handle move to LRU in retain_dentry()
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
7c0f6ba6 29#include <linux/uaccess.h>
1da177e4
LT
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
ceb5bdc2
NP
35#include <linux/bit_spinlock.h>
36#include <linux/rculist_bl.h>
268bb0ce 37#include <linux/prefetch.h>
dd179946 38#include <linux/ratelimit.h>
f6041567 39#include <linux/list_lru.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0 45 * dcache->d_inode->i_lock protects:
946e51f2 46 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
f1ee6162
N
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
19156840 51 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
946e51f2 61 * - d_u.d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6 65 * dentry->d_lock
19156840 66 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 67 * dcache_hash_bucket lock
f1ee6162 68 * s_roots lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
74c3cbe3 84__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 85
949854d0 86EXPORT_SYMBOL(rename_lock);
1da177e4 87
e18b890b 88static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 89
cdf01226
DH
90const struct qstr empty_name = QSTR_INIT("", 0);
91EXPORT_SYMBOL(empty_name);
92const struct qstr slash_name = QSTR_INIT("/", 1);
93EXPORT_SYMBOL(slash_name);
94
1da177e4
LT
95/*
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
99 *
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
102 */
1da177e4 103
fa3536cc 104static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 105
b07ad996 106static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 107
8387ff25 108static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 109{
854d3e63 110 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
111}
112
94bdd655
AV
113#define IN_LOOKUP_SHIFT 10
114static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
115
116static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
117 unsigned int hash)
118{
119 hash += (unsigned long) parent / L1_CACHE_BYTES;
120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
121}
122
123
1da177e4
LT
124/* Statistics gathering. */
125struct dentry_stat_t dentry_stat = {
126 .age_limit = 45,
127};
128
3942c07c 129static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 130static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
131
132#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
133
134/*
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
138 *
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
142 *
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
145 */
3942c07c 146static long get_nr_dentry(void)
3e880fb5
NP
147{
148 int i;
3942c07c 149 long sum = 0;
3e880fb5
NP
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry, i);
152 return sum < 0 ? 0 : sum;
153}
154
62d36c77
DC
155static long get_nr_dentry_unused(void)
156{
157 int i;
158 long sum = 0;
159 for_each_possible_cpu(i)
160 sum += per_cpu(nr_dentry_unused, i);
161 return sum < 0 ? 0 : sum;
162}
163
1f7e0616 164int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
165 size_t *lenp, loff_t *ppos)
166{
3e880fb5 167 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 168 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
170}
171#endif
172
5483f18e
LT
173/*
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
176 */
e419b4cc
LT
177#ifdef CONFIG_DCACHE_WORD_ACCESS
178
179#include <asm/word-at-a-time.h>
180/*
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
185 *
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
188 */
94753db5 189static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 190{
bfcfaa77 191 unsigned long a,b,mask;
bfcfaa77
LT
192
193 for (;;) {
bfe7aa6c 194 a = read_word_at_a_time(cs);
e419b4cc 195 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
196 if (tcount < sizeof(unsigned long))
197 break;
198 if (unlikely(a != b))
199 return 1;
200 cs += sizeof(unsigned long);
201 ct += sizeof(unsigned long);
202 tcount -= sizeof(unsigned long);
203 if (!tcount)
204 return 0;
205 }
a5c21dce 206 mask = bytemask_from_count(tcount);
bfcfaa77 207 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
208}
209
bfcfaa77 210#else
e419b4cc 211
94753db5 212static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 213{
5483f18e
LT
214 do {
215 if (*cs != *ct)
216 return 1;
217 cs++;
218 ct++;
219 tcount--;
220 } while (tcount);
221 return 0;
222}
223
e419b4cc
LT
224#endif
225
94753db5
LT
226static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
227{
94753db5
LT
228 /*
229 * Be careful about RCU walk racing with rename:
506458ef 230 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
231 *
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
239 *
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
243 */
506458ef 244 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 245
6326c71f 246 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
247}
248
8d85b484
AV
249struct external_name {
250 union {
251 atomic_t count;
252 struct rcu_head head;
253 } u;
254 unsigned char name[];
255};
256
257static inline struct external_name *external_name(struct dentry *dentry)
258{
259 return container_of(dentry->d_name.name, struct external_name, name[0]);
260}
261
9c82ab9c 262static void __d_free(struct rcu_head *head)
1da177e4 263{
9c82ab9c
CH
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
265
8d85b484
AV
266 kmem_cache_free(dentry_cache, dentry);
267}
268
269static void __d_free_external(struct rcu_head *head)
270{
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 272 kfree(external_name(dentry));
1da177e4
LT
273 kmem_cache_free(dentry_cache, dentry);
274}
275
810bb172
AV
276static inline int dname_external(const struct dentry *dentry)
277{
278 return dentry->d_name.name != dentry->d_iname;
279}
280
49d31c2f
AV
281void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
282{
283 spin_lock(&dentry->d_lock);
284 if (unlikely(dname_external(dentry))) {
285 struct external_name *p = external_name(dentry);
286 atomic_inc(&p->u.count);
287 spin_unlock(&dentry->d_lock);
288 name->name = p->name;
289 } else {
290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
291 spin_unlock(&dentry->d_lock);
292 name->name = name->inline_name;
293 }
294}
295EXPORT_SYMBOL(take_dentry_name_snapshot);
296
297void release_dentry_name_snapshot(struct name_snapshot *name)
298{
299 if (unlikely(name->name != name->inline_name)) {
300 struct external_name *p;
301 p = container_of(name->name, struct external_name, name[0]);
302 if (unlikely(atomic_dec_and_test(&p->u.count)))
303 kfree_rcu(p, u.head);
304 }
305}
306EXPORT_SYMBOL(release_dentry_name_snapshot);
307
4bf46a27
DH
308static inline void __d_set_inode_and_type(struct dentry *dentry,
309 struct inode *inode,
310 unsigned type_flags)
311{
312 unsigned flags;
313
314 dentry->d_inode = inode;
4bf46a27
DH
315 flags = READ_ONCE(dentry->d_flags);
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 flags |= type_flags;
318 WRITE_ONCE(dentry->d_flags, flags);
319}
320
4bf46a27
DH
321static inline void __d_clear_type_and_inode(struct dentry *dentry)
322{
323 unsigned flags = READ_ONCE(dentry->d_flags);
324
325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
326 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
327 dentry->d_inode = NULL;
328}
329
b4f0354e
AV
330static void dentry_free(struct dentry *dentry)
331{
946e51f2 332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
333 if (unlikely(dname_external(dentry))) {
334 struct external_name *p = external_name(dentry);
335 if (likely(atomic_dec_and_test(&p->u.count))) {
336 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
337 return;
338 }
339 }
b4f0354e
AV
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry->d_flags & DCACHE_RCUACCESS))
342 __d_free(&dentry->d_u.d_rcu);
343 else
344 call_rcu(&dentry->d_u.d_rcu, __d_free);
345}
346
1da177e4
LT
347/*
348 * Release the dentry's inode, using the filesystem
550dce01 349 * d_iput() operation if defined.
31e6b01f
NP
350 */
351static void dentry_unlink_inode(struct dentry * dentry)
352 __releases(dentry->d_lock)
873feea0 353 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
354{
355 struct inode *inode = dentry->d_inode;
550dce01 356 bool hashed = !d_unhashed(dentry);
a528aca7 357
550dce01
AV
358 if (hashed)
359 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 360 __d_clear_type_and_inode(dentry);
946e51f2 361 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
362 if (hashed)
363 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 364 spin_unlock(&dentry->d_lock);
873feea0 365 spin_unlock(&inode->i_lock);
31e6b01f
NP
366 if (!inode->i_nlink)
367 fsnotify_inoderemove(inode);
368 if (dentry->d_op && dentry->d_op->d_iput)
369 dentry->d_op->d_iput(dentry, inode);
370 else
371 iput(inode);
372}
373
89dc77bc
LT
374/*
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
378 *
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
381 *
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
384 *
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
387 */
388#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389static void d_lru_add(struct dentry *dentry)
390{
391 D_FLAG_VERIFY(dentry, 0);
392 dentry->d_flags |= DCACHE_LRU_LIST;
393 this_cpu_inc(nr_dentry_unused);
394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
395}
396
397static void d_lru_del(struct dentry *dentry)
398{
399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
400 dentry->d_flags &= ~DCACHE_LRU_LIST;
401 this_cpu_dec(nr_dentry_unused);
402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
403}
404
405static void d_shrink_del(struct dentry *dentry)
406{
407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
408 list_del_init(&dentry->d_lru);
409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 this_cpu_dec(nr_dentry_unused);
411}
412
413static void d_shrink_add(struct dentry *dentry, struct list_head *list)
414{
415 D_FLAG_VERIFY(dentry, 0);
416 list_add(&dentry->d_lru, list);
417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
418 this_cpu_inc(nr_dentry_unused);
419}
420
421/*
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
425 * private list.
426 */
3f97b163 427static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
428{
429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 dentry->d_flags &= ~DCACHE_LRU_LIST;
431 this_cpu_dec(nr_dentry_unused);
3f97b163 432 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
433}
434
3f97b163
VD
435static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
436 struct list_head *list)
89dc77bc
LT
437{
438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
439 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 440 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
441}
442
789680d1
NP
443/**
444 * d_drop - drop a dentry
445 * @dentry: dentry to drop
446 *
447 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
448 * be found through a VFS lookup any more. Note that this is different from
449 * deleting the dentry - d_delete will try to mark the dentry negative if
450 * possible, giving a successful _negative_ lookup, while d_drop will
451 * just make the cache lookup fail.
452 *
453 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
454 * reason (NFS timeouts or autofs deletes).
455 *
61647823
N
456 * __d_drop requires dentry->d_lock
457 * ___d_drop doesn't mark dentry as "unhashed"
458 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 459 */
61647823 460static void ___d_drop(struct dentry *dentry)
789680d1 461{
0632a9ac
AV
462 struct hlist_bl_head *b;
463 /*
464 * Hashed dentries are normally on the dentry hashtable,
465 * with the exception of those newly allocated by
466 * d_obtain_root, which are always IS_ROOT:
467 */
468 if (unlikely(IS_ROOT(dentry)))
469 b = &dentry->d_sb->s_roots;
470 else
471 b = d_hash(dentry->d_name.hash);
b61625d2 472
0632a9ac
AV
473 hlist_bl_lock(b);
474 __hlist_bl_del(&dentry->d_hash);
475 hlist_bl_unlock(b);
789680d1 476}
61647823
N
477
478void __d_drop(struct dentry *dentry)
479{
0632a9ac
AV
480 if (!d_unhashed(dentry)) {
481 ___d_drop(dentry);
482 dentry->d_hash.pprev = NULL;
483 write_seqcount_invalidate(&dentry->d_seq);
484 }
61647823 485}
789680d1
NP
486EXPORT_SYMBOL(__d_drop);
487
488void d_drop(struct dentry *dentry)
489{
789680d1
NP
490 spin_lock(&dentry->d_lock);
491 __d_drop(dentry);
492 spin_unlock(&dentry->d_lock);
789680d1
NP
493}
494EXPORT_SYMBOL(d_drop);
495
ba65dc5e
AV
496static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
497{
498 struct dentry *next;
499 /*
500 * Inform d_walk() and shrink_dentry_list() that we are no longer
501 * attached to the dentry tree
502 */
503 dentry->d_flags |= DCACHE_DENTRY_KILLED;
504 if (unlikely(list_empty(&dentry->d_child)))
505 return;
506 __list_del_entry(&dentry->d_child);
507 /*
508 * Cursors can move around the list of children. While we'd been
509 * a normal list member, it didn't matter - ->d_child.next would've
510 * been updated. However, from now on it won't be and for the
511 * things like d_walk() it might end up with a nasty surprise.
512 * Normally d_walk() doesn't care about cursors moving around -
513 * ->d_lock on parent prevents that and since a cursor has no children
514 * of its own, we get through it without ever unlocking the parent.
515 * There is one exception, though - if we ascend from a child that
516 * gets killed as soon as we unlock it, the next sibling is found
517 * using the value left in its ->d_child.next. And if _that_
518 * pointed to a cursor, and cursor got moved (e.g. by lseek())
519 * before d_walk() regains parent->d_lock, we'll end up skipping
520 * everything the cursor had been moved past.
521 *
522 * Solution: make sure that the pointer left behind in ->d_child.next
523 * points to something that won't be moving around. I.e. skip the
524 * cursors.
525 */
526 while (dentry->d_child.next != &parent->d_subdirs) {
527 next = list_entry(dentry->d_child.next, struct dentry, d_child);
528 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
529 break;
530 dentry->d_child.next = next->d_child.next;
531 }
532}
533
e55fd011 534static void __dentry_kill(struct dentry *dentry)
77812a1e 535{
41edf278
AV
536 struct dentry *parent = NULL;
537 bool can_free = true;
41edf278 538 if (!IS_ROOT(dentry))
77812a1e 539 parent = dentry->d_parent;
31e6b01f 540
0d98439e
LT
541 /*
542 * The dentry is now unrecoverably dead to the world.
543 */
544 lockref_mark_dead(&dentry->d_lockref);
545
f0023bc6 546 /*
f0023bc6
SW
547 * inform the fs via d_prune that this dentry is about to be
548 * unhashed and destroyed.
549 */
29266201 550 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
551 dentry->d_op->d_prune(dentry);
552
01b60351
AV
553 if (dentry->d_flags & DCACHE_LRU_LIST) {
554 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
555 d_lru_del(dentry);
01b60351 556 }
77812a1e
NP
557 /* if it was on the hash then remove it */
558 __d_drop(dentry);
ba65dc5e 559 dentry_unlist(dentry, parent);
03b3b889
AV
560 if (parent)
561 spin_unlock(&parent->d_lock);
550dce01
AV
562 if (dentry->d_inode)
563 dentry_unlink_inode(dentry);
564 else
565 spin_unlock(&dentry->d_lock);
03b3b889
AV
566 this_cpu_dec(nr_dentry);
567 if (dentry->d_op && dentry->d_op->d_release)
568 dentry->d_op->d_release(dentry);
569
41edf278
AV
570 spin_lock(&dentry->d_lock);
571 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
572 dentry->d_flags |= DCACHE_MAY_FREE;
573 can_free = false;
574 }
575 spin_unlock(&dentry->d_lock);
41edf278
AV
576 if (likely(can_free))
577 dentry_free(dentry);
e55fd011
AV
578}
579
8b987a46 580static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 581{
8b987a46 582 struct dentry *parent;
046b961b 583 rcu_read_lock();
c2338f2d 584 spin_unlock(&dentry->d_lock);
046b961b 585again:
66702eb5 586 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
587 spin_lock(&parent->d_lock);
588 /*
589 * We can't blindly lock dentry until we are sure
590 * that we won't violate the locking order.
591 * Any changes of dentry->d_parent must have
592 * been done with parent->d_lock held, so
593 * spin_lock() above is enough of a barrier
594 * for checking if it's still our child.
595 */
596 if (unlikely(parent != dentry->d_parent)) {
597 spin_unlock(&parent->d_lock);
598 goto again;
599 }
65d8eb5a
AV
600 rcu_read_unlock();
601 if (parent != dentry)
9f12600f 602 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 603 else
046b961b
AV
604 parent = NULL;
605 return parent;
606}
607
8b987a46
AV
608static inline struct dentry *lock_parent(struct dentry *dentry)
609{
610 struct dentry *parent = dentry->d_parent;
611 if (IS_ROOT(dentry))
612 return NULL;
613 if (likely(spin_trylock(&parent->d_lock)))
614 return parent;
615 return __lock_parent(dentry);
616}
617
a338579f
AV
618static inline bool retain_dentry(struct dentry *dentry)
619{
620 WARN_ON(d_in_lookup(dentry));
621
622 /* Unreachable? Get rid of it */
623 if (unlikely(d_unhashed(dentry)))
624 return false;
625
626 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
627 return false;
628
629 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
630 if (dentry->d_op->d_delete(dentry))
631 return false;
632 }
62d9956c
AV
633 /* retain; LRU fodder */
634 dentry->d_lockref.count--;
635 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
636 d_lru_add(dentry);
637 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
638 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
639 return true;
640}
641
c1d0c1a2
JO
642/*
643 * Finish off a dentry we've decided to kill.
644 * dentry->d_lock must be held, returns with it unlocked.
645 * Returns dentry requiring refcount drop, or NULL if we're done.
646 */
647static struct dentry *dentry_kill(struct dentry *dentry)
648 __releases(dentry->d_lock)
649{
650 struct inode *inode = dentry->d_inode;
651 struct dentry *parent = NULL;
652
653 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
654 goto failed;
655
656 if (!IS_ROOT(dentry)) {
657 parent = dentry->d_parent;
658 if (unlikely(!spin_trylock(&parent->d_lock))) {
659 if (inode)
660 spin_unlock(&inode->i_lock);
661 goto failed;
662 }
663 }
664
665 __dentry_kill(dentry);
666 return parent;
667
668failed:
669 spin_unlock(&dentry->d_lock);
670 return dentry; /* try again with same dentry */
671}
672
360f5479
LT
673/*
674 * Try to do a lockless dput(), and return whether that was successful.
675 *
676 * If unsuccessful, we return false, having already taken the dentry lock.
677 *
678 * The caller needs to hold the RCU read lock, so that the dentry is
679 * guaranteed to stay around even if the refcount goes down to zero!
680 */
681static inline bool fast_dput(struct dentry *dentry)
682{
683 int ret;
684 unsigned int d_flags;
685
686 /*
687 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 688 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
689 */
690 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
691 return lockref_put_or_lock(&dentry->d_lockref);
692
693 /*
694 * .. otherwise, we can try to just decrement the
695 * lockref optimistically.
696 */
697 ret = lockref_put_return(&dentry->d_lockref);
698
699 /*
700 * If the lockref_put_return() failed due to the lock being held
701 * by somebody else, the fast path has failed. We will need to
702 * get the lock, and then check the count again.
703 */
704 if (unlikely(ret < 0)) {
705 spin_lock(&dentry->d_lock);
706 if (dentry->d_lockref.count > 1) {
707 dentry->d_lockref.count--;
708 spin_unlock(&dentry->d_lock);
709 return 1;
710 }
711 return 0;
712 }
713
714 /*
715 * If we weren't the last ref, we're done.
716 */
717 if (ret)
718 return 1;
719
720 /*
721 * Careful, careful. The reference count went down
722 * to zero, but we don't hold the dentry lock, so
723 * somebody else could get it again, and do another
724 * dput(), and we need to not race with that.
725 *
726 * However, there is a very special and common case
727 * where we don't care, because there is nothing to
728 * do: the dentry is still hashed, it does not have
729 * a 'delete' op, and it's referenced and already on
730 * the LRU list.
731 *
732 * NOTE! Since we aren't locked, these values are
733 * not "stable". However, it is sufficient that at
734 * some point after we dropped the reference the
735 * dentry was hashed and the flags had the proper
736 * value. Other dentry users may have re-gotten
737 * a reference to the dentry and change that, but
738 * our work is done - we can leave the dentry
739 * around with a zero refcount.
740 */
741 smp_rmb();
66702eb5 742 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 743 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
744
745 /* Nothing to do? Dropping the reference was all we needed? */
746 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
747 return 1;
748
749 /*
750 * Not the fast normal case? Get the lock. We've already decremented
751 * the refcount, but we'll need to re-check the situation after
752 * getting the lock.
753 */
754 spin_lock(&dentry->d_lock);
755
756 /*
757 * Did somebody else grab a reference to it in the meantime, and
758 * we're no longer the last user after all? Alternatively, somebody
759 * else could have killed it and marked it dead. Either way, we
760 * don't need to do anything else.
761 */
762 if (dentry->d_lockref.count) {
763 spin_unlock(&dentry->d_lock);
764 return 1;
765 }
766
767 /*
768 * Re-get the reference we optimistically dropped. We hold the
769 * lock, and we just tested that it was zero, so we can just
770 * set it to 1.
771 */
772 dentry->d_lockref.count = 1;
773 return 0;
774}
775
776
1da177e4
LT
777/*
778 * This is dput
779 *
780 * This is complicated by the fact that we do not want to put
781 * dentries that are no longer on any hash chain on the unused
782 * list: we'd much rather just get rid of them immediately.
783 *
784 * However, that implies that we have to traverse the dentry
785 * tree upwards to the parents which might _also_ now be
786 * scheduled for deletion (it may have been only waiting for
787 * its last child to go away).
788 *
789 * This tail recursion is done by hand as we don't want to depend
790 * on the compiler to always get this right (gcc generally doesn't).
791 * Real recursion would eat up our stack space.
792 */
793
794/*
795 * dput - release a dentry
796 * @dentry: dentry to release
797 *
798 * Release a dentry. This will drop the usage count and if appropriate
799 * call the dentry unlink method as well as removing it from the queues and
800 * releasing its resources. If the parent dentries were scheduled for release
801 * they too may now get deleted.
1da177e4 802 */
1da177e4
LT
803void dput(struct dentry *dentry)
804{
8aab6a27 805 if (unlikely(!dentry))
1da177e4
LT
806 return;
807
808repeat:
47be6184
WF
809 might_sleep();
810
360f5479
LT
811 rcu_read_lock();
812 if (likely(fast_dput(dentry))) {
813 rcu_read_unlock();
1da177e4 814 return;
360f5479
LT
815 }
816
817 /* Slow case: now with the dentry lock held */
818 rcu_read_unlock();
1da177e4 819
a338579f 820 if (likely(retain_dentry(dentry))) {
a338579f
AV
821 spin_unlock(&dentry->d_lock);
822 return;
1da177e4 823 }
265ac902 824
8cbf74da 825 dentry = dentry_kill(dentry);
47be6184
WF
826 if (dentry) {
827 cond_resched();
d52b9086 828 goto repeat;
47be6184 829 }
1da177e4 830}
ec4f8605 831EXPORT_SYMBOL(dput);
1da177e4 832
1da177e4 833
b5c84bf6 834/* This must be called with d_lock held */
dc0474be 835static inline void __dget_dlock(struct dentry *dentry)
23044507 836{
98474236 837 dentry->d_lockref.count++;
23044507
NP
838}
839
dc0474be 840static inline void __dget(struct dentry *dentry)
1da177e4 841{
98474236 842 lockref_get(&dentry->d_lockref);
1da177e4
LT
843}
844
b7ab39f6
NP
845struct dentry *dget_parent(struct dentry *dentry)
846{
df3d0bbc 847 int gotref;
b7ab39f6
NP
848 struct dentry *ret;
849
df3d0bbc
WL
850 /*
851 * Do optimistic parent lookup without any
852 * locking.
853 */
854 rcu_read_lock();
66702eb5 855 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
856 gotref = lockref_get_not_zero(&ret->d_lockref);
857 rcu_read_unlock();
858 if (likely(gotref)) {
66702eb5 859 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
860 return ret;
861 dput(ret);
862 }
863
b7ab39f6 864repeat:
a734eb45
NP
865 /*
866 * Don't need rcu_dereference because we re-check it was correct under
867 * the lock.
868 */
869 rcu_read_lock();
b7ab39f6 870 ret = dentry->d_parent;
a734eb45
NP
871 spin_lock(&ret->d_lock);
872 if (unlikely(ret != dentry->d_parent)) {
873 spin_unlock(&ret->d_lock);
874 rcu_read_unlock();
b7ab39f6
NP
875 goto repeat;
876 }
a734eb45 877 rcu_read_unlock();
98474236
WL
878 BUG_ON(!ret->d_lockref.count);
879 ret->d_lockref.count++;
b7ab39f6 880 spin_unlock(&ret->d_lock);
b7ab39f6
NP
881 return ret;
882}
883EXPORT_SYMBOL(dget_parent);
884
1da177e4
LT
885/**
886 * d_find_alias - grab a hashed alias of inode
887 * @inode: inode in question
1da177e4
LT
888 *
889 * If inode has a hashed alias, or is a directory and has any alias,
890 * acquire the reference to alias and return it. Otherwise return NULL.
891 * Notice that if inode is a directory there can be only one alias and
892 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
893 * of a filesystem, or if the directory was renamed and d_revalidate
894 * was the first vfs operation to notice.
1da177e4 895 *
21c0d8fd 896 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 897 * any other hashed alias over that one.
1da177e4 898 */
52ed46f0 899static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 900{
da502956 901 struct dentry *alias, *discon_alias;
1da177e4 902
da502956
NP
903again:
904 discon_alias = NULL;
946e51f2 905 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 906 spin_lock(&alias->d_lock);
1da177e4 907 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 908 if (IS_ROOT(alias) &&
da502956 909 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 910 discon_alias = alias;
52ed46f0 911 } else {
dc0474be 912 __dget_dlock(alias);
da502956
NP
913 spin_unlock(&alias->d_lock);
914 return alias;
915 }
916 }
917 spin_unlock(&alias->d_lock);
918 }
919 if (discon_alias) {
920 alias = discon_alias;
921 spin_lock(&alias->d_lock);
922 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
923 __dget_dlock(alias);
924 spin_unlock(&alias->d_lock);
925 return alias;
1da177e4 926 }
da502956
NP
927 spin_unlock(&alias->d_lock);
928 goto again;
1da177e4 929 }
da502956 930 return NULL;
1da177e4
LT
931}
932
da502956 933struct dentry *d_find_alias(struct inode *inode)
1da177e4 934{
214fda1f
DH
935 struct dentry *de = NULL;
936
b3d9b7a3 937 if (!hlist_empty(&inode->i_dentry)) {
873feea0 938 spin_lock(&inode->i_lock);
52ed46f0 939 de = __d_find_alias(inode);
873feea0 940 spin_unlock(&inode->i_lock);
214fda1f 941 }
1da177e4
LT
942 return de;
943}
ec4f8605 944EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
945
946/*
947 * Try to kill dentries associated with this inode.
948 * WARNING: you must own a reference to inode.
949 */
950void d_prune_aliases(struct inode *inode)
951{
0cdca3f9 952 struct dentry *dentry;
1da177e4 953restart:
873feea0 954 spin_lock(&inode->i_lock);
946e51f2 955 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 956 spin_lock(&dentry->d_lock);
98474236 957 if (!dentry->d_lockref.count) {
29355c39
AV
958 struct dentry *parent = lock_parent(dentry);
959 if (likely(!dentry->d_lockref.count)) {
960 __dentry_kill(dentry);
4a7795d3 961 dput(parent);
29355c39
AV
962 goto restart;
963 }
964 if (parent)
965 spin_unlock(&parent->d_lock);
1da177e4
LT
966 }
967 spin_unlock(&dentry->d_lock);
968 }
873feea0 969 spin_unlock(&inode->i_lock);
1da177e4 970}
ec4f8605 971EXPORT_SYMBOL(d_prune_aliases);
1da177e4 972
3b3f09f4
AV
973/*
974 * Lock a dentry from shrink list.
975 * Note that dentry is *not* protected from concurrent dentry_kill(),
976 * d_delete(), etc. It is protected from freeing (by the fact of
977 * being on a shrink list), but everything else is fair game.
978 * Return false if dentry has been disrupted or grabbed, leaving
979 * the caller to kick it off-list. Otherwise, return true and have
980 * that dentry's inode and parent both locked.
981 */
982static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 983{
3b3f09f4
AV
984 struct inode *inode;
985 struct dentry *parent;
da3bbdd4 986
3b3f09f4
AV
987 if (dentry->d_lockref.count)
988 return false;
989
990 inode = dentry->d_inode;
991 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
992 rcu_read_lock(); /* to protect inode */
993 spin_unlock(&dentry->d_lock);
994 spin_lock(&inode->i_lock);
ec33679d 995 spin_lock(&dentry->d_lock);
3b3f09f4
AV
996 if (unlikely(dentry->d_lockref.count))
997 goto out;
998 /* changed inode means that somebody had grabbed it */
999 if (unlikely(inode != dentry->d_inode))
1000 goto out;
1001 rcu_read_unlock();
1002 }
046b961b 1003
3b3f09f4
AV
1004 parent = dentry->d_parent;
1005 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1006 return true;
dd1f6b2e 1007
3b3f09f4
AV
1008 rcu_read_lock(); /* to protect parent */
1009 spin_unlock(&dentry->d_lock);
1010 parent = READ_ONCE(dentry->d_parent);
1011 spin_lock(&parent->d_lock);
1012 if (unlikely(parent != dentry->d_parent)) {
1013 spin_unlock(&parent->d_lock);
1014 spin_lock(&dentry->d_lock);
1015 goto out;
1016 }
1017 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1018 if (likely(!dentry->d_lockref.count)) {
1019 rcu_read_unlock();
1020 return true;
1021 }
1022 spin_unlock(&parent->d_lock);
1023out:
1024 if (inode)
1025 spin_unlock(&inode->i_lock);
1026 rcu_read_unlock();
1027 return false;
1028}
77812a1e 1029
3b3f09f4
AV
1030static void shrink_dentry_list(struct list_head *list)
1031{
1032 while (!list_empty(list)) {
1033 struct dentry *dentry, *parent;
1034 struct inode *inode;
64fd72e0 1035
3b3f09f4
AV
1036 dentry = list_entry(list->prev, struct dentry, d_lru);
1037 spin_lock(&dentry->d_lock);
1038 if (!shrink_lock_dentry(dentry)) {
1039 bool can_free = false;
1040 d_shrink_del(dentry);
1041 if (dentry->d_lockref.count < 0)
1042 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1043 spin_unlock(&dentry->d_lock);
1044 if (can_free)
1045 dentry_free(dentry);
1046 continue;
1047 }
3b3f09f4
AV
1048 d_shrink_del(dentry);
1049 parent = dentry->d_parent;
ff2fde99 1050 __dentry_kill(dentry);
3b3f09f4
AV
1051 if (parent == dentry)
1052 continue;
5c47e6d0
AV
1053 /*
1054 * We need to prune ancestors too. This is necessary to prevent
1055 * quadratic behavior of shrink_dcache_parent(), but is also
1056 * expected to be beneficial in reducing dentry cache
1057 * fragmentation.
1058 */
1059 dentry = parent;
b2b80195
AV
1060 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1061 parent = lock_parent(dentry);
1062 if (dentry->d_lockref.count != 1) {
1063 dentry->d_lockref.count--;
1064 spin_unlock(&dentry->d_lock);
1065 if (parent)
1066 spin_unlock(&parent->d_lock);
1067 break;
1068 }
1069 inode = dentry->d_inode; /* can't be NULL */
1070 if (unlikely(!spin_trylock(&inode->i_lock))) {
1071 spin_unlock(&dentry->d_lock);
1072 if (parent)
1073 spin_unlock(&parent->d_lock);
1074 cpu_relax();
1075 continue;
1076 }
1077 __dentry_kill(dentry);
1078 dentry = parent;
1079 }
da3bbdd4 1080 }
3049cfe2
CH
1081}
1082
3f97b163
VD
1083static enum lru_status dentry_lru_isolate(struct list_head *item,
1084 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1085{
1086 struct list_head *freeable = arg;
1087 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1088
1089
1090 /*
1091 * we are inverting the lru lock/dentry->d_lock here,
1092 * so use a trylock. If we fail to get the lock, just skip
1093 * it
1094 */
1095 if (!spin_trylock(&dentry->d_lock))
1096 return LRU_SKIP;
1097
1098 /*
1099 * Referenced dentries are still in use. If they have active
1100 * counts, just remove them from the LRU. Otherwise give them
1101 * another pass through the LRU.
1102 */
1103 if (dentry->d_lockref.count) {
3f97b163 1104 d_lru_isolate(lru, dentry);
f6041567
DC
1105 spin_unlock(&dentry->d_lock);
1106 return LRU_REMOVED;
1107 }
1108
1109 if (dentry->d_flags & DCACHE_REFERENCED) {
1110 dentry->d_flags &= ~DCACHE_REFERENCED;
1111 spin_unlock(&dentry->d_lock);
1112
1113 /*
1114 * The list move itself will be made by the common LRU code. At
1115 * this point, we've dropped the dentry->d_lock but keep the
1116 * lru lock. This is safe to do, since every list movement is
1117 * protected by the lru lock even if both locks are held.
1118 *
1119 * This is guaranteed by the fact that all LRU management
1120 * functions are intermediated by the LRU API calls like
1121 * list_lru_add and list_lru_del. List movement in this file
1122 * only ever occur through this functions or through callbacks
1123 * like this one, that are called from the LRU API.
1124 *
1125 * The only exceptions to this are functions like
1126 * shrink_dentry_list, and code that first checks for the
1127 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1128 * operating only with stack provided lists after they are
1129 * properly isolated from the main list. It is thus, always a
1130 * local access.
1131 */
1132 return LRU_ROTATE;
1133 }
1134
3f97b163 1135 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1136 spin_unlock(&dentry->d_lock);
1137
1138 return LRU_REMOVED;
1139}
1140
3049cfe2 1141/**
b48f03b3
DC
1142 * prune_dcache_sb - shrink the dcache
1143 * @sb: superblock
503c358c 1144 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1145 *
503c358c
VD
1146 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1147 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1148 * function.
3049cfe2 1149 *
b48f03b3
DC
1150 * This function may fail to free any resources if all the dentries are in
1151 * use.
3049cfe2 1152 */
503c358c 1153long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1154{
f6041567
DC
1155 LIST_HEAD(dispose);
1156 long freed;
3049cfe2 1157
503c358c
VD
1158 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1159 dentry_lru_isolate, &dispose);
f6041567 1160 shrink_dentry_list(&dispose);
0a234c6d 1161 return freed;
da3bbdd4 1162}
23044507 1163
4e717f5c 1164static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1165 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1166{
4e717f5c
GC
1167 struct list_head *freeable = arg;
1168 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1169
4e717f5c
GC
1170 /*
1171 * we are inverting the lru lock/dentry->d_lock here,
1172 * so use a trylock. If we fail to get the lock, just skip
1173 * it
1174 */
1175 if (!spin_trylock(&dentry->d_lock))
1176 return LRU_SKIP;
1177
3f97b163 1178 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1179 spin_unlock(&dentry->d_lock);
ec33679d 1180
4e717f5c 1181 return LRU_REMOVED;
da3bbdd4
KM
1182}
1183
4e717f5c 1184
1da177e4
LT
1185/**
1186 * shrink_dcache_sb - shrink dcache for a superblock
1187 * @sb: superblock
1188 *
3049cfe2
CH
1189 * Shrink the dcache for the specified super block. This is used to free
1190 * the dcache before unmounting a file system.
1da177e4 1191 */
3049cfe2 1192void shrink_dcache_sb(struct super_block *sb)
1da177e4 1193{
4e717f5c
GC
1194 long freed;
1195
1196 do {
1197 LIST_HEAD(dispose);
1198
1199 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1200 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1201
4e717f5c
GC
1202 this_cpu_sub(nr_dentry_unused, freed);
1203 shrink_dentry_list(&dispose);
b17c070f
ST
1204 cond_resched();
1205 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1206}
ec4f8605 1207EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1208
db14fc3a
MS
1209/**
1210 * enum d_walk_ret - action to talke during tree walk
1211 * @D_WALK_CONTINUE: contrinue walk
1212 * @D_WALK_QUIT: quit walk
1213 * @D_WALK_NORETRY: quit when retry is needed
1214 * @D_WALK_SKIP: skip this dentry and its children
1215 */
1216enum d_walk_ret {
1217 D_WALK_CONTINUE,
1218 D_WALK_QUIT,
1219 D_WALK_NORETRY,
1220 D_WALK_SKIP,
1221};
c826cb7d 1222
1da177e4 1223/**
db14fc3a
MS
1224 * d_walk - walk the dentry tree
1225 * @parent: start of walk
1226 * @data: data passed to @enter() and @finish()
1227 * @enter: callback when first entering the dentry
1228 * @finish: callback when successfully finished the walk
1da177e4 1229 *
db14fc3a 1230 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1231 */
db14fc3a
MS
1232static void d_walk(struct dentry *parent, void *data,
1233 enum d_walk_ret (*enter)(void *, struct dentry *),
1234 void (*finish)(void *))
1da177e4 1235{
949854d0 1236 struct dentry *this_parent;
1da177e4 1237 struct list_head *next;
48f5ec21 1238 unsigned seq = 0;
db14fc3a
MS
1239 enum d_walk_ret ret;
1240 bool retry = true;
949854d0 1241
58db63d0 1242again:
48f5ec21 1243 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1244 this_parent = parent;
2fd6b7f5 1245 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1246
1247 ret = enter(data, this_parent);
1248 switch (ret) {
1249 case D_WALK_CONTINUE:
1250 break;
1251 case D_WALK_QUIT:
1252 case D_WALK_SKIP:
1253 goto out_unlock;
1254 case D_WALK_NORETRY:
1255 retry = false;
1256 break;
1257 }
1da177e4
LT
1258repeat:
1259 next = this_parent->d_subdirs.next;
1260resume:
1261 while (next != &this_parent->d_subdirs) {
1262 struct list_head *tmp = next;
946e51f2 1263 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1264 next = tmp->next;
2fd6b7f5 1265
ba65dc5e
AV
1266 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1267 continue;
1268
2fd6b7f5 1269 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1270
1271 ret = enter(data, dentry);
1272 switch (ret) {
1273 case D_WALK_CONTINUE:
1274 break;
1275 case D_WALK_QUIT:
2fd6b7f5 1276 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1277 goto out_unlock;
1278 case D_WALK_NORETRY:
1279 retry = false;
1280 break;
1281 case D_WALK_SKIP:
1282 spin_unlock(&dentry->d_lock);
1283 continue;
2fd6b7f5 1284 }
db14fc3a 1285
1da177e4 1286 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1287 spin_unlock(&this_parent->d_lock);
1288 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1289 this_parent = dentry;
2fd6b7f5 1290 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1291 goto repeat;
1292 }
2fd6b7f5 1293 spin_unlock(&dentry->d_lock);
1da177e4
LT
1294 }
1295 /*
1296 * All done at this level ... ascend and resume the search.
1297 */
ca5358ef
AV
1298 rcu_read_lock();
1299ascend:
1da177e4 1300 if (this_parent != parent) {
c826cb7d 1301 struct dentry *child = this_parent;
31dec132
AV
1302 this_parent = child->d_parent;
1303
31dec132
AV
1304 spin_unlock(&child->d_lock);
1305 spin_lock(&this_parent->d_lock);
1306
ca5358ef
AV
1307 /* might go back up the wrong parent if we have had a rename. */
1308 if (need_seqretry(&rename_lock, seq))
949854d0 1309 goto rename_retry;
2159184e
AV
1310 /* go into the first sibling still alive */
1311 do {
1312 next = child->d_child.next;
ca5358ef
AV
1313 if (next == &this_parent->d_subdirs)
1314 goto ascend;
1315 child = list_entry(next, struct dentry, d_child);
2159184e 1316 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1317 rcu_read_unlock();
1da177e4
LT
1318 goto resume;
1319 }
ca5358ef 1320 if (need_seqretry(&rename_lock, seq))
949854d0 1321 goto rename_retry;
ca5358ef 1322 rcu_read_unlock();
db14fc3a
MS
1323 if (finish)
1324 finish(data);
1325
1326out_unlock:
1327 spin_unlock(&this_parent->d_lock);
48f5ec21 1328 done_seqretry(&rename_lock, seq);
db14fc3a 1329 return;
58db63d0
NP
1330
1331rename_retry:
ca5358ef
AV
1332 spin_unlock(&this_parent->d_lock);
1333 rcu_read_unlock();
1334 BUG_ON(seq & 1);
db14fc3a
MS
1335 if (!retry)
1336 return;
48f5ec21 1337 seq = 1;
58db63d0 1338 goto again;
1da177e4 1339}
db14fc3a 1340
01619491
IK
1341struct check_mount {
1342 struct vfsmount *mnt;
1343 unsigned int mounted;
1344};
1345
1346static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1347{
1348 struct check_mount *info = data;
1349 struct path path = { .mnt = info->mnt, .dentry = dentry };
1350
1351 if (likely(!d_mountpoint(dentry)))
1352 return D_WALK_CONTINUE;
1353 if (__path_is_mountpoint(&path)) {
1354 info->mounted = 1;
1355 return D_WALK_QUIT;
1356 }
1357 return D_WALK_CONTINUE;
1358}
1359
1360/**
1361 * path_has_submounts - check for mounts over a dentry in the
1362 * current namespace.
1363 * @parent: path to check.
1364 *
1365 * Return true if the parent or its subdirectories contain
1366 * a mount point in the current namespace.
1367 */
1368int path_has_submounts(const struct path *parent)
1369{
1370 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1371
1372 read_seqlock_excl(&mount_lock);
1373 d_walk(parent->dentry, &data, path_check_mount, NULL);
1374 read_sequnlock_excl(&mount_lock);
1375
1376 return data.mounted;
1377}
1378EXPORT_SYMBOL(path_has_submounts);
1379
eed81007
MS
1380/*
1381 * Called by mount code to set a mountpoint and check if the mountpoint is
1382 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1383 * subtree can become unreachable).
1384 *
1ffe46d1 1385 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1386 * this reason take rename_lock and d_lock on dentry and ancestors.
1387 */
1388int d_set_mounted(struct dentry *dentry)
1389{
1390 struct dentry *p;
1391 int ret = -ENOENT;
1392 write_seqlock(&rename_lock);
1393 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1394 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1395 spin_lock(&p->d_lock);
1396 if (unlikely(d_unhashed(p))) {
1397 spin_unlock(&p->d_lock);
1398 goto out;
1399 }
1400 spin_unlock(&p->d_lock);
1401 }
1402 spin_lock(&dentry->d_lock);
1403 if (!d_unlinked(dentry)) {
3895dbf8
EB
1404 ret = -EBUSY;
1405 if (!d_mountpoint(dentry)) {
1406 dentry->d_flags |= DCACHE_MOUNTED;
1407 ret = 0;
1408 }
eed81007
MS
1409 }
1410 spin_unlock(&dentry->d_lock);
1411out:
1412 write_sequnlock(&rename_lock);
1413 return ret;
1414}
1415
1da177e4 1416/*
fd517909 1417 * Search the dentry child list of the specified parent,
1da177e4
LT
1418 * and move any unused dentries to the end of the unused
1419 * list for prune_dcache(). We descend to the next level
1420 * whenever the d_subdirs list is non-empty and continue
1421 * searching.
1422 *
1423 * It returns zero iff there are no unused children,
1424 * otherwise it returns the number of children moved to
1425 * the end of the unused list. This may not be the total
1426 * number of unused children, because select_parent can
1427 * drop the lock and return early due to latency
1428 * constraints.
1429 */
1da177e4 1430
db14fc3a
MS
1431struct select_data {
1432 struct dentry *start;
1433 struct list_head dispose;
1434 int found;
1435};
23044507 1436
db14fc3a
MS
1437static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1438{
1439 struct select_data *data = _data;
1440 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1441
db14fc3a
MS
1442 if (data->start == dentry)
1443 goto out;
2fd6b7f5 1444
fe91522a 1445 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1446 data->found++;
fe91522a
AV
1447 } else {
1448 if (dentry->d_flags & DCACHE_LRU_LIST)
1449 d_lru_del(dentry);
1450 if (!dentry->d_lockref.count) {
1451 d_shrink_add(dentry, &data->dispose);
1452 data->found++;
1453 }
1da177e4 1454 }
db14fc3a
MS
1455 /*
1456 * We can return to the caller if we have found some (this
1457 * ensures forward progress). We'll be coming back to find
1458 * the rest.
1459 */
fe91522a
AV
1460 if (!list_empty(&data->dispose))
1461 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1462out:
db14fc3a 1463 return ret;
1da177e4
LT
1464}
1465
1466/**
1467 * shrink_dcache_parent - prune dcache
1468 * @parent: parent of entries to prune
1469 *
1470 * Prune the dcache to remove unused children of the parent dentry.
1471 */
db14fc3a 1472void shrink_dcache_parent(struct dentry *parent)
1da177e4 1473{
db14fc3a
MS
1474 for (;;) {
1475 struct select_data data;
1da177e4 1476
db14fc3a
MS
1477 INIT_LIST_HEAD(&data.dispose);
1478 data.start = parent;
1479 data.found = 0;
1480
1481 d_walk(parent, &data, select_collect, NULL);
1482 if (!data.found)
1483 break;
1484
1485 shrink_dentry_list(&data.dispose);
421348f1
GT
1486 cond_resched();
1487 }
1da177e4 1488}
ec4f8605 1489EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1490
9c8c10e2 1491static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1492{
9c8c10e2
AV
1493 /* it has busy descendents; complain about those instead */
1494 if (!list_empty(&dentry->d_subdirs))
1495 return D_WALK_CONTINUE;
42c32608 1496
9c8c10e2
AV
1497 /* root with refcount 1 is fine */
1498 if (dentry == _data && dentry->d_lockref.count == 1)
1499 return D_WALK_CONTINUE;
1500
1501 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1502 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1503 dentry,
1504 dentry->d_inode ?
1505 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1506 dentry,
42c32608
AV
1507 dentry->d_lockref.count,
1508 dentry->d_sb->s_type->name,
1509 dentry->d_sb->s_id);
9c8c10e2
AV
1510 WARN_ON(1);
1511 return D_WALK_CONTINUE;
1512}
1513
1514static void do_one_tree(struct dentry *dentry)
1515{
1516 shrink_dcache_parent(dentry);
1517 d_walk(dentry, dentry, umount_check, NULL);
1518 d_drop(dentry);
1519 dput(dentry);
42c32608
AV
1520}
1521
1522/*
1523 * destroy the dentries attached to a superblock on unmounting
1524 */
1525void shrink_dcache_for_umount(struct super_block *sb)
1526{
1527 struct dentry *dentry;
1528
9c8c10e2 1529 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1530
1531 dentry = sb->s_root;
1532 sb->s_root = NULL;
9c8c10e2 1533 do_one_tree(dentry);
42c32608 1534
f1ee6162
N
1535 while (!hlist_bl_empty(&sb->s_roots)) {
1536 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1537 do_one_tree(dentry);
42c32608
AV
1538 }
1539}
1540
8ed936b5
EB
1541struct detach_data {
1542 struct select_data select;
1543 struct dentry *mountpoint;
1544};
1545static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1546{
8ed936b5 1547 struct detach_data *data = _data;
848ac114
MS
1548
1549 if (d_mountpoint(dentry)) {
8ed936b5
EB
1550 __dget_dlock(dentry);
1551 data->mountpoint = dentry;
848ac114
MS
1552 return D_WALK_QUIT;
1553 }
1554
8ed936b5 1555 return select_collect(&data->select, dentry);
848ac114
MS
1556}
1557
1558static void check_and_drop(void *_data)
1559{
8ed936b5 1560 struct detach_data *data = _data;
848ac114 1561
81be24d2 1562 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1563 __d_drop(data->select.start);
848ac114
MS
1564}
1565
1566/**
1ffe46d1
EB
1567 * d_invalidate - detach submounts, prune dcache, and drop
1568 * @dentry: dentry to invalidate (aka detach, prune and drop)
1569 *
1ffe46d1 1570 * no dcache lock.
848ac114 1571 *
8ed936b5
EB
1572 * The final d_drop is done as an atomic operation relative to
1573 * rename_lock ensuring there are no races with d_set_mounted. This
1574 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1575 */
5542aa2f 1576void d_invalidate(struct dentry *dentry)
848ac114 1577{
1ffe46d1
EB
1578 /*
1579 * If it's already been dropped, return OK.
1580 */
1581 spin_lock(&dentry->d_lock);
1582 if (d_unhashed(dentry)) {
1583 spin_unlock(&dentry->d_lock);
5542aa2f 1584 return;
1ffe46d1
EB
1585 }
1586 spin_unlock(&dentry->d_lock);
1587
848ac114
MS
1588 /* Negative dentries can be dropped without further checks */
1589 if (!dentry->d_inode) {
1590 d_drop(dentry);
5542aa2f 1591 return;
848ac114
MS
1592 }
1593
1594 for (;;) {
8ed936b5 1595 struct detach_data data;
848ac114 1596
8ed936b5
EB
1597 data.mountpoint = NULL;
1598 INIT_LIST_HEAD(&data.select.dispose);
1599 data.select.start = dentry;
1600 data.select.found = 0;
1601
1602 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1603
81be24d2 1604 if (!list_empty(&data.select.dispose))
8ed936b5 1605 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1606 else if (!data.mountpoint)
1607 return;
848ac114 1608
8ed936b5
EB
1609 if (data.mountpoint) {
1610 detach_mounts(data.mountpoint);
1611 dput(data.mountpoint);
1612 }
848ac114
MS
1613 cond_resched();
1614 }
848ac114 1615}
1ffe46d1 1616EXPORT_SYMBOL(d_invalidate);
848ac114 1617
1da177e4 1618/**
a4464dbc
AV
1619 * __d_alloc - allocate a dcache entry
1620 * @sb: filesystem it will belong to
1da177e4
LT
1621 * @name: qstr of the name
1622 *
1623 * Allocates a dentry. It returns %NULL if there is insufficient memory
1624 * available. On a success the dentry is returned. The name passed in is
1625 * copied and the copy passed in may be reused after this call.
1626 */
1627
a4464dbc 1628struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1629{
1630 struct dentry *dentry;
1631 char *dname;
285b102d 1632 int err;
1da177e4 1633
e12ba74d 1634 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1635 if (!dentry)
1636 return NULL;
1637
6326c71f
LT
1638 /*
1639 * We guarantee that the inline name is always NUL-terminated.
1640 * This way the memcpy() done by the name switching in rename
1641 * will still always have a NUL at the end, even if we might
1642 * be overwriting an internal NUL character
1643 */
1644 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1645 if (unlikely(!name)) {
cdf01226 1646 name = &slash_name;
798434bd
AV
1647 dname = dentry->d_iname;
1648 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1649 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1650 struct external_name *p = kmalloc(size + name->len,
1651 GFP_KERNEL_ACCOUNT);
8d85b484 1652 if (!p) {
1da177e4
LT
1653 kmem_cache_free(dentry_cache, dentry);
1654 return NULL;
1655 }
8d85b484
AV
1656 atomic_set(&p->u.count, 1);
1657 dname = p->name;
1da177e4
LT
1658 } else {
1659 dname = dentry->d_iname;
1660 }
1da177e4
LT
1661
1662 dentry->d_name.len = name->len;
1663 dentry->d_name.hash = name->hash;
1664 memcpy(dname, name->name, name->len);
1665 dname[name->len] = 0;
1666
6326c71f 1667 /* Make sure we always see the terminating NUL character */
7088efa9 1668 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1669
98474236 1670 dentry->d_lockref.count = 1;
dea3667b 1671 dentry->d_flags = 0;
1da177e4 1672 spin_lock_init(&dentry->d_lock);
31e6b01f 1673 seqcount_init(&dentry->d_seq);
1da177e4 1674 dentry->d_inode = NULL;
a4464dbc
AV
1675 dentry->d_parent = dentry;
1676 dentry->d_sb = sb;
1da177e4
LT
1677 dentry->d_op = NULL;
1678 dentry->d_fsdata = NULL;
ceb5bdc2 1679 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1680 INIT_LIST_HEAD(&dentry->d_lru);
1681 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1682 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1683 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1684 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1685
285b102d
MS
1686 if (dentry->d_op && dentry->d_op->d_init) {
1687 err = dentry->d_op->d_init(dentry);
1688 if (err) {
1689 if (dname_external(dentry))
1690 kfree(external_name(dentry));
1691 kmem_cache_free(dentry_cache, dentry);
1692 return NULL;
1693 }
1694 }
1695
3e880fb5 1696 this_cpu_inc(nr_dentry);
312d3ca8 1697
1da177e4
LT
1698 return dentry;
1699}
a4464dbc
AV
1700
1701/**
1702 * d_alloc - allocate a dcache entry
1703 * @parent: parent of entry to allocate
1704 * @name: qstr of the name
1705 *
1706 * Allocates a dentry. It returns %NULL if there is insufficient memory
1707 * available. On a success the dentry is returned. The name passed in is
1708 * copied and the copy passed in may be reused after this call.
1709 */
1710struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1711{
1712 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1713 if (!dentry)
1714 return NULL;
3d56c25e 1715 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1716 spin_lock(&parent->d_lock);
1717 /*
1718 * don't need child lock because it is not subject
1719 * to concurrency here
1720 */
1721 __dget_dlock(parent);
1722 dentry->d_parent = parent;
946e51f2 1723 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1724 spin_unlock(&parent->d_lock);
1725
1726 return dentry;
1727}
ec4f8605 1728EXPORT_SYMBOL(d_alloc);
1da177e4 1729
f9c34674
MS
1730struct dentry *d_alloc_anon(struct super_block *sb)
1731{
1732 return __d_alloc(sb, NULL);
1733}
1734EXPORT_SYMBOL(d_alloc_anon);
1735
ba65dc5e
AV
1736struct dentry *d_alloc_cursor(struct dentry * parent)
1737{
f9c34674 1738 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1739 if (dentry) {
1740 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1741 dentry->d_parent = dget(parent);
1742 }
1743 return dentry;
1744}
1745
e1a24bb0
BF
1746/**
1747 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1748 * @sb: the superblock
1749 * @name: qstr of the name
1750 *
1751 * For a filesystem that just pins its dentries in memory and never
1752 * performs lookups at all, return an unhashed IS_ROOT dentry.
1753 */
4b936885
NP
1754struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1755{
e1a24bb0 1756 return __d_alloc(sb, name);
4b936885
NP
1757}
1758EXPORT_SYMBOL(d_alloc_pseudo);
1759
1da177e4
LT
1760struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1761{
1762 struct qstr q;
1763
1764 q.name = name;
8387ff25 1765 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1766 return d_alloc(parent, &q);
1767}
ef26ca97 1768EXPORT_SYMBOL(d_alloc_name);
1da177e4 1769
fb045adb
NP
1770void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1771{
6f7f7caa
LT
1772 WARN_ON_ONCE(dentry->d_op);
1773 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1774 DCACHE_OP_COMPARE |
1775 DCACHE_OP_REVALIDATE |
ecf3d1f1 1776 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1777 DCACHE_OP_DELETE |
d101a125 1778 DCACHE_OP_REAL));
fb045adb
NP
1779 dentry->d_op = op;
1780 if (!op)
1781 return;
1782 if (op->d_hash)
1783 dentry->d_flags |= DCACHE_OP_HASH;
1784 if (op->d_compare)
1785 dentry->d_flags |= DCACHE_OP_COMPARE;
1786 if (op->d_revalidate)
1787 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1788 if (op->d_weak_revalidate)
1789 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1790 if (op->d_delete)
1791 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1792 if (op->d_prune)
1793 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1794 if (op->d_real)
1795 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1796
1797}
1798EXPORT_SYMBOL(d_set_d_op);
1799
df1a085a
DH
1800
1801/*
1802 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1803 * @dentry - The dentry to mark
1804 *
1805 * Mark a dentry as falling through to the lower layer (as set with
1806 * d_pin_lower()). This flag may be recorded on the medium.
1807 */
1808void d_set_fallthru(struct dentry *dentry)
1809{
1810 spin_lock(&dentry->d_lock);
1811 dentry->d_flags |= DCACHE_FALLTHRU;
1812 spin_unlock(&dentry->d_lock);
1813}
1814EXPORT_SYMBOL(d_set_fallthru);
1815
b18825a7
DH
1816static unsigned d_flags_for_inode(struct inode *inode)
1817{
44bdb5e5 1818 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1819
1820 if (!inode)
1821 return DCACHE_MISS_TYPE;
1822
1823 if (S_ISDIR(inode->i_mode)) {
1824 add_flags = DCACHE_DIRECTORY_TYPE;
1825 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1826 if (unlikely(!inode->i_op->lookup))
1827 add_flags = DCACHE_AUTODIR_TYPE;
1828 else
1829 inode->i_opflags |= IOP_LOOKUP;
1830 }
44bdb5e5
DH
1831 goto type_determined;
1832 }
1833
1834 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1835 if (unlikely(inode->i_op->get_link)) {
b18825a7 1836 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1837 goto type_determined;
1838 }
1839 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1840 }
1841
44bdb5e5
DH
1842 if (unlikely(!S_ISREG(inode->i_mode)))
1843 add_flags = DCACHE_SPECIAL_TYPE;
1844
1845type_determined:
b18825a7
DH
1846 if (unlikely(IS_AUTOMOUNT(inode)))
1847 add_flags |= DCACHE_NEED_AUTOMOUNT;
1848 return add_flags;
1849}
1850
360da900
OH
1851static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1852{
b18825a7 1853 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1854 WARN_ON(d_in_lookup(dentry));
b18825a7 1855
b23fb0a6 1856 spin_lock(&dentry->d_lock);
de689f5e 1857 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1858 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1859 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1860 raw_write_seqcount_end(&dentry->d_seq);
affda484 1861 fsnotify_update_flags(dentry);
b23fb0a6 1862 spin_unlock(&dentry->d_lock);
360da900
OH
1863}
1864
1da177e4
LT
1865/**
1866 * d_instantiate - fill in inode information for a dentry
1867 * @entry: dentry to complete
1868 * @inode: inode to attach to this dentry
1869 *
1870 * Fill in inode information in the entry.
1871 *
1872 * This turns negative dentries into productive full members
1873 * of society.
1874 *
1875 * NOTE! This assumes that the inode count has been incremented
1876 * (or otherwise set) by the caller to indicate that it is now
1877 * in use by the dcache.
1878 */
1879
1880void d_instantiate(struct dentry *entry, struct inode * inode)
1881{
946e51f2 1882 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1883 if (inode) {
b9680917 1884 security_d_instantiate(entry, inode);
873feea0 1885 spin_lock(&inode->i_lock);
de689f5e 1886 __d_instantiate(entry, inode);
873feea0 1887 spin_unlock(&inode->i_lock);
de689f5e 1888 }
1da177e4 1889}
ec4f8605 1890EXPORT_SYMBOL(d_instantiate);
1da177e4 1891
b70a80e7
MS
1892/**
1893 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1894 * @entry: dentry to complete
1895 * @inode: inode to attach to this dentry
1896 *
1897 * Fill in inode information in the entry. If a directory alias is found, then
1898 * return an error (and drop inode). Together with d_materialise_unique() this
1899 * guarantees that a directory inode may never have more than one alias.
1900 */
1901int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1902{
946e51f2 1903 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1904
b9680917 1905 security_d_instantiate(entry, inode);
b70a80e7
MS
1906 spin_lock(&inode->i_lock);
1907 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1908 spin_unlock(&inode->i_lock);
1909 iput(inode);
1910 return -EBUSY;
1911 }
1912 __d_instantiate(entry, inode);
1913 spin_unlock(&inode->i_lock);
b70a80e7
MS
1914
1915 return 0;
1916}
1917EXPORT_SYMBOL(d_instantiate_no_diralias);
1918
adc0e91a
AV
1919struct dentry *d_make_root(struct inode *root_inode)
1920{
1921 struct dentry *res = NULL;
1922
1923 if (root_inode) {
f9c34674 1924 res = d_alloc_anon(root_inode->i_sb);
adc0e91a
AV
1925 if (res)
1926 d_instantiate(res, root_inode);
1927 else
1928 iput(root_inode);
1929 }
1930 return res;
1931}
1932EXPORT_SYMBOL(d_make_root);
1933
d891eedb
BF
1934static struct dentry * __d_find_any_alias(struct inode *inode)
1935{
1936 struct dentry *alias;
1937
b3d9b7a3 1938 if (hlist_empty(&inode->i_dentry))
d891eedb 1939 return NULL;
946e51f2 1940 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1941 __dget(alias);
1942 return alias;
1943}
1944
46f72b34
SW
1945/**
1946 * d_find_any_alias - find any alias for a given inode
1947 * @inode: inode to find an alias for
1948 *
1949 * If any aliases exist for the given inode, take and return a
1950 * reference for one of them. If no aliases exist, return %NULL.
1951 */
1952struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1953{
1954 struct dentry *de;
1955
1956 spin_lock(&inode->i_lock);
1957 de = __d_find_any_alias(inode);
1958 spin_unlock(&inode->i_lock);
1959 return de;
1960}
46f72b34 1961EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1962
f9c34674
MS
1963static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1964 struct inode *inode,
1965 bool disconnected)
4ea3ada2 1966{
9308a612 1967 struct dentry *res;
b18825a7 1968 unsigned add_flags;
4ea3ada2 1969
f9c34674 1970 security_d_instantiate(dentry, inode);
873feea0 1971 spin_lock(&inode->i_lock);
d891eedb 1972 res = __d_find_any_alias(inode);
9308a612 1973 if (res) {
873feea0 1974 spin_unlock(&inode->i_lock);
f9c34674 1975 dput(dentry);
9308a612
CH
1976 goto out_iput;
1977 }
1978
1979 /* attach a disconnected dentry */
1a0a397e
BF
1980 add_flags = d_flags_for_inode(inode);
1981
1982 if (disconnected)
1983 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1984
f9c34674
MS
1985 spin_lock(&dentry->d_lock);
1986 __d_set_inode_and_type(dentry, inode, add_flags);
1987 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1988 if (!disconnected) {
139351f1
LT
1989 hlist_bl_lock(&dentry->d_sb->s_roots);
1990 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1991 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 1992 }
f9c34674 1993 spin_unlock(&dentry->d_lock);
873feea0 1994 spin_unlock(&inode->i_lock);
9308a612 1995
f9c34674 1996 return dentry;
9308a612
CH
1997
1998 out_iput:
1999 iput(inode);
2000 return res;
4ea3ada2 2001}
1a0a397e 2002
f9c34674
MS
2003struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2004{
2005 return __d_instantiate_anon(dentry, inode, true);
2006}
2007EXPORT_SYMBOL(d_instantiate_anon);
2008
2009static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2010{
2011 struct dentry *tmp;
2012 struct dentry *res;
2013
2014 if (!inode)
2015 return ERR_PTR(-ESTALE);
2016 if (IS_ERR(inode))
2017 return ERR_CAST(inode);
2018
2019 res = d_find_any_alias(inode);
2020 if (res)
2021 goto out_iput;
2022
2023 tmp = d_alloc_anon(inode->i_sb);
2024 if (!tmp) {
2025 res = ERR_PTR(-ENOMEM);
2026 goto out_iput;
2027 }
2028
2029 return __d_instantiate_anon(tmp, inode, disconnected);
2030
2031out_iput:
2032 iput(inode);
2033 return res;
2034}
2035
1a0a397e
BF
2036/**
2037 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2038 * @inode: inode to allocate the dentry for
2039 *
2040 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2041 * similar open by handle operations. The returned dentry may be anonymous,
2042 * or may have a full name (if the inode was already in the cache).
2043 *
2044 * When called on a directory inode, we must ensure that the inode only ever
2045 * has one dentry. If a dentry is found, that is returned instead of
2046 * allocating a new one.
2047 *
2048 * On successful return, the reference to the inode has been transferred
2049 * to the dentry. In case of an error the reference on the inode is released.
2050 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2051 * be passed in and the error will be propagated to the return value,
2052 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2053 */
2054struct dentry *d_obtain_alias(struct inode *inode)
2055{
f9c34674 2056 return __d_obtain_alias(inode, true);
1a0a397e 2057}
adc48720 2058EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2059
1a0a397e
BF
2060/**
2061 * d_obtain_root - find or allocate a dentry for a given inode
2062 * @inode: inode to allocate the dentry for
2063 *
2064 * Obtain an IS_ROOT dentry for the root of a filesystem.
2065 *
2066 * We must ensure that directory inodes only ever have one dentry. If a
2067 * dentry is found, that is returned instead of allocating a new one.
2068 *
2069 * On successful return, the reference to the inode has been transferred
2070 * to the dentry. In case of an error the reference on the inode is
2071 * released. A %NULL or IS_ERR inode may be passed in and will be the
2072 * error will be propagate to the return value, with a %NULL @inode
2073 * replaced by ERR_PTR(-ESTALE).
2074 */
2075struct dentry *d_obtain_root(struct inode *inode)
2076{
f9c34674 2077 return __d_obtain_alias(inode, false);
1a0a397e
BF
2078}
2079EXPORT_SYMBOL(d_obtain_root);
2080
9403540c
BN
2081/**
2082 * d_add_ci - lookup or allocate new dentry with case-exact name
2083 * @inode: the inode case-insensitive lookup has found
2084 * @dentry: the negative dentry that was passed to the parent's lookup func
2085 * @name: the case-exact name to be associated with the returned dentry
2086 *
2087 * This is to avoid filling the dcache with case-insensitive names to the
2088 * same inode, only the actual correct case is stored in the dcache for
2089 * case-insensitive filesystems.
2090 *
2091 * For a case-insensitive lookup match and if the the case-exact dentry
2092 * already exists in in the dcache, use it and return it.
2093 *
2094 * If no entry exists with the exact case name, allocate new dentry with
2095 * the exact case, and return the spliced entry.
2096 */
e45b590b 2097struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2098 struct qstr *name)
2099{
d9171b93 2100 struct dentry *found, *res;
9403540c 2101
b6520c81
CH
2102 /*
2103 * First check if a dentry matching the name already exists,
2104 * if not go ahead and create it now.
2105 */
9403540c 2106 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2107 if (found) {
2108 iput(inode);
2109 return found;
2110 }
2111 if (d_in_lookup(dentry)) {
2112 found = d_alloc_parallel(dentry->d_parent, name,
2113 dentry->d_wait);
2114 if (IS_ERR(found) || !d_in_lookup(found)) {
2115 iput(inode);
2116 return found;
9403540c 2117 }
d9171b93
AV
2118 } else {
2119 found = d_alloc(dentry->d_parent, name);
2120 if (!found) {
2121 iput(inode);
2122 return ERR_PTR(-ENOMEM);
2123 }
2124 }
2125 res = d_splice_alias(inode, found);
2126 if (res) {
2127 dput(found);
2128 return res;
9403540c 2129 }
4f522a24 2130 return found;
9403540c 2131}
ec4f8605 2132EXPORT_SYMBOL(d_add_ci);
1da177e4 2133
12f8ad4b 2134
d4c91a8f
AV
2135static inline bool d_same_name(const struct dentry *dentry,
2136 const struct dentry *parent,
2137 const struct qstr *name)
12f8ad4b 2138{
d4c91a8f
AV
2139 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2140 if (dentry->d_name.len != name->len)
2141 return false;
2142 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2143 }
6fa67e70 2144 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2145 dentry->d_name.len, dentry->d_name.name,
2146 name) == 0;
12f8ad4b
LT
2147}
2148
31e6b01f
NP
2149/**
2150 * __d_lookup_rcu - search for a dentry (racy, store-free)
2151 * @parent: parent dentry
2152 * @name: qstr of name we wish to find
1f1e6e52 2153 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2154 * Returns: dentry, or NULL
2155 *
2156 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2157 * resolution (store-free path walking) design described in
2158 * Documentation/filesystems/path-lookup.txt.
2159 *
2160 * This is not to be used outside core vfs.
2161 *
2162 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2163 * held, and rcu_read_lock held. The returned dentry must not be stored into
2164 * without taking d_lock and checking d_seq sequence count against @seq
2165 * returned here.
2166 *
15570086 2167 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2168 * function.
2169 *
2170 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2171 * the returned dentry, so long as its parent's seqlock is checked after the
2172 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2173 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2174 *
2175 * NOTE! The caller *has* to check the resulting dentry against the sequence
2176 * number we've returned before using any of the resulting dentry state!
31e6b01f 2177 */
8966be90
LT
2178struct dentry *__d_lookup_rcu(const struct dentry *parent,
2179 const struct qstr *name,
da53be12 2180 unsigned *seqp)
31e6b01f 2181{
26fe5750 2182 u64 hashlen = name->hash_len;
31e6b01f 2183 const unsigned char *str = name->name;
8387ff25 2184 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2185 struct hlist_bl_node *node;
31e6b01f
NP
2186 struct dentry *dentry;
2187
2188 /*
2189 * Note: There is significant duplication with __d_lookup_rcu which is
2190 * required to prevent single threaded performance regressions
2191 * especially on architectures where smp_rmb (in seqcounts) are costly.
2192 * Keep the two functions in sync.
2193 */
2194
2195 /*
2196 * The hash list is protected using RCU.
2197 *
2198 * Carefully use d_seq when comparing a candidate dentry, to avoid
2199 * races with d_move().
2200 *
2201 * It is possible that concurrent renames can mess up our list
2202 * walk here and result in missing our dentry, resulting in the
2203 * false-negative result. d_lookup() protects against concurrent
2204 * renames using rename_lock seqlock.
2205 *
b0a4bb83 2206 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2207 */
b07ad996 2208 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2209 unsigned seq;
31e6b01f 2210
31e6b01f 2211seqretry:
12f8ad4b
LT
2212 /*
2213 * The dentry sequence count protects us from concurrent
da53be12 2214 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2215 *
2216 * The caller must perform a seqcount check in order
da53be12 2217 * to do anything useful with the returned dentry.
12f8ad4b
LT
2218 *
2219 * NOTE! We do a "raw" seqcount_begin here. That means that
2220 * we don't wait for the sequence count to stabilize if it
2221 * is in the middle of a sequence change. If we do the slow
2222 * dentry compare, we will do seqretries until it is stable,
2223 * and if we end up with a successful lookup, we actually
2224 * want to exit RCU lookup anyway.
d4c91a8f
AV
2225 *
2226 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2227 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2228 */
2229 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2230 if (dentry->d_parent != parent)
2231 continue;
2e321806
LT
2232 if (d_unhashed(dentry))
2233 continue;
12f8ad4b 2234
830c0f0e 2235 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2236 int tlen;
2237 const char *tname;
26fe5750
LT
2238 if (dentry->d_name.hash != hashlen_hash(hashlen))
2239 continue;
d4c91a8f
AV
2240 tlen = dentry->d_name.len;
2241 tname = dentry->d_name.name;
2242 /* we want a consistent (name,len) pair */
2243 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2244 cpu_relax();
12f8ad4b
LT
2245 goto seqretry;
2246 }
6fa67e70 2247 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2248 tlen, tname, name) != 0)
2249 continue;
2250 } else {
2251 if (dentry->d_name.hash_len != hashlen)
2252 continue;
2253 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2254 continue;
31e6b01f 2255 }
da53be12 2256 *seqp = seq;
d4c91a8f 2257 return dentry;
31e6b01f
NP
2258 }
2259 return NULL;
2260}
2261
1da177e4
LT
2262/**
2263 * d_lookup - search for a dentry
2264 * @parent: parent dentry
2265 * @name: qstr of name we wish to find
b04f784e 2266 * Returns: dentry, or NULL
1da177e4 2267 *
b04f784e
NP
2268 * d_lookup searches the children of the parent dentry for the name in
2269 * question. If the dentry is found its reference count is incremented and the
2270 * dentry is returned. The caller must use dput to free the entry when it has
2271 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2272 */
da2d8455 2273struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2274{
31e6b01f 2275 struct dentry *dentry;
949854d0 2276 unsigned seq;
1da177e4 2277
b8314f93
DY
2278 do {
2279 seq = read_seqbegin(&rename_lock);
2280 dentry = __d_lookup(parent, name);
2281 if (dentry)
1da177e4
LT
2282 break;
2283 } while (read_seqretry(&rename_lock, seq));
2284 return dentry;
2285}
ec4f8605 2286EXPORT_SYMBOL(d_lookup);
1da177e4 2287
31e6b01f 2288/**
b04f784e
NP
2289 * __d_lookup - search for a dentry (racy)
2290 * @parent: parent dentry
2291 * @name: qstr of name we wish to find
2292 * Returns: dentry, or NULL
2293 *
2294 * __d_lookup is like d_lookup, however it may (rarely) return a
2295 * false-negative result due to unrelated rename activity.
2296 *
2297 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2298 * however it must be used carefully, eg. with a following d_lookup in
2299 * the case of failure.
2300 *
2301 * __d_lookup callers must be commented.
2302 */
a713ca2a 2303struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2304{
1da177e4 2305 unsigned int hash = name->hash;
8387ff25 2306 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2307 struct hlist_bl_node *node;
31e6b01f 2308 struct dentry *found = NULL;
665a7583 2309 struct dentry *dentry;
1da177e4 2310
31e6b01f
NP
2311 /*
2312 * Note: There is significant duplication with __d_lookup_rcu which is
2313 * required to prevent single threaded performance regressions
2314 * especially on architectures where smp_rmb (in seqcounts) are costly.
2315 * Keep the two functions in sync.
2316 */
2317
b04f784e
NP
2318 /*
2319 * The hash list is protected using RCU.
2320 *
2321 * Take d_lock when comparing a candidate dentry, to avoid races
2322 * with d_move().
2323 *
2324 * It is possible that concurrent renames can mess up our list
2325 * walk here and result in missing our dentry, resulting in the
2326 * false-negative result. d_lookup() protects against concurrent
2327 * renames using rename_lock seqlock.
2328 *
b0a4bb83 2329 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2330 */
1da177e4
LT
2331 rcu_read_lock();
2332
b07ad996 2333 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2334
1da177e4
LT
2335 if (dentry->d_name.hash != hash)
2336 continue;
1da177e4
LT
2337
2338 spin_lock(&dentry->d_lock);
1da177e4
LT
2339 if (dentry->d_parent != parent)
2340 goto next;
d0185c08
LT
2341 if (d_unhashed(dentry))
2342 goto next;
2343
d4c91a8f
AV
2344 if (!d_same_name(dentry, parent, name))
2345 goto next;
1da177e4 2346
98474236 2347 dentry->d_lockref.count++;
d0185c08 2348 found = dentry;
1da177e4
LT
2349 spin_unlock(&dentry->d_lock);
2350 break;
2351next:
2352 spin_unlock(&dentry->d_lock);
2353 }
2354 rcu_read_unlock();
2355
2356 return found;
2357}
2358
3e7e241f
EB
2359/**
2360 * d_hash_and_lookup - hash the qstr then search for a dentry
2361 * @dir: Directory to search in
2362 * @name: qstr of name we wish to find
2363 *
4f522a24 2364 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2365 */
2366struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2367{
3e7e241f
EB
2368 /*
2369 * Check for a fs-specific hash function. Note that we must
2370 * calculate the standard hash first, as the d_op->d_hash()
2371 * routine may choose to leave the hash value unchanged.
2372 */
8387ff25 2373 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2374 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2375 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2376 if (unlikely(err < 0))
2377 return ERR_PTR(err);
3e7e241f 2378 }
4f522a24 2379 return d_lookup(dir, name);
3e7e241f 2380}
4f522a24 2381EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2382
1da177e4
LT
2383/*
2384 * When a file is deleted, we have two options:
2385 * - turn this dentry into a negative dentry
2386 * - unhash this dentry and free it.
2387 *
2388 * Usually, we want to just turn this into
2389 * a negative dentry, but if anybody else is
2390 * currently using the dentry or the inode
2391 * we can't do that and we fall back on removing
2392 * it from the hash queues and waiting for
2393 * it to be deleted later when it has no users
2394 */
2395
2396/**
2397 * d_delete - delete a dentry
2398 * @dentry: The dentry to delete
2399 *
2400 * Turn the dentry into a negative dentry if possible, otherwise
2401 * remove it from the hash queues so it can be deleted later
2402 */
2403
2404void d_delete(struct dentry * dentry)
2405{
c19457f0
AV
2406 struct inode *inode = dentry->d_inode;
2407 int isdir = d_is_dir(dentry);
2408
2409 spin_lock(&inode->i_lock);
2410 spin_lock(&dentry->d_lock);
1da177e4
LT
2411 /*
2412 * Are we the only user?
2413 */
98474236 2414 if (dentry->d_lockref.count == 1) {
13e3c5e5 2415 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2416 dentry_unlink_inode(dentry);
c19457f0 2417 } else {
1da177e4 2418 __d_drop(dentry);
c19457f0
AV
2419 spin_unlock(&dentry->d_lock);
2420 spin_unlock(&inode->i_lock);
2421 }
7a91bf7f 2422 fsnotify_nameremove(dentry, isdir);
1da177e4 2423}
ec4f8605 2424EXPORT_SYMBOL(d_delete);
1da177e4 2425
15d3c589 2426static void __d_rehash(struct dentry *entry)
1da177e4 2427{
15d3c589 2428 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2429
1879fd6a 2430 hlist_bl_lock(b);
b07ad996 2431 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2432 hlist_bl_unlock(b);
1da177e4
LT
2433}
2434
2435/**
2436 * d_rehash - add an entry back to the hash
2437 * @entry: dentry to add to the hash
2438 *
2439 * Adds a dentry to the hash according to its name.
2440 */
2441
2442void d_rehash(struct dentry * entry)
2443{
1da177e4 2444 spin_lock(&entry->d_lock);
15d3c589 2445 __d_rehash(entry);
1da177e4 2446 spin_unlock(&entry->d_lock);
1da177e4 2447}
ec4f8605 2448EXPORT_SYMBOL(d_rehash);
1da177e4 2449
84e710da
AV
2450static inline unsigned start_dir_add(struct inode *dir)
2451{
2452
2453 for (;;) {
2454 unsigned n = dir->i_dir_seq;
2455 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2456 return n;
2457 cpu_relax();
2458 }
2459}
2460
2461static inline void end_dir_add(struct inode *dir, unsigned n)
2462{
2463 smp_store_release(&dir->i_dir_seq, n + 2);
2464}
2465
d9171b93
AV
2466static void d_wait_lookup(struct dentry *dentry)
2467{
2468 if (d_in_lookup(dentry)) {
2469 DECLARE_WAITQUEUE(wait, current);
2470 add_wait_queue(dentry->d_wait, &wait);
2471 do {
2472 set_current_state(TASK_UNINTERRUPTIBLE);
2473 spin_unlock(&dentry->d_lock);
2474 schedule();
2475 spin_lock(&dentry->d_lock);
2476 } while (d_in_lookup(dentry));
2477 }
2478}
2479
94bdd655 2480struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2481 const struct qstr *name,
2482 wait_queue_head_t *wq)
94bdd655 2483{
94bdd655 2484 unsigned int hash = name->hash;
94bdd655
AV
2485 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2486 struct hlist_bl_node *node;
2487 struct dentry *new = d_alloc(parent, name);
2488 struct dentry *dentry;
2489 unsigned seq, r_seq, d_seq;
2490
2491 if (unlikely(!new))
2492 return ERR_PTR(-ENOMEM);
2493
2494retry:
2495 rcu_read_lock();
015555fd 2496 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2497 r_seq = read_seqbegin(&rename_lock);
2498 dentry = __d_lookup_rcu(parent, name, &d_seq);
2499 if (unlikely(dentry)) {
2500 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2501 rcu_read_unlock();
2502 goto retry;
2503 }
2504 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2505 rcu_read_unlock();
2506 dput(dentry);
2507 goto retry;
2508 }
2509 rcu_read_unlock();
2510 dput(new);
2511 return dentry;
2512 }
2513 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2514 rcu_read_unlock();
2515 goto retry;
2516 }
015555fd
WD
2517
2518 if (unlikely(seq & 1)) {
2519 rcu_read_unlock();
2520 goto retry;
2521 }
2522
94bdd655 2523 hlist_bl_lock(b);
8cc07c80 2524 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2525 hlist_bl_unlock(b);
2526 rcu_read_unlock();
2527 goto retry;
2528 }
94bdd655
AV
2529 /*
2530 * No changes for the parent since the beginning of d_lookup().
2531 * Since all removals from the chain happen with hlist_bl_lock(),
2532 * any potential in-lookup matches are going to stay here until
2533 * we unlock the chain. All fields are stable in everything
2534 * we encounter.
2535 */
2536 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2537 if (dentry->d_name.hash != hash)
2538 continue;
2539 if (dentry->d_parent != parent)
2540 continue;
d4c91a8f
AV
2541 if (!d_same_name(dentry, parent, name))
2542 continue;
94bdd655 2543 hlist_bl_unlock(b);
e7d6ef97
AV
2544 /* now we can try to grab a reference */
2545 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2546 rcu_read_unlock();
2547 goto retry;
2548 }
2549
2550 rcu_read_unlock();
2551 /*
2552 * somebody is likely to be still doing lookup for it;
2553 * wait for them to finish
2554 */
d9171b93
AV
2555 spin_lock(&dentry->d_lock);
2556 d_wait_lookup(dentry);
2557 /*
2558 * it's not in-lookup anymore; in principle we should repeat
2559 * everything from dcache lookup, but it's likely to be what
2560 * d_lookup() would've found anyway. If it is, just return it;
2561 * otherwise we really have to repeat the whole thing.
2562 */
2563 if (unlikely(dentry->d_name.hash != hash))
2564 goto mismatch;
2565 if (unlikely(dentry->d_parent != parent))
2566 goto mismatch;
2567 if (unlikely(d_unhashed(dentry)))
2568 goto mismatch;
d4c91a8f
AV
2569 if (unlikely(!d_same_name(dentry, parent, name)))
2570 goto mismatch;
d9171b93
AV
2571 /* OK, it *is* a hashed match; return it */
2572 spin_unlock(&dentry->d_lock);
94bdd655
AV
2573 dput(new);
2574 return dentry;
2575 }
e7d6ef97 2576 rcu_read_unlock();
94bdd655
AV
2577 /* we can't take ->d_lock here; it's OK, though. */
2578 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2579 new->d_wait = wq;
94bdd655
AV
2580 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2581 hlist_bl_unlock(b);
2582 return new;
d9171b93
AV
2583mismatch:
2584 spin_unlock(&dentry->d_lock);
2585 dput(dentry);
2586 goto retry;
94bdd655
AV
2587}
2588EXPORT_SYMBOL(d_alloc_parallel);
2589
85c7f810
AV
2590void __d_lookup_done(struct dentry *dentry)
2591{
94bdd655
AV
2592 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2593 dentry->d_name.hash);
2594 hlist_bl_lock(b);
85c7f810 2595 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2596 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2597 wake_up_all(dentry->d_wait);
2598 dentry->d_wait = NULL;
94bdd655
AV
2599 hlist_bl_unlock(b);
2600 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2601 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2602}
2603EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2604
2605/* inode->i_lock held if inode is non-NULL */
2606
2607static inline void __d_add(struct dentry *dentry, struct inode *inode)
2608{
84e710da
AV
2609 struct inode *dir = NULL;
2610 unsigned n;
0568d705 2611 spin_lock(&dentry->d_lock);
84e710da
AV
2612 if (unlikely(d_in_lookup(dentry))) {
2613 dir = dentry->d_parent->d_inode;
2614 n = start_dir_add(dir);
85c7f810 2615 __d_lookup_done(dentry);
84e710da 2616 }
ed782b5a 2617 if (inode) {
0568d705
AV
2618 unsigned add_flags = d_flags_for_inode(inode);
2619 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2620 raw_write_seqcount_begin(&dentry->d_seq);
2621 __d_set_inode_and_type(dentry, inode, add_flags);
2622 raw_write_seqcount_end(&dentry->d_seq);
affda484 2623 fsnotify_update_flags(dentry);
ed782b5a 2624 }
15d3c589 2625 __d_rehash(dentry);
84e710da
AV
2626 if (dir)
2627 end_dir_add(dir, n);
0568d705
AV
2628 spin_unlock(&dentry->d_lock);
2629 if (inode)
2630 spin_unlock(&inode->i_lock);
ed782b5a
AV
2631}
2632
34d0d19d
AV
2633/**
2634 * d_add - add dentry to hash queues
2635 * @entry: dentry to add
2636 * @inode: The inode to attach to this dentry
2637 *
2638 * This adds the entry to the hash queues and initializes @inode.
2639 * The entry was actually filled in earlier during d_alloc().
2640 */
2641
2642void d_add(struct dentry *entry, struct inode *inode)
2643{
b9680917
AV
2644 if (inode) {
2645 security_d_instantiate(entry, inode);
ed782b5a 2646 spin_lock(&inode->i_lock);
b9680917 2647 }
ed782b5a 2648 __d_add(entry, inode);
34d0d19d
AV
2649}
2650EXPORT_SYMBOL(d_add);
2651
668d0cd5
AV
2652/**
2653 * d_exact_alias - find and hash an exact unhashed alias
2654 * @entry: dentry to add
2655 * @inode: The inode to go with this dentry
2656 *
2657 * If an unhashed dentry with the same name/parent and desired
2658 * inode already exists, hash and return it. Otherwise, return
2659 * NULL.
2660 *
2661 * Parent directory should be locked.
2662 */
2663struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2664{
2665 struct dentry *alias;
668d0cd5
AV
2666 unsigned int hash = entry->d_name.hash;
2667
2668 spin_lock(&inode->i_lock);
2669 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2670 /*
2671 * Don't need alias->d_lock here, because aliases with
2672 * d_parent == entry->d_parent are not subject to name or
2673 * parent changes, because the parent inode i_mutex is held.
2674 */
2675 if (alias->d_name.hash != hash)
2676 continue;
2677 if (alias->d_parent != entry->d_parent)
2678 continue;
d4c91a8f 2679 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2680 continue;
2681 spin_lock(&alias->d_lock);
2682 if (!d_unhashed(alias)) {
2683 spin_unlock(&alias->d_lock);
2684 alias = NULL;
2685 } else {
2686 __dget_dlock(alias);
15d3c589 2687 __d_rehash(alias);
668d0cd5
AV
2688 spin_unlock(&alias->d_lock);
2689 }
2690 spin_unlock(&inode->i_lock);
2691 return alias;
2692 }
2693 spin_unlock(&inode->i_lock);
2694 return NULL;
2695}
2696EXPORT_SYMBOL(d_exact_alias);
2697
fb2d5b86
NP
2698/**
2699 * dentry_update_name_case - update case insensitive dentry with a new name
2700 * @dentry: dentry to be updated
2701 * @name: new name
2702 *
2703 * Update a case insensitive dentry with new case of name.
2704 *
2705 * dentry must have been returned by d_lookup with name @name. Old and new
2706 * name lengths must match (ie. no d_compare which allows mismatched name
2707 * lengths).
2708 *
2709 * Parent inode i_mutex must be held over d_lookup and into this call (to
2710 * keep renames and concurrent inserts, and readdir(2) away).
2711 */
9aba36de 2712void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2713{
5955102c 2714 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2715 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2716
fb2d5b86 2717 spin_lock(&dentry->d_lock);
31e6b01f 2718 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2719 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2720 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2721 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2722}
2723EXPORT_SYMBOL(dentry_update_name_case);
2724
8d85b484 2725static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2726{
8d85b484
AV
2727 if (unlikely(dname_external(target))) {
2728 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2729 /*
2730 * Both external: swap the pointers
2731 */
9a8d5bb4 2732 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2733 } else {
2734 /*
2735 * dentry:internal, target:external. Steal target's
2736 * storage and make target internal.
2737 */
321bcf92
BF
2738 memcpy(target->d_iname, dentry->d_name.name,
2739 dentry->d_name.len + 1);
1da177e4
LT
2740 dentry->d_name.name = target->d_name.name;
2741 target->d_name.name = target->d_iname;
2742 }
2743 } else {
8d85b484 2744 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2745 /*
2746 * dentry:external, target:internal. Give dentry's
2747 * storage to target and make dentry internal
2748 */
2749 memcpy(dentry->d_iname, target->d_name.name,
2750 target->d_name.len + 1);
2751 target->d_name.name = dentry->d_name.name;
2752 dentry->d_name.name = dentry->d_iname;
2753 } else {
2754 /*
da1ce067 2755 * Both are internal.
1da177e4 2756 */
da1ce067
MS
2757 unsigned int i;
2758 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2759 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2760 swap(((long *) &dentry->d_iname)[i],
2761 ((long *) &target->d_iname)[i]);
2762 }
1da177e4
LT
2763 }
2764 }
a28ddb87 2765 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2766}
2767
8d85b484
AV
2768static void copy_name(struct dentry *dentry, struct dentry *target)
2769{
2770 struct external_name *old_name = NULL;
2771 if (unlikely(dname_external(dentry)))
2772 old_name = external_name(dentry);
2773 if (unlikely(dname_external(target))) {
2774 atomic_inc(&external_name(target)->u.count);
2775 dentry->d_name = target->d_name;
2776 } else {
2777 memcpy(dentry->d_iname, target->d_name.name,
2778 target->d_name.len + 1);
2779 dentry->d_name.name = dentry->d_iname;
2780 dentry->d_name.hash_len = target->d_name.hash_len;
2781 }
2782 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2783 kfree_rcu(old_name, u.head);
2784}
2785
2fd6b7f5
NP
2786static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2787{
2788 /*
2789 * XXXX: do we really need to take target->d_lock?
2790 */
2791 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2792 spin_lock(&target->d_parent->d_lock);
2793 else {
2794 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2795 spin_lock(&dentry->d_parent->d_lock);
2796 spin_lock_nested(&target->d_parent->d_lock,
2797 DENTRY_D_LOCK_NESTED);
2798 } else {
2799 spin_lock(&target->d_parent->d_lock);
2800 spin_lock_nested(&dentry->d_parent->d_lock,
2801 DENTRY_D_LOCK_NESTED);
2802 }
2803 }
2804 if (target < dentry) {
2805 spin_lock_nested(&target->d_lock, 2);
2806 spin_lock_nested(&dentry->d_lock, 3);
2807 } else {
2808 spin_lock_nested(&dentry->d_lock, 2);
2809 spin_lock_nested(&target->d_lock, 3);
2810 }
2811}
2812
986c0194 2813static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2814{
2815 if (target->d_parent != dentry->d_parent)
2816 spin_unlock(&dentry->d_parent->d_lock);
2817 if (target->d_parent != target)
2818 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2819 spin_unlock(&target->d_lock);
2820 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2821}
2822
1da177e4 2823/*
2fd6b7f5
NP
2824 * When switching names, the actual string doesn't strictly have to
2825 * be preserved in the target - because we're dropping the target
2826 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2827 * the new name before we switch, unless we are going to rehash
2828 * it. Note that if we *do* unhash the target, we are not allowed
2829 * to rehash it without giving it a new name/hash key - whether
2830 * we swap or overwrite the names here, resulting name won't match
2831 * the reality in filesystem; it's only there for d_path() purposes.
2832 * Note that all of this is happening under rename_lock, so the
2833 * any hash lookup seeing it in the middle of manipulations will
2834 * be discarded anyway. So we do not care what happens to the hash
2835 * key in that case.
1da177e4 2836 */
9eaef27b 2837/*
18367501 2838 * __d_move - move a dentry
1da177e4
LT
2839 * @dentry: entry to move
2840 * @target: new dentry
da1ce067 2841 * @exchange: exchange the two dentries
1da177e4
LT
2842 *
2843 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2844 * dcache entries should not be moved in this way. Caller must hold
2845 * rename_lock, the i_mutex of the source and target directories,
2846 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2847 */
da1ce067
MS
2848static void __d_move(struct dentry *dentry, struct dentry *target,
2849 bool exchange)
1da177e4 2850{
84e710da
AV
2851 struct inode *dir = NULL;
2852 unsigned n;
1da177e4
LT
2853 if (!dentry->d_inode)
2854 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2855
2fd6b7f5
NP
2856 BUG_ON(d_ancestor(dentry, target));
2857 BUG_ON(d_ancestor(target, dentry));
2858
2fd6b7f5 2859 dentry_lock_for_move(dentry, target);
84e710da
AV
2860 if (unlikely(d_in_lookup(target))) {
2861 dir = target->d_parent->d_inode;
2862 n = start_dir_add(dir);
85c7f810 2863 __d_lookup_done(target);
84e710da 2864 }
1da177e4 2865
31e6b01f 2866 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2867 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2868
15d3c589 2869 /* unhash both */
0632a9ac
AV
2870 if (!d_unhashed(dentry))
2871 ___d_drop(dentry);
2872 if (!d_unhashed(target))
2873 ___d_drop(target);
1da177e4 2874
1da177e4 2875 /* Switch the names.. */
8d85b484
AV
2876 if (exchange)
2877 swap_names(dentry, target);
2878 else
2879 copy_name(dentry, target);
1da177e4 2880
15d3c589
AV
2881 /* rehash in new place(s) */
2882 __d_rehash(dentry);
2883 if (exchange)
2884 __d_rehash(target);
61647823
N
2885 else
2886 target->d_hash.pprev = NULL;
15d3c589 2887
63cf427a 2888 /* ... and switch them in the tree */
1da177e4 2889 if (IS_ROOT(dentry)) {
63cf427a 2890 /* splicing a tree */
3d56c25e 2891 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2892 dentry->d_parent = target->d_parent;
2893 target->d_parent = target;
946e51f2
AV
2894 list_del_init(&target->d_child);
2895 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2896 } else {
63cf427a 2897 /* swapping two dentries */
9a8d5bb4 2898 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2899 list_move(&target->d_child, &target->d_parent->d_subdirs);
2900 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2901 if (exchange)
affda484
AV
2902 fsnotify_update_flags(target);
2903 fsnotify_update_flags(dentry);
1da177e4
LT
2904 }
2905
31e6b01f
NP
2906 write_seqcount_end(&target->d_seq);
2907 write_seqcount_end(&dentry->d_seq);
2908
84e710da
AV
2909 if (dir)
2910 end_dir_add(dir, n);
986c0194 2911 dentry_unlock_for_move(dentry, target);
18367501
AV
2912}
2913
2914/*
2915 * d_move - move a dentry
2916 * @dentry: entry to move
2917 * @target: new dentry
2918 *
2919 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2920 * dcache entries should not be moved in this way. See the locking
2921 * requirements for __d_move.
18367501
AV
2922 */
2923void d_move(struct dentry *dentry, struct dentry *target)
2924{
2925 write_seqlock(&rename_lock);
da1ce067 2926 __d_move(dentry, target, false);
1da177e4 2927 write_sequnlock(&rename_lock);
9eaef27b 2928}
ec4f8605 2929EXPORT_SYMBOL(d_move);
1da177e4 2930
da1ce067
MS
2931/*
2932 * d_exchange - exchange two dentries
2933 * @dentry1: first dentry
2934 * @dentry2: second dentry
2935 */
2936void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2937{
2938 write_seqlock(&rename_lock);
2939
2940 WARN_ON(!dentry1->d_inode);
2941 WARN_ON(!dentry2->d_inode);
2942 WARN_ON(IS_ROOT(dentry1));
2943 WARN_ON(IS_ROOT(dentry2));
2944
2945 __d_move(dentry1, dentry2, true);
2946
2947 write_sequnlock(&rename_lock);
2948}
2949
e2761a11
OH
2950/**
2951 * d_ancestor - search for an ancestor
2952 * @p1: ancestor dentry
2953 * @p2: child dentry
2954 *
2955 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2956 * an ancestor of p2, else NULL.
9eaef27b 2957 */
e2761a11 2958struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2959{
2960 struct dentry *p;
2961
871c0067 2962 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2963 if (p->d_parent == p1)
e2761a11 2964 return p;
9eaef27b 2965 }
e2761a11 2966 return NULL;
9eaef27b
TM
2967}
2968
2969/*
2970 * This helper attempts to cope with remotely renamed directories
2971 *
2972 * It assumes that the caller is already holding
a03e283b 2973 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2974 *
2975 * Note: If ever the locking in lock_rename() changes, then please
2976 * remember to update this too...
9eaef27b 2977 */
b5ae6b15 2978static int __d_unalias(struct inode *inode,
873feea0 2979 struct dentry *dentry, struct dentry *alias)
9eaef27b 2980{
9902af79
AV
2981 struct mutex *m1 = NULL;
2982 struct rw_semaphore *m2 = NULL;
3d330dc1 2983 int ret = -ESTALE;
9eaef27b
TM
2984
2985 /* If alias and dentry share a parent, then no extra locks required */
2986 if (alias->d_parent == dentry->d_parent)
2987 goto out_unalias;
2988
9eaef27b 2989 /* See lock_rename() */
9eaef27b
TM
2990 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2991 goto out_err;
2992 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2993 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2994 goto out_err;
9902af79 2995 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2996out_unalias:
8ed936b5 2997 __d_move(alias, dentry, false);
b5ae6b15 2998 ret = 0;
9eaef27b 2999out_err:
9eaef27b 3000 if (m2)
9902af79 3001 up_read(m2);
9eaef27b
TM
3002 if (m1)
3003 mutex_unlock(m1);
3004 return ret;
3005}
3006
3f70bd51
BF
3007/**
3008 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3009 * @inode: the inode which may have a disconnected dentry
3010 * @dentry: a negative dentry which we want to point to the inode.
3011 *
da093a9b
BF
3012 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3013 * place of the given dentry and return it, else simply d_add the inode
3014 * to the dentry and return NULL.
3f70bd51 3015 *
908790fa
BF
3016 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3017 * we should error out: directories can't have multiple aliases.
3018 *
3f70bd51
BF
3019 * This is needed in the lookup routine of any filesystem that is exportable
3020 * (via knfsd) so that we can build dcache paths to directories effectively.
3021 *
3022 * If a dentry was found and moved, then it is returned. Otherwise NULL
3023 * is returned. This matches the expected return value of ->lookup.
3024 *
3025 * Cluster filesystems may call this function with a negative, hashed dentry.
3026 * In that case, we know that the inode will be a regular file, and also this
3027 * will only occur during atomic_open. So we need to check for the dentry
3028 * being already hashed only in the final case.
3029 */
3030struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3031{
3f70bd51
BF
3032 if (IS_ERR(inode))
3033 return ERR_CAST(inode);
3034
770bfad8
DH
3035 BUG_ON(!d_unhashed(dentry));
3036
de689f5e 3037 if (!inode)
b5ae6b15 3038 goto out;
de689f5e 3039
b9680917 3040 security_d_instantiate(dentry, inode);
873feea0 3041 spin_lock(&inode->i_lock);
9eaef27b 3042 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3043 struct dentry *new = __d_find_any_alias(inode);
3044 if (unlikely(new)) {
a03e283b
EB
3045 /* The reference to new ensures it remains an alias */
3046 spin_unlock(&inode->i_lock);
18367501 3047 write_seqlock(&rename_lock);
b5ae6b15
AV
3048 if (unlikely(d_ancestor(new, dentry))) {
3049 write_sequnlock(&rename_lock);
b5ae6b15
AV
3050 dput(new);
3051 new = ERR_PTR(-ELOOP);
3052 pr_warn_ratelimited(
3053 "VFS: Lookup of '%s' in %s %s"
3054 " would have caused loop\n",
3055 dentry->d_name.name,
3056 inode->i_sb->s_type->name,
3057 inode->i_sb->s_id);
3058 } else if (!IS_ROOT(new)) {
3059 int err = __d_unalias(inode, dentry, new);
18367501 3060 write_sequnlock(&rename_lock);
b5ae6b15
AV
3061 if (err) {
3062 dput(new);
3063 new = ERR_PTR(err);
3064 }
18367501 3065 } else {
b5ae6b15
AV
3066 __d_move(new, dentry, false);
3067 write_sequnlock(&rename_lock);
dd179946 3068 }
b5ae6b15
AV
3069 iput(inode);
3070 return new;
9eaef27b 3071 }
770bfad8 3072 }
b5ae6b15 3073out:
ed782b5a 3074 __d_add(dentry, inode);
b5ae6b15 3075 return NULL;
770bfad8 3076}
b5ae6b15 3077EXPORT_SYMBOL(d_splice_alias);
770bfad8 3078
cdd16d02 3079static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3080{
3081 *buflen -= namelen;
3082 if (*buflen < 0)
3083 return -ENAMETOOLONG;
3084 *buffer -= namelen;
3085 memcpy(*buffer, str, namelen);
3086 return 0;
3087}
3088
232d2d60
WL
3089/**
3090 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3091 * @buffer: buffer pointer
3092 * @buflen: allocated length of the buffer
3093 * @name: name string and length qstr structure
232d2d60 3094 *
66702eb5 3095 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
232d2d60
WL
3096 * make sure that either the old or the new name pointer and length are
3097 * fetched. However, there may be mismatch between length and pointer.
3098 * The length cannot be trusted, we need to copy it byte-by-byte until
3099 * the length is reached or a null byte is found. It also prepends "/" at
3100 * the beginning of the name. The sequence number check at the caller will
3101 * retry it again when a d_move() does happen. So any garbage in the buffer
3102 * due to mismatched pointer and length will be discarded.
6d13f694 3103 *
7088efa9 3104 * Load acquire is needed to make sure that we see that terminating NUL.
232d2d60 3105 */
9aba36de 3106static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
cdd16d02 3107{
7088efa9 3108 const char *dname = smp_load_acquire(&name->name); /* ^^^ */
66702eb5 3109 u32 dlen = READ_ONCE(name->len);
232d2d60
WL
3110 char *p;
3111
232d2d60 3112 *buflen -= dlen + 1;
e825196d
AV
3113 if (*buflen < 0)
3114 return -ENAMETOOLONG;
232d2d60
WL
3115 p = *buffer -= dlen + 1;
3116 *p++ = '/';
3117 while (dlen--) {
3118 char c = *dname++;
3119 if (!c)
3120 break;
3121 *p++ = c;
3122 }
3123 return 0;
cdd16d02
MS
3124}
3125
1da177e4 3126/**
208898c1 3127 * prepend_path - Prepend path string to a buffer
9d1bc601 3128 * @path: the dentry/vfsmount to report
02125a82 3129 * @root: root vfsmnt/dentry
f2eb6575
MS
3130 * @buffer: pointer to the end of the buffer
3131 * @buflen: pointer to buffer length
552ce544 3132 *
18129977
WL
3133 * The function will first try to write out the pathname without taking any
3134 * lock other than the RCU read lock to make sure that dentries won't go away.
3135 * It only checks the sequence number of the global rename_lock as any change
3136 * in the dentry's d_seq will be preceded by changes in the rename_lock
3137 * sequence number. If the sequence number had been changed, it will restart
3138 * the whole pathname back-tracing sequence again by taking the rename_lock.
3139 * In this case, there is no need to take the RCU read lock as the recursive
3140 * parent pointer references will keep the dentry chain alive as long as no
3141 * rename operation is performed.
1da177e4 3142 */
02125a82
AV
3143static int prepend_path(const struct path *path,
3144 const struct path *root,
f2eb6575 3145 char **buffer, int *buflen)
1da177e4 3146{
ede4cebc
AV
3147 struct dentry *dentry;
3148 struct vfsmount *vfsmnt;
3149 struct mount *mnt;
f2eb6575 3150 int error = 0;
48a066e7 3151 unsigned seq, m_seq = 0;
232d2d60
WL
3152 char *bptr;
3153 int blen;
6092d048 3154
48f5ec21 3155 rcu_read_lock();
48a066e7
AV
3156restart_mnt:
3157 read_seqbegin_or_lock(&mount_lock, &m_seq);
3158 seq = 0;
4ec6c2ae 3159 rcu_read_lock();
232d2d60
WL
3160restart:
3161 bptr = *buffer;
3162 blen = *buflen;
48a066e7 3163 error = 0;
ede4cebc
AV
3164 dentry = path->dentry;
3165 vfsmnt = path->mnt;
3166 mnt = real_mount(vfsmnt);
232d2d60 3167 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3168 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3169 struct dentry * parent;
3170
1da177e4 3171 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
66702eb5 3172 struct mount *parent = READ_ONCE(mnt->mnt_parent);
cde93be4
EB
3173 /* Escaped? */
3174 if (dentry != vfsmnt->mnt_root) {
3175 bptr = *buffer;
3176 blen = *buflen;
3177 error = 3;
3178 break;
3179 }
552ce544 3180 /* Global root? */
48a066e7 3181 if (mnt != parent) {
66702eb5 3182 dentry = READ_ONCE(mnt->mnt_mountpoint);
48a066e7 3183 mnt = parent;
232d2d60
WL
3184 vfsmnt = &mnt->mnt;
3185 continue;
3186 }
232d2d60
WL
3187 if (!error)
3188 error = is_mounted(vfsmnt) ? 1 : 2;
3189 break;
1da177e4
LT
3190 }
3191 parent = dentry->d_parent;
3192 prefetch(parent);
232d2d60 3193 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3194 if (error)
3195 break;
3196
1da177e4
LT
3197 dentry = parent;
3198 }
48f5ec21
AV
3199 if (!(seq & 1))
3200 rcu_read_unlock();
3201 if (need_seqretry(&rename_lock, seq)) {
3202 seq = 1;
232d2d60 3203 goto restart;
48f5ec21
AV
3204 }
3205 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3206
3207 if (!(m_seq & 1))
3208 rcu_read_unlock();
48a066e7
AV
3209 if (need_seqretry(&mount_lock, m_seq)) {
3210 m_seq = 1;
3211 goto restart_mnt;
3212 }
3213 done_seqretry(&mount_lock, m_seq);
1da177e4 3214
232d2d60
WL
3215 if (error >= 0 && bptr == *buffer) {
3216 if (--blen < 0)
3217 error = -ENAMETOOLONG;
3218 else
3219 *--bptr = '/';
3220 }
3221 *buffer = bptr;
3222 *buflen = blen;
7ea600b5 3223 return error;
f2eb6575 3224}
be285c71 3225
f2eb6575
MS
3226/**
3227 * __d_path - return the path of a dentry
3228 * @path: the dentry/vfsmount to report
02125a82 3229 * @root: root vfsmnt/dentry
cd956a1c 3230 * @buf: buffer to return value in
f2eb6575
MS
3231 * @buflen: buffer length
3232 *
ffd1f4ed 3233 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3234 *
3235 * Returns a pointer into the buffer or an error code if the
3236 * path was too long.
3237 *
be148247 3238 * "buflen" should be positive.
f2eb6575 3239 *
02125a82 3240 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3241 */
02125a82
AV
3242char *__d_path(const struct path *path,
3243 const struct path *root,
f2eb6575
MS
3244 char *buf, int buflen)
3245{
3246 char *res = buf + buflen;
3247 int error;
3248
3249 prepend(&res, &buflen, "\0", 1);
f2eb6575 3250 error = prepend_path(path, root, &res, &buflen);
be148247 3251
02125a82
AV
3252 if (error < 0)
3253 return ERR_PTR(error);
3254 if (error > 0)
3255 return NULL;
3256 return res;
3257}
3258
3259char *d_absolute_path(const struct path *path,
3260 char *buf, int buflen)
3261{
3262 struct path root = {};
3263 char *res = buf + buflen;
3264 int error;
3265
3266 prepend(&res, &buflen, "\0", 1);
02125a82 3267 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3268
3269 if (error > 1)
3270 error = -EINVAL;
3271 if (error < 0)
f2eb6575 3272 return ERR_PTR(error);
f2eb6575 3273 return res;
1da177e4
LT
3274}
3275
ffd1f4ed
MS
3276/*
3277 * same as __d_path but appends "(deleted)" for unlinked files.
3278 */
02125a82
AV
3279static int path_with_deleted(const struct path *path,
3280 const struct path *root,
3281 char **buf, int *buflen)
ffd1f4ed
MS
3282{
3283 prepend(buf, buflen, "\0", 1);
3284 if (d_unlinked(path->dentry)) {
3285 int error = prepend(buf, buflen, " (deleted)", 10);
3286 if (error)
3287 return error;
3288 }
3289
3290 return prepend_path(path, root, buf, buflen);
3291}
3292
8df9d1a4
MS
3293static int prepend_unreachable(char **buffer, int *buflen)
3294{
3295 return prepend(buffer, buflen, "(unreachable)", 13);
3296}
3297
68f0d9d9
LT
3298static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3299{
3300 unsigned seq;
3301
3302 do {
3303 seq = read_seqcount_begin(&fs->seq);
3304 *root = fs->root;
3305 } while (read_seqcount_retry(&fs->seq, seq));
3306}
3307
a03a8a70
JB
3308/**
3309 * d_path - return the path of a dentry
cf28b486 3310 * @path: path to report
a03a8a70
JB
3311 * @buf: buffer to return value in
3312 * @buflen: buffer length
3313 *
3314 * Convert a dentry into an ASCII path name. If the entry has been deleted
3315 * the string " (deleted)" is appended. Note that this is ambiguous.
3316 *
52afeefb
AV
3317 * Returns a pointer into the buffer or an error code if the path was
3318 * too long. Note: Callers should use the returned pointer, not the passed
3319 * in buffer, to use the name! The implementation often starts at an offset
3320 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3321 *
31f3e0b3 3322 * "buflen" should be positive.
a03a8a70 3323 */
20d4fdc1 3324char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3325{
ffd1f4ed 3326 char *res = buf + buflen;
6ac08c39 3327 struct path root;
ffd1f4ed 3328 int error;
1da177e4 3329
c23fbb6b
ED
3330 /*
3331 * We have various synthetic filesystems that never get mounted. On
3332 * these filesystems dentries are never used for lookup purposes, and
3333 * thus don't need to be hashed. They also don't need a name until a
3334 * user wants to identify the object in /proc/pid/fd/. The little hack
3335 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3336 *
3337 * Some pseudo inodes are mountable. When they are mounted
3338 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3339 * and instead have d_path return the mounted path.
c23fbb6b 3340 */
f48cfddc
EB
3341 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3342 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3343 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3344
68f0d9d9
LT
3345 rcu_read_lock();
3346 get_fs_root_rcu(current->fs, &root);
02125a82 3347 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3348 rcu_read_unlock();
3349
02125a82 3350 if (error < 0)
ffd1f4ed 3351 res = ERR_PTR(error);
1da177e4
LT
3352 return res;
3353}
ec4f8605 3354EXPORT_SYMBOL(d_path);
1da177e4 3355
c23fbb6b
ED
3356/*
3357 * Helper function for dentry_operations.d_dname() members
3358 */
3359char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3360 const char *fmt, ...)
3361{
3362 va_list args;
3363 char temp[64];
3364 int sz;
3365
3366 va_start(args, fmt);
3367 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3368 va_end(args);
3369
3370 if (sz > sizeof(temp) || sz > buflen)
3371 return ERR_PTR(-ENAMETOOLONG);
3372
3373 buffer += buflen - sz;
3374 return memcpy(buffer, temp, sz);
3375}
3376
118b2302
AV
3377char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3378{
3379 char *end = buffer + buflen;
3380 /* these dentries are never renamed, so d_lock is not needed */
3381 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3382 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3383 prepend(&end, &buflen, "/", 1))
3384 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3385 return end;
118b2302 3386}
31bbe16f 3387EXPORT_SYMBOL(simple_dname);
118b2302 3388
6092d048
RP
3389/*
3390 * Write full pathname from the root of the filesystem into the buffer.
3391 */
f6500801 3392static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3393{
f6500801 3394 struct dentry *dentry;
232d2d60
WL
3395 char *end, *retval;
3396 int len, seq = 0;
3397 int error = 0;
6092d048 3398
f6500801
AV
3399 if (buflen < 2)
3400 goto Elong;
3401
48f5ec21 3402 rcu_read_lock();
232d2d60 3403restart:
f6500801 3404 dentry = d;
232d2d60
WL
3405 end = buf + buflen;
3406 len = buflen;
3407 prepend(&end, &len, "\0", 1);
6092d048
RP
3408 /* Get '/' right */
3409 retval = end-1;
3410 *retval = '/';
232d2d60 3411 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3412 while (!IS_ROOT(dentry)) {
3413 struct dentry *parent = dentry->d_parent;
6092d048 3414
6092d048 3415 prefetch(parent);
232d2d60
WL
3416 error = prepend_name(&end, &len, &dentry->d_name);
3417 if (error)
3418 break;
6092d048
RP
3419
3420 retval = end;
3421 dentry = parent;
3422 }
48f5ec21
AV
3423 if (!(seq & 1))
3424 rcu_read_unlock();
3425 if (need_seqretry(&rename_lock, seq)) {
3426 seq = 1;
232d2d60 3427 goto restart;
48f5ec21
AV
3428 }
3429 done_seqretry(&rename_lock, seq);
232d2d60
WL
3430 if (error)
3431 goto Elong;
c103135c
AV
3432 return retval;
3433Elong:
3434 return ERR_PTR(-ENAMETOOLONG);
3435}
ec2447c2
NP
3436
3437char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3438{
232d2d60 3439 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3440}
3441EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3442
3443char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3444{
3445 char *p = NULL;
3446 char *retval;
3447
c103135c
AV
3448 if (d_unlinked(dentry)) {
3449 p = buf + buflen;
3450 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3451 goto Elong;
3452 buflen++;
3453 }
3454 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3455 if (!IS_ERR(retval) && p)
3456 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3457 return retval;
3458Elong:
6092d048
RP
3459 return ERR_PTR(-ENAMETOOLONG);
3460}
3461
8b19e341
LT
3462static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3463 struct path *pwd)
5762482f 3464{
8b19e341
LT
3465 unsigned seq;
3466
3467 do {
3468 seq = read_seqcount_begin(&fs->seq);
3469 *root = fs->root;
3470 *pwd = fs->pwd;
3471 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3472}
3473
1da177e4
LT
3474/*
3475 * NOTE! The user-level library version returns a
3476 * character pointer. The kernel system call just
3477 * returns the length of the buffer filled (which
3478 * includes the ending '\0' character), or a negative
3479 * error value. So libc would do something like
3480 *
3481 * char *getcwd(char * buf, size_t size)
3482 * {
3483 * int retval;
3484 *
3485 * retval = sys_getcwd(buf, size);
3486 * if (retval >= 0)
3487 * return buf;
3488 * errno = -retval;
3489 * return NULL;
3490 * }
3491 */
3cdad428 3492SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3493{
552ce544 3494 int error;
6ac08c39 3495 struct path pwd, root;
3272c544 3496 char *page = __getname();
1da177e4
LT
3497
3498 if (!page)
3499 return -ENOMEM;
3500
8b19e341
LT
3501 rcu_read_lock();
3502 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3503
552ce544 3504 error = -ENOENT;
f3da392e 3505 if (!d_unlinked(pwd.dentry)) {
552ce544 3506 unsigned long len;
3272c544
LT
3507 char *cwd = page + PATH_MAX;
3508 int buflen = PATH_MAX;
1da177e4 3509
8df9d1a4 3510 prepend(&cwd, &buflen, "\0", 1);
02125a82 3511 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3512 rcu_read_unlock();
552ce544 3513
02125a82 3514 if (error < 0)
552ce544
LT
3515 goto out;
3516
8df9d1a4 3517 /* Unreachable from current root */
02125a82 3518 if (error > 0) {
8df9d1a4
MS
3519 error = prepend_unreachable(&cwd, &buflen);
3520 if (error)
3521 goto out;
3522 }
3523
552ce544 3524 error = -ERANGE;
3272c544 3525 len = PATH_MAX + page - cwd;
552ce544
LT
3526 if (len <= size) {
3527 error = len;
3528 if (copy_to_user(buf, cwd, len))
3529 error = -EFAULT;
3530 }
949854d0 3531 } else {
ff812d72 3532 rcu_read_unlock();
949854d0 3533 }
1da177e4
LT
3534
3535out:
3272c544 3536 __putname(page);
1da177e4
LT
3537 return error;
3538}
3539
3540/*
3541 * Test whether new_dentry is a subdirectory of old_dentry.
3542 *
3543 * Trivially implemented using the dcache structure
3544 */
3545
3546/**
3547 * is_subdir - is new dentry a subdirectory of old_dentry
3548 * @new_dentry: new dentry
3549 * @old_dentry: old dentry
3550 *
a6e5787f
YB
3551 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3552 * Returns false otherwise.
1da177e4
LT
3553 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3554 */
3555
a6e5787f 3556bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3557{
a6e5787f 3558 bool result;
949854d0 3559 unsigned seq;
1da177e4 3560
e2761a11 3561 if (new_dentry == old_dentry)
a6e5787f 3562 return true;
e2761a11 3563
e2761a11 3564 do {
1da177e4 3565 /* for restarting inner loop in case of seq retry */
1da177e4 3566 seq = read_seqbegin(&rename_lock);
949854d0
NP
3567 /*
3568 * Need rcu_readlock to protect against the d_parent trashing
3569 * due to d_move
3570 */
3571 rcu_read_lock();
e2761a11 3572 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3573 result = true;
e2761a11 3574 else
a6e5787f 3575 result = false;
949854d0 3576 rcu_read_unlock();
1da177e4 3577 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3578
3579 return result;
3580}
e8f9e5b7 3581EXPORT_SYMBOL(is_subdir);
1da177e4 3582
db14fc3a 3583static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3584{
db14fc3a
MS
3585 struct dentry *root = data;
3586 if (dentry != root) {
3587 if (d_unhashed(dentry) || !dentry->d_inode)
3588 return D_WALK_SKIP;
1da177e4 3589
01ddc4ed
MS
3590 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3591 dentry->d_flags |= DCACHE_GENOCIDE;
3592 dentry->d_lockref.count--;
3593 }
1da177e4 3594 }
db14fc3a
MS
3595 return D_WALK_CONTINUE;
3596}
58db63d0 3597
db14fc3a
MS
3598void d_genocide(struct dentry *parent)
3599{
3600 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3601}
3602
60545d0d 3603void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3604{
60545d0d
AV
3605 inode_dec_link_count(inode);
3606 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3607 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3608 !d_unlinked(dentry));
3609 spin_lock(&dentry->d_parent->d_lock);
3610 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3611 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3612 (unsigned long long)inode->i_ino);
3613 spin_unlock(&dentry->d_lock);
3614 spin_unlock(&dentry->d_parent->d_lock);
3615 d_instantiate(dentry, inode);
1da177e4 3616}
60545d0d 3617EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3618
3619static __initdata unsigned long dhash_entries;
3620static int __init set_dhash_entries(char *str)
3621{
3622 if (!str)
3623 return 0;
3624 dhash_entries = simple_strtoul(str, &str, 0);
3625 return 1;
3626}
3627__setup("dhash_entries=", set_dhash_entries);
3628
3629static void __init dcache_init_early(void)
3630{
1da177e4
LT
3631 /* If hashes are distributed across NUMA nodes, defer
3632 * hash allocation until vmalloc space is available.
3633 */
3634 if (hashdist)
3635 return;
3636
3637 dentry_hashtable =
3638 alloc_large_system_hash("Dentry cache",
b07ad996 3639 sizeof(struct hlist_bl_head),
1da177e4
LT
3640 dhash_entries,
3641 13,
3d375d78 3642 HASH_EARLY | HASH_ZERO,
1da177e4 3643 &d_hash_shift,
b35d786b 3644 NULL,
31fe62b9 3645 0,
1da177e4 3646 0);
854d3e63 3647 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3648}
3649
74bf17cf 3650static void __init dcache_init(void)
1da177e4 3651{
3d375d78 3652 /*
1da177e4
LT
3653 * A constructor could be added for stable state like the lists,
3654 * but it is probably not worth it because of the cache nature
3d375d78 3655 * of the dcache.
1da177e4 3656 */
80344266
DW
3657 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3658 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3659 d_iname);
1da177e4
LT
3660
3661 /* Hash may have been set up in dcache_init_early */
3662 if (!hashdist)
3663 return;
3664
3665 dentry_hashtable =
3666 alloc_large_system_hash("Dentry cache",
b07ad996 3667 sizeof(struct hlist_bl_head),
1da177e4
LT
3668 dhash_entries,
3669 13,
3d375d78 3670 HASH_ZERO,
1da177e4 3671 &d_hash_shift,
b35d786b 3672 NULL,
31fe62b9 3673 0,
1da177e4 3674 0);
854d3e63 3675 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3676}
3677
3678/* SLAB cache for __getname() consumers */
e18b890b 3679struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3680EXPORT_SYMBOL(names_cachep);
1da177e4 3681
1da177e4
LT
3682EXPORT_SYMBOL(d_genocide);
3683
1da177e4
LT
3684void __init vfs_caches_init_early(void)
3685{
6916363f
SAS
3686 int i;
3687
3688 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3689 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3690
1da177e4
LT
3691 dcache_init_early();
3692 inode_init_early();
3693}
3694
4248b0da 3695void __init vfs_caches_init(void)
1da177e4 3696{
6a9b8820
DW
3697 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3698 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3699
74bf17cf
DC
3700 dcache_init();
3701 inode_init();
4248b0da
MG
3702 files_init();
3703 files_maxfiles_init();
74bf17cf 3704 mnt_init();
1da177e4
LT
3705 bdev_cache_init();
3706 chrdev_init();
3707}