->d_parent;
1413
31dec132
AV
1414 spin_unlock(&child->d_lock);
1415 spin_lock(&this_parent->d_lock);
1416
ca5358ef
AV
1417 /* might go back up the wrong parent if we have had a rename. */
1418 if (need_seqretry(&rename_lock, seq))
949854d0 1419 goto rename_retry;
2159184e
AV
1420 /* go into the first sibling still alive */
1421 do {
1422 next = child->d_child.next;
ca5358ef
AV
1423 if (next == &this_parent->d_subdirs)
1424 goto ascend;
1425 child = list_entry(next, struct dentry, d_child);
2159184e 1426 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1427 rcu_read_unlock();
1da177e4
LT
1428 goto resume;
1429 }
ca5358ef 1430 if (need_seqretry(&rename_lock, seq))
949854d0 1431 goto rename_retry;
ca5358ef 1432 rcu_read_unlock();
db14fc3a
MS
1433
1434out_unlock:
1435 spin_unlock(&this_parent->d_lock);
48f5ec21 1436 done_seqretry(&rename_lock, seq);
db14fc3a 1437 return;
58db63d0
NP
1438
1439rename_retry:
ca5358ef
AV
1440 spin_unlock(&this_parent->d_lock);
1441 rcu_read_unlock();
1442 BUG_ON(seq & 1);
db14fc3a
MS
1443 if (!retry)
1444 return;
48f5ec21 1445 seq = 1;
58db63d0 1446 goto again;
1da177e4 1447}
db14fc3a 1448
01619491
IK
1449struct check_mount {
1450 struct vfsmount *mnt;
1451 unsigned int mounted;
1452};
1453
1454static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1455{
1456 struct check_mount *info = data;
1457 struct path path = { .mnt = info->mnt, .dentry = dentry };
1458
1459 if (likely(!d_mountpoint(dentry)))
1460 return D_WALK_CONTINUE;
1461 if (__path_is_mountpoint(&path)) {
1462 info->mounted = 1;
1463 return D_WALK_QUIT;
1464 }
1465 return D_WALK_CONTINUE;
1466}
1467
1468/**
1469 * path_has_submounts - check for mounts over a dentry in the
1470 * current namespace.
1471 * @parent: path to check.
1472 *
1473 * Return true if the parent or its subdirectories contain
1474 * a mount point in the current namespace.
1475 */
1476int path_has_submounts(const struct path *parent)
1477{
1478 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1479
1480 read_seqlock_excl(&mount_lock);
3a8e3611 1481 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1482 read_sequnlock_excl(&mount_lock);
1483
1484 return data.mounted;
1485}
1486EXPORT_SYMBOL(path_has_submounts);
1487
eed81007
MS
1488/*
1489 * Called by mount code to set a mountpoint and check if the mountpoint is
1490 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1491 * subtree can become unreachable).
1492 *
1ffe46d1 1493 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1494 * this reason take rename_lock and d_lock on dentry and ancestors.
1495 */
1496int d_set_mounted(struct dentry *dentry)
1497{
1498 struct dentry *p;
1499 int ret = -ENOENT;
1500 write_seqlock(&rename_lock);
1501 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1502 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1503 spin_lock(&p->d_lock);
1504 if (unlikely(d_unhashed(p))) {
1505 spin_unlock(&p->d_lock);
1506 goto out;
1507 }
1508 spin_unlock(&p->d_lock);
1509 }
1510 spin_lock(&dentry->d_lock);
1511 if (!d_unlinked(dentry)) {
3895dbf8
EB
1512 ret = -EBUSY;
1513 if (!d_mountpoint(dentry)) {
1514 dentry->d_flags |= DCACHE_MOUNTED;
1515 ret = 0;
1516 }
eed81007
MS
1517 }
1518 spin_unlock(&dentry->d_lock);
1519out:
1520 write_sequnlock(&rename_lock);
1521 return ret;
1522}
1523
1da177e4 1524/*
fd517909 1525 * Search the dentry child list of the specified parent,
1da177e4
LT
1526 * and move any unused dentries to the end of the unused
1527 * list for prune_dcache(). We descend to the next level
1528 * whenever the d_subdirs list is non-empty and continue
1529 * searching.
1530 *
1531 * It returns zero iff there are no unused children,
1532 * otherwise it returns the number of children moved to
1533 * the end of the unused list. This may not be the total
1534 * number of unused children, because select_parent can
1535 * drop the lock and return early due to latency
1536 * constraints.
1537 */
1da177e4 1538
db14fc3a
MS
1539struct select_data {
1540 struct dentry *start;
9bdebc2b
AV
1541 union {
1542 long found;
1543 struct dentry *victim;
1544 };
db14fc3a 1545 struct list_head dispose;
db14fc3a 1546};
23044507 1547
db14fc3a
MS
1548static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1549{
1550 struct select_data *data = _data;
1551 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1552
db14fc3a
MS
1553 if (data->start == dentry)
1554 goto out;
2fd6b7f5 1555
fe91522a 1556 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1557 data->found++;
fe91522a
AV
1558 } else {
1559 if (dentry->d_flags & DCACHE_LRU_LIST)
1560 d_lru_del(dentry);
1561 if (!dentry->d_lockref.count) {
1562 d_shrink_add(dentry, &data->dispose);
1563 data->found++;
1564 }
1da177e4 1565 }
db14fc3a
MS
1566 /*
1567 * We can return to the caller if we have found some (this
1568 * ensures forward progress). We'll be coming back to find
1569 * the rest.
1570 */
fe91522a
AV
1571 if (!list_empty(&data->dispose))
1572 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1573out:
db14fc3a 1574 return ret;
1da177e4
LT
1575}
1576
9bdebc2b
AV
1577static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1578{
1579 struct select_data *data = _data;
1580 enum d_walk_ret ret = D_WALK_CONTINUE;
1581
1582 if (data->start == dentry)
1583 goto out;
1584
1585 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1586 if (!dentry->d_lockref.count) {
1587 rcu_read_lock();
1588 data->victim = dentry;
1589 return D_WALK_QUIT;
1590 }
1591 } else {
1592 if (dentry->d_flags & DCACHE_LRU_LIST)
1593 d_lru_del(dentry);
1594 if (!dentry->d_lockref.count)
1595 d_shrink_add(dentry, &data->dispose);
1596 }
1597 /*
1598 * We can return to the caller if we have found some (this
1599 * ensures forward progress). We'll be coming back to find
1600 * the rest.
1601 */
1602 if (!list_empty(&data->dispose))
1603 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1604out:
1605 return ret;
1606}
1607
1da177e4
LT
1608/**
1609 * shrink_dcache_parent - prune dcache
1610 * @parent: parent of entries to prune
1611 *
1612 * Prune the dcache to remove unused children of the parent dentry.
1613 */
db14fc3a 1614void shrink_dcache_parent(struct dentry *parent)
1da177e4 1615{
db14fc3a 1616 for (;;) {
9bdebc2b 1617 struct select_data data = {.start = parent};
1da177e4 1618
db14fc3a 1619 INIT_LIST_HEAD(&data.dispose);
3a8e3611 1620 d_walk(parent, &data, select_collect);
4fb48871
AV
1621
1622 if (!list_empty(&data.dispose)) {
1623 shrink_dentry_list(&data.dispose);
1624 continue;
1625 }
1626
1627 cond_resched();
db14fc3a
MS
1628 if (!data.found)
1629 break;
9bdebc2b
AV
1630 data.victim = NULL;
1631 d_walk(parent, &data, select_collect2);
1632 if (data.victim) {
1633 struct dentry *parent;
1634 spin_lock(&data.victim->d_lock);
1635 if (!shrink_lock_dentry(data.victim)) {
1636 spin_unlock(&data.victim->d_lock);
1637 rcu_read_unlock();
1638 } else {
1639 rcu_read_unlock();
1640 parent = data.victim->d_parent;
1641 if (parent != data.victim)
1642 __dput_to_list(parent, &data.dispose);
1643 __dentry_kill(data.victim);
1644 }
1645 }
1646 if (!list_empty(&data.dispose))
1647 shrink_dentry_list(&data.dispose);
421348f1 1648 }
1da177e4 1649}
ec4f8605 1650EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1651
9c8c10e2 1652static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1653{
9c8c10e2
AV
1654 /* it has busy descendents; complain about those instead */
1655 if (!list_empty(&dentry->d_subdirs))
1656 return D_WALK_CONTINUE;
42c32608 1657
9c8c10e2
AV
1658 /* root with refcount 1 is fine */
1659 if (dentry == _data && dentry->d_lockref.count == 1)
1660 return D_WALK_CONTINUE;
1661
8c8e7dba 1662 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
9c8c10e2 1663 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1664 dentry,
1665 dentry->d_inode ?
1666 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1667 dentry,
42c32608
AV
1668 dentry->d_lockref.count,
1669 dentry->d_sb->s_type->name,
1670 dentry->d_sb->s_id);
9c8c10e2
AV
1671 return D_WALK_CONTINUE;
1672}
1673
1674static void do_one_tree(struct dentry *dentry)
1675{
1676 shrink_dcache_parent(dentry);
3a8e3611 1677 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1678 d_drop(dentry);
1679 dput(dentry);
42c32608
AV
1680}
1681
1682/*
1683 * destroy the dentries attached to a superblock on unmounting
1684 */
1685void shrink_dcache_for_umount(struct super_block *sb)
1686{
1687 struct dentry *dentry;
1688
9c8c10e2 1689 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1690
1691 dentry = sb->s_root;
1692 sb->s_root = NULL;
9c8c10e2 1693 do_one_tree(dentry);
42c32608 1694
f1ee6162
N
1695 while (!hlist_bl_empty(&sb->s_roots)) {
1696 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1697 do_one_tree(dentry);
42c32608
AV
1698 }
1699}
1700
ff17fa56 1701static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1702{
ff17fa56 1703 struct dentry **victim = _data;
848ac114 1704 if (d_mountpoint(dentry)) {
8ed936b5 1705 __dget_dlock(dentry);
ff17fa56 1706 *victim = dentry;
848ac114
MS
1707 return D_WALK_QUIT;
1708 }
ff17fa56 1709 return D_WALK_CONTINUE;
848ac114
MS
1710}
1711
1712/**
1ffe46d1
EB
1713 * d_invalidate - detach submounts, prune dcache, and drop
1714 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1715 */
5542aa2f 1716void d_invalidate(struct dentry *dentry)
848ac114 1717{
ff17fa56 1718 bool had_submounts = false;
1ffe46d1
EB
1719 spin_lock(&dentry->d_lock);
1720 if (d_unhashed(dentry)) {
1721 spin_unlock(&dentry->d_lock);
5542aa2f 1722 return;
1ffe46d1 1723 }
ff17fa56 1724 __d_drop(dentry);
1ffe46d1
EB
1725 spin_unlock(&dentry->d_lock);
1726
848ac114 1727 /* Negative dentries can be dropped without further checks */
ff17fa56 1728 if (!dentry->d_inode)
5542aa2f 1729 return;
848ac114 1730
ff17fa56 1731 shrink_dcache_parent(dentry);
848ac114 1732 for (;;) {
ff17fa56 1733 struct dentry *victim = NULL;
3a8e3611 1734 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1735 if (!victim) {
1736 if (had_submounts)
1737 shrink_dcache_parent(dentry);
81be24d2 1738 return;
8ed936b5 1739 }
ff17fa56
AV
1740 had_submounts = true;
1741 detach_mounts(victim);
1742 dput(victim);
848ac114 1743 }
848ac114 1744}
1ffe46d1 1745EXPORT_SYMBOL(d_invalidate);
848ac114 1746
1da177e4 1747/**
a4464dbc
AV
1748 * __d_alloc - allocate a dcache entry
1749 * @sb: filesystem it will belong to
1da177e4
LT
1750 * @name: qstr of the name
1751 *
1752 * Allocates a dentry. It returns %NULL if there is insufficient memory
1753 * available. On a success the dentry is returned. The name passed in is
1754 * copied and the copy passed in may be reused after this call.
1755 */
1756
5c8b0dfc 1757static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1758{
1759 struct dentry *dentry;
1760 char *dname;
285b102d 1761 int err;
1da177e4 1762
f53bf711
MS
1763 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1764 GFP_KERNEL);
1da177e4
LT
1765 if (!dentry)
1766 return NULL;
1767
6326c71f
LT
1768 /*
1769 * We guarantee that the inline name is always NUL-terminated.
1770 * This way the memcpy() done by the name switching in rename
1771 * will still always have a NUL at the end, even if we might
1772 * be overwriting an internal NUL character
1773 */
1774 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1775 if (unlikely(!name)) {
cdf01226 1776 name = &slash_name;
798434bd
AV
1777 dname = dentry->d_iname;
1778 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1779 size_t size = offsetof(struct external_name, name[1]);
2e03b4bc
VB
1780 struct external_name *p = kmalloc(size + name->len,
1781 GFP_KERNEL_ACCOUNT |
1782 __GFP_RECLAIMABLE);
1783 if (!p) {
1da177e4
LT
1784 kmem_cache_free(dentry_cache, dentry);
1785 return NULL;
1786 }
2e03b4bc
VB
1787 atomic_set(&p->u.count, 1);
1788 dname = p->name;
1da177e4
LT
1789 } else {
1790 dname = dentry->d_iname;
1791 }
1da177e4
LT
1792
1793 dentry->d_name.len = name->len;
1794 dentry->d_name.hash = name->hash;
1795 memcpy(dname, name->name, name->len);
1796 dname[name->len] = 0;
1797
6326c71f 1798 /* Make sure we always see the terminating NUL character */
7088efa9 1799 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1800
98474236 1801 dentry->d_lockref.count = 1;
dea3667b 1802 dentry->d_flags = 0;
1da177e4 1803 spin_lock_init(&dentry->d_lock);
26475371 1804 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1da177e4 1805 dentry->d_inode = NULL;
a4464dbc
AV
1806 dentry->d_parent = dentry;
1807 dentry->d_sb = sb;
1da177e4
LT
1808 dentry->d_op = NULL;
1809 dentry->d_fsdata = NULL;
ceb5bdc2 1810 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1811 INIT_LIST_HEAD(&dentry->d_lru);
1812 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1813 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1814 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1815 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1816
285b102d
MS
1817 if (dentry->d_op && dentry->d_op->d_init) {
1818 err = dentry->d_op->d_init(dentry);
1819 if (err) {
1820 if (dname_external(dentry))
1821 kfree(external_name(dentry));
1822 kmem_cache_free(dentry_cache, dentry);
1823 return NULL;
1824 }
1825 }
1826
3e880fb5 1827 this_cpu_inc(nr_dentry);
312d3ca8 1828
1da177e4
LT
1829 return dentry;
1830}
a4464dbc
AV
1831
1832/**
1833 * d_alloc - allocate a dcache entry
1834 * @parent: parent of entry to allocate
1835 * @name: qstr of the name
1836 *
1837 * Allocates a dentry. It returns %NULL if there is insufficient memory
1838 * available. On a success the dentry is returned. The name passed in is
1839 * copied and the copy passed in may be reused after this call.
1840 */
1841struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1842{
1843 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1844 if (!dentry)
1845 return NULL;
a4464dbc
AV
1846 spin_lock(&parent->d_lock);
1847 /*
1848 * don't need child lock because it is not subject
1849 * to concurrency here
1850 */
1851 __dget_dlock(parent);
1852 dentry->d_parent = parent;
946e51f2 1853 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1854 spin_unlock(&parent->d_lock);
1855
1856 return dentry;
1857}
ec4f8605 1858EXPORT_SYMBOL(d_alloc);
1da177e4 1859
f9c34674
MS
1860struct dentry *d_alloc_anon(struct super_block *sb)
1861{
1862 return __d_alloc(sb, NULL);
1863}
1864EXPORT_SYMBOL(d_alloc_anon);
1865
ba65dc5e
AV
1866struct dentry *d_alloc_cursor(struct dentry * parent)
1867{
f9c34674 1868 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e 1869 if (dentry) {
5467a68c 1870 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
ba65dc5e
AV
1871 dentry->d_parent = dget(parent);
1872 }
1873 return dentry;
1874}
1875
e1a24bb0
BF
1876/**
1877 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1878 * @sb: the superblock
1879 * @name: qstr of the name
1880 *
1881 * For a filesystem that just pins its dentries in memory and never
1882 * performs lookups at all, return an unhashed IS_ROOT dentry.
5467a68c
AV
1883 * This is used for pipes, sockets et.al. - the stuff that should
1884 * never be anyone's children or parents. Unlike all other
1885 * dentries, these will not have RCU delay between dropping the
1886 * last reference and freeing them.
ab1152dd
AV
1887 *
1888 * The only user is alloc_file_pseudo() and that's what should
1889 * be considered a public interface. Don't use directly.
e1a24bb0 1890 */
4b936885
NP
1891struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1892{
9024b4c9
AV
1893 static const struct dentry_operations anon_ops = {
1894 .d_dname = simple_dname
1895 };
5467a68c 1896 struct dentry *dentry = __d_alloc(sb, name);
9024b4c9 1897 if (likely(dentry)) {
5467a68c 1898 dentry->d_flags |= DCACHE_NORCU;
9024b4c9
AV
1899 if (!sb->s_d_op)
1900 d_set_d_op(dentry, &anon_ops);
1901 }
5467a68c 1902 return dentry;
4b936885 1903}
4b936885 1904
1da177e4
LT
1905struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1906{
1907 struct qstr q;
1908
1909 q.name = name;
8387ff25 1910 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1911 return d_alloc(parent, &q);
1912}
ef26ca97 1913EXPORT_SYMBOL(d_alloc_name);
1da177e4 1914
fb045adb
NP
1915void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1916{
6f7f7caa
LT
1917 WARN_ON_ONCE(dentry->d_op);
1918 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1919 DCACHE_OP_COMPARE |
1920 DCACHE_OP_REVALIDATE |
ecf3d1f1 1921 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1922 DCACHE_OP_DELETE |
d101a125 1923 DCACHE_OP_REAL));
fb045adb
NP
1924 dentry->d_op = op;
1925 if (!op)
1926 return;
1927 if (op->d_hash)
1928 dentry->d_flags |= DCACHE_OP_HASH;
1929 if (op->d_compare)
1930 dentry->d_flags |= DCACHE_OP_COMPARE;
1931 if (op->d_revalidate)
1932 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1933 if (op->d_weak_revalidate)
1934 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1935 if (op->d_delete)
1936 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1937 if (op->d_prune)
1938 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1939 if (op->d_real)
1940 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1941
1942}
1943EXPORT_SYMBOL(d_set_d_op);
1944
b18825a7
DH
1945static unsigned d_flags_for_inode(struct inode *inode)
1946{
44bdb5e5 1947 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1948
1949 if (!inode)
1950 return DCACHE_MISS_TYPE;
1951
1952 if (S_ISDIR(inode->i_mode)) {
1953 add_flags = DCACHE_DIRECTORY_TYPE;
1954 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1955 if (unlikely(!inode->i_op->lookup))
1956 add_flags = DCACHE_AUTODIR_TYPE;
1957 else
1958 inode->i_opflags |= IOP_LOOKUP;
1959 }
44bdb5e5
DH
1960 goto type_determined;
1961 }
1962
1963 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1964 if (unlikely(inode->i_op->get_link)) {
b18825a7 1965 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1966 goto type_determined;
1967 }
1968 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1969 }
1970
44bdb5e5
DH
1971 if (unlikely(!S_ISREG(inode->i_mode)))
1972 add_flags = DCACHE_SPECIAL_TYPE;
1973
1974type_determined:
b18825a7
DH
1975 if (unlikely(IS_AUTOMOUNT(inode)))
1976 add_flags |= DCACHE_NEED_AUTOMOUNT;
1977 return add_flags;
1978}
1979
360da900
OH
1980static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1981{
b18825a7 1982 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1983 WARN_ON(d_in_lookup(dentry));
b18825a7 1984
b23fb0a6 1985 spin_lock(&dentry->d_lock);
af0c9af1
WL
1986 /*
1987 * Decrement negative dentry count if it was in the LRU list.
1988 */
1989 if (dentry->d_flags & DCACHE_LRU_LIST)
1990 this_cpu_dec(nr_dentry_negative);
de689f5e 1991 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1992 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1993 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1994 raw_write_seqcount_end(&dentry->d_seq);
affda484 1995 fsnotify_update_flags(dentry);
b23fb0a6 1996 spin_unlock(&dentry->d_lock);
360da900
OH
1997}
1998
1da177e4
LT
1999/**
2000 * d_instantiate - fill in inode information for a dentry
2001 * @entry: dentry to complete
2002 * @inode: inode to attach to this dentry
2003 *
2004 * Fill in inode information in the entry.
2005 *
2006 * This turns negative dentries into productive full members
2007 * of society.
2008 *
2009 * NOTE! This assumes that the inode count has been incremented
2010 * (or otherwise set) by the caller to indicate that it is now
2011 * in use by the dcache.
2012 */
2013
2014void d_instantiate(struct dentry *entry, struct inode * inode)
2015{
946e51f2 2016 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 2017 if (inode) {
b9680917 2018 security_d_instantiate(entry, inode);
873feea0 2019 spin_lock(&inode->i_lock);
de689f5e 2020 __d_instantiate(entry, inode);
873feea0 2021 spin_unlock(&inode->i_lock);
de689f5e 2022 }
1da177e4 2023}
ec4f8605 2024EXPORT_SYMBOL(d_instantiate);
1da177e4 2025
1e2e547a
AV
2026/*
2027 * This should be equivalent to d_instantiate() + unlock_new_inode(),
2028 * with lockdep-related part of unlock_new_inode() done before
2029 * anything else. Use that instead of open-coding d_instantiate()/
2030 * unlock_new_inode() combinations.
2031 */
2032void d_instantiate_new(struct dentry *entry, struct inode *inode)
2033{
2034 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2035 BUG_ON(!inode);
2036 lockdep_annotate_inode_mutex_key(inode);
2037 security_d_instantiate(entry, inode);
2038 spin_lock(&inode->i_lock);
2039 __d_instantiate(entry, inode);
2040 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 2041 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
2042 smp_mb();
2043 wake_up_bit(&inode->i_state, __I_NEW);
2044 spin_unlock(&inode->i_lock);
2045}
2046EXPORT_SYMBOL(d_instantiate_new);
2047
adc0e91a
AV
2048struct dentry *d_make_root(struct inode *root_inode)
2049{
2050 struct dentry *res = NULL;
2051
2052 if (root_inode) {
f9c34674 2053 res = d_alloc_anon(root_inode->i_sb);
5467a68c 2054 if (res)
adc0e91a 2055 d_instantiate(res, root_inode);
5467a68c 2056 else
adc0e91a
AV
2057 iput(root_inode);
2058 }
2059 return res;
2060}
2061EXPORT_SYMBOL(d_make_root);
2062
f9c34674
MS
2063static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2064{
f2824db1
AV
2065 struct super_block *sb;
2066 struct dentry *new, *res;
f9c34674
MS
2067
2068 if (!inode)
2069 return ERR_PTR(-ESTALE);
2070 if (IS_ERR(inode))
2071 return ERR_CAST(inode);
2072
f2824db1
AV
2073 sb = inode->i_sb;
2074
2075 res = d_find_any_alias(inode); /* existing alias? */
f9c34674 2076 if (res)
f2824db1 2077 goto out;
f9c34674 2078
f2824db1
AV
2079 new = d_alloc_anon(sb);
2080 if (!new) {
f9c34674 2081 res = ERR_PTR(-ENOMEM);
f2824db1 2082 goto out;
f9c34674
MS
2083 }
2084
f2824db1
AV
2085 security_d_instantiate(new, inode);
2086 spin_lock(&inode->i_lock);
2087 res = __d_find_any_alias(inode); /* recheck under lock */
2088 if (likely(!res)) { /* still no alias, attach a disconnected dentry */
2089 unsigned add_flags = d_flags_for_inode(inode);
2090
2091 if (disconnected)
2092 add_flags |= DCACHE_DISCONNECTED;
2093
2094 spin_lock(&new->d_lock);
2095 __d_set_inode_and_type(new, inode, add_flags);
2096 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2097 if (!disconnected) {
2098 hlist_bl_lock(&sb->s_roots);
2099 hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2100 hlist_bl_unlock(&sb->s_roots);
2101 }
2102 spin_unlock(&new->d_lock);
2103 spin_unlock(&inode->i_lock);
2104 inode = NULL; /* consumed by new->d_inode */
2105 res = new;
2106 } else {
2107 spin_unlock(&inode->i_lock);
2108 dput(new);
2109 }
f9c34674 2110
f2824db1 2111 out:
f9c34674
MS
2112 iput(inode);
2113 return res;
2114}
2115
1a0a397e
BF
2116/**
2117 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2118 * @inode: inode to allocate the dentry for
2119 *
2120 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2121 * similar open by handle operations. The returned dentry may be anonymous,
2122 * or may have a full name (if the inode was already in the cache).
2123 *
2124 * When called on a directory inode, we must ensure that the inode only ever
2125 * has one dentry. If a dentry is found, that is returned instead of
2126 * allocating a new one.
2127 *
2128 * On successful return, the reference to the inode has been transferred
2129 * to the dentry. In case of an error the reference on the inode is released.
2130 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2131 * be passed in and the error will be propagated to the return value,
2132 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2133 */
2134struct dentry *d_obtain_alias(struct inode *inode)
2135{
f9c34674 2136 return __d_obtain_alias(inode, true);
1a0a397e 2137}
adc48720 2138EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2139
1a0a397e
BF
2140/**
2141 * d_obtain_root - find or allocate a dentry for a given inode
2142 * @inode: inode to allocate the dentry for
2143 *
2144 * Obtain an IS_ROOT dentry for the root of a filesystem.
2145 *
2146 * We must ensure that directory inodes only ever have one dentry. If a
2147 * dentry is found, that is returned instead of allocating a new one.
2148 *
2149 * On successful return, the reference to the inode has been transferred
2150 * to the dentry. In case of an error the reference on the inode is
2151 * released. A %NULL or IS_ERR inode may be passed in and will be the
2152 * error will be propagate to the return value, with a %NULL @inode
2153 * replaced by ERR_PTR(-ESTALE).
2154 */
2155struct dentry *d_obtain_root(struct inode *inode)
2156{
f9c34674 2157 return __d_obtain_alias(inode, false);
1a0a397e
BF
2158}
2159EXPORT_SYMBOL(d_obtain_root);
2160
9403540c
BN
2161/**
2162 * d_add_ci - lookup or allocate new dentry with case-exact name
2163 * @inode: the inode case-insensitive lookup has found
2164 * @dentry: the negative dentry that was passed to the parent's lookup func
2165 * @name: the case-exact name to be associated with the returned dentry
2166 *
2167 * This is to avoid filling the dcache with case-insensitive names to the
2168 * same inode, only the actual correct case is stored in the dcache for
2169 * case-insensitive filesystems.
2170 *
3d742d4b
RD
2171 * For a case-insensitive lookup match and if the case-exact dentry
2172 * already exists in the dcache, use it and return it.
9403540c
BN
2173 *
2174 * If no entry exists with the exact case name, allocate new dentry with
2175 * the exact case, and return the spliced entry.
2176 */
e45b590b 2177struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2178 struct qstr *name)
2179{
d9171b93 2180 struct dentry *found, *res;
9403540c 2181
b6520c81
CH
2182 /*
2183 * First check if a dentry matching the name already exists,
2184 * if not go ahead and create it now.
2185 */
9403540c 2186 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2187 if (found) {
2188 iput(inode);
2189 return found;
2190 }
2191 if (d_in_lookup(dentry)) {
2192 found = d_alloc_parallel(dentry->d_parent, name,
2193 dentry->d_wait);
2194 if (IS_ERR(found) || !d_in_lookup(found)) {
2195 iput(inode);
2196 return found;
9403540c 2197 }
d9171b93
AV
2198 } else {
2199 found = d_alloc(dentry->d_parent, name);
2200 if (!found) {
2201 iput(inode);
2202 return ERR_PTR(-ENOMEM);
2203 }
2204 }
2205 res = d_splice_alias(inode, found);
2206 if (res) {
40a3cb0d 2207 d_lookup_done(found);
d9171b93
AV
2208 dput(found);
2209 return res;
9403540c 2210 }
4f522a24 2211 return found;
9403540c 2212}
ec4f8605 2213EXPORT_SYMBOL(d_add_ci);
1da177e4 2214
4f48d5da
XL
2215/**
2216 * d_same_name - compare dentry name with case-exact name
2217 * @parent: parent dentry
2218 * @dentry: the negative dentry that was passed to the parent's lookup func
2219 * @name: the case-exact name to be associated with the returned dentry
2220 *
2221 * Return: true if names are same, or false
2222 */
2223bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2224 const struct qstr *name)
12f8ad4b 2225{
d4c91a8f
AV
2226 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2227 if (dentry->d_name.len != name->len)
2228 return false;
2229 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2230 }
6fa67e70 2231 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2232 dentry->d_name.len, dentry->d_name.name,
2233 name) == 0;
12f8ad4b 2234}
4f48d5da 2235EXPORT_SYMBOL_GPL(d_same_name);
12f8ad4b 2236
ae2a8236
LT
2237/*
2238 * This is __d_lookup_rcu() when the parent dentry has
2239 * DCACHE_OP_COMPARE, which makes things much nastier.
2240 */
2241static noinline struct dentry *__d_lookup_rcu_op_compare(
2242 const struct dentry *parent,
2243 const struct qstr *name,
2244 unsigned *seqp)
2245{
2246 u64 hashlen = name->hash_len;
2247 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2248 struct hlist_bl_node *node;
2249 struct dentry *dentry;
2250
2251 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2252 int tlen;
2253 const char *tname;
2254 unsigned seq;
2255
2256seqretry:
2257 seq = raw_seqcount_begin(&dentry->d_seq);
2258 if (dentry->d_parent != parent)
2259 continue;
2260 if (d_unhashed(dentry))
2261 continue;
2262 if (dentry->d_name.hash != hashlen_hash(hashlen))
2263 continue;
2264 tlen = dentry->d_name.len;
2265 tname = dentry->d_name.name;
2266 /* we want a consistent (name,len) pair */
2267 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2268 cpu_relax();
2269 goto seqretry;
2270 }
2271 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2272 continue;
2273 *seqp = seq;
2274 return dentry;
2275 }
2276 return NULL;
2277}
2278
31e6b01f
NP
2279/**
2280 * __d_lookup_rcu - search for a dentry (racy, store-free)
2281 * @parent: parent dentry
2282 * @name: qstr of name we wish to find
1f1e6e52 2283 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2284 * Returns: dentry, or NULL
2285 *
2286 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2287 * resolution (store-free path walking) design described in
2288 * Documentation/filesystems/path-lookup.txt.
2289 *
2290 * This is not to be used outside core vfs.
2291 *
2292 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2293 * held, and rcu_read_lock held. The returned dentry must not be stored into
2294 * without taking d_lock and checking d_seq sequence count against @seq
2295 * returned here.
2296 *
15570086 2297 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2298 * function.
2299 *
2300 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2301 * the returned dentry, so long as its parent's seqlock is checked after the
2302 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2303 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2304 *
2305 * NOTE! The caller *has* to check the resulting dentry against the sequence
2306 * number we've returned before using any of the resulting dentry state!
31e6b01f 2307 */
8966be90
LT
2308struct dentry *__d_lookup_rcu(const struct dentry *parent,
2309 const struct qstr *name,
da53be12 2310 unsigned *seqp)
31e6b01f 2311{
26fe5750 2312 u64 hashlen = name->hash_len;
31e6b01f 2313 const unsigned char *str = name->name;
8387ff25 2314 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2315 struct hlist_bl_node *node;
31e6b01f
NP
2316 struct dentry *dentry;
2317
2318 /*
2319 * Note: There is significant duplication with __d_lookup_rcu which is
2320 * required to prevent single threaded performance regressions
2321 * especially on architectures where smp_rmb (in seqcounts) are costly.
2322 * Keep the two functions in sync.
2323 */
2324
ae2a8236
LT
2325 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2326 return __d_lookup_rcu_op_compare(parent, name, seqp);
2327
31e6b01f
NP
2328 /*
2329 * The hash list is protected using RCU.
2330 *
2331 * Carefully use d_seq when comparing a candidate dentry, to avoid
2332 * races with d_move().
2333 *
2334 * It is possible that concurrent renames can mess up our list
2335 * walk here and result in missing our dentry, resulting in the
2336 * false-negative result. d_lookup() protects against concurrent
2337 * renames using rename_lock seqlock.
2338 *
b0a4bb83 2339 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2340 */
b07ad996 2341 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2342 unsigned seq;
31e6b01f 2343
12f8ad4b
LT
2344 /*
2345 * The dentry sequence count protects us from concurrent
da53be12 2346 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2347 *
2348 * The caller must perform a seqcount check in order
da53be12 2349 * to do anything useful with the returned dentry.
12f8ad4b
LT
2350 *
2351 * NOTE! We do a "raw" seqcount_begin here. That means that
2352 * we don't wait for the sequence count to stabilize if it
2353 * is in the middle of a sequence change. If we do the slow
2354 * dentry compare, we will do seqretries until it is stable,
2355 * and if we end up with a successful lookup, we actually
2356 * want to exit RCU lookup anyway.
d4c91a8f
AV
2357 *
2358 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2359 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2360 */
2361 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2362 if (dentry->d_parent != parent)
2363 continue;
2e321806
LT
2364 if (d_unhashed(dentry))
2365 continue;
ae2a8236
LT
2366 if (dentry->d_name.hash_len != hashlen)
2367 continue;
2368 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2369 continue;
da53be12 2370 *seqp = seq;
d4c91a8f 2371 return dentry;
31e6b01f
NP
2372 }
2373 return NULL;
2374}
2375
1da177e4
LT
2376/**
2377 * d_lookup - search for a dentry
2378 * @parent: parent dentry
2379 * @name: qstr of name we wish to find
b04f784e 2380 * Returns: dentry, or NULL
1da177e4 2381 *
b04f784e
NP
2382 * d_lookup searches the children of the parent dentry for the name in
2383 * question. If the dentry is found its reference count is incremented and the
2384 * dentry is returned. The caller must use dput to free the entry when it has
2385 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2386 */
da2d8455 2387struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2388{
31e6b01f 2389 struct dentry *dentry;
949854d0 2390 unsigned seq;
1da177e4 2391
b8314f93
DY
2392 do {
2393 seq = read_seqbegin(&rename_lock);
2394 dentry = __d_lookup(parent, name);
2395 if (dentry)
1da177e4
LT
2396 break;
2397 } while (read_seqretry(&rename_lock, seq));
2398 return dentry;
2399}
ec4f8605 2400EXPORT_SYMBOL(d_lookup);
1da177e4 2401
31e6b01f 2402/**
b04f784e
NP
2403 * __d_lookup - search for a dentry (racy)
2404 * @parent: parent dentry
2405 * @name: qstr of name we wish to find
2406 * Returns: dentry, or NULL
2407 *
2408 * __d_lookup is like d_lookup, however it may (rarely) return a
2409 * false-negative result due to unrelated rename activity.
2410 *
2411 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2412 * however it must be used carefully, eg. with a following d_lookup in
2413 * the case of failure.
2414 *
2415 * __d_lookup callers must be commented.
2416 */
a713ca2a 2417struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2418{
1da177e4 2419 unsigned int hash = name->hash;
8387ff25 2420 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2421 struct hlist_bl_node *node;
31e6b01f 2422 struct dentry *found = NULL;
665a7583 2423 struct dentry *dentry;
1da177e4 2424
31e6b01f
NP
2425 /*
2426 * Note: There is significant duplication with __d_lookup_rcu which is
2427 * required to prevent single threaded performance regressions
2428 * especially on architectures where smp_rmb (in seqcounts) are costly.
2429 * Keep the two functions in sync.
2430 */
2431
b04f784e
NP
2432 /*
2433 * The hash list is protected using RCU.
2434 *
2435 * Take d_lock when comparing a candidate dentry, to avoid races
2436 * with d_move().
2437 *
2438 * It is possible that concurrent renames can mess up our list
2439 * walk here and result in missing our dentry, resulting in the
2440 * false-negative result. d_lookup() protects against concurrent
2441 * renames using rename_lock seqlock.
2442 *
b0a4bb83 2443 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2444 */
1da177e4
LT
2445 rcu_read_lock();
2446
b07ad996 2447 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2448
1da177e4
LT
2449 if (dentry->d_name.hash != hash)
2450 continue;
1da177e4
LT
2451
2452 spin_lock(&dentry->d_lock);
1da177e4
LT
2453 if (dentry->d_parent != parent)
2454 goto next;
d0185c08
LT
2455 if (d_unhashed(dentry))
2456 goto next;
2457
d4c91a8f
AV
2458 if (!d_same_name(dentry, parent, name))
2459 goto next;
1da177e4 2460
98474236 2461 dentry->d_lockref.count++;
d0185c08 2462 found = dentry;
1da177e4
LT
2463 spin_unlock(&dentry->d_lock);
2464 break;
2465next:
2466 spin_unlock(&dentry->d_lock);
2467 }
2468 rcu_read_unlock();
2469
2470 return found;
2471}
2472
3e7e241f
EB
2473/**
2474 * d_hash_and_lookup - hash the qstr then search for a dentry
2475 * @dir: Directory to search in
2476 * @name: qstr of name we wish to find
2477 *
4f522a24 2478 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2479 */
2480struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2481{
3e7e241f
EB
2482 /*
2483 * Check for a fs-specific hash function. Note that we must
2484 * calculate the standard hash first, as the d_op->d_hash()
2485 * routine may choose to leave the hash value unchanged.
2486 */
8387ff25 2487 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2488 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2489 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2490 if (unlikely(err < 0))
2491 return ERR_PTR(err);
3e7e241f 2492 }
4f522a24 2493 return d_lookup(dir, name);
3e7e241f 2494}
4f522a24 2495EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2496
1da177e4
LT
2497/*
2498 * When a file is deleted, we have two options:
2499 * - turn this dentry into a negative dentry
2500 * - unhash this dentry and free it.
2501 *
2502 * Usually, we want to just turn this into
2503 * a negative dentry, but if anybody else is
2504 * currently using the dentry or the inode
2505 * we can't do that and we fall back on removing
2506 * it from the hash queues and waiting for
2507 * it to be deleted later when it has no users
2508 */
2509
2510/**
2511 * d_delete - delete a dentry
2512 * @dentry: The dentry to delete
2513 *
2514 * Turn the dentry into a negative dentry if possible, otherwise
2515 * remove it from the hash queues so it can be deleted later
2516 */
2517
2518void d_delete(struct dentry * dentry)
2519{
c19457f0 2520 struct inode *inode = dentry->d_inode;
c19457f0
AV
2521
2522 spin_lock(&inode->i_lock);
2523 spin_lock(&dentry->d_lock);
1da177e4
LT
2524 /*
2525 * Are we the only user?
2526 */
98474236 2527 if (dentry->d_lockref.count == 1) {
13e3c5e5 2528 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2529 dentry_unlink_inode(dentry);
c19457f0 2530 } else {
1da177e4 2531 __d_drop(dentry);
c19457f0
AV
2532 spin_unlock(&dentry->d_lock);
2533 spin_unlock(&inode->i_lock);
2534 }
1da177e4 2535}
ec4f8605 2536EXPORT_SYMBOL(d_delete);
1da177e4 2537
15d3c589 2538static void __d_rehash(struct dentry *entry)
1da177e4 2539{
15d3c589 2540 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2541
1879fd6a 2542 hlist_bl_lock(b);
b07ad996 2543 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2544 hlist_bl_unlock(b);
1da177e4
LT
2545}
2546
2547/**
2548 * d_rehash - add an entry back to the hash
2549 * @entry: dentry to add to the hash
2550 *
2551 * Adds a dentry to the hash according to its name.
2552 */
2553
2554void d_rehash(struct dentry * entry)
2555{
1da177e4 2556 spin_lock(&entry->d_lock);
15d3c589 2557 __d_rehash(entry);
1da177e4 2558 spin_unlock(&entry->d_lock);
1da177e4 2559}
ec4f8605 2560EXPORT_SYMBOL(d_rehash);
1da177e4 2561
84e710da
AV
2562static inline unsigned start_dir_add(struct inode *dir)
2563{
93f6d4e1 2564 preempt_disable_nested();
84e710da
AV
2565 for (;;) {
2566 unsigned n = dir->i_dir_seq;
2567 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2568 return n;
2569 cpu_relax();
2570 }
2571}
2572
50417d22
SAS
2573static inline void end_dir_add(struct inode *dir, unsigned int n,
2574 wait_queue_head_t *d_wait)
84e710da
AV
2575{
2576 smp_store_release(&dir->i_dir_seq, n + 2);
93f6d4e1 2577 preempt_enable_nested();
50417d22 2578 wake_up_all(d_wait);
84e710da
AV
2579}
2580
d9171b93
AV
2581static void d_wait_lookup(struct dentry *dentry)
2582{
2583 if (d_in_lookup(dentry)) {
2584 DECLARE_WAITQUEUE(wait, current);
2585 add_wait_queue(dentry->d_wait, &wait);
2586 do {
2587 set_current_state(TASK_UNINTERRUPTIBLE);
2588 spin_unlock(&dentry->d_lock);
2589 schedule();
2590 spin_lock(&dentry->d_lock);
2591 } while (d_in_lookup(dentry));
2592 }
2593}
2594
94bdd655 2595struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2596 const struct qstr *name,
2597 wait_queue_head_t *wq)
94bdd655 2598{
94bdd655 2599 unsigned int hash = name->hash;
94bdd655
AV
2600 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2601 struct hlist_bl_node *node;
2602 struct dentry *new = d_alloc(parent, name);
2603 struct dentry *dentry;
2604 unsigned seq, r_seq, d_seq;
2605
2606 if (unlikely(!new))
2607 return ERR_PTR(-ENOMEM);
2608
2609retry:
2610 rcu_read_lock();
015555fd 2611 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2612 r_seq = read_seqbegin(&rename_lock);
2613 dentry = __d_lookup_rcu(parent, name, &d_seq);
2614 if (unlikely(dentry)) {
2615 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2616 rcu_read_unlock();
2617 goto retry;
2618 }
2619 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2620 rcu_read_unlock();
2621 dput(dentry);
2622 goto retry;
2623 }
2624 rcu_read_unlock();
2625 dput(new);
2626 return dentry;
2627 }
2628 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2629 rcu_read_unlock();
2630 goto retry;
2631 }
015555fd
WD
2632
2633 if (unlikely(seq & 1)) {
2634 rcu_read_unlock();
2635 goto retry;
2636 }
2637
94bdd655 2638 hlist_bl_lock(b);
8cc07c80 2639 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2640 hlist_bl_unlock(b);
2641 rcu_read_unlock();
2642 goto retry;
2643 }
94bdd655
AV
2644 /*
2645 * No changes for the parent since the beginning of d_lookup().
2646 * Since all removals from the chain happen with hlist_bl_lock(),
2647 * any potential in-lookup matches are going to stay here until
2648 * we unlock the chain. All fields are stable in everything
2649 * we encounter.
2650 */
2651 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2652 if (dentry->d_name.hash != hash)
2653 continue;
2654 if (dentry->d_parent != parent)
2655 continue;
d4c91a8f
AV
2656 if (!d_same_name(dentry, parent, name))
2657 continue;
94bdd655 2658 hlist_bl_unlock(b);
e7d6ef97
AV
2659 /* now we can try to grab a reference */
2660 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2661 rcu_read_unlock();
2662 goto retry;
2663 }
2664
2665 rcu_read_unlock();
2666 /*
2667 * somebody is likely to be still doing lookup for it;
2668 * wait for them to finish
2669 */
d9171b93
AV
2670 spin_lock(&dentry->d_lock);
2671 d_wait_lookup(dentry);
2672 /*
2673 * it's not in-lookup anymore; in principle we should repeat
2674 * everything from dcache lookup, but it's likely to be what
2675 * d_lookup() would've found anyway. If it is, just return it;
2676 * otherwise we really have to repeat the whole thing.
2677 */
2678 if (unlikely(dentry->d_name.hash != hash))
2679 goto mismatch;
2680 if (unlikely(dentry->d_parent != parent))
2681 goto mismatch;
2682 if (unlikely(d_unhashed(dentry)))
2683 goto mismatch;
d4c91a8f
AV
2684 if (unlikely(!d_same_name(dentry, parent, name)))
2685 goto mismatch;
d9171b93
AV
2686 /* OK, it *is* a hashed match; return it */
2687 spin_unlock(&dentry->d_lock);
94bdd655
AV
2688 dput(new);
2689 return dentry;
2690 }
e7d6ef97 2691 rcu_read_unlock();
94bdd655
AV
2692 /* we can't take ->d_lock here; it's OK, though. */
2693 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2694 new->d_wait = wq;
f9f677c5 2695 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
94bdd655
AV
2696 hlist_bl_unlock(b);
2697 return new;
d9171b93
AV
2698mismatch:
2699 spin_unlock(&dentry->d_lock);
2700 dput(dentry);
2701 goto retry;
94bdd655
AV
2702}
2703EXPORT_SYMBOL(d_alloc_parallel);
2704
45f78b0a
SAS
2705/*
2706 * - Unhash the dentry
2707 * - Retrieve and clear the waitqueue head in dentry
2708 * - Return the waitqueue head
2709 */
2710static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
85c7f810 2711{
45f78b0a
SAS
2712 wait_queue_head_t *d_wait;
2713 struct hlist_bl_head *b;
2714
2715 lockdep_assert_held(&dentry->d_lock);
2716
2717 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
94bdd655 2718 hlist_bl_lock(b);
85c7f810 2719 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2720 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
45f78b0a 2721 d_wait = dentry->d_wait;
d9171b93 2722 dentry->d_wait = NULL;
94bdd655
AV
2723 hlist_bl_unlock(b);
2724 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2725 INIT_LIST_HEAD(&dentry->d_lru);
45f78b0a
SAS
2726 return d_wait;
2727}
2728
2729void __d_lookup_unhash_wake(struct dentry *dentry)
2730{
2731 spin_lock(&dentry->d_lock);
2732 wake_up_all(__d_lookup_unhash(dentry));
2733 spin_unlock(&dentry->d_lock);
85c7f810 2734}
45f78b0a 2735EXPORT_SYMBOL(__d_lookup_unhash_wake);
ed782b5a
AV
2736
2737/* inode->i_lock held if inode is non-NULL */
2738
2739static inline void __d_add(struct dentry *dentry, struct inode *inode)
2740{
45f78b0a 2741 wait_queue_head_t *d_wait;
84e710da
AV
2742 struct inode *dir = NULL;
2743 unsigned n;
0568d705 2744 spin_lock(&dentry->d_lock);
84e710da
AV
2745 if (unlikely(d_in_lookup(dentry))) {
2746 dir = dentry->d_parent->d_inode;
2747 n = start_dir_add(dir);
45f78b0a 2748 d_wait = __d_lookup_unhash(dentry);
84e710da 2749 }
ed782b5a 2750 if (inode) {
0568d705
AV
2751 unsigned add_flags = d_flags_for_inode(inode);
2752 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2753 raw_write_seqcount_begin(&dentry->d_seq);
2754 __d_set_inode_and_type(dentry, inode, add_flags);
2755 raw_write_seqcount_end(&dentry->d_seq);
affda484 2756 fsnotify_update_flags(dentry);
ed782b5a 2757 }
15d3c589 2758 __d_rehash(dentry);
84e710da 2759 if (dir)
50417d22 2760 end_dir_add(dir, n, d_wait);
0568d705
AV
2761 spin_unlock(&dentry->d_lock);
2762 if (inode)
2763 spin_unlock(&inode->i_lock);
ed782b5a
AV
2764}
2765
34d0d19d
AV
2766/**
2767 * d_add - add dentry to hash queues
2768 * @entry: dentry to add
2769 * @inode: The inode to attach to this dentry
2770 *
2771 * This adds the entry to the hash queues and initializes @inode.
2772 * The entry was actually filled in earlier during d_alloc().
2773 */
2774
2775void d_add(struct dentry *entry, struct inode *inode)
2776{
b9680917
AV
2777 if (inode) {
2778 security_d_instantiate(entry, inode);
ed782b5a 2779 spin_lock(&inode->i_lock);
b9680917 2780 }
ed782b5a 2781 __d_add(entry, inode);
34d0d19d
AV
2782}
2783EXPORT_SYMBOL(d_add);
2784
668d0cd5
AV
2785/**
2786 * d_exact_alias - find and hash an exact unhashed alias
2787 * @entry: dentry to add
2788 * @inode: The inode to go with this dentry
2789 *
2790 * If an unhashed dentry with the same name/parent and desired
2791 * inode already exists, hash and return it. Otherwise, return
2792 * NULL.
2793 *
2794 * Parent directory should be locked.
2795 */
2796struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2797{
2798 struct dentry *alias;
668d0cd5
AV
2799 unsigned int hash = entry->d_name.hash;
2800
2801 spin_lock(&inode->i_lock);
2802 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2803 /*
2804 * Don't need alias->d_lock here, because aliases with
2805 * d_parent == entry->d_parent are not subject to name or
2806 * parent changes, because the parent inode i_mutex is held.
2807 */
2808 if (alias->d_name.hash != hash)
2809 continue;
2810 if (alias->d_parent != entry->d_parent)
2811 continue;
d4c91a8f 2812 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2813 continue;
2814 spin_lock(&alias->d_lock);
2815 if (!d_unhashed(alias)) {
2816 spin_unlock(&alias->d_lock);
2817 alias = NULL;
2818 } else {
2819 __dget_dlock(alias);
15d3c589 2820 __d_rehash(alias);
668d0cd5
AV
2821 spin_unlock(&alias->d_lock);
2822 }
2823 spin_unlock(&inode->i_lock);
2824 return alias;
2825 }
2826 spin_unlock(&inode->i_lock);
2827 return NULL;
2828}
2829EXPORT_SYMBOL(d_exact_alias);
2830
8d85b484 2831static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2832{
8d85b484
AV
2833 if (unlikely(dname_external(target))) {
2834 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2835 /*
2836 * Both external: swap the pointers
2837 */
9a8d5bb4 2838 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2839 } else {
2840 /*
2841 * dentry:internal, target:external. Steal target's
2842 * storage and make target internal.
2843 */
321bcf92
BF
2844 memcpy(target->d_iname, dentry->d_name.name,
2845 dentry->d_name.len + 1);
1da177e4
LT
2846 dentry->d_name.name = target->d_name.name;
2847 target->d_name.name = target->d_iname;
2848 }
2849 } else {
8d85b484 2850 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2851 /*
2852 * dentry:external, target:internal. Give dentry's
2853 * storage to target and make dentry internal
2854 */
2855 memcpy(dentry->d_iname, target->d_name.name,
2856 target->d_name.len + 1);
2857 target->d_name.name = dentry->d_name.name;
2858 dentry->d_name.name = dentry->d_iname;
2859 } else {
2860 /*
da1ce067 2861 * Both are internal.
1da177e4 2862 */
da1ce067
MS
2863 unsigned int i;
2864 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2865 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2866 swap(((long *) &dentry->d_iname)[i],
2867 ((long *) &target->d_iname)[i]);
2868 }
1da177e4
LT
2869 }
2870 }
a28ddb87 2871 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2872}
2873
8d85b484
AV
2874static void copy_name(struct dentry *dentry, struct dentry *target)
2875{
2876 struct external_name *old_name = NULL;
2877 if (unlikely(dname_external(dentry)))
2878 old_name = external_name(dentry);
2879 if (unlikely(dname_external(target))) {
2880 atomic_inc(&external_name(target)->u.count);
2881 dentry->d_name = target->d_name;
2882 } else {
2883 memcpy(dentry->d_iname, target->d_name.name,
2884 target->d_name.len + 1);
2885 dentry->d_name.name = dentry->d_iname;
2886 dentry->d_name.hash_len = target->d_name.hash_len;
2887 }
2888 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2e03b4bc 2889 kfree_rcu(old_name, u.head);
8d85b484
AV
2890}
2891
9eaef27b 2892/*
18367501 2893 * __d_move - move a dentry
1da177e4
LT
2894 * @dentry: entry to move
2895 * @target: new dentry
da1ce067 2896 * @exchange: exchange the two dentries
1da177e4
LT
2897 *
2898 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2899 * dcache entries should not be moved in this way. Caller must hold
2900 * rename_lock, the i_mutex of the source and target directories,
2901 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2902 */
da1ce067
MS
2903static void __d_move(struct dentry *dentry, struct dentry *target,
2904 bool exchange)
1da177e4 2905{
42177007 2906 struct dentry *old_parent, *p;
45f78b0a 2907 wait_queue_head_t *d_wait;
84e710da
AV
2908 struct inode *dir = NULL;
2909 unsigned n;
1da177e4 2910
42177007
AV
2911 WARN_ON(!dentry->d_inode);
2912 if (WARN_ON(dentry == target))
2913 return;
2914
2fd6b7f5 2915 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2916 old_parent = dentry->d_parent;
2917 p = d_ancestor(old_parent, target);
2918 if (IS_ROOT(dentry)) {
2919 BUG_ON(p);
2920 spin_lock(&target->d_parent->d_lock);
2921 } else if (!p) {
2922 /* target is not a descendent of dentry->d_parent */
2923 spin_lock(&target->d_parent->d_lock);
2924 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2925 } else {
2926 BUG_ON(p == dentry);
2927 spin_lock(&old_parent->d_lock);
2928 if (p != target)
2929 spin_lock_nested(&target->d_parent->d_lock,
2930 DENTRY_D_LOCK_NESTED);
2931 }
2932 spin_lock_nested(&dentry->d_lock, 2);
2933 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2934
84e710da
AV
2935 if (unlikely(d_in_lookup(target))) {
2936 dir = target->d_parent->d_inode;
2937 n = start_dir_add(dir);
45f78b0a 2938 d_wait = __d_lookup_unhash(target);
84e710da 2939 }
1da177e4 2940
31e6b01f 2941 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2942 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2943
15d3c589 2944 /* unhash both */
0632a9ac
AV
2945 if (!d_unhashed(dentry))
2946 ___d_drop(dentry);
2947 if (!d_unhashed(target))
2948 ___d_drop(target);
1da177e4 2949
076515fc
AV
2950 /* ... and switch them in the tree */
2951 dentry->d_parent = target->d_parent;
2952 if (!exchange) {
8d85b484 2953 copy_name(dentry, target);
61647823 2954 target->d_hash.pprev = NULL;
076515fc 2955 dentry->d_parent->d_lockref.count++;
5467a68c 2956 if (dentry != old_parent) /* wasn't IS_ROOT */
076515fc 2957 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2958 } else {
076515fc
AV
2959 target->d_parent = old_parent;
2960 swap_names(dentry, target);
946e51f2 2961 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2962 __d_rehash(target);
2963 fsnotify_update_flags(target);
1da177e4 2964 }
076515fc
AV
2965 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2966 __d_rehash(dentry);
2967 fsnotify_update_flags(dentry);
0bf3d5c1 2968 fscrypt_handle_d_move(dentry);
1da177e4 2969
31e6b01f
NP
2970 write_seqcount_end(&target->d_seq);
2971 write_seqcount_end(&dentry->d_seq);
2972
84e710da 2973 if (dir)
50417d22 2974 end_dir_add(dir, n, d_wait);
076515fc
AV
2975
2976 if (dentry->d_parent != old_parent)
2977 spin_unlock(&dentry->d_parent->d_lock);
2978 if (dentry != old_parent)
2979 spin_unlock(&old_parent->d_lock);
2980 spin_unlock(&target->d_lock);
2981 spin_unlock(&dentry->d_lock);
18367501
AV
2982}
2983
2984/*
2985 * d_move - move a dentry
2986 * @dentry: entry to move
2987 * @target: new dentry
2988 *
2989 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2990 * dcache entries should not be moved in this way. See the locking
2991 * requirements for __d_move.
18367501
AV
2992 */
2993void d_move(struct dentry *dentry, struct dentry *target)
2994{
2995 write_seqlock(&rename_lock);
da1ce067 2996 __d_move(dentry, target, false);
1da177e4 2997 write_sequnlock(&rename_lock);
9eaef27b 2998}
ec4f8605 2999EXPORT_SYMBOL(d_move);
1da177e4 3000
da1ce067
MS
3001/*
3002 * d_exchange - exchange two dentries
3003 * @dentry1: first dentry
3004 * @dentry2: second dentry
3005 */
3006void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3007{
3008 write_seqlock(&rename_lock);
3009
3010 WARN_ON(!dentry1->d_inode);
3011 WARN_ON(!dentry2->d_inode);
3012 WARN_ON(IS_ROOT(dentry1));
3013 WARN_ON(IS_ROOT(dentry2));
3014
3015 __d_move(dentry1, dentry2, true);
3016
3017 write_sequnlock(&rename_lock);
3018}
3019
e2761a11
OH
3020/**
3021 * d_ancestor - search for an ancestor
3022 * @p1: ancestor dentry
3023 * @p2: child dentry
3024 *
3025 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3026 * an ancestor of p2, else NULL.
9eaef27b 3027 */
e2761a11 3028struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
3029{
3030 struct dentry *p;
3031
871c0067 3032 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 3033 if (p->d_parent == p1)
e2761a11 3034 return p;
9eaef27b 3035 }
e2761a11 3036 return NULL;
9eaef27b
TM
3037}
3038
3039/*
3040 * This helper attempts to cope with remotely renamed directories
3041 *
3042 * It assumes that the caller is already holding
a03e283b 3043 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
3044 *
3045 * Note: If ever the locking in lock_rename() changes, then please
3046 * remember to update this too...
9eaef27b 3047 */
b5ae6b15 3048static int __d_unalias(struct inode *inode,
873feea0 3049 struct dentry *dentry, struct dentry *alias)
9eaef27b 3050{
9902af79
AV
3051 struct mutex *m1 = NULL;
3052 struct rw_semaphore *m2 = NULL;
3d330dc1 3053 int ret = -ESTALE;
9eaef27b
TM
3054
3055 /* If alias and dentry share a parent, then no extra locks required */
3056 if (alias->d_parent == dentry->d_parent)
3057 goto out_unalias;
3058
9eaef27b 3059 /* See lock_rename() */
9eaef27b
TM
3060 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3061 goto out_err;
3062 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 3063 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 3064 goto out_err;
9902af79 3065 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 3066out_unalias:
8ed936b5 3067 __d_move(alias, dentry, false);
b5ae6b15 3068 ret = 0;
9eaef27b 3069out_err:
9eaef27b 3070 if (m2)
9902af79 3071 up_read(m2);
9eaef27b
TM
3072 if (m1)
3073 mutex_unlock(m1);
3074 return ret;
3075}
3076
3f70bd51
BF
3077/**
3078 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3079 * @inode: the inode which may have a disconnected dentry
3080 * @dentry: a negative dentry which we want to point to the inode.
3081 *
da093a9b
BF
3082 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3083 * place of the given dentry and return it, else simply d_add the inode
3084 * to the dentry and return NULL.
3f70bd51 3085 *
908790fa
BF
3086 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3087 * we should error out: directories can't have multiple aliases.
3088 *
3f70bd51
BF
3089 * This is needed in the lookup routine of any filesystem that is exportable
3090 * (via knfsd) so that we can build dcache paths to directories effectively.
3091 *
3092 * If a dentry was found and moved, then it is returned. Otherwise NULL
3093 * is returned. This matches the expected return value of ->lookup.
3094 *
3095 * Cluster filesystems may call this function with a negative, hashed dentry.
3096 * In that case, we know that the inode will be a regular file, and also this
3097 * will only occur during atomic_open. So we need to check for the dentry
3098 * being already hashed only in the final case.
3099 */
3100struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3101{
3f70bd51
BF
3102 if (IS_ERR(inode))
3103 return ERR_CAST(inode);
3104
770bfad8
DH
3105 BUG_ON(!d_unhashed(dentry));
3106
de689f5e 3107 if (!inode)
b5ae6b15 3108 goto out;
de689f5e 3109
b9680917 3110 security_d_instantiate(dentry, inode);
873feea0 3111 spin_lock(&inode->i_lock);
9eaef27b 3112 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3113 struct dentry *new = __d_find_any_alias(inode);
3114 if (unlikely(new)) {
a03e283b
EB
3115 /* The reference to new ensures it remains an alias */
3116 spin_unlock(&inode->i_lock);
18367501 3117 write_seqlock(&rename_lock);
b5ae6b15
AV
3118 if (unlikely(d_ancestor(new, dentry))) {
3119 write_sequnlock(&rename_lock);
b5ae6b15
AV
3120 dput(new);
3121 new = ERR_PTR(-ELOOP);
3122 pr_warn_ratelimited(
3123 "VFS: Lookup of '%s' in %s %s"
3124 " would have caused loop\n",
3125 dentry->d_name.name,
3126 inode->i_sb->s_type->name,
3127 inode->i_sb->s_id);
3128 } else if (!IS_ROOT(new)) {
076515fc 3129 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 3130 int err = __d_unalias(inode, dentry, new);
18367501 3131 write_sequnlock(&rename_lock);
b5ae6b15
AV
3132 if (err) {
3133 dput(new);
3134 new = ERR_PTR(err);
3135 }
076515fc 3136 dput(old_parent);
18367501 3137 } else {
b5ae6b15
AV
3138 __d_move(new, dentry, false);
3139 write_sequnlock(&rename_lock);
dd179946 3140 }
b5ae6b15
AV
3141 iput(inode);
3142 return new;
9eaef27b 3143 }
770bfad8 3144 }
b5ae6b15 3145out:
ed782b5a 3146 __d_add(dentry, inode);
b5ae6b15 3147 return NULL;
770bfad8 3148}
b5ae6b15 3149EXPORT_SYMBOL(d_splice_alias);
770bfad8 3150
1da177e4
LT
3151/*
3152 * Test whether new_dentry is a subdirectory of old_dentry.
3153 *
3154 * Trivially implemented using the dcache structure
3155 */
3156
3157/**
3158 * is_subdir - is new dentry a subdirectory of old_dentry
3159 * @new_dentry: new dentry
3160 * @old_dentry: old dentry
3161 *
a6e5787f
YB
3162 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3163 * Returns false otherwise.
1da177e4
LT
3164 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3165 */
3166
a6e5787f 3167bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3168{
a6e5787f 3169 bool result;
949854d0 3170 unsigned seq;
1da177e4 3171
e2761a11 3172 if (new_dentry == old_dentry)
a6e5787f 3173 return true;
e2761a11 3174
e2761a11 3175 do {
1da177e4 3176 /* for restarting inner loop in case of seq retry */
1da177e4 3177 seq = read_seqbegin(&rename_lock);
949854d0
NP
3178 /*
3179 * Need rcu_readlock to protect against the d_parent trashing
3180 * due to d_move
3181 */
3182 rcu_read_lock();
e2761a11 3183 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3184 result = true;
e2761a11 3185 else
a6e5787f 3186 result = false;
949854d0 3187 rcu_read_unlock();
1da177e4 3188 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3189
3190 return result;
3191}
e8f9e5b7 3192EXPORT_SYMBOL(is_subdir);
1da177e4 3193
db14fc3a 3194static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3195{
db14fc3a
MS
3196 struct dentry *root = data;
3197 if (dentry != root) {
3198 if (d_unhashed(dentry) || !dentry->d_inode)
3199 return D_WALK_SKIP;
1da177e4 3200
57851607 3201 dentry->d_lockref.count--;
1da177e4 3202 }
db14fc3a
MS
3203 return D_WALK_CONTINUE;
3204}
58db63d0 3205
db14fc3a
MS
3206void d_genocide(struct dentry *parent)
3207{
3a8e3611 3208 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3209}
3210
771eb4fe 3211void d_mark_tmpfile(struct file *file, struct inode *inode)
1da177e4 3212{
863f144f
MS
3213 struct dentry *dentry = file->f_path.dentry;
3214
60545d0d 3215 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3216 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3217 !d_unlinked(dentry));
3218 spin_lock(&dentry->d_parent->d_lock);
3219 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3220 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3221 (unsigned long long)inode->i_ino);
3222 spin_unlock(&dentry->d_lock);
3223 spin_unlock(&dentry->d_parent->d_lock);
771eb4fe
KO
3224}
3225EXPORT_SYMBOL(d_mark_tmpfile);
3226
3227void d_tmpfile(struct file *file, struct inode *inode)
3228{
3229 struct dentry *dentry = file->f_path.dentry;
3230
3231 inode_dec_link_count(inode);
3232 d_mark_tmpfile(file, inode);
60545d0d 3233 d_instantiate(dentry, inode);
1da177e4 3234}
60545d0d 3235EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3236
3237static __initdata unsigned long dhash_entries;
3238static int __init set_dhash_entries(char *str)
3239{
3240 if (!str)
3241 return 0;
3242 dhash_entries = simple_strtoul(str, &str, 0);
3243 return 1;
3244}
3245__setup("dhash_entries=", set_dhash_entries);
3246
3247static void __init dcache_init_early(void)
3248{
1da177e4
LT
3249 /* If hashes are distributed across NUMA nodes, defer
3250 * hash allocation until vmalloc space is available.
3251 */
3252 if (hashdist)
3253 return;
3254
3255 dentry_hashtable =
3256 alloc_large_system_hash("Dentry cache",
b07ad996 3257 sizeof(struct hlist_bl_head),
1da177e4
LT
3258 dhash_entries,
3259 13,
3d375d78 3260 HASH_EARLY | HASH_ZERO,
1da177e4 3261 &d_hash_shift,
b35d786b 3262 NULL,
31fe62b9 3263 0,
1da177e4 3264 0);
854d3e63 3265 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3266}
3267
74bf17cf 3268static void __init dcache_init(void)
1da177e4 3269{
3d375d78 3270 /*
1da177e4
LT
3271 * A constructor could be added for stable state like the lists,
3272 * but it is probably not worth it because of the cache nature
3d375d78 3273 * of the dcache.
1da177e4 3274 */
80344266
DW
3275 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3276 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3277 d_iname);
1da177e4
LT
3278
3279 /* Hash may have been set up in dcache_init_early */
3280 if (!hashdist)
3281 return;
3282
3283 dentry_hashtable =
3284 alloc_large_system_hash("Dentry cache",
b07ad996 3285 sizeof(struct hlist_bl_head),
1da177e4
LT
3286 dhash_entries,
3287 13,
3d375d78 3288 HASH_ZERO,
1da177e4 3289 &d_hash_shift,
b35d786b 3290 NULL,
31fe62b9 3291 0,
1da177e4 3292 0);
854d3e63 3293 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3294}
3295
3296/* SLAB cache for __getname() consumers */
68279f9c 3297struct kmem_cache *names_cachep __ro_after_init;
ec4f8605 3298EXPORT_SYMBOL(names_cachep);
1da177e4 3299
1da177e4
LT
3300void __init vfs_caches_init_early(void)
3301{
6916363f
SAS
3302 int i;
3303
3304 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3305 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3306
1da177e4
LT
3307 dcache_init_early();
3308 inode_init_early();
3309}
3310
4248b0da 3311void __init vfs_caches_init(void)
1da177e4 3312{
6a9b8820
DW
3313 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3314 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3315
74bf17cf
DC
3316 dcache_init();
3317 inode_init();
4248b0da
MG
3318 files_init();
3319 files_maxfiles_init();
74bf17cf 3320 mnt_init();
1da177e4
LT
3321 bdev_cache_init();
3322 chrdev_init();
3323}