include/linux/kfifo.h: fix comment
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
7a5cf791 17#include <linux/ratelimit.h>
1da177e4
LT
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/seqlock.h>
1da177e4 29#include <linux/bootmem.h>
ceb5bdc2
NP
30#include <linux/bit_spinlock.h>
31#include <linux/rculist_bl.h>
f6041567 32#include <linux/list_lru.h>
07f3f05c 33#include "internal.h"
b2dba1af 34#include "mount.h"
1da177e4 35
789680d1
NP
36/*
37 * Usage:
873feea0 38 * dcache->d_inode->i_lock protects:
946e51f2 39 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
f1ee6162
N
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
19156840 44 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
946e51f2 54 * - d_u.d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
873feea0 57 * dentry->d_inode->i_lock
b5c84bf6 58 * dentry->d_lock
19156840 59 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 60 * dcache_hash_bucket lock
f1ee6162 61 * s_roots lock
789680d1 62 *
da502956
NP
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
65 * ...
66 * dentry->d_parent->d_lock
67 * dentry->d_lock
68 *
69 * If no ancestor relationship:
076515fc 70 * arbitrary, since it's serialized on rename_lock
789680d1 71 */
fa3536cc 72int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
73EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
74c3cbe3 75__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 76
949854d0 77EXPORT_SYMBOL(rename_lock);
1da177e4 78
e18b890b 79static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 80
cdf01226
DH
81const struct qstr empty_name = QSTR_INIT("", 0);
82EXPORT_SYMBOL(empty_name);
83const struct qstr slash_name = QSTR_INIT("/", 1);
84EXPORT_SYMBOL(slash_name);
85
1da177e4
LT
86/*
87 * This is the single most critical data structure when it comes
88 * to the dcache: the hashtable for lookups. Somebody should try
89 * to make this good - I've just made it work.
90 *
91 * This hash-function tries to avoid losing too many bits of hash
92 * information, yet avoid using a prime hash-size or similar.
93 */
1da177e4 94
fa3536cc 95static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 96
b07ad996 97static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 98
8387ff25 99static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 100{
854d3e63 101 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
102}
103
94bdd655
AV
104#define IN_LOOKUP_SHIFT 10
105static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 unsigned int hash)
109{
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112}
113
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3942c07c 120static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 121static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
122
123#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
124
125/*
126 * Here we resort to our own counters instead of using generic per-cpu counters
127 * for consistency with what the vfs inode code does. We are expected to harvest
128 * better code and performance by having our own specialized counters.
129 *
130 * Please note that the loop is done over all possible CPUs, not over all online
131 * CPUs. The reason for this is that we don't want to play games with CPUs going
132 * on and off. If one of them goes off, we will just keep their counters.
133 *
134 * glommer: See cffbc8a for details, and if you ever intend to change this,
135 * please update all vfs counters to match.
136 */
3942c07c 137static long get_nr_dentry(void)
3e880fb5
NP
138{
139 int i;
3942c07c 140 long sum = 0;
3e880fb5
NP
141 for_each_possible_cpu(i)
142 sum += per_cpu(nr_dentry, i);
143 return sum < 0 ? 0 : sum;
144}
145
62d36c77
DC
146static long get_nr_dentry_unused(void)
147{
148 int i;
149 long sum = 0;
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry_unused, i);
152 return sum < 0 ? 0 : sum;
153}
154
1f7e0616 155int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
156 size_t *lenp, loff_t *ppos)
157{
3e880fb5 158 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 159 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
161}
162#endif
163
5483f18e
LT
164/*
165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166 * The strings are both count bytes long, and count is non-zero.
167 */
e419b4cc
LT
168#ifdef CONFIG_DCACHE_WORD_ACCESS
169
170#include <asm/word-at-a-time.h>
171/*
172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173 * aligned allocation for this particular component. We don't
174 * strictly need the load_unaligned_zeropad() safety, but it
175 * doesn't hurt either.
176 *
177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178 * need the careful unaligned handling.
179 */
94753db5 180static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 181{
bfcfaa77 182 unsigned long a,b,mask;
bfcfaa77
LT
183
184 for (;;) {
bfe7aa6c 185 a = read_word_at_a_time(cs);
e419b4cc 186 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
187 if (tcount < sizeof(unsigned long))
188 break;
189 if (unlikely(a != b))
190 return 1;
191 cs += sizeof(unsigned long);
192 ct += sizeof(unsigned long);
193 tcount -= sizeof(unsigned long);
194 if (!tcount)
195 return 0;
196 }
a5c21dce 197 mask = bytemask_from_count(tcount);
bfcfaa77 198 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
199}
200
bfcfaa77 201#else
e419b4cc 202
94753db5 203static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 204{
5483f18e
LT
205 do {
206 if (*cs != *ct)
207 return 1;
208 cs++;
209 ct++;
210 tcount--;
211 } while (tcount);
212 return 0;
213}
214
e419b4cc
LT
215#endif
216
94753db5
LT
217static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218{
94753db5
LT
219 /*
220 * Be careful about RCU walk racing with rename:
506458ef 221 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
506458ef 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 236
6326c71f 237 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
238}
239
8d85b484
AV
240struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246};
247
248static inline struct external_name *external_name(struct dentry *dentry)
249{
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251}
252
9c82ab9c 253static void __d_free(struct rcu_head *head)
1da177e4 254{
9c82ab9c
CH
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
8d85b484
AV
257 kmem_cache_free(dentry_cache, dentry);
258}
259
f1782c9b
RG
260static void __d_free_external_name(struct rcu_head *head)
261{
262 struct external_name *name = container_of(head, struct external_name,
263 u.head);
264
265 mod_node_page_state(page_pgdat(virt_to_page(name)),
266 NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 -ksize(name));
268
269 kfree(name);
270}
271
8d85b484
AV
272static void __d_free_external(struct rcu_head *head)
273{
274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
f1782c9b
RG
275
276 __d_free_external_name(&external_name(dentry)->u.head);
277
278 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
279}
280
810bb172
AV
281static inline int dname_external(const struct dentry *dentry)
282{
283 return dentry->d_name.name != dentry->d_iname;
284}
285
49d31c2f
AV
286void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287{
288 spin_lock(&dentry->d_lock);
289 if (unlikely(dname_external(dentry))) {
290 struct external_name *p = external_name(dentry);
291 atomic_inc(&p->u.count);
292 spin_unlock(&dentry->d_lock);
293 name->name = p->name;
294 } else {
295 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
296 spin_unlock(&dentry->d_lock);
297 name->name = name->inline_name;
298 }
299}
300EXPORT_SYMBOL(take_dentry_name_snapshot);
301
302void release_dentry_name_snapshot(struct name_snapshot *name)
303{
304 if (unlikely(name->name != name->inline_name)) {
305 struct external_name *p;
306 p = container_of(name->name, struct external_name, name[0]);
307 if (unlikely(atomic_dec_and_test(&p->u.count)))
f1782c9b 308 call_rcu(&p->u.head, __d_free_external_name);
49d31c2f
AV
309 }
310}
311EXPORT_SYMBOL(release_dentry_name_snapshot);
312
4bf46a27
DH
313static inline void __d_set_inode_and_type(struct dentry *dentry,
314 struct inode *inode,
315 unsigned type_flags)
316{
317 unsigned flags;
318
319 dentry->d_inode = inode;
4bf46a27
DH
320 flags = READ_ONCE(dentry->d_flags);
321 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322 flags |= type_flags;
323 WRITE_ONCE(dentry->d_flags, flags);
324}
325
4bf46a27
DH
326static inline void __d_clear_type_and_inode(struct dentry *dentry)
327{
328 unsigned flags = READ_ONCE(dentry->d_flags);
329
330 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
332 dentry->d_inode = NULL;
333}
334
b4f0354e
AV
335static void dentry_free(struct dentry *dentry)
336{
946e51f2 337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
338 if (unlikely(dname_external(dentry))) {
339 struct external_name *p = external_name(dentry);
340 if (likely(atomic_dec_and_test(&p->u.count))) {
341 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 return;
343 }
344 }
b4f0354e
AV
345 /* if dentry was never visible to RCU, immediate free is OK */
346 if (!(dentry->d_flags & DCACHE_RCUACCESS))
347 __d_free(&dentry->d_u.d_rcu);
348 else
349 call_rcu(&dentry->d_u.d_rcu, __d_free);
350}
351
1da177e4
LT
352/*
353 * Release the dentry's inode, using the filesystem
550dce01 354 * d_iput() operation if defined.
31e6b01f
NP
355 */
356static void dentry_unlink_inode(struct dentry * dentry)
357 __releases(dentry->d_lock)
873feea0 358 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
359{
360 struct inode *inode = dentry->d_inode;
550dce01 361 bool hashed = !d_unhashed(dentry);
a528aca7 362
550dce01
AV
363 if (hashed)
364 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 365 __d_clear_type_and_inode(dentry);
946e51f2 366 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
367 if (hashed)
368 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 369 spin_unlock(&dentry->d_lock);
873feea0 370 spin_unlock(&inode->i_lock);
31e6b01f
NP
371 if (!inode->i_nlink)
372 fsnotify_inoderemove(inode);
373 if (dentry->d_op && dentry->d_op->d_iput)
374 dentry->d_op->d_iput(dentry, inode);
375 else
376 iput(inode);
377}
378
89dc77bc
LT
379/*
380 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
381 * is in use - which includes both the "real" per-superblock
382 * LRU list _and_ the DCACHE_SHRINK_LIST use.
383 *
384 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
385 * on the shrink list (ie not on the superblock LRU list).
386 *
387 * The per-cpu "nr_dentry_unused" counters are updated with
388 * the DCACHE_LRU_LIST bit.
389 *
390 * These helper functions make sure we always follow the
391 * rules. d_lock must be held by the caller.
392 */
393#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
394static void d_lru_add(struct dentry *dentry)
395{
396 D_FLAG_VERIFY(dentry, 0);
397 dentry->d_flags |= DCACHE_LRU_LIST;
398 this_cpu_inc(nr_dentry_unused);
399 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
400}
401
402static void d_lru_del(struct dentry *dentry)
403{
404 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
405 dentry->d_flags &= ~DCACHE_LRU_LIST;
406 this_cpu_dec(nr_dentry_unused);
407 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
408}
409
410static void d_shrink_del(struct dentry *dentry)
411{
412 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413 list_del_init(&dentry->d_lru);
414 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
415 this_cpu_dec(nr_dentry_unused);
416}
417
418static void d_shrink_add(struct dentry *dentry, struct list_head *list)
419{
420 D_FLAG_VERIFY(dentry, 0);
421 list_add(&dentry->d_lru, list);
422 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
423 this_cpu_inc(nr_dentry_unused);
424}
425
426/*
427 * These can only be called under the global LRU lock, ie during the
428 * callback for freeing the LRU list. "isolate" removes it from the
429 * LRU lists entirely, while shrink_move moves it to the indicated
430 * private list.
431 */
3f97b163 432static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
433{
434 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
435 dentry->d_flags &= ~DCACHE_LRU_LIST;
436 this_cpu_dec(nr_dentry_unused);
3f97b163 437 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
438}
439
3f97b163
VD
440static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
441 struct list_head *list)
89dc77bc
LT
442{
443 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 445 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
446}
447
789680d1
NP
448/**
449 * d_drop - drop a dentry
450 * @dentry: dentry to drop
451 *
452 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
453 * be found through a VFS lookup any more. Note that this is different from
454 * deleting the dentry - d_delete will try to mark the dentry negative if
455 * possible, giving a successful _negative_ lookup, while d_drop will
456 * just make the cache lookup fail.
457 *
458 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
459 * reason (NFS timeouts or autofs deletes).
460 *
61647823
N
461 * __d_drop requires dentry->d_lock
462 * ___d_drop doesn't mark dentry as "unhashed"
463 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 464 */
61647823 465static void ___d_drop(struct dentry *dentry)
789680d1 466{
0632a9ac
AV
467 struct hlist_bl_head *b;
468 /*
469 * Hashed dentries are normally on the dentry hashtable,
470 * with the exception of those newly allocated by
471 * d_obtain_root, which are always IS_ROOT:
472 */
473 if (unlikely(IS_ROOT(dentry)))
474 b = &dentry->d_sb->s_roots;
475 else
476 b = d_hash(dentry->d_name.hash);
b61625d2 477
0632a9ac
AV
478 hlist_bl_lock(b);
479 __hlist_bl_del(&dentry->d_hash);
480 hlist_bl_unlock(b);
789680d1 481}
61647823
N
482
483void __d_drop(struct dentry *dentry)
484{
0632a9ac
AV
485 if (!d_unhashed(dentry)) {
486 ___d_drop(dentry);
487 dentry->d_hash.pprev = NULL;
488 write_seqcount_invalidate(&dentry->d_seq);
489 }
61647823 490}
789680d1
NP
491EXPORT_SYMBOL(__d_drop);
492
493void d_drop(struct dentry *dentry)
494{
789680d1
NP
495 spin_lock(&dentry->d_lock);
496 __d_drop(dentry);
497 spin_unlock(&dentry->d_lock);
789680d1
NP
498}
499EXPORT_SYMBOL(d_drop);
500
ba65dc5e
AV
501static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
502{
503 struct dentry *next;
504 /*
505 * Inform d_walk() and shrink_dentry_list() that we are no longer
506 * attached to the dentry tree
507 */
508 dentry->d_flags |= DCACHE_DENTRY_KILLED;
509 if (unlikely(list_empty(&dentry->d_child)))
510 return;
511 __list_del_entry(&dentry->d_child);
512 /*
513 * Cursors can move around the list of children. While we'd been
514 * a normal list member, it didn't matter - ->d_child.next would've
515 * been updated. However, from now on it won't be and for the
516 * things like d_walk() it might end up with a nasty surprise.
517 * Normally d_walk() doesn't care about cursors moving around -
518 * ->d_lock on parent prevents that and since a cursor has no children
519 * of its own, we get through it without ever unlocking the parent.
520 * There is one exception, though - if we ascend from a child that
521 * gets killed as soon as we unlock it, the next sibling is found
522 * using the value left in its ->d_child.next. And if _that_
523 * pointed to a cursor, and cursor got moved (e.g. by lseek())
524 * before d_walk() regains parent->d_lock, we'll end up skipping
525 * everything the cursor had been moved past.
526 *
527 * Solution: make sure that the pointer left behind in ->d_child.next
528 * points to something that won't be moving around. I.e. skip the
529 * cursors.
530 */
531 while (dentry->d_child.next != &parent->d_subdirs) {
532 next = list_entry(dentry->d_child.next, struct dentry, d_child);
533 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
534 break;
535 dentry->d_child.next = next->d_child.next;
536 }
537}
538
e55fd011 539static void __dentry_kill(struct dentry *dentry)
77812a1e 540{
41edf278
AV
541 struct dentry *parent = NULL;
542 bool can_free = true;
41edf278 543 if (!IS_ROOT(dentry))
77812a1e 544 parent = dentry->d_parent;
31e6b01f 545
0d98439e
LT
546 /*
547 * The dentry is now unrecoverably dead to the world.
548 */
549 lockref_mark_dead(&dentry->d_lockref);
550
f0023bc6 551 /*
f0023bc6
SW
552 * inform the fs via d_prune that this dentry is about to be
553 * unhashed and destroyed.
554 */
29266201 555 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
556 dentry->d_op->d_prune(dentry);
557
01b60351
AV
558 if (dentry->d_flags & DCACHE_LRU_LIST) {
559 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
560 d_lru_del(dentry);
01b60351 561 }
77812a1e
NP
562 /* if it was on the hash then remove it */
563 __d_drop(dentry);
ba65dc5e 564 dentry_unlist(dentry, parent);
03b3b889
AV
565 if (parent)
566 spin_unlock(&parent->d_lock);
550dce01
AV
567 if (dentry->d_inode)
568 dentry_unlink_inode(dentry);
569 else
570 spin_unlock(&dentry->d_lock);
03b3b889
AV
571 this_cpu_dec(nr_dentry);
572 if (dentry->d_op && dentry->d_op->d_release)
573 dentry->d_op->d_release(dentry);
574
41edf278
AV
575 spin_lock(&dentry->d_lock);
576 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
577 dentry->d_flags |= DCACHE_MAY_FREE;
578 can_free = false;
579 }
580 spin_unlock(&dentry->d_lock);
41edf278
AV
581 if (likely(can_free))
582 dentry_free(dentry);
e55fd011
AV
583}
584
8b987a46 585static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 586{
8b987a46 587 struct dentry *parent;
046b961b 588 rcu_read_lock();
c2338f2d 589 spin_unlock(&dentry->d_lock);
046b961b 590again:
66702eb5 591 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
592 spin_lock(&parent->d_lock);
593 /*
594 * We can't blindly lock dentry until we are sure
595 * that we won't violate the locking order.
596 * Any changes of dentry->d_parent must have
597 * been done with parent->d_lock held, so
598 * spin_lock() above is enough of a barrier
599 * for checking if it's still our child.
600 */
601 if (unlikely(parent != dentry->d_parent)) {
602 spin_unlock(&parent->d_lock);
603 goto again;
604 }
65d8eb5a
AV
605 rcu_read_unlock();
606 if (parent != dentry)
9f12600f 607 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 608 else
046b961b
AV
609 parent = NULL;
610 return parent;
611}
612
8b987a46
AV
613static inline struct dentry *lock_parent(struct dentry *dentry)
614{
615 struct dentry *parent = dentry->d_parent;
616 if (IS_ROOT(dentry))
617 return NULL;
618 if (likely(spin_trylock(&parent->d_lock)))
619 return parent;
620 return __lock_parent(dentry);
621}
622
a338579f
AV
623static inline bool retain_dentry(struct dentry *dentry)
624{
625 WARN_ON(d_in_lookup(dentry));
626
627 /* Unreachable? Get rid of it */
628 if (unlikely(d_unhashed(dentry)))
629 return false;
630
631 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
632 return false;
633
634 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
635 if (dentry->d_op->d_delete(dentry))
636 return false;
637 }
62d9956c
AV
638 /* retain; LRU fodder */
639 dentry->d_lockref.count--;
640 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
641 d_lru_add(dentry);
642 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
643 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
644 return true;
645}
646
c1d0c1a2
JO
647/*
648 * Finish off a dentry we've decided to kill.
649 * dentry->d_lock must be held, returns with it unlocked.
650 * Returns dentry requiring refcount drop, or NULL if we're done.
651 */
652static struct dentry *dentry_kill(struct dentry *dentry)
653 __releases(dentry->d_lock)
654{
655 struct inode *inode = dentry->d_inode;
656 struct dentry *parent = NULL;
657
658 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 659 goto slow_positive;
c1d0c1a2
JO
660
661 if (!IS_ROOT(dentry)) {
662 parent = dentry->d_parent;
663 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
664 parent = __lock_parent(dentry);
665 if (likely(inode || !dentry->d_inode))
666 goto got_locks;
667 /* negative that became positive */
668 if (parent)
669 spin_unlock(&parent->d_lock);
670 inode = dentry->d_inode;
671 goto slow_positive;
c1d0c1a2
JO
672 }
673 }
c1d0c1a2
JO
674 __dentry_kill(dentry);
675 return parent;
676
f657a666
AV
677slow_positive:
678 spin_unlock(&dentry->d_lock);
679 spin_lock(&inode->i_lock);
680 spin_lock(&dentry->d_lock);
681 parent = lock_parent(dentry);
682got_locks:
683 if (unlikely(dentry->d_lockref.count != 1)) {
684 dentry->d_lockref.count--;
685 } else if (likely(!retain_dentry(dentry))) {
686 __dentry_kill(dentry);
687 return parent;
688 }
689 /* we are keeping it, after all */
690 if (inode)
691 spin_unlock(&inode->i_lock);
692 if (parent)
693 spin_unlock(&parent->d_lock);
c1d0c1a2 694 spin_unlock(&dentry->d_lock);
f657a666 695 return NULL;
c1d0c1a2
JO
696}
697
360f5479
LT
698/*
699 * Try to do a lockless dput(), and return whether that was successful.
700 *
701 * If unsuccessful, we return false, having already taken the dentry lock.
702 *
703 * The caller needs to hold the RCU read lock, so that the dentry is
704 * guaranteed to stay around even if the refcount goes down to zero!
705 */
706static inline bool fast_dput(struct dentry *dentry)
707{
708 int ret;
709 unsigned int d_flags;
710
711 /*
712 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 713 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
714 */
715 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
716 return lockref_put_or_lock(&dentry->d_lockref);
717
718 /*
719 * .. otherwise, we can try to just decrement the
720 * lockref optimistically.
721 */
722 ret = lockref_put_return(&dentry->d_lockref);
723
724 /*
725 * If the lockref_put_return() failed due to the lock being held
726 * by somebody else, the fast path has failed. We will need to
727 * get the lock, and then check the count again.
728 */
729 if (unlikely(ret < 0)) {
730 spin_lock(&dentry->d_lock);
731 if (dentry->d_lockref.count > 1) {
732 dentry->d_lockref.count--;
733 spin_unlock(&dentry->d_lock);
734 return 1;
735 }
736 return 0;
737 }
738
739 /*
740 * If we weren't the last ref, we're done.
741 */
742 if (ret)
743 return 1;
744
745 /*
746 * Careful, careful. The reference count went down
747 * to zero, but we don't hold the dentry lock, so
748 * somebody else could get it again, and do another
749 * dput(), and we need to not race with that.
750 *
751 * However, there is a very special and common case
752 * where we don't care, because there is nothing to
753 * do: the dentry is still hashed, it does not have
754 * a 'delete' op, and it's referenced and already on
755 * the LRU list.
756 *
757 * NOTE! Since we aren't locked, these values are
758 * not "stable". However, it is sufficient that at
759 * some point after we dropped the reference the
760 * dentry was hashed and the flags had the proper
761 * value. Other dentry users may have re-gotten
762 * a reference to the dentry and change that, but
763 * our work is done - we can leave the dentry
764 * around with a zero refcount.
765 */
766 smp_rmb();
66702eb5 767 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 768 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
769
770 /* Nothing to do? Dropping the reference was all we needed? */
771 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
772 return 1;
773
774 /*
775 * Not the fast normal case? Get the lock. We've already decremented
776 * the refcount, but we'll need to re-check the situation after
777 * getting the lock.
778 */
779 spin_lock(&dentry->d_lock);
780
781 /*
782 * Did somebody else grab a reference to it in the meantime, and
783 * we're no longer the last user after all? Alternatively, somebody
784 * else could have killed it and marked it dead. Either way, we
785 * don't need to do anything else.
786 */
787 if (dentry->d_lockref.count) {
788 spin_unlock(&dentry->d_lock);
789 return 1;
790 }
791
792 /*
793 * Re-get the reference we optimistically dropped. We hold the
794 * lock, and we just tested that it was zero, so we can just
795 * set it to 1.
796 */
797 dentry->d_lockref.count = 1;
798 return 0;
799}
800
801
1da177e4
LT
802/*
803 * This is dput
804 *
805 * This is complicated by the fact that we do not want to put
806 * dentries that are no longer on any hash chain on the unused
807 * list: we'd much rather just get rid of them immediately.
808 *
809 * However, that implies that we have to traverse the dentry
810 * tree upwards to the parents which might _also_ now be
811 * scheduled for deletion (it may have been only waiting for
812 * its last child to go away).
813 *
814 * This tail recursion is done by hand as we don't want to depend
815 * on the compiler to always get this right (gcc generally doesn't).
816 * Real recursion would eat up our stack space.
817 */
818
819/*
820 * dput - release a dentry
821 * @dentry: dentry to release
822 *
823 * Release a dentry. This will drop the usage count and if appropriate
824 * call the dentry unlink method as well as removing it from the queues and
825 * releasing its resources. If the parent dentries were scheduled for release
826 * they too may now get deleted.
1da177e4 827 */
1da177e4
LT
828void dput(struct dentry *dentry)
829{
8aab6a27 830 if (unlikely(!dentry))
1da177e4
LT
831 return;
832
833repeat:
47be6184
WF
834 might_sleep();
835
360f5479
LT
836 rcu_read_lock();
837 if (likely(fast_dput(dentry))) {
838 rcu_read_unlock();
1da177e4 839 return;
360f5479
LT
840 }
841
842 /* Slow case: now with the dentry lock held */
843 rcu_read_unlock();
1da177e4 844
a338579f 845 if (likely(retain_dentry(dentry))) {
a338579f
AV
846 spin_unlock(&dentry->d_lock);
847 return;
1da177e4 848 }
265ac902 849
8cbf74da 850 dentry = dentry_kill(dentry);
47be6184
WF
851 if (dentry) {
852 cond_resched();
d52b9086 853 goto repeat;
47be6184 854 }
1da177e4 855}
ec4f8605 856EXPORT_SYMBOL(dput);
1da177e4 857
1da177e4 858
b5c84bf6 859/* This must be called with d_lock held */
dc0474be 860static inline void __dget_dlock(struct dentry *dentry)
23044507 861{
98474236 862 dentry->d_lockref.count++;
23044507
NP
863}
864
dc0474be 865static inline void __dget(struct dentry *dentry)
1da177e4 866{
98474236 867 lockref_get(&dentry->d_lockref);
1da177e4
LT
868}
869
b7ab39f6
NP
870struct dentry *dget_parent(struct dentry *dentry)
871{
df3d0bbc 872 int gotref;
b7ab39f6
NP
873 struct dentry *ret;
874
df3d0bbc
WL
875 /*
876 * Do optimistic parent lookup without any
877 * locking.
878 */
879 rcu_read_lock();
66702eb5 880 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
881 gotref = lockref_get_not_zero(&ret->d_lockref);
882 rcu_read_unlock();
883 if (likely(gotref)) {
66702eb5 884 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
885 return ret;
886 dput(ret);
887 }
888
b7ab39f6 889repeat:
a734eb45
NP
890 /*
891 * Don't need rcu_dereference because we re-check it was correct under
892 * the lock.
893 */
894 rcu_read_lock();
b7ab39f6 895 ret = dentry->d_parent;
a734eb45
NP
896 spin_lock(&ret->d_lock);
897 if (unlikely(ret != dentry->d_parent)) {
898 spin_unlock(&ret->d_lock);
899 rcu_read_unlock();
b7ab39f6
NP
900 goto repeat;
901 }
a734eb45 902 rcu_read_unlock();
98474236
WL
903 BUG_ON(!ret->d_lockref.count);
904 ret->d_lockref.count++;
b7ab39f6 905 spin_unlock(&ret->d_lock);
b7ab39f6
NP
906 return ret;
907}
908EXPORT_SYMBOL(dget_parent);
909
1da177e4
LT
910/**
911 * d_find_alias - grab a hashed alias of inode
912 * @inode: inode in question
1da177e4
LT
913 *
914 * If inode has a hashed alias, or is a directory and has any alias,
915 * acquire the reference to alias and return it. Otherwise return NULL.
916 * Notice that if inode is a directory there can be only one alias and
917 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
918 * of a filesystem, or if the directory was renamed and d_revalidate
919 * was the first vfs operation to notice.
1da177e4 920 *
21c0d8fd 921 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 922 * any other hashed alias over that one.
1da177e4 923 */
52ed46f0 924static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 925{
da502956 926 struct dentry *alias, *discon_alias;
1da177e4 927
da502956
NP
928again:
929 discon_alias = NULL;
946e51f2 930 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 931 spin_lock(&alias->d_lock);
1da177e4 932 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 933 if (IS_ROOT(alias) &&
da502956 934 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 935 discon_alias = alias;
52ed46f0 936 } else {
dc0474be 937 __dget_dlock(alias);
da502956
NP
938 spin_unlock(&alias->d_lock);
939 return alias;
940 }
941 }
942 spin_unlock(&alias->d_lock);
943 }
944 if (discon_alias) {
945 alias = discon_alias;
946 spin_lock(&alias->d_lock);
947 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
948 __dget_dlock(alias);
949 spin_unlock(&alias->d_lock);
950 return alias;
1da177e4 951 }
da502956
NP
952 spin_unlock(&alias->d_lock);
953 goto again;
1da177e4 954 }
da502956 955 return NULL;
1da177e4
LT
956}
957
da502956 958struct dentry *d_find_alias(struct inode *inode)
1da177e4 959{
214fda1f
DH
960 struct dentry *de = NULL;
961
b3d9b7a3 962 if (!hlist_empty(&inode->i_dentry)) {
873feea0 963 spin_lock(&inode->i_lock);
52ed46f0 964 de = __d_find_alias(inode);
873feea0 965 spin_unlock(&inode->i_lock);
214fda1f 966 }
1da177e4
LT
967 return de;
968}
ec4f8605 969EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
970
971/*
972 * Try to kill dentries associated with this inode.
973 * WARNING: you must own a reference to inode.
974 */
975void d_prune_aliases(struct inode *inode)
976{
0cdca3f9 977 struct dentry *dentry;
1da177e4 978restart:
873feea0 979 spin_lock(&inode->i_lock);
946e51f2 980 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 981 spin_lock(&dentry->d_lock);
98474236 982 if (!dentry->d_lockref.count) {
29355c39
AV
983 struct dentry *parent = lock_parent(dentry);
984 if (likely(!dentry->d_lockref.count)) {
985 __dentry_kill(dentry);
4a7795d3 986 dput(parent);
29355c39
AV
987 goto restart;
988 }
989 if (parent)
990 spin_unlock(&parent->d_lock);
1da177e4
LT
991 }
992 spin_unlock(&dentry->d_lock);
993 }
873feea0 994 spin_unlock(&inode->i_lock);
1da177e4 995}
ec4f8605 996EXPORT_SYMBOL(d_prune_aliases);
1da177e4 997
3b3f09f4
AV
998/*
999 * Lock a dentry from shrink list.
8f04da2a
JO
1000 * Called under rcu_read_lock() and dentry->d_lock; the former
1001 * guarantees that nothing we access will be freed under us.
3b3f09f4 1002 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
1003 * d_delete(), etc.
1004 *
3b3f09f4
AV
1005 * Return false if dentry has been disrupted or grabbed, leaving
1006 * the caller to kick it off-list. Otherwise, return true and have
1007 * that dentry's inode and parent both locked.
1008 */
1009static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1010{
3b3f09f4
AV
1011 struct inode *inode;
1012 struct dentry *parent;
da3bbdd4 1013
3b3f09f4
AV
1014 if (dentry->d_lockref.count)
1015 return false;
1016
1017 inode = dentry->d_inode;
1018 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1019 spin_unlock(&dentry->d_lock);
1020 spin_lock(&inode->i_lock);
ec33679d 1021 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1022 if (unlikely(dentry->d_lockref.count))
1023 goto out;
1024 /* changed inode means that somebody had grabbed it */
1025 if (unlikely(inode != dentry->d_inode))
1026 goto out;
3b3f09f4 1027 }
046b961b 1028
3b3f09f4
AV
1029 parent = dentry->d_parent;
1030 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1031 return true;
dd1f6b2e 1032
3b3f09f4 1033 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1034 spin_lock(&parent->d_lock);
1035 if (unlikely(parent != dentry->d_parent)) {
1036 spin_unlock(&parent->d_lock);
1037 spin_lock(&dentry->d_lock);
1038 goto out;
1039 }
1040 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1041 if (likely(!dentry->d_lockref.count))
3b3f09f4 1042 return true;
3b3f09f4
AV
1043 spin_unlock(&parent->d_lock);
1044out:
1045 if (inode)
1046 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1047 return false;
1048}
77812a1e 1049
3b3f09f4
AV
1050static void shrink_dentry_list(struct list_head *list)
1051{
1052 while (!list_empty(list)) {
1053 struct dentry *dentry, *parent;
64fd72e0 1054
3b3f09f4
AV
1055 dentry = list_entry(list->prev, struct dentry, d_lru);
1056 spin_lock(&dentry->d_lock);
8f04da2a 1057 rcu_read_lock();
3b3f09f4
AV
1058 if (!shrink_lock_dentry(dentry)) {
1059 bool can_free = false;
8f04da2a 1060 rcu_read_unlock();
3b3f09f4
AV
1061 d_shrink_del(dentry);
1062 if (dentry->d_lockref.count < 0)
1063 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1064 spin_unlock(&dentry->d_lock);
1065 if (can_free)
1066 dentry_free(dentry);
1067 continue;
1068 }
8f04da2a 1069 rcu_read_unlock();
3b3f09f4
AV
1070 d_shrink_del(dentry);
1071 parent = dentry->d_parent;
ff2fde99 1072 __dentry_kill(dentry);
3b3f09f4
AV
1073 if (parent == dentry)
1074 continue;
5c47e6d0
AV
1075 /*
1076 * We need to prune ancestors too. This is necessary to prevent
1077 * quadratic behavior of shrink_dcache_parent(), but is also
1078 * expected to be beneficial in reducing dentry cache
1079 * fragmentation.
1080 */
1081 dentry = parent;
8f04da2a
JO
1082 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1083 dentry = dentry_kill(dentry);
da3bbdd4 1084 }
3049cfe2
CH
1085}
1086
3f97b163
VD
1087static enum lru_status dentry_lru_isolate(struct list_head *item,
1088 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1089{
1090 struct list_head *freeable = arg;
1091 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1092
1093
1094 /*
1095 * we are inverting the lru lock/dentry->d_lock here,
1096 * so use a trylock. If we fail to get the lock, just skip
1097 * it
1098 */
1099 if (!spin_trylock(&dentry->d_lock))
1100 return LRU_SKIP;
1101
1102 /*
1103 * Referenced dentries are still in use. If they have active
1104 * counts, just remove them from the LRU. Otherwise give them
1105 * another pass through the LRU.
1106 */
1107 if (dentry->d_lockref.count) {
3f97b163 1108 d_lru_isolate(lru, dentry);
f6041567
DC
1109 spin_unlock(&dentry->d_lock);
1110 return LRU_REMOVED;
1111 }
1112
1113 if (dentry->d_flags & DCACHE_REFERENCED) {
1114 dentry->d_flags &= ~DCACHE_REFERENCED;
1115 spin_unlock(&dentry->d_lock);
1116
1117 /*
1118 * The list move itself will be made by the common LRU code. At
1119 * this point, we've dropped the dentry->d_lock but keep the
1120 * lru lock. This is safe to do, since every list movement is
1121 * protected by the lru lock even if both locks are held.
1122 *
1123 * This is guaranteed by the fact that all LRU management
1124 * functions are intermediated by the LRU API calls like
1125 * list_lru_add and list_lru_del. List movement in this file
1126 * only ever occur through this functions or through callbacks
1127 * like this one, that are called from the LRU API.
1128 *
1129 * The only exceptions to this are functions like
1130 * shrink_dentry_list, and code that first checks for the
1131 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1132 * operating only with stack provided lists after they are
1133 * properly isolated from the main list. It is thus, always a
1134 * local access.
1135 */
1136 return LRU_ROTATE;
1137 }
1138
3f97b163 1139 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1140 spin_unlock(&dentry->d_lock);
1141
1142 return LRU_REMOVED;
1143}
1144
3049cfe2 1145/**
b48f03b3
DC
1146 * prune_dcache_sb - shrink the dcache
1147 * @sb: superblock
503c358c 1148 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1149 *
503c358c
VD
1150 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1151 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1152 * function.
3049cfe2 1153 *
b48f03b3
DC
1154 * This function may fail to free any resources if all the dentries are in
1155 * use.
3049cfe2 1156 */
503c358c 1157long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1158{
f6041567
DC
1159 LIST_HEAD(dispose);
1160 long freed;
3049cfe2 1161
503c358c
VD
1162 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1163 dentry_lru_isolate, &dispose);
f6041567 1164 shrink_dentry_list(&dispose);
0a234c6d 1165 return freed;
da3bbdd4 1166}
23044507 1167
4e717f5c 1168static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1169 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1170{
4e717f5c
GC
1171 struct list_head *freeable = arg;
1172 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1173
4e717f5c
GC
1174 /*
1175 * we are inverting the lru lock/dentry->d_lock here,
1176 * so use a trylock. If we fail to get the lock, just skip
1177 * it
1178 */
1179 if (!spin_trylock(&dentry->d_lock))
1180 return LRU_SKIP;
1181
3f97b163 1182 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1183 spin_unlock(&dentry->d_lock);
ec33679d 1184
4e717f5c 1185 return LRU_REMOVED;
da3bbdd4
KM
1186}
1187
4e717f5c 1188
1da177e4
LT
1189/**
1190 * shrink_dcache_sb - shrink dcache for a superblock
1191 * @sb: superblock
1192 *
3049cfe2
CH
1193 * Shrink the dcache for the specified super block. This is used to free
1194 * the dcache before unmounting a file system.
1da177e4 1195 */
3049cfe2 1196void shrink_dcache_sb(struct super_block *sb)
1da177e4 1197{
4e717f5c
GC
1198 long freed;
1199
1200 do {
1201 LIST_HEAD(dispose);
1202
1203 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1204 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1205
4e717f5c
GC
1206 this_cpu_sub(nr_dentry_unused, freed);
1207 shrink_dentry_list(&dispose);
b17c070f
ST
1208 cond_resched();
1209 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1210}
ec4f8605 1211EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1212
db14fc3a
MS
1213/**
1214 * enum d_walk_ret - action to talke during tree walk
1215 * @D_WALK_CONTINUE: contrinue walk
1216 * @D_WALK_QUIT: quit walk
1217 * @D_WALK_NORETRY: quit when retry is needed
1218 * @D_WALK_SKIP: skip this dentry and its children
1219 */
1220enum d_walk_ret {
1221 D_WALK_CONTINUE,
1222 D_WALK_QUIT,
1223 D_WALK_NORETRY,
1224 D_WALK_SKIP,
1225};
c826cb7d 1226
1da177e4 1227/**
db14fc3a
MS
1228 * d_walk - walk the dentry tree
1229 * @parent: start of walk
1230 * @data: data passed to @enter() and @finish()
1231 * @enter: callback when first entering the dentry
1232 * @finish: callback when successfully finished the walk
1da177e4 1233 *
db14fc3a 1234 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1235 */
db14fc3a
MS
1236static void d_walk(struct dentry *parent, void *data,
1237 enum d_walk_ret (*enter)(void *, struct dentry *),
1238 void (*finish)(void *))
1da177e4 1239{
949854d0 1240 struct dentry *this_parent;
1da177e4 1241 struct list_head *next;
48f5ec21 1242 unsigned seq = 0;
db14fc3a
MS
1243 enum d_walk_ret ret;
1244 bool retry = true;
949854d0 1245
58db63d0 1246again:
48f5ec21 1247 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1248 this_parent = parent;
2fd6b7f5 1249 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1250
1251 ret = enter(data, this_parent);
1252 switch (ret) {
1253 case D_WALK_CONTINUE:
1254 break;
1255 case D_WALK_QUIT:
1256 case D_WALK_SKIP:
1257 goto out_unlock;
1258 case D_WALK_NORETRY:
1259 retry = false;
1260 break;
1261 }
1da177e4
LT
1262repeat:
1263 next = this_parent->d_subdirs.next;
1264resume:
1265 while (next != &this_parent->d_subdirs) {
1266 struct list_head *tmp = next;
946e51f2 1267 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1268 next = tmp->next;
2fd6b7f5 1269
ba65dc5e
AV
1270 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1271 continue;
1272
2fd6b7f5 1273 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1274
1275 ret = enter(data, dentry);
1276 switch (ret) {
1277 case D_WALK_CONTINUE:
1278 break;
1279 case D_WALK_QUIT:
2fd6b7f5 1280 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1281 goto out_unlock;
1282 case D_WALK_NORETRY:
1283 retry = false;
1284 break;
1285 case D_WALK_SKIP:
1286 spin_unlock(&dentry->d_lock);
1287 continue;
2fd6b7f5 1288 }
db14fc3a 1289
1da177e4 1290 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1291 spin_unlock(&this_parent->d_lock);
1292 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1293 this_parent = dentry;
2fd6b7f5 1294 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1295 goto repeat;
1296 }
2fd6b7f5 1297 spin_unlock(&dentry->d_lock);
1da177e4
LT
1298 }
1299 /*
1300 * All done at this level ... ascend and resume the search.
1301 */
ca5358ef
AV
1302 rcu_read_lock();
1303ascend:
1da177e4 1304 if (this_parent != parent) {
c826cb7d 1305 struct dentry *child = this_parent;
31dec132
AV
1306 this_parent = child->d_parent;
1307
31dec132
AV
1308 spin_unlock(&child->d_lock);
1309 spin_lock(&this_parent->d_lock);
1310
ca5358ef
AV
1311 /* might go back up the wrong parent if we have had a rename. */
1312 if (need_seqretry(&rename_lock, seq))
949854d0 1313 goto rename_retry;
2159184e
AV
1314 /* go into the first sibling still alive */
1315 do {
1316 next = child->d_child.next;
ca5358ef
AV
1317 if (next == &this_parent->d_subdirs)
1318 goto ascend;
1319 child = list_entry(next, struct dentry, d_child);
2159184e 1320 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1321 rcu_read_unlock();
1da177e4
LT
1322 goto resume;
1323 }
ca5358ef 1324 if (need_seqretry(&rename_lock, seq))
949854d0 1325 goto rename_retry;
ca5358ef 1326 rcu_read_unlock();
db14fc3a
MS
1327 if (finish)
1328 finish(data);
1329
1330out_unlock:
1331 spin_unlock(&this_parent->d_lock);
48f5ec21 1332 done_seqretry(&rename_lock, seq);
db14fc3a 1333 return;
58db63d0
NP
1334
1335rename_retry:
ca5358ef
AV
1336 spin_unlock(&this_parent->d_lock);
1337 rcu_read_unlock();
1338 BUG_ON(seq & 1);
db14fc3a
MS
1339 if (!retry)
1340 return;
48f5ec21 1341 seq = 1;
58db63d0 1342 goto again;
1da177e4 1343}
db14fc3a 1344
01619491
IK
1345struct check_mount {
1346 struct vfsmount *mnt;
1347 unsigned int mounted;
1348};
1349
1350static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1351{
1352 struct check_mount *info = data;
1353 struct path path = { .mnt = info->mnt, .dentry = dentry };
1354
1355 if (likely(!d_mountpoint(dentry)))
1356 return D_WALK_CONTINUE;
1357 if (__path_is_mountpoint(&path)) {
1358 info->mounted = 1;
1359 return D_WALK_QUIT;
1360 }
1361 return D_WALK_CONTINUE;
1362}
1363
1364/**
1365 * path_has_submounts - check for mounts over a dentry in the
1366 * current namespace.
1367 * @parent: path to check.
1368 *
1369 * Return true if the parent or its subdirectories contain
1370 * a mount point in the current namespace.
1371 */
1372int path_has_submounts(const struct path *parent)
1373{
1374 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1375
1376 read_seqlock_excl(&mount_lock);
1377 d_walk(parent->dentry, &data, path_check_mount, NULL);
1378 read_sequnlock_excl(&mount_lock);
1379
1380 return data.mounted;
1381}
1382EXPORT_SYMBOL(path_has_submounts);
1383
eed81007
MS
1384/*
1385 * Called by mount code to set a mountpoint and check if the mountpoint is
1386 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1387 * subtree can become unreachable).
1388 *
1ffe46d1 1389 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1390 * this reason take rename_lock and d_lock on dentry and ancestors.
1391 */
1392int d_set_mounted(struct dentry *dentry)
1393{
1394 struct dentry *p;
1395 int ret = -ENOENT;
1396 write_seqlock(&rename_lock);
1397 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1398 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1399 spin_lock(&p->d_lock);
1400 if (unlikely(d_unhashed(p))) {
1401 spin_unlock(&p->d_lock);
1402 goto out;
1403 }
1404 spin_unlock(&p->d_lock);
1405 }
1406 spin_lock(&dentry->d_lock);
1407 if (!d_unlinked(dentry)) {
3895dbf8
EB
1408 ret = -EBUSY;
1409 if (!d_mountpoint(dentry)) {
1410 dentry->d_flags |= DCACHE_MOUNTED;
1411 ret = 0;
1412 }
eed81007
MS
1413 }
1414 spin_unlock(&dentry->d_lock);
1415out:
1416 write_sequnlock(&rename_lock);
1417 return ret;
1418}
1419
1da177e4 1420/*
fd517909 1421 * Search the dentry child list of the specified parent,
1da177e4
LT
1422 * and move any unused dentries to the end of the unused
1423 * list for prune_dcache(). We descend to the next level
1424 * whenever the d_subdirs list is non-empty and continue
1425 * searching.
1426 *
1427 * It returns zero iff there are no unused children,
1428 * otherwise it returns the number of children moved to
1429 * the end of the unused list. This may not be the total
1430 * number of unused children, because select_parent can
1431 * drop the lock and return early due to latency
1432 * constraints.
1433 */
1da177e4 1434
db14fc3a
MS
1435struct select_data {
1436 struct dentry *start;
1437 struct list_head dispose;
1438 int found;
1439};
23044507 1440
db14fc3a
MS
1441static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1442{
1443 struct select_data *data = _data;
1444 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1445
db14fc3a
MS
1446 if (data->start == dentry)
1447 goto out;
2fd6b7f5 1448
fe91522a 1449 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1450 data->found++;
fe91522a
AV
1451 } else {
1452 if (dentry->d_flags & DCACHE_LRU_LIST)
1453 d_lru_del(dentry);
1454 if (!dentry->d_lockref.count) {
1455 d_shrink_add(dentry, &data->dispose);
1456 data->found++;
1457 }
1da177e4 1458 }
db14fc3a
MS
1459 /*
1460 * We can return to the caller if we have found some (this
1461 * ensures forward progress). We'll be coming back to find
1462 * the rest.
1463 */
fe91522a
AV
1464 if (!list_empty(&data->dispose))
1465 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1466out:
db14fc3a 1467 return ret;
1da177e4
LT
1468}
1469
1470/**
1471 * shrink_dcache_parent - prune dcache
1472 * @parent: parent of entries to prune
1473 *
1474 * Prune the dcache to remove unused children of the parent dentry.
1475 */
db14fc3a 1476void shrink_dcache_parent(struct dentry *parent)
1da177e4 1477{
db14fc3a
MS
1478 for (;;) {
1479 struct select_data data;
1da177e4 1480
db14fc3a
MS
1481 INIT_LIST_HEAD(&data.dispose);
1482 data.start = parent;
1483 data.found = 0;
1484
1485 d_walk(parent, &data, select_collect, NULL);
1486 if (!data.found)
1487 break;
1488
1489 shrink_dentry_list(&data.dispose);
421348f1
GT
1490 cond_resched();
1491 }
1da177e4 1492}
ec4f8605 1493EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1494
9c8c10e2 1495static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1496{
9c8c10e2
AV
1497 /* it has busy descendents; complain about those instead */
1498 if (!list_empty(&dentry->d_subdirs))
1499 return D_WALK_CONTINUE;
42c32608 1500
9c8c10e2
AV
1501 /* root with refcount 1 is fine */
1502 if (dentry == _data && dentry->d_lockref.count == 1)
1503 return D_WALK_CONTINUE;
1504
1505 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1506 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1507 dentry,
1508 dentry->d_inode ?
1509 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1510 dentry,
42c32608
AV
1511 dentry->d_lockref.count,
1512 dentry->d_sb->s_type->name,
1513 dentry->d_sb->s_id);
9c8c10e2
AV
1514 WARN_ON(1);
1515 return D_WALK_CONTINUE;
1516}
1517
1518static void do_one_tree(struct dentry *dentry)
1519{
1520 shrink_dcache_parent(dentry);
1521 d_walk(dentry, dentry, umount_check, NULL);
1522 d_drop(dentry);
1523 dput(dentry);
42c32608
AV
1524}
1525
1526/*
1527 * destroy the dentries attached to a superblock on unmounting
1528 */
1529void shrink_dcache_for_umount(struct super_block *sb)
1530{
1531 struct dentry *dentry;
1532
9c8c10e2 1533 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1534
1535 dentry = sb->s_root;
1536 sb->s_root = NULL;
9c8c10e2 1537 do_one_tree(dentry);
42c32608 1538
f1ee6162
N
1539 while (!hlist_bl_empty(&sb->s_roots)) {
1540 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1541 do_one_tree(dentry);
42c32608
AV
1542 }
1543}
1544
8ed936b5
EB
1545struct detach_data {
1546 struct select_data select;
1547 struct dentry *mountpoint;
1548};
1549static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1550{
8ed936b5 1551 struct detach_data *data = _data;
848ac114
MS
1552
1553 if (d_mountpoint(dentry)) {
8ed936b5
EB
1554 __dget_dlock(dentry);
1555 data->mountpoint = dentry;
848ac114
MS
1556 return D_WALK_QUIT;
1557 }
1558
8ed936b5 1559 return select_collect(&data->select, dentry);
848ac114
MS
1560}
1561
1562static void check_and_drop(void *_data)
1563{
8ed936b5 1564 struct detach_data *data = _data;
848ac114 1565
81be24d2 1566 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1567 __d_drop(data->select.start);
848ac114
MS
1568}
1569
1570/**
1ffe46d1
EB
1571 * d_invalidate - detach submounts, prune dcache, and drop
1572 * @dentry: dentry to invalidate (aka detach, prune and drop)
1573 *
1ffe46d1 1574 * no dcache lock.
848ac114 1575 *
8ed936b5
EB
1576 * The final d_drop is done as an atomic operation relative to
1577 * rename_lock ensuring there are no races with d_set_mounted. This
1578 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1579 */
5542aa2f 1580void d_invalidate(struct dentry *dentry)
848ac114 1581{
1ffe46d1
EB
1582 /*
1583 * If it's already been dropped, return OK.
1584 */
1585 spin_lock(&dentry->d_lock);
1586 if (d_unhashed(dentry)) {
1587 spin_unlock(&dentry->d_lock);
5542aa2f 1588 return;
1ffe46d1
EB
1589 }
1590 spin_unlock(&dentry->d_lock);
1591
848ac114
MS
1592 /* Negative dentries can be dropped without further checks */
1593 if (!dentry->d_inode) {
1594 d_drop(dentry);
5542aa2f 1595 return;
848ac114
MS
1596 }
1597
1598 for (;;) {
8ed936b5 1599 struct detach_data data;
848ac114 1600
8ed936b5
EB
1601 data.mountpoint = NULL;
1602 INIT_LIST_HEAD(&data.select.dispose);
1603 data.select.start = dentry;
1604 data.select.found = 0;
1605
1606 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1607
81be24d2 1608 if (!list_empty(&data.select.dispose))
8ed936b5 1609 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1610 else if (!data.mountpoint)
1611 return;
848ac114 1612
8ed936b5
EB
1613 if (data.mountpoint) {
1614 detach_mounts(data.mountpoint);
1615 dput(data.mountpoint);
1616 }
848ac114
MS
1617 cond_resched();
1618 }
848ac114 1619}
1ffe46d1 1620EXPORT_SYMBOL(d_invalidate);
848ac114 1621
1da177e4 1622/**
a4464dbc
AV
1623 * __d_alloc - allocate a dcache entry
1624 * @sb: filesystem it will belong to
1da177e4
LT
1625 * @name: qstr of the name
1626 *
1627 * Allocates a dentry. It returns %NULL if there is insufficient memory
1628 * available. On a success the dentry is returned. The name passed in is
1629 * copied and the copy passed in may be reused after this call.
1630 */
1631
a4464dbc 1632struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4 1633{
f1782c9b 1634 struct external_name *ext = NULL;
1da177e4
LT
1635 struct dentry *dentry;
1636 char *dname;
285b102d 1637 int err;
1da177e4 1638
e12ba74d 1639 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1640 if (!dentry)
1641 return NULL;
1642
6326c71f
LT
1643 /*
1644 * We guarantee that the inline name is always NUL-terminated.
1645 * This way the memcpy() done by the name switching in rename
1646 * will still always have a NUL at the end, even if we might
1647 * be overwriting an internal NUL character
1648 */
1649 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1650 if (unlikely(!name)) {
cdf01226 1651 name = &slash_name;
798434bd
AV
1652 dname = dentry->d_iname;
1653 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1654 size_t size = offsetof(struct external_name, name[1]);
f1782c9b
RG
1655
1656 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1657 if (!ext) {
1da177e4
LT
1658 kmem_cache_free(dentry_cache, dentry);
1659 return NULL;
1660 }
f1782c9b
RG
1661 atomic_set(&ext->u.count, 1);
1662 dname = ext->name;
1da177e4
LT
1663 } else {
1664 dname = dentry->d_iname;
1665 }
1da177e4
LT
1666
1667 dentry->d_name.len = name->len;
1668 dentry->d_name.hash = name->hash;
1669 memcpy(dname, name->name, name->len);
1670 dname[name->len] = 0;
1671
6326c71f 1672 /* Make sure we always see the terminating NUL character */
7088efa9 1673 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1674
98474236 1675 dentry->d_lockref.count = 1;
dea3667b 1676 dentry->d_flags = 0;
1da177e4 1677 spin_lock_init(&dentry->d_lock);
31e6b01f 1678 seqcount_init(&dentry->d_seq);
1da177e4 1679 dentry->d_inode = NULL;
a4464dbc
AV
1680 dentry->d_parent = dentry;
1681 dentry->d_sb = sb;
1da177e4
LT
1682 dentry->d_op = NULL;
1683 dentry->d_fsdata = NULL;
ceb5bdc2 1684 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1685 INIT_LIST_HEAD(&dentry->d_lru);
1686 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1687 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1688 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1689 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1690
285b102d
MS
1691 if (dentry->d_op && dentry->d_op->d_init) {
1692 err = dentry->d_op->d_init(dentry);
1693 if (err) {
1694 if (dname_external(dentry))
1695 kfree(external_name(dentry));
1696 kmem_cache_free(dentry_cache, dentry);
1697 return NULL;
1698 }
1699 }
1700
f1782c9b
RG
1701 if (unlikely(ext)) {
1702 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1703 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1704 ksize(ext));
1705 }
1706
3e880fb5 1707 this_cpu_inc(nr_dentry);
312d3ca8 1708
1da177e4
LT
1709 return dentry;
1710}
a4464dbc
AV
1711
1712/**
1713 * d_alloc - allocate a dcache entry
1714 * @parent: parent of entry to allocate
1715 * @name: qstr of the name
1716 *
1717 * Allocates a dentry. It returns %NULL if there is insufficient memory
1718 * available. On a success the dentry is returned. The name passed in is
1719 * copied and the copy passed in may be reused after this call.
1720 */
1721struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1722{
1723 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1724 if (!dentry)
1725 return NULL;
3d56c25e 1726 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1727 spin_lock(&parent->d_lock);
1728 /*
1729 * don't need child lock because it is not subject
1730 * to concurrency here
1731 */
1732 __dget_dlock(parent);
1733 dentry->d_parent = parent;
946e51f2 1734 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1735 spin_unlock(&parent->d_lock);
1736
1737 return dentry;
1738}
ec4f8605 1739EXPORT_SYMBOL(d_alloc);
1da177e4 1740
f9c34674
MS
1741struct dentry *d_alloc_anon(struct super_block *sb)
1742{
1743 return __d_alloc(sb, NULL);
1744}
1745EXPORT_SYMBOL(d_alloc_anon);
1746
ba65dc5e
AV
1747struct dentry *d_alloc_cursor(struct dentry * parent)
1748{
f9c34674 1749 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1750 if (dentry) {
1751 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1752 dentry->d_parent = dget(parent);
1753 }
1754 return dentry;
1755}
1756
e1a24bb0
BF
1757/**
1758 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1759 * @sb: the superblock
1760 * @name: qstr of the name
1761 *
1762 * For a filesystem that just pins its dentries in memory and never
1763 * performs lookups at all, return an unhashed IS_ROOT dentry.
1764 */
4b936885
NP
1765struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1766{
e1a24bb0 1767 return __d_alloc(sb, name);
4b936885
NP
1768}
1769EXPORT_SYMBOL(d_alloc_pseudo);
1770
1da177e4
LT
1771struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1772{
1773 struct qstr q;
1774
1775 q.name = name;
8387ff25 1776 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1777 return d_alloc(parent, &q);
1778}
ef26ca97 1779EXPORT_SYMBOL(d_alloc_name);
1da177e4 1780
fb045adb
NP
1781void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1782{
6f7f7caa
LT
1783 WARN_ON_ONCE(dentry->d_op);
1784 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1785 DCACHE_OP_COMPARE |
1786 DCACHE_OP_REVALIDATE |
ecf3d1f1 1787 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1788 DCACHE_OP_DELETE |
d101a125 1789 DCACHE_OP_REAL));
fb045adb
NP
1790 dentry->d_op = op;
1791 if (!op)
1792 return;
1793 if (op->d_hash)
1794 dentry->d_flags |= DCACHE_OP_HASH;
1795 if (op->d_compare)
1796 dentry->d_flags |= DCACHE_OP_COMPARE;
1797 if (op->d_revalidate)
1798 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1799 if (op->d_weak_revalidate)
1800 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1801 if (op->d_delete)
1802 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1803 if (op->d_prune)
1804 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1805 if (op->d_real)
1806 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1807
1808}
1809EXPORT_SYMBOL(d_set_d_op);
1810
df1a085a
DH
1811
1812/*
1813 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1814 * @dentry - The dentry to mark
1815 *
1816 * Mark a dentry as falling through to the lower layer (as set with
1817 * d_pin_lower()). This flag may be recorded on the medium.
1818 */
1819void d_set_fallthru(struct dentry *dentry)
1820{
1821 spin_lock(&dentry->d_lock);
1822 dentry->d_flags |= DCACHE_FALLTHRU;
1823 spin_unlock(&dentry->d_lock);
1824}
1825EXPORT_SYMBOL(d_set_fallthru);
1826
b18825a7
DH
1827static unsigned d_flags_for_inode(struct inode *inode)
1828{
44bdb5e5 1829 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1830
1831 if (!inode)
1832 return DCACHE_MISS_TYPE;
1833
1834 if (S_ISDIR(inode->i_mode)) {
1835 add_flags = DCACHE_DIRECTORY_TYPE;
1836 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1837 if (unlikely(!inode->i_op->lookup))
1838 add_flags = DCACHE_AUTODIR_TYPE;
1839 else
1840 inode->i_opflags |= IOP_LOOKUP;
1841 }
44bdb5e5
DH
1842 goto type_determined;
1843 }
1844
1845 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1846 if (unlikely(inode->i_op->get_link)) {
b18825a7 1847 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1848 goto type_determined;
1849 }
1850 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1851 }
1852
44bdb5e5
DH
1853 if (unlikely(!S_ISREG(inode->i_mode)))
1854 add_flags = DCACHE_SPECIAL_TYPE;
1855
1856type_determined:
b18825a7
DH
1857 if (unlikely(IS_AUTOMOUNT(inode)))
1858 add_flags |= DCACHE_NEED_AUTOMOUNT;
1859 return add_flags;
1860}
1861
360da900
OH
1862static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1863{
b18825a7 1864 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1865 WARN_ON(d_in_lookup(dentry));
b18825a7 1866
b23fb0a6 1867 spin_lock(&dentry->d_lock);
de689f5e 1868 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1869 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1870 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1871 raw_write_seqcount_end(&dentry->d_seq);
affda484 1872 fsnotify_update_flags(dentry);
b23fb0a6 1873 spin_unlock(&dentry->d_lock);
360da900
OH
1874}
1875
1da177e4
LT
1876/**
1877 * d_instantiate - fill in inode information for a dentry
1878 * @entry: dentry to complete
1879 * @inode: inode to attach to this dentry
1880 *
1881 * Fill in inode information in the entry.
1882 *
1883 * This turns negative dentries into productive full members
1884 * of society.
1885 *
1886 * NOTE! This assumes that the inode count has been incremented
1887 * (or otherwise set) by the caller to indicate that it is now
1888 * in use by the dcache.
1889 */
1890
1891void d_instantiate(struct dentry *entry, struct inode * inode)
1892{
946e51f2 1893 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1894 if (inode) {
b9680917 1895 security_d_instantiate(entry, inode);
873feea0 1896 spin_lock(&inode->i_lock);
de689f5e 1897 __d_instantiate(entry, inode);
873feea0 1898 spin_unlock(&inode->i_lock);
de689f5e 1899 }
1da177e4 1900}
ec4f8605 1901EXPORT_SYMBOL(d_instantiate);
1da177e4 1902
b70a80e7
MS
1903/**
1904 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1905 * @entry: dentry to complete
1906 * @inode: inode to attach to this dentry
1907 *
1908 * Fill in inode information in the entry. If a directory alias is found, then
1909 * return an error (and drop inode). Together with d_materialise_unique() this
1910 * guarantees that a directory inode may never have more than one alias.
1911 */
1912int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1913{
946e51f2 1914 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1915
b9680917 1916 security_d_instantiate(entry, inode);
b70a80e7
MS
1917 spin_lock(&inode->i_lock);
1918 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1919 spin_unlock(&inode->i_lock);
1920 iput(inode);
1921 return -EBUSY;
1922 }
1923 __d_instantiate(entry, inode);
1924 spin_unlock(&inode->i_lock);
b70a80e7
MS
1925
1926 return 0;
1927}
1928EXPORT_SYMBOL(d_instantiate_no_diralias);
1929
adc0e91a
AV
1930struct dentry *d_make_root(struct inode *root_inode)
1931{
1932 struct dentry *res = NULL;
1933
1934 if (root_inode) {
f9c34674 1935 res = d_alloc_anon(root_inode->i_sb);
adc0e91a
AV
1936 if (res)
1937 d_instantiate(res, root_inode);
1938 else
1939 iput(root_inode);
1940 }
1941 return res;
1942}
1943EXPORT_SYMBOL(d_make_root);
1944
d891eedb
BF
1945static struct dentry * __d_find_any_alias(struct inode *inode)
1946{
1947 struct dentry *alias;
1948
b3d9b7a3 1949 if (hlist_empty(&inode->i_dentry))
d891eedb 1950 return NULL;
946e51f2 1951 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1952 __dget(alias);
1953 return alias;
1954}
1955
46f72b34
SW
1956/**
1957 * d_find_any_alias - find any alias for a given inode
1958 * @inode: inode to find an alias for
1959 *
1960 * If any aliases exist for the given inode, take and return a
1961 * reference for one of them. If no aliases exist, return %NULL.
1962 */
1963struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1964{
1965 struct dentry *de;
1966
1967 spin_lock(&inode->i_lock);
1968 de = __d_find_any_alias(inode);
1969 spin_unlock(&inode->i_lock);
1970 return de;
1971}
46f72b34 1972EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1973
f9c34674
MS
1974static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1975 struct inode *inode,
1976 bool disconnected)
4ea3ada2 1977{
9308a612 1978 struct dentry *res;
b18825a7 1979 unsigned add_flags;
4ea3ada2 1980
f9c34674 1981 security_d_instantiate(dentry, inode);
873feea0 1982 spin_lock(&inode->i_lock);
d891eedb 1983 res = __d_find_any_alias(inode);
9308a612 1984 if (res) {
873feea0 1985 spin_unlock(&inode->i_lock);
f9c34674 1986 dput(dentry);
9308a612
CH
1987 goto out_iput;
1988 }
1989
1990 /* attach a disconnected dentry */
1a0a397e
BF
1991 add_flags = d_flags_for_inode(inode);
1992
1993 if (disconnected)
1994 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1995
f9c34674
MS
1996 spin_lock(&dentry->d_lock);
1997 __d_set_inode_and_type(dentry, inode, add_flags);
1998 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1999 if (!disconnected) {
139351f1
LT
2000 hlist_bl_lock(&dentry->d_sb->s_roots);
2001 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2002 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 2003 }
f9c34674 2004 spin_unlock(&dentry->d_lock);
873feea0 2005 spin_unlock(&inode->i_lock);
9308a612 2006
f9c34674 2007 return dentry;
9308a612
CH
2008
2009 out_iput:
2010 iput(inode);
2011 return res;
4ea3ada2 2012}
1a0a397e 2013
f9c34674
MS
2014struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2015{
2016 return __d_instantiate_anon(dentry, inode, true);
2017}
2018EXPORT_SYMBOL(d_instantiate_anon);
2019
2020static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2021{
2022 struct dentry *tmp;
2023 struct dentry *res;
2024
2025 if (!inode)
2026 return ERR_PTR(-ESTALE);
2027 if (IS_ERR(inode))
2028 return ERR_CAST(inode);
2029
2030 res = d_find_any_alias(inode);
2031 if (res)
2032 goto out_iput;
2033
2034 tmp = d_alloc_anon(inode->i_sb);
2035 if (!tmp) {
2036 res = ERR_PTR(-ENOMEM);
2037 goto out_iput;
2038 }
2039
2040 return __d_instantiate_anon(tmp, inode, disconnected);
2041
2042out_iput:
2043 iput(inode);
2044 return res;
2045}
2046
1a0a397e
BF
2047/**
2048 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2049 * @inode: inode to allocate the dentry for
2050 *
2051 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2052 * similar open by handle operations. The returned dentry may be anonymous,
2053 * or may have a full name (if the inode was already in the cache).
2054 *
2055 * When called on a directory inode, we must ensure that the inode only ever
2056 * has one dentry. If a dentry is found, that is returned instead of
2057 * allocating a new one.
2058 *
2059 * On successful return, the reference to the inode has been transferred
2060 * to the dentry. In case of an error the reference on the inode is released.
2061 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2062 * be passed in and the error will be propagated to the return value,
2063 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2064 */
2065struct dentry *d_obtain_alias(struct inode *inode)
2066{
f9c34674 2067 return __d_obtain_alias(inode, true);
1a0a397e 2068}
adc48720 2069EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2070
1a0a397e
BF
2071/**
2072 * d_obtain_root - find or allocate a dentry for a given inode
2073 * @inode: inode to allocate the dentry for
2074 *
2075 * Obtain an IS_ROOT dentry for the root of a filesystem.
2076 *
2077 * We must ensure that directory inodes only ever have one dentry. If a
2078 * dentry is found, that is returned instead of allocating a new one.
2079 *
2080 * On successful return, the reference to the inode has been transferred
2081 * to the dentry. In case of an error the reference on the inode is
2082 * released. A %NULL or IS_ERR inode may be passed in and will be the
2083 * error will be propagate to the return value, with a %NULL @inode
2084 * replaced by ERR_PTR(-ESTALE).
2085 */
2086struct dentry *d_obtain_root(struct inode *inode)
2087{
f9c34674 2088 return __d_obtain_alias(inode, false);
1a0a397e
BF
2089}
2090EXPORT_SYMBOL(d_obtain_root);
2091
9403540c
BN
2092/**
2093 * d_add_ci - lookup or allocate new dentry with case-exact name
2094 * @inode: the inode case-insensitive lookup has found
2095 * @dentry: the negative dentry that was passed to the parent's lookup func
2096 * @name: the case-exact name to be associated with the returned dentry
2097 *
2098 * This is to avoid filling the dcache with case-insensitive names to the
2099 * same inode, only the actual correct case is stored in the dcache for
2100 * case-insensitive filesystems.
2101 *
2102 * For a case-insensitive lookup match and if the the case-exact dentry
2103 * already exists in in the dcache, use it and return it.
2104 *
2105 * If no entry exists with the exact case name, allocate new dentry with
2106 * the exact case, and return the spliced entry.
2107 */
e45b590b 2108struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2109 struct qstr *name)
2110{
d9171b93 2111 struct dentry *found, *res;
9403540c 2112
b6520c81
CH
2113 /*
2114 * First check if a dentry matching the name already exists,
2115 * if not go ahead and create it now.
2116 */
9403540c 2117 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2118 if (found) {
2119 iput(inode);
2120 return found;
2121 }
2122 if (d_in_lookup(dentry)) {
2123 found = d_alloc_parallel(dentry->d_parent, name,
2124 dentry->d_wait);
2125 if (IS_ERR(found) || !d_in_lookup(found)) {
2126 iput(inode);
2127 return found;
9403540c 2128 }
d9171b93
AV
2129 } else {
2130 found = d_alloc(dentry->d_parent, name);
2131 if (!found) {
2132 iput(inode);
2133 return ERR_PTR(-ENOMEM);
2134 }
2135 }
2136 res = d_splice_alias(inode, found);
2137 if (res) {
2138 dput(found);
2139 return res;
9403540c 2140 }
4f522a24 2141 return found;
9403540c 2142}
ec4f8605 2143EXPORT_SYMBOL(d_add_ci);
1da177e4 2144
12f8ad4b 2145
d4c91a8f
AV
2146static inline bool d_same_name(const struct dentry *dentry,
2147 const struct dentry *parent,
2148 const struct qstr *name)
12f8ad4b 2149{
d4c91a8f
AV
2150 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2151 if (dentry->d_name.len != name->len)
2152 return false;
2153 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2154 }
6fa67e70 2155 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2156 dentry->d_name.len, dentry->d_name.name,
2157 name) == 0;
12f8ad4b
LT
2158}
2159
31e6b01f
NP
2160/**
2161 * __d_lookup_rcu - search for a dentry (racy, store-free)
2162 * @parent: parent dentry
2163 * @name: qstr of name we wish to find
1f1e6e52 2164 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2165 * Returns: dentry, or NULL
2166 *
2167 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2168 * resolution (store-free path walking) design described in
2169 * Documentation/filesystems/path-lookup.txt.
2170 *
2171 * This is not to be used outside core vfs.
2172 *
2173 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2174 * held, and rcu_read_lock held. The returned dentry must not be stored into
2175 * without taking d_lock and checking d_seq sequence count against @seq
2176 * returned here.
2177 *
15570086 2178 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2179 * function.
2180 *
2181 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2182 * the returned dentry, so long as its parent's seqlock is checked after the
2183 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2184 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2185 *
2186 * NOTE! The caller *has* to check the resulting dentry against the sequence
2187 * number we've returned before using any of the resulting dentry state!
31e6b01f 2188 */
8966be90
LT
2189struct dentry *__d_lookup_rcu(const struct dentry *parent,
2190 const struct qstr *name,
da53be12 2191 unsigned *seqp)
31e6b01f 2192{
26fe5750 2193 u64 hashlen = name->hash_len;
31e6b01f 2194 const unsigned char *str = name->name;
8387ff25 2195 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2196 struct hlist_bl_node *node;
31e6b01f
NP
2197 struct dentry *dentry;
2198
2199 /*
2200 * Note: There is significant duplication with __d_lookup_rcu which is
2201 * required to prevent single threaded performance regressions
2202 * especially on architectures where smp_rmb (in seqcounts) are costly.
2203 * Keep the two functions in sync.
2204 */
2205
2206 /*
2207 * The hash list is protected using RCU.
2208 *
2209 * Carefully use d_seq when comparing a candidate dentry, to avoid
2210 * races with d_move().
2211 *
2212 * It is possible that concurrent renames can mess up our list
2213 * walk here and result in missing our dentry, resulting in the
2214 * false-negative result. d_lookup() protects against concurrent
2215 * renames using rename_lock seqlock.
2216 *
b0a4bb83 2217 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2218 */
b07ad996 2219 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2220 unsigned seq;
31e6b01f 2221
31e6b01f 2222seqretry:
12f8ad4b
LT
2223 /*
2224 * The dentry sequence count protects us from concurrent
da53be12 2225 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2226 *
2227 * The caller must perform a seqcount check in order
da53be12 2228 * to do anything useful with the returned dentry.
12f8ad4b
LT
2229 *
2230 * NOTE! We do a "raw" seqcount_begin here. That means that
2231 * we don't wait for the sequence count to stabilize if it
2232 * is in the middle of a sequence change. If we do the slow
2233 * dentry compare, we will do seqretries until it is stable,
2234 * and if we end up with a successful lookup, we actually
2235 * want to exit RCU lookup anyway.
d4c91a8f
AV
2236 *
2237 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2238 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2239 */
2240 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2241 if (dentry->d_parent != parent)
2242 continue;
2e321806
LT
2243 if (d_unhashed(dentry))
2244 continue;
12f8ad4b 2245
830c0f0e 2246 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2247 int tlen;
2248 const char *tname;
26fe5750
LT
2249 if (dentry->d_name.hash != hashlen_hash(hashlen))
2250 continue;
d4c91a8f
AV
2251 tlen = dentry->d_name.len;
2252 tname = dentry->d_name.name;
2253 /* we want a consistent (name,len) pair */
2254 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2255 cpu_relax();
12f8ad4b
LT
2256 goto seqretry;
2257 }
6fa67e70 2258 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2259 tlen, tname, name) != 0)
2260 continue;
2261 } else {
2262 if (dentry->d_name.hash_len != hashlen)
2263 continue;
2264 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2265 continue;
31e6b01f 2266 }
da53be12 2267 *seqp = seq;
d4c91a8f 2268 return dentry;
31e6b01f
NP
2269 }
2270 return NULL;
2271}
2272
1da177e4
LT
2273/**
2274 * d_lookup - search for a dentry
2275 * @parent: parent dentry
2276 * @name: qstr of name we wish to find
b04f784e 2277 * Returns: dentry, or NULL
1da177e4 2278 *
b04f784e
NP
2279 * d_lookup searches the children of the parent dentry for the name in
2280 * question. If the dentry is found its reference count is incremented and the
2281 * dentry is returned. The caller must use dput to free the entry when it has
2282 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2283 */
da2d8455 2284struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2285{
31e6b01f 2286 struct dentry *dentry;
949854d0 2287 unsigned seq;
1da177e4 2288
b8314f93
DY
2289 do {
2290 seq = read_seqbegin(&rename_lock);
2291 dentry = __d_lookup(parent, name);
2292 if (dentry)
1da177e4
LT
2293 break;
2294 } while (read_seqretry(&rename_lock, seq));
2295 return dentry;
2296}
ec4f8605 2297EXPORT_SYMBOL(d_lookup);
1da177e4 2298
31e6b01f 2299/**
b04f784e
NP
2300 * __d_lookup - search for a dentry (racy)
2301 * @parent: parent dentry
2302 * @name: qstr of name we wish to find
2303 * Returns: dentry, or NULL
2304 *
2305 * __d_lookup is like d_lookup, however it may (rarely) return a
2306 * false-negative result due to unrelated rename activity.
2307 *
2308 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2309 * however it must be used carefully, eg. with a following d_lookup in
2310 * the case of failure.
2311 *
2312 * __d_lookup callers must be commented.
2313 */
a713ca2a 2314struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2315{
1da177e4 2316 unsigned int hash = name->hash;
8387ff25 2317 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2318 struct hlist_bl_node *node;
31e6b01f 2319 struct dentry *found = NULL;
665a7583 2320 struct dentry *dentry;
1da177e4 2321
31e6b01f
NP
2322 /*
2323 * Note: There is significant duplication with __d_lookup_rcu which is
2324 * required to prevent single threaded performance regressions
2325 * especially on architectures where smp_rmb (in seqcounts) are costly.
2326 * Keep the two functions in sync.
2327 */
2328
b04f784e
NP
2329 /*
2330 * The hash list is protected using RCU.
2331 *
2332 * Take d_lock when comparing a candidate dentry, to avoid races
2333 * with d_move().
2334 *
2335 * It is possible that concurrent renames can mess up our list
2336 * walk here and result in missing our dentry, resulting in the
2337 * false-negative result. d_lookup() protects against concurrent
2338 * renames using rename_lock seqlock.
2339 *
b0a4bb83 2340 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2341 */
1da177e4
LT
2342 rcu_read_lock();
2343
b07ad996 2344 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2345
1da177e4
LT
2346 if (dentry->d_name.hash != hash)
2347 continue;
1da177e4
LT
2348
2349 spin_lock(&dentry->d_lock);
1da177e4
LT
2350 if (dentry->d_parent != parent)
2351 goto next;
d0185c08
LT
2352 if (d_unhashed(dentry))
2353 goto next;
2354
d4c91a8f
AV
2355 if (!d_same_name(dentry, parent, name))
2356 goto next;
1da177e4 2357
98474236 2358 dentry->d_lockref.count++;
d0185c08 2359 found = dentry;
1da177e4
LT
2360 spin_unlock(&dentry->d_lock);
2361 break;
2362next:
2363 spin_unlock(&dentry->d_lock);
2364 }
2365 rcu_read_unlock();
2366
2367 return found;
2368}
2369
3e7e241f
EB
2370/**
2371 * d_hash_and_lookup - hash the qstr then search for a dentry
2372 * @dir: Directory to search in
2373 * @name: qstr of name we wish to find
2374 *
4f522a24 2375 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2376 */
2377struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2378{
3e7e241f
EB
2379 /*
2380 * Check for a fs-specific hash function. Note that we must
2381 * calculate the standard hash first, as the d_op->d_hash()
2382 * routine may choose to leave the hash value unchanged.
2383 */
8387ff25 2384 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2385 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2386 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2387 if (unlikely(err < 0))
2388 return ERR_PTR(err);
3e7e241f 2389 }
4f522a24 2390 return d_lookup(dir, name);
3e7e241f 2391}
4f522a24 2392EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2393
1da177e4
LT
2394/*
2395 * When a file is deleted, we have two options:
2396 * - turn this dentry into a negative dentry
2397 * - unhash this dentry and free it.
2398 *
2399 * Usually, we want to just turn this into
2400 * a negative dentry, but if anybody else is
2401 * currently using the dentry or the inode
2402 * we can't do that and we fall back on removing
2403 * it from the hash queues and waiting for
2404 * it to be deleted later when it has no users
2405 */
2406
2407/**
2408 * d_delete - delete a dentry
2409 * @dentry: The dentry to delete
2410 *
2411 * Turn the dentry into a negative dentry if possible, otherwise
2412 * remove it from the hash queues so it can be deleted later
2413 */
2414
2415void d_delete(struct dentry * dentry)
2416{
c19457f0
AV
2417 struct inode *inode = dentry->d_inode;
2418 int isdir = d_is_dir(dentry);
2419
2420 spin_lock(&inode->i_lock);
2421 spin_lock(&dentry->d_lock);
1da177e4
LT
2422 /*
2423 * Are we the only user?
2424 */
98474236 2425 if (dentry->d_lockref.count == 1) {
13e3c5e5 2426 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2427 dentry_unlink_inode(dentry);
c19457f0 2428 } else {
1da177e4 2429 __d_drop(dentry);
c19457f0
AV
2430 spin_unlock(&dentry->d_lock);
2431 spin_unlock(&inode->i_lock);
2432 }
7a91bf7f 2433 fsnotify_nameremove(dentry, isdir);
1da177e4 2434}
ec4f8605 2435EXPORT_SYMBOL(d_delete);
1da177e4 2436
15d3c589 2437static void __d_rehash(struct dentry *entry)
1da177e4 2438{
15d3c589 2439 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2440
1879fd6a 2441 hlist_bl_lock(b);
b07ad996 2442 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2443 hlist_bl_unlock(b);
1da177e4
LT
2444}
2445
2446/**
2447 * d_rehash - add an entry back to the hash
2448 * @entry: dentry to add to the hash
2449 *
2450 * Adds a dentry to the hash according to its name.
2451 */
2452
2453void d_rehash(struct dentry * entry)
2454{
1da177e4 2455 spin_lock(&entry->d_lock);
15d3c589 2456 __d_rehash(entry);
1da177e4 2457 spin_unlock(&entry->d_lock);
1da177e4 2458}
ec4f8605 2459EXPORT_SYMBOL(d_rehash);
1da177e4 2460
84e710da
AV
2461static inline unsigned start_dir_add(struct inode *dir)
2462{
2463
2464 for (;;) {
2465 unsigned n = dir->i_dir_seq;
2466 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2467 return n;
2468 cpu_relax();
2469 }
2470}
2471
2472static inline void end_dir_add(struct inode *dir, unsigned n)
2473{
2474 smp_store_release(&dir->i_dir_seq, n + 2);
2475}
2476
d9171b93
AV
2477static void d_wait_lookup(struct dentry *dentry)
2478{
2479 if (d_in_lookup(dentry)) {
2480 DECLARE_WAITQUEUE(wait, current);
2481 add_wait_queue(dentry->d_wait, &wait);
2482 do {
2483 set_current_state(TASK_UNINTERRUPTIBLE);
2484 spin_unlock(&dentry->d_lock);
2485 schedule();
2486 spin_lock(&dentry->d_lock);
2487 } while (d_in_lookup(dentry));
2488 }
2489}
2490
94bdd655 2491struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2492 const struct qstr *name,
2493 wait_queue_head_t *wq)
94bdd655 2494{
94bdd655 2495 unsigned int hash = name->hash;
94bdd655
AV
2496 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2497 struct hlist_bl_node *node;
2498 struct dentry *new = d_alloc(parent, name);
2499 struct dentry *dentry;
2500 unsigned seq, r_seq, d_seq;
2501
2502 if (unlikely(!new))
2503 return ERR_PTR(-ENOMEM);
2504
2505retry:
2506 rcu_read_lock();
015555fd 2507 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2508 r_seq = read_seqbegin(&rename_lock);
2509 dentry = __d_lookup_rcu(parent, name, &d_seq);
2510 if (unlikely(dentry)) {
2511 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2512 rcu_read_unlock();
2513 goto retry;
2514 }
2515 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2516 rcu_read_unlock();
2517 dput(dentry);
2518 goto retry;
2519 }
2520 rcu_read_unlock();
2521 dput(new);
2522 return dentry;
2523 }
2524 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2525 rcu_read_unlock();
2526 goto retry;
2527 }
015555fd
WD
2528
2529 if (unlikely(seq & 1)) {
2530 rcu_read_unlock();
2531 goto retry;
2532 }
2533
94bdd655 2534 hlist_bl_lock(b);
8cc07c80 2535 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2536 hlist_bl_unlock(b);
2537 rcu_read_unlock();
2538 goto retry;
2539 }
94bdd655
AV
2540 /*
2541 * No changes for the parent since the beginning of d_lookup().
2542 * Since all removals from the chain happen with hlist_bl_lock(),
2543 * any potential in-lookup matches are going to stay here until
2544 * we unlock the chain. All fields are stable in everything
2545 * we encounter.
2546 */
2547 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2548 if (dentry->d_name.hash != hash)
2549 continue;
2550 if (dentry->d_parent != parent)
2551 continue;
d4c91a8f
AV
2552 if (!d_same_name(dentry, parent, name))
2553 continue;
94bdd655 2554 hlist_bl_unlock(b);
e7d6ef97
AV
2555 /* now we can try to grab a reference */
2556 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2557 rcu_read_unlock();
2558 goto retry;
2559 }
2560
2561 rcu_read_unlock();
2562 /*
2563 * somebody is likely to be still doing lookup for it;
2564 * wait for them to finish
2565 */
d9171b93
AV
2566 spin_lock(&dentry->d_lock);
2567 d_wait_lookup(dentry);
2568 /*
2569 * it's not in-lookup anymore; in principle we should repeat
2570 * everything from dcache lookup, but it's likely to be what
2571 * d_lookup() would've found anyway. If it is, just return it;
2572 * otherwise we really have to repeat the whole thing.
2573 */
2574 if (unlikely(dentry->d_name.hash != hash))
2575 goto mismatch;
2576 if (unlikely(dentry->d_parent != parent))
2577 goto mismatch;
2578 if (unlikely(d_unhashed(dentry)))
2579 goto mismatch;
d4c91a8f
AV
2580 if (unlikely(!d_same_name(dentry, parent, name)))
2581 goto mismatch;
d9171b93
AV
2582 /* OK, it *is* a hashed match; return it */
2583 spin_unlock(&dentry->d_lock);
94bdd655
AV
2584 dput(new);
2585 return dentry;
2586 }
e7d6ef97 2587 rcu_read_unlock();
94bdd655
AV
2588 /* we can't take ->d_lock here; it's OK, though. */
2589 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2590 new->d_wait = wq;
94bdd655
AV
2591 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2592 hlist_bl_unlock(b);
2593 return new;
d9171b93
AV
2594mismatch:
2595 spin_unlock(&dentry->d_lock);
2596 dput(dentry);
2597 goto retry;
94bdd655
AV
2598}
2599EXPORT_SYMBOL(d_alloc_parallel);
2600
85c7f810
AV
2601void __d_lookup_done(struct dentry *dentry)
2602{
94bdd655
AV
2603 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2604 dentry->d_name.hash);
2605 hlist_bl_lock(b);
85c7f810 2606 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2607 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2608 wake_up_all(dentry->d_wait);
2609 dentry->d_wait = NULL;
94bdd655
AV
2610 hlist_bl_unlock(b);
2611 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2612 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2613}
2614EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2615
2616/* inode->i_lock held if inode is non-NULL */
2617
2618static inline void __d_add(struct dentry *dentry, struct inode *inode)
2619{
84e710da
AV
2620 struct inode *dir = NULL;
2621 unsigned n;
0568d705 2622 spin_lock(&dentry->d_lock);
84e710da
AV
2623 if (unlikely(d_in_lookup(dentry))) {
2624 dir = dentry->d_parent->d_inode;
2625 n = start_dir_add(dir);
85c7f810 2626 __d_lookup_done(dentry);
84e710da 2627 }
ed782b5a 2628 if (inode) {
0568d705
AV
2629 unsigned add_flags = d_flags_for_inode(inode);
2630 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2631 raw_write_seqcount_begin(&dentry->d_seq);
2632 __d_set_inode_and_type(dentry, inode, add_flags);
2633 raw_write_seqcount_end(&dentry->d_seq);
affda484 2634 fsnotify_update_flags(dentry);
ed782b5a 2635 }
15d3c589 2636 __d_rehash(dentry);
84e710da
AV
2637 if (dir)
2638 end_dir_add(dir, n);
0568d705
AV
2639 spin_unlock(&dentry->d_lock);
2640 if (inode)
2641 spin_unlock(&inode->i_lock);
ed782b5a
AV
2642}
2643
34d0d19d
AV
2644/**
2645 * d_add - add dentry to hash queues
2646 * @entry: dentry to add
2647 * @inode: The inode to attach to this dentry
2648 *
2649 * This adds the entry to the hash queues and initializes @inode.
2650 * The entry was actually filled in earlier during d_alloc().
2651 */
2652
2653void d_add(struct dentry *entry, struct inode *inode)
2654{
b9680917
AV
2655 if (inode) {
2656 security_d_instantiate(entry, inode);
ed782b5a 2657 spin_lock(&inode->i_lock);
b9680917 2658 }
ed782b5a 2659 __d_add(entry, inode);
34d0d19d
AV
2660}
2661EXPORT_SYMBOL(d_add);
2662
668d0cd5
AV
2663/**
2664 * d_exact_alias - find and hash an exact unhashed alias
2665 * @entry: dentry to add
2666 * @inode: The inode to go with this dentry
2667 *
2668 * If an unhashed dentry with the same name/parent and desired
2669 * inode already exists, hash and return it. Otherwise, return
2670 * NULL.
2671 *
2672 * Parent directory should be locked.
2673 */
2674struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2675{
2676 struct dentry *alias;
668d0cd5
AV
2677 unsigned int hash = entry->d_name.hash;
2678
2679 spin_lock(&inode->i_lock);
2680 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2681 /*
2682 * Don't need alias->d_lock here, because aliases with
2683 * d_parent == entry->d_parent are not subject to name or
2684 * parent changes, because the parent inode i_mutex is held.
2685 */
2686 if (alias->d_name.hash != hash)
2687 continue;
2688 if (alias->d_parent != entry->d_parent)
2689 continue;
d4c91a8f 2690 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2691 continue;
2692 spin_lock(&alias->d_lock);
2693 if (!d_unhashed(alias)) {
2694 spin_unlock(&alias->d_lock);
2695 alias = NULL;
2696 } else {
2697 __dget_dlock(alias);
15d3c589 2698 __d_rehash(alias);
668d0cd5
AV
2699 spin_unlock(&alias->d_lock);
2700 }
2701 spin_unlock(&inode->i_lock);
2702 return alias;
2703 }
2704 spin_unlock(&inode->i_lock);
2705 return NULL;
2706}
2707EXPORT_SYMBOL(d_exact_alias);
2708
fb2d5b86
NP
2709/**
2710 * dentry_update_name_case - update case insensitive dentry with a new name
2711 * @dentry: dentry to be updated
2712 * @name: new name
2713 *
2714 * Update a case insensitive dentry with new case of name.
2715 *
2716 * dentry must have been returned by d_lookup with name @name. Old and new
2717 * name lengths must match (ie. no d_compare which allows mismatched name
2718 * lengths).
2719 *
2720 * Parent inode i_mutex must be held over d_lookup and into this call (to
2721 * keep renames and concurrent inserts, and readdir(2) away).
2722 */
9aba36de 2723void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2724{
5955102c 2725 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2726 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2727
fb2d5b86 2728 spin_lock(&dentry->d_lock);
31e6b01f 2729 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2730 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2731 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2732 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2733}
2734EXPORT_SYMBOL(dentry_update_name_case);
2735
8d85b484 2736static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2737{
8d85b484
AV
2738 if (unlikely(dname_external(target))) {
2739 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2740 /*
2741 * Both external: swap the pointers
2742 */
9a8d5bb4 2743 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2744 } else {
2745 /*
2746 * dentry:internal, target:external. Steal target's
2747 * storage and make target internal.
2748 */
321bcf92
BF
2749 memcpy(target->d_iname, dentry->d_name.name,
2750 dentry->d_name.len + 1);
1da177e4
LT
2751 dentry->d_name.name = target->d_name.name;
2752 target->d_name.name = target->d_iname;
2753 }
2754 } else {
8d85b484 2755 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2756 /*
2757 * dentry:external, target:internal. Give dentry's
2758 * storage to target and make dentry internal
2759 */
2760 memcpy(dentry->d_iname, target->d_name.name,
2761 target->d_name.len + 1);
2762 target->d_name.name = dentry->d_name.name;
2763 dentry->d_name.name = dentry->d_iname;
2764 } else {
2765 /*
da1ce067 2766 * Both are internal.
1da177e4 2767 */
da1ce067
MS
2768 unsigned int i;
2769 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2770 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2771 swap(((long *) &dentry->d_iname)[i],
2772 ((long *) &target->d_iname)[i]);
2773 }
1da177e4
LT
2774 }
2775 }
a28ddb87 2776 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2777}
2778
8d85b484
AV
2779static void copy_name(struct dentry *dentry, struct dentry *target)
2780{
2781 struct external_name *old_name = NULL;
2782 if (unlikely(dname_external(dentry)))
2783 old_name = external_name(dentry);
2784 if (unlikely(dname_external(target))) {
2785 atomic_inc(&external_name(target)->u.count);
2786 dentry->d_name = target->d_name;
2787 } else {
2788 memcpy(dentry->d_iname, target->d_name.name,
2789 target->d_name.len + 1);
2790 dentry->d_name.name = dentry->d_iname;
2791 dentry->d_name.hash_len = target->d_name.hash_len;
2792 }
2793 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
f1782c9b 2794 call_rcu(&old_name->u.head, __d_free_external_name);
8d85b484
AV
2795}
2796
9eaef27b 2797/*
18367501 2798 * __d_move - move a dentry
1da177e4
LT
2799 * @dentry: entry to move
2800 * @target: new dentry
da1ce067 2801 * @exchange: exchange the two dentries
1da177e4
LT
2802 *
2803 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2804 * dcache entries should not be moved in this way. Caller must hold
2805 * rename_lock, the i_mutex of the source and target directories,
2806 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2807 */
da1ce067
MS
2808static void __d_move(struct dentry *dentry, struct dentry *target,
2809 bool exchange)
1da177e4 2810{
42177007 2811 struct dentry *old_parent, *p;
84e710da
AV
2812 struct inode *dir = NULL;
2813 unsigned n;
1da177e4 2814
42177007
AV
2815 WARN_ON(!dentry->d_inode);
2816 if (WARN_ON(dentry == target))
2817 return;
2818
2fd6b7f5 2819 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2820 old_parent = dentry->d_parent;
2821 p = d_ancestor(old_parent, target);
2822 if (IS_ROOT(dentry)) {
2823 BUG_ON(p);
2824 spin_lock(&target->d_parent->d_lock);
2825 } else if (!p) {
2826 /* target is not a descendent of dentry->d_parent */
2827 spin_lock(&target->d_parent->d_lock);
2828 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2829 } else {
2830 BUG_ON(p == dentry);
2831 spin_lock(&old_parent->d_lock);
2832 if (p != target)
2833 spin_lock_nested(&target->d_parent->d_lock,
2834 DENTRY_D_LOCK_NESTED);
2835 }
2836 spin_lock_nested(&dentry->d_lock, 2);
2837 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2838
84e710da
AV
2839 if (unlikely(d_in_lookup(target))) {
2840 dir = target->d_parent->d_inode;
2841 n = start_dir_add(dir);
85c7f810 2842 __d_lookup_done(target);
84e710da 2843 }
1da177e4 2844
31e6b01f 2845 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2846 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2847
15d3c589 2848 /* unhash both */
0632a9ac
AV
2849 if (!d_unhashed(dentry))
2850 ___d_drop(dentry);
2851 if (!d_unhashed(target))
2852 ___d_drop(target);
1da177e4 2853
076515fc
AV
2854 /* ... and switch them in the tree */
2855 dentry->d_parent = target->d_parent;
2856 if (!exchange) {
8d85b484 2857 copy_name(dentry, target);
61647823 2858 target->d_hash.pprev = NULL;
076515fc
AV
2859 dentry->d_parent->d_lockref.count++;
2860 if (dentry == old_parent)
2861 dentry->d_flags |= DCACHE_RCUACCESS;
2862 else
2863 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2864 } else {
076515fc
AV
2865 target->d_parent = old_parent;
2866 swap_names(dentry, target);
946e51f2 2867 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2868 __d_rehash(target);
2869 fsnotify_update_flags(target);
1da177e4 2870 }
076515fc
AV
2871 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2872 __d_rehash(dentry);
2873 fsnotify_update_flags(dentry);
1da177e4 2874
31e6b01f
NP
2875 write_seqcount_end(&target->d_seq);
2876 write_seqcount_end(&dentry->d_seq);
2877
84e710da
AV
2878 if (dir)
2879 end_dir_add(dir, n);
076515fc
AV
2880
2881 if (dentry->d_parent != old_parent)
2882 spin_unlock(&dentry->d_parent->d_lock);
2883 if (dentry != old_parent)
2884 spin_unlock(&old_parent->d_lock);
2885 spin_unlock(&target->d_lock);
2886 spin_unlock(&dentry->d_lock);
18367501
AV
2887}
2888
2889/*
2890 * d_move - move a dentry
2891 * @dentry: entry to move
2892 * @target: new dentry
2893 *
2894 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2895 * dcache entries should not be moved in this way. See the locking
2896 * requirements for __d_move.
18367501
AV
2897 */
2898void d_move(struct dentry *dentry, struct dentry *target)
2899{
2900 write_seqlock(&rename_lock);
da1ce067 2901 __d_move(dentry, target, false);
1da177e4 2902 write_sequnlock(&rename_lock);
9eaef27b 2903}
ec4f8605 2904EXPORT_SYMBOL(d_move);
1da177e4 2905
da1ce067
MS
2906/*
2907 * d_exchange - exchange two dentries
2908 * @dentry1: first dentry
2909 * @dentry2: second dentry
2910 */
2911void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2912{
2913 write_seqlock(&rename_lock);
2914
2915 WARN_ON(!dentry1->d_inode);
2916 WARN_ON(!dentry2->d_inode);
2917 WARN_ON(IS_ROOT(dentry1));
2918 WARN_ON(IS_ROOT(dentry2));
2919
2920 __d_move(dentry1, dentry2, true);
2921
2922 write_sequnlock(&rename_lock);
2923}
2924
e2761a11
OH
2925/**
2926 * d_ancestor - search for an ancestor
2927 * @p1: ancestor dentry
2928 * @p2: child dentry
2929 *
2930 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2931 * an ancestor of p2, else NULL.
9eaef27b 2932 */
e2761a11 2933struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2934{
2935 struct dentry *p;
2936
871c0067 2937 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2938 if (p->d_parent == p1)
e2761a11 2939 return p;
9eaef27b 2940 }
e2761a11 2941 return NULL;
9eaef27b
TM
2942}
2943
2944/*
2945 * This helper attempts to cope with remotely renamed directories
2946 *
2947 * It assumes that the caller is already holding
a03e283b 2948 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2949 *
2950 * Note: If ever the locking in lock_rename() changes, then please
2951 * remember to update this too...
9eaef27b 2952 */
b5ae6b15 2953static int __d_unalias(struct inode *inode,
873feea0 2954 struct dentry *dentry, struct dentry *alias)
9eaef27b 2955{
9902af79
AV
2956 struct mutex *m1 = NULL;
2957 struct rw_semaphore *m2 = NULL;
3d330dc1 2958 int ret = -ESTALE;
9eaef27b
TM
2959
2960 /* If alias and dentry share a parent, then no extra locks required */
2961 if (alias->d_parent == dentry->d_parent)
2962 goto out_unalias;
2963
9eaef27b 2964 /* See lock_rename() */
9eaef27b
TM
2965 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2966 goto out_err;
2967 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2968 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2969 goto out_err;
9902af79 2970 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2971out_unalias:
8ed936b5 2972 __d_move(alias, dentry, false);
b5ae6b15 2973 ret = 0;
9eaef27b 2974out_err:
9eaef27b 2975 if (m2)
9902af79 2976 up_read(m2);
9eaef27b
TM
2977 if (m1)
2978 mutex_unlock(m1);
2979 return ret;
2980}
2981
3f70bd51
BF
2982/**
2983 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2984 * @inode: the inode which may have a disconnected dentry
2985 * @dentry: a negative dentry which we want to point to the inode.
2986 *
da093a9b
BF
2987 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2988 * place of the given dentry and return it, else simply d_add the inode
2989 * to the dentry and return NULL.
3f70bd51 2990 *
908790fa
BF
2991 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2992 * we should error out: directories can't have multiple aliases.
2993 *
3f70bd51
BF
2994 * This is needed in the lookup routine of any filesystem that is exportable
2995 * (via knfsd) so that we can build dcache paths to directories effectively.
2996 *
2997 * If a dentry was found and moved, then it is returned. Otherwise NULL
2998 * is returned. This matches the expected return value of ->lookup.
2999 *
3000 * Cluster filesystems may call this function with a negative, hashed dentry.
3001 * In that case, we know that the inode will be a regular file, and also this
3002 * will only occur during atomic_open. So we need to check for the dentry
3003 * being already hashed only in the final case.
3004 */
3005struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3006{
3f70bd51
BF
3007 if (IS_ERR(inode))
3008 return ERR_CAST(inode);
3009
770bfad8
DH
3010 BUG_ON(!d_unhashed(dentry));
3011
de689f5e 3012 if (!inode)
b5ae6b15 3013 goto out;
de689f5e 3014
b9680917 3015 security_d_instantiate(dentry, inode);
873feea0 3016 spin_lock(&inode->i_lock);
9eaef27b 3017 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3018 struct dentry *new = __d_find_any_alias(inode);
3019 if (unlikely(new)) {
a03e283b
EB
3020 /* The reference to new ensures it remains an alias */
3021 spin_unlock(&inode->i_lock);
18367501 3022 write_seqlock(&rename_lock);
b5ae6b15
AV
3023 if (unlikely(d_ancestor(new, dentry))) {
3024 write_sequnlock(&rename_lock);
b5ae6b15
AV
3025 dput(new);
3026 new = ERR_PTR(-ELOOP);
3027 pr_warn_ratelimited(
3028 "VFS: Lookup of '%s' in %s %s"
3029 " would have caused loop\n",
3030 dentry->d_name.name,
3031 inode->i_sb->s_type->name,
3032 inode->i_sb->s_id);
3033 } else if (!IS_ROOT(new)) {
076515fc 3034 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 3035 int err = __d_unalias(inode, dentry, new);
18367501 3036 write_sequnlock(&rename_lock);
b5ae6b15
AV
3037 if (err) {
3038 dput(new);
3039 new = ERR_PTR(err);
3040 }
076515fc 3041 dput(old_parent);
18367501 3042 } else {
b5ae6b15
AV
3043 __d_move(new, dentry, false);
3044 write_sequnlock(&rename_lock);
dd179946 3045 }
b5ae6b15
AV
3046 iput(inode);
3047 return new;
9eaef27b 3048 }
770bfad8 3049 }
b5ae6b15 3050out:
ed782b5a 3051 __d_add(dentry, inode);
b5ae6b15 3052 return NULL;
770bfad8 3053}
b5ae6b15 3054EXPORT_SYMBOL(d_splice_alias);
770bfad8 3055
1da177e4
LT
3056/*
3057 * Test whether new_dentry is a subdirectory of old_dentry.
3058 *
3059 * Trivially implemented using the dcache structure
3060 */
3061
3062/**
3063 * is_subdir - is new dentry a subdirectory of old_dentry
3064 * @new_dentry: new dentry
3065 * @old_dentry: old dentry
3066 *
a6e5787f
YB
3067 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3068 * Returns false otherwise.
1da177e4
LT
3069 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3070 */
3071
a6e5787f 3072bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3073{
a6e5787f 3074 bool result;
949854d0 3075 unsigned seq;
1da177e4 3076
e2761a11 3077 if (new_dentry == old_dentry)
a6e5787f 3078 return true;
e2761a11 3079
e2761a11 3080 do {
1da177e4 3081 /* for restarting inner loop in case of seq retry */
1da177e4 3082 seq = read_seqbegin(&rename_lock);
949854d0
NP
3083 /*
3084 * Need rcu_readlock to protect against the d_parent trashing
3085 * due to d_move
3086 */
3087 rcu_read_lock();
e2761a11 3088 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3089 result = true;
e2761a11 3090 else
a6e5787f 3091 result = false;
949854d0 3092 rcu_read_unlock();
1da177e4 3093 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3094
3095 return result;
3096}
e8f9e5b7 3097EXPORT_SYMBOL(is_subdir);
1da177e4 3098
db14fc3a 3099static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3100{
db14fc3a
MS
3101 struct dentry *root = data;
3102 if (dentry != root) {
3103 if (d_unhashed(dentry) || !dentry->d_inode)
3104 return D_WALK_SKIP;
1da177e4 3105
01ddc4ed
MS
3106 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3107 dentry->d_flags |= DCACHE_GENOCIDE;
3108 dentry->d_lockref.count--;
3109 }
1da177e4 3110 }
db14fc3a
MS
3111 return D_WALK_CONTINUE;
3112}
58db63d0 3113
db14fc3a
MS
3114void d_genocide(struct dentry *parent)
3115{
3116 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3117}
3118
cbd4a5bc
AV
3119EXPORT_SYMBOL(d_genocide);
3120
60545d0d 3121void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3122{
60545d0d
AV
3123 inode_dec_link_count(inode);
3124 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3125 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3126 !d_unlinked(dentry));
3127 spin_lock(&dentry->d_parent->d_lock);
3128 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3129 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3130 (unsigned long long)inode->i_ino);
3131 spin_unlock(&dentry->d_lock);
3132 spin_unlock(&dentry->d_parent->d_lock);
3133 d_instantiate(dentry, inode);
1da177e4 3134}
60545d0d 3135EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3136
3137static __initdata unsigned long dhash_entries;
3138static int __init set_dhash_entries(char *str)
3139{
3140 if (!str)
3141 return 0;
3142 dhash_entries = simple_strtoul(str, &str, 0);
3143 return 1;
3144}
3145__setup("dhash_entries=", set_dhash_entries);
3146
3147static void __init dcache_init_early(void)
3148{
1da177e4
LT
3149 /* If hashes are distributed across NUMA nodes, defer
3150 * hash allocation until vmalloc space is available.
3151 */
3152 if (hashdist)
3153 return;
3154
3155 dentry_hashtable =
3156 alloc_large_system_hash("Dentry cache",
b07ad996 3157 sizeof(struct hlist_bl_head),
1da177e4
LT
3158 dhash_entries,
3159 13,
3d375d78 3160 HASH_EARLY | HASH_ZERO,
1da177e4 3161 &d_hash_shift,
b35d786b 3162 NULL,
31fe62b9 3163 0,
1da177e4 3164 0);
854d3e63 3165 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3166}
3167
74bf17cf 3168static void __init dcache_init(void)
1da177e4 3169{
3d375d78 3170 /*
1da177e4
LT
3171 * A constructor could be added for stable state like the lists,
3172 * but it is probably not worth it because of the cache nature
3d375d78 3173 * of the dcache.
1da177e4 3174 */
80344266
DW
3175 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3176 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3177 d_iname);
1da177e4
LT
3178
3179 /* Hash may have been set up in dcache_init_early */
3180 if (!hashdist)
3181 return;
3182
3183 dentry_hashtable =
3184 alloc_large_system_hash("Dentry cache",
b07ad996 3185 sizeof(struct hlist_bl_head),
1da177e4
LT
3186 dhash_entries,
3187 13,
3d375d78 3188 HASH_ZERO,
1da177e4 3189 &d_hash_shift,
b35d786b 3190 NULL,
31fe62b9 3191 0,
1da177e4 3192 0);
854d3e63 3193 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3194}
3195
3196/* SLAB cache for __getname() consumers */
e18b890b 3197struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3198EXPORT_SYMBOL(names_cachep);
1da177e4 3199
1da177e4
LT
3200void __init vfs_caches_init_early(void)
3201{
6916363f
SAS
3202 int i;
3203
3204 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3205 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3206
1da177e4
LT
3207 dcache_init_early();
3208 inode_init_early();
3209}
3210
4248b0da 3211void __init vfs_caches_init(void)
1da177e4 3212{
6a9b8820
DW
3213 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3214 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3215
74bf17cf
DC
3216 dcache_init();
3217 inode_init();
4248b0da
MG
3218 files_init();
3219 files_maxfiles_init();
74bf17cf 3220 mnt_init();
1da177e4
LT
3221 bdev_cache_init();
3222 chrdev_init();
3223}