vfs: move dentry name length comparison from dentry_cmp() into callers
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99#define D_HASHBITS d_hash_shift
100#define D_HASHMASK d_hash_mask
101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d
LT
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
112 return dentry_hashtable + (hash & D_HASHMASK);
113}
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3e880fb5 120static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
123static int get_nr_dentry(void)
124{
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130}
131
312d3ca8
CH
132int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134{
3e880fb5 135 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137}
138#endif
139
5483f18e
LT
140/*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
e419b4cc
LT
144#ifdef CONFIG_DCACHE_WORD_ACCESS
145
146#include <asm/word-at-a-time.h>
147/*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
94753db5 156static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 157{
bfcfaa77 158 unsigned long a,b,mask;
bfcfaa77
LT
159
160 for (;;) {
12f8ad4b 161 a = *(unsigned long *)cs;
e419b4cc 162 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
175}
176
bfcfaa77 177#else
e419b4cc 178
94753db5 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 180{
5483f18e
LT
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189}
190
e419b4cc
LT
191#endif
192
94753db5
LT
193static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194{
94753db5
LT
195 /*
196 * Be careful about RCU walk racing with rename:
197 * use ACCESS_ONCE to fetch the name pointer.
198 *
199 * NOTE! Even if a rename will mean that the length
200 * was not loaded atomically, we don't care. The
201 * RCU walk will check the sequence count eventually,
202 * and catch it. And we won't overrun the buffer,
203 * because we're reading the name pointer atomically,
204 * and a dentry name is guaranteed to be properly
205 * terminated with a NUL byte.
206 *
207 * End result: even if 'len' is wrong, we'll exit
208 * early because the data cannot match (there can
209 * be no NUL in the ct/tcount data)
210 */
211 return dentry_string_cmp(ACCESS_ONCE(dentry->d_name.name), ct, tcount);
212}
213
9c82ab9c 214static void __d_free(struct rcu_head *head)
1da177e4 215{
9c82ab9c
CH
216 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
217
fd217f4d 218 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
219 if (dname_external(dentry))
220 kfree(dentry->d_name.name);
221 kmem_cache_free(dentry_cache, dentry);
222}
223
224/*
b5c84bf6 225 * no locks, please.
1da177e4
LT
226 */
227static void d_free(struct dentry *dentry)
228{
b7ab39f6 229 BUG_ON(dentry->d_count);
3e880fb5 230 this_cpu_dec(nr_dentry);
1da177e4
LT
231 if (dentry->d_op && dentry->d_op->d_release)
232 dentry->d_op->d_release(dentry);
312d3ca8 233
dea3667b
LT
234 /* if dentry was never visible to RCU, immediate free is OK */
235 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 236 __d_free(&dentry->d_u.d_rcu);
b3423415 237 else
9c82ab9c 238 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
239}
240
31e6b01f
NP
241/**
242 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 243 * @dentry: the target dentry
31e6b01f
NP
244 * After this call, in-progress rcu-walk path lookup will fail. This
245 * should be called after unhashing, and after changing d_inode (if
246 * the dentry has not already been unhashed).
247 */
248static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
249{
250 assert_spin_locked(&dentry->d_lock);
251 /* Go through a barrier */
252 write_seqcount_barrier(&dentry->d_seq);
253}
254
1da177e4
LT
255/*
256 * Release the dentry's inode, using the filesystem
31e6b01f
NP
257 * d_iput() operation if defined. Dentry has no refcount
258 * and is unhashed.
1da177e4 259 */
858119e1 260static void dentry_iput(struct dentry * dentry)
31f3e0b3 261 __releases(dentry->d_lock)
873feea0 262 __releases(dentry->d_inode->i_lock)
1da177e4
LT
263{
264 struct inode *inode = dentry->d_inode;
265 if (inode) {
266 dentry->d_inode = NULL;
267 list_del_init(&dentry->d_alias);
268 spin_unlock(&dentry->d_lock);
873feea0 269 spin_unlock(&inode->i_lock);
f805fbda
LT
270 if (!inode->i_nlink)
271 fsnotify_inoderemove(inode);
1da177e4
LT
272 if (dentry->d_op && dentry->d_op->d_iput)
273 dentry->d_op->d_iput(dentry, inode);
274 else
275 iput(inode);
276 } else {
277 spin_unlock(&dentry->d_lock);
1da177e4
LT
278 }
279}
280
31e6b01f
NP
281/*
282 * Release the dentry's inode, using the filesystem
283 * d_iput() operation if defined. dentry remains in-use.
284 */
285static void dentry_unlink_inode(struct dentry * dentry)
286 __releases(dentry->d_lock)
873feea0 287 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
288{
289 struct inode *inode = dentry->d_inode;
290 dentry->d_inode = NULL;
291 list_del_init(&dentry->d_alias);
292 dentry_rcuwalk_barrier(dentry);
293 spin_unlock(&dentry->d_lock);
873feea0 294 spin_unlock(&inode->i_lock);
31e6b01f
NP
295 if (!inode->i_nlink)
296 fsnotify_inoderemove(inode);
297 if (dentry->d_op && dentry->d_op->d_iput)
298 dentry->d_op->d_iput(dentry, inode);
299 else
300 iput(inode);
301}
302
da3bbdd4 303/*
f0023bc6 304 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
305 */
306static void dentry_lru_add(struct dentry *dentry)
307{
a4633357 308 if (list_empty(&dentry->d_lru)) {
23044507 309 spin_lock(&dcache_lru_lock);
a4633357
CH
310 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
311 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 312 dentry_stat.nr_unused++;
23044507 313 spin_unlock(&dcache_lru_lock);
a4633357 314 }
da3bbdd4
KM
315}
316
23044507
NP
317static void __dentry_lru_del(struct dentry *dentry)
318{
319 list_del_init(&dentry->d_lru);
eaf5f907 320 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
23044507
NP
321 dentry->d_sb->s_nr_dentry_unused--;
322 dentry_stat.nr_unused--;
323}
324
f0023bc6
SW
325/*
326 * Remove a dentry with references from the LRU.
327 */
da3bbdd4
KM
328static void dentry_lru_del(struct dentry *dentry)
329{
330 if (!list_empty(&dentry->d_lru)) {
23044507
NP
331 spin_lock(&dcache_lru_lock);
332 __dentry_lru_del(dentry);
333 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
334 }
335}
336
f0023bc6
SW
337/*
338 * Remove a dentry that is unreferenced and about to be pruned
339 * (unhashed and destroyed) from the LRU, and inform the file system.
340 * This wrapper should be called _prior_ to unhashing a victim dentry.
341 */
342static void dentry_lru_prune(struct dentry *dentry)
343{
344 if (!list_empty(&dentry->d_lru)) {
345 if (dentry->d_flags & DCACHE_OP_PRUNE)
346 dentry->d_op->d_prune(dentry);
347
348 spin_lock(&dcache_lru_lock);
349 __dentry_lru_del(dentry);
350 spin_unlock(&dcache_lru_lock);
351 }
352}
353
b48f03b3 354static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 355{
23044507 356 spin_lock(&dcache_lru_lock);
a4633357 357 if (list_empty(&dentry->d_lru)) {
b48f03b3 358 list_add_tail(&dentry->d_lru, list);
a4633357 359 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 360 dentry_stat.nr_unused++;
a4633357 361 } else {
b48f03b3 362 list_move_tail(&dentry->d_lru, list);
da3bbdd4 363 }
23044507 364 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
365}
366
d52b9086
MS
367/**
368 * d_kill - kill dentry and return parent
369 * @dentry: dentry to kill
ff5fdb61 370 * @parent: parent dentry
d52b9086 371 *
31f3e0b3 372 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
373 *
374 * If this is the root of the dentry tree, return NULL.
23044507 375 *
b5c84bf6
NP
376 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
377 * d_kill.
d52b9086 378 */
2fd6b7f5 379static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 380 __releases(dentry->d_lock)
2fd6b7f5 381 __releases(parent->d_lock)
873feea0 382 __releases(dentry->d_inode->i_lock)
d52b9086 383{
d52b9086 384 list_del(&dentry->d_u.d_child);
c83ce989
TM
385 /*
386 * Inform try_to_ascend() that we are no longer attached to the
387 * dentry tree
388 */
389 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
390 if (parent)
391 spin_unlock(&parent->d_lock);
d52b9086 392 dentry_iput(dentry);
b7ab39f6
NP
393 /*
394 * dentry_iput drops the locks, at which point nobody (except
395 * transient RCU lookups) can reach this dentry.
396 */
d52b9086 397 d_free(dentry);
871c0067 398 return parent;
d52b9086
MS
399}
400
c6627c60
DH
401/*
402 * Unhash a dentry without inserting an RCU walk barrier or checking that
403 * dentry->d_lock is locked. The caller must take care of that, if
404 * appropriate.
405 */
406static void __d_shrink(struct dentry *dentry)
407{
408 if (!d_unhashed(dentry)) {
409 struct hlist_bl_head *b;
410 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
411 b = &dentry->d_sb->s_anon;
412 else
413 b = d_hash(dentry->d_parent, dentry->d_name.hash);
414
415 hlist_bl_lock(b);
416 __hlist_bl_del(&dentry->d_hash);
417 dentry->d_hash.pprev = NULL;
418 hlist_bl_unlock(b);
419 }
420}
421
789680d1
NP
422/**
423 * d_drop - drop a dentry
424 * @dentry: dentry to drop
425 *
426 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
427 * be found through a VFS lookup any more. Note that this is different from
428 * deleting the dentry - d_delete will try to mark the dentry negative if
429 * possible, giving a successful _negative_ lookup, while d_drop will
430 * just make the cache lookup fail.
431 *
432 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
433 * reason (NFS timeouts or autofs deletes).
434 *
435 * __d_drop requires dentry->d_lock.
436 */
437void __d_drop(struct dentry *dentry)
438{
dea3667b 439 if (!d_unhashed(dentry)) {
c6627c60 440 __d_shrink(dentry);
dea3667b 441 dentry_rcuwalk_barrier(dentry);
789680d1
NP
442 }
443}
444EXPORT_SYMBOL(__d_drop);
445
446void d_drop(struct dentry *dentry)
447{
789680d1
NP
448 spin_lock(&dentry->d_lock);
449 __d_drop(dentry);
450 spin_unlock(&dentry->d_lock);
789680d1
NP
451}
452EXPORT_SYMBOL(d_drop);
453
44396f4b
JB
454/*
455 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
456 * @dentry: dentry to drop
457 *
458 * This is called when we do a lookup on a placeholder dentry that needed to be
459 * looked up. The dentry should have been hashed in order for it to be found by
460 * the lookup code, but now needs to be unhashed while we do the actual lookup
461 * and clear the DCACHE_NEED_LOOKUP flag.
462 */
463void d_clear_need_lookup(struct dentry *dentry)
464{
465 spin_lock(&dentry->d_lock);
466 __d_drop(dentry);
467 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
468 spin_unlock(&dentry->d_lock);
469}
470EXPORT_SYMBOL(d_clear_need_lookup);
471
77812a1e
NP
472/*
473 * Finish off a dentry we've decided to kill.
474 * dentry->d_lock must be held, returns with it unlocked.
475 * If ref is non-zero, then decrement the refcount too.
476 * Returns dentry requiring refcount drop, or NULL if we're done.
477 */
478static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
479 __releases(dentry->d_lock)
480{
873feea0 481 struct inode *inode;
77812a1e
NP
482 struct dentry *parent;
483
873feea0
NP
484 inode = dentry->d_inode;
485 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
486relock:
487 spin_unlock(&dentry->d_lock);
488 cpu_relax();
489 return dentry; /* try again with same dentry */
490 }
491 if (IS_ROOT(dentry))
492 parent = NULL;
493 else
494 parent = dentry->d_parent;
495 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
496 if (inode)
497 spin_unlock(&inode->i_lock);
77812a1e
NP
498 goto relock;
499 }
31e6b01f 500
77812a1e
NP
501 if (ref)
502 dentry->d_count--;
f0023bc6
SW
503 /*
504 * if dentry was on the d_lru list delete it from there.
505 * inform the fs via d_prune that this dentry is about to be
506 * unhashed and destroyed.
507 */
508 dentry_lru_prune(dentry);
77812a1e
NP
509 /* if it was on the hash then remove it */
510 __d_drop(dentry);
511 return d_kill(dentry, parent);
512}
513
1da177e4
LT
514/*
515 * This is dput
516 *
517 * This is complicated by the fact that we do not want to put
518 * dentries that are no longer on any hash chain on the unused
519 * list: we'd much rather just get rid of them immediately.
520 *
521 * However, that implies that we have to traverse the dentry
522 * tree upwards to the parents which might _also_ now be
523 * scheduled for deletion (it may have been only waiting for
524 * its last child to go away).
525 *
526 * This tail recursion is done by hand as we don't want to depend
527 * on the compiler to always get this right (gcc generally doesn't).
528 * Real recursion would eat up our stack space.
529 */
530
531/*
532 * dput - release a dentry
533 * @dentry: dentry to release
534 *
535 * Release a dentry. This will drop the usage count and if appropriate
536 * call the dentry unlink method as well as removing it from the queues and
537 * releasing its resources. If the parent dentries were scheduled for release
538 * they too may now get deleted.
1da177e4 539 */
1da177e4
LT
540void dput(struct dentry *dentry)
541{
542 if (!dentry)
543 return;
544
545repeat:
b7ab39f6 546 if (dentry->d_count == 1)
1da177e4 547 might_sleep();
1da177e4 548 spin_lock(&dentry->d_lock);
61f3dee4
NP
549 BUG_ON(!dentry->d_count);
550 if (dentry->d_count > 1) {
551 dentry->d_count--;
1da177e4 552 spin_unlock(&dentry->d_lock);
1da177e4
LT
553 return;
554 }
555
fb045adb 556 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 557 if (dentry->d_op->d_delete(dentry))
61f3dee4 558 goto kill_it;
1da177e4 559 }
265ac902 560
1da177e4
LT
561 /* Unreachable? Get rid of it */
562 if (d_unhashed(dentry))
563 goto kill_it;
265ac902 564
44396f4b
JB
565 /*
566 * If this dentry needs lookup, don't set the referenced flag so that it
567 * is more likely to be cleaned up by the dcache shrinker in case of
568 * memory pressure.
569 */
570 if (!d_need_lookup(dentry))
571 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 572 dentry_lru_add(dentry);
265ac902 573
61f3dee4
NP
574 dentry->d_count--;
575 spin_unlock(&dentry->d_lock);
1da177e4
LT
576 return;
577
d52b9086 578kill_it:
77812a1e 579 dentry = dentry_kill(dentry, 1);
d52b9086
MS
580 if (dentry)
581 goto repeat;
1da177e4 582}
ec4f8605 583EXPORT_SYMBOL(dput);
1da177e4
LT
584
585/**
586 * d_invalidate - invalidate a dentry
587 * @dentry: dentry to invalidate
588 *
589 * Try to invalidate the dentry if it turns out to be
590 * possible. If there are other dentries that can be
591 * reached through this one we can't delete it and we
592 * return -EBUSY. On success we return 0.
593 *
594 * no dcache lock.
595 */
596
597int d_invalidate(struct dentry * dentry)
598{
599 /*
600 * If it's already been dropped, return OK.
601 */
da502956 602 spin_lock(&dentry->d_lock);
1da177e4 603 if (d_unhashed(dentry)) {
da502956 604 spin_unlock(&dentry->d_lock);
1da177e4
LT
605 return 0;
606 }
607 /*
608 * Check whether to do a partial shrink_dcache
609 * to get rid of unused child entries.
610 */
611 if (!list_empty(&dentry->d_subdirs)) {
da502956 612 spin_unlock(&dentry->d_lock);
1da177e4 613 shrink_dcache_parent(dentry);
da502956 614 spin_lock(&dentry->d_lock);
1da177e4
LT
615 }
616
617 /*
618 * Somebody else still using it?
619 *
620 * If it's a directory, we can't drop it
621 * for fear of somebody re-populating it
622 * with children (even though dropping it
623 * would make it unreachable from the root,
624 * we might still populate it if it was a
625 * working directory or similar).
50e69630
AV
626 * We also need to leave mountpoints alone,
627 * directory or not.
1da177e4 628 */
50e69630
AV
629 if (dentry->d_count > 1 && dentry->d_inode) {
630 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 631 spin_unlock(&dentry->d_lock);
1da177e4
LT
632 return -EBUSY;
633 }
634 }
635
636 __d_drop(dentry);
637 spin_unlock(&dentry->d_lock);
1da177e4
LT
638 return 0;
639}
ec4f8605 640EXPORT_SYMBOL(d_invalidate);
1da177e4 641
b5c84bf6 642/* This must be called with d_lock held */
dc0474be 643static inline void __dget_dlock(struct dentry *dentry)
23044507 644{
b7ab39f6 645 dentry->d_count++;
23044507
NP
646}
647
dc0474be 648static inline void __dget(struct dentry *dentry)
1da177e4 649{
23044507 650 spin_lock(&dentry->d_lock);
dc0474be 651 __dget_dlock(dentry);
23044507 652 spin_unlock(&dentry->d_lock);
1da177e4
LT
653}
654
b7ab39f6
NP
655struct dentry *dget_parent(struct dentry *dentry)
656{
657 struct dentry *ret;
658
659repeat:
a734eb45
NP
660 /*
661 * Don't need rcu_dereference because we re-check it was correct under
662 * the lock.
663 */
664 rcu_read_lock();
b7ab39f6 665 ret = dentry->d_parent;
a734eb45
NP
666 spin_lock(&ret->d_lock);
667 if (unlikely(ret != dentry->d_parent)) {
668 spin_unlock(&ret->d_lock);
669 rcu_read_unlock();
b7ab39f6
NP
670 goto repeat;
671 }
a734eb45 672 rcu_read_unlock();
b7ab39f6
NP
673 BUG_ON(!ret->d_count);
674 ret->d_count++;
675 spin_unlock(&ret->d_lock);
b7ab39f6
NP
676 return ret;
677}
678EXPORT_SYMBOL(dget_parent);
679
1da177e4
LT
680/**
681 * d_find_alias - grab a hashed alias of inode
682 * @inode: inode in question
683 * @want_discon: flag, used by d_splice_alias, to request
684 * that only a DISCONNECTED alias be returned.
685 *
686 * If inode has a hashed alias, or is a directory and has any alias,
687 * acquire the reference to alias and return it. Otherwise return NULL.
688 * Notice that if inode is a directory there can be only one alias and
689 * it can be unhashed only if it has no children, or if it is the root
690 * of a filesystem.
691 *
21c0d8fd 692 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 693 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 694 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 695 */
da502956 696static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 697{
da502956 698 struct dentry *alias, *discon_alias;
1da177e4 699
da502956
NP
700again:
701 discon_alias = NULL;
702 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
703 spin_lock(&alias->d_lock);
1da177e4 704 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 705 if (IS_ROOT(alias) &&
da502956 706 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 707 discon_alias = alias;
da502956 708 } else if (!want_discon) {
dc0474be 709 __dget_dlock(alias);
da502956
NP
710 spin_unlock(&alias->d_lock);
711 return alias;
712 }
713 }
714 spin_unlock(&alias->d_lock);
715 }
716 if (discon_alias) {
717 alias = discon_alias;
718 spin_lock(&alias->d_lock);
719 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
720 if (IS_ROOT(alias) &&
721 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 722 __dget_dlock(alias);
da502956 723 spin_unlock(&alias->d_lock);
1da177e4
LT
724 return alias;
725 }
726 }
da502956
NP
727 spin_unlock(&alias->d_lock);
728 goto again;
1da177e4 729 }
da502956 730 return NULL;
1da177e4
LT
731}
732
da502956 733struct dentry *d_find_alias(struct inode *inode)
1da177e4 734{
214fda1f
DH
735 struct dentry *de = NULL;
736
737 if (!list_empty(&inode->i_dentry)) {
873feea0 738 spin_lock(&inode->i_lock);
214fda1f 739 de = __d_find_alias(inode, 0);
873feea0 740 spin_unlock(&inode->i_lock);
214fda1f 741 }
1da177e4
LT
742 return de;
743}
ec4f8605 744EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
745
746/*
747 * Try to kill dentries associated with this inode.
748 * WARNING: you must own a reference to inode.
749 */
750void d_prune_aliases(struct inode *inode)
751{
0cdca3f9 752 struct dentry *dentry;
1da177e4 753restart:
873feea0 754 spin_lock(&inode->i_lock);
0cdca3f9 755 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 756 spin_lock(&dentry->d_lock);
b7ab39f6 757 if (!dentry->d_count) {
dc0474be 758 __dget_dlock(dentry);
1da177e4
LT
759 __d_drop(dentry);
760 spin_unlock(&dentry->d_lock);
873feea0 761 spin_unlock(&inode->i_lock);
1da177e4
LT
762 dput(dentry);
763 goto restart;
764 }
765 spin_unlock(&dentry->d_lock);
766 }
873feea0 767 spin_unlock(&inode->i_lock);
1da177e4 768}
ec4f8605 769EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
770
771/*
77812a1e
NP
772 * Try to throw away a dentry - free the inode, dput the parent.
773 * Requires dentry->d_lock is held, and dentry->d_count == 0.
774 * Releases dentry->d_lock.
d702ccb3 775 *
77812a1e 776 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 777 */
77812a1e 778static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 779 __releases(dentry->d_lock)
1da177e4 780{
77812a1e 781 struct dentry *parent;
d52b9086 782
77812a1e 783 parent = dentry_kill(dentry, 0);
d52b9086 784 /*
77812a1e
NP
785 * If dentry_kill returns NULL, we have nothing more to do.
786 * if it returns the same dentry, trylocks failed. In either
787 * case, just loop again.
788 *
789 * Otherwise, we need to prune ancestors too. This is necessary
790 * to prevent quadratic behavior of shrink_dcache_parent(), but
791 * is also expected to be beneficial in reducing dentry cache
792 * fragmentation.
d52b9086 793 */
77812a1e
NP
794 if (!parent)
795 return;
796 if (parent == dentry)
797 return;
798
799 /* Prune ancestors. */
800 dentry = parent;
d52b9086 801 while (dentry) {
b7ab39f6 802 spin_lock(&dentry->d_lock);
89e60548
NP
803 if (dentry->d_count > 1) {
804 dentry->d_count--;
805 spin_unlock(&dentry->d_lock);
806 return;
807 }
77812a1e 808 dentry = dentry_kill(dentry, 1);
d52b9086 809 }
1da177e4
LT
810}
811
3049cfe2 812static void shrink_dentry_list(struct list_head *list)
1da177e4 813{
da3bbdd4 814 struct dentry *dentry;
da3bbdd4 815
ec33679d
NP
816 rcu_read_lock();
817 for (;;) {
ec33679d
NP
818 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
819 if (&dentry->d_lru == list)
820 break; /* empty */
821 spin_lock(&dentry->d_lock);
822 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
823 spin_unlock(&dentry->d_lock);
23044507
NP
824 continue;
825 }
826
1da177e4
LT
827 /*
828 * We found an inuse dentry which was not removed from
da3bbdd4
KM
829 * the LRU because of laziness during lookup. Do not free
830 * it - just keep it off the LRU list.
1da177e4 831 */
b7ab39f6 832 if (dentry->d_count) {
ec33679d 833 dentry_lru_del(dentry);
da3bbdd4 834 spin_unlock(&dentry->d_lock);
1da177e4
LT
835 continue;
836 }
ec33679d 837
ec33679d 838 rcu_read_unlock();
77812a1e
NP
839
840 try_prune_one_dentry(dentry);
841
ec33679d 842 rcu_read_lock();
da3bbdd4 843 }
ec33679d 844 rcu_read_unlock();
3049cfe2
CH
845}
846
847/**
b48f03b3
DC
848 * prune_dcache_sb - shrink the dcache
849 * @sb: superblock
850 * @count: number of entries to try to free
851 *
852 * Attempt to shrink the superblock dcache LRU by @count entries. This is
853 * done when we need more memory an called from the superblock shrinker
854 * function.
3049cfe2 855 *
b48f03b3
DC
856 * This function may fail to free any resources if all the dentries are in
857 * use.
3049cfe2 858 */
b48f03b3 859void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 860{
3049cfe2
CH
861 struct dentry *dentry;
862 LIST_HEAD(referenced);
863 LIST_HEAD(tmp);
3049cfe2 864
23044507
NP
865relock:
866 spin_lock(&dcache_lru_lock);
3049cfe2
CH
867 while (!list_empty(&sb->s_dentry_lru)) {
868 dentry = list_entry(sb->s_dentry_lru.prev,
869 struct dentry, d_lru);
870 BUG_ON(dentry->d_sb != sb);
871
23044507
NP
872 if (!spin_trylock(&dentry->d_lock)) {
873 spin_unlock(&dcache_lru_lock);
874 cpu_relax();
875 goto relock;
876 }
877
b48f03b3 878 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
879 dentry->d_flags &= ~DCACHE_REFERENCED;
880 list_move(&dentry->d_lru, &referenced);
3049cfe2 881 spin_unlock(&dentry->d_lock);
23044507
NP
882 } else {
883 list_move_tail(&dentry->d_lru, &tmp);
eaf5f907 884 dentry->d_flags |= DCACHE_SHRINK_LIST;
23044507 885 spin_unlock(&dentry->d_lock);
b0d40c92 886 if (!--count)
23044507 887 break;
3049cfe2 888 }
ec33679d 889 cond_resched_lock(&dcache_lru_lock);
3049cfe2 890 }
da3bbdd4
KM
891 if (!list_empty(&referenced))
892 list_splice(&referenced, &sb->s_dentry_lru);
23044507 893 spin_unlock(&dcache_lru_lock);
ec33679d
NP
894
895 shrink_dentry_list(&tmp);
da3bbdd4
KM
896}
897
1da177e4
LT
898/**
899 * shrink_dcache_sb - shrink dcache for a superblock
900 * @sb: superblock
901 *
3049cfe2
CH
902 * Shrink the dcache for the specified super block. This is used to free
903 * the dcache before unmounting a file system.
1da177e4 904 */
3049cfe2 905void shrink_dcache_sb(struct super_block *sb)
1da177e4 906{
3049cfe2
CH
907 LIST_HEAD(tmp);
908
23044507 909 spin_lock(&dcache_lru_lock);
3049cfe2
CH
910 while (!list_empty(&sb->s_dentry_lru)) {
911 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 912 spin_unlock(&dcache_lru_lock);
3049cfe2 913 shrink_dentry_list(&tmp);
ec33679d 914 spin_lock(&dcache_lru_lock);
3049cfe2 915 }
23044507 916 spin_unlock(&dcache_lru_lock);
1da177e4 917}
ec4f8605 918EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 919
c636ebdb
DH
920/*
921 * destroy a single subtree of dentries for unmount
922 * - see the comments on shrink_dcache_for_umount() for a description of the
923 * locking
924 */
925static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
926{
927 struct dentry *parent;
928
929 BUG_ON(!IS_ROOT(dentry));
930
c636ebdb
DH
931 for (;;) {
932 /* descend to the first leaf in the current subtree */
43c1c9cd 933 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
934 dentry = list_entry(dentry->d_subdirs.next,
935 struct dentry, d_u.d_child);
c636ebdb
DH
936
937 /* consume the dentries from this leaf up through its parents
938 * until we find one with children or run out altogether */
939 do {
940 struct inode *inode;
941
f0023bc6
SW
942 /*
943 * remove the dentry from the lru, and inform
944 * the fs that this dentry is about to be
945 * unhashed and destroyed.
946 */
947 dentry_lru_prune(dentry);
43c1c9cd
DH
948 __d_shrink(dentry);
949
b7ab39f6 950 if (dentry->d_count != 0) {
c636ebdb
DH
951 printk(KERN_ERR
952 "BUG: Dentry %p{i=%lx,n=%s}"
953 " still in use (%d)"
954 " [unmount of %s %s]\n",
955 dentry,
956 dentry->d_inode ?
957 dentry->d_inode->i_ino : 0UL,
958 dentry->d_name.name,
b7ab39f6 959 dentry->d_count,
c636ebdb
DH
960 dentry->d_sb->s_type->name,
961 dentry->d_sb->s_id);
962 BUG();
963 }
964
2fd6b7f5 965 if (IS_ROOT(dentry)) {
c636ebdb 966 parent = NULL;
2fd6b7f5
NP
967 list_del(&dentry->d_u.d_child);
968 } else {
871c0067 969 parent = dentry->d_parent;
b7ab39f6 970 parent->d_count--;
2fd6b7f5 971 list_del(&dentry->d_u.d_child);
871c0067 972 }
c636ebdb 973
c636ebdb
DH
974 inode = dentry->d_inode;
975 if (inode) {
976 dentry->d_inode = NULL;
977 list_del_init(&dentry->d_alias);
978 if (dentry->d_op && dentry->d_op->d_iput)
979 dentry->d_op->d_iput(dentry, inode);
980 else
981 iput(inode);
982 }
983
984 d_free(dentry);
985
986 /* finished when we fall off the top of the tree,
987 * otherwise we ascend to the parent and move to the
988 * next sibling if there is one */
989 if (!parent)
312d3ca8 990 return;
c636ebdb 991 dentry = parent;
c636ebdb
DH
992 } while (list_empty(&dentry->d_subdirs));
993
994 dentry = list_entry(dentry->d_subdirs.next,
995 struct dentry, d_u.d_child);
996 }
997}
998
999/*
1000 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 1001 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
1002 * - the superblock is detached from all mountings and open files, so the
1003 * dentry trees will not be rearranged by the VFS
1004 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1005 * any dentries belonging to this superblock that it comes across
1006 * - the filesystem itself is no longer permitted to rearrange the dentries
1007 * in this superblock
1008 */
1009void shrink_dcache_for_umount(struct super_block *sb)
1010{
1011 struct dentry *dentry;
1012
1013 if (down_read_trylock(&sb->s_umount))
1014 BUG();
1015
1016 dentry = sb->s_root;
1017 sb->s_root = NULL;
b7ab39f6 1018 dentry->d_count--;
c636ebdb
DH
1019 shrink_dcache_for_umount_subtree(dentry);
1020
ceb5bdc2
NP
1021 while (!hlist_bl_empty(&sb->s_anon)) {
1022 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1023 shrink_dcache_for_umount_subtree(dentry);
1024 }
1025}
1026
c826cb7d
LT
1027/*
1028 * This tries to ascend one level of parenthood, but
1029 * we can race with renaming, so we need to re-check
1030 * the parenthood after dropping the lock and check
1031 * that the sequence number still matches.
1032 */
1033static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1034{
1035 struct dentry *new = old->d_parent;
1036
1037 rcu_read_lock();
1038 spin_unlock(&old->d_lock);
1039 spin_lock(&new->d_lock);
1040
1041 /*
1042 * might go back up the wrong parent if we have had a rename
1043 * or deletion
1044 */
1045 if (new != old->d_parent ||
c83ce989 1046 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
1047 (!locked && read_seqretry(&rename_lock, seq))) {
1048 spin_unlock(&new->d_lock);
1049 new = NULL;
1050 }
1051 rcu_read_unlock();
1052 return new;
1053}
1054
1055
1da177e4
LT
1056/*
1057 * Search for at least 1 mount point in the dentry's subdirs.
1058 * We descend to the next level whenever the d_subdirs
1059 * list is non-empty and continue searching.
1060 */
1061
1062/**
1063 * have_submounts - check for mounts over a dentry
1064 * @parent: dentry to check.
1065 *
1066 * Return true if the parent or its subdirectories contain
1067 * a mount point
1068 */
1da177e4
LT
1069int have_submounts(struct dentry *parent)
1070{
949854d0 1071 struct dentry *this_parent;
1da177e4 1072 struct list_head *next;
949854d0 1073 unsigned seq;
58db63d0 1074 int locked = 0;
949854d0 1075
949854d0 1076 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1077again:
1078 this_parent = parent;
1da177e4 1079
1da177e4
LT
1080 if (d_mountpoint(parent))
1081 goto positive;
2fd6b7f5 1082 spin_lock(&this_parent->d_lock);
1da177e4
LT
1083repeat:
1084 next = this_parent->d_subdirs.next;
1085resume:
1086 while (next != &this_parent->d_subdirs) {
1087 struct list_head *tmp = next;
5160ee6f 1088 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1089 next = tmp->next;
2fd6b7f5
NP
1090
1091 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1092 /* Have we found a mount point ? */
2fd6b7f5
NP
1093 if (d_mountpoint(dentry)) {
1094 spin_unlock(&dentry->d_lock);
1095 spin_unlock(&this_parent->d_lock);
1da177e4 1096 goto positive;
2fd6b7f5 1097 }
1da177e4 1098 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1099 spin_unlock(&this_parent->d_lock);
1100 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1101 this_parent = dentry;
2fd6b7f5 1102 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1103 goto repeat;
1104 }
2fd6b7f5 1105 spin_unlock(&dentry->d_lock);
1da177e4
LT
1106 }
1107 /*
1108 * All done at this level ... ascend and resume the search.
1109 */
1110 if (this_parent != parent) {
c826cb7d
LT
1111 struct dentry *child = this_parent;
1112 this_parent = try_to_ascend(this_parent, locked, seq);
1113 if (!this_parent)
949854d0 1114 goto rename_retry;
949854d0 1115 next = child->d_u.d_child.next;
1da177e4
LT
1116 goto resume;
1117 }
2fd6b7f5 1118 spin_unlock(&this_parent->d_lock);
58db63d0 1119 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1120 goto rename_retry;
58db63d0
NP
1121 if (locked)
1122 write_sequnlock(&rename_lock);
1da177e4
LT
1123 return 0; /* No mount points found in tree */
1124positive:
58db63d0 1125 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1126 goto rename_retry;
58db63d0
NP
1127 if (locked)
1128 write_sequnlock(&rename_lock);
1da177e4 1129 return 1;
58db63d0
NP
1130
1131rename_retry:
1132 locked = 1;
1133 write_seqlock(&rename_lock);
1134 goto again;
1da177e4 1135}
ec4f8605 1136EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1137
1138/*
1139 * Search the dentry child list for the specified parent,
1140 * and move any unused dentries to the end of the unused
1141 * list for prune_dcache(). We descend to the next level
1142 * whenever the d_subdirs list is non-empty and continue
1143 * searching.
1144 *
1145 * It returns zero iff there are no unused children,
1146 * otherwise it returns the number of children moved to
1147 * the end of the unused list. This may not be the total
1148 * number of unused children, because select_parent can
1149 * drop the lock and return early due to latency
1150 * constraints.
1151 */
b48f03b3 1152static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1153{
949854d0 1154 struct dentry *this_parent;
1da177e4 1155 struct list_head *next;
949854d0 1156 unsigned seq;
1da177e4 1157 int found = 0;
58db63d0 1158 int locked = 0;
1da177e4 1159
949854d0 1160 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1161again:
1162 this_parent = parent;
2fd6b7f5 1163 spin_lock(&this_parent->d_lock);
1da177e4
LT
1164repeat:
1165 next = this_parent->d_subdirs.next;
1166resume:
1167 while (next != &this_parent->d_subdirs) {
1168 struct list_head *tmp = next;
5160ee6f 1169 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1170 next = tmp->next;
1171
2fd6b7f5 1172 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1173
b48f03b3
DC
1174 /*
1175 * move only zero ref count dentries to the dispose list.
eaf5f907
MS
1176 *
1177 * Those which are presently on the shrink list, being processed
1178 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1179 * loop in shrink_dcache_parent() might not make any progress
1180 * and loop forever.
1da177e4 1181 */
eaf5f907
MS
1182 if (dentry->d_count) {
1183 dentry_lru_del(dentry);
1184 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
b48f03b3 1185 dentry_lru_move_list(dentry, dispose);
eaf5f907 1186 dentry->d_flags |= DCACHE_SHRINK_LIST;
1da177e4
LT
1187 found++;
1188 }
1da177e4
LT
1189 /*
1190 * We can return to the caller if we have found some (this
1191 * ensures forward progress). We'll be coming back to find
1192 * the rest.
1193 */
2fd6b7f5
NP
1194 if (found && need_resched()) {
1195 spin_unlock(&dentry->d_lock);
1da177e4 1196 goto out;
2fd6b7f5 1197 }
1da177e4
LT
1198
1199 /*
1200 * Descend a level if the d_subdirs list is non-empty.
1201 */
1202 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1203 spin_unlock(&this_parent->d_lock);
1204 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1205 this_parent = dentry;
2fd6b7f5 1206 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1207 goto repeat;
1208 }
2fd6b7f5
NP
1209
1210 spin_unlock(&dentry->d_lock);
1da177e4
LT
1211 }
1212 /*
1213 * All done at this level ... ascend and resume the search.
1214 */
1215 if (this_parent != parent) {
c826cb7d
LT
1216 struct dentry *child = this_parent;
1217 this_parent = try_to_ascend(this_parent, locked, seq);
1218 if (!this_parent)
949854d0 1219 goto rename_retry;
949854d0 1220 next = child->d_u.d_child.next;
1da177e4
LT
1221 goto resume;
1222 }
1223out:
2fd6b7f5 1224 spin_unlock(&this_parent->d_lock);
58db63d0 1225 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1226 goto rename_retry;
58db63d0
NP
1227 if (locked)
1228 write_sequnlock(&rename_lock);
1da177e4 1229 return found;
58db63d0
NP
1230
1231rename_retry:
1232 if (found)
1233 return found;
1234 locked = 1;
1235 write_seqlock(&rename_lock);
1236 goto again;
1da177e4
LT
1237}
1238
1239/**
1240 * shrink_dcache_parent - prune dcache
1241 * @parent: parent of entries to prune
1242 *
1243 * Prune the dcache to remove unused children of the parent dentry.
1244 */
1da177e4
LT
1245void shrink_dcache_parent(struct dentry * parent)
1246{
b48f03b3 1247 LIST_HEAD(dispose);
1da177e4
LT
1248 int found;
1249
b48f03b3
DC
1250 while ((found = select_parent(parent, &dispose)) != 0)
1251 shrink_dentry_list(&dispose);
1da177e4 1252}
ec4f8605 1253EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1254
1da177e4 1255/**
a4464dbc
AV
1256 * __d_alloc - allocate a dcache entry
1257 * @sb: filesystem it will belong to
1da177e4
LT
1258 * @name: qstr of the name
1259 *
1260 * Allocates a dentry. It returns %NULL if there is insufficient memory
1261 * available. On a success the dentry is returned. The name passed in is
1262 * copied and the copy passed in may be reused after this call.
1263 */
1264
a4464dbc 1265struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1266{
1267 struct dentry *dentry;
1268 char *dname;
1269
e12ba74d 1270 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1271 if (!dentry)
1272 return NULL;
1273
1274 if (name->len > DNAME_INLINE_LEN-1) {
1275 dname = kmalloc(name->len + 1, GFP_KERNEL);
1276 if (!dname) {
1277 kmem_cache_free(dentry_cache, dentry);
1278 return NULL;
1279 }
1280 } else {
1281 dname = dentry->d_iname;
1282 }
1283 dentry->d_name.name = dname;
1284
1285 dentry->d_name.len = name->len;
1286 dentry->d_name.hash = name->hash;
1287 memcpy(dname, name->name, name->len);
1288 dname[name->len] = 0;
1289
b7ab39f6 1290 dentry->d_count = 1;
dea3667b 1291 dentry->d_flags = 0;
1da177e4 1292 spin_lock_init(&dentry->d_lock);
31e6b01f 1293 seqcount_init(&dentry->d_seq);
1da177e4 1294 dentry->d_inode = NULL;
a4464dbc
AV
1295 dentry->d_parent = dentry;
1296 dentry->d_sb = sb;
1da177e4
LT
1297 dentry->d_op = NULL;
1298 dentry->d_fsdata = NULL;
ceb5bdc2 1299 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1300 INIT_LIST_HEAD(&dentry->d_lru);
1301 INIT_LIST_HEAD(&dentry->d_subdirs);
1302 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1303 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1304 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1305
3e880fb5 1306 this_cpu_inc(nr_dentry);
312d3ca8 1307
1da177e4
LT
1308 return dentry;
1309}
a4464dbc
AV
1310
1311/**
1312 * d_alloc - allocate a dcache entry
1313 * @parent: parent of entry to allocate
1314 * @name: qstr of the name
1315 *
1316 * Allocates a dentry. It returns %NULL if there is insufficient memory
1317 * available. On a success the dentry is returned. The name passed in is
1318 * copied and the copy passed in may be reused after this call.
1319 */
1320struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1321{
1322 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1323 if (!dentry)
1324 return NULL;
1325
1326 spin_lock(&parent->d_lock);
1327 /*
1328 * don't need child lock because it is not subject
1329 * to concurrency here
1330 */
1331 __dget_dlock(parent);
1332 dentry->d_parent = parent;
1333 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1334 spin_unlock(&parent->d_lock);
1335
1336 return dentry;
1337}
ec4f8605 1338EXPORT_SYMBOL(d_alloc);
1da177e4 1339
4b936885
NP
1340struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1341{
a4464dbc
AV
1342 struct dentry *dentry = __d_alloc(sb, name);
1343 if (dentry)
4b936885 1344 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1345 return dentry;
1346}
1347EXPORT_SYMBOL(d_alloc_pseudo);
1348
1da177e4
LT
1349struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1350{
1351 struct qstr q;
1352
1353 q.name = name;
1354 q.len = strlen(name);
1355 q.hash = full_name_hash(q.name, q.len);
1356 return d_alloc(parent, &q);
1357}
ef26ca97 1358EXPORT_SYMBOL(d_alloc_name);
1da177e4 1359
fb045adb
NP
1360void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1361{
6f7f7caa
LT
1362 WARN_ON_ONCE(dentry->d_op);
1363 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1364 DCACHE_OP_COMPARE |
1365 DCACHE_OP_REVALIDATE |
1366 DCACHE_OP_DELETE ));
1367 dentry->d_op = op;
1368 if (!op)
1369 return;
1370 if (op->d_hash)
1371 dentry->d_flags |= DCACHE_OP_HASH;
1372 if (op->d_compare)
1373 dentry->d_flags |= DCACHE_OP_COMPARE;
1374 if (op->d_revalidate)
1375 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1376 if (op->d_delete)
1377 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1378 if (op->d_prune)
1379 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1380
1381}
1382EXPORT_SYMBOL(d_set_d_op);
1383
360da900
OH
1384static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1385{
b23fb0a6 1386 spin_lock(&dentry->d_lock);
9875cf80
DH
1387 if (inode) {
1388 if (unlikely(IS_AUTOMOUNT(inode)))
1389 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1390 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1391 }
360da900 1392 dentry->d_inode = inode;
31e6b01f 1393 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1394 spin_unlock(&dentry->d_lock);
360da900
OH
1395 fsnotify_d_instantiate(dentry, inode);
1396}
1397
1da177e4
LT
1398/**
1399 * d_instantiate - fill in inode information for a dentry
1400 * @entry: dentry to complete
1401 * @inode: inode to attach to this dentry
1402 *
1403 * Fill in inode information in the entry.
1404 *
1405 * This turns negative dentries into productive full members
1406 * of society.
1407 *
1408 * NOTE! This assumes that the inode count has been incremented
1409 * (or otherwise set) by the caller to indicate that it is now
1410 * in use by the dcache.
1411 */
1412
1413void d_instantiate(struct dentry *entry, struct inode * inode)
1414{
28133c7b 1415 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1416 if (inode)
1417 spin_lock(&inode->i_lock);
360da900 1418 __d_instantiate(entry, inode);
873feea0
NP
1419 if (inode)
1420 spin_unlock(&inode->i_lock);
1da177e4
LT
1421 security_d_instantiate(entry, inode);
1422}
ec4f8605 1423EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1424
1425/**
1426 * d_instantiate_unique - instantiate a non-aliased dentry
1427 * @entry: dentry to instantiate
1428 * @inode: inode to attach to this dentry
1429 *
1430 * Fill in inode information in the entry. On success, it returns NULL.
1431 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1432 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1433 *
1434 * Note that in order to avoid conflicts with rename() etc, the caller
1435 * had better be holding the parent directory semaphore.
e866cfa9
OD
1436 *
1437 * This also assumes that the inode count has been incremented
1438 * (or otherwise set) by the caller to indicate that it is now
1439 * in use by the dcache.
1da177e4 1440 */
770bfad8
DH
1441static struct dentry *__d_instantiate_unique(struct dentry *entry,
1442 struct inode *inode)
1da177e4
LT
1443{
1444 struct dentry *alias;
1445 int len = entry->d_name.len;
1446 const char *name = entry->d_name.name;
1447 unsigned int hash = entry->d_name.hash;
1448
770bfad8 1449 if (!inode) {
360da900 1450 __d_instantiate(entry, NULL);
770bfad8
DH
1451 return NULL;
1452 }
1453
1da177e4 1454 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1455 /*
1456 * Don't need alias->d_lock here, because aliases with
1457 * d_parent == entry->d_parent are not subject to name or
1458 * parent changes, because the parent inode i_mutex is held.
1459 */
12f8ad4b 1460 if (alias->d_name.hash != hash)
1da177e4
LT
1461 continue;
1462 if (alias->d_parent != entry->d_parent)
1463 continue;
ee983e89
LT
1464 if (alias->d_name.len != len)
1465 continue;
12f8ad4b 1466 if (dentry_cmp(alias, name, len))
1da177e4 1467 continue;
dc0474be 1468 __dget(alias);
1da177e4
LT
1469 return alias;
1470 }
770bfad8 1471
360da900 1472 __d_instantiate(entry, inode);
1da177e4
LT
1473 return NULL;
1474}
770bfad8
DH
1475
1476struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1477{
1478 struct dentry *result;
1479
1480 BUG_ON(!list_empty(&entry->d_alias));
1481
873feea0
NP
1482 if (inode)
1483 spin_lock(&inode->i_lock);
770bfad8 1484 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1485 if (inode)
1486 spin_unlock(&inode->i_lock);
770bfad8
DH
1487
1488 if (!result) {
1489 security_d_instantiate(entry, inode);
1490 return NULL;
1491 }
1492
1493 BUG_ON(!d_unhashed(result));
1494 iput(inode);
1495 return result;
1496}
1497
1da177e4
LT
1498EXPORT_SYMBOL(d_instantiate_unique);
1499
adc0e91a
AV
1500struct dentry *d_make_root(struct inode *root_inode)
1501{
1502 struct dentry *res = NULL;
1503
1504 if (root_inode) {
1505 static const struct qstr name = { .name = "/", .len = 1 };
1506
1507 res = __d_alloc(root_inode->i_sb, &name);
1508 if (res)
1509 d_instantiate(res, root_inode);
1510 else
1511 iput(root_inode);
1512 }
1513 return res;
1514}
1515EXPORT_SYMBOL(d_make_root);
1516
d891eedb
BF
1517static struct dentry * __d_find_any_alias(struct inode *inode)
1518{
1519 struct dentry *alias;
1520
1521 if (list_empty(&inode->i_dentry))
1522 return NULL;
1523 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1524 __dget(alias);
1525 return alias;
1526}
1527
46f72b34
SW
1528/**
1529 * d_find_any_alias - find any alias for a given inode
1530 * @inode: inode to find an alias for
1531 *
1532 * If any aliases exist for the given inode, take and return a
1533 * reference for one of them. If no aliases exist, return %NULL.
1534 */
1535struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1536{
1537 struct dentry *de;
1538
1539 spin_lock(&inode->i_lock);
1540 de = __d_find_any_alias(inode);
1541 spin_unlock(&inode->i_lock);
1542 return de;
1543}
46f72b34 1544EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1545
4ea3ada2
CH
1546/**
1547 * d_obtain_alias - find or allocate a dentry for a given inode
1548 * @inode: inode to allocate the dentry for
1549 *
1550 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1551 * similar open by handle operations. The returned dentry may be anonymous,
1552 * or may have a full name (if the inode was already in the cache).
1553 *
1554 * When called on a directory inode, we must ensure that the inode only ever
1555 * has one dentry. If a dentry is found, that is returned instead of
1556 * allocating a new one.
1557 *
1558 * On successful return, the reference to the inode has been transferred
44003728
CH
1559 * to the dentry. In case of an error the reference on the inode is released.
1560 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1561 * be passed in and will be the error will be propagate to the return value,
1562 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1563 */
1564struct dentry *d_obtain_alias(struct inode *inode)
1565{
9308a612
CH
1566 static const struct qstr anonstring = { .name = "" };
1567 struct dentry *tmp;
1568 struct dentry *res;
4ea3ada2
CH
1569
1570 if (!inode)
44003728 1571 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1572 if (IS_ERR(inode))
1573 return ERR_CAST(inode);
1574
d891eedb 1575 res = d_find_any_alias(inode);
9308a612
CH
1576 if (res)
1577 goto out_iput;
1578
a4464dbc 1579 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1580 if (!tmp) {
1581 res = ERR_PTR(-ENOMEM);
1582 goto out_iput;
4ea3ada2 1583 }
b5c84bf6 1584
873feea0 1585 spin_lock(&inode->i_lock);
d891eedb 1586 res = __d_find_any_alias(inode);
9308a612 1587 if (res) {
873feea0 1588 spin_unlock(&inode->i_lock);
9308a612
CH
1589 dput(tmp);
1590 goto out_iput;
1591 }
1592
1593 /* attach a disconnected dentry */
1594 spin_lock(&tmp->d_lock);
9308a612
CH
1595 tmp->d_inode = inode;
1596 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1597 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1598 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1599 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1600 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1601 spin_unlock(&tmp->d_lock);
873feea0 1602 spin_unlock(&inode->i_lock);
24ff6663 1603 security_d_instantiate(tmp, inode);
9308a612 1604
9308a612
CH
1605 return tmp;
1606
1607 out_iput:
24ff6663
JB
1608 if (res && !IS_ERR(res))
1609 security_d_instantiate(res, inode);
9308a612
CH
1610 iput(inode);
1611 return res;
4ea3ada2 1612}
adc48720 1613EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1614
1615/**
1616 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1617 * @inode: the inode which may have a disconnected dentry
1618 * @dentry: a negative dentry which we want to point to the inode.
1619 *
1620 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1621 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1622 * and return it, else simply d_add the inode to the dentry and return NULL.
1623 *
1624 * This is needed in the lookup routine of any filesystem that is exportable
1625 * (via knfsd) so that we can build dcache paths to directories effectively.
1626 *
1627 * If a dentry was found and moved, then it is returned. Otherwise NULL
1628 * is returned. This matches the expected return value of ->lookup.
1629 *
1630 */
1631struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1632{
1633 struct dentry *new = NULL;
1634
a9049376
AV
1635 if (IS_ERR(inode))
1636 return ERR_CAST(inode);
1637
21c0d8fd 1638 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1639 spin_lock(&inode->i_lock);
1da177e4
LT
1640 new = __d_find_alias(inode, 1);
1641 if (new) {
1642 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1643 spin_unlock(&inode->i_lock);
1da177e4 1644 security_d_instantiate(new, inode);
1da177e4
LT
1645 d_move(new, dentry);
1646 iput(inode);
1647 } else {
873feea0 1648 /* already taking inode->i_lock, so d_add() by hand */
360da900 1649 __d_instantiate(dentry, inode);
873feea0 1650 spin_unlock(&inode->i_lock);
1da177e4
LT
1651 security_d_instantiate(dentry, inode);
1652 d_rehash(dentry);
1653 }
1654 } else
1655 d_add(dentry, inode);
1656 return new;
1657}
ec4f8605 1658EXPORT_SYMBOL(d_splice_alias);
1da177e4 1659
9403540c
BN
1660/**
1661 * d_add_ci - lookup or allocate new dentry with case-exact name
1662 * @inode: the inode case-insensitive lookup has found
1663 * @dentry: the negative dentry that was passed to the parent's lookup func
1664 * @name: the case-exact name to be associated with the returned dentry
1665 *
1666 * This is to avoid filling the dcache with case-insensitive names to the
1667 * same inode, only the actual correct case is stored in the dcache for
1668 * case-insensitive filesystems.
1669 *
1670 * For a case-insensitive lookup match and if the the case-exact dentry
1671 * already exists in in the dcache, use it and return it.
1672 *
1673 * If no entry exists with the exact case name, allocate new dentry with
1674 * the exact case, and return the spliced entry.
1675 */
e45b590b 1676struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1677 struct qstr *name)
1678{
1679 int error;
1680 struct dentry *found;
1681 struct dentry *new;
1682
b6520c81
CH
1683 /*
1684 * First check if a dentry matching the name already exists,
1685 * if not go ahead and create it now.
1686 */
9403540c 1687 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1688 if (!found) {
1689 new = d_alloc(dentry->d_parent, name);
1690 if (!new) {
1691 error = -ENOMEM;
1692 goto err_out;
1693 }
b6520c81 1694
9403540c
BN
1695 found = d_splice_alias(inode, new);
1696 if (found) {
1697 dput(new);
1698 return found;
1699 }
1700 return new;
1701 }
b6520c81
CH
1702
1703 /*
1704 * If a matching dentry exists, and it's not negative use it.
1705 *
1706 * Decrement the reference count to balance the iget() done
1707 * earlier on.
1708 */
9403540c
BN
1709 if (found->d_inode) {
1710 if (unlikely(found->d_inode != inode)) {
1711 /* This can't happen because bad inodes are unhashed. */
1712 BUG_ON(!is_bad_inode(inode));
1713 BUG_ON(!is_bad_inode(found->d_inode));
1714 }
9403540c
BN
1715 iput(inode);
1716 return found;
1717 }
b6520c81 1718
9403540c 1719 /*
44396f4b
JB
1720 * We are going to instantiate this dentry, unhash it and clear the
1721 * lookup flag so we can do that.
9403540c 1722 */
44396f4b
JB
1723 if (unlikely(d_need_lookup(found)))
1724 d_clear_need_lookup(found);
b6520c81 1725
9403540c 1726 /*
9403540c 1727 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1728 * already has a dentry.
9403540c 1729 */
4513d899
AV
1730 new = d_splice_alias(inode, found);
1731 if (new) {
1732 dput(found);
1733 found = new;
9403540c 1734 }
4513d899 1735 return found;
9403540c
BN
1736
1737err_out:
1738 iput(inode);
1739 return ERR_PTR(error);
1740}
ec4f8605 1741EXPORT_SYMBOL(d_add_ci);
1da177e4 1742
12f8ad4b
LT
1743/*
1744 * Do the slow-case of the dentry name compare.
1745 *
1746 * Unlike the dentry_cmp() function, we need to atomically
1747 * load the name, length and inode information, so that the
1748 * filesystem can rely on them, and can use the 'name' and
1749 * 'len' information without worrying about walking off the
1750 * end of memory etc.
1751 *
1752 * Thus the read_seqcount_retry() and the "duplicate" info
1753 * in arguments (the low-level filesystem should not look
1754 * at the dentry inode or name contents directly, since
1755 * rename can change them while we're in RCU mode).
1756 */
1757enum slow_d_compare {
1758 D_COMP_OK,
1759 D_COMP_NOMATCH,
1760 D_COMP_SEQRETRY,
1761};
1762
1763static noinline enum slow_d_compare slow_dentry_cmp(
1764 const struct dentry *parent,
1765 struct inode *inode,
1766 struct dentry *dentry,
1767 unsigned int seq,
1768 const struct qstr *name)
1769{
1770 int tlen = dentry->d_name.len;
1771 const char *tname = dentry->d_name.name;
1772 struct inode *i = dentry->d_inode;
1773
1774 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1775 cpu_relax();
1776 return D_COMP_SEQRETRY;
1777 }
1778 if (parent->d_op->d_compare(parent, inode,
1779 dentry, i,
1780 tlen, tname, name))
1781 return D_COMP_NOMATCH;
1782 return D_COMP_OK;
1783}
1784
31e6b01f
NP
1785/**
1786 * __d_lookup_rcu - search for a dentry (racy, store-free)
1787 * @parent: parent dentry
1788 * @name: qstr of name we wish to find
1f1e6e52 1789 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1790 * @inode: returns dentry->d_inode when the inode was found valid.
1791 * Returns: dentry, or NULL
1792 *
1793 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1794 * resolution (store-free path walking) design described in
1795 * Documentation/filesystems/path-lookup.txt.
1796 *
1797 * This is not to be used outside core vfs.
1798 *
1799 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1800 * held, and rcu_read_lock held. The returned dentry must not be stored into
1801 * without taking d_lock and checking d_seq sequence count against @seq
1802 * returned here.
1803 *
1804 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1805 * function.
1806 *
1807 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1808 * the returned dentry, so long as its parent's seqlock is checked after the
1809 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1810 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1811 *
1812 * NOTE! The caller *has* to check the resulting dentry against the sequence
1813 * number we've returned before using any of the resulting dentry state!
31e6b01f 1814 */
8966be90
LT
1815struct dentry *__d_lookup_rcu(const struct dentry *parent,
1816 const struct qstr *name,
12f8ad4b 1817 unsigned *seqp, struct inode *inode)
31e6b01f
NP
1818{
1819 unsigned int len = name->len;
1820 unsigned int hash = name->hash;
1821 const unsigned char *str = name->name;
b07ad996 1822 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1823 struct hlist_bl_node *node;
31e6b01f
NP
1824 struct dentry *dentry;
1825
1826 /*
1827 * Note: There is significant duplication with __d_lookup_rcu which is
1828 * required to prevent single threaded performance regressions
1829 * especially on architectures where smp_rmb (in seqcounts) are costly.
1830 * Keep the two functions in sync.
1831 */
1832
1833 /*
1834 * The hash list is protected using RCU.
1835 *
1836 * Carefully use d_seq when comparing a candidate dentry, to avoid
1837 * races with d_move().
1838 *
1839 * It is possible that concurrent renames can mess up our list
1840 * walk here and result in missing our dentry, resulting in the
1841 * false-negative result. d_lookup() protects against concurrent
1842 * renames using rename_lock seqlock.
1843 *
b0a4bb83 1844 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1845 */
b07ad996 1846 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 1847 unsigned seq;
31e6b01f
NP
1848
1849 if (dentry->d_name.hash != hash)
1850 continue;
1851
1852seqretry:
12f8ad4b
LT
1853 /*
1854 * The dentry sequence count protects us from concurrent
1855 * renames, and thus protects inode, parent and name fields.
1856 *
1857 * The caller must perform a seqcount check in order
1858 * to do anything useful with the returned dentry,
1859 * including using the 'd_inode' pointer.
1860 *
1861 * NOTE! We do a "raw" seqcount_begin here. That means that
1862 * we don't wait for the sequence count to stabilize if it
1863 * is in the middle of a sequence change. If we do the slow
1864 * dentry compare, we will do seqretries until it is stable,
1865 * and if we end up with a successful lookup, we actually
1866 * want to exit RCU lookup anyway.
1867 */
1868 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
1869 if (dentry->d_parent != parent)
1870 continue;
12f8ad4b
LT
1871 *seqp = seq;
1872
830c0f0e 1873 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
12f8ad4b
LT
1874 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1875 case D_COMP_OK:
1876 return dentry;
1877 case D_COMP_NOMATCH:
31e6b01f 1878 continue;
12f8ad4b
LT
1879 default:
1880 goto seqretry;
1881 }
31e6b01f 1882 }
12f8ad4b 1883
ee983e89
LT
1884 if (dentry->d_name.len != len)
1885 continue;
12f8ad4b
LT
1886 if (!dentry_cmp(dentry, str, len))
1887 return dentry;
31e6b01f
NP
1888 }
1889 return NULL;
1890}
1891
1da177e4
LT
1892/**
1893 * d_lookup - search for a dentry
1894 * @parent: parent dentry
1895 * @name: qstr of name we wish to find
b04f784e 1896 * Returns: dentry, or NULL
1da177e4 1897 *
b04f784e
NP
1898 * d_lookup searches the children of the parent dentry for the name in
1899 * question. If the dentry is found its reference count is incremented and the
1900 * dentry is returned. The caller must use dput to free the entry when it has
1901 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1902 */
31e6b01f 1903struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1904{
31e6b01f 1905 struct dentry *dentry;
949854d0 1906 unsigned seq;
1da177e4
LT
1907
1908 do {
1909 seq = read_seqbegin(&rename_lock);
1910 dentry = __d_lookup(parent, name);
1911 if (dentry)
1912 break;
1913 } while (read_seqretry(&rename_lock, seq));
1914 return dentry;
1915}
ec4f8605 1916EXPORT_SYMBOL(d_lookup);
1da177e4 1917
31e6b01f 1918/**
b04f784e
NP
1919 * __d_lookup - search for a dentry (racy)
1920 * @parent: parent dentry
1921 * @name: qstr of name we wish to find
1922 * Returns: dentry, or NULL
1923 *
1924 * __d_lookup is like d_lookup, however it may (rarely) return a
1925 * false-negative result due to unrelated rename activity.
1926 *
1927 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1928 * however it must be used carefully, eg. with a following d_lookup in
1929 * the case of failure.
1930 *
1931 * __d_lookup callers must be commented.
1932 */
31e6b01f 1933struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1934{
1935 unsigned int len = name->len;
1936 unsigned int hash = name->hash;
1937 const unsigned char *str = name->name;
b07ad996 1938 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1939 struct hlist_bl_node *node;
31e6b01f 1940 struct dentry *found = NULL;
665a7583 1941 struct dentry *dentry;
1da177e4 1942
31e6b01f
NP
1943 /*
1944 * Note: There is significant duplication with __d_lookup_rcu which is
1945 * required to prevent single threaded performance regressions
1946 * especially on architectures where smp_rmb (in seqcounts) are costly.
1947 * Keep the two functions in sync.
1948 */
1949
b04f784e
NP
1950 /*
1951 * The hash list is protected using RCU.
1952 *
1953 * Take d_lock when comparing a candidate dentry, to avoid races
1954 * with d_move().
1955 *
1956 * It is possible that concurrent renames can mess up our list
1957 * walk here and result in missing our dentry, resulting in the
1958 * false-negative result. d_lookup() protects against concurrent
1959 * renames using rename_lock seqlock.
1960 *
b0a4bb83 1961 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1962 */
1da177e4
LT
1963 rcu_read_lock();
1964
b07ad996 1965 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 1966
1da177e4
LT
1967 if (dentry->d_name.hash != hash)
1968 continue;
1da177e4
LT
1969
1970 spin_lock(&dentry->d_lock);
1da177e4
LT
1971 if (dentry->d_parent != parent)
1972 goto next;
d0185c08
LT
1973 if (d_unhashed(dentry))
1974 goto next;
1975
1da177e4
LT
1976 /*
1977 * It is safe to compare names since d_move() cannot
1978 * change the qstr (protected by d_lock).
1979 */
fb045adb 1980 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
1981 int tlen = dentry->d_name.len;
1982 const char *tname = dentry->d_name.name;
621e155a
NP
1983 if (parent->d_op->d_compare(parent, parent->d_inode,
1984 dentry, dentry->d_inode,
31e6b01f 1985 tlen, tname, name))
1da177e4
LT
1986 goto next;
1987 } else {
ee983e89
LT
1988 if (dentry->d_name.len != len)
1989 goto next;
12f8ad4b 1990 if (dentry_cmp(dentry, str, len))
1da177e4
LT
1991 goto next;
1992 }
1993
b7ab39f6 1994 dentry->d_count++;
d0185c08 1995 found = dentry;
1da177e4
LT
1996 spin_unlock(&dentry->d_lock);
1997 break;
1998next:
1999 spin_unlock(&dentry->d_lock);
2000 }
2001 rcu_read_unlock();
2002
2003 return found;
2004}
2005
3e7e241f
EB
2006/**
2007 * d_hash_and_lookup - hash the qstr then search for a dentry
2008 * @dir: Directory to search in
2009 * @name: qstr of name we wish to find
2010 *
2011 * On hash failure or on lookup failure NULL is returned.
2012 */
2013struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2014{
2015 struct dentry *dentry = NULL;
2016
2017 /*
2018 * Check for a fs-specific hash function. Note that we must
2019 * calculate the standard hash first, as the d_op->d_hash()
2020 * routine may choose to leave the hash value unchanged.
2021 */
2022 name->hash = full_name_hash(name->name, name->len);
fb045adb 2023 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 2024 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
2025 goto out;
2026 }
2027 dentry = d_lookup(dir, name);
2028out:
2029 return dentry;
2030}
2031
1da177e4 2032/**
786a5e15 2033 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2034 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2035 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2036 *
2037 * An insecure source has sent us a dentry, here we verify it and dget() it.
2038 * This is used by ncpfs in its readdir implementation.
2039 * Zero is returned in the dentry is invalid.
786a5e15
NP
2040 *
2041 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2042 */
d3a23e16 2043int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2044{
786a5e15 2045 struct dentry *child;
d3a23e16 2046
2fd6b7f5 2047 spin_lock(&dparent->d_lock);
786a5e15
NP
2048 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2049 if (dentry == child) {
2fd6b7f5 2050 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2051 __dget_dlock(dentry);
2fd6b7f5
NP
2052 spin_unlock(&dentry->d_lock);
2053 spin_unlock(&dparent->d_lock);
1da177e4
LT
2054 return 1;
2055 }
2056 }
2fd6b7f5 2057 spin_unlock(&dparent->d_lock);
786a5e15 2058
1da177e4
LT
2059 return 0;
2060}
ec4f8605 2061EXPORT_SYMBOL(d_validate);
1da177e4
LT
2062
2063/*
2064 * When a file is deleted, we have two options:
2065 * - turn this dentry into a negative dentry
2066 * - unhash this dentry and free it.
2067 *
2068 * Usually, we want to just turn this into
2069 * a negative dentry, but if anybody else is
2070 * currently using the dentry or the inode
2071 * we can't do that and we fall back on removing
2072 * it from the hash queues and waiting for
2073 * it to be deleted later when it has no users
2074 */
2075
2076/**
2077 * d_delete - delete a dentry
2078 * @dentry: The dentry to delete
2079 *
2080 * Turn the dentry into a negative dentry if possible, otherwise
2081 * remove it from the hash queues so it can be deleted later
2082 */
2083
2084void d_delete(struct dentry * dentry)
2085{
873feea0 2086 struct inode *inode;
7a91bf7f 2087 int isdir = 0;
1da177e4
LT
2088 /*
2089 * Are we the only user?
2090 */
357f8e65 2091again:
1da177e4 2092 spin_lock(&dentry->d_lock);
873feea0
NP
2093 inode = dentry->d_inode;
2094 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2095 if (dentry->d_count == 1) {
873feea0 2096 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
2097 spin_unlock(&dentry->d_lock);
2098 cpu_relax();
2099 goto again;
2100 }
13e3c5e5 2101 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2102 dentry_unlink_inode(dentry);
7a91bf7f 2103 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2104 return;
2105 }
2106
2107 if (!d_unhashed(dentry))
2108 __d_drop(dentry);
2109
2110 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2111
2112 fsnotify_nameremove(dentry, isdir);
1da177e4 2113}
ec4f8605 2114EXPORT_SYMBOL(d_delete);
1da177e4 2115
b07ad996 2116static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2117{
ceb5bdc2 2118 BUG_ON(!d_unhashed(entry));
1879fd6a 2119 hlist_bl_lock(b);
dea3667b 2120 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2121 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2122 hlist_bl_unlock(b);
1da177e4
LT
2123}
2124
770bfad8
DH
2125static void _d_rehash(struct dentry * entry)
2126{
2127 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2128}
2129
1da177e4
LT
2130/**
2131 * d_rehash - add an entry back to the hash
2132 * @entry: dentry to add to the hash
2133 *
2134 * Adds a dentry to the hash according to its name.
2135 */
2136
2137void d_rehash(struct dentry * entry)
2138{
1da177e4 2139 spin_lock(&entry->d_lock);
770bfad8 2140 _d_rehash(entry);
1da177e4 2141 spin_unlock(&entry->d_lock);
1da177e4 2142}
ec4f8605 2143EXPORT_SYMBOL(d_rehash);
1da177e4 2144
fb2d5b86
NP
2145/**
2146 * dentry_update_name_case - update case insensitive dentry with a new name
2147 * @dentry: dentry to be updated
2148 * @name: new name
2149 *
2150 * Update a case insensitive dentry with new case of name.
2151 *
2152 * dentry must have been returned by d_lookup with name @name. Old and new
2153 * name lengths must match (ie. no d_compare which allows mismatched name
2154 * lengths).
2155 *
2156 * Parent inode i_mutex must be held over d_lookup and into this call (to
2157 * keep renames and concurrent inserts, and readdir(2) away).
2158 */
2159void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2160{
7ebfa57f 2161 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2162 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2163
fb2d5b86 2164 spin_lock(&dentry->d_lock);
31e6b01f 2165 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2166 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2167 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2168 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2169}
2170EXPORT_SYMBOL(dentry_update_name_case);
2171
1da177e4
LT
2172static void switch_names(struct dentry *dentry, struct dentry *target)
2173{
2174 if (dname_external(target)) {
2175 if (dname_external(dentry)) {
2176 /*
2177 * Both external: swap the pointers
2178 */
9a8d5bb4 2179 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2180 } else {
2181 /*
2182 * dentry:internal, target:external. Steal target's
2183 * storage and make target internal.
2184 */
321bcf92
BF
2185 memcpy(target->d_iname, dentry->d_name.name,
2186 dentry->d_name.len + 1);
1da177e4
LT
2187 dentry->d_name.name = target->d_name.name;
2188 target->d_name.name = target->d_iname;
2189 }
2190 } else {
2191 if (dname_external(dentry)) {
2192 /*
2193 * dentry:external, target:internal. Give dentry's
2194 * storage to target and make dentry internal
2195 */
2196 memcpy(dentry->d_iname, target->d_name.name,
2197 target->d_name.len + 1);
2198 target->d_name.name = dentry->d_name.name;
2199 dentry->d_name.name = dentry->d_iname;
2200 } else {
2201 /*
2202 * Both are internal. Just copy target to dentry
2203 */
2204 memcpy(dentry->d_iname, target->d_name.name,
2205 target->d_name.len + 1);
dc711ca3
AV
2206 dentry->d_name.len = target->d_name.len;
2207 return;
1da177e4
LT
2208 }
2209 }
9a8d5bb4 2210 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2211}
2212
2fd6b7f5
NP
2213static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2214{
2215 /*
2216 * XXXX: do we really need to take target->d_lock?
2217 */
2218 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2219 spin_lock(&target->d_parent->d_lock);
2220 else {
2221 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2222 spin_lock(&dentry->d_parent->d_lock);
2223 spin_lock_nested(&target->d_parent->d_lock,
2224 DENTRY_D_LOCK_NESTED);
2225 } else {
2226 spin_lock(&target->d_parent->d_lock);
2227 spin_lock_nested(&dentry->d_parent->d_lock,
2228 DENTRY_D_LOCK_NESTED);
2229 }
2230 }
2231 if (target < dentry) {
2232 spin_lock_nested(&target->d_lock, 2);
2233 spin_lock_nested(&dentry->d_lock, 3);
2234 } else {
2235 spin_lock_nested(&dentry->d_lock, 2);
2236 spin_lock_nested(&target->d_lock, 3);
2237 }
2238}
2239
2240static void dentry_unlock_parents_for_move(struct dentry *dentry,
2241 struct dentry *target)
2242{
2243 if (target->d_parent != dentry->d_parent)
2244 spin_unlock(&dentry->d_parent->d_lock);
2245 if (target->d_parent != target)
2246 spin_unlock(&target->d_parent->d_lock);
2247}
2248
1da177e4 2249/*
2fd6b7f5
NP
2250 * When switching names, the actual string doesn't strictly have to
2251 * be preserved in the target - because we're dropping the target
2252 * anyway. As such, we can just do a simple memcpy() to copy over
2253 * the new name before we switch.
2254 *
2255 * Note that we have to be a lot more careful about getting the hash
2256 * switched - we have to switch the hash value properly even if it
2257 * then no longer matches the actual (corrupted) string of the target.
2258 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2259 */
9eaef27b 2260/*
18367501 2261 * __d_move - move a dentry
1da177e4
LT
2262 * @dentry: entry to move
2263 * @target: new dentry
2264 *
2265 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2266 * dcache entries should not be moved in this way. Caller must hold
2267 * rename_lock, the i_mutex of the source and target directories,
2268 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2269 */
18367501 2270static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2271{
1da177e4
LT
2272 if (!dentry->d_inode)
2273 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2274
2fd6b7f5
NP
2275 BUG_ON(d_ancestor(dentry, target));
2276 BUG_ON(d_ancestor(target, dentry));
2277
2fd6b7f5 2278 dentry_lock_for_move(dentry, target);
1da177e4 2279
31e6b01f
NP
2280 write_seqcount_begin(&dentry->d_seq);
2281 write_seqcount_begin(&target->d_seq);
2282
ceb5bdc2
NP
2283 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2284
2285 /*
2286 * Move the dentry to the target hash queue. Don't bother checking
2287 * for the same hash queue because of how unlikely it is.
2288 */
2289 __d_drop(dentry);
789680d1 2290 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2291
2292 /* Unhash the target: dput() will then get rid of it */
2293 __d_drop(target);
2294
5160ee6f
ED
2295 list_del(&dentry->d_u.d_child);
2296 list_del(&target->d_u.d_child);
1da177e4
LT
2297
2298 /* Switch the names.. */
2299 switch_names(dentry, target);
9a8d5bb4 2300 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2301
2302 /* ... and switch the parents */
2303 if (IS_ROOT(dentry)) {
2304 dentry->d_parent = target->d_parent;
2305 target->d_parent = target;
5160ee6f 2306 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2307 } else {
9a8d5bb4 2308 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2309
2310 /* And add them back to the (new) parent lists */
5160ee6f 2311 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2312 }
2313
5160ee6f 2314 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2315
31e6b01f
NP
2316 write_seqcount_end(&target->d_seq);
2317 write_seqcount_end(&dentry->d_seq);
2318
2fd6b7f5 2319 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2320 spin_unlock(&target->d_lock);
c32ccd87 2321 fsnotify_d_move(dentry);
1da177e4 2322 spin_unlock(&dentry->d_lock);
18367501
AV
2323}
2324
2325/*
2326 * d_move - move a dentry
2327 * @dentry: entry to move
2328 * @target: new dentry
2329 *
2330 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2331 * dcache entries should not be moved in this way. See the locking
2332 * requirements for __d_move.
18367501
AV
2333 */
2334void d_move(struct dentry *dentry, struct dentry *target)
2335{
2336 write_seqlock(&rename_lock);
2337 __d_move(dentry, target);
1da177e4 2338 write_sequnlock(&rename_lock);
9eaef27b 2339}
ec4f8605 2340EXPORT_SYMBOL(d_move);
1da177e4 2341
e2761a11
OH
2342/**
2343 * d_ancestor - search for an ancestor
2344 * @p1: ancestor dentry
2345 * @p2: child dentry
2346 *
2347 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2348 * an ancestor of p2, else NULL.
9eaef27b 2349 */
e2761a11 2350struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2351{
2352 struct dentry *p;
2353
871c0067 2354 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2355 if (p->d_parent == p1)
e2761a11 2356 return p;
9eaef27b 2357 }
e2761a11 2358 return NULL;
9eaef27b
TM
2359}
2360
2361/*
2362 * This helper attempts to cope with remotely renamed directories
2363 *
2364 * It assumes that the caller is already holding
18367501 2365 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2366 *
2367 * Note: If ever the locking in lock_rename() changes, then please
2368 * remember to update this too...
9eaef27b 2369 */
873feea0
NP
2370static struct dentry *__d_unalias(struct inode *inode,
2371 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2372{
2373 struct mutex *m1 = NULL, *m2 = NULL;
2374 struct dentry *ret;
2375
2376 /* If alias and dentry share a parent, then no extra locks required */
2377 if (alias->d_parent == dentry->d_parent)
2378 goto out_unalias;
2379
9eaef27b
TM
2380 /* See lock_rename() */
2381 ret = ERR_PTR(-EBUSY);
2382 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2383 goto out_err;
2384 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2385 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2386 goto out_err;
2387 m2 = &alias->d_parent->d_inode->i_mutex;
2388out_unalias:
18367501 2389 __d_move(alias, dentry);
9eaef27b
TM
2390 ret = alias;
2391out_err:
873feea0 2392 spin_unlock(&inode->i_lock);
9eaef27b
TM
2393 if (m2)
2394 mutex_unlock(m2);
2395 if (m1)
2396 mutex_unlock(m1);
2397 return ret;
2398}
2399
770bfad8
DH
2400/*
2401 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2402 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2403 * returns with anon->d_lock held!
770bfad8
DH
2404 */
2405static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2406{
2407 struct dentry *dparent, *aparent;
2408
2fd6b7f5 2409 dentry_lock_for_move(anon, dentry);
770bfad8 2410
31e6b01f
NP
2411 write_seqcount_begin(&dentry->d_seq);
2412 write_seqcount_begin(&anon->d_seq);
2413
770bfad8
DH
2414 dparent = dentry->d_parent;
2415 aparent = anon->d_parent;
2416
2fd6b7f5
NP
2417 switch_names(dentry, anon);
2418 swap(dentry->d_name.hash, anon->d_name.hash);
2419
770bfad8
DH
2420 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2421 list_del(&dentry->d_u.d_child);
2422 if (!IS_ROOT(dentry))
2423 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2424 else
2425 INIT_LIST_HEAD(&dentry->d_u.d_child);
2426
2427 anon->d_parent = (dparent == dentry) ? anon : dparent;
2428 list_del(&anon->d_u.d_child);
2429 if (!IS_ROOT(anon))
2430 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2431 else
2432 INIT_LIST_HEAD(&anon->d_u.d_child);
2433
31e6b01f
NP
2434 write_seqcount_end(&dentry->d_seq);
2435 write_seqcount_end(&anon->d_seq);
2436
2fd6b7f5
NP
2437 dentry_unlock_parents_for_move(anon, dentry);
2438 spin_unlock(&dentry->d_lock);
2439
2440 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2441 anon->d_flags &= ~DCACHE_DISCONNECTED;
2442}
2443
2444/**
2445 * d_materialise_unique - introduce an inode into the tree
2446 * @dentry: candidate dentry
2447 * @inode: inode to bind to the dentry, to which aliases may be attached
2448 *
2449 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2450 * root directory alias in its place if there is one. Caller must hold the
2451 * i_mutex of the parent directory.
770bfad8
DH
2452 */
2453struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2454{
9eaef27b 2455 struct dentry *actual;
770bfad8
DH
2456
2457 BUG_ON(!d_unhashed(dentry));
2458
770bfad8
DH
2459 if (!inode) {
2460 actual = dentry;
360da900 2461 __d_instantiate(dentry, NULL);
357f8e65
NP
2462 d_rehash(actual);
2463 goto out_nolock;
770bfad8
DH
2464 }
2465
873feea0 2466 spin_lock(&inode->i_lock);
357f8e65 2467
9eaef27b
TM
2468 if (S_ISDIR(inode->i_mode)) {
2469 struct dentry *alias;
2470
2471 /* Does an aliased dentry already exist? */
2472 alias = __d_find_alias(inode, 0);
2473 if (alias) {
2474 actual = alias;
18367501
AV
2475 write_seqlock(&rename_lock);
2476
2477 if (d_ancestor(alias, dentry)) {
2478 /* Check for loops */
2479 actual = ERR_PTR(-ELOOP);
b18dafc8 2480 spin_unlock(&inode->i_lock);
18367501
AV
2481 } else if (IS_ROOT(alias)) {
2482 /* Is this an anonymous mountpoint that we
2483 * could splice into our tree? */
9eaef27b 2484 __d_materialise_dentry(dentry, alias);
18367501 2485 write_sequnlock(&rename_lock);
9eaef27b
TM
2486 __d_drop(alias);
2487 goto found;
18367501
AV
2488 } else {
2489 /* Nope, but we must(!) avoid directory
b18dafc8 2490 * aliasing. This drops inode->i_lock */
18367501 2491 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2492 }
18367501 2493 write_sequnlock(&rename_lock);
dd179946
DH
2494 if (IS_ERR(actual)) {
2495 if (PTR_ERR(actual) == -ELOOP)
2496 pr_warn_ratelimited(
2497 "VFS: Lookup of '%s' in %s %s"
2498 " would have caused loop\n",
2499 dentry->d_name.name,
2500 inode->i_sb->s_type->name,
2501 inode->i_sb->s_id);
9eaef27b 2502 dput(alias);
dd179946 2503 }
9eaef27b
TM
2504 goto out_nolock;
2505 }
770bfad8
DH
2506 }
2507
2508 /* Add a unique reference */
2509 actual = __d_instantiate_unique(dentry, inode);
2510 if (!actual)
2511 actual = dentry;
357f8e65
NP
2512 else
2513 BUG_ON(!d_unhashed(actual));
770bfad8 2514
770bfad8
DH
2515 spin_lock(&actual->d_lock);
2516found:
2517 _d_rehash(actual);
2518 spin_unlock(&actual->d_lock);
873feea0 2519 spin_unlock(&inode->i_lock);
9eaef27b 2520out_nolock:
770bfad8
DH
2521 if (actual == dentry) {
2522 security_d_instantiate(dentry, inode);
2523 return NULL;
2524 }
2525
2526 iput(inode);
2527 return actual;
770bfad8 2528}
ec4f8605 2529EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2530
cdd16d02 2531static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2532{
2533 *buflen -= namelen;
2534 if (*buflen < 0)
2535 return -ENAMETOOLONG;
2536 *buffer -= namelen;
2537 memcpy(*buffer, str, namelen);
2538 return 0;
2539}
2540
cdd16d02
MS
2541static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2542{
2543 return prepend(buffer, buflen, name->name, name->len);
2544}
2545
1da177e4 2546/**
208898c1 2547 * prepend_path - Prepend path string to a buffer
9d1bc601 2548 * @path: the dentry/vfsmount to report
02125a82 2549 * @root: root vfsmnt/dentry
f2eb6575
MS
2550 * @buffer: pointer to the end of the buffer
2551 * @buflen: pointer to buffer length
552ce544 2552 *
949854d0 2553 * Caller holds the rename_lock.
1da177e4 2554 */
02125a82
AV
2555static int prepend_path(const struct path *path,
2556 const struct path *root,
f2eb6575 2557 char **buffer, int *buflen)
1da177e4 2558{
9d1bc601
MS
2559 struct dentry *dentry = path->dentry;
2560 struct vfsmount *vfsmnt = path->mnt;
0714a533 2561 struct mount *mnt = real_mount(vfsmnt);
f2eb6575
MS
2562 bool slash = false;
2563 int error = 0;
6092d048 2564
99b7db7b 2565 br_read_lock(vfsmount_lock);
f2eb6575 2566 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2567 struct dentry * parent;
2568
1da177e4 2569 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2570 /* Global root? */
676da58d 2571 if (!mnt_has_parent(mnt))
1da177e4 2572 goto global_root;
a73324da 2573 dentry = mnt->mnt_mountpoint;
0714a533
AV
2574 mnt = mnt->mnt_parent;
2575 vfsmnt = &mnt->mnt;
1da177e4
LT
2576 continue;
2577 }
2578 parent = dentry->d_parent;
2579 prefetch(parent);
9abca360 2580 spin_lock(&dentry->d_lock);
f2eb6575 2581 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2582 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2583 if (!error)
2584 error = prepend(buffer, buflen, "/", 1);
2585 if (error)
2586 break;
2587
2588 slash = true;
1da177e4
LT
2589 dentry = parent;
2590 }
2591
f2eb6575
MS
2592 if (!error && !slash)
2593 error = prepend(buffer, buflen, "/", 1);
2594
02125a82 2595out:
99b7db7b 2596 br_read_unlock(vfsmount_lock);
f2eb6575 2597 return error;
1da177e4
LT
2598
2599global_root:
98dc568b
MS
2600 /*
2601 * Filesystems needing to implement special "root names"
2602 * should do so with ->d_dname()
2603 */
2604 if (IS_ROOT(dentry) &&
2605 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2606 WARN(1, "Root dentry has weird name <%.*s>\n",
2607 (int) dentry->d_name.len, dentry->d_name.name);
2608 }
02125a82
AV
2609 if (!slash)
2610 error = prepend(buffer, buflen, "/", 1);
2611 if (!error)
143c8c91 2612 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
be285c71 2613 goto out;
f2eb6575 2614}
be285c71 2615
f2eb6575
MS
2616/**
2617 * __d_path - return the path of a dentry
2618 * @path: the dentry/vfsmount to report
02125a82 2619 * @root: root vfsmnt/dentry
cd956a1c 2620 * @buf: buffer to return value in
f2eb6575
MS
2621 * @buflen: buffer length
2622 *
ffd1f4ed 2623 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2624 *
2625 * Returns a pointer into the buffer or an error code if the
2626 * path was too long.
2627 *
be148247 2628 * "buflen" should be positive.
f2eb6575 2629 *
02125a82 2630 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2631 */
02125a82
AV
2632char *__d_path(const struct path *path,
2633 const struct path *root,
f2eb6575
MS
2634 char *buf, int buflen)
2635{
2636 char *res = buf + buflen;
2637 int error;
2638
2639 prepend(&res, &buflen, "\0", 1);
949854d0 2640 write_seqlock(&rename_lock);
f2eb6575 2641 error = prepend_path(path, root, &res, &buflen);
949854d0 2642 write_sequnlock(&rename_lock);
be148247 2643
02125a82
AV
2644 if (error < 0)
2645 return ERR_PTR(error);
2646 if (error > 0)
2647 return NULL;
2648 return res;
2649}
2650
2651char *d_absolute_path(const struct path *path,
2652 char *buf, int buflen)
2653{
2654 struct path root = {};
2655 char *res = buf + buflen;
2656 int error;
2657
2658 prepend(&res, &buflen, "\0", 1);
2659 write_seqlock(&rename_lock);
2660 error = prepend_path(path, &root, &res, &buflen);
2661 write_sequnlock(&rename_lock);
2662
2663 if (error > 1)
2664 error = -EINVAL;
2665 if (error < 0)
f2eb6575 2666 return ERR_PTR(error);
f2eb6575 2667 return res;
1da177e4
LT
2668}
2669
ffd1f4ed
MS
2670/*
2671 * same as __d_path but appends "(deleted)" for unlinked files.
2672 */
02125a82
AV
2673static int path_with_deleted(const struct path *path,
2674 const struct path *root,
2675 char **buf, int *buflen)
ffd1f4ed
MS
2676{
2677 prepend(buf, buflen, "\0", 1);
2678 if (d_unlinked(path->dentry)) {
2679 int error = prepend(buf, buflen, " (deleted)", 10);
2680 if (error)
2681 return error;
2682 }
2683
2684 return prepend_path(path, root, buf, buflen);
2685}
2686
8df9d1a4
MS
2687static int prepend_unreachable(char **buffer, int *buflen)
2688{
2689 return prepend(buffer, buflen, "(unreachable)", 13);
2690}
2691
a03a8a70
JB
2692/**
2693 * d_path - return the path of a dentry
cf28b486 2694 * @path: path to report
a03a8a70
JB
2695 * @buf: buffer to return value in
2696 * @buflen: buffer length
2697 *
2698 * Convert a dentry into an ASCII path name. If the entry has been deleted
2699 * the string " (deleted)" is appended. Note that this is ambiguous.
2700 *
52afeefb
AV
2701 * Returns a pointer into the buffer or an error code if the path was
2702 * too long. Note: Callers should use the returned pointer, not the passed
2703 * in buffer, to use the name! The implementation often starts at an offset
2704 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2705 *
31f3e0b3 2706 * "buflen" should be positive.
a03a8a70 2707 */
20d4fdc1 2708char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2709{
ffd1f4ed 2710 char *res = buf + buflen;
6ac08c39 2711 struct path root;
ffd1f4ed 2712 int error;
1da177e4 2713
c23fbb6b
ED
2714 /*
2715 * We have various synthetic filesystems that never get mounted. On
2716 * these filesystems dentries are never used for lookup purposes, and
2717 * thus don't need to be hashed. They also don't need a name until a
2718 * user wants to identify the object in /proc/pid/fd/. The little hack
2719 * below allows us to generate a name for these objects on demand:
2720 */
cf28b486
JB
2721 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2722 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2723
f7ad3c6b 2724 get_fs_root(current->fs, &root);
949854d0 2725 write_seqlock(&rename_lock);
02125a82
AV
2726 error = path_with_deleted(path, &root, &res, &buflen);
2727 if (error < 0)
ffd1f4ed 2728 res = ERR_PTR(error);
949854d0 2729 write_sequnlock(&rename_lock);
6ac08c39 2730 path_put(&root);
1da177e4
LT
2731 return res;
2732}
ec4f8605 2733EXPORT_SYMBOL(d_path);
1da177e4 2734
8df9d1a4
MS
2735/**
2736 * d_path_with_unreachable - return the path of a dentry
2737 * @path: path to report
2738 * @buf: buffer to return value in
2739 * @buflen: buffer length
2740 *
2741 * The difference from d_path() is that this prepends "(unreachable)"
2742 * to paths which are unreachable from the current process' root.
2743 */
2744char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2745{
2746 char *res = buf + buflen;
2747 struct path root;
8df9d1a4
MS
2748 int error;
2749
2750 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2751 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2752
2753 get_fs_root(current->fs, &root);
949854d0 2754 write_seqlock(&rename_lock);
02125a82
AV
2755 error = path_with_deleted(path, &root, &res, &buflen);
2756 if (error > 0)
8df9d1a4 2757 error = prepend_unreachable(&res, &buflen);
949854d0 2758 write_sequnlock(&rename_lock);
8df9d1a4
MS
2759 path_put(&root);
2760 if (error)
2761 res = ERR_PTR(error);
2762
2763 return res;
2764}
2765
c23fbb6b
ED
2766/*
2767 * Helper function for dentry_operations.d_dname() members
2768 */
2769char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2770 const char *fmt, ...)
2771{
2772 va_list args;
2773 char temp[64];
2774 int sz;
2775
2776 va_start(args, fmt);
2777 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2778 va_end(args);
2779
2780 if (sz > sizeof(temp) || sz > buflen)
2781 return ERR_PTR(-ENAMETOOLONG);
2782
2783 buffer += buflen - sz;
2784 return memcpy(buffer, temp, sz);
2785}
2786
6092d048
RP
2787/*
2788 * Write full pathname from the root of the filesystem into the buffer.
2789 */
ec2447c2 2790static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2791{
2792 char *end = buf + buflen;
2793 char *retval;
2794
6092d048 2795 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2796 if (buflen < 1)
2797 goto Elong;
2798 /* Get '/' right */
2799 retval = end-1;
2800 *retval = '/';
2801
cdd16d02
MS
2802 while (!IS_ROOT(dentry)) {
2803 struct dentry *parent = dentry->d_parent;
9abca360 2804 int error;
6092d048 2805
6092d048 2806 prefetch(parent);
9abca360
NP
2807 spin_lock(&dentry->d_lock);
2808 error = prepend_name(&end, &buflen, &dentry->d_name);
2809 spin_unlock(&dentry->d_lock);
2810 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2811 goto Elong;
2812
2813 retval = end;
2814 dentry = parent;
2815 }
c103135c
AV
2816 return retval;
2817Elong:
2818 return ERR_PTR(-ENAMETOOLONG);
2819}
ec2447c2
NP
2820
2821char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2822{
2823 char *retval;
2824
949854d0 2825 write_seqlock(&rename_lock);
ec2447c2 2826 retval = __dentry_path(dentry, buf, buflen);
949854d0 2827 write_sequnlock(&rename_lock);
ec2447c2
NP
2828
2829 return retval;
2830}
2831EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2832
2833char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2834{
2835 char *p = NULL;
2836 char *retval;
2837
949854d0 2838 write_seqlock(&rename_lock);
c103135c
AV
2839 if (d_unlinked(dentry)) {
2840 p = buf + buflen;
2841 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2842 goto Elong;
2843 buflen++;
2844 }
2845 retval = __dentry_path(dentry, buf, buflen);
949854d0 2846 write_sequnlock(&rename_lock);
c103135c
AV
2847 if (!IS_ERR(retval) && p)
2848 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2849 return retval;
2850Elong:
6092d048
RP
2851 return ERR_PTR(-ENAMETOOLONG);
2852}
2853
1da177e4
LT
2854/*
2855 * NOTE! The user-level library version returns a
2856 * character pointer. The kernel system call just
2857 * returns the length of the buffer filled (which
2858 * includes the ending '\0' character), or a negative
2859 * error value. So libc would do something like
2860 *
2861 * char *getcwd(char * buf, size_t size)
2862 * {
2863 * int retval;
2864 *
2865 * retval = sys_getcwd(buf, size);
2866 * if (retval >= 0)
2867 * return buf;
2868 * errno = -retval;
2869 * return NULL;
2870 * }
2871 */
3cdad428 2872SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2873{
552ce544 2874 int error;
6ac08c39 2875 struct path pwd, root;
552ce544 2876 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2877
2878 if (!page)
2879 return -ENOMEM;
2880
f7ad3c6b 2881 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2882
552ce544 2883 error = -ENOENT;
949854d0 2884 write_seqlock(&rename_lock);
f3da392e 2885 if (!d_unlinked(pwd.dentry)) {
552ce544 2886 unsigned long len;
8df9d1a4
MS
2887 char *cwd = page + PAGE_SIZE;
2888 int buflen = PAGE_SIZE;
1da177e4 2889
8df9d1a4 2890 prepend(&cwd, &buflen, "\0", 1);
02125a82 2891 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2892 write_sequnlock(&rename_lock);
552ce544 2893
02125a82 2894 if (error < 0)
552ce544
LT
2895 goto out;
2896
8df9d1a4 2897 /* Unreachable from current root */
02125a82 2898 if (error > 0) {
8df9d1a4
MS
2899 error = prepend_unreachable(&cwd, &buflen);
2900 if (error)
2901 goto out;
2902 }
2903
552ce544
LT
2904 error = -ERANGE;
2905 len = PAGE_SIZE + page - cwd;
2906 if (len <= size) {
2907 error = len;
2908 if (copy_to_user(buf, cwd, len))
2909 error = -EFAULT;
2910 }
949854d0
NP
2911 } else {
2912 write_sequnlock(&rename_lock);
949854d0 2913 }
1da177e4
LT
2914
2915out:
6ac08c39
JB
2916 path_put(&pwd);
2917 path_put(&root);
1da177e4
LT
2918 free_page((unsigned long) page);
2919 return error;
2920}
2921
2922/*
2923 * Test whether new_dentry is a subdirectory of old_dentry.
2924 *
2925 * Trivially implemented using the dcache structure
2926 */
2927
2928/**
2929 * is_subdir - is new dentry a subdirectory of old_dentry
2930 * @new_dentry: new dentry
2931 * @old_dentry: old dentry
2932 *
2933 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2934 * Returns 0 otherwise.
2935 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2936 */
2937
e2761a11 2938int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2939{
2940 int result;
949854d0 2941 unsigned seq;
1da177e4 2942
e2761a11
OH
2943 if (new_dentry == old_dentry)
2944 return 1;
2945
e2761a11 2946 do {
1da177e4 2947 /* for restarting inner loop in case of seq retry */
1da177e4 2948 seq = read_seqbegin(&rename_lock);
949854d0
NP
2949 /*
2950 * Need rcu_readlock to protect against the d_parent trashing
2951 * due to d_move
2952 */
2953 rcu_read_lock();
e2761a11 2954 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2955 result = 1;
e2761a11
OH
2956 else
2957 result = 0;
949854d0 2958 rcu_read_unlock();
1da177e4 2959 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2960
2961 return result;
2962}
2963
2964void d_genocide(struct dentry *root)
2965{
949854d0 2966 struct dentry *this_parent;
1da177e4 2967 struct list_head *next;
949854d0 2968 unsigned seq;
58db63d0 2969 int locked = 0;
1da177e4 2970
949854d0 2971 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2972again:
2973 this_parent = root;
2fd6b7f5 2974 spin_lock(&this_parent->d_lock);
1da177e4
LT
2975repeat:
2976 next = this_parent->d_subdirs.next;
2977resume:
2978 while (next != &this_parent->d_subdirs) {
2979 struct list_head *tmp = next;
5160ee6f 2980 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2981 next = tmp->next;
949854d0 2982
da502956
NP
2983 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2984 if (d_unhashed(dentry) || !dentry->d_inode) {
2985 spin_unlock(&dentry->d_lock);
1da177e4 2986 continue;
da502956 2987 }
1da177e4 2988 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2989 spin_unlock(&this_parent->d_lock);
2990 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2991 this_parent = dentry;
2fd6b7f5 2992 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2993 goto repeat;
2994 }
949854d0
NP
2995 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2996 dentry->d_flags |= DCACHE_GENOCIDE;
2997 dentry->d_count--;
2998 }
b7ab39f6 2999 spin_unlock(&dentry->d_lock);
1da177e4
LT
3000 }
3001 if (this_parent != root) {
c826cb7d 3002 struct dentry *child = this_parent;
949854d0
NP
3003 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3004 this_parent->d_flags |= DCACHE_GENOCIDE;
3005 this_parent->d_count--;
3006 }
c826cb7d
LT
3007 this_parent = try_to_ascend(this_parent, locked, seq);
3008 if (!this_parent)
949854d0 3009 goto rename_retry;
949854d0 3010 next = child->d_u.d_child.next;
1da177e4
LT
3011 goto resume;
3012 }
2fd6b7f5 3013 spin_unlock(&this_parent->d_lock);
58db63d0 3014 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 3015 goto rename_retry;
58db63d0
NP
3016 if (locked)
3017 write_sequnlock(&rename_lock);
3018 return;
3019
3020rename_retry:
3021 locked = 1;
3022 write_seqlock(&rename_lock);
3023 goto again;
1da177e4
LT
3024}
3025
3026/**
3027 * find_inode_number - check for dentry with name
3028 * @dir: directory to check
3029 * @name: Name to find.
3030 *
3031 * Check whether a dentry already exists for the given name,
3032 * and return the inode number if it has an inode. Otherwise
3033 * 0 is returned.
3034 *
3035 * This routine is used to post-process directory listings for
3036 * filesystems using synthetic inode numbers, and is necessary
3037 * to keep getcwd() working.
3038 */
3039
3040ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3041{
3042 struct dentry * dentry;
3043 ino_t ino = 0;
3044
3e7e241f
EB
3045 dentry = d_hash_and_lookup(dir, name);
3046 if (dentry) {
1da177e4
LT
3047 if (dentry->d_inode)
3048 ino = dentry->d_inode->i_ino;
3049 dput(dentry);
3050 }
1da177e4
LT
3051 return ino;
3052}
ec4f8605 3053EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
3054
3055static __initdata unsigned long dhash_entries;
3056static int __init set_dhash_entries(char *str)
3057{
3058 if (!str)
3059 return 0;
3060 dhash_entries = simple_strtoul(str, &str, 0);
3061 return 1;
3062}
3063__setup("dhash_entries=", set_dhash_entries);
3064
3065static void __init dcache_init_early(void)
3066{
074b8517 3067 unsigned int loop;
1da177e4
LT
3068
3069 /* If hashes are distributed across NUMA nodes, defer
3070 * hash allocation until vmalloc space is available.
3071 */
3072 if (hashdist)
3073 return;
3074
3075 dentry_hashtable =
3076 alloc_large_system_hash("Dentry cache",
b07ad996 3077 sizeof(struct hlist_bl_head),
1da177e4
LT
3078 dhash_entries,
3079 13,
3080 HASH_EARLY,
3081 &d_hash_shift,
3082 &d_hash_mask,
3083 0);
3084
074b8517 3085 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3086 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3087}
3088
74bf17cf 3089static void __init dcache_init(void)
1da177e4 3090{
074b8517 3091 unsigned int loop;
1da177e4
LT
3092
3093 /*
3094 * A constructor could be added for stable state like the lists,
3095 * but it is probably not worth it because of the cache nature
3096 * of the dcache.
3097 */
0a31bd5f
CL
3098 dentry_cache = KMEM_CACHE(dentry,
3099 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3100
3101 /* Hash may have been set up in dcache_init_early */
3102 if (!hashdist)
3103 return;
3104
3105 dentry_hashtable =
3106 alloc_large_system_hash("Dentry cache",
b07ad996 3107 sizeof(struct hlist_bl_head),
1da177e4
LT
3108 dhash_entries,
3109 13,
3110 0,
3111 &d_hash_shift,
3112 &d_hash_mask,
3113 0);
3114
074b8517 3115 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3116 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3117}
3118
3119/* SLAB cache for __getname() consumers */
e18b890b 3120struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3121EXPORT_SYMBOL(names_cachep);
1da177e4 3122
1da177e4
LT
3123EXPORT_SYMBOL(d_genocide);
3124
1da177e4
LT
3125void __init vfs_caches_init_early(void)
3126{
3127 dcache_init_early();
3128 inode_init_early();
3129}
3130
3131void __init vfs_caches_init(unsigned long mempages)
3132{
3133 unsigned long reserve;
3134
3135 /* Base hash sizes on available memory, with a reserve equal to
3136 150% of current kernel size */
3137
3138 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3139 mempages -= reserve;
3140
3141 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3142 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3143
74bf17cf
DC
3144 dcache_init();
3145 inode_init();
1da177e4 3146 files_init(mempages);
74bf17cf 3147 mnt_init();
1da177e4
LT
3148 bdev_cache_init();
3149 chrdev_init();
3150}