dcache: delete unused d_hash_mask
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
7c0f6ba6 29#include <linux/uaccess.h>
1da177e4
LT
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
ceb5bdc2
NP
35#include <linux/bit_spinlock.h>
36#include <linux/rculist_bl.h>
268bb0ce 37#include <linux/prefetch.h>
dd179946 38#include <linux/ratelimit.h>
f6041567 39#include <linux/list_lru.h>
df4c0e36
AR
40#include <linux/kasan.h>
41
07f3f05c 42#include "internal.h"
b2dba1af 43#include "mount.h"
1da177e4 44
789680d1
NP
45/*
46 * Usage:
873feea0 47 * dcache->d_inode->i_lock protects:
946e51f2 48 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
49 * dcache_hash_bucket lock protects:
50 * - the dcache hash table
f1ee6162
N
51 * s_roots bl list spinlock protects:
52 * - the s_roots list (see __d_drop)
19156840 53 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
54 * - the dcache lru lists and counters
55 * d_lock protects:
56 * - d_flags
57 * - d_name
58 * - d_lru
b7ab39f6 59 * - d_count
da502956 60 * - d_unhashed()
2fd6b7f5
NP
61 * - d_parent and d_subdirs
62 * - childrens' d_child and d_parent
946e51f2 63 * - d_u.d_alias, d_inode
789680d1
NP
64 *
65 * Ordering:
873feea0 66 * dentry->d_inode->i_lock
b5c84bf6 67 * dentry->d_lock
19156840 68 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 69 * dcache_hash_bucket lock
f1ee6162 70 * s_roots lock
789680d1 71 *
da502956
NP
72 * If there is an ancestor relationship:
73 * dentry->d_parent->...->d_parent->d_lock
74 * ...
75 * dentry->d_parent->d_lock
76 * dentry->d_lock
77 *
78 * If no ancestor relationship:
789680d1
NP
79 * if (dentry1 < dentry2)
80 * dentry1->d_lock
81 * dentry2->d_lock
82 */
fa3536cc 83int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
84EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
85
74c3cbe3 86__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 87
949854d0 88EXPORT_SYMBOL(rename_lock);
1da177e4 89
e18b890b 90static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 91
cdf01226
DH
92const struct qstr empty_name = QSTR_INIT("", 0);
93EXPORT_SYMBOL(empty_name);
94const struct qstr slash_name = QSTR_INIT("/", 1);
95EXPORT_SYMBOL(slash_name);
96
1da177e4
LT
97/*
98 * This is the single most critical data structure when it comes
99 * to the dcache: the hashtable for lookups. Somebody should try
100 * to make this good - I've just made it work.
101 *
102 * This hash-function tries to avoid losing too many bits of hash
103 * information, yet avoid using a prime hash-size or similar.
104 */
1da177e4 105
fa3536cc 106static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 107
b07ad996 108static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 109
8387ff25 110static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 111{
854d3e63 112 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
113}
114
94bdd655
AV
115#define IN_LOOKUP_SHIFT 10
116static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
117
118static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
119 unsigned int hash)
120{
121 hash += (unsigned long) parent / L1_CACHE_BYTES;
122 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
123}
124
125
1da177e4
LT
126/* Statistics gathering. */
127struct dentry_stat_t dentry_stat = {
128 .age_limit = 45,
129};
130
3942c07c 131static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 132static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
133
134#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
135
136/*
137 * Here we resort to our own counters instead of using generic per-cpu counters
138 * for consistency with what the vfs inode code does. We are expected to harvest
139 * better code and performance by having our own specialized counters.
140 *
141 * Please note that the loop is done over all possible CPUs, not over all online
142 * CPUs. The reason for this is that we don't want to play games with CPUs going
143 * on and off. If one of them goes off, we will just keep their counters.
144 *
145 * glommer: See cffbc8a for details, and if you ever intend to change this,
146 * please update all vfs counters to match.
147 */
3942c07c 148static long get_nr_dentry(void)
3e880fb5
NP
149{
150 int i;
3942c07c 151 long sum = 0;
3e880fb5
NP
152 for_each_possible_cpu(i)
153 sum += per_cpu(nr_dentry, i);
154 return sum < 0 ? 0 : sum;
155}
156
62d36c77
DC
157static long get_nr_dentry_unused(void)
158{
159 int i;
160 long sum = 0;
161 for_each_possible_cpu(i)
162 sum += per_cpu(nr_dentry_unused, i);
163 return sum < 0 ? 0 : sum;
164}
165
1f7e0616 166int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
167 size_t *lenp, loff_t *ppos)
168{
3e880fb5 169 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 170 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 171 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
172}
173#endif
174
5483f18e
LT
175/*
176 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
177 * The strings are both count bytes long, and count is non-zero.
178 */
e419b4cc
LT
179#ifdef CONFIG_DCACHE_WORD_ACCESS
180
181#include <asm/word-at-a-time.h>
182/*
183 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
184 * aligned allocation for this particular component. We don't
185 * strictly need the load_unaligned_zeropad() safety, but it
186 * doesn't hurt either.
187 *
188 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
189 * need the careful unaligned handling.
190 */
94753db5 191static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 192{
bfcfaa77 193 unsigned long a,b,mask;
bfcfaa77
LT
194
195 for (;;) {
12f8ad4b 196 a = *(unsigned long *)cs;
e419b4cc 197 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
198 if (tcount < sizeof(unsigned long))
199 break;
200 if (unlikely(a != b))
201 return 1;
202 cs += sizeof(unsigned long);
203 ct += sizeof(unsigned long);
204 tcount -= sizeof(unsigned long);
205 if (!tcount)
206 return 0;
207 }
a5c21dce 208 mask = bytemask_from_count(tcount);
bfcfaa77 209 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
210}
211
bfcfaa77 212#else
e419b4cc 213
94753db5 214static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 215{
5483f18e
LT
216 do {
217 if (*cs != *ct)
218 return 1;
219 cs++;
220 ct++;
221 tcount--;
222 } while (tcount);
223 return 0;
224}
225
e419b4cc
LT
226#endif
227
94753db5
LT
228static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
229{
94753db5
LT
230 /*
231 * Be careful about RCU walk racing with rename:
506458ef 232 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
233 *
234 * NOTE! Even if a rename will mean that the length
235 * was not loaded atomically, we don't care. The
236 * RCU walk will check the sequence count eventually,
237 * and catch it. And we won't overrun the buffer,
238 * because we're reading the name pointer atomically,
239 * and a dentry name is guaranteed to be properly
240 * terminated with a NUL byte.
241 *
242 * End result: even if 'len' is wrong, we'll exit
243 * early because the data cannot match (there can
244 * be no NUL in the ct/tcount data)
245 */
506458ef 246 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 247
6326c71f 248 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
249}
250
8d85b484
AV
251struct external_name {
252 union {
253 atomic_t count;
254 struct rcu_head head;
255 } u;
256 unsigned char name[];
257};
258
259static inline struct external_name *external_name(struct dentry *dentry)
260{
261 return container_of(dentry->d_name.name, struct external_name, name[0]);
262}
263
9c82ab9c 264static void __d_free(struct rcu_head *head)
1da177e4 265{
9c82ab9c
CH
266 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
267
8d85b484
AV
268 kmem_cache_free(dentry_cache, dentry);
269}
270
271static void __d_free_external(struct rcu_head *head)
272{
273 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 274 kfree(external_name(dentry));
1da177e4
LT
275 kmem_cache_free(dentry_cache, dentry);
276}
277
810bb172
AV
278static inline int dname_external(const struct dentry *dentry)
279{
280 return dentry->d_name.name != dentry->d_iname;
281}
282
49d31c2f
AV
283void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
284{
285 spin_lock(&dentry->d_lock);
286 if (unlikely(dname_external(dentry))) {
287 struct external_name *p = external_name(dentry);
288 atomic_inc(&p->u.count);
289 spin_unlock(&dentry->d_lock);
290 name->name = p->name;
291 } else {
292 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
293 spin_unlock(&dentry->d_lock);
294 name->name = name->inline_name;
295 }
296}
297EXPORT_SYMBOL(take_dentry_name_snapshot);
298
299void release_dentry_name_snapshot(struct name_snapshot *name)
300{
301 if (unlikely(name->name != name->inline_name)) {
302 struct external_name *p;
303 p = container_of(name->name, struct external_name, name[0]);
304 if (unlikely(atomic_dec_and_test(&p->u.count)))
305 kfree_rcu(p, u.head);
306 }
307}
308EXPORT_SYMBOL(release_dentry_name_snapshot);
309
4bf46a27
DH
310static inline void __d_set_inode_and_type(struct dentry *dentry,
311 struct inode *inode,
312 unsigned type_flags)
313{
314 unsigned flags;
315
316 dentry->d_inode = inode;
4bf46a27
DH
317 flags = READ_ONCE(dentry->d_flags);
318 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
319 flags |= type_flags;
320 WRITE_ONCE(dentry->d_flags, flags);
321}
322
4bf46a27
DH
323static inline void __d_clear_type_and_inode(struct dentry *dentry)
324{
325 unsigned flags = READ_ONCE(dentry->d_flags);
326
327 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
328 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
329 dentry->d_inode = NULL;
330}
331
b4f0354e
AV
332static void dentry_free(struct dentry *dentry)
333{
946e51f2 334 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
335 if (unlikely(dname_external(dentry))) {
336 struct external_name *p = external_name(dentry);
337 if (likely(atomic_dec_and_test(&p->u.count))) {
338 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
339 return;
340 }
341 }
b4f0354e
AV
342 /* if dentry was never visible to RCU, immediate free is OK */
343 if (!(dentry->d_flags & DCACHE_RCUACCESS))
344 __d_free(&dentry->d_u.d_rcu);
345 else
346 call_rcu(&dentry->d_u.d_rcu, __d_free);
347}
348
1da177e4
LT
349/*
350 * Release the dentry's inode, using the filesystem
550dce01 351 * d_iput() operation if defined.
31e6b01f
NP
352 */
353static void dentry_unlink_inode(struct dentry * dentry)
354 __releases(dentry->d_lock)
873feea0 355 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
356{
357 struct inode *inode = dentry->d_inode;
550dce01 358 bool hashed = !d_unhashed(dentry);
a528aca7 359
550dce01
AV
360 if (hashed)
361 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 362 __d_clear_type_and_inode(dentry);
946e51f2 363 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
364 if (hashed)
365 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 366 spin_unlock(&dentry->d_lock);
873feea0 367 spin_unlock(&inode->i_lock);
31e6b01f
NP
368 if (!inode->i_nlink)
369 fsnotify_inoderemove(inode);
370 if (dentry->d_op && dentry->d_op->d_iput)
371 dentry->d_op->d_iput(dentry, inode);
372 else
373 iput(inode);
374}
375
89dc77bc
LT
376/*
377 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
378 * is in use - which includes both the "real" per-superblock
379 * LRU list _and_ the DCACHE_SHRINK_LIST use.
380 *
381 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
382 * on the shrink list (ie not on the superblock LRU list).
383 *
384 * The per-cpu "nr_dentry_unused" counters are updated with
385 * the DCACHE_LRU_LIST bit.
386 *
387 * These helper functions make sure we always follow the
388 * rules. d_lock must be held by the caller.
389 */
390#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
391static void d_lru_add(struct dentry *dentry)
392{
393 D_FLAG_VERIFY(dentry, 0);
394 dentry->d_flags |= DCACHE_LRU_LIST;
395 this_cpu_inc(nr_dentry_unused);
396 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
397}
398
399static void d_lru_del(struct dentry *dentry)
400{
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405}
406
407static void d_shrink_del(struct dentry *dentry)
408{
409 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 list_del_init(&dentry->d_lru);
411 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412 this_cpu_dec(nr_dentry_unused);
413}
414
415static void d_shrink_add(struct dentry *dentry, struct list_head *list)
416{
417 D_FLAG_VERIFY(dentry, 0);
418 list_add(&dentry->d_lru, list);
419 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
420 this_cpu_inc(nr_dentry_unused);
421}
422
423/*
424 * These can only be called under the global LRU lock, ie during the
425 * callback for freeing the LRU list. "isolate" removes it from the
426 * LRU lists entirely, while shrink_move moves it to the indicated
427 * private list.
428 */
3f97b163 429static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
430{
431 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
432 dentry->d_flags &= ~DCACHE_LRU_LIST;
433 this_cpu_dec(nr_dentry_unused);
3f97b163 434 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
435}
436
3f97b163
VD
437static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
438 struct list_head *list)
89dc77bc
LT
439{
440 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 442 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
443}
444
da3bbdd4 445/*
f6041567 446 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
447 */
448static void dentry_lru_add(struct dentry *dentry)
449{
89dc77bc
LT
450 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
451 d_lru_add(dentry);
563f4001
JB
452 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
453 dentry->d_flags |= DCACHE_REFERENCED;
da3bbdd4
KM
454}
455
789680d1
NP
456/**
457 * d_drop - drop a dentry
458 * @dentry: dentry to drop
459 *
460 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
461 * be found through a VFS lookup any more. Note that this is different from
462 * deleting the dentry - d_delete will try to mark the dentry negative if
463 * possible, giving a successful _negative_ lookup, while d_drop will
464 * just make the cache lookup fail.
465 *
466 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
467 * reason (NFS timeouts or autofs deletes).
468 *
469 * __d_drop requires dentry->d_lock.
470 */
471void __d_drop(struct dentry *dentry)
472{
dea3667b 473 if (!d_unhashed(dentry)) {
b61625d2 474 struct hlist_bl_head *b;
7632e465
BF
475 /*
476 * Hashed dentries are normally on the dentry hashtable,
477 * with the exception of those newly allocated by
f1ee6162 478 * d_obtain_root, which are always IS_ROOT:
7632e465
BF
479 */
480 if (unlikely(IS_ROOT(dentry)))
f1ee6162 481 b = &dentry->d_sb->s_roots;
b61625d2 482 else
8387ff25 483 b = d_hash(dentry->d_name.hash);
b61625d2
AV
484
485 hlist_bl_lock(b);
486 __hlist_bl_del(&dentry->d_hash);
487 dentry->d_hash.pprev = NULL;
488 hlist_bl_unlock(b);
d614146d
AV
489 /* After this call, in-progress rcu-walk path lookup will fail. */
490 write_seqcount_invalidate(&dentry->d_seq);
789680d1
NP
491 }
492}
493EXPORT_SYMBOL(__d_drop);
494
495void d_drop(struct dentry *dentry)
496{
789680d1
NP
497 spin_lock(&dentry->d_lock);
498 __d_drop(dentry);
499 spin_unlock(&dentry->d_lock);
789680d1
NP
500}
501EXPORT_SYMBOL(d_drop);
502
ba65dc5e
AV
503static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
504{
505 struct dentry *next;
506 /*
507 * Inform d_walk() and shrink_dentry_list() that we are no longer
508 * attached to the dentry tree
509 */
510 dentry->d_flags |= DCACHE_DENTRY_KILLED;
511 if (unlikely(list_empty(&dentry->d_child)))
512 return;
513 __list_del_entry(&dentry->d_child);
514 /*
515 * Cursors can move around the list of children. While we'd been
516 * a normal list member, it didn't matter - ->d_child.next would've
517 * been updated. However, from now on it won't be and for the
518 * things like d_walk() it might end up with a nasty surprise.
519 * Normally d_walk() doesn't care about cursors moving around -
520 * ->d_lock on parent prevents that and since a cursor has no children
521 * of its own, we get through it without ever unlocking the parent.
522 * There is one exception, though - if we ascend from a child that
523 * gets killed as soon as we unlock it, the next sibling is found
524 * using the value left in its ->d_child.next. And if _that_
525 * pointed to a cursor, and cursor got moved (e.g. by lseek())
526 * before d_walk() regains parent->d_lock, we'll end up skipping
527 * everything the cursor had been moved past.
528 *
529 * Solution: make sure that the pointer left behind in ->d_child.next
530 * points to something that won't be moving around. I.e. skip the
531 * cursors.
532 */
533 while (dentry->d_child.next != &parent->d_subdirs) {
534 next = list_entry(dentry->d_child.next, struct dentry, d_child);
535 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
536 break;
537 dentry->d_child.next = next->d_child.next;
538 }
539}
540
e55fd011 541static void __dentry_kill(struct dentry *dentry)
77812a1e 542{
41edf278
AV
543 struct dentry *parent = NULL;
544 bool can_free = true;
41edf278 545 if (!IS_ROOT(dentry))
77812a1e 546 parent = dentry->d_parent;
31e6b01f 547
0d98439e
LT
548 /*
549 * The dentry is now unrecoverably dead to the world.
550 */
551 lockref_mark_dead(&dentry->d_lockref);
552
f0023bc6 553 /*
f0023bc6
SW
554 * inform the fs via d_prune that this dentry is about to be
555 * unhashed and destroyed.
556 */
29266201 557 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
558 dentry->d_op->d_prune(dentry);
559
01b60351
AV
560 if (dentry->d_flags & DCACHE_LRU_LIST) {
561 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
562 d_lru_del(dentry);
01b60351 563 }
77812a1e
NP
564 /* if it was on the hash then remove it */
565 __d_drop(dentry);
ba65dc5e 566 dentry_unlist(dentry, parent);
03b3b889
AV
567 if (parent)
568 spin_unlock(&parent->d_lock);
550dce01
AV
569 if (dentry->d_inode)
570 dentry_unlink_inode(dentry);
571 else
572 spin_unlock(&dentry->d_lock);
03b3b889
AV
573 this_cpu_dec(nr_dentry);
574 if (dentry->d_op && dentry->d_op->d_release)
575 dentry->d_op->d_release(dentry);
576
41edf278
AV
577 spin_lock(&dentry->d_lock);
578 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
579 dentry->d_flags |= DCACHE_MAY_FREE;
580 can_free = false;
581 }
582 spin_unlock(&dentry->d_lock);
41edf278
AV
583 if (likely(can_free))
584 dentry_free(dentry);
e55fd011
AV
585}
586
587/*
588 * Finish off a dentry we've decided to kill.
589 * dentry->d_lock must be held, returns with it unlocked.
590 * If ref is non-zero, then decrement the refcount too.
591 * Returns dentry requiring refcount drop, or NULL if we're done.
592 */
8cbf74da 593static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
594 __releases(dentry->d_lock)
595{
596 struct inode *inode = dentry->d_inode;
597 struct dentry *parent = NULL;
598
599 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
600 goto failed;
601
602 if (!IS_ROOT(dentry)) {
603 parent = dentry->d_parent;
604 if (unlikely(!spin_trylock(&parent->d_lock))) {
605 if (inode)
606 spin_unlock(&inode->i_lock);
607 goto failed;
608 }
609 }
610
611 __dentry_kill(dentry);
03b3b889 612 return parent;
e55fd011
AV
613
614failed:
8cbf74da 615 spin_unlock(&dentry->d_lock);
e55fd011 616 return dentry; /* try again with same dentry */
77812a1e
NP
617}
618
046b961b
AV
619static inline struct dentry *lock_parent(struct dentry *dentry)
620{
621 struct dentry *parent = dentry->d_parent;
622 if (IS_ROOT(dentry))
623 return NULL;
360f5479 624 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 625 return NULL;
046b961b
AV
626 if (likely(spin_trylock(&parent->d_lock)))
627 return parent;
046b961b 628 rcu_read_lock();
c2338f2d 629 spin_unlock(&dentry->d_lock);
046b961b 630again:
66702eb5 631 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
632 spin_lock(&parent->d_lock);
633 /*
634 * We can't blindly lock dentry until we are sure
635 * that we won't violate the locking order.
636 * Any changes of dentry->d_parent must have
637 * been done with parent->d_lock held, so
638 * spin_lock() above is enough of a barrier
639 * for checking if it's still our child.
640 */
641 if (unlikely(parent != dentry->d_parent)) {
642 spin_unlock(&parent->d_lock);
643 goto again;
644 }
645 rcu_read_unlock();
646 if (parent != dentry)
9f12600f 647 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
648 else
649 parent = NULL;
650 return parent;
651}
652
360f5479
LT
653/*
654 * Try to do a lockless dput(), and return whether that was successful.
655 *
656 * If unsuccessful, we return false, having already taken the dentry lock.
657 *
658 * The caller needs to hold the RCU read lock, so that the dentry is
659 * guaranteed to stay around even if the refcount goes down to zero!
660 */
661static inline bool fast_dput(struct dentry *dentry)
662{
663 int ret;
664 unsigned int d_flags;
665
666 /*
667 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 668 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
669 */
670 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
671 return lockref_put_or_lock(&dentry->d_lockref);
672
673 /*
674 * .. otherwise, we can try to just decrement the
675 * lockref optimistically.
676 */
677 ret = lockref_put_return(&dentry->d_lockref);
678
679 /*
680 * If the lockref_put_return() failed due to the lock being held
681 * by somebody else, the fast path has failed. We will need to
682 * get the lock, and then check the count again.
683 */
684 if (unlikely(ret < 0)) {
685 spin_lock(&dentry->d_lock);
686 if (dentry->d_lockref.count > 1) {
687 dentry->d_lockref.count--;
688 spin_unlock(&dentry->d_lock);
689 return 1;
690 }
691 return 0;
692 }
693
694 /*
695 * If we weren't the last ref, we're done.
696 */
697 if (ret)
698 return 1;
699
700 /*
701 * Careful, careful. The reference count went down
702 * to zero, but we don't hold the dentry lock, so
703 * somebody else could get it again, and do another
704 * dput(), and we need to not race with that.
705 *
706 * However, there is a very special and common case
707 * where we don't care, because there is nothing to
708 * do: the dentry is still hashed, it does not have
709 * a 'delete' op, and it's referenced and already on
710 * the LRU list.
711 *
712 * NOTE! Since we aren't locked, these values are
713 * not "stable". However, it is sufficient that at
714 * some point after we dropped the reference the
715 * dentry was hashed and the flags had the proper
716 * value. Other dentry users may have re-gotten
717 * a reference to the dentry and change that, but
718 * our work is done - we can leave the dentry
719 * around with a zero refcount.
720 */
721 smp_rmb();
66702eb5 722 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 723 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
724
725 /* Nothing to do? Dropping the reference was all we needed? */
726 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
727 return 1;
728
729 /*
730 * Not the fast normal case? Get the lock. We've already decremented
731 * the refcount, but we'll need to re-check the situation after
732 * getting the lock.
733 */
734 spin_lock(&dentry->d_lock);
735
736 /*
737 * Did somebody else grab a reference to it in the meantime, and
738 * we're no longer the last user after all? Alternatively, somebody
739 * else could have killed it and marked it dead. Either way, we
740 * don't need to do anything else.
741 */
742 if (dentry->d_lockref.count) {
743 spin_unlock(&dentry->d_lock);
744 return 1;
745 }
746
747 /*
748 * Re-get the reference we optimistically dropped. We hold the
749 * lock, and we just tested that it was zero, so we can just
750 * set it to 1.
751 */
752 dentry->d_lockref.count = 1;
753 return 0;
754}
755
756
1da177e4
LT
757/*
758 * This is dput
759 *
760 * This is complicated by the fact that we do not want to put
761 * dentries that are no longer on any hash chain on the unused
762 * list: we'd much rather just get rid of them immediately.
763 *
764 * However, that implies that we have to traverse the dentry
765 * tree upwards to the parents which might _also_ now be
766 * scheduled for deletion (it may have been only waiting for
767 * its last child to go away).
768 *
769 * This tail recursion is done by hand as we don't want to depend
770 * on the compiler to always get this right (gcc generally doesn't).
771 * Real recursion would eat up our stack space.
772 */
773
774/*
775 * dput - release a dentry
776 * @dentry: dentry to release
777 *
778 * Release a dentry. This will drop the usage count and if appropriate
779 * call the dentry unlink method as well as removing it from the queues and
780 * releasing its resources. If the parent dentries were scheduled for release
781 * they too may now get deleted.
1da177e4 782 */
1da177e4
LT
783void dput(struct dentry *dentry)
784{
8aab6a27 785 if (unlikely(!dentry))
1da177e4
LT
786 return;
787
788repeat:
47be6184
WF
789 might_sleep();
790
360f5479
LT
791 rcu_read_lock();
792 if (likely(fast_dput(dentry))) {
793 rcu_read_unlock();
1da177e4 794 return;
360f5479
LT
795 }
796
797 /* Slow case: now with the dentry lock held */
798 rcu_read_unlock();
1da177e4 799
85c7f810
AV
800 WARN_ON(d_in_lookup(dentry));
801
8aab6a27
LT
802 /* Unreachable? Get rid of it */
803 if (unlikely(d_unhashed(dentry)))
804 goto kill_it;
805
75a6f82a
AV
806 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
807 goto kill_it;
808
8aab6a27 809 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 810 if (dentry->d_op->d_delete(dentry))
61f3dee4 811 goto kill_it;
1da177e4 812 }
265ac902 813
a4633357 814 dentry_lru_add(dentry);
265ac902 815
98474236 816 dentry->d_lockref.count--;
61f3dee4 817 spin_unlock(&dentry->d_lock);
1da177e4
LT
818 return;
819
d52b9086 820kill_it:
8cbf74da 821 dentry = dentry_kill(dentry);
47be6184
WF
822 if (dentry) {
823 cond_resched();
d52b9086 824 goto repeat;
47be6184 825 }
1da177e4 826}
ec4f8605 827EXPORT_SYMBOL(dput);
1da177e4 828
1da177e4 829
b5c84bf6 830/* This must be called with d_lock held */
dc0474be 831static inline void __dget_dlock(struct dentry *dentry)
23044507 832{
98474236 833 dentry->d_lockref.count++;
23044507
NP
834}
835
dc0474be 836static inline void __dget(struct dentry *dentry)
1da177e4 837{
98474236 838 lockref_get(&dentry->d_lockref);
1da177e4
LT
839}
840
b7ab39f6
NP
841struct dentry *dget_parent(struct dentry *dentry)
842{
df3d0bbc 843 int gotref;
b7ab39f6
NP
844 struct dentry *ret;
845
df3d0bbc
WL
846 /*
847 * Do optimistic parent lookup without any
848 * locking.
849 */
850 rcu_read_lock();
66702eb5 851 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
852 gotref = lockref_get_not_zero(&ret->d_lockref);
853 rcu_read_unlock();
854 if (likely(gotref)) {
66702eb5 855 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
856 return ret;
857 dput(ret);
858 }
859
b7ab39f6 860repeat:
a734eb45
NP
861 /*
862 * Don't need rcu_dereference because we re-check it was correct under
863 * the lock.
864 */
865 rcu_read_lock();
b7ab39f6 866 ret = dentry->d_parent;
a734eb45
NP
867 spin_lock(&ret->d_lock);
868 if (unlikely(ret != dentry->d_parent)) {
869 spin_unlock(&ret->d_lock);
870 rcu_read_unlock();
b7ab39f6
NP
871 goto repeat;
872 }
a734eb45 873 rcu_read_unlock();
98474236
WL
874 BUG_ON(!ret->d_lockref.count);
875 ret->d_lockref.count++;
b7ab39f6 876 spin_unlock(&ret->d_lock);
b7ab39f6
NP
877 return ret;
878}
879EXPORT_SYMBOL(dget_parent);
880
1da177e4
LT
881/**
882 * d_find_alias - grab a hashed alias of inode
883 * @inode: inode in question
1da177e4
LT
884 *
885 * If inode has a hashed alias, or is a directory and has any alias,
886 * acquire the reference to alias and return it. Otherwise return NULL.
887 * Notice that if inode is a directory there can be only one alias and
888 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
889 * of a filesystem, or if the directory was renamed and d_revalidate
890 * was the first vfs operation to notice.
1da177e4 891 *
21c0d8fd 892 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 893 * any other hashed alias over that one.
1da177e4 894 */
52ed46f0 895static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 896{
da502956 897 struct dentry *alias, *discon_alias;
1da177e4 898
da502956
NP
899again:
900 discon_alias = NULL;
946e51f2 901 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 902 spin_lock(&alias->d_lock);
1da177e4 903 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 904 if (IS_ROOT(alias) &&
da502956 905 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 906 discon_alias = alias;
52ed46f0 907 } else {
dc0474be 908 __dget_dlock(alias);
da502956
NP
909 spin_unlock(&alias->d_lock);
910 return alias;
911 }
912 }
913 spin_unlock(&alias->d_lock);
914 }
915 if (discon_alias) {
916 alias = discon_alias;
917 spin_lock(&alias->d_lock);
918 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
919 __dget_dlock(alias);
920 spin_unlock(&alias->d_lock);
921 return alias;
1da177e4 922 }
da502956
NP
923 spin_unlock(&alias->d_lock);
924 goto again;
1da177e4 925 }
da502956 926 return NULL;
1da177e4
LT
927}
928
da502956 929struct dentry *d_find_alias(struct inode *inode)
1da177e4 930{
214fda1f
DH
931 struct dentry *de = NULL;
932
b3d9b7a3 933 if (!hlist_empty(&inode->i_dentry)) {
873feea0 934 spin_lock(&inode->i_lock);
52ed46f0 935 de = __d_find_alias(inode);
873feea0 936 spin_unlock(&inode->i_lock);
214fda1f 937 }
1da177e4
LT
938 return de;
939}
ec4f8605 940EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
941
942/*
943 * Try to kill dentries associated with this inode.
944 * WARNING: you must own a reference to inode.
945 */
946void d_prune_aliases(struct inode *inode)
947{
0cdca3f9 948 struct dentry *dentry;
1da177e4 949restart:
873feea0 950 spin_lock(&inode->i_lock);
946e51f2 951 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 952 spin_lock(&dentry->d_lock);
98474236 953 if (!dentry->d_lockref.count) {
29355c39
AV
954 struct dentry *parent = lock_parent(dentry);
955 if (likely(!dentry->d_lockref.count)) {
956 __dentry_kill(dentry);
4a7795d3 957 dput(parent);
29355c39
AV
958 goto restart;
959 }
960 if (parent)
961 spin_unlock(&parent->d_lock);
1da177e4
LT
962 }
963 spin_unlock(&dentry->d_lock);
964 }
873feea0 965 spin_unlock(&inode->i_lock);
1da177e4 966}
ec4f8605 967EXPORT_SYMBOL(d_prune_aliases);
1da177e4 968
3049cfe2 969static void shrink_dentry_list(struct list_head *list)
1da177e4 970{
5c47e6d0 971 struct dentry *dentry, *parent;
da3bbdd4 972
60942f2f 973 while (!list_empty(list)) {
ff2fde99 974 struct inode *inode;
60942f2f 975 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 976 spin_lock(&dentry->d_lock);
046b961b
AV
977 parent = lock_parent(dentry);
978
dd1f6b2e
DC
979 /*
980 * The dispose list is isolated and dentries are not accounted
981 * to the LRU here, so we can simply remove it from the list
982 * here regardless of whether it is referenced or not.
983 */
89dc77bc 984 d_shrink_del(dentry);
dd1f6b2e 985
1da177e4
LT
986 /*
987 * We found an inuse dentry which was not removed from
dd1f6b2e 988 * the LRU because of laziness during lookup. Do not free it.
1da177e4 989 */
360f5479 990 if (dentry->d_lockref.count > 0) {
da3bbdd4 991 spin_unlock(&dentry->d_lock);
046b961b
AV
992 if (parent)
993 spin_unlock(&parent->d_lock);
1da177e4
LT
994 continue;
995 }
77812a1e 996
64fd72e0
AV
997
998 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
999 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1000 spin_unlock(&dentry->d_lock);
046b961b
AV
1001 if (parent)
1002 spin_unlock(&parent->d_lock);
64fd72e0
AV
1003 if (can_free)
1004 dentry_free(dentry);
1005 continue;
1006 }
1007
ff2fde99
AV
1008 inode = dentry->d_inode;
1009 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 1010 d_shrink_add(dentry, list);
dd1f6b2e 1011 spin_unlock(&dentry->d_lock);
046b961b
AV
1012 if (parent)
1013 spin_unlock(&parent->d_lock);
5c47e6d0 1014 continue;
dd1f6b2e 1015 }
ff2fde99 1016
ff2fde99 1017 __dentry_kill(dentry);
046b961b 1018
5c47e6d0
AV
1019 /*
1020 * We need to prune ancestors too. This is necessary to prevent
1021 * quadratic behavior of shrink_dcache_parent(), but is also
1022 * expected to be beneficial in reducing dentry cache
1023 * fragmentation.
1024 */
1025 dentry = parent;
b2b80195
AV
1026 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1027 parent = lock_parent(dentry);
1028 if (dentry->d_lockref.count != 1) {
1029 dentry->d_lockref.count--;
1030 spin_unlock(&dentry->d_lock);
1031 if (parent)
1032 spin_unlock(&parent->d_lock);
1033 break;
1034 }
1035 inode = dentry->d_inode; /* can't be NULL */
1036 if (unlikely(!spin_trylock(&inode->i_lock))) {
1037 spin_unlock(&dentry->d_lock);
1038 if (parent)
1039 spin_unlock(&parent->d_lock);
1040 cpu_relax();
1041 continue;
1042 }
1043 __dentry_kill(dentry);
1044 dentry = parent;
1045 }
da3bbdd4 1046 }
3049cfe2
CH
1047}
1048
3f97b163
VD
1049static enum lru_status dentry_lru_isolate(struct list_head *item,
1050 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1051{
1052 struct list_head *freeable = arg;
1053 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1054
1055
1056 /*
1057 * we are inverting the lru lock/dentry->d_lock here,
1058 * so use a trylock. If we fail to get the lock, just skip
1059 * it
1060 */
1061 if (!spin_trylock(&dentry->d_lock))
1062 return LRU_SKIP;
1063
1064 /*
1065 * Referenced dentries are still in use. If they have active
1066 * counts, just remove them from the LRU. Otherwise give them
1067 * another pass through the LRU.
1068 */
1069 if (dentry->d_lockref.count) {
3f97b163 1070 d_lru_isolate(lru, dentry);
f6041567
DC
1071 spin_unlock(&dentry->d_lock);
1072 return LRU_REMOVED;
1073 }
1074
1075 if (dentry->d_flags & DCACHE_REFERENCED) {
1076 dentry->d_flags &= ~DCACHE_REFERENCED;
1077 spin_unlock(&dentry->d_lock);
1078
1079 /*
1080 * The list move itself will be made by the common LRU code. At
1081 * this point, we've dropped the dentry->d_lock but keep the
1082 * lru lock. This is safe to do, since every list movement is
1083 * protected by the lru lock even if both locks are held.
1084 *
1085 * This is guaranteed by the fact that all LRU management
1086 * functions are intermediated by the LRU API calls like
1087 * list_lru_add and list_lru_del. List movement in this file
1088 * only ever occur through this functions or through callbacks
1089 * like this one, that are called from the LRU API.
1090 *
1091 * The only exceptions to this are functions like
1092 * shrink_dentry_list, and code that first checks for the
1093 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1094 * operating only with stack provided lists after they are
1095 * properly isolated from the main list. It is thus, always a
1096 * local access.
1097 */
1098 return LRU_ROTATE;
1099 }
1100
3f97b163 1101 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1102 spin_unlock(&dentry->d_lock);
1103
1104 return LRU_REMOVED;
1105}
1106
3049cfe2 1107/**
b48f03b3
DC
1108 * prune_dcache_sb - shrink the dcache
1109 * @sb: superblock
503c358c 1110 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1111 *
503c358c
VD
1112 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1113 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1114 * function.
3049cfe2 1115 *
b48f03b3
DC
1116 * This function may fail to free any resources if all the dentries are in
1117 * use.
3049cfe2 1118 */
503c358c 1119long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1120{
f6041567
DC
1121 LIST_HEAD(dispose);
1122 long freed;
3049cfe2 1123
503c358c
VD
1124 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1125 dentry_lru_isolate, &dispose);
f6041567 1126 shrink_dentry_list(&dispose);
0a234c6d 1127 return freed;
da3bbdd4 1128}
23044507 1129
4e717f5c 1130static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1131 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1132{
4e717f5c
GC
1133 struct list_head *freeable = arg;
1134 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1135
4e717f5c
GC
1136 /*
1137 * we are inverting the lru lock/dentry->d_lock here,
1138 * so use a trylock. If we fail to get the lock, just skip
1139 * it
1140 */
1141 if (!spin_trylock(&dentry->d_lock))
1142 return LRU_SKIP;
1143
3f97b163 1144 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1145 spin_unlock(&dentry->d_lock);
ec33679d 1146
4e717f5c 1147 return LRU_REMOVED;
da3bbdd4
KM
1148}
1149
4e717f5c 1150
1da177e4
LT
1151/**
1152 * shrink_dcache_sb - shrink dcache for a superblock
1153 * @sb: superblock
1154 *
3049cfe2
CH
1155 * Shrink the dcache for the specified super block. This is used to free
1156 * the dcache before unmounting a file system.
1da177e4 1157 */
3049cfe2 1158void shrink_dcache_sb(struct super_block *sb)
1da177e4 1159{
4e717f5c
GC
1160 long freed;
1161
1162 do {
1163 LIST_HEAD(dispose);
1164
1165 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1166 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1167
4e717f5c
GC
1168 this_cpu_sub(nr_dentry_unused, freed);
1169 shrink_dentry_list(&dispose);
b17c070f
ST
1170 cond_resched();
1171 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1172}
ec4f8605 1173EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1174
db14fc3a
MS
1175/**
1176 * enum d_walk_ret - action to talke during tree walk
1177 * @D_WALK_CONTINUE: contrinue walk
1178 * @D_WALK_QUIT: quit walk
1179 * @D_WALK_NORETRY: quit when retry is needed
1180 * @D_WALK_SKIP: skip this dentry and its children
1181 */
1182enum d_walk_ret {
1183 D_WALK_CONTINUE,
1184 D_WALK_QUIT,
1185 D_WALK_NORETRY,
1186 D_WALK_SKIP,
1187};
c826cb7d 1188
1da177e4 1189/**
db14fc3a
MS
1190 * d_walk - walk the dentry tree
1191 * @parent: start of walk
1192 * @data: data passed to @enter() and @finish()
1193 * @enter: callback when first entering the dentry
1194 * @finish: callback when successfully finished the walk
1da177e4 1195 *
db14fc3a 1196 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1197 */
db14fc3a
MS
1198static void d_walk(struct dentry *parent, void *data,
1199 enum d_walk_ret (*enter)(void *, struct dentry *),
1200 void (*finish)(void *))
1da177e4 1201{
949854d0 1202 struct dentry *this_parent;
1da177e4 1203 struct list_head *next;
48f5ec21 1204 unsigned seq = 0;
db14fc3a
MS
1205 enum d_walk_ret ret;
1206 bool retry = true;
949854d0 1207
58db63d0 1208again:
48f5ec21 1209 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1210 this_parent = parent;
2fd6b7f5 1211 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1212
1213 ret = enter(data, this_parent);
1214 switch (ret) {
1215 case D_WALK_CONTINUE:
1216 break;
1217 case D_WALK_QUIT:
1218 case D_WALK_SKIP:
1219 goto out_unlock;
1220 case D_WALK_NORETRY:
1221 retry = false;
1222 break;
1223 }
1da177e4
LT
1224repeat:
1225 next = this_parent->d_subdirs.next;
1226resume:
1227 while (next != &this_parent->d_subdirs) {
1228 struct list_head *tmp = next;
946e51f2 1229 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1230 next = tmp->next;
2fd6b7f5 1231
ba65dc5e
AV
1232 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1233 continue;
1234
2fd6b7f5 1235 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1236
1237 ret = enter(data, dentry);
1238 switch (ret) {
1239 case D_WALK_CONTINUE:
1240 break;
1241 case D_WALK_QUIT:
2fd6b7f5 1242 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1243 goto out_unlock;
1244 case D_WALK_NORETRY:
1245 retry = false;
1246 break;
1247 case D_WALK_SKIP:
1248 spin_unlock(&dentry->d_lock);
1249 continue;
2fd6b7f5 1250 }
db14fc3a 1251
1da177e4 1252 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1253 spin_unlock(&this_parent->d_lock);
1254 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1255 this_parent = dentry;
2fd6b7f5 1256 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1257 goto repeat;
1258 }
2fd6b7f5 1259 spin_unlock(&dentry->d_lock);
1da177e4
LT
1260 }
1261 /*
1262 * All done at this level ... ascend and resume the search.
1263 */
ca5358ef
AV
1264 rcu_read_lock();
1265ascend:
1da177e4 1266 if (this_parent != parent) {
c826cb7d 1267 struct dentry *child = this_parent;
31dec132
AV
1268 this_parent = child->d_parent;
1269
31dec132
AV
1270 spin_unlock(&child->d_lock);
1271 spin_lock(&this_parent->d_lock);
1272
ca5358ef
AV
1273 /* might go back up the wrong parent if we have had a rename. */
1274 if (need_seqretry(&rename_lock, seq))
949854d0 1275 goto rename_retry;
2159184e
AV
1276 /* go into the first sibling still alive */
1277 do {
1278 next = child->d_child.next;
ca5358ef
AV
1279 if (next == &this_parent->d_subdirs)
1280 goto ascend;
1281 child = list_entry(next, struct dentry, d_child);
2159184e 1282 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1283 rcu_read_unlock();
1da177e4
LT
1284 goto resume;
1285 }
ca5358ef 1286 if (need_seqretry(&rename_lock, seq))
949854d0 1287 goto rename_retry;
ca5358ef 1288 rcu_read_unlock();
db14fc3a
MS
1289 if (finish)
1290 finish(data);
1291
1292out_unlock:
1293 spin_unlock(&this_parent->d_lock);
48f5ec21 1294 done_seqretry(&rename_lock, seq);
db14fc3a 1295 return;
58db63d0
NP
1296
1297rename_retry:
ca5358ef
AV
1298 spin_unlock(&this_parent->d_lock);
1299 rcu_read_unlock();
1300 BUG_ON(seq & 1);
db14fc3a
MS
1301 if (!retry)
1302 return;
48f5ec21 1303 seq = 1;
58db63d0 1304 goto again;
1da177e4 1305}
db14fc3a 1306
01619491
IK
1307struct check_mount {
1308 struct vfsmount *mnt;
1309 unsigned int mounted;
1310};
1311
1312static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1313{
1314 struct check_mount *info = data;
1315 struct path path = { .mnt = info->mnt, .dentry = dentry };
1316
1317 if (likely(!d_mountpoint(dentry)))
1318 return D_WALK_CONTINUE;
1319 if (__path_is_mountpoint(&path)) {
1320 info->mounted = 1;
1321 return D_WALK_QUIT;
1322 }
1323 return D_WALK_CONTINUE;
1324}
1325
1326/**
1327 * path_has_submounts - check for mounts over a dentry in the
1328 * current namespace.
1329 * @parent: path to check.
1330 *
1331 * Return true if the parent or its subdirectories contain
1332 * a mount point in the current namespace.
1333 */
1334int path_has_submounts(const struct path *parent)
1335{
1336 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1337
1338 read_seqlock_excl(&mount_lock);
1339 d_walk(parent->dentry, &data, path_check_mount, NULL);
1340 read_sequnlock_excl(&mount_lock);
1341
1342 return data.mounted;
1343}
1344EXPORT_SYMBOL(path_has_submounts);
1345
eed81007
MS
1346/*
1347 * Called by mount code to set a mountpoint and check if the mountpoint is
1348 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1349 * subtree can become unreachable).
1350 *
1ffe46d1 1351 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1352 * this reason take rename_lock and d_lock on dentry and ancestors.
1353 */
1354int d_set_mounted(struct dentry *dentry)
1355{
1356 struct dentry *p;
1357 int ret = -ENOENT;
1358 write_seqlock(&rename_lock);
1359 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1360 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1361 spin_lock(&p->d_lock);
1362 if (unlikely(d_unhashed(p))) {
1363 spin_unlock(&p->d_lock);
1364 goto out;
1365 }
1366 spin_unlock(&p->d_lock);
1367 }
1368 spin_lock(&dentry->d_lock);
1369 if (!d_unlinked(dentry)) {
3895dbf8
EB
1370 ret = -EBUSY;
1371 if (!d_mountpoint(dentry)) {
1372 dentry->d_flags |= DCACHE_MOUNTED;
1373 ret = 0;
1374 }
eed81007
MS
1375 }
1376 spin_unlock(&dentry->d_lock);
1377out:
1378 write_sequnlock(&rename_lock);
1379 return ret;
1380}
1381
1da177e4 1382/*
fd517909 1383 * Search the dentry child list of the specified parent,
1da177e4
LT
1384 * and move any unused dentries to the end of the unused
1385 * list for prune_dcache(). We descend to the next level
1386 * whenever the d_subdirs list is non-empty and continue
1387 * searching.
1388 *
1389 * It returns zero iff there are no unused children,
1390 * otherwise it returns the number of children moved to
1391 * the end of the unused list. This may not be the total
1392 * number of unused children, because select_parent can
1393 * drop the lock and return early due to latency
1394 * constraints.
1395 */
1da177e4 1396
db14fc3a
MS
1397struct select_data {
1398 struct dentry *start;
1399 struct list_head dispose;
1400 int found;
1401};
23044507 1402
db14fc3a
MS
1403static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1404{
1405 struct select_data *data = _data;
1406 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1407
db14fc3a
MS
1408 if (data->start == dentry)
1409 goto out;
2fd6b7f5 1410
fe91522a 1411 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1412 data->found++;
fe91522a
AV
1413 } else {
1414 if (dentry->d_flags & DCACHE_LRU_LIST)
1415 d_lru_del(dentry);
1416 if (!dentry->d_lockref.count) {
1417 d_shrink_add(dentry, &data->dispose);
1418 data->found++;
1419 }
1da177e4 1420 }
db14fc3a
MS
1421 /*
1422 * We can return to the caller if we have found some (this
1423 * ensures forward progress). We'll be coming back to find
1424 * the rest.
1425 */
fe91522a
AV
1426 if (!list_empty(&data->dispose))
1427 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1428out:
db14fc3a 1429 return ret;
1da177e4
LT
1430}
1431
1432/**
1433 * shrink_dcache_parent - prune dcache
1434 * @parent: parent of entries to prune
1435 *
1436 * Prune the dcache to remove unused children of the parent dentry.
1437 */
db14fc3a 1438void shrink_dcache_parent(struct dentry *parent)
1da177e4 1439{
db14fc3a
MS
1440 for (;;) {
1441 struct select_data data;
1da177e4 1442
db14fc3a
MS
1443 INIT_LIST_HEAD(&data.dispose);
1444 data.start = parent;
1445 data.found = 0;
1446
1447 d_walk(parent, &data, select_collect, NULL);
1448 if (!data.found)
1449 break;
1450
1451 shrink_dentry_list(&data.dispose);
421348f1
GT
1452 cond_resched();
1453 }
1da177e4 1454}
ec4f8605 1455EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1456
9c8c10e2 1457static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1458{
9c8c10e2
AV
1459 /* it has busy descendents; complain about those instead */
1460 if (!list_empty(&dentry->d_subdirs))
1461 return D_WALK_CONTINUE;
42c32608 1462
9c8c10e2
AV
1463 /* root with refcount 1 is fine */
1464 if (dentry == _data && dentry->d_lockref.count == 1)
1465 return D_WALK_CONTINUE;
1466
1467 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1468 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1469 dentry,
1470 dentry->d_inode ?
1471 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1472 dentry,
42c32608
AV
1473 dentry->d_lockref.count,
1474 dentry->d_sb->s_type->name,
1475 dentry->d_sb->s_id);
9c8c10e2
AV
1476 WARN_ON(1);
1477 return D_WALK_CONTINUE;
1478}
1479
1480static void do_one_tree(struct dentry *dentry)
1481{
1482 shrink_dcache_parent(dentry);
1483 d_walk(dentry, dentry, umount_check, NULL);
1484 d_drop(dentry);
1485 dput(dentry);
42c32608
AV
1486}
1487
1488/*
1489 * destroy the dentries attached to a superblock on unmounting
1490 */
1491void shrink_dcache_for_umount(struct super_block *sb)
1492{
1493 struct dentry *dentry;
1494
9c8c10e2 1495 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1496
1497 dentry = sb->s_root;
1498 sb->s_root = NULL;
9c8c10e2 1499 do_one_tree(dentry);
42c32608 1500
f1ee6162
N
1501 while (!hlist_bl_empty(&sb->s_roots)) {
1502 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1503 do_one_tree(dentry);
42c32608
AV
1504 }
1505}
1506
8ed936b5
EB
1507struct detach_data {
1508 struct select_data select;
1509 struct dentry *mountpoint;
1510};
1511static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1512{
8ed936b5 1513 struct detach_data *data = _data;
848ac114
MS
1514
1515 if (d_mountpoint(dentry)) {
8ed936b5
EB
1516 __dget_dlock(dentry);
1517 data->mountpoint = dentry;
848ac114
MS
1518 return D_WALK_QUIT;
1519 }
1520
8ed936b5 1521 return select_collect(&data->select, dentry);
848ac114
MS
1522}
1523
1524static void check_and_drop(void *_data)
1525{
8ed936b5 1526 struct detach_data *data = _data;
848ac114 1527
81be24d2 1528 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1529 __d_drop(data->select.start);
848ac114
MS
1530}
1531
1532/**
1ffe46d1
EB
1533 * d_invalidate - detach submounts, prune dcache, and drop
1534 * @dentry: dentry to invalidate (aka detach, prune and drop)
1535 *
1ffe46d1 1536 * no dcache lock.
848ac114 1537 *
8ed936b5
EB
1538 * The final d_drop is done as an atomic operation relative to
1539 * rename_lock ensuring there are no races with d_set_mounted. This
1540 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1541 */
5542aa2f 1542void d_invalidate(struct dentry *dentry)
848ac114 1543{
1ffe46d1
EB
1544 /*
1545 * If it's already been dropped, return OK.
1546 */
1547 spin_lock(&dentry->d_lock);
1548 if (d_unhashed(dentry)) {
1549 spin_unlock(&dentry->d_lock);
5542aa2f 1550 return;
1ffe46d1
EB
1551 }
1552 spin_unlock(&dentry->d_lock);
1553
848ac114
MS
1554 /* Negative dentries can be dropped without further checks */
1555 if (!dentry->d_inode) {
1556 d_drop(dentry);
5542aa2f 1557 return;
848ac114
MS
1558 }
1559
1560 for (;;) {
8ed936b5 1561 struct detach_data data;
848ac114 1562
8ed936b5
EB
1563 data.mountpoint = NULL;
1564 INIT_LIST_HEAD(&data.select.dispose);
1565 data.select.start = dentry;
1566 data.select.found = 0;
1567
1568 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1569
81be24d2 1570 if (!list_empty(&data.select.dispose))
8ed936b5 1571 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1572 else if (!data.mountpoint)
1573 return;
848ac114 1574
8ed936b5
EB
1575 if (data.mountpoint) {
1576 detach_mounts(data.mountpoint);
1577 dput(data.mountpoint);
1578 }
848ac114
MS
1579 cond_resched();
1580 }
848ac114 1581}
1ffe46d1 1582EXPORT_SYMBOL(d_invalidate);
848ac114 1583
1da177e4 1584/**
a4464dbc
AV
1585 * __d_alloc - allocate a dcache entry
1586 * @sb: filesystem it will belong to
1da177e4
LT
1587 * @name: qstr of the name
1588 *
1589 * Allocates a dentry. It returns %NULL if there is insufficient memory
1590 * available. On a success the dentry is returned. The name passed in is
1591 * copied and the copy passed in may be reused after this call.
1592 */
1593
a4464dbc 1594struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1595{
1596 struct dentry *dentry;
1597 char *dname;
285b102d 1598 int err;
1da177e4 1599
e12ba74d 1600 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1601 if (!dentry)
1602 return NULL;
1603
6326c71f
LT
1604 /*
1605 * We guarantee that the inline name is always NUL-terminated.
1606 * This way the memcpy() done by the name switching in rename
1607 * will still always have a NUL at the end, even if we might
1608 * be overwriting an internal NUL character
1609 */
1610 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1611 if (unlikely(!name)) {
cdf01226 1612 name = &slash_name;
798434bd
AV
1613 dname = dentry->d_iname;
1614 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1615 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1616 struct external_name *p = kmalloc(size + name->len,
1617 GFP_KERNEL_ACCOUNT);
8d85b484 1618 if (!p) {
1da177e4
LT
1619 kmem_cache_free(dentry_cache, dentry);
1620 return NULL;
1621 }
8d85b484
AV
1622 atomic_set(&p->u.count, 1);
1623 dname = p->name;
df4c0e36
AR
1624 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1625 kasan_unpoison_shadow(dname,
1626 round_up(name->len + 1, sizeof(unsigned long)));
1da177e4
LT
1627 } else {
1628 dname = dentry->d_iname;
1629 }
1da177e4
LT
1630
1631 dentry->d_name.len = name->len;
1632 dentry->d_name.hash = name->hash;
1633 memcpy(dname, name->name, name->len);
1634 dname[name->len] = 0;
1635
6326c71f
LT
1636 /* Make sure we always see the terminating NUL character */
1637 smp_wmb();
1638 dentry->d_name.name = dname;
1639
98474236 1640 dentry->d_lockref.count = 1;
dea3667b 1641 dentry->d_flags = 0;
1da177e4 1642 spin_lock_init(&dentry->d_lock);
31e6b01f 1643 seqcount_init(&dentry->d_seq);
1da177e4 1644 dentry->d_inode = NULL;
a4464dbc
AV
1645 dentry->d_parent = dentry;
1646 dentry->d_sb = sb;
1da177e4
LT
1647 dentry->d_op = NULL;
1648 dentry->d_fsdata = NULL;
ceb5bdc2 1649 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1650 INIT_LIST_HEAD(&dentry->d_lru);
1651 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1652 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1653 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1654 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1655
285b102d
MS
1656 if (dentry->d_op && dentry->d_op->d_init) {
1657 err = dentry->d_op->d_init(dentry);
1658 if (err) {
1659 if (dname_external(dentry))
1660 kfree(external_name(dentry));
1661 kmem_cache_free(dentry_cache, dentry);
1662 return NULL;
1663 }
1664 }
1665
3e880fb5 1666 this_cpu_inc(nr_dentry);
312d3ca8 1667
1da177e4
LT
1668 return dentry;
1669}
a4464dbc
AV
1670
1671/**
1672 * d_alloc - allocate a dcache entry
1673 * @parent: parent of entry to allocate
1674 * @name: qstr of the name
1675 *
1676 * Allocates a dentry. It returns %NULL if there is insufficient memory
1677 * available. On a success the dentry is returned. The name passed in is
1678 * copied and the copy passed in may be reused after this call.
1679 */
1680struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1681{
1682 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1683 if (!dentry)
1684 return NULL;
3d56c25e 1685 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1686 spin_lock(&parent->d_lock);
1687 /*
1688 * don't need child lock because it is not subject
1689 * to concurrency here
1690 */
1691 __dget_dlock(parent);
1692 dentry->d_parent = parent;
946e51f2 1693 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1694 spin_unlock(&parent->d_lock);
1695
1696 return dentry;
1697}
ec4f8605 1698EXPORT_SYMBOL(d_alloc);
1da177e4 1699
ba65dc5e
AV
1700struct dentry *d_alloc_cursor(struct dentry * parent)
1701{
1702 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1703 if (dentry) {
1704 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1705 dentry->d_parent = dget(parent);
1706 }
1707 return dentry;
1708}
1709
e1a24bb0
BF
1710/**
1711 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1712 * @sb: the superblock
1713 * @name: qstr of the name
1714 *
1715 * For a filesystem that just pins its dentries in memory and never
1716 * performs lookups at all, return an unhashed IS_ROOT dentry.
1717 */
4b936885
NP
1718struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1719{
e1a24bb0 1720 return __d_alloc(sb, name);
4b936885
NP
1721}
1722EXPORT_SYMBOL(d_alloc_pseudo);
1723
1da177e4
LT
1724struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1725{
1726 struct qstr q;
1727
1728 q.name = name;
8387ff25 1729 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1730 return d_alloc(parent, &q);
1731}
ef26ca97 1732EXPORT_SYMBOL(d_alloc_name);
1da177e4 1733
fb045adb
NP
1734void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1735{
6f7f7caa
LT
1736 WARN_ON_ONCE(dentry->d_op);
1737 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1738 DCACHE_OP_COMPARE |
1739 DCACHE_OP_REVALIDATE |
ecf3d1f1 1740 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1741 DCACHE_OP_DELETE |
d101a125 1742 DCACHE_OP_REAL));
fb045adb
NP
1743 dentry->d_op = op;
1744 if (!op)
1745 return;
1746 if (op->d_hash)
1747 dentry->d_flags |= DCACHE_OP_HASH;
1748 if (op->d_compare)
1749 dentry->d_flags |= DCACHE_OP_COMPARE;
1750 if (op->d_revalidate)
1751 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1752 if (op->d_weak_revalidate)
1753 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1754 if (op->d_delete)
1755 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1756 if (op->d_prune)
1757 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1758 if (op->d_real)
1759 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1760
1761}
1762EXPORT_SYMBOL(d_set_d_op);
1763
df1a085a
DH
1764
1765/*
1766 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1767 * @dentry - The dentry to mark
1768 *
1769 * Mark a dentry as falling through to the lower layer (as set with
1770 * d_pin_lower()). This flag may be recorded on the medium.
1771 */
1772void d_set_fallthru(struct dentry *dentry)
1773{
1774 spin_lock(&dentry->d_lock);
1775 dentry->d_flags |= DCACHE_FALLTHRU;
1776 spin_unlock(&dentry->d_lock);
1777}
1778EXPORT_SYMBOL(d_set_fallthru);
1779
b18825a7
DH
1780static unsigned d_flags_for_inode(struct inode *inode)
1781{
44bdb5e5 1782 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1783
1784 if (!inode)
1785 return DCACHE_MISS_TYPE;
1786
1787 if (S_ISDIR(inode->i_mode)) {
1788 add_flags = DCACHE_DIRECTORY_TYPE;
1789 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1790 if (unlikely(!inode->i_op->lookup))
1791 add_flags = DCACHE_AUTODIR_TYPE;
1792 else
1793 inode->i_opflags |= IOP_LOOKUP;
1794 }
44bdb5e5
DH
1795 goto type_determined;
1796 }
1797
1798 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1799 if (unlikely(inode->i_op->get_link)) {
b18825a7 1800 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1801 goto type_determined;
1802 }
1803 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1804 }
1805
44bdb5e5
DH
1806 if (unlikely(!S_ISREG(inode->i_mode)))
1807 add_flags = DCACHE_SPECIAL_TYPE;
1808
1809type_determined:
b18825a7
DH
1810 if (unlikely(IS_AUTOMOUNT(inode)))
1811 add_flags |= DCACHE_NEED_AUTOMOUNT;
1812 return add_flags;
1813}
1814
360da900
OH
1815static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1816{
b18825a7 1817 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1818 WARN_ON(d_in_lookup(dentry));
b18825a7 1819
b23fb0a6 1820 spin_lock(&dentry->d_lock);
de689f5e 1821 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1822 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1823 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1824 raw_write_seqcount_end(&dentry->d_seq);
affda484 1825 fsnotify_update_flags(dentry);
b23fb0a6 1826 spin_unlock(&dentry->d_lock);
360da900
OH
1827}
1828
1da177e4
LT
1829/**
1830 * d_instantiate - fill in inode information for a dentry
1831 * @entry: dentry to complete
1832 * @inode: inode to attach to this dentry
1833 *
1834 * Fill in inode information in the entry.
1835 *
1836 * This turns negative dentries into productive full members
1837 * of society.
1838 *
1839 * NOTE! This assumes that the inode count has been incremented
1840 * (or otherwise set) by the caller to indicate that it is now
1841 * in use by the dcache.
1842 */
1843
1844void d_instantiate(struct dentry *entry, struct inode * inode)
1845{
946e51f2 1846 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1847 if (inode) {
b9680917 1848 security_d_instantiate(entry, inode);
873feea0 1849 spin_lock(&inode->i_lock);
de689f5e 1850 __d_instantiate(entry, inode);
873feea0 1851 spin_unlock(&inode->i_lock);
de689f5e 1852 }
1da177e4 1853}
ec4f8605 1854EXPORT_SYMBOL(d_instantiate);
1da177e4 1855
b70a80e7
MS
1856/**
1857 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1858 * @entry: dentry to complete
1859 * @inode: inode to attach to this dentry
1860 *
1861 * Fill in inode information in the entry. If a directory alias is found, then
1862 * return an error (and drop inode). Together with d_materialise_unique() this
1863 * guarantees that a directory inode may never have more than one alias.
1864 */
1865int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1866{
946e51f2 1867 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1868
b9680917 1869 security_d_instantiate(entry, inode);
b70a80e7
MS
1870 spin_lock(&inode->i_lock);
1871 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1872 spin_unlock(&inode->i_lock);
1873 iput(inode);
1874 return -EBUSY;
1875 }
1876 __d_instantiate(entry, inode);
1877 spin_unlock(&inode->i_lock);
b70a80e7
MS
1878
1879 return 0;
1880}
1881EXPORT_SYMBOL(d_instantiate_no_diralias);
1882
adc0e91a
AV
1883struct dentry *d_make_root(struct inode *root_inode)
1884{
1885 struct dentry *res = NULL;
1886
1887 if (root_inode) {
798434bd 1888 res = __d_alloc(root_inode->i_sb, NULL);
adc0e91a
AV
1889 if (res)
1890 d_instantiate(res, root_inode);
1891 else
1892 iput(root_inode);
1893 }
1894 return res;
1895}
1896EXPORT_SYMBOL(d_make_root);
1897
d891eedb
BF
1898static struct dentry * __d_find_any_alias(struct inode *inode)
1899{
1900 struct dentry *alias;
1901
b3d9b7a3 1902 if (hlist_empty(&inode->i_dentry))
d891eedb 1903 return NULL;
946e51f2 1904 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1905 __dget(alias);
1906 return alias;
1907}
1908
46f72b34
SW
1909/**
1910 * d_find_any_alias - find any alias for a given inode
1911 * @inode: inode to find an alias for
1912 *
1913 * If any aliases exist for the given inode, take and return a
1914 * reference for one of them. If no aliases exist, return %NULL.
1915 */
1916struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1917{
1918 struct dentry *de;
1919
1920 spin_lock(&inode->i_lock);
1921 de = __d_find_any_alias(inode);
1922 spin_unlock(&inode->i_lock);
1923 return de;
1924}
46f72b34 1925EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1926
49c7dd28 1927static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1928{
9308a612
CH
1929 struct dentry *tmp;
1930 struct dentry *res;
b18825a7 1931 unsigned add_flags;
4ea3ada2
CH
1932
1933 if (!inode)
44003728 1934 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1935 if (IS_ERR(inode))
1936 return ERR_CAST(inode);
1937
d891eedb 1938 res = d_find_any_alias(inode);
9308a612
CH
1939 if (res)
1940 goto out_iput;
1941
798434bd 1942 tmp = __d_alloc(inode->i_sb, NULL);
9308a612
CH
1943 if (!tmp) {
1944 res = ERR_PTR(-ENOMEM);
1945 goto out_iput;
4ea3ada2 1946 }
b5c84bf6 1947
b9680917 1948 security_d_instantiate(tmp, inode);
873feea0 1949 spin_lock(&inode->i_lock);
d891eedb 1950 res = __d_find_any_alias(inode);
9308a612 1951 if (res) {
873feea0 1952 spin_unlock(&inode->i_lock);
9308a612
CH
1953 dput(tmp);
1954 goto out_iput;
1955 }
1956
1957 /* attach a disconnected dentry */
1a0a397e
BF
1958 add_flags = d_flags_for_inode(inode);
1959
1960 if (disconnected)
1961 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1962
9308a612 1963 spin_lock(&tmp->d_lock);
4bf46a27 1964 __d_set_inode_and_type(tmp, inode, add_flags);
946e51f2 1965 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
f1ee6162
N
1966 if (!disconnected) {
1967 hlist_bl_lock(&tmp->d_sb->s_roots);
1968 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_roots);
1969 hlist_bl_unlock(&tmp->d_sb->s_roots);
1970 }
9308a612 1971 spin_unlock(&tmp->d_lock);
873feea0 1972 spin_unlock(&inode->i_lock);
9308a612 1973
9308a612
CH
1974 return tmp;
1975
1976 out_iput:
1977 iput(inode);
1978 return res;
4ea3ada2 1979}
1a0a397e
BF
1980
1981/**
1982 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1983 * @inode: inode to allocate the dentry for
1984 *
1985 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1986 * similar open by handle operations. The returned dentry may be anonymous,
1987 * or may have a full name (if the inode was already in the cache).
1988 *
1989 * When called on a directory inode, we must ensure that the inode only ever
1990 * has one dentry. If a dentry is found, that is returned instead of
1991 * allocating a new one.
1992 *
1993 * On successful return, the reference to the inode has been transferred
1994 * to the dentry. In case of an error the reference on the inode is released.
1995 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1996 * be passed in and the error will be propagated to the return value,
1997 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1998 */
1999struct dentry *d_obtain_alias(struct inode *inode)
2000{
2001 return __d_obtain_alias(inode, 1);
2002}
adc48720 2003EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2004
1a0a397e
BF
2005/**
2006 * d_obtain_root - find or allocate a dentry for a given inode
2007 * @inode: inode to allocate the dentry for
2008 *
2009 * Obtain an IS_ROOT dentry for the root of a filesystem.
2010 *
2011 * We must ensure that directory inodes only ever have one dentry. If a
2012 * dentry is found, that is returned instead of allocating a new one.
2013 *
2014 * On successful return, the reference to the inode has been transferred
2015 * to the dentry. In case of an error the reference on the inode is
2016 * released. A %NULL or IS_ERR inode may be passed in and will be the
2017 * error will be propagate to the return value, with a %NULL @inode
2018 * replaced by ERR_PTR(-ESTALE).
2019 */
2020struct dentry *d_obtain_root(struct inode *inode)
2021{
2022 return __d_obtain_alias(inode, 0);
2023}
2024EXPORT_SYMBOL(d_obtain_root);
2025
9403540c
BN
2026/**
2027 * d_add_ci - lookup or allocate new dentry with case-exact name
2028 * @inode: the inode case-insensitive lookup has found
2029 * @dentry: the negative dentry that was passed to the parent's lookup func
2030 * @name: the case-exact name to be associated with the returned dentry
2031 *
2032 * This is to avoid filling the dcache with case-insensitive names to the
2033 * same inode, only the actual correct case is stored in the dcache for
2034 * case-insensitive filesystems.
2035 *
2036 * For a case-insensitive lookup match and if the the case-exact dentry
2037 * already exists in in the dcache, use it and return it.
2038 *
2039 * If no entry exists with the exact case name, allocate new dentry with
2040 * the exact case, and return the spliced entry.
2041 */
e45b590b 2042struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2043 struct qstr *name)
2044{
d9171b93 2045 struct dentry *found, *res;
9403540c 2046
b6520c81
CH
2047 /*
2048 * First check if a dentry matching the name already exists,
2049 * if not go ahead and create it now.
2050 */
9403540c 2051 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2052 if (found) {
2053 iput(inode);
2054 return found;
2055 }
2056 if (d_in_lookup(dentry)) {
2057 found = d_alloc_parallel(dentry->d_parent, name,
2058 dentry->d_wait);
2059 if (IS_ERR(found) || !d_in_lookup(found)) {
2060 iput(inode);
2061 return found;
9403540c 2062 }
d9171b93
AV
2063 } else {
2064 found = d_alloc(dentry->d_parent, name);
2065 if (!found) {
2066 iput(inode);
2067 return ERR_PTR(-ENOMEM);
2068 }
2069 }
2070 res = d_splice_alias(inode, found);
2071 if (res) {
2072 dput(found);
2073 return res;
9403540c 2074 }
4f522a24 2075 return found;
9403540c 2076}
ec4f8605 2077EXPORT_SYMBOL(d_add_ci);
1da177e4 2078
12f8ad4b 2079
d4c91a8f
AV
2080static inline bool d_same_name(const struct dentry *dentry,
2081 const struct dentry *parent,
2082 const struct qstr *name)
12f8ad4b 2083{
d4c91a8f
AV
2084 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2085 if (dentry->d_name.len != name->len)
2086 return false;
2087 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2088 }
6fa67e70 2089 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2090 dentry->d_name.len, dentry->d_name.name,
2091 name) == 0;
12f8ad4b
LT
2092}
2093
31e6b01f
NP
2094/**
2095 * __d_lookup_rcu - search for a dentry (racy, store-free)
2096 * @parent: parent dentry
2097 * @name: qstr of name we wish to find
1f1e6e52 2098 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2099 * Returns: dentry, or NULL
2100 *
2101 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2102 * resolution (store-free path walking) design described in
2103 * Documentation/filesystems/path-lookup.txt.
2104 *
2105 * This is not to be used outside core vfs.
2106 *
2107 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2108 * held, and rcu_read_lock held. The returned dentry must not be stored into
2109 * without taking d_lock and checking d_seq sequence count against @seq
2110 * returned here.
2111 *
15570086 2112 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2113 * function.
2114 *
2115 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2116 * the returned dentry, so long as its parent's seqlock is checked after the
2117 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2118 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2119 *
2120 * NOTE! The caller *has* to check the resulting dentry against the sequence
2121 * number we've returned before using any of the resulting dentry state!
31e6b01f 2122 */
8966be90
LT
2123struct dentry *__d_lookup_rcu(const struct dentry *parent,
2124 const struct qstr *name,
da53be12 2125 unsigned *seqp)
31e6b01f 2126{
26fe5750 2127 u64 hashlen = name->hash_len;
31e6b01f 2128 const unsigned char *str = name->name;
8387ff25 2129 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2130 struct hlist_bl_node *node;
31e6b01f
NP
2131 struct dentry *dentry;
2132
2133 /*
2134 * Note: There is significant duplication with __d_lookup_rcu which is
2135 * required to prevent single threaded performance regressions
2136 * especially on architectures where smp_rmb (in seqcounts) are costly.
2137 * Keep the two functions in sync.
2138 */
2139
2140 /*
2141 * The hash list is protected using RCU.
2142 *
2143 * Carefully use d_seq when comparing a candidate dentry, to avoid
2144 * races with d_move().
2145 *
2146 * It is possible that concurrent renames can mess up our list
2147 * walk here and result in missing our dentry, resulting in the
2148 * false-negative result. d_lookup() protects against concurrent
2149 * renames using rename_lock seqlock.
2150 *
b0a4bb83 2151 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2152 */
b07ad996 2153 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2154 unsigned seq;
31e6b01f 2155
31e6b01f 2156seqretry:
12f8ad4b
LT
2157 /*
2158 * The dentry sequence count protects us from concurrent
da53be12 2159 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2160 *
2161 * The caller must perform a seqcount check in order
da53be12 2162 * to do anything useful with the returned dentry.
12f8ad4b
LT
2163 *
2164 * NOTE! We do a "raw" seqcount_begin here. That means that
2165 * we don't wait for the sequence count to stabilize if it
2166 * is in the middle of a sequence change. If we do the slow
2167 * dentry compare, we will do seqretries until it is stable,
2168 * and if we end up with a successful lookup, we actually
2169 * want to exit RCU lookup anyway.
d4c91a8f
AV
2170 *
2171 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2172 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2173 */
2174 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2175 if (dentry->d_parent != parent)
2176 continue;
2e321806
LT
2177 if (d_unhashed(dentry))
2178 continue;
12f8ad4b 2179
830c0f0e 2180 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2181 int tlen;
2182 const char *tname;
26fe5750
LT
2183 if (dentry->d_name.hash != hashlen_hash(hashlen))
2184 continue;
d4c91a8f
AV
2185 tlen = dentry->d_name.len;
2186 tname = dentry->d_name.name;
2187 /* we want a consistent (name,len) pair */
2188 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2189 cpu_relax();
12f8ad4b
LT
2190 goto seqretry;
2191 }
6fa67e70 2192 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2193 tlen, tname, name) != 0)
2194 continue;
2195 } else {
2196 if (dentry->d_name.hash_len != hashlen)
2197 continue;
2198 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2199 continue;
31e6b01f 2200 }
da53be12 2201 *seqp = seq;
d4c91a8f 2202 return dentry;
31e6b01f
NP
2203 }
2204 return NULL;
2205}
2206
1da177e4
LT
2207/**
2208 * d_lookup - search for a dentry
2209 * @parent: parent dentry
2210 * @name: qstr of name we wish to find
b04f784e 2211 * Returns: dentry, or NULL
1da177e4 2212 *
b04f784e
NP
2213 * d_lookup searches the children of the parent dentry for the name in
2214 * question. If the dentry is found its reference count is incremented and the
2215 * dentry is returned. The caller must use dput to free the entry when it has
2216 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2217 */
da2d8455 2218struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2219{
31e6b01f 2220 struct dentry *dentry;
949854d0 2221 unsigned seq;
1da177e4 2222
b8314f93
DY
2223 do {
2224 seq = read_seqbegin(&rename_lock);
2225 dentry = __d_lookup(parent, name);
2226 if (dentry)
1da177e4
LT
2227 break;
2228 } while (read_seqretry(&rename_lock, seq));
2229 return dentry;
2230}
ec4f8605 2231EXPORT_SYMBOL(d_lookup);
1da177e4 2232
31e6b01f 2233/**
b04f784e
NP
2234 * __d_lookup - search for a dentry (racy)
2235 * @parent: parent dentry
2236 * @name: qstr of name we wish to find
2237 * Returns: dentry, or NULL
2238 *
2239 * __d_lookup is like d_lookup, however it may (rarely) return a
2240 * false-negative result due to unrelated rename activity.
2241 *
2242 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2243 * however it must be used carefully, eg. with a following d_lookup in
2244 * the case of failure.
2245 *
2246 * __d_lookup callers must be commented.
2247 */
a713ca2a 2248struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2249{
1da177e4 2250 unsigned int hash = name->hash;
8387ff25 2251 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2252 struct hlist_bl_node *node;
31e6b01f 2253 struct dentry *found = NULL;
665a7583 2254 struct dentry *dentry;
1da177e4 2255
31e6b01f
NP
2256 /*
2257 * Note: There is significant duplication with __d_lookup_rcu which is
2258 * required to prevent single threaded performance regressions
2259 * especially on architectures where smp_rmb (in seqcounts) are costly.
2260 * Keep the two functions in sync.
2261 */
2262
b04f784e
NP
2263 /*
2264 * The hash list is protected using RCU.
2265 *
2266 * Take d_lock when comparing a candidate dentry, to avoid races
2267 * with d_move().
2268 *
2269 * It is possible that concurrent renames can mess up our list
2270 * walk here and result in missing our dentry, resulting in the
2271 * false-negative result. d_lookup() protects against concurrent
2272 * renames using rename_lock seqlock.
2273 *
b0a4bb83 2274 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2275 */
1da177e4
LT
2276 rcu_read_lock();
2277
b07ad996 2278 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2279
1da177e4
LT
2280 if (dentry->d_name.hash != hash)
2281 continue;
1da177e4
LT
2282
2283 spin_lock(&dentry->d_lock);
1da177e4
LT
2284 if (dentry->d_parent != parent)
2285 goto next;
d0185c08
LT
2286 if (d_unhashed(dentry))
2287 goto next;
2288
d4c91a8f
AV
2289 if (!d_same_name(dentry, parent, name))
2290 goto next;
1da177e4 2291
98474236 2292 dentry->d_lockref.count++;
d0185c08 2293 found = dentry;
1da177e4
LT
2294 spin_unlock(&dentry->d_lock);
2295 break;
2296next:
2297 spin_unlock(&dentry->d_lock);
2298 }
2299 rcu_read_unlock();
2300
2301 return found;
2302}
2303
3e7e241f
EB
2304/**
2305 * d_hash_and_lookup - hash the qstr then search for a dentry
2306 * @dir: Directory to search in
2307 * @name: qstr of name we wish to find
2308 *
4f522a24 2309 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2310 */
2311struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2312{
3e7e241f
EB
2313 /*
2314 * Check for a fs-specific hash function. Note that we must
2315 * calculate the standard hash first, as the d_op->d_hash()
2316 * routine may choose to leave the hash value unchanged.
2317 */
8387ff25 2318 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2319 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2320 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2321 if (unlikely(err < 0))
2322 return ERR_PTR(err);
3e7e241f 2323 }
4f522a24 2324 return d_lookup(dir, name);
3e7e241f 2325}
4f522a24 2326EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2327
1da177e4
LT
2328/*
2329 * When a file is deleted, we have two options:
2330 * - turn this dentry into a negative dentry
2331 * - unhash this dentry and free it.
2332 *
2333 * Usually, we want to just turn this into
2334 * a negative dentry, but if anybody else is
2335 * currently using the dentry or the inode
2336 * we can't do that and we fall back on removing
2337 * it from the hash queues and waiting for
2338 * it to be deleted later when it has no users
2339 */
2340
2341/**
2342 * d_delete - delete a dentry
2343 * @dentry: The dentry to delete
2344 *
2345 * Turn the dentry into a negative dentry if possible, otherwise
2346 * remove it from the hash queues so it can be deleted later
2347 */
2348
2349void d_delete(struct dentry * dentry)
2350{
873feea0 2351 struct inode *inode;
7a91bf7f 2352 int isdir = 0;
1da177e4
LT
2353 /*
2354 * Are we the only user?
2355 */
357f8e65 2356again:
1da177e4 2357 spin_lock(&dentry->d_lock);
873feea0
NP
2358 inode = dentry->d_inode;
2359 isdir = S_ISDIR(inode->i_mode);
98474236 2360 if (dentry->d_lockref.count == 1) {
1fe0c023 2361 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2362 spin_unlock(&dentry->d_lock);
2363 cpu_relax();
2364 goto again;
2365 }
13e3c5e5 2366 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2367 dentry_unlink_inode(dentry);
7a91bf7f 2368 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2369 return;
2370 }
2371
2372 if (!d_unhashed(dentry))
2373 __d_drop(dentry);
2374
2375 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2376
2377 fsnotify_nameremove(dentry, isdir);
1da177e4 2378}
ec4f8605 2379EXPORT_SYMBOL(d_delete);
1da177e4 2380
15d3c589 2381static void __d_rehash(struct dentry *entry)
1da177e4 2382{
15d3c589 2383 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
ceb5bdc2 2384 BUG_ON(!d_unhashed(entry));
1879fd6a 2385 hlist_bl_lock(b);
b07ad996 2386 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2387 hlist_bl_unlock(b);
1da177e4
LT
2388}
2389
2390/**
2391 * d_rehash - add an entry back to the hash
2392 * @entry: dentry to add to the hash
2393 *
2394 * Adds a dentry to the hash according to its name.
2395 */
2396
2397void d_rehash(struct dentry * entry)
2398{
1da177e4 2399 spin_lock(&entry->d_lock);
15d3c589 2400 __d_rehash(entry);
1da177e4 2401 spin_unlock(&entry->d_lock);
1da177e4 2402}
ec4f8605 2403EXPORT_SYMBOL(d_rehash);
1da177e4 2404
84e710da
AV
2405static inline unsigned start_dir_add(struct inode *dir)
2406{
2407
2408 for (;;) {
2409 unsigned n = dir->i_dir_seq;
2410 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2411 return n;
2412 cpu_relax();
2413 }
2414}
2415
2416static inline void end_dir_add(struct inode *dir, unsigned n)
2417{
2418 smp_store_release(&dir->i_dir_seq, n + 2);
2419}
2420
d9171b93
AV
2421static void d_wait_lookup(struct dentry *dentry)
2422{
2423 if (d_in_lookup(dentry)) {
2424 DECLARE_WAITQUEUE(wait, current);
2425 add_wait_queue(dentry->d_wait, &wait);
2426 do {
2427 set_current_state(TASK_UNINTERRUPTIBLE);
2428 spin_unlock(&dentry->d_lock);
2429 schedule();
2430 spin_lock(&dentry->d_lock);
2431 } while (d_in_lookup(dentry));
2432 }
2433}
2434
94bdd655 2435struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2436 const struct qstr *name,
2437 wait_queue_head_t *wq)
94bdd655 2438{
94bdd655 2439 unsigned int hash = name->hash;
94bdd655
AV
2440 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2441 struct hlist_bl_node *node;
2442 struct dentry *new = d_alloc(parent, name);
2443 struct dentry *dentry;
2444 unsigned seq, r_seq, d_seq;
2445
2446 if (unlikely(!new))
2447 return ERR_PTR(-ENOMEM);
2448
2449retry:
2450 rcu_read_lock();
2451 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2452 r_seq = read_seqbegin(&rename_lock);
2453 dentry = __d_lookup_rcu(parent, name, &d_seq);
2454 if (unlikely(dentry)) {
2455 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2456 rcu_read_unlock();
2457 goto retry;
2458 }
2459 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2460 rcu_read_unlock();
2461 dput(dentry);
2462 goto retry;
2463 }
2464 rcu_read_unlock();
2465 dput(new);
2466 return dentry;
2467 }
2468 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2469 rcu_read_unlock();
2470 goto retry;
2471 }
2472 hlist_bl_lock(b);
2473 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2474 hlist_bl_unlock(b);
2475 rcu_read_unlock();
2476 goto retry;
2477 }
94bdd655
AV
2478 /*
2479 * No changes for the parent since the beginning of d_lookup().
2480 * Since all removals from the chain happen with hlist_bl_lock(),
2481 * any potential in-lookup matches are going to stay here until
2482 * we unlock the chain. All fields are stable in everything
2483 * we encounter.
2484 */
2485 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2486 if (dentry->d_name.hash != hash)
2487 continue;
2488 if (dentry->d_parent != parent)
2489 continue;
d4c91a8f
AV
2490 if (!d_same_name(dentry, parent, name))
2491 continue;
94bdd655 2492 hlist_bl_unlock(b);
e7d6ef97
AV
2493 /* now we can try to grab a reference */
2494 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2495 rcu_read_unlock();
2496 goto retry;
2497 }
2498
2499 rcu_read_unlock();
2500 /*
2501 * somebody is likely to be still doing lookup for it;
2502 * wait for them to finish
2503 */
d9171b93
AV
2504 spin_lock(&dentry->d_lock);
2505 d_wait_lookup(dentry);
2506 /*
2507 * it's not in-lookup anymore; in principle we should repeat
2508 * everything from dcache lookup, but it's likely to be what
2509 * d_lookup() would've found anyway. If it is, just return it;
2510 * otherwise we really have to repeat the whole thing.
2511 */
2512 if (unlikely(dentry->d_name.hash != hash))
2513 goto mismatch;
2514 if (unlikely(dentry->d_parent != parent))
2515 goto mismatch;
2516 if (unlikely(d_unhashed(dentry)))
2517 goto mismatch;
d4c91a8f
AV
2518 if (unlikely(!d_same_name(dentry, parent, name)))
2519 goto mismatch;
d9171b93
AV
2520 /* OK, it *is* a hashed match; return it */
2521 spin_unlock(&dentry->d_lock);
94bdd655
AV
2522 dput(new);
2523 return dentry;
2524 }
e7d6ef97 2525 rcu_read_unlock();
94bdd655
AV
2526 /* we can't take ->d_lock here; it's OK, though. */
2527 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2528 new->d_wait = wq;
94bdd655
AV
2529 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2530 hlist_bl_unlock(b);
2531 return new;
d9171b93
AV
2532mismatch:
2533 spin_unlock(&dentry->d_lock);
2534 dput(dentry);
2535 goto retry;
94bdd655
AV
2536}
2537EXPORT_SYMBOL(d_alloc_parallel);
2538
85c7f810
AV
2539void __d_lookup_done(struct dentry *dentry)
2540{
94bdd655
AV
2541 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2542 dentry->d_name.hash);
2543 hlist_bl_lock(b);
85c7f810 2544 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2545 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2546 wake_up_all(dentry->d_wait);
2547 dentry->d_wait = NULL;
94bdd655
AV
2548 hlist_bl_unlock(b);
2549 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2550 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2551}
2552EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2553
2554/* inode->i_lock held if inode is non-NULL */
2555
2556static inline void __d_add(struct dentry *dentry, struct inode *inode)
2557{
84e710da
AV
2558 struct inode *dir = NULL;
2559 unsigned n;
0568d705 2560 spin_lock(&dentry->d_lock);
84e710da
AV
2561 if (unlikely(d_in_lookup(dentry))) {
2562 dir = dentry->d_parent->d_inode;
2563 n = start_dir_add(dir);
85c7f810 2564 __d_lookup_done(dentry);
84e710da 2565 }
ed782b5a 2566 if (inode) {
0568d705
AV
2567 unsigned add_flags = d_flags_for_inode(inode);
2568 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2569 raw_write_seqcount_begin(&dentry->d_seq);
2570 __d_set_inode_and_type(dentry, inode, add_flags);
2571 raw_write_seqcount_end(&dentry->d_seq);
affda484 2572 fsnotify_update_flags(dentry);
ed782b5a 2573 }
15d3c589 2574 __d_rehash(dentry);
84e710da
AV
2575 if (dir)
2576 end_dir_add(dir, n);
0568d705
AV
2577 spin_unlock(&dentry->d_lock);
2578 if (inode)
2579 spin_unlock(&inode->i_lock);
ed782b5a
AV
2580}
2581
34d0d19d
AV
2582/**
2583 * d_add - add dentry to hash queues
2584 * @entry: dentry to add
2585 * @inode: The inode to attach to this dentry
2586 *
2587 * This adds the entry to the hash queues and initializes @inode.
2588 * The entry was actually filled in earlier during d_alloc().
2589 */
2590
2591void d_add(struct dentry *entry, struct inode *inode)
2592{
b9680917
AV
2593 if (inode) {
2594 security_d_instantiate(entry, inode);
ed782b5a 2595 spin_lock(&inode->i_lock);
b9680917 2596 }
ed782b5a 2597 __d_add(entry, inode);
34d0d19d
AV
2598}
2599EXPORT_SYMBOL(d_add);
2600
668d0cd5
AV
2601/**
2602 * d_exact_alias - find and hash an exact unhashed alias
2603 * @entry: dentry to add
2604 * @inode: The inode to go with this dentry
2605 *
2606 * If an unhashed dentry with the same name/parent and desired
2607 * inode already exists, hash and return it. Otherwise, return
2608 * NULL.
2609 *
2610 * Parent directory should be locked.
2611 */
2612struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2613{
2614 struct dentry *alias;
668d0cd5
AV
2615 unsigned int hash = entry->d_name.hash;
2616
2617 spin_lock(&inode->i_lock);
2618 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2619 /*
2620 * Don't need alias->d_lock here, because aliases with
2621 * d_parent == entry->d_parent are not subject to name or
2622 * parent changes, because the parent inode i_mutex is held.
2623 */
2624 if (alias->d_name.hash != hash)
2625 continue;
2626 if (alias->d_parent != entry->d_parent)
2627 continue;
d4c91a8f 2628 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2629 continue;
2630 spin_lock(&alias->d_lock);
2631 if (!d_unhashed(alias)) {
2632 spin_unlock(&alias->d_lock);
2633 alias = NULL;
2634 } else {
2635 __dget_dlock(alias);
15d3c589 2636 __d_rehash(alias);
668d0cd5
AV
2637 spin_unlock(&alias->d_lock);
2638 }
2639 spin_unlock(&inode->i_lock);
2640 return alias;
2641 }
2642 spin_unlock(&inode->i_lock);
2643 return NULL;
2644}
2645EXPORT_SYMBOL(d_exact_alias);
2646
fb2d5b86
NP
2647/**
2648 * dentry_update_name_case - update case insensitive dentry with a new name
2649 * @dentry: dentry to be updated
2650 * @name: new name
2651 *
2652 * Update a case insensitive dentry with new case of name.
2653 *
2654 * dentry must have been returned by d_lookup with name @name. Old and new
2655 * name lengths must match (ie. no d_compare which allows mismatched name
2656 * lengths).
2657 *
2658 * Parent inode i_mutex must be held over d_lookup and into this call (to
2659 * keep renames and concurrent inserts, and readdir(2) away).
2660 */
9aba36de 2661void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2662{
5955102c 2663 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2664 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2665
fb2d5b86 2666 spin_lock(&dentry->d_lock);
31e6b01f 2667 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2668 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2669 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2670 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2671}
2672EXPORT_SYMBOL(dentry_update_name_case);
2673
8d85b484 2674static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2675{
8d85b484
AV
2676 if (unlikely(dname_external(target))) {
2677 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2678 /*
2679 * Both external: swap the pointers
2680 */
9a8d5bb4 2681 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2682 } else {
2683 /*
2684 * dentry:internal, target:external. Steal target's
2685 * storage and make target internal.
2686 */
321bcf92
BF
2687 memcpy(target->d_iname, dentry->d_name.name,
2688 dentry->d_name.len + 1);
1da177e4
LT
2689 dentry->d_name.name = target->d_name.name;
2690 target->d_name.name = target->d_iname;
2691 }
2692 } else {
8d85b484 2693 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2694 /*
2695 * dentry:external, target:internal. Give dentry's
2696 * storage to target and make dentry internal
2697 */
2698 memcpy(dentry->d_iname, target->d_name.name,
2699 target->d_name.len + 1);
2700 target->d_name.name = dentry->d_name.name;
2701 dentry->d_name.name = dentry->d_iname;
2702 } else {
2703 /*
da1ce067 2704 * Both are internal.
1da177e4 2705 */
da1ce067
MS
2706 unsigned int i;
2707 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2708 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2709 swap(((long *) &dentry->d_iname)[i],
2710 ((long *) &target->d_iname)[i]);
2711 }
1da177e4
LT
2712 }
2713 }
a28ddb87 2714 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2715}
2716
8d85b484
AV
2717static void copy_name(struct dentry *dentry, struct dentry *target)
2718{
2719 struct external_name *old_name = NULL;
2720 if (unlikely(dname_external(dentry)))
2721 old_name = external_name(dentry);
2722 if (unlikely(dname_external(target))) {
2723 atomic_inc(&external_name(target)->u.count);
2724 dentry->d_name = target->d_name;
2725 } else {
2726 memcpy(dentry->d_iname, target->d_name.name,
2727 target->d_name.len + 1);
2728 dentry->d_name.name = dentry->d_iname;
2729 dentry->d_name.hash_len = target->d_name.hash_len;
2730 }
2731 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2732 kfree_rcu(old_name, u.head);
2733}
2734
2fd6b7f5
NP
2735static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2736{
2737 /*
2738 * XXXX: do we really need to take target->d_lock?
2739 */
2740 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2741 spin_lock(&target->d_parent->d_lock);
2742 else {
2743 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2744 spin_lock(&dentry->d_parent->d_lock);
2745 spin_lock_nested(&target->d_parent->d_lock,
2746 DENTRY_D_LOCK_NESTED);
2747 } else {
2748 spin_lock(&target->d_parent->d_lock);
2749 spin_lock_nested(&dentry->d_parent->d_lock,
2750 DENTRY_D_LOCK_NESTED);
2751 }
2752 }
2753 if (target < dentry) {
2754 spin_lock_nested(&target->d_lock, 2);
2755 spin_lock_nested(&dentry->d_lock, 3);
2756 } else {
2757 spin_lock_nested(&dentry->d_lock, 2);
2758 spin_lock_nested(&target->d_lock, 3);
2759 }
2760}
2761
986c0194 2762static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2763{
2764 if (target->d_parent != dentry->d_parent)
2765 spin_unlock(&dentry->d_parent->d_lock);
2766 if (target->d_parent != target)
2767 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2768 spin_unlock(&target->d_lock);
2769 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2770}
2771
1da177e4 2772/*
2fd6b7f5
NP
2773 * When switching names, the actual string doesn't strictly have to
2774 * be preserved in the target - because we're dropping the target
2775 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2776 * the new name before we switch, unless we are going to rehash
2777 * it. Note that if we *do* unhash the target, we are not allowed
2778 * to rehash it without giving it a new name/hash key - whether
2779 * we swap or overwrite the names here, resulting name won't match
2780 * the reality in filesystem; it's only there for d_path() purposes.
2781 * Note that all of this is happening under rename_lock, so the
2782 * any hash lookup seeing it in the middle of manipulations will
2783 * be discarded anyway. So we do not care what happens to the hash
2784 * key in that case.
1da177e4 2785 */
9eaef27b 2786/*
18367501 2787 * __d_move - move a dentry
1da177e4
LT
2788 * @dentry: entry to move
2789 * @target: new dentry
da1ce067 2790 * @exchange: exchange the two dentries
1da177e4
LT
2791 *
2792 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2793 * dcache entries should not be moved in this way. Caller must hold
2794 * rename_lock, the i_mutex of the source and target directories,
2795 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2796 */
da1ce067
MS
2797static void __d_move(struct dentry *dentry, struct dentry *target,
2798 bool exchange)
1da177e4 2799{
84e710da
AV
2800 struct inode *dir = NULL;
2801 unsigned n;
1da177e4
LT
2802 if (!dentry->d_inode)
2803 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2804
2fd6b7f5
NP
2805 BUG_ON(d_ancestor(dentry, target));
2806 BUG_ON(d_ancestor(target, dentry));
2807
2fd6b7f5 2808 dentry_lock_for_move(dentry, target);
84e710da
AV
2809 if (unlikely(d_in_lookup(target))) {
2810 dir = target->d_parent->d_inode;
2811 n = start_dir_add(dir);
85c7f810 2812 __d_lookup_done(target);
84e710da 2813 }
1da177e4 2814
31e6b01f 2815 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2816 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2817
15d3c589 2818 /* unhash both */
ceb5bdc2 2819 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
ceb5bdc2 2820 __d_drop(dentry);
1da177e4
LT
2821 __d_drop(target);
2822
1da177e4 2823 /* Switch the names.. */
8d85b484
AV
2824 if (exchange)
2825 swap_names(dentry, target);
2826 else
2827 copy_name(dentry, target);
1da177e4 2828
15d3c589
AV
2829 /* rehash in new place(s) */
2830 __d_rehash(dentry);
2831 if (exchange)
2832 __d_rehash(target);
2833
63cf427a 2834 /* ... and switch them in the tree */
1da177e4 2835 if (IS_ROOT(dentry)) {
63cf427a 2836 /* splicing a tree */
3d56c25e 2837 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2838 dentry->d_parent = target->d_parent;
2839 target->d_parent = target;
946e51f2
AV
2840 list_del_init(&target->d_child);
2841 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2842 } else {
63cf427a 2843 /* swapping two dentries */
9a8d5bb4 2844 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2845 list_move(&target->d_child, &target->d_parent->d_subdirs);
2846 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2847 if (exchange)
affda484
AV
2848 fsnotify_update_flags(target);
2849 fsnotify_update_flags(dentry);
1da177e4
LT
2850 }
2851
31e6b01f
NP
2852 write_seqcount_end(&target->d_seq);
2853 write_seqcount_end(&dentry->d_seq);
2854
84e710da
AV
2855 if (dir)
2856 end_dir_add(dir, n);
986c0194 2857 dentry_unlock_for_move(dentry, target);
18367501
AV
2858}
2859
2860/*
2861 * d_move - move a dentry
2862 * @dentry: entry to move
2863 * @target: new dentry
2864 *
2865 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2866 * dcache entries should not be moved in this way. See the locking
2867 * requirements for __d_move.
18367501
AV
2868 */
2869void d_move(struct dentry *dentry, struct dentry *target)
2870{
2871 write_seqlock(&rename_lock);
da1ce067 2872 __d_move(dentry, target, false);
1da177e4 2873 write_sequnlock(&rename_lock);
9eaef27b 2874}
ec4f8605 2875EXPORT_SYMBOL(d_move);
1da177e4 2876
da1ce067
MS
2877/*
2878 * d_exchange - exchange two dentries
2879 * @dentry1: first dentry
2880 * @dentry2: second dentry
2881 */
2882void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2883{
2884 write_seqlock(&rename_lock);
2885
2886 WARN_ON(!dentry1->d_inode);
2887 WARN_ON(!dentry2->d_inode);
2888 WARN_ON(IS_ROOT(dentry1));
2889 WARN_ON(IS_ROOT(dentry2));
2890
2891 __d_move(dentry1, dentry2, true);
2892
2893 write_sequnlock(&rename_lock);
2894}
2895
e2761a11
OH
2896/**
2897 * d_ancestor - search for an ancestor
2898 * @p1: ancestor dentry
2899 * @p2: child dentry
2900 *
2901 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2902 * an ancestor of p2, else NULL.
9eaef27b 2903 */
e2761a11 2904struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2905{
2906 struct dentry *p;
2907
871c0067 2908 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2909 if (p->d_parent == p1)
e2761a11 2910 return p;
9eaef27b 2911 }
e2761a11 2912 return NULL;
9eaef27b
TM
2913}
2914
2915/*
2916 * This helper attempts to cope with remotely renamed directories
2917 *
2918 * It assumes that the caller is already holding
a03e283b 2919 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2920 *
2921 * Note: If ever the locking in lock_rename() changes, then please
2922 * remember to update this too...
9eaef27b 2923 */
b5ae6b15 2924static int __d_unalias(struct inode *inode,
873feea0 2925 struct dentry *dentry, struct dentry *alias)
9eaef27b 2926{
9902af79
AV
2927 struct mutex *m1 = NULL;
2928 struct rw_semaphore *m2 = NULL;
3d330dc1 2929 int ret = -ESTALE;
9eaef27b
TM
2930
2931 /* If alias and dentry share a parent, then no extra locks required */
2932 if (alias->d_parent == dentry->d_parent)
2933 goto out_unalias;
2934
9eaef27b 2935 /* See lock_rename() */
9eaef27b
TM
2936 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2937 goto out_err;
2938 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2939 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2940 goto out_err;
9902af79 2941 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2942out_unalias:
8ed936b5 2943 __d_move(alias, dentry, false);
b5ae6b15 2944 ret = 0;
9eaef27b 2945out_err:
9eaef27b 2946 if (m2)
9902af79 2947 up_read(m2);
9eaef27b
TM
2948 if (m1)
2949 mutex_unlock(m1);
2950 return ret;
2951}
2952
3f70bd51
BF
2953/**
2954 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2955 * @inode: the inode which may have a disconnected dentry
2956 * @dentry: a negative dentry which we want to point to the inode.
2957 *
da093a9b
BF
2958 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2959 * place of the given dentry and return it, else simply d_add the inode
2960 * to the dentry and return NULL.
3f70bd51 2961 *
908790fa
BF
2962 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2963 * we should error out: directories can't have multiple aliases.
2964 *
3f70bd51
BF
2965 * This is needed in the lookup routine of any filesystem that is exportable
2966 * (via knfsd) so that we can build dcache paths to directories effectively.
2967 *
2968 * If a dentry was found and moved, then it is returned. Otherwise NULL
2969 * is returned. This matches the expected return value of ->lookup.
2970 *
2971 * Cluster filesystems may call this function with a negative, hashed dentry.
2972 * In that case, we know that the inode will be a regular file, and also this
2973 * will only occur during atomic_open. So we need to check for the dentry
2974 * being already hashed only in the final case.
2975 */
2976struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2977{
3f70bd51
BF
2978 if (IS_ERR(inode))
2979 return ERR_CAST(inode);
2980
770bfad8
DH
2981 BUG_ON(!d_unhashed(dentry));
2982
de689f5e 2983 if (!inode)
b5ae6b15 2984 goto out;
de689f5e 2985
b9680917 2986 security_d_instantiate(dentry, inode);
873feea0 2987 spin_lock(&inode->i_lock);
9eaef27b 2988 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2989 struct dentry *new = __d_find_any_alias(inode);
2990 if (unlikely(new)) {
a03e283b
EB
2991 /* The reference to new ensures it remains an alias */
2992 spin_unlock(&inode->i_lock);
18367501 2993 write_seqlock(&rename_lock);
b5ae6b15
AV
2994 if (unlikely(d_ancestor(new, dentry))) {
2995 write_sequnlock(&rename_lock);
b5ae6b15
AV
2996 dput(new);
2997 new = ERR_PTR(-ELOOP);
2998 pr_warn_ratelimited(
2999 "VFS: Lookup of '%s' in %s %s"
3000 " would have caused loop\n",
3001 dentry->d_name.name,
3002 inode->i_sb->s_type->name,
3003 inode->i_sb->s_id);
3004 } else if (!IS_ROOT(new)) {
3005 int err = __d_unalias(inode, dentry, new);
18367501 3006 write_sequnlock(&rename_lock);
b5ae6b15
AV
3007 if (err) {
3008 dput(new);
3009 new = ERR_PTR(err);
3010 }
18367501 3011 } else {
b5ae6b15
AV
3012 __d_move(new, dentry, false);
3013 write_sequnlock(&rename_lock);
dd179946 3014 }
b5ae6b15
AV
3015 iput(inode);
3016 return new;
9eaef27b 3017 }
770bfad8 3018 }
b5ae6b15 3019out:
ed782b5a 3020 __d_add(dentry, inode);
b5ae6b15 3021 return NULL;
770bfad8 3022}
b5ae6b15 3023EXPORT_SYMBOL(d_splice_alias);
770bfad8 3024
cdd16d02 3025static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3026{
3027 *buflen -= namelen;
3028 if (*buflen < 0)
3029 return -ENAMETOOLONG;
3030 *buffer -= namelen;
3031 memcpy(*buffer, str, namelen);
3032 return 0;
3033}
3034
232d2d60
WL
3035/**
3036 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3037 * @buffer: buffer pointer
3038 * @buflen: allocated length of the buffer
3039 * @name: name string and length qstr structure
232d2d60 3040 *
66702eb5 3041 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
232d2d60
WL
3042 * make sure that either the old or the new name pointer and length are
3043 * fetched. However, there may be mismatch between length and pointer.
3044 * The length cannot be trusted, we need to copy it byte-by-byte until
3045 * the length is reached or a null byte is found. It also prepends "/" at
3046 * the beginning of the name. The sequence number check at the caller will
3047 * retry it again when a d_move() does happen. So any garbage in the buffer
3048 * due to mismatched pointer and length will be discarded.
6d13f694
AV
3049 *
3050 * Data dependency barrier is needed to make sure that we see that terminating
3051 * NUL. Alpha strikes again, film at 11...
232d2d60 3052 */
9aba36de 3053static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
cdd16d02 3054{
66702eb5
MR
3055 const char *dname = READ_ONCE(name->name);
3056 u32 dlen = READ_ONCE(name->len);
232d2d60
WL
3057 char *p;
3058
6d13f694
AV
3059 smp_read_barrier_depends();
3060
232d2d60 3061 *buflen -= dlen + 1;
e825196d
AV
3062 if (*buflen < 0)
3063 return -ENAMETOOLONG;
232d2d60
WL
3064 p = *buffer -= dlen + 1;
3065 *p++ = '/';
3066 while (dlen--) {
3067 char c = *dname++;
3068 if (!c)
3069 break;
3070 *p++ = c;
3071 }
3072 return 0;
cdd16d02
MS
3073}
3074
1da177e4 3075/**
208898c1 3076 * prepend_path - Prepend path string to a buffer
9d1bc601 3077 * @path: the dentry/vfsmount to report
02125a82 3078 * @root: root vfsmnt/dentry
f2eb6575
MS
3079 * @buffer: pointer to the end of the buffer
3080 * @buflen: pointer to buffer length
552ce544 3081 *
18129977
WL
3082 * The function will first try to write out the pathname without taking any
3083 * lock other than the RCU read lock to make sure that dentries won't go away.
3084 * It only checks the sequence number of the global rename_lock as any change
3085 * in the dentry's d_seq will be preceded by changes in the rename_lock
3086 * sequence number. If the sequence number had been changed, it will restart
3087 * the whole pathname back-tracing sequence again by taking the rename_lock.
3088 * In this case, there is no need to take the RCU read lock as the recursive
3089 * parent pointer references will keep the dentry chain alive as long as no
3090 * rename operation is performed.
1da177e4 3091 */
02125a82
AV
3092static int prepend_path(const struct path *path,
3093 const struct path *root,
f2eb6575 3094 char **buffer, int *buflen)
1da177e4 3095{
ede4cebc
AV
3096 struct dentry *dentry;
3097 struct vfsmount *vfsmnt;
3098 struct mount *mnt;
f2eb6575 3099 int error = 0;
48a066e7 3100 unsigned seq, m_seq = 0;
232d2d60
WL
3101 char *bptr;
3102 int blen;
6092d048 3103
48f5ec21 3104 rcu_read_lock();
48a066e7
AV
3105restart_mnt:
3106 read_seqbegin_or_lock(&mount_lock, &m_seq);
3107 seq = 0;
4ec6c2ae 3108 rcu_read_lock();
232d2d60
WL
3109restart:
3110 bptr = *buffer;
3111 blen = *buflen;
48a066e7 3112 error = 0;
ede4cebc
AV
3113 dentry = path->dentry;
3114 vfsmnt = path->mnt;
3115 mnt = real_mount(vfsmnt);
232d2d60 3116 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3117 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3118 struct dentry * parent;
3119
1da177e4 3120 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
66702eb5 3121 struct mount *parent = READ_ONCE(mnt->mnt_parent);
cde93be4
EB
3122 /* Escaped? */
3123 if (dentry != vfsmnt->mnt_root) {
3124 bptr = *buffer;
3125 blen = *buflen;
3126 error = 3;
3127 break;
3128 }
552ce544 3129 /* Global root? */
48a066e7 3130 if (mnt != parent) {
66702eb5 3131 dentry = READ_ONCE(mnt->mnt_mountpoint);
48a066e7 3132 mnt = parent;
232d2d60
WL
3133 vfsmnt = &mnt->mnt;
3134 continue;
3135 }
232d2d60
WL
3136 if (!error)
3137 error = is_mounted(vfsmnt) ? 1 : 2;
3138 break;
1da177e4
LT
3139 }
3140 parent = dentry->d_parent;
3141 prefetch(parent);
232d2d60 3142 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3143 if (error)
3144 break;
3145
1da177e4
LT
3146 dentry = parent;
3147 }
48f5ec21
AV
3148 if (!(seq & 1))
3149 rcu_read_unlock();
3150 if (need_seqretry(&rename_lock, seq)) {
3151 seq = 1;
232d2d60 3152 goto restart;
48f5ec21
AV
3153 }
3154 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3155
3156 if (!(m_seq & 1))
3157 rcu_read_unlock();
48a066e7
AV
3158 if (need_seqretry(&mount_lock, m_seq)) {
3159 m_seq = 1;
3160 goto restart_mnt;
3161 }
3162 done_seqretry(&mount_lock, m_seq);
1da177e4 3163
232d2d60
WL
3164 if (error >= 0 && bptr == *buffer) {
3165 if (--blen < 0)
3166 error = -ENAMETOOLONG;
3167 else
3168 *--bptr = '/';
3169 }
3170 *buffer = bptr;
3171 *buflen = blen;
7ea600b5 3172 return error;
f2eb6575 3173}
be285c71 3174
f2eb6575
MS
3175/**
3176 * __d_path - return the path of a dentry
3177 * @path: the dentry/vfsmount to report
02125a82 3178 * @root: root vfsmnt/dentry
cd956a1c 3179 * @buf: buffer to return value in
f2eb6575
MS
3180 * @buflen: buffer length
3181 *
ffd1f4ed 3182 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3183 *
3184 * Returns a pointer into the buffer or an error code if the
3185 * path was too long.
3186 *
be148247 3187 * "buflen" should be positive.
f2eb6575 3188 *
02125a82 3189 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3190 */
02125a82
AV
3191char *__d_path(const struct path *path,
3192 const struct path *root,
f2eb6575
MS
3193 char *buf, int buflen)
3194{
3195 char *res = buf + buflen;
3196 int error;
3197
3198 prepend(&res, &buflen, "\0", 1);
f2eb6575 3199 error = prepend_path(path, root, &res, &buflen);
be148247 3200
02125a82
AV
3201 if (error < 0)
3202 return ERR_PTR(error);
3203 if (error > 0)
3204 return NULL;
3205 return res;
3206}
3207
3208char *d_absolute_path(const struct path *path,
3209 char *buf, int buflen)
3210{
3211 struct path root = {};
3212 char *res = buf + buflen;
3213 int error;
3214
3215 prepend(&res, &buflen, "\0", 1);
02125a82 3216 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3217
3218 if (error > 1)
3219 error = -EINVAL;
3220 if (error < 0)
f2eb6575 3221 return ERR_PTR(error);
f2eb6575 3222 return res;
1da177e4
LT
3223}
3224
ffd1f4ed
MS
3225/*
3226 * same as __d_path but appends "(deleted)" for unlinked files.
3227 */
02125a82
AV
3228static int path_with_deleted(const struct path *path,
3229 const struct path *root,
3230 char **buf, int *buflen)
ffd1f4ed
MS
3231{
3232 prepend(buf, buflen, "\0", 1);
3233 if (d_unlinked(path->dentry)) {
3234 int error = prepend(buf, buflen, " (deleted)", 10);
3235 if (error)
3236 return error;
3237 }
3238
3239 return prepend_path(path, root, buf, buflen);
3240}
3241
8df9d1a4
MS
3242static int prepend_unreachable(char **buffer, int *buflen)
3243{
3244 return prepend(buffer, buflen, "(unreachable)", 13);
3245}
3246
68f0d9d9
LT
3247static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3248{
3249 unsigned seq;
3250
3251 do {
3252 seq = read_seqcount_begin(&fs->seq);
3253 *root = fs->root;
3254 } while (read_seqcount_retry(&fs->seq, seq));
3255}
3256
a03a8a70
JB
3257/**
3258 * d_path - return the path of a dentry
cf28b486 3259 * @path: path to report
a03a8a70
JB
3260 * @buf: buffer to return value in
3261 * @buflen: buffer length
3262 *
3263 * Convert a dentry into an ASCII path name. If the entry has been deleted
3264 * the string " (deleted)" is appended. Note that this is ambiguous.
3265 *
52afeefb
AV
3266 * Returns a pointer into the buffer or an error code if the path was
3267 * too long. Note: Callers should use the returned pointer, not the passed
3268 * in buffer, to use the name! The implementation often starts at an offset
3269 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3270 *
31f3e0b3 3271 * "buflen" should be positive.
a03a8a70 3272 */
20d4fdc1 3273char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3274{
ffd1f4ed 3275 char *res = buf + buflen;
6ac08c39 3276 struct path root;
ffd1f4ed 3277 int error;
1da177e4 3278
c23fbb6b
ED
3279 /*
3280 * We have various synthetic filesystems that never get mounted. On
3281 * these filesystems dentries are never used for lookup purposes, and
3282 * thus don't need to be hashed. They also don't need a name until a
3283 * user wants to identify the object in /proc/pid/fd/. The little hack
3284 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3285 *
3286 * Some pseudo inodes are mountable. When they are mounted
3287 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3288 * and instead have d_path return the mounted path.
c23fbb6b 3289 */
f48cfddc
EB
3290 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3291 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3292 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3293
68f0d9d9
LT
3294 rcu_read_lock();
3295 get_fs_root_rcu(current->fs, &root);
02125a82 3296 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3297 rcu_read_unlock();
3298
02125a82 3299 if (error < 0)
ffd1f4ed 3300 res = ERR_PTR(error);
1da177e4
LT
3301 return res;
3302}
ec4f8605 3303EXPORT_SYMBOL(d_path);
1da177e4 3304
c23fbb6b
ED
3305/*
3306 * Helper function for dentry_operations.d_dname() members
3307 */
3308char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3309 const char *fmt, ...)
3310{
3311 va_list args;
3312 char temp[64];
3313 int sz;
3314
3315 va_start(args, fmt);
3316 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3317 va_end(args);
3318
3319 if (sz > sizeof(temp) || sz > buflen)
3320 return ERR_PTR(-ENAMETOOLONG);
3321
3322 buffer += buflen - sz;
3323 return memcpy(buffer, temp, sz);
3324}
3325
118b2302
AV
3326char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3327{
3328 char *end = buffer + buflen;
3329 /* these dentries are never renamed, so d_lock is not needed */
3330 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3331 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3332 prepend(&end, &buflen, "/", 1))
3333 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3334 return end;
118b2302 3335}
31bbe16f 3336EXPORT_SYMBOL(simple_dname);
118b2302 3337
6092d048
RP
3338/*
3339 * Write full pathname from the root of the filesystem into the buffer.
3340 */
f6500801 3341static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3342{
f6500801 3343 struct dentry *dentry;
232d2d60
WL
3344 char *end, *retval;
3345 int len, seq = 0;
3346 int error = 0;
6092d048 3347
f6500801
AV
3348 if (buflen < 2)
3349 goto Elong;
3350
48f5ec21 3351 rcu_read_lock();
232d2d60 3352restart:
f6500801 3353 dentry = d;
232d2d60
WL
3354 end = buf + buflen;
3355 len = buflen;
3356 prepend(&end, &len, "\0", 1);
6092d048
RP
3357 /* Get '/' right */
3358 retval = end-1;
3359 *retval = '/';
232d2d60 3360 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3361 while (!IS_ROOT(dentry)) {
3362 struct dentry *parent = dentry->d_parent;
6092d048 3363
6092d048 3364 prefetch(parent);
232d2d60
WL
3365 error = prepend_name(&end, &len, &dentry->d_name);
3366 if (error)
3367 break;
6092d048
RP
3368
3369 retval = end;
3370 dentry = parent;
3371 }
48f5ec21
AV
3372 if (!(seq & 1))
3373 rcu_read_unlock();
3374 if (need_seqretry(&rename_lock, seq)) {
3375 seq = 1;
232d2d60 3376 goto restart;
48f5ec21
AV
3377 }
3378 done_seqretry(&rename_lock, seq);
232d2d60
WL
3379 if (error)
3380 goto Elong;
c103135c
AV
3381 return retval;
3382Elong:
3383 return ERR_PTR(-ENAMETOOLONG);
3384}
ec2447c2
NP
3385
3386char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3387{
232d2d60 3388 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3389}
3390EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3391
3392char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3393{
3394 char *p = NULL;
3395 char *retval;
3396
c103135c
AV
3397 if (d_unlinked(dentry)) {
3398 p = buf + buflen;
3399 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3400 goto Elong;
3401 buflen++;
3402 }
3403 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3404 if (!IS_ERR(retval) && p)
3405 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3406 return retval;
3407Elong:
6092d048
RP
3408 return ERR_PTR(-ENAMETOOLONG);
3409}
3410
8b19e341
LT
3411static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3412 struct path *pwd)
5762482f 3413{
8b19e341
LT
3414 unsigned seq;
3415
3416 do {
3417 seq = read_seqcount_begin(&fs->seq);
3418 *root = fs->root;
3419 *pwd = fs->pwd;
3420 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3421}
3422
1da177e4
LT
3423/*
3424 * NOTE! The user-level library version returns a
3425 * character pointer. The kernel system call just
3426 * returns the length of the buffer filled (which
3427 * includes the ending '\0' character), or a negative
3428 * error value. So libc would do something like
3429 *
3430 * char *getcwd(char * buf, size_t size)
3431 * {
3432 * int retval;
3433 *
3434 * retval = sys_getcwd(buf, size);
3435 * if (retval >= 0)
3436 * return buf;
3437 * errno = -retval;
3438 * return NULL;
3439 * }
3440 */
3cdad428 3441SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3442{
552ce544 3443 int error;
6ac08c39 3444 struct path pwd, root;
3272c544 3445 char *page = __getname();
1da177e4
LT
3446
3447 if (!page)
3448 return -ENOMEM;
3449
8b19e341
LT
3450 rcu_read_lock();
3451 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3452
552ce544 3453 error = -ENOENT;
f3da392e 3454 if (!d_unlinked(pwd.dentry)) {
552ce544 3455 unsigned long len;
3272c544
LT
3456 char *cwd = page + PATH_MAX;
3457 int buflen = PATH_MAX;
1da177e4 3458
8df9d1a4 3459 prepend(&cwd, &buflen, "\0", 1);
02125a82 3460 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3461 rcu_read_unlock();
552ce544 3462
02125a82 3463 if (error < 0)
552ce544
LT
3464 goto out;
3465
8df9d1a4 3466 /* Unreachable from current root */
02125a82 3467 if (error > 0) {
8df9d1a4
MS
3468 error = prepend_unreachable(&cwd, &buflen);
3469 if (error)
3470 goto out;
3471 }
3472
552ce544 3473 error = -ERANGE;
3272c544 3474 len = PATH_MAX + page - cwd;
552ce544
LT
3475 if (len <= size) {
3476 error = len;
3477 if (copy_to_user(buf, cwd, len))
3478 error = -EFAULT;
3479 }
949854d0 3480 } else {
ff812d72 3481 rcu_read_unlock();
949854d0 3482 }
1da177e4
LT
3483
3484out:
3272c544 3485 __putname(page);
1da177e4
LT
3486 return error;
3487}
3488
3489/*
3490 * Test whether new_dentry is a subdirectory of old_dentry.
3491 *
3492 * Trivially implemented using the dcache structure
3493 */
3494
3495/**
3496 * is_subdir - is new dentry a subdirectory of old_dentry
3497 * @new_dentry: new dentry
3498 * @old_dentry: old dentry
3499 *
a6e5787f
YB
3500 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3501 * Returns false otherwise.
1da177e4
LT
3502 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3503 */
3504
a6e5787f 3505bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3506{
a6e5787f 3507 bool result;
949854d0 3508 unsigned seq;
1da177e4 3509
e2761a11 3510 if (new_dentry == old_dentry)
a6e5787f 3511 return true;
e2761a11 3512
e2761a11 3513 do {
1da177e4 3514 /* for restarting inner loop in case of seq retry */
1da177e4 3515 seq = read_seqbegin(&rename_lock);
949854d0
NP
3516 /*
3517 * Need rcu_readlock to protect against the d_parent trashing
3518 * due to d_move
3519 */
3520 rcu_read_lock();
e2761a11 3521 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3522 result = true;
e2761a11 3523 else
a6e5787f 3524 result = false;
949854d0 3525 rcu_read_unlock();
1da177e4 3526 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3527
3528 return result;
3529}
3530
db14fc3a 3531static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3532{
db14fc3a
MS
3533 struct dentry *root = data;
3534 if (dentry != root) {
3535 if (d_unhashed(dentry) || !dentry->d_inode)
3536 return D_WALK_SKIP;
1da177e4 3537
01ddc4ed
MS
3538 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3539 dentry->d_flags |= DCACHE_GENOCIDE;
3540 dentry->d_lockref.count--;
3541 }
1da177e4 3542 }
db14fc3a
MS
3543 return D_WALK_CONTINUE;
3544}
58db63d0 3545
db14fc3a
MS
3546void d_genocide(struct dentry *parent)
3547{
3548 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3549}
3550
60545d0d 3551void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3552{
60545d0d
AV
3553 inode_dec_link_count(inode);
3554 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3555 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3556 !d_unlinked(dentry));
3557 spin_lock(&dentry->d_parent->d_lock);
3558 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3559 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3560 (unsigned long long)inode->i_ino);
3561 spin_unlock(&dentry->d_lock);
3562 spin_unlock(&dentry->d_parent->d_lock);
3563 d_instantiate(dentry, inode);
1da177e4 3564}
60545d0d 3565EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3566
3567static __initdata unsigned long dhash_entries;
3568static int __init set_dhash_entries(char *str)
3569{
3570 if (!str)
3571 return 0;
3572 dhash_entries = simple_strtoul(str, &str, 0);
3573 return 1;
3574}
3575__setup("dhash_entries=", set_dhash_entries);
3576
3577static void __init dcache_init_early(void)
3578{
1da177e4
LT
3579 /* If hashes are distributed across NUMA nodes, defer
3580 * hash allocation until vmalloc space is available.
3581 */
3582 if (hashdist)
3583 return;
3584
3585 dentry_hashtable =
3586 alloc_large_system_hash("Dentry cache",
b07ad996 3587 sizeof(struct hlist_bl_head),
1da177e4
LT
3588 dhash_entries,
3589 13,
3d375d78 3590 HASH_EARLY | HASH_ZERO,
1da177e4 3591 &d_hash_shift,
b35d786b 3592 NULL,
31fe62b9 3593 0,
1da177e4 3594 0);
854d3e63 3595 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3596}
3597
74bf17cf 3598static void __init dcache_init(void)
1da177e4 3599{
3d375d78 3600 /*
1da177e4
LT
3601 * A constructor could be added for stable state like the lists,
3602 * but it is probably not worth it because of the cache nature
3d375d78 3603 * of the dcache.
1da177e4 3604 */
0a31bd5f 3605 dentry_cache = KMEM_CACHE(dentry,
5d097056 3606 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
1da177e4
LT
3607
3608 /* Hash may have been set up in dcache_init_early */
3609 if (!hashdist)
3610 return;
3611
3612 dentry_hashtable =
3613 alloc_large_system_hash("Dentry cache",
b07ad996 3614 sizeof(struct hlist_bl_head),
1da177e4
LT
3615 dhash_entries,
3616 13,
3d375d78 3617 HASH_ZERO,
1da177e4 3618 &d_hash_shift,
b35d786b 3619 NULL,
31fe62b9 3620 0,
1da177e4 3621 0);
854d3e63 3622 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3623}
3624
3625/* SLAB cache for __getname() consumers */
e18b890b 3626struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3627EXPORT_SYMBOL(names_cachep);
1da177e4 3628
1da177e4
LT
3629EXPORT_SYMBOL(d_genocide);
3630
1da177e4
LT
3631void __init vfs_caches_init_early(void)
3632{
6916363f
SAS
3633 int i;
3634
3635 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3636 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3637
1da177e4
LT
3638 dcache_init_early();
3639 inode_init_early();
3640}
3641
4248b0da 3642void __init vfs_caches_init(void)
1da177e4 3643{
1da177e4 3644 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3645 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3646
74bf17cf
DC
3647 dcache_init();
3648 inode_init();
4248b0da
MG
3649 files_init();
3650 files_maxfiles_init();
74bf17cf 3651 mnt_init();
1da177e4
LT
3652 bdev_cache_init();
3653 chrdev_init();
3654}