oprofilefs: don't oops on allocation failure
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
7a5cf791 17#include <linux/ratelimit.h>
1da177e4
LT
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/seqlock.h>
1da177e4 29#include <linux/bootmem.h>
ceb5bdc2
NP
30#include <linux/bit_spinlock.h>
31#include <linux/rculist_bl.h>
f6041567 32#include <linux/list_lru.h>
07f3f05c 33#include "internal.h"
b2dba1af 34#include "mount.h"
1da177e4 35
789680d1
NP
36/*
37 * Usage:
873feea0 38 * dcache->d_inode->i_lock protects:
946e51f2 39 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
f1ee6162
N
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
19156840 44 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
946e51f2 54 * - d_u.d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
873feea0 57 * dentry->d_inode->i_lock
b5c84bf6 58 * dentry->d_lock
19156840 59 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 60 * dcache_hash_bucket lock
f1ee6162 61 * s_roots lock
789680d1 62 *
da502956
NP
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
65 * ...
66 * dentry->d_parent->d_lock
67 * dentry->d_lock
68 *
69 * If no ancestor relationship:
789680d1
NP
70 * if (dentry1 < dentry2)
71 * dentry1->d_lock
72 * dentry2->d_lock
73 */
fa3536cc 74int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
74c3cbe3 77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 78
949854d0 79EXPORT_SYMBOL(rename_lock);
1da177e4 80
e18b890b 81static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 82
cdf01226
DH
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
87
1da177e4
LT
88/*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
1da177e4 96
fa3536cc 97static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 98
b07ad996 99static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 100
8387ff25 101static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 102{
854d3e63 103 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
104}
105
94bdd655
AV
106#define IN_LOOKUP_SHIFT 10
107static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 unsigned int hash)
111{
112 hash += (unsigned long) parent / L1_CACHE_BYTES;
113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114}
115
116
1da177e4
LT
117/* Statistics gathering. */
118struct dentry_stat_t dentry_stat = {
119 .age_limit = 45,
120};
121
3942c07c 122static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 123static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
124
125#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
126
127/*
128 * Here we resort to our own counters instead of using generic per-cpu counters
129 * for consistency with what the vfs inode code does. We are expected to harvest
130 * better code and performance by having our own specialized counters.
131 *
132 * Please note that the loop is done over all possible CPUs, not over all online
133 * CPUs. The reason for this is that we don't want to play games with CPUs going
134 * on and off. If one of them goes off, we will just keep their counters.
135 *
136 * glommer: See cffbc8a for details, and if you ever intend to change this,
137 * please update all vfs counters to match.
138 */
3942c07c 139static long get_nr_dentry(void)
3e880fb5
NP
140{
141 int i;
3942c07c 142 long sum = 0;
3e880fb5
NP
143 for_each_possible_cpu(i)
144 sum += per_cpu(nr_dentry, i);
145 return sum < 0 ? 0 : sum;
146}
147
62d36c77
DC
148static long get_nr_dentry_unused(void)
149{
150 int i;
151 long sum = 0;
152 for_each_possible_cpu(i)
153 sum += per_cpu(nr_dentry_unused, i);
154 return sum < 0 ? 0 : sum;
155}
156
1f7e0616 157int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
158 size_t *lenp, loff_t *ppos)
159{
3e880fb5 160 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 161 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 162 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
163}
164#endif
165
5483f18e
LT
166/*
167 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
168 * The strings are both count bytes long, and count is non-zero.
169 */
e419b4cc
LT
170#ifdef CONFIG_DCACHE_WORD_ACCESS
171
172#include <asm/word-at-a-time.h>
173/*
174 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
175 * aligned allocation for this particular component. We don't
176 * strictly need the load_unaligned_zeropad() safety, but it
177 * doesn't hurt either.
178 *
179 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
180 * need the careful unaligned handling.
181 */
94753db5 182static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 183{
bfcfaa77 184 unsigned long a,b,mask;
bfcfaa77
LT
185
186 for (;;) {
bfe7aa6c 187 a = read_word_at_a_time(cs);
e419b4cc 188 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
189 if (tcount < sizeof(unsigned long))
190 break;
191 if (unlikely(a != b))
192 return 1;
193 cs += sizeof(unsigned long);
194 ct += sizeof(unsigned long);
195 tcount -= sizeof(unsigned long);
196 if (!tcount)
197 return 0;
198 }
a5c21dce 199 mask = bytemask_from_count(tcount);
bfcfaa77 200 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
201}
202
bfcfaa77 203#else
e419b4cc 204
94753db5 205static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 206{
5483f18e
LT
207 do {
208 if (*cs != *ct)
209 return 1;
210 cs++;
211 ct++;
212 tcount--;
213 } while (tcount);
214 return 0;
215}
216
e419b4cc
LT
217#endif
218
94753db5
LT
219static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
220{
94753db5
LT
221 /*
222 * Be careful about RCU walk racing with rename:
506458ef 223 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
224 *
225 * NOTE! Even if a rename will mean that the length
226 * was not loaded atomically, we don't care. The
227 * RCU walk will check the sequence count eventually,
228 * and catch it. And we won't overrun the buffer,
229 * because we're reading the name pointer atomically,
230 * and a dentry name is guaranteed to be properly
231 * terminated with a NUL byte.
232 *
233 * End result: even if 'len' is wrong, we'll exit
234 * early because the data cannot match (there can
235 * be no NUL in the ct/tcount data)
236 */
506458ef 237 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 238
6326c71f 239 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
240}
241
8d85b484
AV
242struct external_name {
243 union {
244 atomic_t count;
245 struct rcu_head head;
246 } u;
247 unsigned char name[];
248};
249
250static inline struct external_name *external_name(struct dentry *dentry)
251{
252 return container_of(dentry->d_name.name, struct external_name, name[0]);
253}
254
9c82ab9c 255static void __d_free(struct rcu_head *head)
1da177e4 256{
9c82ab9c
CH
257 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
258
8d85b484
AV
259 kmem_cache_free(dentry_cache, dentry);
260}
261
262static void __d_free_external(struct rcu_head *head)
263{
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 265 kfree(external_name(dentry));
1da177e4
LT
266 kmem_cache_free(dentry_cache, dentry);
267}
268
810bb172
AV
269static inline int dname_external(const struct dentry *dentry)
270{
271 return dentry->d_name.name != dentry->d_iname;
272}
273
49d31c2f
AV
274void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
275{
276 spin_lock(&dentry->d_lock);
277 if (unlikely(dname_external(dentry))) {
278 struct external_name *p = external_name(dentry);
279 atomic_inc(&p->u.count);
280 spin_unlock(&dentry->d_lock);
281 name->name = p->name;
282 } else {
283 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
284 spin_unlock(&dentry->d_lock);
285 name->name = name->inline_name;
286 }
287}
288EXPORT_SYMBOL(take_dentry_name_snapshot);
289
290void release_dentry_name_snapshot(struct name_snapshot *name)
291{
292 if (unlikely(name->name != name->inline_name)) {
293 struct external_name *p;
294 p = container_of(name->name, struct external_name, name[0]);
295 if (unlikely(atomic_dec_and_test(&p->u.count)))
296 kfree_rcu(p, u.head);
297 }
298}
299EXPORT_SYMBOL(release_dentry_name_snapshot);
300
4bf46a27
DH
301static inline void __d_set_inode_and_type(struct dentry *dentry,
302 struct inode *inode,
303 unsigned type_flags)
304{
305 unsigned flags;
306
307 dentry->d_inode = inode;
4bf46a27
DH
308 flags = READ_ONCE(dentry->d_flags);
309 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
310 flags |= type_flags;
311 WRITE_ONCE(dentry->d_flags, flags);
312}
313
4bf46a27
DH
314static inline void __d_clear_type_and_inode(struct dentry *dentry)
315{
316 unsigned flags = READ_ONCE(dentry->d_flags);
317
318 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
319 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
320 dentry->d_inode = NULL;
321}
322
b4f0354e
AV
323static void dentry_free(struct dentry *dentry)
324{
946e51f2 325 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
326 if (unlikely(dname_external(dentry))) {
327 struct external_name *p = external_name(dentry);
328 if (likely(atomic_dec_and_test(&p->u.count))) {
329 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
330 return;
331 }
332 }
b4f0354e
AV
333 /* if dentry was never visible to RCU, immediate free is OK */
334 if (!(dentry->d_flags & DCACHE_RCUACCESS))
335 __d_free(&dentry->d_u.d_rcu);
336 else
337 call_rcu(&dentry->d_u.d_rcu, __d_free);
338}
339
1da177e4
LT
340/*
341 * Release the dentry's inode, using the filesystem
550dce01 342 * d_iput() operation if defined.
31e6b01f
NP
343 */
344static void dentry_unlink_inode(struct dentry * dentry)
345 __releases(dentry->d_lock)
873feea0 346 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
347{
348 struct inode *inode = dentry->d_inode;
550dce01 349 bool hashed = !d_unhashed(dentry);
a528aca7 350
550dce01
AV
351 if (hashed)
352 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 353 __d_clear_type_and_inode(dentry);
946e51f2 354 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
355 if (hashed)
356 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 357 spin_unlock(&dentry->d_lock);
873feea0 358 spin_unlock(&inode->i_lock);
31e6b01f
NP
359 if (!inode->i_nlink)
360 fsnotify_inoderemove(inode);
361 if (dentry->d_op && dentry->d_op->d_iput)
362 dentry->d_op->d_iput(dentry, inode);
363 else
364 iput(inode);
365}
366
89dc77bc
LT
367/*
368 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
369 * is in use - which includes both the "real" per-superblock
370 * LRU list _and_ the DCACHE_SHRINK_LIST use.
371 *
372 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
373 * on the shrink list (ie not on the superblock LRU list).
374 *
375 * The per-cpu "nr_dentry_unused" counters are updated with
376 * the DCACHE_LRU_LIST bit.
377 *
378 * These helper functions make sure we always follow the
379 * rules. d_lock must be held by the caller.
380 */
381#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
382static void d_lru_add(struct dentry *dentry)
383{
384 D_FLAG_VERIFY(dentry, 0);
385 dentry->d_flags |= DCACHE_LRU_LIST;
386 this_cpu_inc(nr_dentry_unused);
387 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
388}
389
390static void d_lru_del(struct dentry *dentry)
391{
392 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
393 dentry->d_flags &= ~DCACHE_LRU_LIST;
394 this_cpu_dec(nr_dentry_unused);
395 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
396}
397
398static void d_shrink_del(struct dentry *dentry)
399{
400 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
401 list_del_init(&dentry->d_lru);
402 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
403 this_cpu_dec(nr_dentry_unused);
404}
405
406static void d_shrink_add(struct dentry *dentry, struct list_head *list)
407{
408 D_FLAG_VERIFY(dentry, 0);
409 list_add(&dentry->d_lru, list);
410 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
411 this_cpu_inc(nr_dentry_unused);
412}
413
414/*
415 * These can only be called under the global LRU lock, ie during the
416 * callback for freeing the LRU list. "isolate" removes it from the
417 * LRU lists entirely, while shrink_move moves it to the indicated
418 * private list.
419 */
3f97b163 420static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
421{
422 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
423 dentry->d_flags &= ~DCACHE_LRU_LIST;
424 this_cpu_dec(nr_dentry_unused);
3f97b163 425 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
426}
427
3f97b163
VD
428static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
429 struct list_head *list)
89dc77bc
LT
430{
431 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
432 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 433 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
434}
435
789680d1
NP
436/**
437 * d_drop - drop a dentry
438 * @dentry: dentry to drop
439 *
440 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
441 * be found through a VFS lookup any more. Note that this is different from
442 * deleting the dentry - d_delete will try to mark the dentry negative if
443 * possible, giving a successful _negative_ lookup, while d_drop will
444 * just make the cache lookup fail.
445 *
446 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
447 * reason (NFS timeouts or autofs deletes).
448 *
61647823
N
449 * __d_drop requires dentry->d_lock
450 * ___d_drop doesn't mark dentry as "unhashed"
451 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 452 */
61647823 453static void ___d_drop(struct dentry *dentry)
789680d1 454{
0632a9ac
AV
455 struct hlist_bl_head *b;
456 /*
457 * Hashed dentries are normally on the dentry hashtable,
458 * with the exception of those newly allocated by
459 * d_obtain_root, which are always IS_ROOT:
460 */
461 if (unlikely(IS_ROOT(dentry)))
462 b = &dentry->d_sb->s_roots;
463 else
464 b = d_hash(dentry->d_name.hash);
b61625d2 465
0632a9ac
AV
466 hlist_bl_lock(b);
467 __hlist_bl_del(&dentry->d_hash);
468 hlist_bl_unlock(b);
789680d1 469}
61647823
N
470
471void __d_drop(struct dentry *dentry)
472{
0632a9ac
AV
473 if (!d_unhashed(dentry)) {
474 ___d_drop(dentry);
475 dentry->d_hash.pprev = NULL;
476 write_seqcount_invalidate(&dentry->d_seq);
477 }
61647823 478}
789680d1
NP
479EXPORT_SYMBOL(__d_drop);
480
481void d_drop(struct dentry *dentry)
482{
789680d1
NP
483 spin_lock(&dentry->d_lock);
484 __d_drop(dentry);
485 spin_unlock(&dentry->d_lock);
789680d1
NP
486}
487EXPORT_SYMBOL(d_drop);
488
ba65dc5e
AV
489static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
490{
491 struct dentry *next;
492 /*
493 * Inform d_walk() and shrink_dentry_list() that we are no longer
494 * attached to the dentry tree
495 */
496 dentry->d_flags |= DCACHE_DENTRY_KILLED;
497 if (unlikely(list_empty(&dentry->d_child)))
498 return;
499 __list_del_entry(&dentry->d_child);
500 /*
501 * Cursors can move around the list of children. While we'd been
502 * a normal list member, it didn't matter - ->d_child.next would've
503 * been updated. However, from now on it won't be and for the
504 * things like d_walk() it might end up with a nasty surprise.
505 * Normally d_walk() doesn't care about cursors moving around -
506 * ->d_lock on parent prevents that and since a cursor has no children
507 * of its own, we get through it without ever unlocking the parent.
508 * There is one exception, though - if we ascend from a child that
509 * gets killed as soon as we unlock it, the next sibling is found
510 * using the value left in its ->d_child.next. And if _that_
511 * pointed to a cursor, and cursor got moved (e.g. by lseek())
512 * before d_walk() regains parent->d_lock, we'll end up skipping
513 * everything the cursor had been moved past.
514 *
515 * Solution: make sure that the pointer left behind in ->d_child.next
516 * points to something that won't be moving around. I.e. skip the
517 * cursors.
518 */
519 while (dentry->d_child.next != &parent->d_subdirs) {
520 next = list_entry(dentry->d_child.next, struct dentry, d_child);
521 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
522 break;
523 dentry->d_child.next = next->d_child.next;
524 }
525}
526
e55fd011 527static void __dentry_kill(struct dentry *dentry)
77812a1e 528{
41edf278
AV
529 struct dentry *parent = NULL;
530 bool can_free = true;
41edf278 531 if (!IS_ROOT(dentry))
77812a1e 532 parent = dentry->d_parent;
31e6b01f 533
0d98439e
LT
534 /*
535 * The dentry is now unrecoverably dead to the world.
536 */
537 lockref_mark_dead(&dentry->d_lockref);
538
f0023bc6 539 /*
f0023bc6
SW
540 * inform the fs via d_prune that this dentry is about to be
541 * unhashed and destroyed.
542 */
29266201 543 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
544 dentry->d_op->d_prune(dentry);
545
01b60351
AV
546 if (dentry->d_flags & DCACHE_LRU_LIST) {
547 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
548 d_lru_del(dentry);
01b60351 549 }
77812a1e
NP
550 /* if it was on the hash then remove it */
551 __d_drop(dentry);
ba65dc5e 552 dentry_unlist(dentry, parent);
03b3b889
AV
553 if (parent)
554 spin_unlock(&parent->d_lock);
550dce01
AV
555 if (dentry->d_inode)
556 dentry_unlink_inode(dentry);
557 else
558 spin_unlock(&dentry->d_lock);
03b3b889
AV
559 this_cpu_dec(nr_dentry);
560 if (dentry->d_op && dentry->d_op->d_release)
561 dentry->d_op->d_release(dentry);
562
41edf278
AV
563 spin_lock(&dentry->d_lock);
564 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
565 dentry->d_flags |= DCACHE_MAY_FREE;
566 can_free = false;
567 }
568 spin_unlock(&dentry->d_lock);
41edf278
AV
569 if (likely(can_free))
570 dentry_free(dentry);
e55fd011
AV
571}
572
8b987a46 573static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 574{
8b987a46 575 struct dentry *parent;
046b961b 576 rcu_read_lock();
c2338f2d 577 spin_unlock(&dentry->d_lock);
046b961b 578again:
66702eb5 579 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
580 spin_lock(&parent->d_lock);
581 /*
582 * We can't blindly lock dentry until we are sure
583 * that we won't violate the locking order.
584 * Any changes of dentry->d_parent must have
585 * been done with parent->d_lock held, so
586 * spin_lock() above is enough of a barrier
587 * for checking if it's still our child.
588 */
589 if (unlikely(parent != dentry->d_parent)) {
590 spin_unlock(&parent->d_lock);
591 goto again;
592 }
65d8eb5a
AV
593 rcu_read_unlock();
594 if (parent != dentry)
9f12600f 595 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 596 else
046b961b
AV
597 parent = NULL;
598 return parent;
599}
600
8b987a46
AV
601static inline struct dentry *lock_parent(struct dentry *dentry)
602{
603 struct dentry *parent = dentry->d_parent;
604 if (IS_ROOT(dentry))
605 return NULL;
606 if (likely(spin_trylock(&parent->d_lock)))
607 return parent;
608 return __lock_parent(dentry);
609}
610
a338579f
AV
611static inline bool retain_dentry(struct dentry *dentry)
612{
613 WARN_ON(d_in_lookup(dentry));
614
615 /* Unreachable? Get rid of it */
616 if (unlikely(d_unhashed(dentry)))
617 return false;
618
619 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
620 return false;
621
622 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
623 if (dentry->d_op->d_delete(dentry))
624 return false;
625 }
62d9956c
AV
626 /* retain; LRU fodder */
627 dentry->d_lockref.count--;
628 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
629 d_lru_add(dentry);
630 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
631 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
632 return true;
633}
634
c1d0c1a2
JO
635/*
636 * Finish off a dentry we've decided to kill.
637 * dentry->d_lock must be held, returns with it unlocked.
638 * Returns dentry requiring refcount drop, or NULL if we're done.
639 */
640static struct dentry *dentry_kill(struct dentry *dentry)
641 __releases(dentry->d_lock)
642{
643 struct inode *inode = dentry->d_inode;
644 struct dentry *parent = NULL;
645
646 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 647 goto slow_positive;
c1d0c1a2
JO
648
649 if (!IS_ROOT(dentry)) {
650 parent = dentry->d_parent;
651 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
652 parent = __lock_parent(dentry);
653 if (likely(inode || !dentry->d_inode))
654 goto got_locks;
655 /* negative that became positive */
656 if (parent)
657 spin_unlock(&parent->d_lock);
658 inode = dentry->d_inode;
659 goto slow_positive;
c1d0c1a2
JO
660 }
661 }
c1d0c1a2
JO
662 __dentry_kill(dentry);
663 return parent;
664
f657a666
AV
665slow_positive:
666 spin_unlock(&dentry->d_lock);
667 spin_lock(&inode->i_lock);
668 spin_lock(&dentry->d_lock);
669 parent = lock_parent(dentry);
670got_locks:
671 if (unlikely(dentry->d_lockref.count != 1)) {
672 dentry->d_lockref.count--;
673 } else if (likely(!retain_dentry(dentry))) {
674 __dentry_kill(dentry);
675 return parent;
676 }
677 /* we are keeping it, after all */
678 if (inode)
679 spin_unlock(&inode->i_lock);
680 if (parent)
681 spin_unlock(&parent->d_lock);
c1d0c1a2 682 spin_unlock(&dentry->d_lock);
f657a666 683 return NULL;
c1d0c1a2
JO
684}
685
360f5479
LT
686/*
687 * Try to do a lockless dput(), and return whether that was successful.
688 *
689 * If unsuccessful, we return false, having already taken the dentry lock.
690 *
691 * The caller needs to hold the RCU read lock, so that the dentry is
692 * guaranteed to stay around even if the refcount goes down to zero!
693 */
694static inline bool fast_dput(struct dentry *dentry)
695{
696 int ret;
697 unsigned int d_flags;
698
699 /*
700 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 701 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
702 */
703 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
704 return lockref_put_or_lock(&dentry->d_lockref);
705
706 /*
707 * .. otherwise, we can try to just decrement the
708 * lockref optimistically.
709 */
710 ret = lockref_put_return(&dentry->d_lockref);
711
712 /*
713 * If the lockref_put_return() failed due to the lock being held
714 * by somebody else, the fast path has failed. We will need to
715 * get the lock, and then check the count again.
716 */
717 if (unlikely(ret < 0)) {
718 spin_lock(&dentry->d_lock);
719 if (dentry->d_lockref.count > 1) {
720 dentry->d_lockref.count--;
721 spin_unlock(&dentry->d_lock);
722 return 1;
723 }
724 return 0;
725 }
726
727 /*
728 * If we weren't the last ref, we're done.
729 */
730 if (ret)
731 return 1;
732
733 /*
734 * Careful, careful. The reference count went down
735 * to zero, but we don't hold the dentry lock, so
736 * somebody else could get it again, and do another
737 * dput(), and we need to not race with that.
738 *
739 * However, there is a very special and common case
740 * where we don't care, because there is nothing to
741 * do: the dentry is still hashed, it does not have
742 * a 'delete' op, and it's referenced and already on
743 * the LRU list.
744 *
745 * NOTE! Since we aren't locked, these values are
746 * not "stable". However, it is sufficient that at
747 * some point after we dropped the reference the
748 * dentry was hashed and the flags had the proper
749 * value. Other dentry users may have re-gotten
750 * a reference to the dentry and change that, but
751 * our work is done - we can leave the dentry
752 * around with a zero refcount.
753 */
754 smp_rmb();
66702eb5 755 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 756 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
757
758 /* Nothing to do? Dropping the reference was all we needed? */
759 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
760 return 1;
761
762 /*
763 * Not the fast normal case? Get the lock. We've already decremented
764 * the refcount, but we'll need to re-check the situation after
765 * getting the lock.
766 */
767 spin_lock(&dentry->d_lock);
768
769 /*
770 * Did somebody else grab a reference to it in the meantime, and
771 * we're no longer the last user after all? Alternatively, somebody
772 * else could have killed it and marked it dead. Either way, we
773 * don't need to do anything else.
774 */
775 if (dentry->d_lockref.count) {
776 spin_unlock(&dentry->d_lock);
777 return 1;
778 }
779
780 /*
781 * Re-get the reference we optimistically dropped. We hold the
782 * lock, and we just tested that it was zero, so we can just
783 * set it to 1.
784 */
785 dentry->d_lockref.count = 1;
786 return 0;
787}
788
789
1da177e4
LT
790/*
791 * This is dput
792 *
793 * This is complicated by the fact that we do not want to put
794 * dentries that are no longer on any hash chain on the unused
795 * list: we'd much rather just get rid of them immediately.
796 *
797 * However, that implies that we have to traverse the dentry
798 * tree upwards to the parents which might _also_ now be
799 * scheduled for deletion (it may have been only waiting for
800 * its last child to go away).
801 *
802 * This tail recursion is done by hand as we don't want to depend
803 * on the compiler to always get this right (gcc generally doesn't).
804 * Real recursion would eat up our stack space.
805 */
806
807/*
808 * dput - release a dentry
809 * @dentry: dentry to release
810 *
811 * Release a dentry. This will drop the usage count and if appropriate
812 * call the dentry unlink method as well as removing it from the queues and
813 * releasing its resources. If the parent dentries were scheduled for release
814 * they too may now get deleted.
1da177e4 815 */
1da177e4
LT
816void dput(struct dentry *dentry)
817{
8aab6a27 818 if (unlikely(!dentry))
1da177e4
LT
819 return;
820
821repeat:
47be6184
WF
822 might_sleep();
823
360f5479
LT
824 rcu_read_lock();
825 if (likely(fast_dput(dentry))) {
826 rcu_read_unlock();
1da177e4 827 return;
360f5479
LT
828 }
829
830 /* Slow case: now with the dentry lock held */
831 rcu_read_unlock();
1da177e4 832
a338579f 833 if (likely(retain_dentry(dentry))) {
a338579f
AV
834 spin_unlock(&dentry->d_lock);
835 return;
1da177e4 836 }
265ac902 837
8cbf74da 838 dentry = dentry_kill(dentry);
47be6184
WF
839 if (dentry) {
840 cond_resched();
d52b9086 841 goto repeat;
47be6184 842 }
1da177e4 843}
ec4f8605 844EXPORT_SYMBOL(dput);
1da177e4 845
1da177e4 846
b5c84bf6 847/* This must be called with d_lock held */
dc0474be 848static inline void __dget_dlock(struct dentry *dentry)
23044507 849{
98474236 850 dentry->d_lockref.count++;
23044507
NP
851}
852
dc0474be 853static inline void __dget(struct dentry *dentry)
1da177e4 854{
98474236 855 lockref_get(&dentry->d_lockref);
1da177e4
LT
856}
857
b7ab39f6
NP
858struct dentry *dget_parent(struct dentry *dentry)
859{
df3d0bbc 860 int gotref;
b7ab39f6
NP
861 struct dentry *ret;
862
df3d0bbc
WL
863 /*
864 * Do optimistic parent lookup without any
865 * locking.
866 */
867 rcu_read_lock();
66702eb5 868 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
869 gotref = lockref_get_not_zero(&ret->d_lockref);
870 rcu_read_unlock();
871 if (likely(gotref)) {
66702eb5 872 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
873 return ret;
874 dput(ret);
875 }
876
b7ab39f6 877repeat:
a734eb45
NP
878 /*
879 * Don't need rcu_dereference because we re-check it was correct under
880 * the lock.
881 */
882 rcu_read_lock();
b7ab39f6 883 ret = dentry->d_parent;
a734eb45
NP
884 spin_lock(&ret->d_lock);
885 if (unlikely(ret != dentry->d_parent)) {
886 spin_unlock(&ret->d_lock);
887 rcu_read_unlock();
b7ab39f6
NP
888 goto repeat;
889 }
a734eb45 890 rcu_read_unlock();
98474236
WL
891 BUG_ON(!ret->d_lockref.count);
892 ret->d_lockref.count++;
b7ab39f6 893 spin_unlock(&ret->d_lock);
b7ab39f6
NP
894 return ret;
895}
896EXPORT_SYMBOL(dget_parent);
897
1da177e4
LT
898/**
899 * d_find_alias - grab a hashed alias of inode
900 * @inode: inode in question
1da177e4
LT
901 *
902 * If inode has a hashed alias, or is a directory and has any alias,
903 * acquire the reference to alias and return it. Otherwise return NULL.
904 * Notice that if inode is a directory there can be only one alias and
905 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
906 * of a filesystem, or if the directory was renamed and d_revalidate
907 * was the first vfs operation to notice.
1da177e4 908 *
21c0d8fd 909 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 910 * any other hashed alias over that one.
1da177e4 911 */
52ed46f0 912static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 913{
da502956 914 struct dentry *alias, *discon_alias;
1da177e4 915
da502956
NP
916again:
917 discon_alias = NULL;
946e51f2 918 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 919 spin_lock(&alias->d_lock);
1da177e4 920 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 921 if (IS_ROOT(alias) &&
da502956 922 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 923 discon_alias = alias;
52ed46f0 924 } else {
dc0474be 925 __dget_dlock(alias);
da502956
NP
926 spin_unlock(&alias->d_lock);
927 return alias;
928 }
929 }
930 spin_unlock(&alias->d_lock);
931 }
932 if (discon_alias) {
933 alias = discon_alias;
934 spin_lock(&alias->d_lock);
935 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
936 __dget_dlock(alias);
937 spin_unlock(&alias->d_lock);
938 return alias;
1da177e4 939 }
da502956
NP
940 spin_unlock(&alias->d_lock);
941 goto again;
1da177e4 942 }
da502956 943 return NULL;
1da177e4
LT
944}
945
da502956 946struct dentry *d_find_alias(struct inode *inode)
1da177e4 947{
214fda1f
DH
948 struct dentry *de = NULL;
949
b3d9b7a3 950 if (!hlist_empty(&inode->i_dentry)) {
873feea0 951 spin_lock(&inode->i_lock);
52ed46f0 952 de = __d_find_alias(inode);
873feea0 953 spin_unlock(&inode->i_lock);
214fda1f 954 }
1da177e4
LT
955 return de;
956}
ec4f8605 957EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
958
959/*
960 * Try to kill dentries associated with this inode.
961 * WARNING: you must own a reference to inode.
962 */
963void d_prune_aliases(struct inode *inode)
964{
0cdca3f9 965 struct dentry *dentry;
1da177e4 966restart:
873feea0 967 spin_lock(&inode->i_lock);
946e51f2 968 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 969 spin_lock(&dentry->d_lock);
98474236 970 if (!dentry->d_lockref.count) {
29355c39
AV
971 struct dentry *parent = lock_parent(dentry);
972 if (likely(!dentry->d_lockref.count)) {
973 __dentry_kill(dentry);
4a7795d3 974 dput(parent);
29355c39
AV
975 goto restart;
976 }
977 if (parent)
978 spin_unlock(&parent->d_lock);
1da177e4
LT
979 }
980 spin_unlock(&dentry->d_lock);
981 }
873feea0 982 spin_unlock(&inode->i_lock);
1da177e4 983}
ec4f8605 984EXPORT_SYMBOL(d_prune_aliases);
1da177e4 985
3b3f09f4
AV
986/*
987 * Lock a dentry from shrink list.
8f04da2a
JO
988 * Called under rcu_read_lock() and dentry->d_lock; the former
989 * guarantees that nothing we access will be freed under us.
3b3f09f4 990 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
991 * d_delete(), etc.
992 *
3b3f09f4
AV
993 * Return false if dentry has been disrupted or grabbed, leaving
994 * the caller to kick it off-list. Otherwise, return true and have
995 * that dentry's inode and parent both locked.
996 */
997static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 998{
3b3f09f4
AV
999 struct inode *inode;
1000 struct dentry *parent;
da3bbdd4 1001
3b3f09f4
AV
1002 if (dentry->d_lockref.count)
1003 return false;
1004
1005 inode = dentry->d_inode;
1006 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1007 spin_unlock(&dentry->d_lock);
1008 spin_lock(&inode->i_lock);
ec33679d 1009 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1010 if (unlikely(dentry->d_lockref.count))
1011 goto out;
1012 /* changed inode means that somebody had grabbed it */
1013 if (unlikely(inode != dentry->d_inode))
1014 goto out;
3b3f09f4 1015 }
046b961b 1016
3b3f09f4
AV
1017 parent = dentry->d_parent;
1018 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1019 return true;
dd1f6b2e 1020
3b3f09f4 1021 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1022 spin_lock(&parent->d_lock);
1023 if (unlikely(parent != dentry->d_parent)) {
1024 spin_unlock(&parent->d_lock);
1025 spin_lock(&dentry->d_lock);
1026 goto out;
1027 }
1028 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1029 if (likely(!dentry->d_lockref.count))
3b3f09f4 1030 return true;
3b3f09f4
AV
1031 spin_unlock(&parent->d_lock);
1032out:
1033 if (inode)
1034 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1035 return false;
1036}
77812a1e 1037
3b3f09f4
AV
1038static void shrink_dentry_list(struct list_head *list)
1039{
1040 while (!list_empty(list)) {
1041 struct dentry *dentry, *parent;
64fd72e0 1042
3b3f09f4
AV
1043 dentry = list_entry(list->prev, struct dentry, d_lru);
1044 spin_lock(&dentry->d_lock);
8f04da2a 1045 rcu_read_lock();
3b3f09f4
AV
1046 if (!shrink_lock_dentry(dentry)) {
1047 bool can_free = false;
8f04da2a 1048 rcu_read_unlock();
3b3f09f4
AV
1049 d_shrink_del(dentry);
1050 if (dentry->d_lockref.count < 0)
1051 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1052 spin_unlock(&dentry->d_lock);
1053 if (can_free)
1054 dentry_free(dentry);
1055 continue;
1056 }
8f04da2a 1057 rcu_read_unlock();
3b3f09f4
AV
1058 d_shrink_del(dentry);
1059 parent = dentry->d_parent;
ff2fde99 1060 __dentry_kill(dentry);
3b3f09f4
AV
1061 if (parent == dentry)
1062 continue;
5c47e6d0
AV
1063 /*
1064 * We need to prune ancestors too. This is necessary to prevent
1065 * quadratic behavior of shrink_dcache_parent(), but is also
1066 * expected to be beneficial in reducing dentry cache
1067 * fragmentation.
1068 */
1069 dentry = parent;
8f04da2a
JO
1070 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1071 dentry = dentry_kill(dentry);
da3bbdd4 1072 }
3049cfe2
CH
1073}
1074
3f97b163
VD
1075static enum lru_status dentry_lru_isolate(struct list_head *item,
1076 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1077{
1078 struct list_head *freeable = arg;
1079 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1080
1081
1082 /*
1083 * we are inverting the lru lock/dentry->d_lock here,
1084 * so use a trylock. If we fail to get the lock, just skip
1085 * it
1086 */
1087 if (!spin_trylock(&dentry->d_lock))
1088 return LRU_SKIP;
1089
1090 /*
1091 * Referenced dentries are still in use. If they have active
1092 * counts, just remove them from the LRU. Otherwise give them
1093 * another pass through the LRU.
1094 */
1095 if (dentry->d_lockref.count) {
3f97b163 1096 d_lru_isolate(lru, dentry);
f6041567
DC
1097 spin_unlock(&dentry->d_lock);
1098 return LRU_REMOVED;
1099 }
1100
1101 if (dentry->d_flags & DCACHE_REFERENCED) {
1102 dentry->d_flags &= ~DCACHE_REFERENCED;
1103 spin_unlock(&dentry->d_lock);
1104
1105 /*
1106 * The list move itself will be made by the common LRU code. At
1107 * this point, we've dropped the dentry->d_lock but keep the
1108 * lru lock. This is safe to do, since every list movement is
1109 * protected by the lru lock even if both locks are held.
1110 *
1111 * This is guaranteed by the fact that all LRU management
1112 * functions are intermediated by the LRU API calls like
1113 * list_lru_add and list_lru_del. List movement in this file
1114 * only ever occur through this functions or through callbacks
1115 * like this one, that are called from the LRU API.
1116 *
1117 * The only exceptions to this are functions like
1118 * shrink_dentry_list, and code that first checks for the
1119 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1120 * operating only with stack provided lists after they are
1121 * properly isolated from the main list. It is thus, always a
1122 * local access.
1123 */
1124 return LRU_ROTATE;
1125 }
1126
3f97b163 1127 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1128 spin_unlock(&dentry->d_lock);
1129
1130 return LRU_REMOVED;
1131}
1132
3049cfe2 1133/**
b48f03b3
DC
1134 * prune_dcache_sb - shrink the dcache
1135 * @sb: superblock
503c358c 1136 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1137 *
503c358c
VD
1138 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1139 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1140 * function.
3049cfe2 1141 *
b48f03b3
DC
1142 * This function may fail to free any resources if all the dentries are in
1143 * use.
3049cfe2 1144 */
503c358c 1145long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1146{
f6041567
DC
1147 LIST_HEAD(dispose);
1148 long freed;
3049cfe2 1149
503c358c
VD
1150 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1151 dentry_lru_isolate, &dispose);
f6041567 1152 shrink_dentry_list(&dispose);
0a234c6d 1153 return freed;
da3bbdd4 1154}
23044507 1155
4e717f5c 1156static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1157 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1158{
4e717f5c
GC
1159 struct list_head *freeable = arg;
1160 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1161
4e717f5c
GC
1162 /*
1163 * we are inverting the lru lock/dentry->d_lock here,
1164 * so use a trylock. If we fail to get the lock, just skip
1165 * it
1166 */
1167 if (!spin_trylock(&dentry->d_lock))
1168 return LRU_SKIP;
1169
3f97b163 1170 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1171 spin_unlock(&dentry->d_lock);
ec33679d 1172
4e717f5c 1173 return LRU_REMOVED;
da3bbdd4
KM
1174}
1175
4e717f5c 1176
1da177e4
LT
1177/**
1178 * shrink_dcache_sb - shrink dcache for a superblock
1179 * @sb: superblock
1180 *
3049cfe2
CH
1181 * Shrink the dcache for the specified super block. This is used to free
1182 * the dcache before unmounting a file system.
1da177e4 1183 */
3049cfe2 1184void shrink_dcache_sb(struct super_block *sb)
1da177e4 1185{
4e717f5c
GC
1186 long freed;
1187
1188 do {
1189 LIST_HEAD(dispose);
1190
1191 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1192 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1193
4e717f5c
GC
1194 this_cpu_sub(nr_dentry_unused, freed);
1195 shrink_dentry_list(&dispose);
b17c070f
ST
1196 cond_resched();
1197 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1198}
ec4f8605 1199EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1200
db14fc3a
MS
1201/**
1202 * enum d_walk_ret - action to talke during tree walk
1203 * @D_WALK_CONTINUE: contrinue walk
1204 * @D_WALK_QUIT: quit walk
1205 * @D_WALK_NORETRY: quit when retry is needed
1206 * @D_WALK_SKIP: skip this dentry and its children
1207 */
1208enum d_walk_ret {
1209 D_WALK_CONTINUE,
1210 D_WALK_QUIT,
1211 D_WALK_NORETRY,
1212 D_WALK_SKIP,
1213};
c826cb7d 1214
1da177e4 1215/**
db14fc3a
MS
1216 * d_walk - walk the dentry tree
1217 * @parent: start of walk
1218 * @data: data passed to @enter() and @finish()
1219 * @enter: callback when first entering the dentry
1220 * @finish: callback when successfully finished the walk
1da177e4 1221 *
db14fc3a 1222 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1223 */
db14fc3a
MS
1224static void d_walk(struct dentry *parent, void *data,
1225 enum d_walk_ret (*enter)(void *, struct dentry *),
1226 void (*finish)(void *))
1da177e4 1227{
949854d0 1228 struct dentry *this_parent;
1da177e4 1229 struct list_head *next;
48f5ec21 1230 unsigned seq = 0;
db14fc3a
MS
1231 enum d_walk_ret ret;
1232 bool retry = true;
949854d0 1233
58db63d0 1234again:
48f5ec21 1235 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1236 this_parent = parent;
2fd6b7f5 1237 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1238
1239 ret = enter(data, this_parent);
1240 switch (ret) {
1241 case D_WALK_CONTINUE:
1242 break;
1243 case D_WALK_QUIT:
1244 case D_WALK_SKIP:
1245 goto out_unlock;
1246 case D_WALK_NORETRY:
1247 retry = false;
1248 break;
1249 }
1da177e4
LT
1250repeat:
1251 next = this_parent->d_subdirs.next;
1252resume:
1253 while (next != &this_parent->d_subdirs) {
1254 struct list_head *tmp = next;
946e51f2 1255 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1256 next = tmp->next;
2fd6b7f5 1257
ba65dc5e
AV
1258 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1259 continue;
1260
2fd6b7f5 1261 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1262
1263 ret = enter(data, dentry);
1264 switch (ret) {
1265 case D_WALK_CONTINUE:
1266 break;
1267 case D_WALK_QUIT:
2fd6b7f5 1268 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1269 goto out_unlock;
1270 case D_WALK_NORETRY:
1271 retry = false;
1272 break;
1273 case D_WALK_SKIP:
1274 spin_unlock(&dentry->d_lock);
1275 continue;
2fd6b7f5 1276 }
db14fc3a 1277
1da177e4 1278 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1279 spin_unlock(&this_parent->d_lock);
1280 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1281 this_parent = dentry;
2fd6b7f5 1282 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1283 goto repeat;
1284 }
2fd6b7f5 1285 spin_unlock(&dentry->d_lock);
1da177e4
LT
1286 }
1287 /*
1288 * All done at this level ... ascend and resume the search.
1289 */
ca5358ef
AV
1290 rcu_read_lock();
1291ascend:
1da177e4 1292 if (this_parent != parent) {
c826cb7d 1293 struct dentry *child = this_parent;
31dec132
AV
1294 this_parent = child->d_parent;
1295
31dec132
AV
1296 spin_unlock(&child->d_lock);
1297 spin_lock(&this_parent->d_lock);
1298
ca5358ef
AV
1299 /* might go back up the wrong parent if we have had a rename. */
1300 if (need_seqretry(&rename_lock, seq))
949854d0 1301 goto rename_retry;
2159184e
AV
1302 /* go into the first sibling still alive */
1303 do {
1304 next = child->d_child.next;
ca5358ef
AV
1305 if (next == &this_parent->d_subdirs)
1306 goto ascend;
1307 child = list_entry(next, struct dentry, d_child);
2159184e 1308 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1309 rcu_read_unlock();
1da177e4
LT
1310 goto resume;
1311 }
ca5358ef 1312 if (need_seqretry(&rename_lock, seq))
949854d0 1313 goto rename_retry;
ca5358ef 1314 rcu_read_unlock();
db14fc3a
MS
1315 if (finish)
1316 finish(data);
1317
1318out_unlock:
1319 spin_unlock(&this_parent->d_lock);
48f5ec21 1320 done_seqretry(&rename_lock, seq);
db14fc3a 1321 return;
58db63d0
NP
1322
1323rename_retry:
ca5358ef
AV
1324 spin_unlock(&this_parent->d_lock);
1325 rcu_read_unlock();
1326 BUG_ON(seq & 1);
db14fc3a
MS
1327 if (!retry)
1328 return;
48f5ec21 1329 seq = 1;
58db63d0 1330 goto again;
1da177e4 1331}
db14fc3a 1332
01619491
IK
1333struct check_mount {
1334 struct vfsmount *mnt;
1335 unsigned int mounted;
1336};
1337
1338static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1339{
1340 struct check_mount *info = data;
1341 struct path path = { .mnt = info->mnt, .dentry = dentry };
1342
1343 if (likely(!d_mountpoint(dentry)))
1344 return D_WALK_CONTINUE;
1345 if (__path_is_mountpoint(&path)) {
1346 info->mounted = 1;
1347 return D_WALK_QUIT;
1348 }
1349 return D_WALK_CONTINUE;
1350}
1351
1352/**
1353 * path_has_submounts - check for mounts over a dentry in the
1354 * current namespace.
1355 * @parent: path to check.
1356 *
1357 * Return true if the parent or its subdirectories contain
1358 * a mount point in the current namespace.
1359 */
1360int path_has_submounts(const struct path *parent)
1361{
1362 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1363
1364 read_seqlock_excl(&mount_lock);
1365 d_walk(parent->dentry, &data, path_check_mount, NULL);
1366 read_sequnlock_excl(&mount_lock);
1367
1368 return data.mounted;
1369}
1370EXPORT_SYMBOL(path_has_submounts);
1371
eed81007
MS
1372/*
1373 * Called by mount code to set a mountpoint and check if the mountpoint is
1374 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1375 * subtree can become unreachable).
1376 *
1ffe46d1 1377 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1378 * this reason take rename_lock and d_lock on dentry and ancestors.
1379 */
1380int d_set_mounted(struct dentry *dentry)
1381{
1382 struct dentry *p;
1383 int ret = -ENOENT;
1384 write_seqlock(&rename_lock);
1385 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1386 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1387 spin_lock(&p->d_lock);
1388 if (unlikely(d_unhashed(p))) {
1389 spin_unlock(&p->d_lock);
1390 goto out;
1391 }
1392 spin_unlock(&p->d_lock);
1393 }
1394 spin_lock(&dentry->d_lock);
1395 if (!d_unlinked(dentry)) {
3895dbf8
EB
1396 ret = -EBUSY;
1397 if (!d_mountpoint(dentry)) {
1398 dentry->d_flags |= DCACHE_MOUNTED;
1399 ret = 0;
1400 }
eed81007
MS
1401 }
1402 spin_unlock(&dentry->d_lock);
1403out:
1404 write_sequnlock(&rename_lock);
1405 return ret;
1406}
1407
1da177e4 1408/*
fd517909 1409 * Search the dentry child list of the specified parent,
1da177e4
LT
1410 * and move any unused dentries to the end of the unused
1411 * list for prune_dcache(). We descend to the next level
1412 * whenever the d_subdirs list is non-empty and continue
1413 * searching.
1414 *
1415 * It returns zero iff there are no unused children,
1416 * otherwise it returns the number of children moved to
1417 * the end of the unused list. This may not be the total
1418 * number of unused children, because select_parent can
1419 * drop the lock and return early due to latency
1420 * constraints.
1421 */
1da177e4 1422
db14fc3a
MS
1423struct select_data {
1424 struct dentry *start;
1425 struct list_head dispose;
1426 int found;
1427};
23044507 1428
db14fc3a
MS
1429static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1430{
1431 struct select_data *data = _data;
1432 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1433
db14fc3a
MS
1434 if (data->start == dentry)
1435 goto out;
2fd6b7f5 1436
fe91522a 1437 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1438 data->found++;
fe91522a
AV
1439 } else {
1440 if (dentry->d_flags & DCACHE_LRU_LIST)
1441 d_lru_del(dentry);
1442 if (!dentry->d_lockref.count) {
1443 d_shrink_add(dentry, &data->dispose);
1444 data->found++;
1445 }
1da177e4 1446 }
db14fc3a
MS
1447 /*
1448 * We can return to the caller if we have found some (this
1449 * ensures forward progress). We'll be coming back to find
1450 * the rest.
1451 */
fe91522a
AV
1452 if (!list_empty(&data->dispose))
1453 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1454out:
db14fc3a 1455 return ret;
1da177e4
LT
1456}
1457
1458/**
1459 * shrink_dcache_parent - prune dcache
1460 * @parent: parent of entries to prune
1461 *
1462 * Prune the dcache to remove unused children of the parent dentry.
1463 */
db14fc3a 1464void shrink_dcache_parent(struct dentry *parent)
1da177e4 1465{
db14fc3a
MS
1466 for (;;) {
1467 struct select_data data;
1da177e4 1468
db14fc3a
MS
1469 INIT_LIST_HEAD(&data.dispose);
1470 data.start = parent;
1471 data.found = 0;
1472
1473 d_walk(parent, &data, select_collect, NULL);
1474 if (!data.found)
1475 break;
1476
1477 shrink_dentry_list(&data.dispose);
421348f1
GT
1478 cond_resched();
1479 }
1da177e4 1480}
ec4f8605 1481EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1482
9c8c10e2 1483static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1484{
9c8c10e2
AV
1485 /* it has busy descendents; complain about those instead */
1486 if (!list_empty(&dentry->d_subdirs))
1487 return D_WALK_CONTINUE;
42c32608 1488
9c8c10e2
AV
1489 /* root with refcount 1 is fine */
1490 if (dentry == _data && dentry->d_lockref.count == 1)
1491 return D_WALK_CONTINUE;
1492
1493 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1494 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1495 dentry,
1496 dentry->d_inode ?
1497 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1498 dentry,
42c32608
AV
1499 dentry->d_lockref.count,
1500 dentry->d_sb->s_type->name,
1501 dentry->d_sb->s_id);
9c8c10e2
AV
1502 WARN_ON(1);
1503 return D_WALK_CONTINUE;
1504}
1505
1506static void do_one_tree(struct dentry *dentry)
1507{
1508 shrink_dcache_parent(dentry);
1509 d_walk(dentry, dentry, umount_check, NULL);
1510 d_drop(dentry);
1511 dput(dentry);
42c32608
AV
1512}
1513
1514/*
1515 * destroy the dentries attached to a superblock on unmounting
1516 */
1517void shrink_dcache_for_umount(struct super_block *sb)
1518{
1519 struct dentry *dentry;
1520
9c8c10e2 1521 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1522
1523 dentry = sb->s_root;
1524 sb->s_root = NULL;
9c8c10e2 1525 do_one_tree(dentry);
42c32608 1526
f1ee6162
N
1527 while (!hlist_bl_empty(&sb->s_roots)) {
1528 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1529 do_one_tree(dentry);
42c32608
AV
1530 }
1531}
1532
8ed936b5
EB
1533struct detach_data {
1534 struct select_data select;
1535 struct dentry *mountpoint;
1536};
1537static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1538{
8ed936b5 1539 struct detach_data *data = _data;
848ac114
MS
1540
1541 if (d_mountpoint(dentry)) {
8ed936b5
EB
1542 __dget_dlock(dentry);
1543 data->mountpoint = dentry;
848ac114
MS
1544 return D_WALK_QUIT;
1545 }
1546
8ed936b5 1547 return select_collect(&data->select, dentry);
848ac114
MS
1548}
1549
1550static void check_and_drop(void *_data)
1551{
8ed936b5 1552 struct detach_data *data = _data;
848ac114 1553
81be24d2 1554 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1555 __d_drop(data->select.start);
848ac114
MS
1556}
1557
1558/**
1ffe46d1
EB
1559 * d_invalidate - detach submounts, prune dcache, and drop
1560 * @dentry: dentry to invalidate (aka detach, prune and drop)
1561 *
1ffe46d1 1562 * no dcache lock.
848ac114 1563 *
8ed936b5
EB
1564 * The final d_drop is done as an atomic operation relative to
1565 * rename_lock ensuring there are no races with d_set_mounted. This
1566 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1567 */
5542aa2f 1568void d_invalidate(struct dentry *dentry)
848ac114 1569{
1ffe46d1
EB
1570 /*
1571 * If it's already been dropped, return OK.
1572 */
1573 spin_lock(&dentry->d_lock);
1574 if (d_unhashed(dentry)) {
1575 spin_unlock(&dentry->d_lock);
5542aa2f 1576 return;
1ffe46d1
EB
1577 }
1578 spin_unlock(&dentry->d_lock);
1579
848ac114
MS
1580 /* Negative dentries can be dropped without further checks */
1581 if (!dentry->d_inode) {
1582 d_drop(dentry);
5542aa2f 1583 return;
848ac114
MS
1584 }
1585
1586 for (;;) {
8ed936b5 1587 struct detach_data data;
848ac114 1588
8ed936b5
EB
1589 data.mountpoint = NULL;
1590 INIT_LIST_HEAD(&data.select.dispose);
1591 data.select.start = dentry;
1592 data.select.found = 0;
1593
1594 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1595
81be24d2 1596 if (!list_empty(&data.select.dispose))
8ed936b5 1597 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1598 else if (!data.mountpoint)
1599 return;
848ac114 1600
8ed936b5
EB
1601 if (data.mountpoint) {
1602 detach_mounts(data.mountpoint);
1603 dput(data.mountpoint);
1604 }
848ac114
MS
1605 cond_resched();
1606 }
848ac114 1607}
1ffe46d1 1608EXPORT_SYMBOL(d_invalidate);
848ac114 1609
1da177e4 1610/**
a4464dbc
AV
1611 * __d_alloc - allocate a dcache entry
1612 * @sb: filesystem it will belong to
1da177e4
LT
1613 * @name: qstr of the name
1614 *
1615 * Allocates a dentry. It returns %NULL if there is insufficient memory
1616 * available. On a success the dentry is returned. The name passed in is
1617 * copied and the copy passed in may be reused after this call.
1618 */
1619
a4464dbc 1620struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1621{
1622 struct dentry *dentry;
1623 char *dname;
285b102d 1624 int err;
1da177e4 1625
e12ba74d 1626 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1627 if (!dentry)
1628 return NULL;
1629
6326c71f
LT
1630 /*
1631 * We guarantee that the inline name is always NUL-terminated.
1632 * This way the memcpy() done by the name switching in rename
1633 * will still always have a NUL at the end, even if we might
1634 * be overwriting an internal NUL character
1635 */
1636 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1637 if (unlikely(!name)) {
cdf01226 1638 name = &slash_name;
798434bd
AV
1639 dname = dentry->d_iname;
1640 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1641 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1642 struct external_name *p = kmalloc(size + name->len,
1643 GFP_KERNEL_ACCOUNT);
8d85b484 1644 if (!p) {
1da177e4
LT
1645 kmem_cache_free(dentry_cache, dentry);
1646 return NULL;
1647 }
8d85b484
AV
1648 atomic_set(&p->u.count, 1);
1649 dname = p->name;
1da177e4
LT
1650 } else {
1651 dname = dentry->d_iname;
1652 }
1da177e4
LT
1653
1654 dentry->d_name.len = name->len;
1655 dentry->d_name.hash = name->hash;
1656 memcpy(dname, name->name, name->len);
1657 dname[name->len] = 0;
1658
6326c71f 1659 /* Make sure we always see the terminating NUL character */
7088efa9 1660 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1661
98474236 1662 dentry->d_lockref.count = 1;
dea3667b 1663 dentry->d_flags = 0;
1da177e4 1664 spin_lock_init(&dentry->d_lock);
31e6b01f 1665 seqcount_init(&dentry->d_seq);
1da177e4 1666 dentry->d_inode = NULL;
a4464dbc
AV
1667 dentry->d_parent = dentry;
1668 dentry->d_sb = sb;
1da177e4
LT
1669 dentry->d_op = NULL;
1670 dentry->d_fsdata = NULL;
ceb5bdc2 1671 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1672 INIT_LIST_HEAD(&dentry->d_lru);
1673 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1674 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1675 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1676 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1677
285b102d
MS
1678 if (dentry->d_op && dentry->d_op->d_init) {
1679 err = dentry->d_op->d_init(dentry);
1680 if (err) {
1681 if (dname_external(dentry))
1682 kfree(external_name(dentry));
1683 kmem_cache_free(dentry_cache, dentry);
1684 return NULL;
1685 }
1686 }
1687
3e880fb5 1688 this_cpu_inc(nr_dentry);
312d3ca8 1689
1da177e4
LT
1690 return dentry;
1691}
a4464dbc
AV
1692
1693/**
1694 * d_alloc - allocate a dcache entry
1695 * @parent: parent of entry to allocate
1696 * @name: qstr of the name
1697 *
1698 * Allocates a dentry. It returns %NULL if there is insufficient memory
1699 * available. On a success the dentry is returned. The name passed in is
1700 * copied and the copy passed in may be reused after this call.
1701 */
1702struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1703{
1704 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1705 if (!dentry)
1706 return NULL;
3d56c25e 1707 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1708 spin_lock(&parent->d_lock);
1709 /*
1710 * don't need child lock because it is not subject
1711 * to concurrency here
1712 */
1713 __dget_dlock(parent);
1714 dentry->d_parent = parent;
946e51f2 1715 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1716 spin_unlock(&parent->d_lock);
1717
1718 return dentry;
1719}
ec4f8605 1720EXPORT_SYMBOL(d_alloc);
1da177e4 1721
f9c34674
MS
1722struct dentry *d_alloc_anon(struct super_block *sb)
1723{
1724 return __d_alloc(sb, NULL);
1725}
1726EXPORT_SYMBOL(d_alloc_anon);
1727
ba65dc5e
AV
1728struct dentry *d_alloc_cursor(struct dentry * parent)
1729{
f9c34674 1730 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1731 if (dentry) {
1732 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1733 dentry->d_parent = dget(parent);
1734 }
1735 return dentry;
1736}
1737
e1a24bb0
BF
1738/**
1739 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1740 * @sb: the superblock
1741 * @name: qstr of the name
1742 *
1743 * For a filesystem that just pins its dentries in memory and never
1744 * performs lookups at all, return an unhashed IS_ROOT dentry.
1745 */
4b936885
NP
1746struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1747{
e1a24bb0 1748 return __d_alloc(sb, name);
4b936885
NP
1749}
1750EXPORT_SYMBOL(d_alloc_pseudo);
1751
1da177e4
LT
1752struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1753{
1754 struct qstr q;
1755
1756 q.name = name;
8387ff25 1757 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1758 return d_alloc(parent, &q);
1759}
ef26ca97 1760EXPORT_SYMBOL(d_alloc_name);
1da177e4 1761
fb045adb
NP
1762void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1763{
6f7f7caa
LT
1764 WARN_ON_ONCE(dentry->d_op);
1765 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1766 DCACHE_OP_COMPARE |
1767 DCACHE_OP_REVALIDATE |
ecf3d1f1 1768 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1769 DCACHE_OP_DELETE |
d101a125 1770 DCACHE_OP_REAL));
fb045adb
NP
1771 dentry->d_op = op;
1772 if (!op)
1773 return;
1774 if (op->d_hash)
1775 dentry->d_flags |= DCACHE_OP_HASH;
1776 if (op->d_compare)
1777 dentry->d_flags |= DCACHE_OP_COMPARE;
1778 if (op->d_revalidate)
1779 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1780 if (op->d_weak_revalidate)
1781 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1782 if (op->d_delete)
1783 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1784 if (op->d_prune)
1785 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1786 if (op->d_real)
1787 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1788
1789}
1790EXPORT_SYMBOL(d_set_d_op);
1791
df1a085a
DH
1792
1793/*
1794 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1795 * @dentry - The dentry to mark
1796 *
1797 * Mark a dentry as falling through to the lower layer (as set with
1798 * d_pin_lower()). This flag may be recorded on the medium.
1799 */
1800void d_set_fallthru(struct dentry *dentry)
1801{
1802 spin_lock(&dentry->d_lock);
1803 dentry->d_flags |= DCACHE_FALLTHRU;
1804 spin_unlock(&dentry->d_lock);
1805}
1806EXPORT_SYMBOL(d_set_fallthru);
1807
b18825a7
DH
1808static unsigned d_flags_for_inode(struct inode *inode)
1809{
44bdb5e5 1810 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1811
1812 if (!inode)
1813 return DCACHE_MISS_TYPE;
1814
1815 if (S_ISDIR(inode->i_mode)) {
1816 add_flags = DCACHE_DIRECTORY_TYPE;
1817 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1818 if (unlikely(!inode->i_op->lookup))
1819 add_flags = DCACHE_AUTODIR_TYPE;
1820 else
1821 inode->i_opflags |= IOP_LOOKUP;
1822 }
44bdb5e5
DH
1823 goto type_determined;
1824 }
1825
1826 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1827 if (unlikely(inode->i_op->get_link)) {
b18825a7 1828 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1829 goto type_determined;
1830 }
1831 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1832 }
1833
44bdb5e5
DH
1834 if (unlikely(!S_ISREG(inode->i_mode)))
1835 add_flags = DCACHE_SPECIAL_TYPE;
1836
1837type_determined:
b18825a7
DH
1838 if (unlikely(IS_AUTOMOUNT(inode)))
1839 add_flags |= DCACHE_NEED_AUTOMOUNT;
1840 return add_flags;
1841}
1842
360da900
OH
1843static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1844{
b18825a7 1845 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1846 WARN_ON(d_in_lookup(dentry));
b18825a7 1847
b23fb0a6 1848 spin_lock(&dentry->d_lock);
de689f5e 1849 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1850 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1851 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1852 raw_write_seqcount_end(&dentry->d_seq);
affda484 1853 fsnotify_update_flags(dentry);
b23fb0a6 1854 spin_unlock(&dentry->d_lock);
360da900
OH
1855}
1856
1da177e4
LT
1857/**
1858 * d_instantiate - fill in inode information for a dentry
1859 * @entry: dentry to complete
1860 * @inode: inode to attach to this dentry
1861 *
1862 * Fill in inode information in the entry.
1863 *
1864 * This turns negative dentries into productive full members
1865 * of society.
1866 *
1867 * NOTE! This assumes that the inode count has been incremented
1868 * (or otherwise set) by the caller to indicate that it is now
1869 * in use by the dcache.
1870 */
1871
1872void d_instantiate(struct dentry *entry, struct inode * inode)
1873{
946e51f2 1874 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1875 if (inode) {
b9680917 1876 security_d_instantiate(entry, inode);
873feea0 1877 spin_lock(&inode->i_lock);
de689f5e 1878 __d_instantiate(entry, inode);
873feea0 1879 spin_unlock(&inode->i_lock);
de689f5e 1880 }
1da177e4 1881}
ec4f8605 1882EXPORT_SYMBOL(d_instantiate);
1da177e4 1883
b70a80e7
MS
1884/**
1885 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1886 * @entry: dentry to complete
1887 * @inode: inode to attach to this dentry
1888 *
1889 * Fill in inode information in the entry. If a directory alias is found, then
1890 * return an error (and drop inode). Together with d_materialise_unique() this
1891 * guarantees that a directory inode may never have more than one alias.
1892 */
1893int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1894{
946e51f2 1895 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1896
b9680917 1897 security_d_instantiate(entry, inode);
b70a80e7
MS
1898 spin_lock(&inode->i_lock);
1899 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1900 spin_unlock(&inode->i_lock);
1901 iput(inode);
1902 return -EBUSY;
1903 }
1904 __d_instantiate(entry, inode);
1905 spin_unlock(&inode->i_lock);
b70a80e7
MS
1906
1907 return 0;
1908}
1909EXPORT_SYMBOL(d_instantiate_no_diralias);
1910
adc0e91a
AV
1911struct dentry *d_make_root(struct inode *root_inode)
1912{
1913 struct dentry *res = NULL;
1914
1915 if (root_inode) {
f9c34674 1916 res = d_alloc_anon(root_inode->i_sb);
adc0e91a
AV
1917 if (res)
1918 d_instantiate(res, root_inode);
1919 else
1920 iput(root_inode);
1921 }
1922 return res;
1923}
1924EXPORT_SYMBOL(d_make_root);
1925
d891eedb
BF
1926static struct dentry * __d_find_any_alias(struct inode *inode)
1927{
1928 struct dentry *alias;
1929
b3d9b7a3 1930 if (hlist_empty(&inode->i_dentry))
d891eedb 1931 return NULL;
946e51f2 1932 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1933 __dget(alias);
1934 return alias;
1935}
1936
46f72b34
SW
1937/**
1938 * d_find_any_alias - find any alias for a given inode
1939 * @inode: inode to find an alias for
1940 *
1941 * If any aliases exist for the given inode, take and return a
1942 * reference for one of them. If no aliases exist, return %NULL.
1943 */
1944struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1945{
1946 struct dentry *de;
1947
1948 spin_lock(&inode->i_lock);
1949 de = __d_find_any_alias(inode);
1950 spin_unlock(&inode->i_lock);
1951 return de;
1952}
46f72b34 1953EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1954
f9c34674
MS
1955static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1956 struct inode *inode,
1957 bool disconnected)
4ea3ada2 1958{
9308a612 1959 struct dentry *res;
b18825a7 1960 unsigned add_flags;
4ea3ada2 1961
f9c34674 1962 security_d_instantiate(dentry, inode);
873feea0 1963 spin_lock(&inode->i_lock);
d891eedb 1964 res = __d_find_any_alias(inode);
9308a612 1965 if (res) {
873feea0 1966 spin_unlock(&inode->i_lock);
f9c34674 1967 dput(dentry);
9308a612
CH
1968 goto out_iput;
1969 }
1970
1971 /* attach a disconnected dentry */
1a0a397e
BF
1972 add_flags = d_flags_for_inode(inode);
1973
1974 if (disconnected)
1975 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1976
f9c34674
MS
1977 spin_lock(&dentry->d_lock);
1978 __d_set_inode_and_type(dentry, inode, add_flags);
1979 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1980 if (!disconnected) {
139351f1
LT
1981 hlist_bl_lock(&dentry->d_sb->s_roots);
1982 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1983 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 1984 }
f9c34674 1985 spin_unlock(&dentry->d_lock);
873feea0 1986 spin_unlock(&inode->i_lock);
9308a612 1987
f9c34674 1988 return dentry;
9308a612
CH
1989
1990 out_iput:
1991 iput(inode);
1992 return res;
4ea3ada2 1993}
1a0a397e 1994
f9c34674
MS
1995struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1996{
1997 return __d_instantiate_anon(dentry, inode, true);
1998}
1999EXPORT_SYMBOL(d_instantiate_anon);
2000
2001static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2002{
2003 struct dentry *tmp;
2004 struct dentry *res;
2005
2006 if (!inode)
2007 return ERR_PTR(-ESTALE);
2008 if (IS_ERR(inode))
2009 return ERR_CAST(inode);
2010
2011 res = d_find_any_alias(inode);
2012 if (res)
2013 goto out_iput;
2014
2015 tmp = d_alloc_anon(inode->i_sb);
2016 if (!tmp) {
2017 res = ERR_PTR(-ENOMEM);
2018 goto out_iput;
2019 }
2020
2021 return __d_instantiate_anon(tmp, inode, disconnected);
2022
2023out_iput:
2024 iput(inode);
2025 return res;
2026}
2027
1a0a397e
BF
2028/**
2029 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2030 * @inode: inode to allocate the dentry for
2031 *
2032 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2033 * similar open by handle operations. The returned dentry may be anonymous,
2034 * or may have a full name (if the inode was already in the cache).
2035 *
2036 * When called on a directory inode, we must ensure that the inode only ever
2037 * has one dentry. If a dentry is found, that is returned instead of
2038 * allocating a new one.
2039 *
2040 * On successful return, the reference to the inode has been transferred
2041 * to the dentry. In case of an error the reference on the inode is released.
2042 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2043 * be passed in and the error will be propagated to the return value,
2044 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2045 */
2046struct dentry *d_obtain_alias(struct inode *inode)
2047{
f9c34674 2048 return __d_obtain_alias(inode, true);
1a0a397e 2049}
adc48720 2050EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2051
1a0a397e
BF
2052/**
2053 * d_obtain_root - find or allocate a dentry for a given inode
2054 * @inode: inode to allocate the dentry for
2055 *
2056 * Obtain an IS_ROOT dentry for the root of a filesystem.
2057 *
2058 * We must ensure that directory inodes only ever have one dentry. If a
2059 * dentry is found, that is returned instead of allocating a new one.
2060 *
2061 * On successful return, the reference to the inode has been transferred
2062 * to the dentry. In case of an error the reference on the inode is
2063 * released. A %NULL or IS_ERR inode may be passed in and will be the
2064 * error will be propagate to the return value, with a %NULL @inode
2065 * replaced by ERR_PTR(-ESTALE).
2066 */
2067struct dentry *d_obtain_root(struct inode *inode)
2068{
f9c34674 2069 return __d_obtain_alias(inode, false);
1a0a397e
BF
2070}
2071EXPORT_SYMBOL(d_obtain_root);
2072
9403540c
BN
2073/**
2074 * d_add_ci - lookup or allocate new dentry with case-exact name
2075 * @inode: the inode case-insensitive lookup has found
2076 * @dentry: the negative dentry that was passed to the parent's lookup func
2077 * @name: the case-exact name to be associated with the returned dentry
2078 *
2079 * This is to avoid filling the dcache with case-insensitive names to the
2080 * same inode, only the actual correct case is stored in the dcache for
2081 * case-insensitive filesystems.
2082 *
2083 * For a case-insensitive lookup match and if the the case-exact dentry
2084 * already exists in in the dcache, use it and return it.
2085 *
2086 * If no entry exists with the exact case name, allocate new dentry with
2087 * the exact case, and return the spliced entry.
2088 */
e45b590b 2089struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2090 struct qstr *name)
2091{
d9171b93 2092 struct dentry *found, *res;
9403540c 2093
b6520c81
CH
2094 /*
2095 * First check if a dentry matching the name already exists,
2096 * if not go ahead and create it now.
2097 */
9403540c 2098 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2099 if (found) {
2100 iput(inode);
2101 return found;
2102 }
2103 if (d_in_lookup(dentry)) {
2104 found = d_alloc_parallel(dentry->d_parent, name,
2105 dentry->d_wait);
2106 if (IS_ERR(found) || !d_in_lookup(found)) {
2107 iput(inode);
2108 return found;
9403540c 2109 }
d9171b93
AV
2110 } else {
2111 found = d_alloc(dentry->d_parent, name);
2112 if (!found) {
2113 iput(inode);
2114 return ERR_PTR(-ENOMEM);
2115 }
2116 }
2117 res = d_splice_alias(inode, found);
2118 if (res) {
2119 dput(found);
2120 return res;
9403540c 2121 }
4f522a24 2122 return found;
9403540c 2123}
ec4f8605 2124EXPORT_SYMBOL(d_add_ci);
1da177e4 2125
12f8ad4b 2126
d4c91a8f
AV
2127static inline bool d_same_name(const struct dentry *dentry,
2128 const struct dentry *parent,
2129 const struct qstr *name)
12f8ad4b 2130{
d4c91a8f
AV
2131 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2132 if (dentry->d_name.len != name->len)
2133 return false;
2134 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2135 }
6fa67e70 2136 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2137 dentry->d_name.len, dentry->d_name.name,
2138 name) == 0;
12f8ad4b
LT
2139}
2140
31e6b01f
NP
2141/**
2142 * __d_lookup_rcu - search for a dentry (racy, store-free)
2143 * @parent: parent dentry
2144 * @name: qstr of name we wish to find
1f1e6e52 2145 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2146 * Returns: dentry, or NULL
2147 *
2148 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2149 * resolution (store-free path walking) design described in
2150 * Documentation/filesystems/path-lookup.txt.
2151 *
2152 * This is not to be used outside core vfs.
2153 *
2154 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2155 * held, and rcu_read_lock held. The returned dentry must not be stored into
2156 * without taking d_lock and checking d_seq sequence count against @seq
2157 * returned here.
2158 *
15570086 2159 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2160 * function.
2161 *
2162 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2163 * the returned dentry, so long as its parent's seqlock is checked after the
2164 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2165 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2166 *
2167 * NOTE! The caller *has* to check the resulting dentry against the sequence
2168 * number we've returned before using any of the resulting dentry state!
31e6b01f 2169 */
8966be90
LT
2170struct dentry *__d_lookup_rcu(const struct dentry *parent,
2171 const struct qstr *name,
da53be12 2172 unsigned *seqp)
31e6b01f 2173{
26fe5750 2174 u64 hashlen = name->hash_len;
31e6b01f 2175 const unsigned char *str = name->name;
8387ff25 2176 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2177 struct hlist_bl_node *node;
31e6b01f
NP
2178 struct dentry *dentry;
2179
2180 /*
2181 * Note: There is significant duplication with __d_lookup_rcu which is
2182 * required to prevent single threaded performance regressions
2183 * especially on architectures where smp_rmb (in seqcounts) are costly.
2184 * Keep the two functions in sync.
2185 */
2186
2187 /*
2188 * The hash list is protected using RCU.
2189 *
2190 * Carefully use d_seq when comparing a candidate dentry, to avoid
2191 * races with d_move().
2192 *
2193 * It is possible that concurrent renames can mess up our list
2194 * walk here and result in missing our dentry, resulting in the
2195 * false-negative result. d_lookup() protects against concurrent
2196 * renames using rename_lock seqlock.
2197 *
b0a4bb83 2198 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2199 */
b07ad996 2200 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2201 unsigned seq;
31e6b01f 2202
31e6b01f 2203seqretry:
12f8ad4b
LT
2204 /*
2205 * The dentry sequence count protects us from concurrent
da53be12 2206 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2207 *
2208 * The caller must perform a seqcount check in order
da53be12 2209 * to do anything useful with the returned dentry.
12f8ad4b
LT
2210 *
2211 * NOTE! We do a "raw" seqcount_begin here. That means that
2212 * we don't wait for the sequence count to stabilize if it
2213 * is in the middle of a sequence change. If we do the slow
2214 * dentry compare, we will do seqretries until it is stable,
2215 * and if we end up with a successful lookup, we actually
2216 * want to exit RCU lookup anyway.
d4c91a8f
AV
2217 *
2218 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2219 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2220 */
2221 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2222 if (dentry->d_parent != parent)
2223 continue;
2e321806
LT
2224 if (d_unhashed(dentry))
2225 continue;
12f8ad4b 2226
830c0f0e 2227 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2228 int tlen;
2229 const char *tname;
26fe5750
LT
2230 if (dentry->d_name.hash != hashlen_hash(hashlen))
2231 continue;
d4c91a8f
AV
2232 tlen = dentry->d_name.len;
2233 tname = dentry->d_name.name;
2234 /* we want a consistent (name,len) pair */
2235 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2236 cpu_relax();
12f8ad4b
LT
2237 goto seqretry;
2238 }
6fa67e70 2239 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2240 tlen, tname, name) != 0)
2241 continue;
2242 } else {
2243 if (dentry->d_name.hash_len != hashlen)
2244 continue;
2245 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2246 continue;
31e6b01f 2247 }
da53be12 2248 *seqp = seq;
d4c91a8f 2249 return dentry;
31e6b01f
NP
2250 }
2251 return NULL;
2252}
2253
1da177e4
LT
2254/**
2255 * d_lookup - search for a dentry
2256 * @parent: parent dentry
2257 * @name: qstr of name we wish to find
b04f784e 2258 * Returns: dentry, or NULL
1da177e4 2259 *
b04f784e
NP
2260 * d_lookup searches the children of the parent dentry for the name in
2261 * question. If the dentry is found its reference count is incremented and the
2262 * dentry is returned. The caller must use dput to free the entry when it has
2263 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2264 */
da2d8455 2265struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2266{
31e6b01f 2267 struct dentry *dentry;
949854d0 2268 unsigned seq;
1da177e4 2269
b8314f93
DY
2270 do {
2271 seq = read_seqbegin(&rename_lock);
2272 dentry = __d_lookup(parent, name);
2273 if (dentry)
1da177e4
LT
2274 break;
2275 } while (read_seqretry(&rename_lock, seq));
2276 return dentry;
2277}
ec4f8605 2278EXPORT_SYMBOL(d_lookup);
1da177e4 2279
31e6b01f 2280/**
b04f784e
NP
2281 * __d_lookup - search for a dentry (racy)
2282 * @parent: parent dentry
2283 * @name: qstr of name we wish to find
2284 * Returns: dentry, or NULL
2285 *
2286 * __d_lookup is like d_lookup, however it may (rarely) return a
2287 * false-negative result due to unrelated rename activity.
2288 *
2289 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2290 * however it must be used carefully, eg. with a following d_lookup in
2291 * the case of failure.
2292 *
2293 * __d_lookup callers must be commented.
2294 */
a713ca2a 2295struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2296{
1da177e4 2297 unsigned int hash = name->hash;
8387ff25 2298 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2299 struct hlist_bl_node *node;
31e6b01f 2300 struct dentry *found = NULL;
665a7583 2301 struct dentry *dentry;
1da177e4 2302
31e6b01f
NP
2303 /*
2304 * Note: There is significant duplication with __d_lookup_rcu which is
2305 * required to prevent single threaded performance regressions
2306 * especially on architectures where smp_rmb (in seqcounts) are costly.
2307 * Keep the two functions in sync.
2308 */
2309
b04f784e
NP
2310 /*
2311 * The hash list is protected using RCU.
2312 *
2313 * Take d_lock when comparing a candidate dentry, to avoid races
2314 * with d_move().
2315 *
2316 * It is possible that concurrent renames can mess up our list
2317 * walk here and result in missing our dentry, resulting in the
2318 * false-negative result. d_lookup() protects against concurrent
2319 * renames using rename_lock seqlock.
2320 *
b0a4bb83 2321 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2322 */
1da177e4
LT
2323 rcu_read_lock();
2324
b07ad996 2325 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2326
1da177e4
LT
2327 if (dentry->d_name.hash != hash)
2328 continue;
1da177e4
LT
2329
2330 spin_lock(&dentry->d_lock);
1da177e4
LT
2331 if (dentry->d_parent != parent)
2332 goto next;
d0185c08
LT
2333 if (d_unhashed(dentry))
2334 goto next;
2335
d4c91a8f
AV
2336 if (!d_same_name(dentry, parent, name))
2337 goto next;
1da177e4 2338
98474236 2339 dentry->d_lockref.count++;
d0185c08 2340 found = dentry;
1da177e4
LT
2341 spin_unlock(&dentry->d_lock);
2342 break;
2343next:
2344 spin_unlock(&dentry->d_lock);
2345 }
2346 rcu_read_unlock();
2347
2348 return found;
2349}
2350
3e7e241f
EB
2351/**
2352 * d_hash_and_lookup - hash the qstr then search for a dentry
2353 * @dir: Directory to search in
2354 * @name: qstr of name we wish to find
2355 *
4f522a24 2356 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2357 */
2358struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2359{
3e7e241f
EB
2360 /*
2361 * Check for a fs-specific hash function. Note that we must
2362 * calculate the standard hash first, as the d_op->d_hash()
2363 * routine may choose to leave the hash value unchanged.
2364 */
8387ff25 2365 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2366 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2367 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2368 if (unlikely(err < 0))
2369 return ERR_PTR(err);
3e7e241f 2370 }
4f522a24 2371 return d_lookup(dir, name);
3e7e241f 2372}
4f522a24 2373EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2374
1da177e4
LT
2375/*
2376 * When a file is deleted, we have two options:
2377 * - turn this dentry into a negative dentry
2378 * - unhash this dentry and free it.
2379 *
2380 * Usually, we want to just turn this into
2381 * a negative dentry, but if anybody else is
2382 * currently using the dentry or the inode
2383 * we can't do that and we fall back on removing
2384 * it from the hash queues and waiting for
2385 * it to be deleted later when it has no users
2386 */
2387
2388/**
2389 * d_delete - delete a dentry
2390 * @dentry: The dentry to delete
2391 *
2392 * Turn the dentry into a negative dentry if possible, otherwise
2393 * remove it from the hash queues so it can be deleted later
2394 */
2395
2396void d_delete(struct dentry * dentry)
2397{
c19457f0
AV
2398 struct inode *inode = dentry->d_inode;
2399 int isdir = d_is_dir(dentry);
2400
2401 spin_lock(&inode->i_lock);
2402 spin_lock(&dentry->d_lock);
1da177e4
LT
2403 /*
2404 * Are we the only user?
2405 */
98474236 2406 if (dentry->d_lockref.count == 1) {
13e3c5e5 2407 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2408 dentry_unlink_inode(dentry);
c19457f0 2409 } else {
1da177e4 2410 __d_drop(dentry);
c19457f0
AV
2411 spin_unlock(&dentry->d_lock);
2412 spin_unlock(&inode->i_lock);
2413 }
7a91bf7f 2414 fsnotify_nameremove(dentry, isdir);
1da177e4 2415}
ec4f8605 2416EXPORT_SYMBOL(d_delete);
1da177e4 2417
15d3c589 2418static void __d_rehash(struct dentry *entry)
1da177e4 2419{
15d3c589 2420 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2421
1879fd6a 2422 hlist_bl_lock(b);
b07ad996 2423 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2424 hlist_bl_unlock(b);
1da177e4
LT
2425}
2426
2427/**
2428 * d_rehash - add an entry back to the hash
2429 * @entry: dentry to add to the hash
2430 *
2431 * Adds a dentry to the hash according to its name.
2432 */
2433
2434void d_rehash(struct dentry * entry)
2435{
1da177e4 2436 spin_lock(&entry->d_lock);
15d3c589 2437 __d_rehash(entry);
1da177e4 2438 spin_unlock(&entry->d_lock);
1da177e4 2439}
ec4f8605 2440EXPORT_SYMBOL(d_rehash);
1da177e4 2441
84e710da
AV
2442static inline unsigned start_dir_add(struct inode *dir)
2443{
2444
2445 for (;;) {
2446 unsigned n = dir->i_dir_seq;
2447 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2448 return n;
2449 cpu_relax();
2450 }
2451}
2452
2453static inline void end_dir_add(struct inode *dir, unsigned n)
2454{
2455 smp_store_release(&dir->i_dir_seq, n + 2);
2456}
2457
d9171b93
AV
2458static void d_wait_lookup(struct dentry *dentry)
2459{
2460 if (d_in_lookup(dentry)) {
2461 DECLARE_WAITQUEUE(wait, current);
2462 add_wait_queue(dentry->d_wait, &wait);
2463 do {
2464 set_current_state(TASK_UNINTERRUPTIBLE);
2465 spin_unlock(&dentry->d_lock);
2466 schedule();
2467 spin_lock(&dentry->d_lock);
2468 } while (d_in_lookup(dentry));
2469 }
2470}
2471
94bdd655 2472struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2473 const struct qstr *name,
2474 wait_queue_head_t *wq)
94bdd655 2475{
94bdd655 2476 unsigned int hash = name->hash;
94bdd655
AV
2477 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2478 struct hlist_bl_node *node;
2479 struct dentry *new = d_alloc(parent, name);
2480 struct dentry *dentry;
2481 unsigned seq, r_seq, d_seq;
2482
2483 if (unlikely(!new))
2484 return ERR_PTR(-ENOMEM);
2485
2486retry:
2487 rcu_read_lock();
015555fd 2488 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2489 r_seq = read_seqbegin(&rename_lock);
2490 dentry = __d_lookup_rcu(parent, name, &d_seq);
2491 if (unlikely(dentry)) {
2492 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2493 rcu_read_unlock();
2494 goto retry;
2495 }
2496 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2497 rcu_read_unlock();
2498 dput(dentry);
2499 goto retry;
2500 }
2501 rcu_read_unlock();
2502 dput(new);
2503 return dentry;
2504 }
2505 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2506 rcu_read_unlock();
2507 goto retry;
2508 }
015555fd
WD
2509
2510 if (unlikely(seq & 1)) {
2511 rcu_read_unlock();
2512 goto retry;
2513 }
2514
94bdd655 2515 hlist_bl_lock(b);
8cc07c80 2516 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2517 hlist_bl_unlock(b);
2518 rcu_read_unlock();
2519 goto retry;
2520 }
94bdd655
AV
2521 /*
2522 * No changes for the parent since the beginning of d_lookup().
2523 * Since all removals from the chain happen with hlist_bl_lock(),
2524 * any potential in-lookup matches are going to stay here until
2525 * we unlock the chain. All fields are stable in everything
2526 * we encounter.
2527 */
2528 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2529 if (dentry->d_name.hash != hash)
2530 continue;
2531 if (dentry->d_parent != parent)
2532 continue;
d4c91a8f
AV
2533 if (!d_same_name(dentry, parent, name))
2534 continue;
94bdd655 2535 hlist_bl_unlock(b);
e7d6ef97
AV
2536 /* now we can try to grab a reference */
2537 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2538 rcu_read_unlock();
2539 goto retry;
2540 }
2541
2542 rcu_read_unlock();
2543 /*
2544 * somebody is likely to be still doing lookup for it;
2545 * wait for them to finish
2546 */
d9171b93
AV
2547 spin_lock(&dentry->d_lock);
2548 d_wait_lookup(dentry);
2549 /*
2550 * it's not in-lookup anymore; in principle we should repeat
2551 * everything from dcache lookup, but it's likely to be what
2552 * d_lookup() would've found anyway. If it is, just return it;
2553 * otherwise we really have to repeat the whole thing.
2554 */
2555 if (unlikely(dentry->d_name.hash != hash))
2556 goto mismatch;
2557 if (unlikely(dentry->d_parent != parent))
2558 goto mismatch;
2559 if (unlikely(d_unhashed(dentry)))
2560 goto mismatch;
d4c91a8f
AV
2561 if (unlikely(!d_same_name(dentry, parent, name)))
2562 goto mismatch;
d9171b93
AV
2563 /* OK, it *is* a hashed match; return it */
2564 spin_unlock(&dentry->d_lock);
94bdd655
AV
2565 dput(new);
2566 return dentry;
2567 }
e7d6ef97 2568 rcu_read_unlock();
94bdd655
AV
2569 /* we can't take ->d_lock here; it's OK, though. */
2570 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2571 new->d_wait = wq;
94bdd655
AV
2572 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2573 hlist_bl_unlock(b);
2574 return new;
d9171b93
AV
2575mismatch:
2576 spin_unlock(&dentry->d_lock);
2577 dput(dentry);
2578 goto retry;
94bdd655
AV
2579}
2580EXPORT_SYMBOL(d_alloc_parallel);
2581
85c7f810
AV
2582void __d_lookup_done(struct dentry *dentry)
2583{
94bdd655
AV
2584 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2585 dentry->d_name.hash);
2586 hlist_bl_lock(b);
85c7f810 2587 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2588 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2589 wake_up_all(dentry->d_wait);
2590 dentry->d_wait = NULL;
94bdd655
AV
2591 hlist_bl_unlock(b);
2592 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2593 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2594}
2595EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2596
2597/* inode->i_lock held if inode is non-NULL */
2598
2599static inline void __d_add(struct dentry *dentry, struct inode *inode)
2600{
84e710da
AV
2601 struct inode *dir = NULL;
2602 unsigned n;
0568d705 2603 spin_lock(&dentry->d_lock);
84e710da
AV
2604 if (unlikely(d_in_lookup(dentry))) {
2605 dir = dentry->d_parent->d_inode;
2606 n = start_dir_add(dir);
85c7f810 2607 __d_lookup_done(dentry);
84e710da 2608 }
ed782b5a 2609 if (inode) {
0568d705
AV
2610 unsigned add_flags = d_flags_for_inode(inode);
2611 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2612 raw_write_seqcount_begin(&dentry->d_seq);
2613 __d_set_inode_and_type(dentry, inode, add_flags);
2614 raw_write_seqcount_end(&dentry->d_seq);
affda484 2615 fsnotify_update_flags(dentry);
ed782b5a 2616 }
15d3c589 2617 __d_rehash(dentry);
84e710da
AV
2618 if (dir)
2619 end_dir_add(dir, n);
0568d705
AV
2620 spin_unlock(&dentry->d_lock);
2621 if (inode)
2622 spin_unlock(&inode->i_lock);
ed782b5a
AV
2623}
2624
34d0d19d
AV
2625/**
2626 * d_add - add dentry to hash queues
2627 * @entry: dentry to add
2628 * @inode: The inode to attach to this dentry
2629 *
2630 * This adds the entry to the hash queues and initializes @inode.
2631 * The entry was actually filled in earlier during d_alloc().
2632 */
2633
2634void d_add(struct dentry *entry, struct inode *inode)
2635{
b9680917
AV
2636 if (inode) {
2637 security_d_instantiate(entry, inode);
ed782b5a 2638 spin_lock(&inode->i_lock);
b9680917 2639 }
ed782b5a 2640 __d_add(entry, inode);
34d0d19d
AV
2641}
2642EXPORT_SYMBOL(d_add);
2643
668d0cd5
AV
2644/**
2645 * d_exact_alias - find and hash an exact unhashed alias
2646 * @entry: dentry to add
2647 * @inode: The inode to go with this dentry
2648 *
2649 * If an unhashed dentry with the same name/parent and desired
2650 * inode already exists, hash and return it. Otherwise, return
2651 * NULL.
2652 *
2653 * Parent directory should be locked.
2654 */
2655struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2656{
2657 struct dentry *alias;
668d0cd5
AV
2658 unsigned int hash = entry->d_name.hash;
2659
2660 spin_lock(&inode->i_lock);
2661 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2662 /*
2663 * Don't need alias->d_lock here, because aliases with
2664 * d_parent == entry->d_parent are not subject to name or
2665 * parent changes, because the parent inode i_mutex is held.
2666 */
2667 if (alias->d_name.hash != hash)
2668 continue;
2669 if (alias->d_parent != entry->d_parent)
2670 continue;
d4c91a8f 2671 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2672 continue;
2673 spin_lock(&alias->d_lock);
2674 if (!d_unhashed(alias)) {
2675 spin_unlock(&alias->d_lock);
2676 alias = NULL;
2677 } else {
2678 __dget_dlock(alias);
15d3c589 2679 __d_rehash(alias);
668d0cd5
AV
2680 spin_unlock(&alias->d_lock);
2681 }
2682 spin_unlock(&inode->i_lock);
2683 return alias;
2684 }
2685 spin_unlock(&inode->i_lock);
2686 return NULL;
2687}
2688EXPORT_SYMBOL(d_exact_alias);
2689
fb2d5b86
NP
2690/**
2691 * dentry_update_name_case - update case insensitive dentry with a new name
2692 * @dentry: dentry to be updated
2693 * @name: new name
2694 *
2695 * Update a case insensitive dentry with new case of name.
2696 *
2697 * dentry must have been returned by d_lookup with name @name. Old and new
2698 * name lengths must match (ie. no d_compare which allows mismatched name
2699 * lengths).
2700 *
2701 * Parent inode i_mutex must be held over d_lookup and into this call (to
2702 * keep renames and concurrent inserts, and readdir(2) away).
2703 */
9aba36de 2704void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2705{
5955102c 2706 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2707 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2708
fb2d5b86 2709 spin_lock(&dentry->d_lock);
31e6b01f 2710 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2711 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2712 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2713 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2714}
2715EXPORT_SYMBOL(dentry_update_name_case);
2716
8d85b484 2717static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2718{
8d85b484
AV
2719 if (unlikely(dname_external(target))) {
2720 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2721 /*
2722 * Both external: swap the pointers
2723 */
9a8d5bb4 2724 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2725 } else {
2726 /*
2727 * dentry:internal, target:external. Steal target's
2728 * storage and make target internal.
2729 */
321bcf92
BF
2730 memcpy(target->d_iname, dentry->d_name.name,
2731 dentry->d_name.len + 1);
1da177e4
LT
2732 dentry->d_name.name = target->d_name.name;
2733 target->d_name.name = target->d_iname;
2734 }
2735 } else {
8d85b484 2736 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2737 /*
2738 * dentry:external, target:internal. Give dentry's
2739 * storage to target and make dentry internal
2740 */
2741 memcpy(dentry->d_iname, target->d_name.name,
2742 target->d_name.len + 1);
2743 target->d_name.name = dentry->d_name.name;
2744 dentry->d_name.name = dentry->d_iname;
2745 } else {
2746 /*
da1ce067 2747 * Both are internal.
1da177e4 2748 */
da1ce067
MS
2749 unsigned int i;
2750 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2751 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2752 swap(((long *) &dentry->d_iname)[i],
2753 ((long *) &target->d_iname)[i]);
2754 }
1da177e4
LT
2755 }
2756 }
a28ddb87 2757 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2758}
2759
8d85b484
AV
2760static void copy_name(struct dentry *dentry, struct dentry *target)
2761{
2762 struct external_name *old_name = NULL;
2763 if (unlikely(dname_external(dentry)))
2764 old_name = external_name(dentry);
2765 if (unlikely(dname_external(target))) {
2766 atomic_inc(&external_name(target)->u.count);
2767 dentry->d_name = target->d_name;
2768 } else {
2769 memcpy(dentry->d_iname, target->d_name.name,
2770 target->d_name.len + 1);
2771 dentry->d_name.name = dentry->d_iname;
2772 dentry->d_name.hash_len = target->d_name.hash_len;
2773 }
2774 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2775 kfree_rcu(old_name, u.head);
2776}
2777
2fd6b7f5
NP
2778static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2779{
2780 /*
2781 * XXXX: do we really need to take target->d_lock?
2782 */
2783 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2784 spin_lock(&target->d_parent->d_lock);
2785 else {
2786 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2787 spin_lock(&dentry->d_parent->d_lock);
2788 spin_lock_nested(&target->d_parent->d_lock,
2789 DENTRY_D_LOCK_NESTED);
2790 } else {
2791 spin_lock(&target->d_parent->d_lock);
2792 spin_lock_nested(&dentry->d_parent->d_lock,
2793 DENTRY_D_LOCK_NESTED);
2794 }
2795 }
2796 if (target < dentry) {
2797 spin_lock_nested(&target->d_lock, 2);
2798 spin_lock_nested(&dentry->d_lock, 3);
2799 } else {
2800 spin_lock_nested(&dentry->d_lock, 2);
2801 spin_lock_nested(&target->d_lock, 3);
2802 }
2803}
2804
986c0194 2805static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2806{
2807 if (target->d_parent != dentry->d_parent)
2808 spin_unlock(&dentry->d_parent->d_lock);
2809 if (target->d_parent != target)
2810 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2811 spin_unlock(&target->d_lock);
2812 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2813}
2814
1da177e4 2815/*
2fd6b7f5
NP
2816 * When switching names, the actual string doesn't strictly have to
2817 * be preserved in the target - because we're dropping the target
2818 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2819 * the new name before we switch, unless we are going to rehash
2820 * it. Note that if we *do* unhash the target, we are not allowed
2821 * to rehash it without giving it a new name/hash key - whether
2822 * we swap or overwrite the names here, resulting name won't match
2823 * the reality in filesystem; it's only there for d_path() purposes.
2824 * Note that all of this is happening under rename_lock, so the
2825 * any hash lookup seeing it in the middle of manipulations will
2826 * be discarded anyway. So we do not care what happens to the hash
2827 * key in that case.
1da177e4 2828 */
9eaef27b 2829/*
18367501 2830 * __d_move - move a dentry
1da177e4
LT
2831 * @dentry: entry to move
2832 * @target: new dentry
da1ce067 2833 * @exchange: exchange the two dentries
1da177e4
LT
2834 *
2835 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2836 * dcache entries should not be moved in this way. Caller must hold
2837 * rename_lock, the i_mutex of the source and target directories,
2838 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2839 */
da1ce067
MS
2840static void __d_move(struct dentry *dentry, struct dentry *target,
2841 bool exchange)
1da177e4 2842{
84e710da
AV
2843 struct inode *dir = NULL;
2844 unsigned n;
1da177e4
LT
2845 if (!dentry->d_inode)
2846 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2847
2fd6b7f5
NP
2848 BUG_ON(d_ancestor(dentry, target));
2849 BUG_ON(d_ancestor(target, dentry));
2850
2fd6b7f5 2851 dentry_lock_for_move(dentry, target);
84e710da
AV
2852 if (unlikely(d_in_lookup(target))) {
2853 dir = target->d_parent->d_inode;
2854 n = start_dir_add(dir);
85c7f810 2855 __d_lookup_done(target);
84e710da 2856 }
1da177e4 2857
31e6b01f 2858 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2859 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2860
15d3c589 2861 /* unhash both */
0632a9ac
AV
2862 if (!d_unhashed(dentry))
2863 ___d_drop(dentry);
2864 if (!d_unhashed(target))
2865 ___d_drop(target);
1da177e4 2866
1da177e4 2867 /* Switch the names.. */
8d85b484
AV
2868 if (exchange)
2869 swap_names(dentry, target);
2870 else
2871 copy_name(dentry, target);
1da177e4 2872
15d3c589
AV
2873 /* rehash in new place(s) */
2874 __d_rehash(dentry);
2875 if (exchange)
2876 __d_rehash(target);
61647823
N
2877 else
2878 target->d_hash.pprev = NULL;
15d3c589 2879
63cf427a 2880 /* ... and switch them in the tree */
1da177e4 2881 if (IS_ROOT(dentry)) {
63cf427a 2882 /* splicing a tree */
3d56c25e 2883 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2884 dentry->d_parent = target->d_parent;
2885 target->d_parent = target;
946e51f2
AV
2886 list_del_init(&target->d_child);
2887 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2888 } else {
63cf427a 2889 /* swapping two dentries */
9a8d5bb4 2890 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2891 list_move(&target->d_child, &target->d_parent->d_subdirs);
2892 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2893 if (exchange)
affda484
AV
2894 fsnotify_update_flags(target);
2895 fsnotify_update_flags(dentry);
1da177e4
LT
2896 }
2897
31e6b01f
NP
2898 write_seqcount_end(&target->d_seq);
2899 write_seqcount_end(&dentry->d_seq);
2900
84e710da
AV
2901 if (dir)
2902 end_dir_add(dir, n);
986c0194 2903 dentry_unlock_for_move(dentry, target);
18367501
AV
2904}
2905
2906/*
2907 * d_move - move a dentry
2908 * @dentry: entry to move
2909 * @target: new dentry
2910 *
2911 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2912 * dcache entries should not be moved in this way. See the locking
2913 * requirements for __d_move.
18367501
AV
2914 */
2915void d_move(struct dentry *dentry, struct dentry *target)
2916{
2917 write_seqlock(&rename_lock);
da1ce067 2918 __d_move(dentry, target, false);
1da177e4 2919 write_sequnlock(&rename_lock);
9eaef27b 2920}
ec4f8605 2921EXPORT_SYMBOL(d_move);
1da177e4 2922
da1ce067
MS
2923/*
2924 * d_exchange - exchange two dentries
2925 * @dentry1: first dentry
2926 * @dentry2: second dentry
2927 */
2928void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2929{
2930 write_seqlock(&rename_lock);
2931
2932 WARN_ON(!dentry1->d_inode);
2933 WARN_ON(!dentry2->d_inode);
2934 WARN_ON(IS_ROOT(dentry1));
2935 WARN_ON(IS_ROOT(dentry2));
2936
2937 __d_move(dentry1, dentry2, true);
2938
2939 write_sequnlock(&rename_lock);
2940}
2941
e2761a11
OH
2942/**
2943 * d_ancestor - search for an ancestor
2944 * @p1: ancestor dentry
2945 * @p2: child dentry
2946 *
2947 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2948 * an ancestor of p2, else NULL.
9eaef27b 2949 */
e2761a11 2950struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2951{
2952 struct dentry *p;
2953
871c0067 2954 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2955 if (p->d_parent == p1)
e2761a11 2956 return p;
9eaef27b 2957 }
e2761a11 2958 return NULL;
9eaef27b
TM
2959}
2960
2961/*
2962 * This helper attempts to cope with remotely renamed directories
2963 *
2964 * It assumes that the caller is already holding
a03e283b 2965 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2966 *
2967 * Note: If ever the locking in lock_rename() changes, then please
2968 * remember to update this too...
9eaef27b 2969 */
b5ae6b15 2970static int __d_unalias(struct inode *inode,
873feea0 2971 struct dentry *dentry, struct dentry *alias)
9eaef27b 2972{
9902af79
AV
2973 struct mutex *m1 = NULL;
2974 struct rw_semaphore *m2 = NULL;
3d330dc1 2975 int ret = -ESTALE;
9eaef27b
TM
2976
2977 /* If alias and dentry share a parent, then no extra locks required */
2978 if (alias->d_parent == dentry->d_parent)
2979 goto out_unalias;
2980
9eaef27b 2981 /* See lock_rename() */
9eaef27b
TM
2982 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2983 goto out_err;
2984 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2985 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2986 goto out_err;
9902af79 2987 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2988out_unalias:
8ed936b5 2989 __d_move(alias, dentry, false);
b5ae6b15 2990 ret = 0;
9eaef27b 2991out_err:
9eaef27b 2992 if (m2)
9902af79 2993 up_read(m2);
9eaef27b
TM
2994 if (m1)
2995 mutex_unlock(m1);
2996 return ret;
2997}
2998
3f70bd51
BF
2999/**
3000 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3001 * @inode: the inode which may have a disconnected dentry
3002 * @dentry: a negative dentry which we want to point to the inode.
3003 *
da093a9b
BF
3004 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3005 * place of the given dentry and return it, else simply d_add the inode
3006 * to the dentry and return NULL.
3f70bd51 3007 *
908790fa
BF
3008 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3009 * we should error out: directories can't have multiple aliases.
3010 *
3f70bd51
BF
3011 * This is needed in the lookup routine of any filesystem that is exportable
3012 * (via knfsd) so that we can build dcache paths to directories effectively.
3013 *
3014 * If a dentry was found and moved, then it is returned. Otherwise NULL
3015 * is returned. This matches the expected return value of ->lookup.
3016 *
3017 * Cluster filesystems may call this function with a negative, hashed dentry.
3018 * In that case, we know that the inode will be a regular file, and also this
3019 * will only occur during atomic_open. So we need to check for the dentry
3020 * being already hashed only in the final case.
3021 */
3022struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3023{
3f70bd51
BF
3024 if (IS_ERR(inode))
3025 return ERR_CAST(inode);
3026
770bfad8
DH
3027 BUG_ON(!d_unhashed(dentry));
3028
de689f5e 3029 if (!inode)
b5ae6b15 3030 goto out;
de689f5e 3031
b9680917 3032 security_d_instantiate(dentry, inode);
873feea0 3033 spin_lock(&inode->i_lock);
9eaef27b 3034 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3035 struct dentry *new = __d_find_any_alias(inode);
3036 if (unlikely(new)) {
a03e283b
EB
3037 /* The reference to new ensures it remains an alias */
3038 spin_unlock(&inode->i_lock);
18367501 3039 write_seqlock(&rename_lock);
b5ae6b15
AV
3040 if (unlikely(d_ancestor(new, dentry))) {
3041 write_sequnlock(&rename_lock);
b5ae6b15
AV
3042 dput(new);
3043 new = ERR_PTR(-ELOOP);
3044 pr_warn_ratelimited(
3045 "VFS: Lookup of '%s' in %s %s"
3046 " would have caused loop\n",
3047 dentry->d_name.name,
3048 inode->i_sb->s_type->name,
3049 inode->i_sb->s_id);
3050 } else if (!IS_ROOT(new)) {
3051 int err = __d_unalias(inode, dentry, new);
18367501 3052 write_sequnlock(&rename_lock);
b5ae6b15
AV
3053 if (err) {
3054 dput(new);
3055 new = ERR_PTR(err);
3056 }
18367501 3057 } else {
b5ae6b15
AV
3058 __d_move(new, dentry, false);
3059 write_sequnlock(&rename_lock);
dd179946 3060 }
b5ae6b15
AV
3061 iput(inode);
3062 return new;
9eaef27b 3063 }
770bfad8 3064 }
b5ae6b15 3065out:
ed782b5a 3066 __d_add(dentry, inode);
b5ae6b15 3067 return NULL;
770bfad8 3068}
b5ae6b15 3069EXPORT_SYMBOL(d_splice_alias);
770bfad8 3070
1da177e4
LT
3071/*
3072 * Test whether new_dentry is a subdirectory of old_dentry.
3073 *
3074 * Trivially implemented using the dcache structure
3075 */
3076
3077/**
3078 * is_subdir - is new dentry a subdirectory of old_dentry
3079 * @new_dentry: new dentry
3080 * @old_dentry: old dentry
3081 *
a6e5787f
YB
3082 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3083 * Returns false otherwise.
1da177e4
LT
3084 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3085 */
3086
a6e5787f 3087bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3088{
a6e5787f 3089 bool result;
949854d0 3090 unsigned seq;
1da177e4 3091
e2761a11 3092 if (new_dentry == old_dentry)
a6e5787f 3093 return true;
e2761a11 3094
e2761a11 3095 do {
1da177e4 3096 /* for restarting inner loop in case of seq retry */
1da177e4 3097 seq = read_seqbegin(&rename_lock);
949854d0
NP
3098 /*
3099 * Need rcu_readlock to protect against the d_parent trashing
3100 * due to d_move
3101 */
3102 rcu_read_lock();
e2761a11 3103 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3104 result = true;
e2761a11 3105 else
a6e5787f 3106 result = false;
949854d0 3107 rcu_read_unlock();
1da177e4 3108 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3109
3110 return result;
3111}
e8f9e5b7 3112EXPORT_SYMBOL(is_subdir);
1da177e4 3113
db14fc3a 3114static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3115{
db14fc3a
MS
3116 struct dentry *root = data;
3117 if (dentry != root) {
3118 if (d_unhashed(dentry) || !dentry->d_inode)
3119 return D_WALK_SKIP;
1da177e4 3120
01ddc4ed
MS
3121 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3122 dentry->d_flags |= DCACHE_GENOCIDE;
3123 dentry->d_lockref.count--;
3124 }
1da177e4 3125 }
db14fc3a
MS
3126 return D_WALK_CONTINUE;
3127}
58db63d0 3128
db14fc3a
MS
3129void d_genocide(struct dentry *parent)
3130{
3131 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3132}
3133
60545d0d 3134void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3135{
60545d0d
AV
3136 inode_dec_link_count(inode);
3137 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3138 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3139 !d_unlinked(dentry));
3140 spin_lock(&dentry->d_parent->d_lock);
3141 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3142 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3143 (unsigned long long)inode->i_ino);
3144 spin_unlock(&dentry->d_lock);
3145 spin_unlock(&dentry->d_parent->d_lock);
3146 d_instantiate(dentry, inode);
1da177e4 3147}
60545d0d 3148EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3149
3150static __initdata unsigned long dhash_entries;
3151static int __init set_dhash_entries(char *str)
3152{
3153 if (!str)
3154 return 0;
3155 dhash_entries = simple_strtoul(str, &str, 0);
3156 return 1;
3157}
3158__setup("dhash_entries=", set_dhash_entries);
3159
3160static void __init dcache_init_early(void)
3161{
1da177e4
LT
3162 /* If hashes are distributed across NUMA nodes, defer
3163 * hash allocation until vmalloc space is available.
3164 */
3165 if (hashdist)
3166 return;
3167
3168 dentry_hashtable =
3169 alloc_large_system_hash("Dentry cache",
b07ad996 3170 sizeof(struct hlist_bl_head),
1da177e4
LT
3171 dhash_entries,
3172 13,
3d375d78 3173 HASH_EARLY | HASH_ZERO,
1da177e4 3174 &d_hash_shift,
b35d786b 3175 NULL,
31fe62b9 3176 0,
1da177e4 3177 0);
854d3e63 3178 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3179}
3180
74bf17cf 3181static void __init dcache_init(void)
1da177e4 3182{
3d375d78 3183 /*
1da177e4
LT
3184 * A constructor could be added for stable state like the lists,
3185 * but it is probably not worth it because of the cache nature
3d375d78 3186 * of the dcache.
1da177e4 3187 */
80344266
DW
3188 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3189 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3190 d_iname);
1da177e4
LT
3191
3192 /* Hash may have been set up in dcache_init_early */
3193 if (!hashdist)
3194 return;
3195
3196 dentry_hashtable =
3197 alloc_large_system_hash("Dentry cache",
b07ad996 3198 sizeof(struct hlist_bl_head),
1da177e4
LT
3199 dhash_entries,
3200 13,
3d375d78 3201 HASH_ZERO,
1da177e4 3202 &d_hash_shift,
b35d786b 3203 NULL,
31fe62b9 3204 0,
1da177e4 3205 0);
854d3e63 3206 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3207}
3208
3209/* SLAB cache for __getname() consumers */
e18b890b 3210struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3211EXPORT_SYMBOL(names_cachep);
1da177e4 3212
1da177e4
LT
3213EXPORT_SYMBOL(d_genocide);
3214
1da177e4
LT
3215void __init vfs_caches_init_early(void)
3216{
6916363f
SAS
3217 int i;
3218
3219 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3220 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3221
1da177e4
LT
3222 dcache_init_early();
3223 inode_init_early();
3224}
3225
4248b0da 3226void __init vfs_caches_init(void)
1da177e4 3227{
6a9b8820
DW
3228 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3229 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3230
74bf17cf
DC
3231 dcache_init();
3232 inode_init();
4248b0da
MG
3233 files_init();
3234 files_maxfiles_init();
74bf17cf 3235 mnt_init();
1da177e4
LT
3236 bdev_cache_init();
3237 chrdev_init();
3238}