fs: dcache remove dcache_lock
[linux-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
07f3f05c 36#include "internal.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
b23fb0a6
NP
40 * dcache_inode_lock protects:
41 * - i_dentry, d_alias, d_inode
23044507
NP
42 * dcache_hash_lock protects:
43 * - the dcache hash table, s_anon lists
44 * dcache_lru_lock protects:
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
b23fb0a6 54 * - d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
b5c84bf6
NP
57 * dcache_inode_lock
58 * dentry->d_lock
59 * dcache_lru_lock
60 * dcache_hash_lock
789680d1 61 *
da502956
NP
62 * If there is an ancestor relationship:
63 * dentry->d_parent->...->d_parent->d_lock
64 * ...
65 * dentry->d_parent->d_lock
66 * dentry->d_lock
67 *
68 * If no ancestor relationship:
789680d1
NP
69 * if (dentry1 < dentry2)
70 * dentry1->d_lock
71 * dentry2->d_lock
72 */
fa3536cc 73int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
74EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75
b23fb0a6 76__cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_inode_lock);
789680d1 77static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_hash_lock);
23044507 78static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 80
949854d0 81EXPORT_SYMBOL(rename_lock);
b23fb0a6 82EXPORT_SYMBOL(dcache_inode_lock);
1da177e4 83
e18b890b 84static struct kmem_cache *dentry_cache __read_mostly;
1da177e4
LT
85
86#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
87
88/*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96#define D_HASHBITS d_hash_shift
97#define D_HASHMASK d_hash_mask
98
fa3536cc
ED
99static unsigned int d_hash_mask __read_mostly;
100static unsigned int d_hash_shift __read_mostly;
101static struct hlist_head *dentry_hashtable __read_mostly;
1da177e4
LT
102
103/* Statistics gathering. */
104struct dentry_stat_t dentry_stat = {
105 .age_limit = 45,
106};
107
3e880fb5 108static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
109
110#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
111static int get_nr_dentry(void)
112{
113 int i;
114 int sum = 0;
115 for_each_possible_cpu(i)
116 sum += per_cpu(nr_dentry, i);
117 return sum < 0 ? 0 : sum;
118}
119
312d3ca8
CH
120int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
121 size_t *lenp, loff_t *ppos)
122{
3e880fb5 123 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
124 return proc_dointvec(table, write, buffer, lenp, ppos);
125}
126#endif
127
9c82ab9c 128static void __d_free(struct rcu_head *head)
1da177e4 129{
9c82ab9c
CH
130 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
131
fd217f4d 132 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
133 if (dname_external(dentry))
134 kfree(dentry->d_name.name);
135 kmem_cache_free(dentry_cache, dentry);
136}
137
138/*
b5c84bf6 139 * no locks, please.
1da177e4
LT
140 */
141static void d_free(struct dentry *dentry)
142{
b7ab39f6 143 BUG_ON(dentry->d_count);
3e880fb5 144 this_cpu_dec(nr_dentry);
1da177e4
LT
145 if (dentry->d_op && dentry->d_op->d_release)
146 dentry->d_op->d_release(dentry);
312d3ca8 147
b3423415 148 /* if dentry was never inserted into hash, immediate free is OK */
e8462caa 149 if (hlist_unhashed(&dentry->d_hash))
9c82ab9c 150 __d_free(&dentry->d_u.d_rcu);
b3423415 151 else
9c82ab9c 152 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
153}
154
155/*
156 * Release the dentry's inode, using the filesystem
157 * d_iput() operation if defined.
1da177e4 158 */
858119e1 159static void dentry_iput(struct dentry * dentry)
31f3e0b3 160 __releases(dentry->d_lock)
b23fb0a6 161 __releases(dcache_inode_lock)
1da177e4
LT
162{
163 struct inode *inode = dentry->d_inode;
164 if (inode) {
165 dentry->d_inode = NULL;
166 list_del_init(&dentry->d_alias);
167 spin_unlock(&dentry->d_lock);
b23fb0a6 168 spin_unlock(&dcache_inode_lock);
f805fbda
LT
169 if (!inode->i_nlink)
170 fsnotify_inoderemove(inode);
1da177e4
LT
171 if (dentry->d_op && dentry->d_op->d_iput)
172 dentry->d_op->d_iput(dentry, inode);
173 else
174 iput(inode);
175 } else {
176 spin_unlock(&dentry->d_lock);
b23fb0a6 177 spin_unlock(&dcache_inode_lock);
1da177e4
LT
178 }
179}
180
da3bbdd4 181/*
23044507 182 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
183 */
184static void dentry_lru_add(struct dentry *dentry)
185{
a4633357 186 if (list_empty(&dentry->d_lru)) {
23044507 187 spin_lock(&dcache_lru_lock);
a4633357
CH
188 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
189 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 190 dentry_stat.nr_unused++;
23044507 191 spin_unlock(&dcache_lru_lock);
a4633357 192 }
da3bbdd4
KM
193}
194
23044507
NP
195static void __dentry_lru_del(struct dentry *dentry)
196{
197 list_del_init(&dentry->d_lru);
198 dentry->d_sb->s_nr_dentry_unused--;
199 dentry_stat.nr_unused--;
200}
201
da3bbdd4
KM
202static void dentry_lru_del(struct dentry *dentry)
203{
204 if (!list_empty(&dentry->d_lru)) {
23044507
NP
205 spin_lock(&dcache_lru_lock);
206 __dentry_lru_del(dentry);
207 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
208 }
209}
210
a4633357 211static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 212{
23044507 213 spin_lock(&dcache_lru_lock);
a4633357
CH
214 if (list_empty(&dentry->d_lru)) {
215 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
216 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 217 dentry_stat.nr_unused++;
a4633357
CH
218 } else {
219 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 220 }
23044507 221 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
222}
223
d52b9086
MS
224/**
225 * d_kill - kill dentry and return parent
226 * @dentry: dentry to kill
227 *
31f3e0b3 228 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
229 *
230 * If this is the root of the dentry tree, return NULL.
23044507 231 *
b5c84bf6
NP
232 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
233 * d_kill.
d52b9086 234 */
2fd6b7f5 235static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 236 __releases(dentry->d_lock)
2fd6b7f5 237 __releases(parent->d_lock)
b23fb0a6 238 __releases(dcache_inode_lock)
d52b9086 239{
949854d0 240 dentry->d_parent = NULL;
d52b9086 241 list_del(&dentry->d_u.d_child);
2fd6b7f5
NP
242 if (parent)
243 spin_unlock(&parent->d_lock);
d52b9086 244 dentry_iput(dentry);
b7ab39f6
NP
245 /*
246 * dentry_iput drops the locks, at which point nobody (except
247 * transient RCU lookups) can reach this dentry.
248 */
d52b9086 249 d_free(dentry);
871c0067 250 return parent;
d52b9086
MS
251}
252
789680d1
NP
253/**
254 * d_drop - drop a dentry
255 * @dentry: dentry to drop
256 *
257 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
258 * be found through a VFS lookup any more. Note that this is different from
259 * deleting the dentry - d_delete will try to mark the dentry negative if
260 * possible, giving a successful _negative_ lookup, while d_drop will
261 * just make the cache lookup fail.
262 *
263 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
264 * reason (NFS timeouts or autofs deletes).
265 *
266 * __d_drop requires dentry->d_lock.
267 */
268void __d_drop(struct dentry *dentry)
269{
270 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
271 dentry->d_flags |= DCACHE_UNHASHED;
272 spin_lock(&dcache_hash_lock);
273 hlist_del_rcu(&dentry->d_hash);
274 spin_unlock(&dcache_hash_lock);
275 }
276}
277EXPORT_SYMBOL(__d_drop);
278
279void d_drop(struct dentry *dentry)
280{
789680d1
NP
281 spin_lock(&dentry->d_lock);
282 __d_drop(dentry);
283 spin_unlock(&dentry->d_lock);
789680d1
NP
284}
285EXPORT_SYMBOL(d_drop);
286
1da177e4
LT
287/*
288 * This is dput
289 *
290 * This is complicated by the fact that we do not want to put
291 * dentries that are no longer on any hash chain on the unused
292 * list: we'd much rather just get rid of them immediately.
293 *
294 * However, that implies that we have to traverse the dentry
295 * tree upwards to the parents which might _also_ now be
296 * scheduled for deletion (it may have been only waiting for
297 * its last child to go away).
298 *
299 * This tail recursion is done by hand as we don't want to depend
300 * on the compiler to always get this right (gcc generally doesn't).
301 * Real recursion would eat up our stack space.
302 */
303
304/*
305 * dput - release a dentry
306 * @dentry: dentry to release
307 *
308 * Release a dentry. This will drop the usage count and if appropriate
309 * call the dentry unlink method as well as removing it from the queues and
310 * releasing its resources. If the parent dentries were scheduled for release
311 * they too may now get deleted.
312 *
313 * no dcache lock, please.
314 */
315
316void dput(struct dentry *dentry)
317{
2fd6b7f5 318 struct dentry *parent;
1da177e4
LT
319 if (!dentry)
320 return;
321
322repeat:
b7ab39f6 323 if (dentry->d_count == 1)
1da177e4 324 might_sleep();
1da177e4 325 spin_lock(&dentry->d_lock);
2fd6b7f5
NP
326 if (IS_ROOT(dentry))
327 parent = NULL;
328 else
329 parent = dentry->d_parent;
b7ab39f6 330 if (dentry->d_count == 1) {
b23fb0a6
NP
331 if (!spin_trylock(&dcache_inode_lock)) {
332drop2:
b5c84bf6
NP
333 spin_unlock(&dentry->d_lock);
334 goto repeat;
b23fb0a6
NP
335 }
336 if (parent && !spin_trylock(&parent->d_lock)) {
337 spin_unlock(&dcache_inode_lock);
338 goto drop2;
2fd6b7f5 339 }
b7ab39f6
NP
340 }
341 dentry->d_count--;
342 if (dentry->d_count) {
1da177e4 343 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
344 if (parent)
345 spin_unlock(&parent->d_lock);
1da177e4
LT
346 return;
347 }
348
349 /*
350 * AV: ->d_delete() is _NOT_ allowed to block now.
351 */
352 if (dentry->d_op && dentry->d_op->d_delete) {
353 if (dentry->d_op->d_delete(dentry))
354 goto unhash_it;
355 }
265ac902 356
1da177e4
LT
357 /* Unreachable? Get rid of it */
358 if (d_unhashed(dentry))
359 goto kill_it;
265ac902
NP
360
361 /* Otherwise leave it cached and ensure it's on the LRU */
362 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 363 dentry_lru_add(dentry);
265ac902 364
1da177e4 365 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
366 if (parent)
367 spin_unlock(&parent->d_lock);
b23fb0a6 368 spin_unlock(&dcache_inode_lock);
1da177e4
LT
369 return;
370
371unhash_it:
372 __d_drop(dentry);
d52b9086 373kill_it:
da3bbdd4
KM
374 /* if dentry was on the d_lru list delete it from there */
375 dentry_lru_del(dentry);
2fd6b7f5 376 dentry = d_kill(dentry, parent);
d52b9086
MS
377 if (dentry)
378 goto repeat;
1da177e4 379}
ec4f8605 380EXPORT_SYMBOL(dput);
1da177e4
LT
381
382/**
383 * d_invalidate - invalidate a dentry
384 * @dentry: dentry to invalidate
385 *
386 * Try to invalidate the dentry if it turns out to be
387 * possible. If there are other dentries that can be
388 * reached through this one we can't delete it and we
389 * return -EBUSY. On success we return 0.
390 *
391 * no dcache lock.
392 */
393
394int d_invalidate(struct dentry * dentry)
395{
396 /*
397 * If it's already been dropped, return OK.
398 */
da502956 399 spin_lock(&dentry->d_lock);
1da177e4 400 if (d_unhashed(dentry)) {
da502956 401 spin_unlock(&dentry->d_lock);
1da177e4
LT
402 return 0;
403 }
404 /*
405 * Check whether to do a partial shrink_dcache
406 * to get rid of unused child entries.
407 */
408 if (!list_empty(&dentry->d_subdirs)) {
da502956 409 spin_unlock(&dentry->d_lock);
1da177e4 410 shrink_dcache_parent(dentry);
da502956 411 spin_lock(&dentry->d_lock);
1da177e4
LT
412 }
413
414 /*
415 * Somebody else still using it?
416 *
417 * If it's a directory, we can't drop it
418 * for fear of somebody re-populating it
419 * with children (even though dropping it
420 * would make it unreachable from the root,
421 * we might still populate it if it was a
422 * working directory or similar).
423 */
b7ab39f6 424 if (dentry->d_count > 1) {
1da177e4
LT
425 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
426 spin_unlock(&dentry->d_lock);
1da177e4
LT
427 return -EBUSY;
428 }
429 }
430
431 __d_drop(dentry);
432 spin_unlock(&dentry->d_lock);
1da177e4
LT
433 return 0;
434}
ec4f8605 435EXPORT_SYMBOL(d_invalidate);
1da177e4 436
b5c84bf6 437/* This must be called with d_lock held */
23044507
NP
438static inline struct dentry * __dget_locked_dlock(struct dentry *dentry)
439{
b7ab39f6 440 dentry->d_count++;
23044507
NP
441 dentry_lru_del(dentry);
442 return dentry;
443}
444
b5c84bf6 445/* This must be called with d_lock held */
1da177e4
LT
446static inline struct dentry * __dget_locked(struct dentry *dentry)
447{
23044507 448 spin_lock(&dentry->d_lock);
b7ab39f6 449 __dget_locked_dlock(dentry);
23044507 450 spin_unlock(&dentry->d_lock);
1da177e4
LT
451 return dentry;
452}
453
b7ab39f6
NP
454struct dentry * dget_locked_dlock(struct dentry *dentry)
455{
456 return __dget_locked_dlock(dentry);
457}
458
1da177e4
LT
459struct dentry * dget_locked(struct dentry *dentry)
460{
461 return __dget_locked(dentry);
462}
ec4f8605 463EXPORT_SYMBOL(dget_locked);
1da177e4 464
b7ab39f6
NP
465struct dentry *dget_parent(struct dentry *dentry)
466{
467 struct dentry *ret;
468
469repeat:
470 spin_lock(&dentry->d_lock);
471 ret = dentry->d_parent;
472 if (!ret)
473 goto out;
474 if (dentry == ret) {
475 ret->d_count++;
476 goto out;
477 }
478 if (!spin_trylock(&ret->d_lock)) {
479 spin_unlock(&dentry->d_lock);
480 cpu_relax();
481 goto repeat;
482 }
483 BUG_ON(!ret->d_count);
484 ret->d_count++;
485 spin_unlock(&ret->d_lock);
486out:
487 spin_unlock(&dentry->d_lock);
488 return ret;
489}
490EXPORT_SYMBOL(dget_parent);
491
1da177e4
LT
492/**
493 * d_find_alias - grab a hashed alias of inode
494 * @inode: inode in question
495 * @want_discon: flag, used by d_splice_alias, to request
496 * that only a DISCONNECTED alias be returned.
497 *
498 * If inode has a hashed alias, or is a directory and has any alias,
499 * acquire the reference to alias and return it. Otherwise return NULL.
500 * Notice that if inode is a directory there can be only one alias and
501 * it can be unhashed only if it has no children, or if it is the root
502 * of a filesystem.
503 *
21c0d8fd 504 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 505 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 506 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 507 */
da502956 508static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 509{
da502956 510 struct dentry *alias, *discon_alias;
1da177e4 511
da502956
NP
512again:
513 discon_alias = NULL;
514 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
515 spin_lock(&alias->d_lock);
1da177e4 516 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 517 if (IS_ROOT(alias) &&
da502956 518 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 519 discon_alias = alias;
da502956
NP
520 } else if (!want_discon) {
521 __dget_locked_dlock(alias);
522 spin_unlock(&alias->d_lock);
523 return alias;
524 }
525 }
526 spin_unlock(&alias->d_lock);
527 }
528 if (discon_alias) {
529 alias = discon_alias;
530 spin_lock(&alias->d_lock);
531 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
532 if (IS_ROOT(alias) &&
533 (alias->d_flags & DCACHE_DISCONNECTED)) {
534 __dget_locked_dlock(alias);
535 spin_unlock(&alias->d_lock);
1da177e4
LT
536 return alias;
537 }
538 }
da502956
NP
539 spin_unlock(&alias->d_lock);
540 goto again;
1da177e4 541 }
da502956 542 return NULL;
1da177e4
LT
543}
544
da502956 545struct dentry *d_find_alias(struct inode *inode)
1da177e4 546{
214fda1f
DH
547 struct dentry *de = NULL;
548
549 if (!list_empty(&inode->i_dentry)) {
b23fb0a6 550 spin_lock(&dcache_inode_lock);
214fda1f 551 de = __d_find_alias(inode, 0);
b23fb0a6 552 spin_unlock(&dcache_inode_lock);
214fda1f 553 }
1da177e4
LT
554 return de;
555}
ec4f8605 556EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
557
558/*
559 * Try to kill dentries associated with this inode.
560 * WARNING: you must own a reference to inode.
561 */
562void d_prune_aliases(struct inode *inode)
563{
0cdca3f9 564 struct dentry *dentry;
1da177e4 565restart:
b23fb0a6 566 spin_lock(&dcache_inode_lock);
0cdca3f9 567 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 568 spin_lock(&dentry->d_lock);
b7ab39f6 569 if (!dentry->d_count) {
23044507 570 __dget_locked_dlock(dentry);
1da177e4
LT
571 __d_drop(dentry);
572 spin_unlock(&dentry->d_lock);
b23fb0a6 573 spin_unlock(&dcache_inode_lock);
1da177e4
LT
574 dput(dentry);
575 goto restart;
576 }
577 spin_unlock(&dentry->d_lock);
578 }
b23fb0a6 579 spin_unlock(&dcache_inode_lock);
1da177e4 580}
ec4f8605 581EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
582
583/*
d702ccb3
AM
584 * Throw away a dentry - free the inode, dput the parent. This requires that
585 * the LRU list has already been removed.
586 *
85864e10
MS
587 * Try to prune ancestors as well. This is necessary to prevent
588 * quadratic behavior of shrink_dcache_parent(), but is also expected
589 * to be beneficial in reducing dentry cache fragmentation.
1da177e4 590 */
2fd6b7f5 591static void prune_one_dentry(struct dentry *dentry, struct dentry *parent)
31f3e0b3 592 __releases(dentry->d_lock)
2fd6b7f5 593 __releases(parent->d_lock)
b23fb0a6 594 __releases(dcache_inode_lock)
1da177e4 595{
1da177e4 596 __d_drop(dentry);
2fd6b7f5 597 dentry = d_kill(dentry, parent);
d52b9086
MS
598
599 /*
b5c84bf6 600 * Prune ancestors.
d52b9086 601 */
d52b9086 602 while (dentry) {
b23fb0a6 603 spin_lock(&dcache_inode_lock);
2fd6b7f5 604again:
b7ab39f6 605 spin_lock(&dentry->d_lock);
2fd6b7f5
NP
606 if (IS_ROOT(dentry))
607 parent = NULL;
608 else
609 parent = dentry->d_parent;
610 if (parent && !spin_trylock(&parent->d_lock)) {
611 spin_unlock(&dentry->d_lock);
612 goto again;
613 }
b7ab39f6
NP
614 dentry->d_count--;
615 if (dentry->d_count) {
2fd6b7f5
NP
616 if (parent)
617 spin_unlock(&parent->d_lock);
b7ab39f6 618 spin_unlock(&dentry->d_lock);
b23fb0a6 619 spin_unlock(&dcache_inode_lock);
d52b9086 620 return;
23044507 621 }
d52b9086 622
a4633357 623 dentry_lru_del(dentry);
d52b9086 624 __d_drop(dentry);
2fd6b7f5 625 dentry = d_kill(dentry, parent);
d52b9086 626 }
1da177e4
LT
627}
628
3049cfe2 629static void shrink_dentry_list(struct list_head *list)
1da177e4 630{
da3bbdd4 631 struct dentry *dentry;
da3bbdd4 632
3049cfe2 633 while (!list_empty(list)) {
2fd6b7f5
NP
634 struct dentry *parent;
635
3049cfe2 636 dentry = list_entry(list->prev, struct dentry, d_lru);
23044507
NP
637
638 if (!spin_trylock(&dentry->d_lock)) {
2fd6b7f5 639relock:
23044507
NP
640 spin_unlock(&dcache_lru_lock);
641 cpu_relax();
642 spin_lock(&dcache_lru_lock);
643 continue;
644 }
645
1da177e4
LT
646 /*
647 * We found an inuse dentry which was not removed from
da3bbdd4
KM
648 * the LRU because of laziness during lookup. Do not free
649 * it - just keep it off the LRU list.
1da177e4 650 */
b7ab39f6 651 if (dentry->d_count) {
2fd6b7f5 652 __dentry_lru_del(dentry);
da3bbdd4 653 spin_unlock(&dentry->d_lock);
1da177e4
LT
654 continue;
655 }
2fd6b7f5
NP
656 if (IS_ROOT(dentry))
657 parent = NULL;
658 else
659 parent = dentry->d_parent;
660 if (parent && !spin_trylock(&parent->d_lock)) {
661 spin_unlock(&dentry->d_lock);
662 goto relock;
663 }
664 __dentry_lru_del(dentry);
23044507
NP
665 spin_unlock(&dcache_lru_lock);
666
2fd6b7f5 667 prune_one_dentry(dentry, parent);
b5c84bf6 668 /* dcache_inode_lock and dentry->d_lock dropped */
b23fb0a6 669 spin_lock(&dcache_inode_lock);
23044507 670 spin_lock(&dcache_lru_lock);
da3bbdd4 671 }
3049cfe2
CH
672}
673
674/**
675 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
676 * @sb: superblock to shrink dentry LRU.
677 * @count: number of entries to prune
678 * @flags: flags to control the dentry processing
679 *
680 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
681 */
682static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
683{
684 /* called from prune_dcache() and shrink_dcache_parent() */
685 struct dentry *dentry;
686 LIST_HEAD(referenced);
687 LIST_HEAD(tmp);
688 int cnt = *count;
689
b23fb0a6 690 spin_lock(&dcache_inode_lock);
23044507
NP
691relock:
692 spin_lock(&dcache_lru_lock);
3049cfe2
CH
693 while (!list_empty(&sb->s_dentry_lru)) {
694 dentry = list_entry(sb->s_dentry_lru.prev,
695 struct dentry, d_lru);
696 BUG_ON(dentry->d_sb != sb);
697
23044507
NP
698 if (!spin_trylock(&dentry->d_lock)) {
699 spin_unlock(&dcache_lru_lock);
700 cpu_relax();
701 goto relock;
702 }
703
3049cfe2
CH
704 /*
705 * If we are honouring the DCACHE_REFERENCED flag and the
706 * dentry has this flag set, don't free it. Clear the flag
707 * and put it back on the LRU.
708 */
23044507
NP
709 if (flags & DCACHE_REFERENCED &&
710 dentry->d_flags & DCACHE_REFERENCED) {
711 dentry->d_flags &= ~DCACHE_REFERENCED;
712 list_move(&dentry->d_lru, &referenced);
3049cfe2 713 spin_unlock(&dentry->d_lock);
23044507
NP
714 } else {
715 list_move_tail(&dentry->d_lru, &tmp);
716 spin_unlock(&dentry->d_lock);
717 if (!--cnt)
718 break;
3049cfe2 719 }
23044507 720 /* XXX: re-add cond_resched_lock when dcache_lock goes away */
3049cfe2
CH
721 }
722
723 *count = cnt;
724 shrink_dentry_list(&tmp);
725
da3bbdd4
KM
726 if (!list_empty(&referenced))
727 list_splice(&referenced, &sb->s_dentry_lru);
23044507 728 spin_unlock(&dcache_lru_lock);
b23fb0a6 729 spin_unlock(&dcache_inode_lock);
da3bbdd4
KM
730}
731
732/**
733 * prune_dcache - shrink the dcache
734 * @count: number of entries to try to free
735 *
736 * Shrink the dcache. This is done when we need more memory, or simply when we
737 * need to unmount something (at which point we need to unuse all dentries).
738 *
739 * This function may fail to free any resources if all the dentries are in use.
740 */
741static void prune_dcache(int count)
742{
dca33252 743 struct super_block *sb, *p = NULL;
da3bbdd4 744 int w_count;
86c8749e 745 int unused = dentry_stat.nr_unused;
da3bbdd4
KM
746 int prune_ratio;
747 int pruned;
748
749 if (unused == 0 || count == 0)
750 return;
da3bbdd4
KM
751 if (count >= unused)
752 prune_ratio = 1;
753 else
754 prune_ratio = unused / count;
755 spin_lock(&sb_lock);
dca33252 756 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
757 if (list_empty(&sb->s_instances))
758 continue;
da3bbdd4 759 if (sb->s_nr_dentry_unused == 0)
1da177e4 760 continue;
da3bbdd4
KM
761 sb->s_count++;
762 /* Now, we reclaim unused dentrins with fairness.
763 * We reclaim them same percentage from each superblock.
764 * We calculate number of dentries to scan on this sb
765 * as follows, but the implementation is arranged to avoid
766 * overflows:
767 * number of dentries to scan on this sb =
768 * count * (number of dentries on this sb /
769 * number of dentries in the machine)
0feae5c4 770 */
da3bbdd4
KM
771 spin_unlock(&sb_lock);
772 if (prune_ratio != 1)
773 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
774 else
775 w_count = sb->s_nr_dentry_unused;
776 pruned = w_count;
0feae5c4 777 /*
da3bbdd4
KM
778 * We need to be sure this filesystem isn't being unmounted,
779 * otherwise we could race with generic_shutdown_super(), and
780 * end up holding a reference to an inode while the filesystem
781 * is unmounted. So we try to get s_umount, and make sure
782 * s_root isn't NULL.
0feae5c4 783 */
da3bbdd4
KM
784 if (down_read_trylock(&sb->s_umount)) {
785 if ((sb->s_root != NULL) &&
786 (!list_empty(&sb->s_dentry_lru))) {
da3bbdd4
KM
787 __shrink_dcache_sb(sb, &w_count,
788 DCACHE_REFERENCED);
789 pruned -= w_count;
0feae5c4 790 }
da3bbdd4 791 up_read(&sb->s_umount);
0feae5c4 792 }
da3bbdd4 793 spin_lock(&sb_lock);
dca33252
AV
794 if (p)
795 __put_super(p);
da3bbdd4 796 count -= pruned;
dca33252 797 p = sb;
79893c17
AV
798 /* more work left to do? */
799 if (count <= 0)
800 break;
1da177e4 801 }
dca33252
AV
802 if (p)
803 __put_super(p);
da3bbdd4 804 spin_unlock(&sb_lock);
1da177e4
LT
805}
806
1da177e4
LT
807/**
808 * shrink_dcache_sb - shrink dcache for a superblock
809 * @sb: superblock
810 *
3049cfe2
CH
811 * Shrink the dcache for the specified super block. This is used to free
812 * the dcache before unmounting a file system.
1da177e4 813 */
3049cfe2 814void shrink_dcache_sb(struct super_block *sb)
1da177e4 815{
3049cfe2
CH
816 LIST_HEAD(tmp);
817
b23fb0a6 818 spin_lock(&dcache_inode_lock);
23044507 819 spin_lock(&dcache_lru_lock);
3049cfe2
CH
820 while (!list_empty(&sb->s_dentry_lru)) {
821 list_splice_init(&sb->s_dentry_lru, &tmp);
822 shrink_dentry_list(&tmp);
823 }
23044507 824 spin_unlock(&dcache_lru_lock);
b23fb0a6 825 spin_unlock(&dcache_inode_lock);
1da177e4 826}
ec4f8605 827EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 828
c636ebdb
DH
829/*
830 * destroy a single subtree of dentries for unmount
831 * - see the comments on shrink_dcache_for_umount() for a description of the
832 * locking
833 */
834static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
835{
836 struct dentry *parent;
f8713576 837 unsigned detached = 0;
c636ebdb
DH
838
839 BUG_ON(!IS_ROOT(dentry));
840
841 /* detach this root from the system */
23044507 842 spin_lock(&dentry->d_lock);
a4633357 843 dentry_lru_del(dentry);
c636ebdb 844 __d_drop(dentry);
da502956 845 spin_unlock(&dentry->d_lock);
c636ebdb
DH
846
847 for (;;) {
848 /* descend to the first leaf in the current subtree */
849 while (!list_empty(&dentry->d_subdirs)) {
850 struct dentry *loop;
851
852 /* this is a branch with children - detach all of them
853 * from the system in one go */
2fd6b7f5 854 spin_lock(&dentry->d_lock);
c636ebdb
DH
855 list_for_each_entry(loop, &dentry->d_subdirs,
856 d_u.d_child) {
2fd6b7f5
NP
857 spin_lock_nested(&loop->d_lock,
858 DENTRY_D_LOCK_NESTED);
a4633357 859 dentry_lru_del(loop);
c636ebdb 860 __d_drop(loop);
da502956 861 spin_unlock(&loop->d_lock);
c636ebdb 862 }
2fd6b7f5 863 spin_unlock(&dentry->d_lock);
c636ebdb
DH
864
865 /* move to the first child */
866 dentry = list_entry(dentry->d_subdirs.next,
867 struct dentry, d_u.d_child);
868 }
869
870 /* consume the dentries from this leaf up through its parents
871 * until we find one with children or run out altogether */
872 do {
873 struct inode *inode;
874
b7ab39f6 875 if (dentry->d_count != 0) {
c636ebdb
DH
876 printk(KERN_ERR
877 "BUG: Dentry %p{i=%lx,n=%s}"
878 " still in use (%d)"
879 " [unmount of %s %s]\n",
880 dentry,
881 dentry->d_inode ?
882 dentry->d_inode->i_ino : 0UL,
883 dentry->d_name.name,
b7ab39f6 884 dentry->d_count,
c636ebdb
DH
885 dentry->d_sb->s_type->name,
886 dentry->d_sb->s_id);
887 BUG();
888 }
889
2fd6b7f5 890 if (IS_ROOT(dentry)) {
c636ebdb 891 parent = NULL;
2fd6b7f5
NP
892 list_del(&dentry->d_u.d_child);
893 } else {
871c0067 894 parent = dentry->d_parent;
b7ab39f6
NP
895 spin_lock(&parent->d_lock);
896 parent->d_count--;
2fd6b7f5 897 list_del(&dentry->d_u.d_child);
b7ab39f6 898 spin_unlock(&parent->d_lock);
871c0067 899 }
c636ebdb 900
f8713576 901 detached++;
c636ebdb
DH
902
903 inode = dentry->d_inode;
904 if (inode) {
905 dentry->d_inode = NULL;
906 list_del_init(&dentry->d_alias);
907 if (dentry->d_op && dentry->d_op->d_iput)
908 dentry->d_op->d_iput(dentry, inode);
909 else
910 iput(inode);
911 }
912
913 d_free(dentry);
914
915 /* finished when we fall off the top of the tree,
916 * otherwise we ascend to the parent and move to the
917 * next sibling if there is one */
918 if (!parent)
312d3ca8 919 return;
c636ebdb 920 dentry = parent;
c636ebdb
DH
921 } while (list_empty(&dentry->d_subdirs));
922
923 dentry = list_entry(dentry->d_subdirs.next,
924 struct dentry, d_u.d_child);
925 }
926}
927
928/*
929 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 930 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
931 * - the superblock is detached from all mountings and open files, so the
932 * dentry trees will not be rearranged by the VFS
933 * - s_umount is write-locked, so the memory pressure shrinker will ignore
934 * any dentries belonging to this superblock that it comes across
935 * - the filesystem itself is no longer permitted to rearrange the dentries
936 * in this superblock
937 */
938void shrink_dcache_for_umount(struct super_block *sb)
939{
940 struct dentry *dentry;
941
942 if (down_read_trylock(&sb->s_umount))
943 BUG();
944
945 dentry = sb->s_root;
946 sb->s_root = NULL;
b7ab39f6
NP
947 spin_lock(&dentry->d_lock);
948 dentry->d_count--;
949 spin_unlock(&dentry->d_lock);
c636ebdb
DH
950 shrink_dcache_for_umount_subtree(dentry);
951
952 while (!hlist_empty(&sb->s_anon)) {
953 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
954 shrink_dcache_for_umount_subtree(dentry);
955 }
956}
957
1da177e4
LT
958/*
959 * Search for at least 1 mount point in the dentry's subdirs.
960 * We descend to the next level whenever the d_subdirs
961 * list is non-empty and continue searching.
962 */
963
964/**
965 * have_submounts - check for mounts over a dentry
966 * @parent: dentry to check.
967 *
968 * Return true if the parent or its subdirectories contain
969 * a mount point
970 */
1da177e4
LT
971int have_submounts(struct dentry *parent)
972{
949854d0 973 struct dentry *this_parent;
1da177e4 974 struct list_head *next;
949854d0
NP
975 unsigned seq;
976
977rename_retry:
978 this_parent = parent;
979 seq = read_seqbegin(&rename_lock);
1da177e4 980
1da177e4
LT
981 if (d_mountpoint(parent))
982 goto positive;
2fd6b7f5 983 spin_lock(&this_parent->d_lock);
1da177e4
LT
984repeat:
985 next = this_parent->d_subdirs.next;
986resume:
987 while (next != &this_parent->d_subdirs) {
988 struct list_head *tmp = next;
5160ee6f 989 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 990 next = tmp->next;
2fd6b7f5
NP
991
992 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 993 /* Have we found a mount point ? */
2fd6b7f5
NP
994 if (d_mountpoint(dentry)) {
995 spin_unlock(&dentry->d_lock);
996 spin_unlock(&this_parent->d_lock);
1da177e4 997 goto positive;
2fd6b7f5 998 }
1da177e4 999 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1000 spin_unlock(&this_parent->d_lock);
1001 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1002 this_parent = dentry;
2fd6b7f5 1003 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1004 goto repeat;
1005 }
2fd6b7f5 1006 spin_unlock(&dentry->d_lock);
1da177e4
LT
1007 }
1008 /*
1009 * All done at this level ... ascend and resume the search.
1010 */
1011 if (this_parent != parent) {
949854d0
NP
1012 struct dentry *tmp;
1013 struct dentry *child;
1014
1015 tmp = this_parent->d_parent;
1016 rcu_read_lock();
2fd6b7f5 1017 spin_unlock(&this_parent->d_lock);
949854d0
NP
1018 child = this_parent;
1019 this_parent = tmp;
2fd6b7f5 1020 spin_lock(&this_parent->d_lock);
949854d0
NP
1021 /* might go back up the wrong parent if we have had a rename
1022 * or deletion */
1023 if (this_parent != child->d_parent ||
1024 read_seqretry(&rename_lock, seq)) {
1025 spin_unlock(&this_parent->d_lock);
949854d0
NP
1026 rcu_read_unlock();
1027 goto rename_retry;
1028 }
1029 rcu_read_unlock();
1030 next = child->d_u.d_child.next;
1da177e4
LT
1031 goto resume;
1032 }
2fd6b7f5 1033 spin_unlock(&this_parent->d_lock);
949854d0
NP
1034 if (read_seqretry(&rename_lock, seq))
1035 goto rename_retry;
1da177e4
LT
1036 return 0; /* No mount points found in tree */
1037positive:
949854d0
NP
1038 if (read_seqretry(&rename_lock, seq))
1039 goto rename_retry;
1da177e4
LT
1040 return 1;
1041}
ec4f8605 1042EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1043
1044/*
1045 * Search the dentry child list for the specified parent,
1046 * and move any unused dentries to the end of the unused
1047 * list for prune_dcache(). We descend to the next level
1048 * whenever the d_subdirs list is non-empty and continue
1049 * searching.
1050 *
1051 * It returns zero iff there are no unused children,
1052 * otherwise it returns the number of children moved to
1053 * the end of the unused list. This may not be the total
1054 * number of unused children, because select_parent can
1055 * drop the lock and return early due to latency
1056 * constraints.
1057 */
1058static int select_parent(struct dentry * parent)
1059{
949854d0 1060 struct dentry *this_parent;
1da177e4 1061 struct list_head *next;
949854d0 1062 unsigned seq;
1da177e4
LT
1063 int found = 0;
1064
949854d0
NP
1065rename_retry:
1066 this_parent = parent;
1067 seq = read_seqbegin(&rename_lock);
1068
2fd6b7f5 1069 spin_lock(&this_parent->d_lock);
1da177e4
LT
1070repeat:
1071 next = this_parent->d_subdirs.next;
1072resume:
1073 while (next != &this_parent->d_subdirs) {
1074 struct list_head *tmp = next;
5160ee6f 1075 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1076 next = tmp->next;
1077
2fd6b7f5 1078 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1079
1da177e4
LT
1080 /*
1081 * move only zero ref count dentries to the end
1082 * of the unused list for prune_dcache
1083 */
b7ab39f6 1084 if (!dentry->d_count) {
a4633357 1085 dentry_lru_move_tail(dentry);
1da177e4 1086 found++;
a4633357
CH
1087 } else {
1088 dentry_lru_del(dentry);
1da177e4
LT
1089 }
1090
1091 /*
1092 * We can return to the caller if we have found some (this
1093 * ensures forward progress). We'll be coming back to find
1094 * the rest.
1095 */
2fd6b7f5
NP
1096 if (found && need_resched()) {
1097 spin_unlock(&dentry->d_lock);
1da177e4 1098 goto out;
2fd6b7f5 1099 }
1da177e4
LT
1100
1101 /*
1102 * Descend a level if the d_subdirs list is non-empty.
1103 */
1104 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1105 spin_unlock(&this_parent->d_lock);
1106 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1107 this_parent = dentry;
2fd6b7f5 1108 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1109 goto repeat;
1110 }
2fd6b7f5
NP
1111
1112 spin_unlock(&dentry->d_lock);
1da177e4
LT
1113 }
1114 /*
1115 * All done at this level ... ascend and resume the search.
1116 */
1117 if (this_parent != parent) {
2fd6b7f5 1118 struct dentry *tmp;
949854d0
NP
1119 struct dentry *child;
1120
2fd6b7f5 1121 tmp = this_parent->d_parent;
949854d0 1122 rcu_read_lock();
2fd6b7f5 1123 spin_unlock(&this_parent->d_lock);
949854d0 1124 child = this_parent;
2fd6b7f5
NP
1125 this_parent = tmp;
1126 spin_lock(&this_parent->d_lock);
949854d0
NP
1127 /* might go back up the wrong parent if we have had a rename
1128 * or deletion */
1129 if (this_parent != child->d_parent ||
1130 read_seqretry(&rename_lock, seq)) {
1131 spin_unlock(&this_parent->d_lock);
949854d0
NP
1132 rcu_read_unlock();
1133 goto rename_retry;
1134 }
1135 rcu_read_unlock();
1136 next = child->d_u.d_child.next;
1da177e4
LT
1137 goto resume;
1138 }
1139out:
2fd6b7f5 1140 spin_unlock(&this_parent->d_lock);
949854d0
NP
1141 if (read_seqretry(&rename_lock, seq))
1142 goto rename_retry;
1da177e4
LT
1143 return found;
1144}
1145
1146/**
1147 * shrink_dcache_parent - prune dcache
1148 * @parent: parent of entries to prune
1149 *
1150 * Prune the dcache to remove unused children of the parent dentry.
1151 */
1152
1153void shrink_dcache_parent(struct dentry * parent)
1154{
da3bbdd4 1155 struct super_block *sb = parent->d_sb;
1da177e4
LT
1156 int found;
1157
1158 while ((found = select_parent(parent)) != 0)
da3bbdd4 1159 __shrink_dcache_sb(sb, &found, 0);
1da177e4 1160}
ec4f8605 1161EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1162
1da177e4
LT
1163/*
1164 * Scan `nr' dentries and return the number which remain.
1165 *
1166 * We need to avoid reentering the filesystem if the caller is performing a
1167 * GFP_NOFS allocation attempt. One example deadlock is:
1168 *
1169 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1170 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1171 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1172 *
1173 * In this case we return -1 to tell the caller that we baled.
1174 */
7f8275d0 1175static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1da177e4
LT
1176{
1177 if (nr) {
1178 if (!(gfp_mask & __GFP_FS))
1179 return -1;
da3bbdd4 1180 prune_dcache(nr);
1da177e4 1181 }
312d3ca8 1182
86c8749e 1183 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1da177e4
LT
1184}
1185
8e1f936b
RR
1186static struct shrinker dcache_shrinker = {
1187 .shrink = shrink_dcache_memory,
1188 .seeks = DEFAULT_SEEKS,
1189};
1190
1da177e4
LT
1191/**
1192 * d_alloc - allocate a dcache entry
1193 * @parent: parent of entry to allocate
1194 * @name: qstr of the name
1195 *
1196 * Allocates a dentry. It returns %NULL if there is insufficient memory
1197 * available. On a success the dentry is returned. The name passed in is
1198 * copied and the copy passed in may be reused after this call.
1199 */
1200
1201struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1202{
1203 struct dentry *dentry;
1204 char *dname;
1205
e12ba74d 1206 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1207 if (!dentry)
1208 return NULL;
1209
1210 if (name->len > DNAME_INLINE_LEN-1) {
1211 dname = kmalloc(name->len + 1, GFP_KERNEL);
1212 if (!dname) {
1213 kmem_cache_free(dentry_cache, dentry);
1214 return NULL;
1215 }
1216 } else {
1217 dname = dentry->d_iname;
1218 }
1219 dentry->d_name.name = dname;
1220
1221 dentry->d_name.len = name->len;
1222 dentry->d_name.hash = name->hash;
1223 memcpy(dname, name->name, name->len);
1224 dname[name->len] = 0;
1225
b7ab39f6 1226 dentry->d_count = 1;
1da177e4
LT
1227 dentry->d_flags = DCACHE_UNHASHED;
1228 spin_lock_init(&dentry->d_lock);
1229 dentry->d_inode = NULL;
1230 dentry->d_parent = NULL;
1231 dentry->d_sb = NULL;
1232 dentry->d_op = NULL;
1233 dentry->d_fsdata = NULL;
1234 dentry->d_mounted = 0;
1da177e4
LT
1235 INIT_HLIST_NODE(&dentry->d_hash);
1236 INIT_LIST_HEAD(&dentry->d_lru);
1237 INIT_LIST_HEAD(&dentry->d_subdirs);
1238 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1239 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
1240
1241 if (parent) {
2fd6b7f5
NP
1242 spin_lock(&parent->d_lock);
1243 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1244 dentry->d_parent = dget_dlock(parent);
1da177e4 1245 dentry->d_sb = parent->d_sb;
5160ee6f 1246 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
2fd6b7f5
NP
1247 spin_unlock(&dentry->d_lock);
1248 spin_unlock(&parent->d_lock);
2fd6b7f5 1249 }
1da177e4 1250
3e880fb5 1251 this_cpu_inc(nr_dentry);
312d3ca8 1252
1da177e4
LT
1253 return dentry;
1254}
ec4f8605 1255EXPORT_SYMBOL(d_alloc);
1da177e4
LT
1256
1257struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1258{
1259 struct qstr q;
1260
1261 q.name = name;
1262 q.len = strlen(name);
1263 q.hash = full_name_hash(q.name, q.len);
1264 return d_alloc(parent, &q);
1265}
ef26ca97 1266EXPORT_SYMBOL(d_alloc_name);
1da177e4 1267
360da900
OH
1268static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1269{
b23fb0a6 1270 spin_lock(&dentry->d_lock);
360da900
OH
1271 if (inode)
1272 list_add(&dentry->d_alias, &inode->i_dentry);
1273 dentry->d_inode = inode;
b23fb0a6 1274 spin_unlock(&dentry->d_lock);
360da900
OH
1275 fsnotify_d_instantiate(dentry, inode);
1276}
1277
1da177e4
LT
1278/**
1279 * d_instantiate - fill in inode information for a dentry
1280 * @entry: dentry to complete
1281 * @inode: inode to attach to this dentry
1282 *
1283 * Fill in inode information in the entry.
1284 *
1285 * This turns negative dentries into productive full members
1286 * of society.
1287 *
1288 * NOTE! This assumes that the inode count has been incremented
1289 * (or otherwise set) by the caller to indicate that it is now
1290 * in use by the dcache.
1291 */
1292
1293void d_instantiate(struct dentry *entry, struct inode * inode)
1294{
28133c7b 1295 BUG_ON(!list_empty(&entry->d_alias));
b23fb0a6 1296 spin_lock(&dcache_inode_lock);
360da900 1297 __d_instantiate(entry, inode);
b23fb0a6 1298 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1299 security_d_instantiate(entry, inode);
1300}
ec4f8605 1301EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1302
1303/**
1304 * d_instantiate_unique - instantiate a non-aliased dentry
1305 * @entry: dentry to instantiate
1306 * @inode: inode to attach to this dentry
1307 *
1308 * Fill in inode information in the entry. On success, it returns NULL.
1309 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1310 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1311 *
1312 * Note that in order to avoid conflicts with rename() etc, the caller
1313 * had better be holding the parent directory semaphore.
e866cfa9
OD
1314 *
1315 * This also assumes that the inode count has been incremented
1316 * (or otherwise set) by the caller to indicate that it is now
1317 * in use by the dcache.
1da177e4 1318 */
770bfad8
DH
1319static struct dentry *__d_instantiate_unique(struct dentry *entry,
1320 struct inode *inode)
1da177e4
LT
1321{
1322 struct dentry *alias;
1323 int len = entry->d_name.len;
1324 const char *name = entry->d_name.name;
1325 unsigned int hash = entry->d_name.hash;
1326
770bfad8 1327 if (!inode) {
360da900 1328 __d_instantiate(entry, NULL);
770bfad8
DH
1329 return NULL;
1330 }
1331
1da177e4
LT
1332 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1333 struct qstr *qstr = &alias->d_name;
1334
9abca360
NP
1335 /*
1336 * Don't need alias->d_lock here, because aliases with
1337 * d_parent == entry->d_parent are not subject to name or
1338 * parent changes, because the parent inode i_mutex is held.
1339 */
1da177e4
LT
1340 if (qstr->hash != hash)
1341 continue;
1342 if (alias->d_parent != entry->d_parent)
1343 continue;
1344 if (qstr->len != len)
1345 continue;
1346 if (memcmp(qstr->name, name, len))
1347 continue;
1348 dget_locked(alias);
1da177e4
LT
1349 return alias;
1350 }
770bfad8 1351
360da900 1352 __d_instantiate(entry, inode);
1da177e4
LT
1353 return NULL;
1354}
770bfad8
DH
1355
1356struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1357{
1358 struct dentry *result;
1359
1360 BUG_ON(!list_empty(&entry->d_alias));
1361
b23fb0a6 1362 spin_lock(&dcache_inode_lock);
770bfad8 1363 result = __d_instantiate_unique(entry, inode);
b23fb0a6 1364 spin_unlock(&dcache_inode_lock);
770bfad8
DH
1365
1366 if (!result) {
1367 security_d_instantiate(entry, inode);
1368 return NULL;
1369 }
1370
1371 BUG_ON(!d_unhashed(result));
1372 iput(inode);
1373 return result;
1374}
1375
1da177e4
LT
1376EXPORT_SYMBOL(d_instantiate_unique);
1377
1378/**
1379 * d_alloc_root - allocate root dentry
1380 * @root_inode: inode to allocate the root for
1381 *
1382 * Allocate a root ("/") dentry for the inode given. The inode is
1383 * instantiated and returned. %NULL is returned if there is insufficient
1384 * memory or the inode passed is %NULL.
1385 */
1386
1387struct dentry * d_alloc_root(struct inode * root_inode)
1388{
1389 struct dentry *res = NULL;
1390
1391 if (root_inode) {
1392 static const struct qstr name = { .name = "/", .len = 1 };
1393
1394 res = d_alloc(NULL, &name);
1395 if (res) {
1396 res->d_sb = root_inode->i_sb;
1397 res->d_parent = res;
1398 d_instantiate(res, root_inode);
1399 }
1400 }
1401 return res;
1402}
ec4f8605 1403EXPORT_SYMBOL(d_alloc_root);
1da177e4
LT
1404
1405static inline struct hlist_head *d_hash(struct dentry *parent,
1406 unsigned long hash)
1407{
1408 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1409 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1410 return dentry_hashtable + (hash & D_HASHMASK);
1411}
1412
4ea3ada2
CH
1413/**
1414 * d_obtain_alias - find or allocate a dentry for a given inode
1415 * @inode: inode to allocate the dentry for
1416 *
1417 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1418 * similar open by handle operations. The returned dentry may be anonymous,
1419 * or may have a full name (if the inode was already in the cache).
1420 *
1421 * When called on a directory inode, we must ensure that the inode only ever
1422 * has one dentry. If a dentry is found, that is returned instead of
1423 * allocating a new one.
1424 *
1425 * On successful return, the reference to the inode has been transferred
44003728
CH
1426 * to the dentry. In case of an error the reference on the inode is released.
1427 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1428 * be passed in and will be the error will be propagate to the return value,
1429 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1430 */
1431struct dentry *d_obtain_alias(struct inode *inode)
1432{
9308a612
CH
1433 static const struct qstr anonstring = { .name = "" };
1434 struct dentry *tmp;
1435 struct dentry *res;
4ea3ada2
CH
1436
1437 if (!inode)
44003728 1438 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1439 if (IS_ERR(inode))
1440 return ERR_CAST(inode);
1441
9308a612
CH
1442 res = d_find_alias(inode);
1443 if (res)
1444 goto out_iput;
1445
1446 tmp = d_alloc(NULL, &anonstring);
1447 if (!tmp) {
1448 res = ERR_PTR(-ENOMEM);
1449 goto out_iput;
4ea3ada2 1450 }
9308a612
CH
1451 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1452
b5c84bf6 1453
b23fb0a6 1454 spin_lock(&dcache_inode_lock);
9308a612
CH
1455 res = __d_find_alias(inode, 0);
1456 if (res) {
b23fb0a6 1457 spin_unlock(&dcache_inode_lock);
9308a612
CH
1458 dput(tmp);
1459 goto out_iput;
1460 }
1461
1462 /* attach a disconnected dentry */
1463 spin_lock(&tmp->d_lock);
1464 tmp->d_sb = inode->i_sb;
1465 tmp->d_inode = inode;
1466 tmp->d_flags |= DCACHE_DISCONNECTED;
1467 tmp->d_flags &= ~DCACHE_UNHASHED;
1468 list_add(&tmp->d_alias, &inode->i_dentry);
789680d1 1469 spin_lock(&dcache_hash_lock);
9308a612 1470 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
789680d1 1471 spin_unlock(&dcache_hash_lock);
9308a612 1472 spin_unlock(&tmp->d_lock);
b23fb0a6 1473 spin_unlock(&dcache_inode_lock);
9308a612 1474
9308a612
CH
1475 return tmp;
1476
1477 out_iput:
1478 iput(inode);
1479 return res;
4ea3ada2 1480}
adc48720 1481EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1482
1483/**
1484 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1485 * @inode: the inode which may have a disconnected dentry
1486 * @dentry: a negative dentry which we want to point to the inode.
1487 *
1488 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1489 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1490 * and return it, else simply d_add the inode to the dentry and return NULL.
1491 *
1492 * This is needed in the lookup routine of any filesystem that is exportable
1493 * (via knfsd) so that we can build dcache paths to directories effectively.
1494 *
1495 * If a dentry was found and moved, then it is returned. Otherwise NULL
1496 * is returned. This matches the expected return value of ->lookup.
1497 *
1498 */
1499struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1500{
1501 struct dentry *new = NULL;
1502
21c0d8fd 1503 if (inode && S_ISDIR(inode->i_mode)) {
b23fb0a6 1504 spin_lock(&dcache_inode_lock);
1da177e4
LT
1505 new = __d_find_alias(inode, 1);
1506 if (new) {
1507 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
b23fb0a6 1508 spin_unlock(&dcache_inode_lock);
1da177e4 1509 security_d_instantiate(new, inode);
1da177e4
LT
1510 d_move(new, dentry);
1511 iput(inode);
1512 } else {
b5c84bf6 1513 /* already taking dcache_inode_lock, so d_add() by hand */
360da900 1514 __d_instantiate(dentry, inode);
b23fb0a6 1515 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1516 security_d_instantiate(dentry, inode);
1517 d_rehash(dentry);
1518 }
1519 } else
1520 d_add(dentry, inode);
1521 return new;
1522}
ec4f8605 1523EXPORT_SYMBOL(d_splice_alias);
1da177e4 1524
9403540c
BN
1525/**
1526 * d_add_ci - lookup or allocate new dentry with case-exact name
1527 * @inode: the inode case-insensitive lookup has found
1528 * @dentry: the negative dentry that was passed to the parent's lookup func
1529 * @name: the case-exact name to be associated with the returned dentry
1530 *
1531 * This is to avoid filling the dcache with case-insensitive names to the
1532 * same inode, only the actual correct case is stored in the dcache for
1533 * case-insensitive filesystems.
1534 *
1535 * For a case-insensitive lookup match and if the the case-exact dentry
1536 * already exists in in the dcache, use it and return it.
1537 *
1538 * If no entry exists with the exact case name, allocate new dentry with
1539 * the exact case, and return the spliced entry.
1540 */
e45b590b 1541struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1542 struct qstr *name)
1543{
1544 int error;
1545 struct dentry *found;
1546 struct dentry *new;
1547
b6520c81
CH
1548 /*
1549 * First check if a dentry matching the name already exists,
1550 * if not go ahead and create it now.
1551 */
9403540c 1552 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1553 if (!found) {
1554 new = d_alloc(dentry->d_parent, name);
1555 if (!new) {
1556 error = -ENOMEM;
1557 goto err_out;
1558 }
b6520c81 1559
9403540c
BN
1560 found = d_splice_alias(inode, new);
1561 if (found) {
1562 dput(new);
1563 return found;
1564 }
1565 return new;
1566 }
b6520c81
CH
1567
1568 /*
1569 * If a matching dentry exists, and it's not negative use it.
1570 *
1571 * Decrement the reference count to balance the iget() done
1572 * earlier on.
1573 */
9403540c
BN
1574 if (found->d_inode) {
1575 if (unlikely(found->d_inode != inode)) {
1576 /* This can't happen because bad inodes are unhashed. */
1577 BUG_ON(!is_bad_inode(inode));
1578 BUG_ON(!is_bad_inode(found->d_inode));
1579 }
9403540c
BN
1580 iput(inode);
1581 return found;
1582 }
b6520c81 1583
9403540c
BN
1584 /*
1585 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1586 * already has a dentry.
9403540c 1587 */
b23fb0a6 1588 spin_lock(&dcache_inode_lock);
b6520c81 1589 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1590 __d_instantiate(found, inode);
b23fb0a6 1591 spin_unlock(&dcache_inode_lock);
9403540c
BN
1592 security_d_instantiate(found, inode);
1593 return found;
1594 }
b6520c81 1595
9403540c 1596 /*
b6520c81
CH
1597 * In case a directory already has a (disconnected) entry grab a
1598 * reference to it, move it in place and use it.
9403540c
BN
1599 */
1600 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1601 dget_locked(new);
b23fb0a6 1602 spin_unlock(&dcache_inode_lock);
9403540c 1603 security_d_instantiate(found, inode);
9403540c 1604 d_move(new, found);
9403540c 1605 iput(inode);
9403540c 1606 dput(found);
9403540c
BN
1607 return new;
1608
1609err_out:
1610 iput(inode);
1611 return ERR_PTR(error);
1612}
ec4f8605 1613EXPORT_SYMBOL(d_add_ci);
1da177e4
LT
1614
1615/**
1616 * d_lookup - search for a dentry
1617 * @parent: parent dentry
1618 * @name: qstr of name we wish to find
b04f784e 1619 * Returns: dentry, or NULL
1da177e4 1620 *
b04f784e
NP
1621 * d_lookup searches the children of the parent dentry for the name in
1622 * question. If the dentry is found its reference count is incremented and the
1623 * dentry is returned. The caller must use dput to free the entry when it has
1624 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1625 */
1da177e4
LT
1626struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1627{
1628 struct dentry * dentry = NULL;
949854d0 1629 unsigned seq;
1da177e4
LT
1630
1631 do {
1632 seq = read_seqbegin(&rename_lock);
1633 dentry = __d_lookup(parent, name);
1634 if (dentry)
1635 break;
1636 } while (read_seqretry(&rename_lock, seq));
1637 return dentry;
1638}
ec4f8605 1639EXPORT_SYMBOL(d_lookup);
1da177e4 1640
b04f784e
NP
1641/*
1642 * __d_lookup - search for a dentry (racy)
1643 * @parent: parent dentry
1644 * @name: qstr of name we wish to find
1645 * Returns: dentry, or NULL
1646 *
1647 * __d_lookup is like d_lookup, however it may (rarely) return a
1648 * false-negative result due to unrelated rename activity.
1649 *
1650 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1651 * however it must be used carefully, eg. with a following d_lookup in
1652 * the case of failure.
1653 *
1654 * __d_lookup callers must be commented.
1655 */
1da177e4
LT
1656struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1657{
1658 unsigned int len = name->len;
1659 unsigned int hash = name->hash;
1660 const unsigned char *str = name->name;
1661 struct hlist_head *head = d_hash(parent,hash);
1662 struct dentry *found = NULL;
1663 struct hlist_node *node;
665a7583 1664 struct dentry *dentry;
1da177e4 1665
b04f784e
NP
1666 /*
1667 * The hash list is protected using RCU.
1668 *
1669 * Take d_lock when comparing a candidate dentry, to avoid races
1670 * with d_move().
1671 *
1672 * It is possible that concurrent renames can mess up our list
1673 * walk here and result in missing our dentry, resulting in the
1674 * false-negative result. d_lookup() protects against concurrent
1675 * renames using rename_lock seqlock.
1676 *
1677 * See Documentation/vfs/dcache-locking.txt for more details.
1678 */
1da177e4
LT
1679 rcu_read_lock();
1680
665a7583 1681 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1da177e4
LT
1682 struct qstr *qstr;
1683
1da177e4
LT
1684 if (dentry->d_name.hash != hash)
1685 continue;
1686 if (dentry->d_parent != parent)
1687 continue;
1688
1689 spin_lock(&dentry->d_lock);
1690
1691 /*
1692 * Recheck the dentry after taking the lock - d_move may have
b04f784e
NP
1693 * changed things. Don't bother checking the hash because
1694 * we're about to compare the whole name anyway.
1da177e4
LT
1695 */
1696 if (dentry->d_parent != parent)
1697 goto next;
1698
d0185c08
LT
1699 /* non-existing due to RCU? */
1700 if (d_unhashed(dentry))
1701 goto next;
1702
1da177e4
LT
1703 /*
1704 * It is safe to compare names since d_move() cannot
1705 * change the qstr (protected by d_lock).
1706 */
1707 qstr = &dentry->d_name;
1708 if (parent->d_op && parent->d_op->d_compare) {
621e155a
NP
1709 if (parent->d_op->d_compare(parent, parent->d_inode,
1710 dentry, dentry->d_inode,
1711 qstr->len, qstr->name, name))
1da177e4
LT
1712 goto next;
1713 } else {
1714 if (qstr->len != len)
1715 goto next;
1716 if (memcmp(qstr->name, str, len))
1717 goto next;
1718 }
1719
b7ab39f6 1720 dentry->d_count++;
d0185c08 1721 found = dentry;
1da177e4
LT
1722 spin_unlock(&dentry->d_lock);
1723 break;
1724next:
1725 spin_unlock(&dentry->d_lock);
1726 }
1727 rcu_read_unlock();
1728
1729 return found;
1730}
1731
3e7e241f
EB
1732/**
1733 * d_hash_and_lookup - hash the qstr then search for a dentry
1734 * @dir: Directory to search in
1735 * @name: qstr of name we wish to find
1736 *
1737 * On hash failure or on lookup failure NULL is returned.
1738 */
1739struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1740{
1741 struct dentry *dentry = NULL;
1742
1743 /*
1744 * Check for a fs-specific hash function. Note that we must
1745 * calculate the standard hash first, as the d_op->d_hash()
1746 * routine may choose to leave the hash value unchanged.
1747 */
1748 name->hash = full_name_hash(name->name, name->len);
1749 if (dir->d_op && dir->d_op->d_hash) {
b1e6a015 1750 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1751 goto out;
1752 }
1753 dentry = d_lookup(dir, name);
1754out:
1755 return dentry;
1756}
1757
1da177e4 1758/**
786a5e15 1759 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4
LT
1760 * @dentry: The dentry alleged to be valid child of @dparent
1761 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1762 *
1763 * An insecure source has sent us a dentry, here we verify it and dget() it.
1764 * This is used by ncpfs in its readdir implementation.
1765 * Zero is returned in the dentry is invalid.
786a5e15
NP
1766 *
1767 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1768 */
d3a23e16 1769int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1770{
786a5e15 1771 struct dentry *child;
d3a23e16 1772
2fd6b7f5 1773 spin_lock(&dparent->d_lock);
786a5e15
NP
1774 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1775 if (dentry == child) {
2fd6b7f5
NP
1776 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1777 __dget_locked_dlock(dentry);
1778 spin_unlock(&dentry->d_lock);
1779 spin_unlock(&dparent->d_lock);
1da177e4
LT
1780 return 1;
1781 }
1782 }
2fd6b7f5 1783 spin_unlock(&dparent->d_lock);
786a5e15 1784
1da177e4
LT
1785 return 0;
1786}
ec4f8605 1787EXPORT_SYMBOL(d_validate);
1da177e4
LT
1788
1789/*
1790 * When a file is deleted, we have two options:
1791 * - turn this dentry into a negative dentry
1792 * - unhash this dentry and free it.
1793 *
1794 * Usually, we want to just turn this into
1795 * a negative dentry, but if anybody else is
1796 * currently using the dentry or the inode
1797 * we can't do that and we fall back on removing
1798 * it from the hash queues and waiting for
1799 * it to be deleted later when it has no users
1800 */
1801
1802/**
1803 * d_delete - delete a dentry
1804 * @dentry: The dentry to delete
1805 *
1806 * Turn the dentry into a negative dentry if possible, otherwise
1807 * remove it from the hash queues so it can be deleted later
1808 */
1809
1810void d_delete(struct dentry * dentry)
1811{
7a91bf7f 1812 int isdir = 0;
1da177e4
LT
1813 /*
1814 * Are we the only user?
1815 */
b23fb0a6 1816 spin_lock(&dcache_inode_lock);
1da177e4 1817 spin_lock(&dentry->d_lock);
7a91bf7f 1818 isdir = S_ISDIR(dentry->d_inode->i_mode);
b7ab39f6 1819 if (dentry->d_count == 1) {
13e3c5e5 1820 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1da177e4 1821 dentry_iput(dentry);
7a91bf7f 1822 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1823 return;
1824 }
1825
1826 if (!d_unhashed(dentry))
1827 __d_drop(dentry);
1828
1829 spin_unlock(&dentry->d_lock);
b23fb0a6 1830 spin_unlock(&dcache_inode_lock);
7a91bf7f
JM
1831
1832 fsnotify_nameremove(dentry, isdir);
1da177e4 1833}
ec4f8605 1834EXPORT_SYMBOL(d_delete);
1da177e4
LT
1835
1836static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1837{
1838
1839 entry->d_flags &= ~DCACHE_UNHASHED;
1840 hlist_add_head_rcu(&entry->d_hash, list);
1841}
1842
770bfad8
DH
1843static void _d_rehash(struct dentry * entry)
1844{
1845 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1846}
1847
1da177e4
LT
1848/**
1849 * d_rehash - add an entry back to the hash
1850 * @entry: dentry to add to the hash
1851 *
1852 * Adds a dentry to the hash according to its name.
1853 */
1854
1855void d_rehash(struct dentry * entry)
1856{
1da177e4 1857 spin_lock(&entry->d_lock);
789680d1 1858 spin_lock(&dcache_hash_lock);
770bfad8 1859 _d_rehash(entry);
789680d1 1860 spin_unlock(&dcache_hash_lock);
1da177e4 1861 spin_unlock(&entry->d_lock);
1da177e4 1862}
ec4f8605 1863EXPORT_SYMBOL(d_rehash);
1da177e4 1864
fb2d5b86
NP
1865/**
1866 * dentry_update_name_case - update case insensitive dentry with a new name
1867 * @dentry: dentry to be updated
1868 * @name: new name
1869 *
1870 * Update a case insensitive dentry with new case of name.
1871 *
1872 * dentry must have been returned by d_lookup with name @name. Old and new
1873 * name lengths must match (ie. no d_compare which allows mismatched name
1874 * lengths).
1875 *
1876 * Parent inode i_mutex must be held over d_lookup and into this call (to
1877 * keep renames and concurrent inserts, and readdir(2) away).
1878 */
1879void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
1880{
1881 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
1882 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
1883
fb2d5b86
NP
1884 spin_lock(&dentry->d_lock);
1885 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
1886 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
1887}
1888EXPORT_SYMBOL(dentry_update_name_case);
1889
1da177e4
LT
1890static void switch_names(struct dentry *dentry, struct dentry *target)
1891{
1892 if (dname_external(target)) {
1893 if (dname_external(dentry)) {
1894 /*
1895 * Both external: swap the pointers
1896 */
9a8d5bb4 1897 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
1898 } else {
1899 /*
1900 * dentry:internal, target:external. Steal target's
1901 * storage and make target internal.
1902 */
321bcf92
BF
1903 memcpy(target->d_iname, dentry->d_name.name,
1904 dentry->d_name.len + 1);
1da177e4
LT
1905 dentry->d_name.name = target->d_name.name;
1906 target->d_name.name = target->d_iname;
1907 }
1908 } else {
1909 if (dname_external(dentry)) {
1910 /*
1911 * dentry:external, target:internal. Give dentry's
1912 * storage to target and make dentry internal
1913 */
1914 memcpy(dentry->d_iname, target->d_name.name,
1915 target->d_name.len + 1);
1916 target->d_name.name = dentry->d_name.name;
1917 dentry->d_name.name = dentry->d_iname;
1918 } else {
1919 /*
1920 * Both are internal. Just copy target to dentry
1921 */
1922 memcpy(dentry->d_iname, target->d_name.name,
1923 target->d_name.len + 1);
dc711ca3
AV
1924 dentry->d_name.len = target->d_name.len;
1925 return;
1da177e4
LT
1926 }
1927 }
9a8d5bb4 1928 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
1929}
1930
2fd6b7f5
NP
1931static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
1932{
1933 /*
1934 * XXXX: do we really need to take target->d_lock?
1935 */
1936 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
1937 spin_lock(&target->d_parent->d_lock);
1938 else {
1939 if (d_ancestor(dentry->d_parent, target->d_parent)) {
1940 spin_lock(&dentry->d_parent->d_lock);
1941 spin_lock_nested(&target->d_parent->d_lock,
1942 DENTRY_D_LOCK_NESTED);
1943 } else {
1944 spin_lock(&target->d_parent->d_lock);
1945 spin_lock_nested(&dentry->d_parent->d_lock,
1946 DENTRY_D_LOCK_NESTED);
1947 }
1948 }
1949 if (target < dentry) {
1950 spin_lock_nested(&target->d_lock, 2);
1951 spin_lock_nested(&dentry->d_lock, 3);
1952 } else {
1953 spin_lock_nested(&dentry->d_lock, 2);
1954 spin_lock_nested(&target->d_lock, 3);
1955 }
1956}
1957
1958static void dentry_unlock_parents_for_move(struct dentry *dentry,
1959 struct dentry *target)
1960{
1961 if (target->d_parent != dentry->d_parent)
1962 spin_unlock(&dentry->d_parent->d_lock);
1963 if (target->d_parent != target)
1964 spin_unlock(&target->d_parent->d_lock);
1965}
1966
1da177e4 1967/*
2fd6b7f5
NP
1968 * When switching names, the actual string doesn't strictly have to
1969 * be preserved in the target - because we're dropping the target
1970 * anyway. As such, we can just do a simple memcpy() to copy over
1971 * the new name before we switch.
1972 *
1973 * Note that we have to be a lot more careful about getting the hash
1974 * switched - we have to switch the hash value properly even if it
1975 * then no longer matches the actual (corrupted) string of the target.
1976 * The hash value has to match the hash queue that the dentry is on..
1da177e4 1977 */
9eaef27b 1978/*
b5c84bf6 1979 * d_move - move a dentry
1da177e4
LT
1980 * @dentry: entry to move
1981 * @target: new dentry
1982 *
1983 * Update the dcache to reflect the move of a file name. Negative
1984 * dcache entries should not be moved in this way.
1985 */
b5c84bf6 1986void d_move(struct dentry * dentry, struct dentry * target)
1da177e4 1987{
1da177e4
LT
1988 if (!dentry->d_inode)
1989 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1990
2fd6b7f5
NP
1991 BUG_ON(d_ancestor(dentry, target));
1992 BUG_ON(d_ancestor(target, dentry));
1993
1da177e4 1994 write_seqlock(&rename_lock);
2fd6b7f5
NP
1995
1996 dentry_lock_for_move(dentry, target);
1da177e4
LT
1997
1998 /* Move the dentry to the target hash queue, if on different bucket */
789680d1
NP
1999 spin_lock(&dcache_hash_lock);
2000 if (!d_unhashed(dentry))
2001 hlist_del_rcu(&dentry->d_hash);
2002 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2003 spin_unlock(&dcache_hash_lock);
1da177e4
LT
2004
2005 /* Unhash the target: dput() will then get rid of it */
2006 __d_drop(target);
2007
5160ee6f
ED
2008 list_del(&dentry->d_u.d_child);
2009 list_del(&target->d_u.d_child);
1da177e4
LT
2010
2011 /* Switch the names.. */
2012 switch_names(dentry, target);
9a8d5bb4 2013 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2014
2015 /* ... and switch the parents */
2016 if (IS_ROOT(dentry)) {
2017 dentry->d_parent = target->d_parent;
2018 target->d_parent = target;
5160ee6f 2019 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2020 } else {
9a8d5bb4 2021 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2022
2023 /* And add them back to the (new) parent lists */
5160ee6f 2024 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2025 }
2026
5160ee6f 2027 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5
NP
2028
2029 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2030 spin_unlock(&target->d_lock);
c32ccd87 2031 fsnotify_d_move(dentry);
1da177e4
LT
2032 spin_unlock(&dentry->d_lock);
2033 write_sequnlock(&rename_lock);
9eaef27b 2034}
ec4f8605 2035EXPORT_SYMBOL(d_move);
1da177e4 2036
e2761a11
OH
2037/**
2038 * d_ancestor - search for an ancestor
2039 * @p1: ancestor dentry
2040 * @p2: child dentry
2041 *
2042 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2043 * an ancestor of p2, else NULL.
9eaef27b 2044 */
e2761a11 2045struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2046{
2047 struct dentry *p;
2048
871c0067 2049 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2050 if (p->d_parent == p1)
e2761a11 2051 return p;
9eaef27b 2052 }
e2761a11 2053 return NULL;
9eaef27b
TM
2054}
2055
2056/*
2057 * This helper attempts to cope with remotely renamed directories
2058 *
2059 * It assumes that the caller is already holding
b5c84bf6 2060 * dentry->d_parent->d_inode->i_mutex and the dcache_inode_lock
9eaef27b
TM
2061 *
2062 * Note: If ever the locking in lock_rename() changes, then please
2063 * remember to update this too...
9eaef27b
TM
2064 */
2065static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
b23fb0a6 2066 __releases(dcache_inode_lock)
9eaef27b
TM
2067{
2068 struct mutex *m1 = NULL, *m2 = NULL;
2069 struct dentry *ret;
2070
2071 /* If alias and dentry share a parent, then no extra locks required */
2072 if (alias->d_parent == dentry->d_parent)
2073 goto out_unalias;
2074
2075 /* Check for loops */
2076 ret = ERR_PTR(-ELOOP);
e2761a11 2077 if (d_ancestor(alias, dentry))
9eaef27b
TM
2078 goto out_err;
2079
2080 /* See lock_rename() */
2081 ret = ERR_PTR(-EBUSY);
2082 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2083 goto out_err;
2084 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2085 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2086 goto out_err;
2087 m2 = &alias->d_parent->d_inode->i_mutex;
2088out_unalias:
b5c84bf6 2089 d_move(alias, dentry);
9eaef27b
TM
2090 ret = alias;
2091out_err:
b23fb0a6 2092 spin_unlock(&dcache_inode_lock);
9eaef27b
TM
2093 if (m2)
2094 mutex_unlock(m2);
2095 if (m1)
2096 mutex_unlock(m1);
2097 return ret;
2098}
2099
770bfad8
DH
2100/*
2101 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2102 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2103 * returns with anon->d_lock held!
770bfad8
DH
2104 */
2105static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2106{
2107 struct dentry *dparent, *aparent;
2108
2fd6b7f5 2109 dentry_lock_for_move(anon, dentry);
770bfad8
DH
2110
2111 dparent = dentry->d_parent;
2112 aparent = anon->d_parent;
2113
2fd6b7f5
NP
2114 switch_names(dentry, anon);
2115 swap(dentry->d_name.hash, anon->d_name.hash);
2116
770bfad8
DH
2117 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2118 list_del(&dentry->d_u.d_child);
2119 if (!IS_ROOT(dentry))
2120 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2121 else
2122 INIT_LIST_HEAD(&dentry->d_u.d_child);
2123
2124 anon->d_parent = (dparent == dentry) ? anon : dparent;
2125 list_del(&anon->d_u.d_child);
2126 if (!IS_ROOT(anon))
2127 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2128 else
2129 INIT_LIST_HEAD(&anon->d_u.d_child);
2130
2fd6b7f5
NP
2131 dentry_unlock_parents_for_move(anon, dentry);
2132 spin_unlock(&dentry->d_lock);
2133
2134 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2135 anon->d_flags &= ~DCACHE_DISCONNECTED;
2136}
2137
2138/**
2139 * d_materialise_unique - introduce an inode into the tree
2140 * @dentry: candidate dentry
2141 * @inode: inode to bind to the dentry, to which aliases may be attached
2142 *
2143 * Introduces an dentry into the tree, substituting an extant disconnected
2144 * root directory alias in its place if there is one
2145 */
2146struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2147{
9eaef27b 2148 struct dentry *actual;
770bfad8
DH
2149
2150 BUG_ON(!d_unhashed(dentry));
2151
b23fb0a6 2152 spin_lock(&dcache_inode_lock);
770bfad8
DH
2153
2154 if (!inode) {
2155 actual = dentry;
360da900 2156 __d_instantiate(dentry, NULL);
770bfad8
DH
2157 goto found_lock;
2158 }
2159
9eaef27b
TM
2160 if (S_ISDIR(inode->i_mode)) {
2161 struct dentry *alias;
2162
2163 /* Does an aliased dentry already exist? */
2164 alias = __d_find_alias(inode, 0);
2165 if (alias) {
2166 actual = alias;
2167 /* Is this an anonymous mountpoint that we could splice
2168 * into our tree? */
2169 if (IS_ROOT(alias)) {
9eaef27b
TM
2170 __d_materialise_dentry(dentry, alias);
2171 __d_drop(alias);
2172 goto found;
2173 }
2174 /* Nope, but we must(!) avoid directory aliasing */
2175 actual = __d_unalias(dentry, alias);
2176 if (IS_ERR(actual))
2177 dput(alias);
2178 goto out_nolock;
2179 }
770bfad8
DH
2180 }
2181
2182 /* Add a unique reference */
2183 actual = __d_instantiate_unique(dentry, inode);
2184 if (!actual)
2185 actual = dentry;
2186 else if (unlikely(!d_unhashed(actual)))
2187 goto shouldnt_be_hashed;
2188
2189found_lock:
2190 spin_lock(&actual->d_lock);
2191found:
789680d1 2192 spin_lock(&dcache_hash_lock);
770bfad8 2193 _d_rehash(actual);
789680d1 2194 spin_unlock(&dcache_hash_lock);
770bfad8 2195 spin_unlock(&actual->d_lock);
b23fb0a6 2196 spin_unlock(&dcache_inode_lock);
9eaef27b 2197out_nolock:
770bfad8
DH
2198 if (actual == dentry) {
2199 security_d_instantiate(dentry, inode);
2200 return NULL;
2201 }
2202
2203 iput(inode);
2204 return actual;
2205
770bfad8 2206shouldnt_be_hashed:
b23fb0a6 2207 spin_unlock(&dcache_inode_lock);
770bfad8 2208 BUG();
770bfad8 2209}
ec4f8605 2210EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2211
cdd16d02 2212static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2213{
2214 *buflen -= namelen;
2215 if (*buflen < 0)
2216 return -ENAMETOOLONG;
2217 *buffer -= namelen;
2218 memcpy(*buffer, str, namelen);
2219 return 0;
2220}
2221
cdd16d02
MS
2222static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2223{
2224 return prepend(buffer, buflen, name->name, name->len);
2225}
2226
1da177e4 2227/**
f2eb6575
MS
2228 * Prepend path string to a buffer
2229 *
9d1bc601
MS
2230 * @path: the dentry/vfsmount to report
2231 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2232 * @buffer: pointer to the end of the buffer
2233 * @buflen: pointer to buffer length
552ce544 2234 *
949854d0 2235 * Caller holds the rename_lock.
9d1bc601
MS
2236 *
2237 * If path is not reachable from the supplied root, then the value of
2238 * root is changed (without modifying refcounts).
1da177e4 2239 */
f2eb6575
MS
2240static int prepend_path(const struct path *path, struct path *root,
2241 char **buffer, int *buflen)
1da177e4 2242{
9d1bc601
MS
2243 struct dentry *dentry = path->dentry;
2244 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2245 bool slash = false;
2246 int error = 0;
6092d048 2247
99b7db7b 2248 br_read_lock(vfsmount_lock);
f2eb6575 2249 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2250 struct dentry * parent;
2251
1da177e4 2252 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2253 /* Global root? */
1da177e4 2254 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2255 goto global_root;
2256 }
2257 dentry = vfsmnt->mnt_mountpoint;
2258 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2259 continue;
2260 }
2261 parent = dentry->d_parent;
2262 prefetch(parent);
9abca360 2263 spin_lock(&dentry->d_lock);
f2eb6575 2264 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2265 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2266 if (!error)
2267 error = prepend(buffer, buflen, "/", 1);
2268 if (error)
2269 break;
2270
2271 slash = true;
1da177e4
LT
2272 dentry = parent;
2273 }
2274
be285c71 2275out:
f2eb6575
MS
2276 if (!error && !slash)
2277 error = prepend(buffer, buflen, "/", 1);
2278
99b7db7b 2279 br_read_unlock(vfsmount_lock);
f2eb6575 2280 return error;
1da177e4
LT
2281
2282global_root:
98dc568b
MS
2283 /*
2284 * Filesystems needing to implement special "root names"
2285 * should do so with ->d_dname()
2286 */
2287 if (IS_ROOT(dentry) &&
2288 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2289 WARN(1, "Root dentry has weird name <%.*s>\n",
2290 (int) dentry->d_name.len, dentry->d_name.name);
2291 }
9d1bc601
MS
2292 root->mnt = vfsmnt;
2293 root->dentry = dentry;
be285c71 2294 goto out;
f2eb6575 2295}
be285c71 2296
f2eb6575
MS
2297/**
2298 * __d_path - return the path of a dentry
2299 * @path: the dentry/vfsmount to report
2300 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2301 * @buf: buffer to return value in
f2eb6575
MS
2302 * @buflen: buffer length
2303 *
ffd1f4ed 2304 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2305 *
2306 * Returns a pointer into the buffer or an error code if the
2307 * path was too long.
2308 *
be148247 2309 * "buflen" should be positive.
f2eb6575
MS
2310 *
2311 * If path is not reachable from the supplied root, then the value of
2312 * root is changed (without modifying refcounts).
2313 */
2314char *__d_path(const struct path *path, struct path *root,
2315 char *buf, int buflen)
2316{
2317 char *res = buf + buflen;
2318 int error;
2319
2320 prepend(&res, &buflen, "\0", 1);
949854d0 2321 write_seqlock(&rename_lock);
f2eb6575 2322 error = prepend_path(path, root, &res, &buflen);
949854d0 2323 write_sequnlock(&rename_lock);
be148247 2324
f2eb6575
MS
2325 if (error)
2326 return ERR_PTR(error);
f2eb6575 2327 return res;
1da177e4
LT
2328}
2329
ffd1f4ed
MS
2330/*
2331 * same as __d_path but appends "(deleted)" for unlinked files.
2332 */
2333static int path_with_deleted(const struct path *path, struct path *root,
2334 char **buf, int *buflen)
2335{
2336 prepend(buf, buflen, "\0", 1);
2337 if (d_unlinked(path->dentry)) {
2338 int error = prepend(buf, buflen, " (deleted)", 10);
2339 if (error)
2340 return error;
2341 }
2342
2343 return prepend_path(path, root, buf, buflen);
2344}
2345
8df9d1a4
MS
2346static int prepend_unreachable(char **buffer, int *buflen)
2347{
2348 return prepend(buffer, buflen, "(unreachable)", 13);
2349}
2350
a03a8a70
JB
2351/**
2352 * d_path - return the path of a dentry
cf28b486 2353 * @path: path to report
a03a8a70
JB
2354 * @buf: buffer to return value in
2355 * @buflen: buffer length
2356 *
2357 * Convert a dentry into an ASCII path name. If the entry has been deleted
2358 * the string " (deleted)" is appended. Note that this is ambiguous.
2359 *
52afeefb
AV
2360 * Returns a pointer into the buffer or an error code if the path was
2361 * too long. Note: Callers should use the returned pointer, not the passed
2362 * in buffer, to use the name! The implementation often starts at an offset
2363 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2364 *
31f3e0b3 2365 * "buflen" should be positive.
a03a8a70 2366 */
20d4fdc1 2367char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2368{
ffd1f4ed 2369 char *res = buf + buflen;
6ac08c39 2370 struct path root;
9d1bc601 2371 struct path tmp;
ffd1f4ed 2372 int error;
1da177e4 2373
c23fbb6b
ED
2374 /*
2375 * We have various synthetic filesystems that never get mounted. On
2376 * these filesystems dentries are never used for lookup purposes, and
2377 * thus don't need to be hashed. They also don't need a name until a
2378 * user wants to identify the object in /proc/pid/fd/. The little hack
2379 * below allows us to generate a name for these objects on demand:
2380 */
cf28b486
JB
2381 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2382 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2383
f7ad3c6b 2384 get_fs_root(current->fs, &root);
949854d0 2385 write_seqlock(&rename_lock);
9d1bc601 2386 tmp = root;
ffd1f4ed
MS
2387 error = path_with_deleted(path, &tmp, &res, &buflen);
2388 if (error)
2389 res = ERR_PTR(error);
949854d0 2390 write_sequnlock(&rename_lock);
6ac08c39 2391 path_put(&root);
1da177e4
LT
2392 return res;
2393}
ec4f8605 2394EXPORT_SYMBOL(d_path);
1da177e4 2395
8df9d1a4
MS
2396/**
2397 * d_path_with_unreachable - return the path of a dentry
2398 * @path: path to report
2399 * @buf: buffer to return value in
2400 * @buflen: buffer length
2401 *
2402 * The difference from d_path() is that this prepends "(unreachable)"
2403 * to paths which are unreachable from the current process' root.
2404 */
2405char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2406{
2407 char *res = buf + buflen;
2408 struct path root;
2409 struct path tmp;
2410 int error;
2411
2412 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2413 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2414
2415 get_fs_root(current->fs, &root);
949854d0 2416 write_seqlock(&rename_lock);
8df9d1a4
MS
2417 tmp = root;
2418 error = path_with_deleted(path, &tmp, &res, &buflen);
2419 if (!error && !path_equal(&tmp, &root))
2420 error = prepend_unreachable(&res, &buflen);
949854d0 2421 write_sequnlock(&rename_lock);
8df9d1a4
MS
2422 path_put(&root);
2423 if (error)
2424 res = ERR_PTR(error);
2425
2426 return res;
2427}
2428
c23fbb6b
ED
2429/*
2430 * Helper function for dentry_operations.d_dname() members
2431 */
2432char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2433 const char *fmt, ...)
2434{
2435 va_list args;
2436 char temp[64];
2437 int sz;
2438
2439 va_start(args, fmt);
2440 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2441 va_end(args);
2442
2443 if (sz > sizeof(temp) || sz > buflen)
2444 return ERR_PTR(-ENAMETOOLONG);
2445
2446 buffer += buflen - sz;
2447 return memcpy(buffer, temp, sz);
2448}
2449
6092d048
RP
2450/*
2451 * Write full pathname from the root of the filesystem into the buffer.
2452 */
ec2447c2 2453static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2454{
2455 char *end = buf + buflen;
2456 char *retval;
2457
6092d048 2458 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2459 if (buflen < 1)
2460 goto Elong;
2461 /* Get '/' right */
2462 retval = end-1;
2463 *retval = '/';
2464
cdd16d02
MS
2465 while (!IS_ROOT(dentry)) {
2466 struct dentry *parent = dentry->d_parent;
9abca360 2467 int error;
6092d048 2468
6092d048 2469 prefetch(parent);
9abca360
NP
2470 spin_lock(&dentry->d_lock);
2471 error = prepend_name(&end, &buflen, &dentry->d_name);
2472 spin_unlock(&dentry->d_lock);
2473 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2474 goto Elong;
2475
2476 retval = end;
2477 dentry = parent;
2478 }
c103135c
AV
2479 return retval;
2480Elong:
2481 return ERR_PTR(-ENAMETOOLONG);
2482}
ec2447c2
NP
2483
2484char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2485{
2486 char *retval;
2487
949854d0 2488 write_seqlock(&rename_lock);
ec2447c2 2489 retval = __dentry_path(dentry, buf, buflen);
949854d0 2490 write_sequnlock(&rename_lock);
ec2447c2
NP
2491
2492 return retval;
2493}
2494EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2495
2496char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2497{
2498 char *p = NULL;
2499 char *retval;
2500
949854d0 2501 write_seqlock(&rename_lock);
c103135c
AV
2502 if (d_unlinked(dentry)) {
2503 p = buf + buflen;
2504 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2505 goto Elong;
2506 buflen++;
2507 }
2508 retval = __dentry_path(dentry, buf, buflen);
949854d0 2509 write_sequnlock(&rename_lock);
c103135c
AV
2510 if (!IS_ERR(retval) && p)
2511 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2512 return retval;
2513Elong:
6092d048
RP
2514 return ERR_PTR(-ENAMETOOLONG);
2515}
2516
1da177e4
LT
2517/*
2518 * NOTE! The user-level library version returns a
2519 * character pointer. The kernel system call just
2520 * returns the length of the buffer filled (which
2521 * includes the ending '\0' character), or a negative
2522 * error value. So libc would do something like
2523 *
2524 * char *getcwd(char * buf, size_t size)
2525 * {
2526 * int retval;
2527 *
2528 * retval = sys_getcwd(buf, size);
2529 * if (retval >= 0)
2530 * return buf;
2531 * errno = -retval;
2532 * return NULL;
2533 * }
2534 */
3cdad428 2535SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2536{
552ce544 2537 int error;
6ac08c39 2538 struct path pwd, root;
552ce544 2539 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2540
2541 if (!page)
2542 return -ENOMEM;
2543
f7ad3c6b 2544 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2545
552ce544 2546 error = -ENOENT;
949854d0 2547 write_seqlock(&rename_lock);
f3da392e 2548 if (!d_unlinked(pwd.dentry)) {
552ce544 2549 unsigned long len;
9d1bc601 2550 struct path tmp = root;
8df9d1a4
MS
2551 char *cwd = page + PAGE_SIZE;
2552 int buflen = PAGE_SIZE;
1da177e4 2553
8df9d1a4
MS
2554 prepend(&cwd, &buflen, "\0", 1);
2555 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2556 write_sequnlock(&rename_lock);
552ce544 2557
8df9d1a4 2558 if (error)
552ce544
LT
2559 goto out;
2560
8df9d1a4
MS
2561 /* Unreachable from current root */
2562 if (!path_equal(&tmp, &root)) {
2563 error = prepend_unreachable(&cwd, &buflen);
2564 if (error)
2565 goto out;
2566 }
2567
552ce544
LT
2568 error = -ERANGE;
2569 len = PAGE_SIZE + page - cwd;
2570 if (len <= size) {
2571 error = len;
2572 if (copy_to_user(buf, cwd, len))
2573 error = -EFAULT;
2574 }
949854d0
NP
2575 } else {
2576 write_sequnlock(&rename_lock);
949854d0 2577 }
1da177e4
LT
2578
2579out:
6ac08c39
JB
2580 path_put(&pwd);
2581 path_put(&root);
1da177e4
LT
2582 free_page((unsigned long) page);
2583 return error;
2584}
2585
2586/*
2587 * Test whether new_dentry is a subdirectory of old_dentry.
2588 *
2589 * Trivially implemented using the dcache structure
2590 */
2591
2592/**
2593 * is_subdir - is new dentry a subdirectory of old_dentry
2594 * @new_dentry: new dentry
2595 * @old_dentry: old dentry
2596 *
2597 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2598 * Returns 0 otherwise.
2599 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2600 */
2601
e2761a11 2602int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2603{
2604 int result;
949854d0 2605 unsigned seq;
1da177e4 2606
e2761a11
OH
2607 if (new_dentry == old_dentry)
2608 return 1;
2609
e2761a11 2610 do {
1da177e4 2611 /* for restarting inner loop in case of seq retry */
1da177e4 2612 seq = read_seqbegin(&rename_lock);
949854d0
NP
2613 /*
2614 * Need rcu_readlock to protect against the d_parent trashing
2615 * due to d_move
2616 */
2617 rcu_read_lock();
e2761a11 2618 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2619 result = 1;
e2761a11
OH
2620 else
2621 result = 0;
949854d0 2622 rcu_read_unlock();
1da177e4 2623 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2624
2625 return result;
2626}
2627
2096f759
AV
2628int path_is_under(struct path *path1, struct path *path2)
2629{
2630 struct vfsmount *mnt = path1->mnt;
2631 struct dentry *dentry = path1->dentry;
2632 int res;
99b7db7b
NP
2633
2634 br_read_lock(vfsmount_lock);
2096f759
AV
2635 if (mnt != path2->mnt) {
2636 for (;;) {
2637 if (mnt->mnt_parent == mnt) {
99b7db7b 2638 br_read_unlock(vfsmount_lock);
2096f759
AV
2639 return 0;
2640 }
2641 if (mnt->mnt_parent == path2->mnt)
2642 break;
2643 mnt = mnt->mnt_parent;
2644 }
2645 dentry = mnt->mnt_mountpoint;
2646 }
2647 res = is_subdir(dentry, path2->dentry);
99b7db7b 2648 br_read_unlock(vfsmount_lock);
2096f759
AV
2649 return res;
2650}
2651EXPORT_SYMBOL(path_is_under);
2652
1da177e4
LT
2653void d_genocide(struct dentry *root)
2654{
949854d0 2655 struct dentry *this_parent;
1da177e4 2656 struct list_head *next;
949854d0 2657 unsigned seq;
1da177e4 2658
949854d0
NP
2659rename_retry:
2660 this_parent = root;
2661 seq = read_seqbegin(&rename_lock);
2fd6b7f5 2662 spin_lock(&this_parent->d_lock);
1da177e4
LT
2663repeat:
2664 next = this_parent->d_subdirs.next;
2665resume:
2666 while (next != &this_parent->d_subdirs) {
2667 struct list_head *tmp = next;
5160ee6f 2668 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2669 next = tmp->next;
949854d0 2670
da502956
NP
2671 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2672 if (d_unhashed(dentry) || !dentry->d_inode) {
2673 spin_unlock(&dentry->d_lock);
1da177e4 2674 continue;
da502956 2675 }
1da177e4 2676 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2677 spin_unlock(&this_parent->d_lock);
2678 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2679 this_parent = dentry;
2fd6b7f5 2680 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2681 goto repeat;
2682 }
949854d0
NP
2683 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2684 dentry->d_flags |= DCACHE_GENOCIDE;
2685 dentry->d_count--;
2686 }
b7ab39f6 2687 spin_unlock(&dentry->d_lock);
1da177e4
LT
2688 }
2689 if (this_parent != root) {
949854d0
NP
2690 struct dentry *tmp;
2691 struct dentry *child;
2692
2693 tmp = this_parent->d_parent;
2694 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2695 this_parent->d_flags |= DCACHE_GENOCIDE;
2696 this_parent->d_count--;
2697 }
2698 rcu_read_lock();
b7ab39f6 2699 spin_unlock(&this_parent->d_lock);
949854d0
NP
2700 child = this_parent;
2701 this_parent = tmp;
2fd6b7f5 2702 spin_lock(&this_parent->d_lock);
949854d0
NP
2703 /* might go back up the wrong parent if we have had a rename
2704 * or deletion */
2705 if (this_parent != child->d_parent ||
2706 read_seqretry(&rename_lock, seq)) {
2707 spin_unlock(&this_parent->d_lock);
949854d0
NP
2708 rcu_read_unlock();
2709 goto rename_retry;
2710 }
2711 rcu_read_unlock();
2712 next = child->d_u.d_child.next;
1da177e4
LT
2713 goto resume;
2714 }
2fd6b7f5 2715 spin_unlock(&this_parent->d_lock);
949854d0
NP
2716 if (read_seqretry(&rename_lock, seq))
2717 goto rename_retry;
1da177e4
LT
2718}
2719
2720/**
2721 * find_inode_number - check for dentry with name
2722 * @dir: directory to check
2723 * @name: Name to find.
2724 *
2725 * Check whether a dentry already exists for the given name,
2726 * and return the inode number if it has an inode. Otherwise
2727 * 0 is returned.
2728 *
2729 * This routine is used to post-process directory listings for
2730 * filesystems using synthetic inode numbers, and is necessary
2731 * to keep getcwd() working.
2732 */
2733
2734ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2735{
2736 struct dentry * dentry;
2737 ino_t ino = 0;
2738
3e7e241f
EB
2739 dentry = d_hash_and_lookup(dir, name);
2740 if (dentry) {
1da177e4
LT
2741 if (dentry->d_inode)
2742 ino = dentry->d_inode->i_ino;
2743 dput(dentry);
2744 }
1da177e4
LT
2745 return ino;
2746}
ec4f8605 2747EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2748
2749static __initdata unsigned long dhash_entries;
2750static int __init set_dhash_entries(char *str)
2751{
2752 if (!str)
2753 return 0;
2754 dhash_entries = simple_strtoul(str, &str, 0);
2755 return 1;
2756}
2757__setup("dhash_entries=", set_dhash_entries);
2758
2759static void __init dcache_init_early(void)
2760{
2761 int loop;
2762
2763 /* If hashes are distributed across NUMA nodes, defer
2764 * hash allocation until vmalloc space is available.
2765 */
2766 if (hashdist)
2767 return;
2768
2769 dentry_hashtable =
2770 alloc_large_system_hash("Dentry cache",
2771 sizeof(struct hlist_head),
2772 dhash_entries,
2773 13,
2774 HASH_EARLY,
2775 &d_hash_shift,
2776 &d_hash_mask,
2777 0);
2778
2779 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2780 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2781}
2782
74bf17cf 2783static void __init dcache_init(void)
1da177e4
LT
2784{
2785 int loop;
2786
2787 /*
2788 * A constructor could be added for stable state like the lists,
2789 * but it is probably not worth it because of the cache nature
2790 * of the dcache.
2791 */
0a31bd5f
CL
2792 dentry_cache = KMEM_CACHE(dentry,
2793 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 2794
8e1f936b 2795 register_shrinker(&dcache_shrinker);
1da177e4
LT
2796
2797 /* Hash may have been set up in dcache_init_early */
2798 if (!hashdist)
2799 return;
2800
2801 dentry_hashtable =
2802 alloc_large_system_hash("Dentry cache",
2803 sizeof(struct hlist_head),
2804 dhash_entries,
2805 13,
2806 0,
2807 &d_hash_shift,
2808 &d_hash_mask,
2809 0);
2810
2811 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2812 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2813}
2814
2815/* SLAB cache for __getname() consumers */
e18b890b 2816struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2817EXPORT_SYMBOL(names_cachep);
1da177e4 2818
1da177e4
LT
2819EXPORT_SYMBOL(d_genocide);
2820
1da177e4
LT
2821void __init vfs_caches_init_early(void)
2822{
2823 dcache_init_early();
2824 inode_init_early();
2825}
2826
2827void __init vfs_caches_init(unsigned long mempages)
2828{
2829 unsigned long reserve;
2830
2831 /* Base hash sizes on available memory, with a reserve equal to
2832 150% of current kernel size */
2833
2834 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2835 mempages -= reserve;
2836
2837 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 2838 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 2839
74bf17cf
DC
2840 dcache_init();
2841 inode_init();
1da177e4 2842 files_init(mempages);
74bf17cf 2843 mnt_init();
1da177e4
LT
2844 bdev_cache_init();
2845 chrdev_init();
2846}