dcache: move cond_resched() into the end of __dentry_kill()
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
7a5cf791 17#include <linux/ratelimit.h>
1da177e4
LT
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/seqlock.h>
1da177e4 29#include <linux/bootmem.h>
ceb5bdc2
NP
30#include <linux/bit_spinlock.h>
31#include <linux/rculist_bl.h>
f6041567 32#include <linux/list_lru.h>
07f3f05c 33#include "internal.h"
b2dba1af 34#include "mount.h"
1da177e4 35
789680d1
NP
36/*
37 * Usage:
873feea0 38 * dcache->d_inode->i_lock protects:
946e51f2 39 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
f1ee6162
N
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
19156840 44 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
946e51f2 54 * - d_u.d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
873feea0 57 * dentry->d_inode->i_lock
b5c84bf6 58 * dentry->d_lock
19156840 59 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 60 * dcache_hash_bucket lock
f1ee6162 61 * s_roots lock
789680d1 62 *
da502956
NP
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
65 * ...
66 * dentry->d_parent->d_lock
67 * dentry->d_lock
68 *
69 * If no ancestor relationship:
076515fc 70 * arbitrary, since it's serialized on rename_lock
789680d1 71 */
fa3536cc 72int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
73EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
74c3cbe3 75__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 76
949854d0 77EXPORT_SYMBOL(rename_lock);
1da177e4 78
e18b890b 79static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 80
cdf01226
DH
81const struct qstr empty_name = QSTR_INIT("", 0);
82EXPORT_SYMBOL(empty_name);
83const struct qstr slash_name = QSTR_INIT("/", 1);
84EXPORT_SYMBOL(slash_name);
85
1da177e4
LT
86/*
87 * This is the single most critical data structure when it comes
88 * to the dcache: the hashtable for lookups. Somebody should try
89 * to make this good - I've just made it work.
90 *
91 * This hash-function tries to avoid losing too many bits of hash
92 * information, yet avoid using a prime hash-size or similar.
93 */
1da177e4 94
fa3536cc 95static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 96
b07ad996 97static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 98
8387ff25 99static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 100{
854d3e63 101 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
102}
103
94bdd655
AV
104#define IN_LOOKUP_SHIFT 10
105static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 unsigned int hash)
109{
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112}
113
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3942c07c 120static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 121static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
122
123#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
124
125/*
126 * Here we resort to our own counters instead of using generic per-cpu counters
127 * for consistency with what the vfs inode code does. We are expected to harvest
128 * better code and performance by having our own specialized counters.
129 *
130 * Please note that the loop is done over all possible CPUs, not over all online
131 * CPUs. The reason for this is that we don't want to play games with CPUs going
132 * on and off. If one of them goes off, we will just keep their counters.
133 *
134 * glommer: See cffbc8a for details, and if you ever intend to change this,
135 * please update all vfs counters to match.
136 */
3942c07c 137static long get_nr_dentry(void)
3e880fb5
NP
138{
139 int i;
3942c07c 140 long sum = 0;
3e880fb5
NP
141 for_each_possible_cpu(i)
142 sum += per_cpu(nr_dentry, i);
143 return sum < 0 ? 0 : sum;
144}
145
62d36c77
DC
146static long get_nr_dentry_unused(void)
147{
148 int i;
149 long sum = 0;
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry_unused, i);
152 return sum < 0 ? 0 : sum;
153}
154
1f7e0616 155int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
156 size_t *lenp, loff_t *ppos)
157{
3e880fb5 158 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 159 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
161}
162#endif
163
5483f18e
LT
164/*
165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166 * The strings are both count bytes long, and count is non-zero.
167 */
e419b4cc
LT
168#ifdef CONFIG_DCACHE_WORD_ACCESS
169
170#include <asm/word-at-a-time.h>
171/*
172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173 * aligned allocation for this particular component. We don't
174 * strictly need the load_unaligned_zeropad() safety, but it
175 * doesn't hurt either.
176 *
177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178 * need the careful unaligned handling.
179 */
94753db5 180static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 181{
bfcfaa77 182 unsigned long a,b,mask;
bfcfaa77
LT
183
184 for (;;) {
bfe7aa6c 185 a = read_word_at_a_time(cs);
e419b4cc 186 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
187 if (tcount < sizeof(unsigned long))
188 break;
189 if (unlikely(a != b))
190 return 1;
191 cs += sizeof(unsigned long);
192 ct += sizeof(unsigned long);
193 tcount -= sizeof(unsigned long);
194 if (!tcount)
195 return 0;
196 }
a5c21dce 197 mask = bytemask_from_count(tcount);
bfcfaa77 198 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
199}
200
bfcfaa77 201#else
e419b4cc 202
94753db5 203static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 204{
5483f18e
LT
205 do {
206 if (*cs != *ct)
207 return 1;
208 cs++;
209 ct++;
210 tcount--;
211 } while (tcount);
212 return 0;
213}
214
e419b4cc
LT
215#endif
216
94753db5
LT
217static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218{
94753db5
LT
219 /*
220 * Be careful about RCU walk racing with rename:
506458ef 221 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
506458ef 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 236
6326c71f 237 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
238}
239
8d85b484
AV
240struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246};
247
248static inline struct external_name *external_name(struct dentry *dentry)
249{
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251}
252
9c82ab9c 253static void __d_free(struct rcu_head *head)
1da177e4 254{
9c82ab9c
CH
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
8d85b484
AV
257 kmem_cache_free(dentry_cache, dentry);
258}
259
f1782c9b
RG
260static void __d_free_external_name(struct rcu_head *head)
261{
262 struct external_name *name = container_of(head, struct external_name,
263 u.head);
264
265 mod_node_page_state(page_pgdat(virt_to_page(name)),
266 NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 -ksize(name));
268
269 kfree(name);
270}
271
8d85b484
AV
272static void __d_free_external(struct rcu_head *head)
273{
274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
f1782c9b
RG
275
276 __d_free_external_name(&external_name(dentry)->u.head);
277
278 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
279}
280
810bb172
AV
281static inline int dname_external(const struct dentry *dentry)
282{
283 return dentry->d_name.name != dentry->d_iname;
284}
285
49d31c2f
AV
286void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287{
288 spin_lock(&dentry->d_lock);
289 if (unlikely(dname_external(dentry))) {
290 struct external_name *p = external_name(dentry);
291 atomic_inc(&p->u.count);
292 spin_unlock(&dentry->d_lock);
293 name->name = p->name;
294 } else {
295 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
296 spin_unlock(&dentry->d_lock);
297 name->name = name->inline_name;
298 }
299}
300EXPORT_SYMBOL(take_dentry_name_snapshot);
301
302void release_dentry_name_snapshot(struct name_snapshot *name)
303{
304 if (unlikely(name->name != name->inline_name)) {
305 struct external_name *p;
306 p = container_of(name->name, struct external_name, name[0]);
307 if (unlikely(atomic_dec_and_test(&p->u.count)))
f1782c9b 308 call_rcu(&p->u.head, __d_free_external_name);
49d31c2f
AV
309 }
310}
311EXPORT_SYMBOL(release_dentry_name_snapshot);
312
4bf46a27
DH
313static inline void __d_set_inode_and_type(struct dentry *dentry,
314 struct inode *inode,
315 unsigned type_flags)
316{
317 unsigned flags;
318
319 dentry->d_inode = inode;
4bf46a27
DH
320 flags = READ_ONCE(dentry->d_flags);
321 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322 flags |= type_flags;
323 WRITE_ONCE(dentry->d_flags, flags);
324}
325
4bf46a27
DH
326static inline void __d_clear_type_and_inode(struct dentry *dentry)
327{
328 unsigned flags = READ_ONCE(dentry->d_flags);
329
330 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
332 dentry->d_inode = NULL;
333}
334
b4f0354e
AV
335static void dentry_free(struct dentry *dentry)
336{
946e51f2 337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
338 if (unlikely(dname_external(dentry))) {
339 struct external_name *p = external_name(dentry);
340 if (likely(atomic_dec_and_test(&p->u.count))) {
341 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 return;
343 }
344 }
b4f0354e
AV
345 /* if dentry was never visible to RCU, immediate free is OK */
346 if (!(dentry->d_flags & DCACHE_RCUACCESS))
347 __d_free(&dentry->d_u.d_rcu);
348 else
349 call_rcu(&dentry->d_u.d_rcu, __d_free);
350}
351
1da177e4
LT
352/*
353 * Release the dentry's inode, using the filesystem
550dce01 354 * d_iput() operation if defined.
31e6b01f
NP
355 */
356static void dentry_unlink_inode(struct dentry * dentry)
357 __releases(dentry->d_lock)
873feea0 358 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
359{
360 struct inode *inode = dentry->d_inode;
550dce01 361 bool hashed = !d_unhashed(dentry);
a528aca7 362
550dce01
AV
363 if (hashed)
364 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 365 __d_clear_type_and_inode(dentry);
946e51f2 366 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
367 if (hashed)
368 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 369 spin_unlock(&dentry->d_lock);
873feea0 370 spin_unlock(&inode->i_lock);
31e6b01f
NP
371 if (!inode->i_nlink)
372 fsnotify_inoderemove(inode);
373 if (dentry->d_op && dentry->d_op->d_iput)
374 dentry->d_op->d_iput(dentry, inode);
375 else
376 iput(inode);
377}
378
89dc77bc
LT
379/*
380 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
381 * is in use - which includes both the "real" per-superblock
382 * LRU list _and_ the DCACHE_SHRINK_LIST use.
383 *
384 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
385 * on the shrink list (ie not on the superblock LRU list).
386 *
387 * The per-cpu "nr_dentry_unused" counters are updated with
388 * the DCACHE_LRU_LIST bit.
389 *
390 * These helper functions make sure we always follow the
391 * rules. d_lock must be held by the caller.
392 */
393#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
394static void d_lru_add(struct dentry *dentry)
395{
396 D_FLAG_VERIFY(dentry, 0);
397 dentry->d_flags |= DCACHE_LRU_LIST;
398 this_cpu_inc(nr_dentry_unused);
399 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
400}
401
402static void d_lru_del(struct dentry *dentry)
403{
404 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
405 dentry->d_flags &= ~DCACHE_LRU_LIST;
406 this_cpu_dec(nr_dentry_unused);
407 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
408}
409
410static void d_shrink_del(struct dentry *dentry)
411{
412 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413 list_del_init(&dentry->d_lru);
414 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
415 this_cpu_dec(nr_dentry_unused);
416}
417
418static void d_shrink_add(struct dentry *dentry, struct list_head *list)
419{
420 D_FLAG_VERIFY(dentry, 0);
421 list_add(&dentry->d_lru, list);
422 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
423 this_cpu_inc(nr_dentry_unused);
424}
425
426/*
427 * These can only be called under the global LRU lock, ie during the
428 * callback for freeing the LRU list. "isolate" removes it from the
429 * LRU lists entirely, while shrink_move moves it to the indicated
430 * private list.
431 */
3f97b163 432static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
433{
434 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
435 dentry->d_flags &= ~DCACHE_LRU_LIST;
436 this_cpu_dec(nr_dentry_unused);
3f97b163 437 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
438}
439
3f97b163
VD
440static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
441 struct list_head *list)
89dc77bc
LT
442{
443 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 445 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
446}
447
789680d1
NP
448/**
449 * d_drop - drop a dentry
450 * @dentry: dentry to drop
451 *
452 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
453 * be found through a VFS lookup any more. Note that this is different from
454 * deleting the dentry - d_delete will try to mark the dentry negative if
455 * possible, giving a successful _negative_ lookup, while d_drop will
456 * just make the cache lookup fail.
457 *
458 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
459 * reason (NFS timeouts or autofs deletes).
460 *
61647823
N
461 * __d_drop requires dentry->d_lock
462 * ___d_drop doesn't mark dentry as "unhashed"
463 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 464 */
61647823 465static void ___d_drop(struct dentry *dentry)
789680d1 466{
0632a9ac
AV
467 struct hlist_bl_head *b;
468 /*
469 * Hashed dentries are normally on the dentry hashtable,
470 * with the exception of those newly allocated by
471 * d_obtain_root, which are always IS_ROOT:
472 */
473 if (unlikely(IS_ROOT(dentry)))
474 b = &dentry->d_sb->s_roots;
475 else
476 b = d_hash(dentry->d_name.hash);
b61625d2 477
0632a9ac
AV
478 hlist_bl_lock(b);
479 __hlist_bl_del(&dentry->d_hash);
480 hlist_bl_unlock(b);
789680d1 481}
61647823
N
482
483void __d_drop(struct dentry *dentry)
484{
0632a9ac
AV
485 if (!d_unhashed(dentry)) {
486 ___d_drop(dentry);
487 dentry->d_hash.pprev = NULL;
488 write_seqcount_invalidate(&dentry->d_seq);
489 }
61647823 490}
789680d1
NP
491EXPORT_SYMBOL(__d_drop);
492
493void d_drop(struct dentry *dentry)
494{
789680d1
NP
495 spin_lock(&dentry->d_lock);
496 __d_drop(dentry);
497 spin_unlock(&dentry->d_lock);
789680d1
NP
498}
499EXPORT_SYMBOL(d_drop);
500
ba65dc5e
AV
501static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
502{
503 struct dentry *next;
504 /*
505 * Inform d_walk() and shrink_dentry_list() that we are no longer
506 * attached to the dentry tree
507 */
508 dentry->d_flags |= DCACHE_DENTRY_KILLED;
509 if (unlikely(list_empty(&dentry->d_child)))
510 return;
511 __list_del_entry(&dentry->d_child);
512 /*
513 * Cursors can move around the list of children. While we'd been
514 * a normal list member, it didn't matter - ->d_child.next would've
515 * been updated. However, from now on it won't be and for the
516 * things like d_walk() it might end up with a nasty surprise.
517 * Normally d_walk() doesn't care about cursors moving around -
518 * ->d_lock on parent prevents that and since a cursor has no children
519 * of its own, we get through it without ever unlocking the parent.
520 * There is one exception, though - if we ascend from a child that
521 * gets killed as soon as we unlock it, the next sibling is found
522 * using the value left in its ->d_child.next. And if _that_
523 * pointed to a cursor, and cursor got moved (e.g. by lseek())
524 * before d_walk() regains parent->d_lock, we'll end up skipping
525 * everything the cursor had been moved past.
526 *
527 * Solution: make sure that the pointer left behind in ->d_child.next
528 * points to something that won't be moving around. I.e. skip the
529 * cursors.
530 */
531 while (dentry->d_child.next != &parent->d_subdirs) {
532 next = list_entry(dentry->d_child.next, struct dentry, d_child);
533 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
534 break;
535 dentry->d_child.next = next->d_child.next;
536 }
537}
538
e55fd011 539static void __dentry_kill(struct dentry *dentry)
77812a1e 540{
41edf278
AV
541 struct dentry *parent = NULL;
542 bool can_free = true;
41edf278 543 if (!IS_ROOT(dentry))
77812a1e 544 parent = dentry->d_parent;
31e6b01f 545
0d98439e
LT
546 /*
547 * The dentry is now unrecoverably dead to the world.
548 */
549 lockref_mark_dead(&dentry->d_lockref);
550
f0023bc6 551 /*
f0023bc6
SW
552 * inform the fs via d_prune that this dentry is about to be
553 * unhashed and destroyed.
554 */
29266201 555 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
556 dentry->d_op->d_prune(dentry);
557
01b60351
AV
558 if (dentry->d_flags & DCACHE_LRU_LIST) {
559 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
560 d_lru_del(dentry);
01b60351 561 }
77812a1e
NP
562 /* if it was on the hash then remove it */
563 __d_drop(dentry);
ba65dc5e 564 dentry_unlist(dentry, parent);
03b3b889
AV
565 if (parent)
566 spin_unlock(&parent->d_lock);
550dce01
AV
567 if (dentry->d_inode)
568 dentry_unlink_inode(dentry);
569 else
570 spin_unlock(&dentry->d_lock);
03b3b889
AV
571 this_cpu_dec(nr_dentry);
572 if (dentry->d_op && dentry->d_op->d_release)
573 dentry->d_op->d_release(dentry);
574
41edf278
AV
575 spin_lock(&dentry->d_lock);
576 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
577 dentry->d_flags |= DCACHE_MAY_FREE;
578 can_free = false;
579 }
580 spin_unlock(&dentry->d_lock);
41edf278
AV
581 if (likely(can_free))
582 dentry_free(dentry);
9c5f1d30 583 cond_resched();
e55fd011
AV
584}
585
8b987a46 586static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 587{
8b987a46 588 struct dentry *parent;
046b961b 589 rcu_read_lock();
c2338f2d 590 spin_unlock(&dentry->d_lock);
046b961b 591again:
66702eb5 592 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
593 spin_lock(&parent->d_lock);
594 /*
595 * We can't blindly lock dentry until we are sure
596 * that we won't violate the locking order.
597 * Any changes of dentry->d_parent must have
598 * been done with parent->d_lock held, so
599 * spin_lock() above is enough of a barrier
600 * for checking if it's still our child.
601 */
602 if (unlikely(parent != dentry->d_parent)) {
603 spin_unlock(&parent->d_lock);
604 goto again;
605 }
65d8eb5a
AV
606 rcu_read_unlock();
607 if (parent != dentry)
9f12600f 608 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 609 else
046b961b
AV
610 parent = NULL;
611 return parent;
612}
613
8b987a46
AV
614static inline struct dentry *lock_parent(struct dentry *dentry)
615{
616 struct dentry *parent = dentry->d_parent;
617 if (IS_ROOT(dentry))
618 return NULL;
619 if (likely(spin_trylock(&parent->d_lock)))
620 return parent;
621 return __lock_parent(dentry);
622}
623
a338579f
AV
624static inline bool retain_dentry(struct dentry *dentry)
625{
626 WARN_ON(d_in_lookup(dentry));
627
628 /* Unreachable? Get rid of it */
629 if (unlikely(d_unhashed(dentry)))
630 return false;
631
632 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
633 return false;
634
635 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
636 if (dentry->d_op->d_delete(dentry))
637 return false;
638 }
62d9956c
AV
639 /* retain; LRU fodder */
640 dentry->d_lockref.count--;
641 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
642 d_lru_add(dentry);
643 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
644 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
645 return true;
646}
647
c1d0c1a2
JO
648/*
649 * Finish off a dentry we've decided to kill.
650 * dentry->d_lock must be held, returns with it unlocked.
651 * Returns dentry requiring refcount drop, or NULL if we're done.
652 */
653static struct dentry *dentry_kill(struct dentry *dentry)
654 __releases(dentry->d_lock)
655{
656 struct inode *inode = dentry->d_inode;
657 struct dentry *parent = NULL;
658
659 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 660 goto slow_positive;
c1d0c1a2
JO
661
662 if (!IS_ROOT(dentry)) {
663 parent = dentry->d_parent;
664 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
665 parent = __lock_parent(dentry);
666 if (likely(inode || !dentry->d_inode))
667 goto got_locks;
668 /* negative that became positive */
669 if (parent)
670 spin_unlock(&parent->d_lock);
671 inode = dentry->d_inode;
672 goto slow_positive;
c1d0c1a2
JO
673 }
674 }
c1d0c1a2
JO
675 __dentry_kill(dentry);
676 return parent;
677
f657a666
AV
678slow_positive:
679 spin_unlock(&dentry->d_lock);
680 spin_lock(&inode->i_lock);
681 spin_lock(&dentry->d_lock);
682 parent = lock_parent(dentry);
683got_locks:
684 if (unlikely(dentry->d_lockref.count != 1)) {
685 dentry->d_lockref.count--;
686 } else if (likely(!retain_dentry(dentry))) {
687 __dentry_kill(dentry);
688 return parent;
689 }
690 /* we are keeping it, after all */
691 if (inode)
692 spin_unlock(&inode->i_lock);
693 if (parent)
694 spin_unlock(&parent->d_lock);
c1d0c1a2 695 spin_unlock(&dentry->d_lock);
f657a666 696 return NULL;
c1d0c1a2
JO
697}
698
360f5479
LT
699/*
700 * Try to do a lockless dput(), and return whether that was successful.
701 *
702 * If unsuccessful, we return false, having already taken the dentry lock.
703 *
704 * The caller needs to hold the RCU read lock, so that the dentry is
705 * guaranteed to stay around even if the refcount goes down to zero!
706 */
707static inline bool fast_dput(struct dentry *dentry)
708{
709 int ret;
710 unsigned int d_flags;
711
712 /*
713 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 714 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
715 */
716 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
717 return lockref_put_or_lock(&dentry->d_lockref);
718
719 /*
720 * .. otherwise, we can try to just decrement the
721 * lockref optimistically.
722 */
723 ret = lockref_put_return(&dentry->d_lockref);
724
725 /*
726 * If the lockref_put_return() failed due to the lock being held
727 * by somebody else, the fast path has failed. We will need to
728 * get the lock, and then check the count again.
729 */
730 if (unlikely(ret < 0)) {
731 spin_lock(&dentry->d_lock);
732 if (dentry->d_lockref.count > 1) {
733 dentry->d_lockref.count--;
734 spin_unlock(&dentry->d_lock);
735 return 1;
736 }
737 return 0;
738 }
739
740 /*
741 * If we weren't the last ref, we're done.
742 */
743 if (ret)
744 return 1;
745
746 /*
747 * Careful, careful. The reference count went down
748 * to zero, but we don't hold the dentry lock, so
749 * somebody else could get it again, and do another
750 * dput(), and we need to not race with that.
751 *
752 * However, there is a very special and common case
753 * where we don't care, because there is nothing to
754 * do: the dentry is still hashed, it does not have
755 * a 'delete' op, and it's referenced and already on
756 * the LRU list.
757 *
758 * NOTE! Since we aren't locked, these values are
759 * not "stable". However, it is sufficient that at
760 * some point after we dropped the reference the
761 * dentry was hashed and the flags had the proper
762 * value. Other dentry users may have re-gotten
763 * a reference to the dentry and change that, but
764 * our work is done - we can leave the dentry
765 * around with a zero refcount.
766 */
767 smp_rmb();
66702eb5 768 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 769 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
770
771 /* Nothing to do? Dropping the reference was all we needed? */
772 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
773 return 1;
774
775 /*
776 * Not the fast normal case? Get the lock. We've already decremented
777 * the refcount, but we'll need to re-check the situation after
778 * getting the lock.
779 */
780 spin_lock(&dentry->d_lock);
781
782 /*
783 * Did somebody else grab a reference to it in the meantime, and
784 * we're no longer the last user after all? Alternatively, somebody
785 * else could have killed it and marked it dead. Either way, we
786 * don't need to do anything else.
787 */
788 if (dentry->d_lockref.count) {
789 spin_unlock(&dentry->d_lock);
790 return 1;
791 }
792
793 /*
794 * Re-get the reference we optimistically dropped. We hold the
795 * lock, and we just tested that it was zero, so we can just
796 * set it to 1.
797 */
798 dentry->d_lockref.count = 1;
799 return 0;
800}
801
802
1da177e4
LT
803/*
804 * This is dput
805 *
806 * This is complicated by the fact that we do not want to put
807 * dentries that are no longer on any hash chain on the unused
808 * list: we'd much rather just get rid of them immediately.
809 *
810 * However, that implies that we have to traverse the dentry
811 * tree upwards to the parents which might _also_ now be
812 * scheduled for deletion (it may have been only waiting for
813 * its last child to go away).
814 *
815 * This tail recursion is done by hand as we don't want to depend
816 * on the compiler to always get this right (gcc generally doesn't).
817 * Real recursion would eat up our stack space.
818 */
819
820/*
821 * dput - release a dentry
822 * @dentry: dentry to release
823 *
824 * Release a dentry. This will drop the usage count and if appropriate
825 * call the dentry unlink method as well as removing it from the queues and
826 * releasing its resources. If the parent dentries were scheduled for release
827 * they too may now get deleted.
1da177e4 828 */
1da177e4
LT
829void dput(struct dentry *dentry)
830{
8aab6a27 831 if (unlikely(!dentry))
1da177e4
LT
832 return;
833
834repeat:
47be6184
WF
835 might_sleep();
836
360f5479
LT
837 rcu_read_lock();
838 if (likely(fast_dput(dentry))) {
839 rcu_read_unlock();
1da177e4 840 return;
360f5479
LT
841 }
842
843 /* Slow case: now with the dentry lock held */
844 rcu_read_unlock();
1da177e4 845
a338579f 846 if (likely(retain_dentry(dentry))) {
a338579f
AV
847 spin_unlock(&dentry->d_lock);
848 return;
1da177e4 849 }
265ac902 850
8cbf74da 851 dentry = dentry_kill(dentry);
47be6184 852 if (dentry) {
d52b9086 853 goto repeat;
47be6184 854 }
1da177e4 855}
ec4f8605 856EXPORT_SYMBOL(dput);
1da177e4 857
1da177e4 858
b5c84bf6 859/* This must be called with d_lock held */
dc0474be 860static inline void __dget_dlock(struct dentry *dentry)
23044507 861{
98474236 862 dentry->d_lockref.count++;
23044507
NP
863}
864
dc0474be 865static inline void __dget(struct dentry *dentry)
1da177e4 866{
98474236 867 lockref_get(&dentry->d_lockref);
1da177e4
LT
868}
869
b7ab39f6
NP
870struct dentry *dget_parent(struct dentry *dentry)
871{
df3d0bbc 872 int gotref;
b7ab39f6
NP
873 struct dentry *ret;
874
df3d0bbc
WL
875 /*
876 * Do optimistic parent lookup without any
877 * locking.
878 */
879 rcu_read_lock();
66702eb5 880 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
881 gotref = lockref_get_not_zero(&ret->d_lockref);
882 rcu_read_unlock();
883 if (likely(gotref)) {
66702eb5 884 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
885 return ret;
886 dput(ret);
887 }
888
b7ab39f6 889repeat:
a734eb45
NP
890 /*
891 * Don't need rcu_dereference because we re-check it was correct under
892 * the lock.
893 */
894 rcu_read_lock();
b7ab39f6 895 ret = dentry->d_parent;
a734eb45
NP
896 spin_lock(&ret->d_lock);
897 if (unlikely(ret != dentry->d_parent)) {
898 spin_unlock(&ret->d_lock);
899 rcu_read_unlock();
b7ab39f6
NP
900 goto repeat;
901 }
a734eb45 902 rcu_read_unlock();
98474236
WL
903 BUG_ON(!ret->d_lockref.count);
904 ret->d_lockref.count++;
b7ab39f6 905 spin_unlock(&ret->d_lock);
b7ab39f6
NP
906 return ret;
907}
908EXPORT_SYMBOL(dget_parent);
909
1da177e4
LT
910/**
911 * d_find_alias - grab a hashed alias of inode
912 * @inode: inode in question
1da177e4
LT
913 *
914 * If inode has a hashed alias, or is a directory and has any alias,
915 * acquire the reference to alias and return it. Otherwise return NULL.
916 * Notice that if inode is a directory there can be only one alias and
917 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
918 * of a filesystem, or if the directory was renamed and d_revalidate
919 * was the first vfs operation to notice.
1da177e4 920 *
21c0d8fd 921 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 922 * any other hashed alias over that one.
1da177e4 923 */
52ed46f0 924static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 925{
da502956 926 struct dentry *alias, *discon_alias;
1da177e4 927
da502956
NP
928again:
929 discon_alias = NULL;
946e51f2 930 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 931 spin_lock(&alias->d_lock);
1da177e4 932 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 933 if (IS_ROOT(alias) &&
da502956 934 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 935 discon_alias = alias;
52ed46f0 936 } else {
dc0474be 937 __dget_dlock(alias);
da502956
NP
938 spin_unlock(&alias->d_lock);
939 return alias;
940 }
941 }
942 spin_unlock(&alias->d_lock);
943 }
944 if (discon_alias) {
945 alias = discon_alias;
946 spin_lock(&alias->d_lock);
947 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
948 __dget_dlock(alias);
949 spin_unlock(&alias->d_lock);
950 return alias;
1da177e4 951 }
da502956
NP
952 spin_unlock(&alias->d_lock);
953 goto again;
1da177e4 954 }
da502956 955 return NULL;
1da177e4
LT
956}
957
da502956 958struct dentry *d_find_alias(struct inode *inode)
1da177e4 959{
214fda1f
DH
960 struct dentry *de = NULL;
961
b3d9b7a3 962 if (!hlist_empty(&inode->i_dentry)) {
873feea0 963 spin_lock(&inode->i_lock);
52ed46f0 964 de = __d_find_alias(inode);
873feea0 965 spin_unlock(&inode->i_lock);
214fda1f 966 }
1da177e4
LT
967 return de;
968}
ec4f8605 969EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
970
971/*
972 * Try to kill dentries associated with this inode.
973 * WARNING: you must own a reference to inode.
974 */
975void d_prune_aliases(struct inode *inode)
976{
0cdca3f9 977 struct dentry *dentry;
1da177e4 978restart:
873feea0 979 spin_lock(&inode->i_lock);
946e51f2 980 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 981 spin_lock(&dentry->d_lock);
98474236 982 if (!dentry->d_lockref.count) {
29355c39
AV
983 struct dentry *parent = lock_parent(dentry);
984 if (likely(!dentry->d_lockref.count)) {
985 __dentry_kill(dentry);
4a7795d3 986 dput(parent);
29355c39
AV
987 goto restart;
988 }
989 if (parent)
990 spin_unlock(&parent->d_lock);
1da177e4
LT
991 }
992 spin_unlock(&dentry->d_lock);
993 }
873feea0 994 spin_unlock(&inode->i_lock);
1da177e4 995}
ec4f8605 996EXPORT_SYMBOL(d_prune_aliases);
1da177e4 997
3b3f09f4
AV
998/*
999 * Lock a dentry from shrink list.
8f04da2a
JO
1000 * Called under rcu_read_lock() and dentry->d_lock; the former
1001 * guarantees that nothing we access will be freed under us.
3b3f09f4 1002 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
1003 * d_delete(), etc.
1004 *
3b3f09f4
AV
1005 * Return false if dentry has been disrupted or grabbed, leaving
1006 * the caller to kick it off-list. Otherwise, return true and have
1007 * that dentry's inode and parent both locked.
1008 */
1009static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1010{
3b3f09f4
AV
1011 struct inode *inode;
1012 struct dentry *parent;
da3bbdd4 1013
3b3f09f4
AV
1014 if (dentry->d_lockref.count)
1015 return false;
1016
1017 inode = dentry->d_inode;
1018 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1019 spin_unlock(&dentry->d_lock);
1020 spin_lock(&inode->i_lock);
ec33679d 1021 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1022 if (unlikely(dentry->d_lockref.count))
1023 goto out;
1024 /* changed inode means that somebody had grabbed it */
1025 if (unlikely(inode != dentry->d_inode))
1026 goto out;
3b3f09f4 1027 }
046b961b 1028
3b3f09f4
AV
1029 parent = dentry->d_parent;
1030 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1031 return true;
dd1f6b2e 1032
3b3f09f4 1033 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1034 spin_lock(&parent->d_lock);
1035 if (unlikely(parent != dentry->d_parent)) {
1036 spin_unlock(&parent->d_lock);
1037 spin_lock(&dentry->d_lock);
1038 goto out;
1039 }
1040 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1041 if (likely(!dentry->d_lockref.count))
3b3f09f4 1042 return true;
3b3f09f4
AV
1043 spin_unlock(&parent->d_lock);
1044out:
1045 if (inode)
1046 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1047 return false;
1048}
77812a1e 1049
3b3f09f4
AV
1050static void shrink_dentry_list(struct list_head *list)
1051{
1052 while (!list_empty(list)) {
1053 struct dentry *dentry, *parent;
64fd72e0 1054
3b3f09f4
AV
1055 dentry = list_entry(list->prev, struct dentry, d_lru);
1056 spin_lock(&dentry->d_lock);
8f04da2a 1057 rcu_read_lock();
3b3f09f4
AV
1058 if (!shrink_lock_dentry(dentry)) {
1059 bool can_free = false;
8f04da2a 1060 rcu_read_unlock();
3b3f09f4
AV
1061 d_shrink_del(dentry);
1062 if (dentry->d_lockref.count < 0)
1063 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1064 spin_unlock(&dentry->d_lock);
1065 if (can_free)
1066 dentry_free(dentry);
1067 continue;
1068 }
8f04da2a 1069 rcu_read_unlock();
3b3f09f4
AV
1070 d_shrink_del(dentry);
1071 parent = dentry->d_parent;
ff2fde99 1072 __dentry_kill(dentry);
3b3f09f4
AV
1073 if (parent == dentry)
1074 continue;
5c47e6d0
AV
1075 /*
1076 * We need to prune ancestors too. This is necessary to prevent
1077 * quadratic behavior of shrink_dcache_parent(), but is also
1078 * expected to be beneficial in reducing dentry cache
1079 * fragmentation.
1080 */
1081 dentry = parent;
8f04da2a
JO
1082 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1083 dentry = dentry_kill(dentry);
da3bbdd4 1084 }
3049cfe2
CH
1085}
1086
3f97b163
VD
1087static enum lru_status dentry_lru_isolate(struct list_head *item,
1088 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1089{
1090 struct list_head *freeable = arg;
1091 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1092
1093
1094 /*
1095 * we are inverting the lru lock/dentry->d_lock here,
1096 * so use a trylock. If we fail to get the lock, just skip
1097 * it
1098 */
1099 if (!spin_trylock(&dentry->d_lock))
1100 return LRU_SKIP;
1101
1102 /*
1103 * Referenced dentries are still in use. If they have active
1104 * counts, just remove them from the LRU. Otherwise give them
1105 * another pass through the LRU.
1106 */
1107 if (dentry->d_lockref.count) {
3f97b163 1108 d_lru_isolate(lru, dentry);
f6041567
DC
1109 spin_unlock(&dentry->d_lock);
1110 return LRU_REMOVED;
1111 }
1112
1113 if (dentry->d_flags & DCACHE_REFERENCED) {
1114 dentry->d_flags &= ~DCACHE_REFERENCED;
1115 spin_unlock(&dentry->d_lock);
1116
1117 /*
1118 * The list move itself will be made by the common LRU code. At
1119 * this point, we've dropped the dentry->d_lock but keep the
1120 * lru lock. This is safe to do, since every list movement is
1121 * protected by the lru lock even if both locks are held.
1122 *
1123 * This is guaranteed by the fact that all LRU management
1124 * functions are intermediated by the LRU API calls like
1125 * list_lru_add and list_lru_del. List movement in this file
1126 * only ever occur through this functions or through callbacks
1127 * like this one, that are called from the LRU API.
1128 *
1129 * The only exceptions to this are functions like
1130 * shrink_dentry_list, and code that first checks for the
1131 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1132 * operating only with stack provided lists after they are
1133 * properly isolated from the main list. It is thus, always a
1134 * local access.
1135 */
1136 return LRU_ROTATE;
1137 }
1138
3f97b163 1139 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1140 spin_unlock(&dentry->d_lock);
1141
1142 return LRU_REMOVED;
1143}
1144
3049cfe2 1145/**
b48f03b3
DC
1146 * prune_dcache_sb - shrink the dcache
1147 * @sb: superblock
503c358c 1148 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1149 *
503c358c
VD
1150 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1151 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1152 * function.
3049cfe2 1153 *
b48f03b3
DC
1154 * This function may fail to free any resources if all the dentries are in
1155 * use.
3049cfe2 1156 */
503c358c 1157long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1158{
f6041567
DC
1159 LIST_HEAD(dispose);
1160 long freed;
3049cfe2 1161
503c358c
VD
1162 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1163 dentry_lru_isolate, &dispose);
f6041567 1164 shrink_dentry_list(&dispose);
0a234c6d 1165 return freed;
da3bbdd4 1166}
23044507 1167
4e717f5c 1168static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1169 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1170{
4e717f5c
GC
1171 struct list_head *freeable = arg;
1172 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1173
4e717f5c
GC
1174 /*
1175 * we are inverting the lru lock/dentry->d_lock here,
1176 * so use a trylock. If we fail to get the lock, just skip
1177 * it
1178 */
1179 if (!spin_trylock(&dentry->d_lock))
1180 return LRU_SKIP;
1181
3f97b163 1182 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1183 spin_unlock(&dentry->d_lock);
ec33679d 1184
4e717f5c 1185 return LRU_REMOVED;
da3bbdd4
KM
1186}
1187
4e717f5c 1188
1da177e4
LT
1189/**
1190 * shrink_dcache_sb - shrink dcache for a superblock
1191 * @sb: superblock
1192 *
3049cfe2
CH
1193 * Shrink the dcache for the specified super block. This is used to free
1194 * the dcache before unmounting a file system.
1da177e4 1195 */
3049cfe2 1196void shrink_dcache_sb(struct super_block *sb)
1da177e4 1197{
4e717f5c
GC
1198 long freed;
1199
1200 do {
1201 LIST_HEAD(dispose);
1202
1203 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1204 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1205
4e717f5c
GC
1206 this_cpu_sub(nr_dentry_unused, freed);
1207 shrink_dentry_list(&dispose);
b17c070f 1208 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1209}
ec4f8605 1210EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1211
db14fc3a
MS
1212/**
1213 * enum d_walk_ret - action to talke during tree walk
1214 * @D_WALK_CONTINUE: contrinue walk
1215 * @D_WALK_QUIT: quit walk
1216 * @D_WALK_NORETRY: quit when retry is needed
1217 * @D_WALK_SKIP: skip this dentry and its children
1218 */
1219enum d_walk_ret {
1220 D_WALK_CONTINUE,
1221 D_WALK_QUIT,
1222 D_WALK_NORETRY,
1223 D_WALK_SKIP,
1224};
c826cb7d 1225
1da177e4 1226/**
db14fc3a
MS
1227 * d_walk - walk the dentry tree
1228 * @parent: start of walk
1229 * @data: data passed to @enter() and @finish()
1230 * @enter: callback when first entering the dentry
1da177e4 1231 *
3a8e3611 1232 * The @enter() callbacks are called with d_lock held.
1da177e4 1233 */
db14fc3a 1234static void d_walk(struct dentry *parent, void *data,
3a8e3611 1235 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1236{
949854d0 1237 struct dentry *this_parent;
1da177e4 1238 struct list_head *next;
48f5ec21 1239 unsigned seq = 0;
db14fc3a
MS
1240 enum d_walk_ret ret;
1241 bool retry = true;
949854d0 1242
58db63d0 1243again:
48f5ec21 1244 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1245 this_parent = parent;
2fd6b7f5 1246 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1247
1248 ret = enter(data, this_parent);
1249 switch (ret) {
1250 case D_WALK_CONTINUE:
1251 break;
1252 case D_WALK_QUIT:
1253 case D_WALK_SKIP:
1254 goto out_unlock;
1255 case D_WALK_NORETRY:
1256 retry = false;
1257 break;
1258 }
1da177e4
LT
1259repeat:
1260 next = this_parent->d_subdirs.next;
1261resume:
1262 while (next != &this_parent->d_subdirs) {
1263 struct list_head *tmp = next;
946e51f2 1264 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1265 next = tmp->next;
2fd6b7f5 1266
ba65dc5e
AV
1267 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1268 continue;
1269
2fd6b7f5 1270 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1271
1272 ret = enter(data, dentry);
1273 switch (ret) {
1274 case D_WALK_CONTINUE:
1275 break;
1276 case D_WALK_QUIT:
2fd6b7f5 1277 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1278 goto out_unlock;
1279 case D_WALK_NORETRY:
1280 retry = false;
1281 break;
1282 case D_WALK_SKIP:
1283 spin_unlock(&dentry->d_lock);
1284 continue;
2fd6b7f5 1285 }
db14fc3a 1286
1da177e4 1287 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1288 spin_unlock(&this_parent->d_lock);
1289 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1290 this_parent = dentry;
2fd6b7f5 1291 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1292 goto repeat;
1293 }
2fd6b7f5 1294 spin_unlock(&dentry->d_lock);
1da177e4
LT
1295 }
1296 /*
1297 * All done at this level ... ascend and resume the search.
1298 */
ca5358ef
AV
1299 rcu_read_lock();
1300ascend:
1da177e4 1301 if (this_parent != parent) {
c826cb7d 1302 struct dentry *child = this_parent;
31dec132
AV
1303 this_parent = child->d_parent;
1304
31dec132
AV
1305 spin_unlock(&child->d_lock);
1306 spin_lock(&this_parent->d_lock);
1307
ca5358ef
AV
1308 /* might go back up the wrong parent if we have had a rename. */
1309 if (need_seqretry(&rename_lock, seq))
949854d0 1310 goto rename_retry;
2159184e
AV
1311 /* go into the first sibling still alive */
1312 do {
1313 next = child->d_child.next;
ca5358ef
AV
1314 if (next == &this_parent->d_subdirs)
1315 goto ascend;
1316 child = list_entry(next, struct dentry, d_child);
2159184e 1317 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1318 rcu_read_unlock();
1da177e4
LT
1319 goto resume;
1320 }
ca5358ef 1321 if (need_seqretry(&rename_lock, seq))
949854d0 1322 goto rename_retry;
ca5358ef 1323 rcu_read_unlock();
db14fc3a
MS
1324
1325out_unlock:
1326 spin_unlock(&this_parent->d_lock);
48f5ec21 1327 done_seqretry(&rename_lock, seq);
db14fc3a 1328 return;
58db63d0
NP
1329
1330rename_retry:
ca5358ef
AV
1331 spin_unlock(&this_parent->d_lock);
1332 rcu_read_unlock();
1333 BUG_ON(seq & 1);
db14fc3a
MS
1334 if (!retry)
1335 return;
48f5ec21 1336 seq = 1;
58db63d0 1337 goto again;
1da177e4 1338}
db14fc3a 1339
01619491
IK
1340struct check_mount {
1341 struct vfsmount *mnt;
1342 unsigned int mounted;
1343};
1344
1345static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1346{
1347 struct check_mount *info = data;
1348 struct path path = { .mnt = info->mnt, .dentry = dentry };
1349
1350 if (likely(!d_mountpoint(dentry)))
1351 return D_WALK_CONTINUE;
1352 if (__path_is_mountpoint(&path)) {
1353 info->mounted = 1;
1354 return D_WALK_QUIT;
1355 }
1356 return D_WALK_CONTINUE;
1357}
1358
1359/**
1360 * path_has_submounts - check for mounts over a dentry in the
1361 * current namespace.
1362 * @parent: path to check.
1363 *
1364 * Return true if the parent or its subdirectories contain
1365 * a mount point in the current namespace.
1366 */
1367int path_has_submounts(const struct path *parent)
1368{
1369 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1370
1371 read_seqlock_excl(&mount_lock);
3a8e3611 1372 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1373 read_sequnlock_excl(&mount_lock);
1374
1375 return data.mounted;
1376}
1377EXPORT_SYMBOL(path_has_submounts);
1378
eed81007
MS
1379/*
1380 * Called by mount code to set a mountpoint and check if the mountpoint is
1381 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1382 * subtree can become unreachable).
1383 *
1ffe46d1 1384 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1385 * this reason take rename_lock and d_lock on dentry and ancestors.
1386 */
1387int d_set_mounted(struct dentry *dentry)
1388{
1389 struct dentry *p;
1390 int ret = -ENOENT;
1391 write_seqlock(&rename_lock);
1392 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1393 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1394 spin_lock(&p->d_lock);
1395 if (unlikely(d_unhashed(p))) {
1396 spin_unlock(&p->d_lock);
1397 goto out;
1398 }
1399 spin_unlock(&p->d_lock);
1400 }
1401 spin_lock(&dentry->d_lock);
1402 if (!d_unlinked(dentry)) {
3895dbf8
EB
1403 ret = -EBUSY;
1404 if (!d_mountpoint(dentry)) {
1405 dentry->d_flags |= DCACHE_MOUNTED;
1406 ret = 0;
1407 }
eed81007
MS
1408 }
1409 spin_unlock(&dentry->d_lock);
1410out:
1411 write_sequnlock(&rename_lock);
1412 return ret;
1413}
1414
1da177e4 1415/*
fd517909 1416 * Search the dentry child list of the specified parent,
1da177e4
LT
1417 * and move any unused dentries to the end of the unused
1418 * list for prune_dcache(). We descend to the next level
1419 * whenever the d_subdirs list is non-empty and continue
1420 * searching.
1421 *
1422 * It returns zero iff there are no unused children,
1423 * otherwise it returns the number of children moved to
1424 * the end of the unused list. This may not be the total
1425 * number of unused children, because select_parent can
1426 * drop the lock and return early due to latency
1427 * constraints.
1428 */
1da177e4 1429
db14fc3a
MS
1430struct select_data {
1431 struct dentry *start;
1432 struct list_head dispose;
1433 int found;
1434};
23044507 1435
db14fc3a
MS
1436static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1437{
1438 struct select_data *data = _data;
1439 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1440
db14fc3a
MS
1441 if (data->start == dentry)
1442 goto out;
2fd6b7f5 1443
fe91522a 1444 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1445 data->found++;
fe91522a
AV
1446 } else {
1447 if (dentry->d_flags & DCACHE_LRU_LIST)
1448 d_lru_del(dentry);
1449 if (!dentry->d_lockref.count) {
1450 d_shrink_add(dentry, &data->dispose);
1451 data->found++;
1452 }
1da177e4 1453 }
db14fc3a
MS
1454 /*
1455 * We can return to the caller if we have found some (this
1456 * ensures forward progress). We'll be coming back to find
1457 * the rest.
1458 */
fe91522a
AV
1459 if (!list_empty(&data->dispose))
1460 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1461out:
db14fc3a 1462 return ret;
1da177e4
LT
1463}
1464
1465/**
1466 * shrink_dcache_parent - prune dcache
1467 * @parent: parent of entries to prune
1468 *
1469 * Prune the dcache to remove unused children of the parent dentry.
1470 */
db14fc3a 1471void shrink_dcache_parent(struct dentry *parent)
1da177e4 1472{
db14fc3a
MS
1473 for (;;) {
1474 struct select_data data;
1da177e4 1475
db14fc3a
MS
1476 INIT_LIST_HEAD(&data.dispose);
1477 data.start = parent;
1478 data.found = 0;
1479
3a8e3611 1480 d_walk(parent, &data, select_collect);
db14fc3a
MS
1481 if (!data.found)
1482 break;
1483
1484 shrink_dentry_list(&data.dispose);
421348f1 1485 }
1da177e4 1486}
ec4f8605 1487EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1488
9c8c10e2 1489static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1490{
9c8c10e2
AV
1491 /* it has busy descendents; complain about those instead */
1492 if (!list_empty(&dentry->d_subdirs))
1493 return D_WALK_CONTINUE;
42c32608 1494
9c8c10e2
AV
1495 /* root with refcount 1 is fine */
1496 if (dentry == _data && dentry->d_lockref.count == 1)
1497 return D_WALK_CONTINUE;
1498
1499 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1500 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1501 dentry,
1502 dentry->d_inode ?
1503 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1504 dentry,
42c32608
AV
1505 dentry->d_lockref.count,
1506 dentry->d_sb->s_type->name,
1507 dentry->d_sb->s_id);
9c8c10e2
AV
1508 WARN_ON(1);
1509 return D_WALK_CONTINUE;
1510}
1511
1512static void do_one_tree(struct dentry *dentry)
1513{
1514 shrink_dcache_parent(dentry);
3a8e3611 1515 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1516 d_drop(dentry);
1517 dput(dentry);
42c32608
AV
1518}
1519
1520/*
1521 * destroy the dentries attached to a superblock on unmounting
1522 */
1523void shrink_dcache_for_umount(struct super_block *sb)
1524{
1525 struct dentry *dentry;
1526
9c8c10e2 1527 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1528
1529 dentry = sb->s_root;
1530 sb->s_root = NULL;
9c8c10e2 1531 do_one_tree(dentry);
42c32608 1532
f1ee6162
N
1533 while (!hlist_bl_empty(&sb->s_roots)) {
1534 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1535 do_one_tree(dentry);
42c32608
AV
1536 }
1537}
1538
ff17fa56 1539static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1540{
ff17fa56 1541 struct dentry **victim = _data;
848ac114 1542 if (d_mountpoint(dentry)) {
8ed936b5 1543 __dget_dlock(dentry);
ff17fa56 1544 *victim = dentry;
848ac114
MS
1545 return D_WALK_QUIT;
1546 }
ff17fa56 1547 return D_WALK_CONTINUE;
848ac114
MS
1548}
1549
1550/**
1ffe46d1
EB
1551 * d_invalidate - detach submounts, prune dcache, and drop
1552 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1553 */
5542aa2f 1554void d_invalidate(struct dentry *dentry)
848ac114 1555{
ff17fa56 1556 bool had_submounts = false;
1ffe46d1
EB
1557 spin_lock(&dentry->d_lock);
1558 if (d_unhashed(dentry)) {
1559 spin_unlock(&dentry->d_lock);
5542aa2f 1560 return;
1ffe46d1 1561 }
ff17fa56 1562 __d_drop(dentry);
1ffe46d1
EB
1563 spin_unlock(&dentry->d_lock);
1564
848ac114 1565 /* Negative dentries can be dropped without further checks */
ff17fa56 1566 if (!dentry->d_inode)
5542aa2f 1567 return;
848ac114 1568
ff17fa56 1569 shrink_dcache_parent(dentry);
848ac114 1570 for (;;) {
ff17fa56 1571 struct dentry *victim = NULL;
3a8e3611 1572 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1573 if (!victim) {
1574 if (had_submounts)
1575 shrink_dcache_parent(dentry);
81be24d2 1576 return;
8ed936b5 1577 }
ff17fa56
AV
1578 had_submounts = true;
1579 detach_mounts(victim);
1580 dput(victim);
848ac114 1581 }
848ac114 1582}
1ffe46d1 1583EXPORT_SYMBOL(d_invalidate);
848ac114 1584
1da177e4 1585/**
a4464dbc
AV
1586 * __d_alloc - allocate a dcache entry
1587 * @sb: filesystem it will belong to
1da177e4
LT
1588 * @name: qstr of the name
1589 *
1590 * Allocates a dentry. It returns %NULL if there is insufficient memory
1591 * available. On a success the dentry is returned. The name passed in is
1592 * copied and the copy passed in may be reused after this call.
1593 */
1594
a4464dbc 1595struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4 1596{
f1782c9b 1597 struct external_name *ext = NULL;
1da177e4
LT
1598 struct dentry *dentry;
1599 char *dname;
285b102d 1600 int err;
1da177e4 1601
e12ba74d 1602 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1603 if (!dentry)
1604 return NULL;
1605
6326c71f
LT
1606 /*
1607 * We guarantee that the inline name is always NUL-terminated.
1608 * This way the memcpy() done by the name switching in rename
1609 * will still always have a NUL at the end, even if we might
1610 * be overwriting an internal NUL character
1611 */
1612 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1613 if (unlikely(!name)) {
cdf01226 1614 name = &slash_name;
798434bd
AV
1615 dname = dentry->d_iname;
1616 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1617 size_t size = offsetof(struct external_name, name[1]);
f1782c9b
RG
1618
1619 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1620 if (!ext) {
1da177e4
LT
1621 kmem_cache_free(dentry_cache, dentry);
1622 return NULL;
1623 }
f1782c9b
RG
1624 atomic_set(&ext->u.count, 1);
1625 dname = ext->name;
1da177e4
LT
1626 } else {
1627 dname = dentry->d_iname;
1628 }
1da177e4
LT
1629
1630 dentry->d_name.len = name->len;
1631 dentry->d_name.hash = name->hash;
1632 memcpy(dname, name->name, name->len);
1633 dname[name->len] = 0;
1634
6326c71f 1635 /* Make sure we always see the terminating NUL character */
7088efa9 1636 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1637
98474236 1638 dentry->d_lockref.count = 1;
dea3667b 1639 dentry->d_flags = 0;
1da177e4 1640 spin_lock_init(&dentry->d_lock);
31e6b01f 1641 seqcount_init(&dentry->d_seq);
1da177e4 1642 dentry->d_inode = NULL;
a4464dbc
AV
1643 dentry->d_parent = dentry;
1644 dentry->d_sb = sb;
1da177e4
LT
1645 dentry->d_op = NULL;
1646 dentry->d_fsdata = NULL;
ceb5bdc2 1647 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1648 INIT_LIST_HEAD(&dentry->d_lru);
1649 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1650 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1651 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1652 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1653
285b102d
MS
1654 if (dentry->d_op && dentry->d_op->d_init) {
1655 err = dentry->d_op->d_init(dentry);
1656 if (err) {
1657 if (dname_external(dentry))
1658 kfree(external_name(dentry));
1659 kmem_cache_free(dentry_cache, dentry);
1660 return NULL;
1661 }
1662 }
1663
f1782c9b
RG
1664 if (unlikely(ext)) {
1665 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1666 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1667 ksize(ext));
1668 }
1669
3e880fb5 1670 this_cpu_inc(nr_dentry);
312d3ca8 1671
1da177e4
LT
1672 return dentry;
1673}
a4464dbc
AV
1674
1675/**
1676 * d_alloc - allocate a dcache entry
1677 * @parent: parent of entry to allocate
1678 * @name: qstr of the name
1679 *
1680 * Allocates a dentry. It returns %NULL if there is insufficient memory
1681 * available. On a success the dentry is returned. The name passed in is
1682 * copied and the copy passed in may be reused after this call.
1683 */
1684struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1685{
1686 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1687 if (!dentry)
1688 return NULL;
3d56c25e 1689 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1690 spin_lock(&parent->d_lock);
1691 /*
1692 * don't need child lock because it is not subject
1693 * to concurrency here
1694 */
1695 __dget_dlock(parent);
1696 dentry->d_parent = parent;
946e51f2 1697 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1698 spin_unlock(&parent->d_lock);
1699
1700 return dentry;
1701}
ec4f8605 1702EXPORT_SYMBOL(d_alloc);
1da177e4 1703
f9c34674
MS
1704struct dentry *d_alloc_anon(struct super_block *sb)
1705{
1706 return __d_alloc(sb, NULL);
1707}
1708EXPORT_SYMBOL(d_alloc_anon);
1709
ba65dc5e
AV
1710struct dentry *d_alloc_cursor(struct dentry * parent)
1711{
f9c34674 1712 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1713 if (dentry) {
1714 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1715 dentry->d_parent = dget(parent);
1716 }
1717 return dentry;
1718}
1719
e1a24bb0
BF
1720/**
1721 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1722 * @sb: the superblock
1723 * @name: qstr of the name
1724 *
1725 * For a filesystem that just pins its dentries in memory and never
1726 * performs lookups at all, return an unhashed IS_ROOT dentry.
1727 */
4b936885
NP
1728struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1729{
e1a24bb0 1730 return __d_alloc(sb, name);
4b936885
NP
1731}
1732EXPORT_SYMBOL(d_alloc_pseudo);
1733
1da177e4
LT
1734struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1735{
1736 struct qstr q;
1737
1738 q.name = name;
8387ff25 1739 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1740 return d_alloc(parent, &q);
1741}
ef26ca97 1742EXPORT_SYMBOL(d_alloc_name);
1da177e4 1743
fb045adb
NP
1744void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1745{
6f7f7caa
LT
1746 WARN_ON_ONCE(dentry->d_op);
1747 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1748 DCACHE_OP_COMPARE |
1749 DCACHE_OP_REVALIDATE |
ecf3d1f1 1750 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1751 DCACHE_OP_DELETE |
d101a125 1752 DCACHE_OP_REAL));
fb045adb
NP
1753 dentry->d_op = op;
1754 if (!op)
1755 return;
1756 if (op->d_hash)
1757 dentry->d_flags |= DCACHE_OP_HASH;
1758 if (op->d_compare)
1759 dentry->d_flags |= DCACHE_OP_COMPARE;
1760 if (op->d_revalidate)
1761 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1762 if (op->d_weak_revalidate)
1763 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1764 if (op->d_delete)
1765 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1766 if (op->d_prune)
1767 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1768 if (op->d_real)
1769 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1770
1771}
1772EXPORT_SYMBOL(d_set_d_op);
1773
df1a085a
DH
1774
1775/*
1776 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1777 * @dentry - The dentry to mark
1778 *
1779 * Mark a dentry as falling through to the lower layer (as set with
1780 * d_pin_lower()). This flag may be recorded on the medium.
1781 */
1782void d_set_fallthru(struct dentry *dentry)
1783{
1784 spin_lock(&dentry->d_lock);
1785 dentry->d_flags |= DCACHE_FALLTHRU;
1786 spin_unlock(&dentry->d_lock);
1787}
1788EXPORT_SYMBOL(d_set_fallthru);
1789
b18825a7
DH
1790static unsigned d_flags_for_inode(struct inode *inode)
1791{
44bdb5e5 1792 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1793
1794 if (!inode)
1795 return DCACHE_MISS_TYPE;
1796
1797 if (S_ISDIR(inode->i_mode)) {
1798 add_flags = DCACHE_DIRECTORY_TYPE;
1799 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1800 if (unlikely(!inode->i_op->lookup))
1801 add_flags = DCACHE_AUTODIR_TYPE;
1802 else
1803 inode->i_opflags |= IOP_LOOKUP;
1804 }
44bdb5e5
DH
1805 goto type_determined;
1806 }
1807
1808 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1809 if (unlikely(inode->i_op->get_link)) {
b18825a7 1810 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1811 goto type_determined;
1812 }
1813 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1814 }
1815
44bdb5e5
DH
1816 if (unlikely(!S_ISREG(inode->i_mode)))
1817 add_flags = DCACHE_SPECIAL_TYPE;
1818
1819type_determined:
b18825a7
DH
1820 if (unlikely(IS_AUTOMOUNT(inode)))
1821 add_flags |= DCACHE_NEED_AUTOMOUNT;
1822 return add_flags;
1823}
1824
360da900
OH
1825static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1826{
b18825a7 1827 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1828 WARN_ON(d_in_lookup(dentry));
b18825a7 1829
b23fb0a6 1830 spin_lock(&dentry->d_lock);
de689f5e 1831 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1832 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1833 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1834 raw_write_seqcount_end(&dentry->d_seq);
affda484 1835 fsnotify_update_flags(dentry);
b23fb0a6 1836 spin_unlock(&dentry->d_lock);
360da900
OH
1837}
1838
1da177e4
LT
1839/**
1840 * d_instantiate - fill in inode information for a dentry
1841 * @entry: dentry to complete
1842 * @inode: inode to attach to this dentry
1843 *
1844 * Fill in inode information in the entry.
1845 *
1846 * This turns negative dentries into productive full members
1847 * of society.
1848 *
1849 * NOTE! This assumes that the inode count has been incremented
1850 * (or otherwise set) by the caller to indicate that it is now
1851 * in use by the dcache.
1852 */
1853
1854void d_instantiate(struct dentry *entry, struct inode * inode)
1855{
946e51f2 1856 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1857 if (inode) {
b9680917 1858 security_d_instantiate(entry, inode);
873feea0 1859 spin_lock(&inode->i_lock);
de689f5e 1860 __d_instantiate(entry, inode);
873feea0 1861 spin_unlock(&inode->i_lock);
de689f5e 1862 }
1da177e4 1863}
ec4f8605 1864EXPORT_SYMBOL(d_instantiate);
1da177e4 1865
b70a80e7
MS
1866/**
1867 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1868 * @entry: dentry to complete
1869 * @inode: inode to attach to this dentry
1870 *
1871 * Fill in inode information in the entry. If a directory alias is found, then
1872 * return an error (and drop inode). Together with d_materialise_unique() this
1873 * guarantees that a directory inode may never have more than one alias.
1874 */
1875int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1876{
946e51f2 1877 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1878
b9680917 1879 security_d_instantiate(entry, inode);
b70a80e7
MS
1880 spin_lock(&inode->i_lock);
1881 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1882 spin_unlock(&inode->i_lock);
1883 iput(inode);
1884 return -EBUSY;
1885 }
1886 __d_instantiate(entry, inode);
1887 spin_unlock(&inode->i_lock);
b70a80e7
MS
1888
1889 return 0;
1890}
1891EXPORT_SYMBOL(d_instantiate_no_diralias);
1892
adc0e91a
AV
1893struct dentry *d_make_root(struct inode *root_inode)
1894{
1895 struct dentry *res = NULL;
1896
1897 if (root_inode) {
f9c34674 1898 res = d_alloc_anon(root_inode->i_sb);
adc0e91a
AV
1899 if (res)
1900 d_instantiate(res, root_inode);
1901 else
1902 iput(root_inode);
1903 }
1904 return res;
1905}
1906EXPORT_SYMBOL(d_make_root);
1907
d891eedb
BF
1908static struct dentry * __d_find_any_alias(struct inode *inode)
1909{
1910 struct dentry *alias;
1911
b3d9b7a3 1912 if (hlist_empty(&inode->i_dentry))
d891eedb 1913 return NULL;
946e51f2 1914 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1915 __dget(alias);
1916 return alias;
1917}
1918
46f72b34
SW
1919/**
1920 * d_find_any_alias - find any alias for a given inode
1921 * @inode: inode to find an alias for
1922 *
1923 * If any aliases exist for the given inode, take and return a
1924 * reference for one of them. If no aliases exist, return %NULL.
1925 */
1926struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1927{
1928 struct dentry *de;
1929
1930 spin_lock(&inode->i_lock);
1931 de = __d_find_any_alias(inode);
1932 spin_unlock(&inode->i_lock);
1933 return de;
1934}
46f72b34 1935EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1936
f9c34674
MS
1937static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1938 struct inode *inode,
1939 bool disconnected)
4ea3ada2 1940{
9308a612 1941 struct dentry *res;
b18825a7 1942 unsigned add_flags;
4ea3ada2 1943
f9c34674 1944 security_d_instantiate(dentry, inode);
873feea0 1945 spin_lock(&inode->i_lock);
d891eedb 1946 res = __d_find_any_alias(inode);
9308a612 1947 if (res) {
873feea0 1948 spin_unlock(&inode->i_lock);
f9c34674 1949 dput(dentry);
9308a612
CH
1950 goto out_iput;
1951 }
1952
1953 /* attach a disconnected dentry */
1a0a397e
BF
1954 add_flags = d_flags_for_inode(inode);
1955
1956 if (disconnected)
1957 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1958
f9c34674
MS
1959 spin_lock(&dentry->d_lock);
1960 __d_set_inode_and_type(dentry, inode, add_flags);
1961 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1962 if (!disconnected) {
139351f1
LT
1963 hlist_bl_lock(&dentry->d_sb->s_roots);
1964 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1965 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 1966 }
f9c34674 1967 spin_unlock(&dentry->d_lock);
873feea0 1968 spin_unlock(&inode->i_lock);
9308a612 1969
f9c34674 1970 return dentry;
9308a612
CH
1971
1972 out_iput:
1973 iput(inode);
1974 return res;
4ea3ada2 1975}
1a0a397e 1976
f9c34674
MS
1977struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1978{
1979 return __d_instantiate_anon(dentry, inode, true);
1980}
1981EXPORT_SYMBOL(d_instantiate_anon);
1982
1983static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1984{
1985 struct dentry *tmp;
1986 struct dentry *res;
1987
1988 if (!inode)
1989 return ERR_PTR(-ESTALE);
1990 if (IS_ERR(inode))
1991 return ERR_CAST(inode);
1992
1993 res = d_find_any_alias(inode);
1994 if (res)
1995 goto out_iput;
1996
1997 tmp = d_alloc_anon(inode->i_sb);
1998 if (!tmp) {
1999 res = ERR_PTR(-ENOMEM);
2000 goto out_iput;
2001 }
2002
2003 return __d_instantiate_anon(tmp, inode, disconnected);
2004
2005out_iput:
2006 iput(inode);
2007 return res;
2008}
2009
1a0a397e
BF
2010/**
2011 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2012 * @inode: inode to allocate the dentry for
2013 *
2014 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2015 * similar open by handle operations. The returned dentry may be anonymous,
2016 * or may have a full name (if the inode was already in the cache).
2017 *
2018 * When called on a directory inode, we must ensure that the inode only ever
2019 * has one dentry. If a dentry is found, that is returned instead of
2020 * allocating a new one.
2021 *
2022 * On successful return, the reference to the inode has been transferred
2023 * to the dentry. In case of an error the reference on the inode is released.
2024 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2025 * be passed in and the error will be propagated to the return value,
2026 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2027 */
2028struct dentry *d_obtain_alias(struct inode *inode)
2029{
f9c34674 2030 return __d_obtain_alias(inode, true);
1a0a397e 2031}
adc48720 2032EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2033
1a0a397e
BF
2034/**
2035 * d_obtain_root - find or allocate a dentry for a given inode
2036 * @inode: inode to allocate the dentry for
2037 *
2038 * Obtain an IS_ROOT dentry for the root of a filesystem.
2039 *
2040 * We must ensure that directory inodes only ever have one dentry. If a
2041 * dentry is found, that is returned instead of allocating a new one.
2042 *
2043 * On successful return, the reference to the inode has been transferred
2044 * to the dentry. In case of an error the reference on the inode is
2045 * released. A %NULL or IS_ERR inode may be passed in and will be the
2046 * error will be propagate to the return value, with a %NULL @inode
2047 * replaced by ERR_PTR(-ESTALE).
2048 */
2049struct dentry *d_obtain_root(struct inode *inode)
2050{
f9c34674 2051 return __d_obtain_alias(inode, false);
1a0a397e
BF
2052}
2053EXPORT_SYMBOL(d_obtain_root);
2054
9403540c
BN
2055/**
2056 * d_add_ci - lookup or allocate new dentry with case-exact name
2057 * @inode: the inode case-insensitive lookup has found
2058 * @dentry: the negative dentry that was passed to the parent's lookup func
2059 * @name: the case-exact name to be associated with the returned dentry
2060 *
2061 * This is to avoid filling the dcache with case-insensitive names to the
2062 * same inode, only the actual correct case is stored in the dcache for
2063 * case-insensitive filesystems.
2064 *
2065 * For a case-insensitive lookup match and if the the case-exact dentry
2066 * already exists in in the dcache, use it and return it.
2067 *
2068 * If no entry exists with the exact case name, allocate new dentry with
2069 * the exact case, and return the spliced entry.
2070 */
e45b590b 2071struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2072 struct qstr *name)
2073{
d9171b93 2074 struct dentry *found, *res;
9403540c 2075
b6520c81
CH
2076 /*
2077 * First check if a dentry matching the name already exists,
2078 * if not go ahead and create it now.
2079 */
9403540c 2080 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2081 if (found) {
2082 iput(inode);
2083 return found;
2084 }
2085 if (d_in_lookup(dentry)) {
2086 found = d_alloc_parallel(dentry->d_parent, name,
2087 dentry->d_wait);
2088 if (IS_ERR(found) || !d_in_lookup(found)) {
2089 iput(inode);
2090 return found;
9403540c 2091 }
d9171b93
AV
2092 } else {
2093 found = d_alloc(dentry->d_parent, name);
2094 if (!found) {
2095 iput(inode);
2096 return ERR_PTR(-ENOMEM);
2097 }
2098 }
2099 res = d_splice_alias(inode, found);
2100 if (res) {
2101 dput(found);
2102 return res;
9403540c 2103 }
4f522a24 2104 return found;
9403540c 2105}
ec4f8605 2106EXPORT_SYMBOL(d_add_ci);
1da177e4 2107
12f8ad4b 2108
d4c91a8f
AV
2109static inline bool d_same_name(const struct dentry *dentry,
2110 const struct dentry *parent,
2111 const struct qstr *name)
12f8ad4b 2112{
d4c91a8f
AV
2113 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2114 if (dentry->d_name.len != name->len)
2115 return false;
2116 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2117 }
6fa67e70 2118 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2119 dentry->d_name.len, dentry->d_name.name,
2120 name) == 0;
12f8ad4b
LT
2121}
2122
31e6b01f
NP
2123/**
2124 * __d_lookup_rcu - search for a dentry (racy, store-free)
2125 * @parent: parent dentry
2126 * @name: qstr of name we wish to find
1f1e6e52 2127 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2128 * Returns: dentry, or NULL
2129 *
2130 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2131 * resolution (store-free path walking) design described in
2132 * Documentation/filesystems/path-lookup.txt.
2133 *
2134 * This is not to be used outside core vfs.
2135 *
2136 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2137 * held, and rcu_read_lock held. The returned dentry must not be stored into
2138 * without taking d_lock and checking d_seq sequence count against @seq
2139 * returned here.
2140 *
15570086 2141 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2142 * function.
2143 *
2144 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2145 * the returned dentry, so long as its parent's seqlock is checked after the
2146 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2147 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2148 *
2149 * NOTE! The caller *has* to check the resulting dentry against the sequence
2150 * number we've returned before using any of the resulting dentry state!
31e6b01f 2151 */
8966be90
LT
2152struct dentry *__d_lookup_rcu(const struct dentry *parent,
2153 const struct qstr *name,
da53be12 2154 unsigned *seqp)
31e6b01f 2155{
26fe5750 2156 u64 hashlen = name->hash_len;
31e6b01f 2157 const unsigned char *str = name->name;
8387ff25 2158 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2159 struct hlist_bl_node *node;
31e6b01f
NP
2160 struct dentry *dentry;
2161
2162 /*
2163 * Note: There is significant duplication with __d_lookup_rcu which is
2164 * required to prevent single threaded performance regressions
2165 * especially on architectures where smp_rmb (in seqcounts) are costly.
2166 * Keep the two functions in sync.
2167 */
2168
2169 /*
2170 * The hash list is protected using RCU.
2171 *
2172 * Carefully use d_seq when comparing a candidate dentry, to avoid
2173 * races with d_move().
2174 *
2175 * It is possible that concurrent renames can mess up our list
2176 * walk here and result in missing our dentry, resulting in the
2177 * false-negative result. d_lookup() protects against concurrent
2178 * renames using rename_lock seqlock.
2179 *
b0a4bb83 2180 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2181 */
b07ad996 2182 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2183 unsigned seq;
31e6b01f 2184
31e6b01f 2185seqretry:
12f8ad4b
LT
2186 /*
2187 * The dentry sequence count protects us from concurrent
da53be12 2188 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2189 *
2190 * The caller must perform a seqcount check in order
da53be12 2191 * to do anything useful with the returned dentry.
12f8ad4b
LT
2192 *
2193 * NOTE! We do a "raw" seqcount_begin here. That means that
2194 * we don't wait for the sequence count to stabilize if it
2195 * is in the middle of a sequence change. If we do the slow
2196 * dentry compare, we will do seqretries until it is stable,
2197 * and if we end up with a successful lookup, we actually
2198 * want to exit RCU lookup anyway.
d4c91a8f
AV
2199 *
2200 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2201 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2202 */
2203 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2204 if (dentry->d_parent != parent)
2205 continue;
2e321806
LT
2206 if (d_unhashed(dentry))
2207 continue;
12f8ad4b 2208
830c0f0e 2209 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2210 int tlen;
2211 const char *tname;
26fe5750
LT
2212 if (dentry->d_name.hash != hashlen_hash(hashlen))
2213 continue;
d4c91a8f
AV
2214 tlen = dentry->d_name.len;
2215 tname = dentry->d_name.name;
2216 /* we want a consistent (name,len) pair */
2217 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2218 cpu_relax();
12f8ad4b
LT
2219 goto seqretry;
2220 }
6fa67e70 2221 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2222 tlen, tname, name) != 0)
2223 continue;
2224 } else {
2225 if (dentry->d_name.hash_len != hashlen)
2226 continue;
2227 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2228 continue;
31e6b01f 2229 }
da53be12 2230 *seqp = seq;
d4c91a8f 2231 return dentry;
31e6b01f
NP
2232 }
2233 return NULL;
2234}
2235
1da177e4
LT
2236/**
2237 * d_lookup - search for a dentry
2238 * @parent: parent dentry
2239 * @name: qstr of name we wish to find
b04f784e 2240 * Returns: dentry, or NULL
1da177e4 2241 *
b04f784e
NP
2242 * d_lookup searches the children of the parent dentry for the name in
2243 * question. If the dentry is found its reference count is incremented and the
2244 * dentry is returned. The caller must use dput to free the entry when it has
2245 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2246 */
da2d8455 2247struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2248{
31e6b01f 2249 struct dentry *dentry;
949854d0 2250 unsigned seq;
1da177e4 2251
b8314f93
DY
2252 do {
2253 seq = read_seqbegin(&rename_lock);
2254 dentry = __d_lookup(parent, name);
2255 if (dentry)
1da177e4
LT
2256 break;
2257 } while (read_seqretry(&rename_lock, seq));
2258 return dentry;
2259}
ec4f8605 2260EXPORT_SYMBOL(d_lookup);
1da177e4 2261
31e6b01f 2262/**
b04f784e
NP
2263 * __d_lookup - search for a dentry (racy)
2264 * @parent: parent dentry
2265 * @name: qstr of name we wish to find
2266 * Returns: dentry, or NULL
2267 *
2268 * __d_lookup is like d_lookup, however it may (rarely) return a
2269 * false-negative result due to unrelated rename activity.
2270 *
2271 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2272 * however it must be used carefully, eg. with a following d_lookup in
2273 * the case of failure.
2274 *
2275 * __d_lookup callers must be commented.
2276 */
a713ca2a 2277struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2278{
1da177e4 2279 unsigned int hash = name->hash;
8387ff25 2280 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2281 struct hlist_bl_node *node;
31e6b01f 2282 struct dentry *found = NULL;
665a7583 2283 struct dentry *dentry;
1da177e4 2284
31e6b01f
NP
2285 /*
2286 * Note: There is significant duplication with __d_lookup_rcu which is
2287 * required to prevent single threaded performance regressions
2288 * especially on architectures where smp_rmb (in seqcounts) are costly.
2289 * Keep the two functions in sync.
2290 */
2291
b04f784e
NP
2292 /*
2293 * The hash list is protected using RCU.
2294 *
2295 * Take d_lock when comparing a candidate dentry, to avoid races
2296 * with d_move().
2297 *
2298 * It is possible that concurrent renames can mess up our list
2299 * walk here and result in missing our dentry, resulting in the
2300 * false-negative result. d_lookup() protects against concurrent
2301 * renames using rename_lock seqlock.
2302 *
b0a4bb83 2303 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2304 */
1da177e4
LT
2305 rcu_read_lock();
2306
b07ad996 2307 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2308
1da177e4
LT
2309 if (dentry->d_name.hash != hash)
2310 continue;
1da177e4
LT
2311
2312 spin_lock(&dentry->d_lock);
1da177e4
LT
2313 if (dentry->d_parent != parent)
2314 goto next;
d0185c08
LT
2315 if (d_unhashed(dentry))
2316 goto next;
2317
d4c91a8f
AV
2318 if (!d_same_name(dentry, parent, name))
2319 goto next;
1da177e4 2320
98474236 2321 dentry->d_lockref.count++;
d0185c08 2322 found = dentry;
1da177e4
LT
2323 spin_unlock(&dentry->d_lock);
2324 break;
2325next:
2326 spin_unlock(&dentry->d_lock);
2327 }
2328 rcu_read_unlock();
2329
2330 return found;
2331}
2332
3e7e241f
EB
2333/**
2334 * d_hash_and_lookup - hash the qstr then search for a dentry
2335 * @dir: Directory to search in
2336 * @name: qstr of name we wish to find
2337 *
4f522a24 2338 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2339 */
2340struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2341{
3e7e241f
EB
2342 /*
2343 * Check for a fs-specific hash function. Note that we must
2344 * calculate the standard hash first, as the d_op->d_hash()
2345 * routine may choose to leave the hash value unchanged.
2346 */
8387ff25 2347 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2348 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2349 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2350 if (unlikely(err < 0))
2351 return ERR_PTR(err);
3e7e241f 2352 }
4f522a24 2353 return d_lookup(dir, name);
3e7e241f 2354}
4f522a24 2355EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2356
1da177e4
LT
2357/*
2358 * When a file is deleted, we have two options:
2359 * - turn this dentry into a negative dentry
2360 * - unhash this dentry and free it.
2361 *
2362 * Usually, we want to just turn this into
2363 * a negative dentry, but if anybody else is
2364 * currently using the dentry or the inode
2365 * we can't do that and we fall back on removing
2366 * it from the hash queues and waiting for
2367 * it to be deleted later when it has no users
2368 */
2369
2370/**
2371 * d_delete - delete a dentry
2372 * @dentry: The dentry to delete
2373 *
2374 * Turn the dentry into a negative dentry if possible, otherwise
2375 * remove it from the hash queues so it can be deleted later
2376 */
2377
2378void d_delete(struct dentry * dentry)
2379{
c19457f0
AV
2380 struct inode *inode = dentry->d_inode;
2381 int isdir = d_is_dir(dentry);
2382
2383 spin_lock(&inode->i_lock);
2384 spin_lock(&dentry->d_lock);
1da177e4
LT
2385 /*
2386 * Are we the only user?
2387 */
98474236 2388 if (dentry->d_lockref.count == 1) {
13e3c5e5 2389 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2390 dentry_unlink_inode(dentry);
c19457f0 2391 } else {
1da177e4 2392 __d_drop(dentry);
c19457f0
AV
2393 spin_unlock(&dentry->d_lock);
2394 spin_unlock(&inode->i_lock);
2395 }
7a91bf7f 2396 fsnotify_nameremove(dentry, isdir);
1da177e4 2397}
ec4f8605 2398EXPORT_SYMBOL(d_delete);
1da177e4 2399
15d3c589 2400static void __d_rehash(struct dentry *entry)
1da177e4 2401{
15d3c589 2402 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2403
1879fd6a 2404 hlist_bl_lock(b);
b07ad996 2405 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2406 hlist_bl_unlock(b);
1da177e4
LT
2407}
2408
2409/**
2410 * d_rehash - add an entry back to the hash
2411 * @entry: dentry to add to the hash
2412 *
2413 * Adds a dentry to the hash according to its name.
2414 */
2415
2416void d_rehash(struct dentry * entry)
2417{
1da177e4 2418 spin_lock(&entry->d_lock);
15d3c589 2419 __d_rehash(entry);
1da177e4 2420 spin_unlock(&entry->d_lock);
1da177e4 2421}
ec4f8605 2422EXPORT_SYMBOL(d_rehash);
1da177e4 2423
84e710da
AV
2424static inline unsigned start_dir_add(struct inode *dir)
2425{
2426
2427 for (;;) {
2428 unsigned n = dir->i_dir_seq;
2429 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2430 return n;
2431 cpu_relax();
2432 }
2433}
2434
2435static inline void end_dir_add(struct inode *dir, unsigned n)
2436{
2437 smp_store_release(&dir->i_dir_seq, n + 2);
2438}
2439
d9171b93
AV
2440static void d_wait_lookup(struct dentry *dentry)
2441{
2442 if (d_in_lookup(dentry)) {
2443 DECLARE_WAITQUEUE(wait, current);
2444 add_wait_queue(dentry->d_wait, &wait);
2445 do {
2446 set_current_state(TASK_UNINTERRUPTIBLE);
2447 spin_unlock(&dentry->d_lock);
2448 schedule();
2449 spin_lock(&dentry->d_lock);
2450 } while (d_in_lookup(dentry));
2451 }
2452}
2453
94bdd655 2454struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2455 const struct qstr *name,
2456 wait_queue_head_t *wq)
94bdd655 2457{
94bdd655 2458 unsigned int hash = name->hash;
94bdd655
AV
2459 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2460 struct hlist_bl_node *node;
2461 struct dentry *new = d_alloc(parent, name);
2462 struct dentry *dentry;
2463 unsigned seq, r_seq, d_seq;
2464
2465 if (unlikely(!new))
2466 return ERR_PTR(-ENOMEM);
2467
2468retry:
2469 rcu_read_lock();
015555fd 2470 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2471 r_seq = read_seqbegin(&rename_lock);
2472 dentry = __d_lookup_rcu(parent, name, &d_seq);
2473 if (unlikely(dentry)) {
2474 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2475 rcu_read_unlock();
2476 goto retry;
2477 }
2478 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2479 rcu_read_unlock();
2480 dput(dentry);
2481 goto retry;
2482 }
2483 rcu_read_unlock();
2484 dput(new);
2485 return dentry;
2486 }
2487 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2488 rcu_read_unlock();
2489 goto retry;
2490 }
015555fd
WD
2491
2492 if (unlikely(seq & 1)) {
2493 rcu_read_unlock();
2494 goto retry;
2495 }
2496
94bdd655 2497 hlist_bl_lock(b);
8cc07c80 2498 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2499 hlist_bl_unlock(b);
2500 rcu_read_unlock();
2501 goto retry;
2502 }
94bdd655
AV
2503 /*
2504 * No changes for the parent since the beginning of d_lookup().
2505 * Since all removals from the chain happen with hlist_bl_lock(),
2506 * any potential in-lookup matches are going to stay here until
2507 * we unlock the chain. All fields are stable in everything
2508 * we encounter.
2509 */
2510 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2511 if (dentry->d_name.hash != hash)
2512 continue;
2513 if (dentry->d_parent != parent)
2514 continue;
d4c91a8f
AV
2515 if (!d_same_name(dentry, parent, name))
2516 continue;
94bdd655 2517 hlist_bl_unlock(b);
e7d6ef97
AV
2518 /* now we can try to grab a reference */
2519 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2520 rcu_read_unlock();
2521 goto retry;
2522 }
2523
2524 rcu_read_unlock();
2525 /*
2526 * somebody is likely to be still doing lookup for it;
2527 * wait for them to finish
2528 */
d9171b93
AV
2529 spin_lock(&dentry->d_lock);
2530 d_wait_lookup(dentry);
2531 /*
2532 * it's not in-lookup anymore; in principle we should repeat
2533 * everything from dcache lookup, but it's likely to be what
2534 * d_lookup() would've found anyway. If it is, just return it;
2535 * otherwise we really have to repeat the whole thing.
2536 */
2537 if (unlikely(dentry->d_name.hash != hash))
2538 goto mismatch;
2539 if (unlikely(dentry->d_parent != parent))
2540 goto mismatch;
2541 if (unlikely(d_unhashed(dentry)))
2542 goto mismatch;
d4c91a8f
AV
2543 if (unlikely(!d_same_name(dentry, parent, name)))
2544 goto mismatch;
d9171b93
AV
2545 /* OK, it *is* a hashed match; return it */
2546 spin_unlock(&dentry->d_lock);
94bdd655
AV
2547 dput(new);
2548 return dentry;
2549 }
e7d6ef97 2550 rcu_read_unlock();
94bdd655
AV
2551 /* we can't take ->d_lock here; it's OK, though. */
2552 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2553 new->d_wait = wq;
94bdd655
AV
2554 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2555 hlist_bl_unlock(b);
2556 return new;
d9171b93
AV
2557mismatch:
2558 spin_unlock(&dentry->d_lock);
2559 dput(dentry);
2560 goto retry;
94bdd655
AV
2561}
2562EXPORT_SYMBOL(d_alloc_parallel);
2563
85c7f810
AV
2564void __d_lookup_done(struct dentry *dentry)
2565{
94bdd655
AV
2566 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2567 dentry->d_name.hash);
2568 hlist_bl_lock(b);
85c7f810 2569 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2570 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2571 wake_up_all(dentry->d_wait);
2572 dentry->d_wait = NULL;
94bdd655
AV
2573 hlist_bl_unlock(b);
2574 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2575 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2576}
2577EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2578
2579/* inode->i_lock held if inode is non-NULL */
2580
2581static inline void __d_add(struct dentry *dentry, struct inode *inode)
2582{
84e710da
AV
2583 struct inode *dir = NULL;
2584 unsigned n;
0568d705 2585 spin_lock(&dentry->d_lock);
84e710da
AV
2586 if (unlikely(d_in_lookup(dentry))) {
2587 dir = dentry->d_parent->d_inode;
2588 n = start_dir_add(dir);
85c7f810 2589 __d_lookup_done(dentry);
84e710da 2590 }
ed782b5a 2591 if (inode) {
0568d705
AV
2592 unsigned add_flags = d_flags_for_inode(inode);
2593 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2594 raw_write_seqcount_begin(&dentry->d_seq);
2595 __d_set_inode_and_type(dentry, inode, add_flags);
2596 raw_write_seqcount_end(&dentry->d_seq);
affda484 2597 fsnotify_update_flags(dentry);
ed782b5a 2598 }
15d3c589 2599 __d_rehash(dentry);
84e710da
AV
2600 if (dir)
2601 end_dir_add(dir, n);
0568d705
AV
2602 spin_unlock(&dentry->d_lock);
2603 if (inode)
2604 spin_unlock(&inode->i_lock);
ed782b5a
AV
2605}
2606
34d0d19d
AV
2607/**
2608 * d_add - add dentry to hash queues
2609 * @entry: dentry to add
2610 * @inode: The inode to attach to this dentry
2611 *
2612 * This adds the entry to the hash queues and initializes @inode.
2613 * The entry was actually filled in earlier during d_alloc().
2614 */
2615
2616void d_add(struct dentry *entry, struct inode *inode)
2617{
b9680917
AV
2618 if (inode) {
2619 security_d_instantiate(entry, inode);
ed782b5a 2620 spin_lock(&inode->i_lock);
b9680917 2621 }
ed782b5a 2622 __d_add(entry, inode);
34d0d19d
AV
2623}
2624EXPORT_SYMBOL(d_add);
2625
668d0cd5
AV
2626/**
2627 * d_exact_alias - find and hash an exact unhashed alias
2628 * @entry: dentry to add
2629 * @inode: The inode to go with this dentry
2630 *
2631 * If an unhashed dentry with the same name/parent and desired
2632 * inode already exists, hash and return it. Otherwise, return
2633 * NULL.
2634 *
2635 * Parent directory should be locked.
2636 */
2637struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2638{
2639 struct dentry *alias;
668d0cd5
AV
2640 unsigned int hash = entry->d_name.hash;
2641
2642 spin_lock(&inode->i_lock);
2643 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2644 /*
2645 * Don't need alias->d_lock here, because aliases with
2646 * d_parent == entry->d_parent are not subject to name or
2647 * parent changes, because the parent inode i_mutex is held.
2648 */
2649 if (alias->d_name.hash != hash)
2650 continue;
2651 if (alias->d_parent != entry->d_parent)
2652 continue;
d4c91a8f 2653 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2654 continue;
2655 spin_lock(&alias->d_lock);
2656 if (!d_unhashed(alias)) {
2657 spin_unlock(&alias->d_lock);
2658 alias = NULL;
2659 } else {
2660 __dget_dlock(alias);
15d3c589 2661 __d_rehash(alias);
668d0cd5
AV
2662 spin_unlock(&alias->d_lock);
2663 }
2664 spin_unlock(&inode->i_lock);
2665 return alias;
2666 }
2667 spin_unlock(&inode->i_lock);
2668 return NULL;
2669}
2670EXPORT_SYMBOL(d_exact_alias);
2671
fb2d5b86
NP
2672/**
2673 * dentry_update_name_case - update case insensitive dentry with a new name
2674 * @dentry: dentry to be updated
2675 * @name: new name
2676 *
2677 * Update a case insensitive dentry with new case of name.
2678 *
2679 * dentry must have been returned by d_lookup with name @name. Old and new
2680 * name lengths must match (ie. no d_compare which allows mismatched name
2681 * lengths).
2682 *
2683 * Parent inode i_mutex must be held over d_lookup and into this call (to
2684 * keep renames and concurrent inserts, and readdir(2) away).
2685 */
9aba36de 2686void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2687{
5955102c 2688 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2689 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2690
fb2d5b86 2691 spin_lock(&dentry->d_lock);
31e6b01f 2692 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2693 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2694 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2695 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2696}
2697EXPORT_SYMBOL(dentry_update_name_case);
2698
8d85b484 2699static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2700{
8d85b484
AV
2701 if (unlikely(dname_external(target))) {
2702 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2703 /*
2704 * Both external: swap the pointers
2705 */
9a8d5bb4 2706 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2707 } else {
2708 /*
2709 * dentry:internal, target:external. Steal target's
2710 * storage and make target internal.
2711 */
321bcf92
BF
2712 memcpy(target->d_iname, dentry->d_name.name,
2713 dentry->d_name.len + 1);
1da177e4
LT
2714 dentry->d_name.name = target->d_name.name;
2715 target->d_name.name = target->d_iname;
2716 }
2717 } else {
8d85b484 2718 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2719 /*
2720 * dentry:external, target:internal. Give dentry's
2721 * storage to target and make dentry internal
2722 */
2723 memcpy(dentry->d_iname, target->d_name.name,
2724 target->d_name.len + 1);
2725 target->d_name.name = dentry->d_name.name;
2726 dentry->d_name.name = dentry->d_iname;
2727 } else {
2728 /*
da1ce067 2729 * Both are internal.
1da177e4 2730 */
da1ce067
MS
2731 unsigned int i;
2732 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2733 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2734 swap(((long *) &dentry->d_iname)[i],
2735 ((long *) &target->d_iname)[i]);
2736 }
1da177e4
LT
2737 }
2738 }
a28ddb87 2739 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2740}
2741
8d85b484
AV
2742static void copy_name(struct dentry *dentry, struct dentry *target)
2743{
2744 struct external_name *old_name = NULL;
2745 if (unlikely(dname_external(dentry)))
2746 old_name = external_name(dentry);
2747 if (unlikely(dname_external(target))) {
2748 atomic_inc(&external_name(target)->u.count);
2749 dentry->d_name = target->d_name;
2750 } else {
2751 memcpy(dentry->d_iname, target->d_name.name,
2752 target->d_name.len + 1);
2753 dentry->d_name.name = dentry->d_iname;
2754 dentry->d_name.hash_len = target->d_name.hash_len;
2755 }
2756 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
f1782c9b 2757 call_rcu(&old_name->u.head, __d_free_external_name);
8d85b484
AV
2758}
2759
9eaef27b 2760/*
18367501 2761 * __d_move - move a dentry
1da177e4
LT
2762 * @dentry: entry to move
2763 * @target: new dentry
da1ce067 2764 * @exchange: exchange the two dentries
1da177e4
LT
2765 *
2766 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2767 * dcache entries should not be moved in this way. Caller must hold
2768 * rename_lock, the i_mutex of the source and target directories,
2769 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2770 */
da1ce067
MS
2771static void __d_move(struct dentry *dentry, struct dentry *target,
2772 bool exchange)
1da177e4 2773{
42177007 2774 struct dentry *old_parent, *p;
84e710da
AV
2775 struct inode *dir = NULL;
2776 unsigned n;
1da177e4 2777
42177007
AV
2778 WARN_ON(!dentry->d_inode);
2779 if (WARN_ON(dentry == target))
2780 return;
2781
2fd6b7f5 2782 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2783 old_parent = dentry->d_parent;
2784 p = d_ancestor(old_parent, target);
2785 if (IS_ROOT(dentry)) {
2786 BUG_ON(p);
2787 spin_lock(&target->d_parent->d_lock);
2788 } else if (!p) {
2789 /* target is not a descendent of dentry->d_parent */
2790 spin_lock(&target->d_parent->d_lock);
2791 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2792 } else {
2793 BUG_ON(p == dentry);
2794 spin_lock(&old_parent->d_lock);
2795 if (p != target)
2796 spin_lock_nested(&target->d_parent->d_lock,
2797 DENTRY_D_LOCK_NESTED);
2798 }
2799 spin_lock_nested(&dentry->d_lock, 2);
2800 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2801
84e710da
AV
2802 if (unlikely(d_in_lookup(target))) {
2803 dir = target->d_parent->d_inode;
2804 n = start_dir_add(dir);
85c7f810 2805 __d_lookup_done(target);
84e710da 2806 }
1da177e4 2807
31e6b01f 2808 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2809 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2810
15d3c589 2811 /* unhash both */
0632a9ac
AV
2812 if (!d_unhashed(dentry))
2813 ___d_drop(dentry);
2814 if (!d_unhashed(target))
2815 ___d_drop(target);
1da177e4 2816
076515fc
AV
2817 /* ... and switch them in the tree */
2818 dentry->d_parent = target->d_parent;
2819 if (!exchange) {
8d85b484 2820 copy_name(dentry, target);
61647823 2821 target->d_hash.pprev = NULL;
076515fc
AV
2822 dentry->d_parent->d_lockref.count++;
2823 if (dentry == old_parent)
2824 dentry->d_flags |= DCACHE_RCUACCESS;
2825 else
2826 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2827 } else {
076515fc
AV
2828 target->d_parent = old_parent;
2829 swap_names(dentry, target);
946e51f2 2830 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2831 __d_rehash(target);
2832 fsnotify_update_flags(target);
1da177e4 2833 }
076515fc
AV
2834 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2835 __d_rehash(dentry);
2836 fsnotify_update_flags(dentry);
1da177e4 2837
31e6b01f
NP
2838 write_seqcount_end(&target->d_seq);
2839 write_seqcount_end(&dentry->d_seq);
2840
84e710da
AV
2841 if (dir)
2842 end_dir_add(dir, n);
076515fc
AV
2843
2844 if (dentry->d_parent != old_parent)
2845 spin_unlock(&dentry->d_parent->d_lock);
2846 if (dentry != old_parent)
2847 spin_unlock(&old_parent->d_lock);
2848 spin_unlock(&target->d_lock);
2849 spin_unlock(&dentry->d_lock);
18367501
AV
2850}
2851
2852/*
2853 * d_move - move a dentry
2854 * @dentry: entry to move
2855 * @target: new dentry
2856 *
2857 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2858 * dcache entries should not be moved in this way. See the locking
2859 * requirements for __d_move.
18367501
AV
2860 */
2861void d_move(struct dentry *dentry, struct dentry *target)
2862{
2863 write_seqlock(&rename_lock);
da1ce067 2864 __d_move(dentry, target, false);
1da177e4 2865 write_sequnlock(&rename_lock);
9eaef27b 2866}
ec4f8605 2867EXPORT_SYMBOL(d_move);
1da177e4 2868
da1ce067
MS
2869/*
2870 * d_exchange - exchange two dentries
2871 * @dentry1: first dentry
2872 * @dentry2: second dentry
2873 */
2874void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2875{
2876 write_seqlock(&rename_lock);
2877
2878 WARN_ON(!dentry1->d_inode);
2879 WARN_ON(!dentry2->d_inode);
2880 WARN_ON(IS_ROOT(dentry1));
2881 WARN_ON(IS_ROOT(dentry2));
2882
2883 __d_move(dentry1, dentry2, true);
2884
2885 write_sequnlock(&rename_lock);
2886}
2887
e2761a11
OH
2888/**
2889 * d_ancestor - search for an ancestor
2890 * @p1: ancestor dentry
2891 * @p2: child dentry
2892 *
2893 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2894 * an ancestor of p2, else NULL.
9eaef27b 2895 */
e2761a11 2896struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2897{
2898 struct dentry *p;
2899
871c0067 2900 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2901 if (p->d_parent == p1)
e2761a11 2902 return p;
9eaef27b 2903 }
e2761a11 2904 return NULL;
9eaef27b
TM
2905}
2906
2907/*
2908 * This helper attempts to cope with remotely renamed directories
2909 *
2910 * It assumes that the caller is already holding
a03e283b 2911 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2912 *
2913 * Note: If ever the locking in lock_rename() changes, then please
2914 * remember to update this too...
9eaef27b 2915 */
b5ae6b15 2916static int __d_unalias(struct inode *inode,
873feea0 2917 struct dentry *dentry, struct dentry *alias)
9eaef27b 2918{
9902af79
AV
2919 struct mutex *m1 = NULL;
2920 struct rw_semaphore *m2 = NULL;
3d330dc1 2921 int ret = -ESTALE;
9eaef27b
TM
2922
2923 /* If alias and dentry share a parent, then no extra locks required */
2924 if (alias->d_parent == dentry->d_parent)
2925 goto out_unalias;
2926
9eaef27b 2927 /* See lock_rename() */
9eaef27b
TM
2928 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2929 goto out_err;
2930 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2931 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2932 goto out_err;
9902af79 2933 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2934out_unalias:
8ed936b5 2935 __d_move(alias, dentry, false);
b5ae6b15 2936 ret = 0;
9eaef27b 2937out_err:
9eaef27b 2938 if (m2)
9902af79 2939 up_read(m2);
9eaef27b
TM
2940 if (m1)
2941 mutex_unlock(m1);
2942 return ret;
2943}
2944
3f70bd51
BF
2945/**
2946 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2947 * @inode: the inode which may have a disconnected dentry
2948 * @dentry: a negative dentry which we want to point to the inode.
2949 *
da093a9b
BF
2950 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2951 * place of the given dentry and return it, else simply d_add the inode
2952 * to the dentry and return NULL.
3f70bd51 2953 *
908790fa
BF
2954 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2955 * we should error out: directories can't have multiple aliases.
2956 *
3f70bd51
BF
2957 * This is needed in the lookup routine of any filesystem that is exportable
2958 * (via knfsd) so that we can build dcache paths to directories effectively.
2959 *
2960 * If a dentry was found and moved, then it is returned. Otherwise NULL
2961 * is returned. This matches the expected return value of ->lookup.
2962 *
2963 * Cluster filesystems may call this function with a negative, hashed dentry.
2964 * In that case, we know that the inode will be a regular file, and also this
2965 * will only occur during atomic_open. So we need to check for the dentry
2966 * being already hashed only in the final case.
2967 */
2968struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2969{
3f70bd51
BF
2970 if (IS_ERR(inode))
2971 return ERR_CAST(inode);
2972
770bfad8
DH
2973 BUG_ON(!d_unhashed(dentry));
2974
de689f5e 2975 if (!inode)
b5ae6b15 2976 goto out;
de689f5e 2977
b9680917 2978 security_d_instantiate(dentry, inode);
873feea0 2979 spin_lock(&inode->i_lock);
9eaef27b 2980 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2981 struct dentry *new = __d_find_any_alias(inode);
2982 if (unlikely(new)) {
a03e283b
EB
2983 /* The reference to new ensures it remains an alias */
2984 spin_unlock(&inode->i_lock);
18367501 2985 write_seqlock(&rename_lock);
b5ae6b15
AV
2986 if (unlikely(d_ancestor(new, dentry))) {
2987 write_sequnlock(&rename_lock);
b5ae6b15
AV
2988 dput(new);
2989 new = ERR_PTR(-ELOOP);
2990 pr_warn_ratelimited(
2991 "VFS: Lookup of '%s' in %s %s"
2992 " would have caused loop\n",
2993 dentry->d_name.name,
2994 inode->i_sb->s_type->name,
2995 inode->i_sb->s_id);
2996 } else if (!IS_ROOT(new)) {
076515fc 2997 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 2998 int err = __d_unalias(inode, dentry, new);
18367501 2999 write_sequnlock(&rename_lock);
b5ae6b15
AV
3000 if (err) {
3001 dput(new);
3002 new = ERR_PTR(err);
3003 }
076515fc 3004 dput(old_parent);
18367501 3005 } else {
b5ae6b15
AV
3006 __d_move(new, dentry, false);
3007 write_sequnlock(&rename_lock);
dd179946 3008 }
b5ae6b15
AV
3009 iput(inode);
3010 return new;
9eaef27b 3011 }
770bfad8 3012 }
b5ae6b15 3013out:
ed782b5a 3014 __d_add(dentry, inode);
b5ae6b15 3015 return NULL;
770bfad8 3016}
b5ae6b15 3017EXPORT_SYMBOL(d_splice_alias);
770bfad8 3018
1da177e4
LT
3019/*
3020 * Test whether new_dentry is a subdirectory of old_dentry.
3021 *
3022 * Trivially implemented using the dcache structure
3023 */
3024
3025/**
3026 * is_subdir - is new dentry a subdirectory of old_dentry
3027 * @new_dentry: new dentry
3028 * @old_dentry: old dentry
3029 *
a6e5787f
YB
3030 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3031 * Returns false otherwise.
1da177e4
LT
3032 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3033 */
3034
a6e5787f 3035bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3036{
a6e5787f 3037 bool result;
949854d0 3038 unsigned seq;
1da177e4 3039
e2761a11 3040 if (new_dentry == old_dentry)
a6e5787f 3041 return true;
e2761a11 3042
e2761a11 3043 do {
1da177e4 3044 /* for restarting inner loop in case of seq retry */
1da177e4 3045 seq = read_seqbegin(&rename_lock);
949854d0
NP
3046 /*
3047 * Need rcu_readlock to protect against the d_parent trashing
3048 * due to d_move
3049 */
3050 rcu_read_lock();
e2761a11 3051 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3052 result = true;
e2761a11 3053 else
a6e5787f 3054 result = false;
949854d0 3055 rcu_read_unlock();
1da177e4 3056 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3057
3058 return result;
3059}
e8f9e5b7 3060EXPORT_SYMBOL(is_subdir);
1da177e4 3061
db14fc3a 3062static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3063{
db14fc3a
MS
3064 struct dentry *root = data;
3065 if (dentry != root) {
3066 if (d_unhashed(dentry) || !dentry->d_inode)
3067 return D_WALK_SKIP;
1da177e4 3068
01ddc4ed
MS
3069 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3070 dentry->d_flags |= DCACHE_GENOCIDE;
3071 dentry->d_lockref.count--;
3072 }
1da177e4 3073 }
db14fc3a
MS
3074 return D_WALK_CONTINUE;
3075}
58db63d0 3076
db14fc3a
MS
3077void d_genocide(struct dentry *parent)
3078{
3a8e3611 3079 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3080}
3081
cbd4a5bc
AV
3082EXPORT_SYMBOL(d_genocide);
3083
60545d0d 3084void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3085{
60545d0d
AV
3086 inode_dec_link_count(inode);
3087 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3088 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3089 !d_unlinked(dentry));
3090 spin_lock(&dentry->d_parent->d_lock);
3091 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3092 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3093 (unsigned long long)inode->i_ino);
3094 spin_unlock(&dentry->d_lock);
3095 spin_unlock(&dentry->d_parent->d_lock);
3096 d_instantiate(dentry, inode);
1da177e4 3097}
60545d0d 3098EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3099
3100static __initdata unsigned long dhash_entries;
3101static int __init set_dhash_entries(char *str)
3102{
3103 if (!str)
3104 return 0;
3105 dhash_entries = simple_strtoul(str, &str, 0);
3106 return 1;
3107}
3108__setup("dhash_entries=", set_dhash_entries);
3109
3110static void __init dcache_init_early(void)
3111{
1da177e4
LT
3112 /* If hashes are distributed across NUMA nodes, defer
3113 * hash allocation until vmalloc space is available.
3114 */
3115 if (hashdist)
3116 return;
3117
3118 dentry_hashtable =
3119 alloc_large_system_hash("Dentry cache",
b07ad996 3120 sizeof(struct hlist_bl_head),
1da177e4
LT
3121 dhash_entries,
3122 13,
3d375d78 3123 HASH_EARLY | HASH_ZERO,
1da177e4 3124 &d_hash_shift,
b35d786b 3125 NULL,
31fe62b9 3126 0,
1da177e4 3127 0);
854d3e63 3128 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3129}
3130
74bf17cf 3131static void __init dcache_init(void)
1da177e4 3132{
3d375d78 3133 /*
1da177e4
LT
3134 * A constructor could be added for stable state like the lists,
3135 * but it is probably not worth it because of the cache nature
3d375d78 3136 * of the dcache.
1da177e4 3137 */
80344266
DW
3138 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3139 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3140 d_iname);
1da177e4
LT
3141
3142 /* Hash may have been set up in dcache_init_early */
3143 if (!hashdist)
3144 return;
3145
3146 dentry_hashtable =
3147 alloc_large_system_hash("Dentry cache",
b07ad996 3148 sizeof(struct hlist_bl_head),
1da177e4
LT
3149 dhash_entries,
3150 13,
3d375d78 3151 HASH_ZERO,
1da177e4 3152 &d_hash_shift,
b35d786b 3153 NULL,
31fe62b9 3154 0,
1da177e4 3155 0);
854d3e63 3156 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3157}
3158
3159/* SLAB cache for __getname() consumers */
e18b890b 3160struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3161EXPORT_SYMBOL(names_cachep);
1da177e4 3162
1da177e4
LT
3163void __init vfs_caches_init_early(void)
3164{
6916363f
SAS
3165 int i;
3166
3167 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3168 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3169
1da177e4
LT
3170 dcache_init_early();
3171 inode_init_early();
3172}
3173
4248b0da 3174void __init vfs_caches_init(void)
1da177e4 3175{
6a9b8820
DW
3176 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3177 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3178
74bf17cf
DC
3179 dcache_init();
3180 inode_init();
4248b0da
MG
3181 files_init();
3182 files_maxfiles_init();
74bf17cf 3183 mnt_init();
1da177e4
LT
3184 bdev_cache_init();
3185 chrdev_init();
3186}