omfs: fix (mode & S_IFDIR) abuse
[linux-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
07f3f05c 39#include "internal.h"
1da177e4 40
789680d1
NP
41/*
42 * Usage:
873feea0
NP
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
23044507
NP
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
b7ab39f6 55 * - d_count
da502956 56 * - d_unhashed()
2fd6b7f5
NP
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
b23fb0a6 59 * - d_alias, d_inode
789680d1
NP
60 *
61 * Ordering:
873feea0 62 * dentry->d_inode->i_lock
b5c84bf6
NP
63 * dentry->d_lock
64 * dcache_lru_lock
ceb5bdc2
NP
65 * dcache_hash_bucket lock
66 * s_anon lock
789680d1 67 *
da502956
NP
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
73 *
74 * If no ancestor relationship:
789680d1
NP
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
78 */
fa3536cc 79int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
80EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81
23044507 82static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 83__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 84
949854d0 85EXPORT_SYMBOL(rename_lock);
1da177e4 86
e18b890b 87static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 88
1da177e4
LT
89/*
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
93 *
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
96 */
97#define D_HASHBITS d_hash_shift
98#define D_HASHMASK d_hash_mask
99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
b07ad996 105static inline struct hlist_bl_head *d_hash(struct dentry *parent,
ceb5bdc2
NP
106 unsigned long hash)
107{
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3e880fb5 118static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
121static int get_nr_dentry(void)
122{
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
128}
129
312d3ca8
CH
130int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
132{
3e880fb5 133 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
134 return proc_dointvec(table, write, buffer, lenp, ppos);
135}
136#endif
137
9c82ab9c 138static void __d_free(struct rcu_head *head)
1da177e4 139{
9c82ab9c
CH
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141
fd217f4d 142 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
146}
147
148/*
b5c84bf6 149 * no locks, please.
1da177e4
LT
150 */
151static void d_free(struct dentry *dentry)
152{
b7ab39f6 153 BUG_ON(dentry->d_count);
3e880fb5 154 this_cpu_dec(nr_dentry);
1da177e4
LT
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
312d3ca8 157
dea3667b
LT
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 160 __d_free(&dentry->d_u.d_rcu);
b3423415 161 else
9c82ab9c 162 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
163}
164
31e6b01f
NP
165/**
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 167 * @dentry: the target dentry
31e6b01f
NP
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
171 */
172static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173{
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
177}
178
1da177e4
LT
179/*
180 * Release the dentry's inode, using the filesystem
31e6b01f
NP
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
1da177e4 183 */
858119e1 184static void dentry_iput(struct dentry * dentry)
31f3e0b3 185 __releases(dentry->d_lock)
873feea0 186 __releases(dentry->d_inode->i_lock)
1da177e4
LT
187{
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
873feea0 193 spin_unlock(&inode->i_lock);
f805fbda
LT
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
1da177e4
LT
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
1da177e4
LT
202 }
203}
204
31e6b01f
NP
205/*
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
208 */
209static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
873feea0 211 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
212{
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
873feea0 218 spin_unlock(&inode->i_lock);
31e6b01f
NP
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
225}
226
da3bbdd4 227/*
23044507 228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
229 */
230static void dentry_lru_add(struct dentry *dentry)
231{
a4633357 232 if (list_empty(&dentry->d_lru)) {
23044507 233 spin_lock(&dcache_lru_lock);
a4633357
CH
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 236 dentry_stat.nr_unused++;
23044507 237 spin_unlock(&dcache_lru_lock);
a4633357 238 }
da3bbdd4
KM
239}
240
23044507
NP
241static void __dentry_lru_del(struct dentry *dentry)
242{
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
246}
247
da3bbdd4
KM
248static void dentry_lru_del(struct dentry *dentry)
249{
250 if (!list_empty(&dentry->d_lru)) {
23044507
NP
251 spin_lock(&dcache_lru_lock);
252 __dentry_lru_del(dentry);
253 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
254 }
255}
256
a4633357 257static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 258{
23044507 259 spin_lock(&dcache_lru_lock);
a4633357
CH
260 if (list_empty(&dentry->d_lru)) {
261 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 263 dentry_stat.nr_unused++;
a4633357
CH
264 } else {
265 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 266 }
23044507 267 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
268}
269
d52b9086
MS
270/**
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
ff5fdb61 273 * @parent: parent dentry
d52b9086 274 *
31f3e0b3 275 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
276 *
277 * If this is the root of the dentry tree, return NULL.
23044507 278 *
b5c84bf6
NP
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280 * d_kill.
d52b9086 281 */
2fd6b7f5 282static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 283 __releases(dentry->d_lock)
2fd6b7f5 284 __releases(parent->d_lock)
873feea0 285 __releases(dentry->d_inode->i_lock)
d52b9086 286{
d52b9086 287 list_del(&dentry->d_u.d_child);
c83ce989
TM
288 /*
289 * Inform try_to_ascend() that we are no longer attached to the
290 * dentry tree
291 */
292 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
293 if (parent)
294 spin_unlock(&parent->d_lock);
d52b9086 295 dentry_iput(dentry);
b7ab39f6
NP
296 /*
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
299 */
d52b9086 300 d_free(dentry);
871c0067 301 return parent;
d52b9086
MS
302}
303
789680d1
NP
304/**
305 * d_drop - drop a dentry
306 * @dentry: dentry to drop
307 *
308 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309 * be found through a VFS lookup any more. Note that this is different from
310 * deleting the dentry - d_delete will try to mark the dentry negative if
311 * possible, giving a successful _negative_ lookup, while d_drop will
312 * just make the cache lookup fail.
313 *
314 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315 * reason (NFS timeouts or autofs deletes).
316 *
317 * __d_drop requires dentry->d_lock.
318 */
319void __d_drop(struct dentry *dentry)
320{
dea3667b 321 if (!d_unhashed(dentry)) {
b07ad996 322 struct hlist_bl_head *b;
dea3667b 323 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
b07ad996 324 b = &dentry->d_sb->s_anon;
dea3667b 325 else
ceb5bdc2 326 b = d_hash(dentry->d_parent, dentry->d_name.hash);
dea3667b 327
1879fd6a 328 hlist_bl_lock(b);
dea3667b
LT
329 __hlist_bl_del(&dentry->d_hash);
330 dentry->d_hash.pprev = NULL;
1879fd6a 331 hlist_bl_unlock(b);
dea3667b
LT
332
333 dentry_rcuwalk_barrier(dentry);
789680d1
NP
334 }
335}
336EXPORT_SYMBOL(__d_drop);
337
338void d_drop(struct dentry *dentry)
339{
789680d1
NP
340 spin_lock(&dentry->d_lock);
341 __d_drop(dentry);
342 spin_unlock(&dentry->d_lock);
789680d1
NP
343}
344EXPORT_SYMBOL(d_drop);
345
44396f4b
JB
346/*
347 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
348 * @dentry: dentry to drop
349 *
350 * This is called when we do a lookup on a placeholder dentry that needed to be
351 * looked up. The dentry should have been hashed in order for it to be found by
352 * the lookup code, but now needs to be unhashed while we do the actual lookup
353 * and clear the DCACHE_NEED_LOOKUP flag.
354 */
355void d_clear_need_lookup(struct dentry *dentry)
356{
357 spin_lock(&dentry->d_lock);
358 __d_drop(dentry);
359 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
360 spin_unlock(&dentry->d_lock);
361}
362EXPORT_SYMBOL(d_clear_need_lookup);
363
77812a1e
NP
364/*
365 * Finish off a dentry we've decided to kill.
366 * dentry->d_lock must be held, returns with it unlocked.
367 * If ref is non-zero, then decrement the refcount too.
368 * Returns dentry requiring refcount drop, or NULL if we're done.
369 */
370static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
371 __releases(dentry->d_lock)
372{
873feea0 373 struct inode *inode;
77812a1e
NP
374 struct dentry *parent;
375
873feea0
NP
376 inode = dentry->d_inode;
377 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
378relock:
379 spin_unlock(&dentry->d_lock);
380 cpu_relax();
381 return dentry; /* try again with same dentry */
382 }
383 if (IS_ROOT(dentry))
384 parent = NULL;
385 else
386 parent = dentry->d_parent;
387 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
388 if (inode)
389 spin_unlock(&inode->i_lock);
77812a1e
NP
390 goto relock;
391 }
31e6b01f 392
77812a1e
NP
393 if (ref)
394 dentry->d_count--;
395 /* if dentry was on the d_lru list delete it from there */
396 dentry_lru_del(dentry);
397 /* if it was on the hash then remove it */
398 __d_drop(dentry);
399 return d_kill(dentry, parent);
400}
401
1da177e4
LT
402/*
403 * This is dput
404 *
405 * This is complicated by the fact that we do not want to put
406 * dentries that are no longer on any hash chain on the unused
407 * list: we'd much rather just get rid of them immediately.
408 *
409 * However, that implies that we have to traverse the dentry
410 * tree upwards to the parents which might _also_ now be
411 * scheduled for deletion (it may have been only waiting for
412 * its last child to go away).
413 *
414 * This tail recursion is done by hand as we don't want to depend
415 * on the compiler to always get this right (gcc generally doesn't).
416 * Real recursion would eat up our stack space.
417 */
418
419/*
420 * dput - release a dentry
421 * @dentry: dentry to release
422 *
423 * Release a dentry. This will drop the usage count and if appropriate
424 * call the dentry unlink method as well as removing it from the queues and
425 * releasing its resources. If the parent dentries were scheduled for release
426 * they too may now get deleted.
1da177e4 427 */
1da177e4
LT
428void dput(struct dentry *dentry)
429{
430 if (!dentry)
431 return;
432
433repeat:
b7ab39f6 434 if (dentry->d_count == 1)
1da177e4 435 might_sleep();
1da177e4 436 spin_lock(&dentry->d_lock);
61f3dee4
NP
437 BUG_ON(!dentry->d_count);
438 if (dentry->d_count > 1) {
439 dentry->d_count--;
1da177e4 440 spin_unlock(&dentry->d_lock);
1da177e4
LT
441 return;
442 }
443
fb045adb 444 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 445 if (dentry->d_op->d_delete(dentry))
61f3dee4 446 goto kill_it;
1da177e4 447 }
265ac902 448
1da177e4
LT
449 /* Unreachable? Get rid of it */
450 if (d_unhashed(dentry))
451 goto kill_it;
265ac902 452
44396f4b
JB
453 /*
454 * If this dentry needs lookup, don't set the referenced flag so that it
455 * is more likely to be cleaned up by the dcache shrinker in case of
456 * memory pressure.
457 */
458 if (!d_need_lookup(dentry))
459 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 460 dentry_lru_add(dentry);
265ac902 461
61f3dee4
NP
462 dentry->d_count--;
463 spin_unlock(&dentry->d_lock);
1da177e4
LT
464 return;
465
d52b9086 466kill_it:
77812a1e 467 dentry = dentry_kill(dentry, 1);
d52b9086
MS
468 if (dentry)
469 goto repeat;
1da177e4 470}
ec4f8605 471EXPORT_SYMBOL(dput);
1da177e4
LT
472
473/**
474 * d_invalidate - invalidate a dentry
475 * @dentry: dentry to invalidate
476 *
477 * Try to invalidate the dentry if it turns out to be
478 * possible. If there are other dentries that can be
479 * reached through this one we can't delete it and we
480 * return -EBUSY. On success we return 0.
481 *
482 * no dcache lock.
483 */
484
485int d_invalidate(struct dentry * dentry)
486{
487 /*
488 * If it's already been dropped, return OK.
489 */
da502956 490 spin_lock(&dentry->d_lock);
1da177e4 491 if (d_unhashed(dentry)) {
da502956 492 spin_unlock(&dentry->d_lock);
1da177e4
LT
493 return 0;
494 }
495 /*
496 * Check whether to do a partial shrink_dcache
497 * to get rid of unused child entries.
498 */
499 if (!list_empty(&dentry->d_subdirs)) {
da502956 500 spin_unlock(&dentry->d_lock);
1da177e4 501 shrink_dcache_parent(dentry);
da502956 502 spin_lock(&dentry->d_lock);
1da177e4
LT
503 }
504
505 /*
506 * Somebody else still using it?
507 *
508 * If it's a directory, we can't drop it
509 * for fear of somebody re-populating it
510 * with children (even though dropping it
511 * would make it unreachable from the root,
512 * we might still populate it if it was a
513 * working directory or similar).
514 */
b7ab39f6 515 if (dentry->d_count > 1) {
1da177e4
LT
516 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
517 spin_unlock(&dentry->d_lock);
1da177e4
LT
518 return -EBUSY;
519 }
520 }
521
522 __d_drop(dentry);
523 spin_unlock(&dentry->d_lock);
1da177e4
LT
524 return 0;
525}
ec4f8605 526EXPORT_SYMBOL(d_invalidate);
1da177e4 527
b5c84bf6 528/* This must be called with d_lock held */
dc0474be 529static inline void __dget_dlock(struct dentry *dentry)
23044507 530{
b7ab39f6 531 dentry->d_count++;
23044507
NP
532}
533
dc0474be 534static inline void __dget(struct dentry *dentry)
1da177e4 535{
23044507 536 spin_lock(&dentry->d_lock);
dc0474be 537 __dget_dlock(dentry);
23044507 538 spin_unlock(&dentry->d_lock);
1da177e4
LT
539}
540
b7ab39f6
NP
541struct dentry *dget_parent(struct dentry *dentry)
542{
543 struct dentry *ret;
544
545repeat:
a734eb45
NP
546 /*
547 * Don't need rcu_dereference because we re-check it was correct under
548 * the lock.
549 */
550 rcu_read_lock();
b7ab39f6 551 ret = dentry->d_parent;
a734eb45
NP
552 spin_lock(&ret->d_lock);
553 if (unlikely(ret != dentry->d_parent)) {
554 spin_unlock(&ret->d_lock);
555 rcu_read_unlock();
b7ab39f6
NP
556 goto repeat;
557 }
a734eb45 558 rcu_read_unlock();
b7ab39f6
NP
559 BUG_ON(!ret->d_count);
560 ret->d_count++;
561 spin_unlock(&ret->d_lock);
b7ab39f6
NP
562 return ret;
563}
564EXPORT_SYMBOL(dget_parent);
565
1da177e4
LT
566/**
567 * d_find_alias - grab a hashed alias of inode
568 * @inode: inode in question
569 * @want_discon: flag, used by d_splice_alias, to request
570 * that only a DISCONNECTED alias be returned.
571 *
572 * If inode has a hashed alias, or is a directory and has any alias,
573 * acquire the reference to alias and return it. Otherwise return NULL.
574 * Notice that if inode is a directory there can be only one alias and
575 * it can be unhashed only if it has no children, or if it is the root
576 * of a filesystem.
577 *
21c0d8fd 578 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 579 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 580 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 581 */
da502956 582static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 583{
da502956 584 struct dentry *alias, *discon_alias;
1da177e4 585
da502956
NP
586again:
587 discon_alias = NULL;
588 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
589 spin_lock(&alias->d_lock);
1da177e4 590 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 591 if (IS_ROOT(alias) &&
da502956 592 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 593 discon_alias = alias;
da502956 594 } else if (!want_discon) {
dc0474be 595 __dget_dlock(alias);
da502956
NP
596 spin_unlock(&alias->d_lock);
597 return alias;
598 }
599 }
600 spin_unlock(&alias->d_lock);
601 }
602 if (discon_alias) {
603 alias = discon_alias;
604 spin_lock(&alias->d_lock);
605 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
606 if (IS_ROOT(alias) &&
607 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 608 __dget_dlock(alias);
da502956 609 spin_unlock(&alias->d_lock);
1da177e4
LT
610 return alias;
611 }
612 }
da502956
NP
613 spin_unlock(&alias->d_lock);
614 goto again;
1da177e4 615 }
da502956 616 return NULL;
1da177e4
LT
617}
618
da502956 619struct dentry *d_find_alias(struct inode *inode)
1da177e4 620{
214fda1f
DH
621 struct dentry *de = NULL;
622
623 if (!list_empty(&inode->i_dentry)) {
873feea0 624 spin_lock(&inode->i_lock);
214fda1f 625 de = __d_find_alias(inode, 0);
873feea0 626 spin_unlock(&inode->i_lock);
214fda1f 627 }
1da177e4
LT
628 return de;
629}
ec4f8605 630EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
631
632/*
633 * Try to kill dentries associated with this inode.
634 * WARNING: you must own a reference to inode.
635 */
636void d_prune_aliases(struct inode *inode)
637{
0cdca3f9 638 struct dentry *dentry;
1da177e4 639restart:
873feea0 640 spin_lock(&inode->i_lock);
0cdca3f9 641 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 642 spin_lock(&dentry->d_lock);
b7ab39f6 643 if (!dentry->d_count) {
dc0474be 644 __dget_dlock(dentry);
1da177e4
LT
645 __d_drop(dentry);
646 spin_unlock(&dentry->d_lock);
873feea0 647 spin_unlock(&inode->i_lock);
1da177e4
LT
648 dput(dentry);
649 goto restart;
650 }
651 spin_unlock(&dentry->d_lock);
652 }
873feea0 653 spin_unlock(&inode->i_lock);
1da177e4 654}
ec4f8605 655EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
656
657/*
77812a1e
NP
658 * Try to throw away a dentry - free the inode, dput the parent.
659 * Requires dentry->d_lock is held, and dentry->d_count == 0.
660 * Releases dentry->d_lock.
d702ccb3 661 *
77812a1e 662 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 663 */
77812a1e 664static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 665 __releases(dentry->d_lock)
1da177e4 666{
77812a1e 667 struct dentry *parent;
d52b9086 668
77812a1e 669 parent = dentry_kill(dentry, 0);
d52b9086 670 /*
77812a1e
NP
671 * If dentry_kill returns NULL, we have nothing more to do.
672 * if it returns the same dentry, trylocks failed. In either
673 * case, just loop again.
674 *
675 * Otherwise, we need to prune ancestors too. This is necessary
676 * to prevent quadratic behavior of shrink_dcache_parent(), but
677 * is also expected to be beneficial in reducing dentry cache
678 * fragmentation.
d52b9086 679 */
77812a1e
NP
680 if (!parent)
681 return;
682 if (parent == dentry)
683 return;
684
685 /* Prune ancestors. */
686 dentry = parent;
d52b9086 687 while (dentry) {
b7ab39f6 688 spin_lock(&dentry->d_lock);
89e60548
NP
689 if (dentry->d_count > 1) {
690 dentry->d_count--;
691 spin_unlock(&dentry->d_lock);
692 return;
693 }
77812a1e 694 dentry = dentry_kill(dentry, 1);
d52b9086 695 }
1da177e4
LT
696}
697
3049cfe2 698static void shrink_dentry_list(struct list_head *list)
1da177e4 699{
da3bbdd4 700 struct dentry *dentry;
da3bbdd4 701
ec33679d
NP
702 rcu_read_lock();
703 for (;;) {
ec33679d
NP
704 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
705 if (&dentry->d_lru == list)
706 break; /* empty */
707 spin_lock(&dentry->d_lock);
708 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
709 spin_unlock(&dentry->d_lock);
23044507
NP
710 continue;
711 }
712
1da177e4
LT
713 /*
714 * We found an inuse dentry which was not removed from
da3bbdd4
KM
715 * the LRU because of laziness during lookup. Do not free
716 * it - just keep it off the LRU list.
1da177e4 717 */
b7ab39f6 718 if (dentry->d_count) {
ec33679d 719 dentry_lru_del(dentry);
da3bbdd4 720 spin_unlock(&dentry->d_lock);
1da177e4
LT
721 continue;
722 }
ec33679d 723
ec33679d 724 rcu_read_unlock();
77812a1e
NP
725
726 try_prune_one_dentry(dentry);
727
ec33679d 728 rcu_read_lock();
da3bbdd4 729 }
ec33679d 730 rcu_read_unlock();
3049cfe2
CH
731}
732
733/**
734 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
735 * @sb: superblock to shrink dentry LRU.
736 * @count: number of entries to prune
737 * @flags: flags to control the dentry processing
738 *
739 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
740 */
b0d40c92 741static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
3049cfe2 742{
3049cfe2
CH
743 struct dentry *dentry;
744 LIST_HEAD(referenced);
745 LIST_HEAD(tmp);
3049cfe2 746
23044507
NP
747relock:
748 spin_lock(&dcache_lru_lock);
3049cfe2
CH
749 while (!list_empty(&sb->s_dentry_lru)) {
750 dentry = list_entry(sb->s_dentry_lru.prev,
751 struct dentry, d_lru);
752 BUG_ON(dentry->d_sb != sb);
753
23044507
NP
754 if (!spin_trylock(&dentry->d_lock)) {
755 spin_unlock(&dcache_lru_lock);
756 cpu_relax();
757 goto relock;
758 }
759
3049cfe2
CH
760 /*
761 * If we are honouring the DCACHE_REFERENCED flag and the
762 * dentry has this flag set, don't free it. Clear the flag
763 * and put it back on the LRU.
764 */
23044507
NP
765 if (flags & DCACHE_REFERENCED &&
766 dentry->d_flags & DCACHE_REFERENCED) {
767 dentry->d_flags &= ~DCACHE_REFERENCED;
768 list_move(&dentry->d_lru, &referenced);
3049cfe2 769 spin_unlock(&dentry->d_lock);
23044507
NP
770 } else {
771 list_move_tail(&dentry->d_lru, &tmp);
772 spin_unlock(&dentry->d_lock);
b0d40c92 773 if (!--count)
23044507 774 break;
3049cfe2 775 }
ec33679d 776 cond_resched_lock(&dcache_lru_lock);
3049cfe2 777 }
da3bbdd4
KM
778 if (!list_empty(&referenced))
779 list_splice(&referenced, &sb->s_dentry_lru);
23044507 780 spin_unlock(&dcache_lru_lock);
ec33679d
NP
781
782 shrink_dentry_list(&tmp);
da3bbdd4
KM
783}
784
785/**
b0d40c92
DC
786 * prune_dcache_sb - shrink the dcache
787 * @nr_to_scan: number of entries to try to free
da3bbdd4 788 *
b0d40c92
DC
789 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
790 * done when we need more memory an called from the superblock shrinker
791 * function.
da3bbdd4 792 *
b0d40c92
DC
793 * This function may fail to free any resources if all the dentries are in
794 * use.
da3bbdd4 795 */
b0d40c92 796void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
da3bbdd4 797{
b0d40c92 798 __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
1da177e4
LT
799}
800
1da177e4
LT
801/**
802 * shrink_dcache_sb - shrink dcache for a superblock
803 * @sb: superblock
804 *
3049cfe2
CH
805 * Shrink the dcache for the specified super block. This is used to free
806 * the dcache before unmounting a file system.
1da177e4 807 */
3049cfe2 808void shrink_dcache_sb(struct super_block *sb)
1da177e4 809{
3049cfe2
CH
810 LIST_HEAD(tmp);
811
23044507 812 spin_lock(&dcache_lru_lock);
3049cfe2
CH
813 while (!list_empty(&sb->s_dentry_lru)) {
814 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 815 spin_unlock(&dcache_lru_lock);
3049cfe2 816 shrink_dentry_list(&tmp);
ec33679d 817 spin_lock(&dcache_lru_lock);
3049cfe2 818 }
23044507 819 spin_unlock(&dcache_lru_lock);
1da177e4 820}
ec4f8605 821EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 822
c636ebdb
DH
823/*
824 * destroy a single subtree of dentries for unmount
825 * - see the comments on shrink_dcache_for_umount() for a description of the
826 * locking
827 */
828static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
829{
830 struct dentry *parent;
f8713576 831 unsigned detached = 0;
c636ebdb
DH
832
833 BUG_ON(!IS_ROOT(dentry));
834
835 /* detach this root from the system */
23044507 836 spin_lock(&dentry->d_lock);
a4633357 837 dentry_lru_del(dentry);
c636ebdb 838 __d_drop(dentry);
da502956 839 spin_unlock(&dentry->d_lock);
c636ebdb
DH
840
841 for (;;) {
842 /* descend to the first leaf in the current subtree */
843 while (!list_empty(&dentry->d_subdirs)) {
844 struct dentry *loop;
845
846 /* this is a branch with children - detach all of them
847 * from the system in one go */
2fd6b7f5 848 spin_lock(&dentry->d_lock);
c636ebdb
DH
849 list_for_each_entry(loop, &dentry->d_subdirs,
850 d_u.d_child) {
2fd6b7f5
NP
851 spin_lock_nested(&loop->d_lock,
852 DENTRY_D_LOCK_NESTED);
a4633357 853 dentry_lru_del(loop);
c636ebdb 854 __d_drop(loop);
da502956 855 spin_unlock(&loop->d_lock);
c636ebdb 856 }
2fd6b7f5 857 spin_unlock(&dentry->d_lock);
c636ebdb
DH
858
859 /* move to the first child */
860 dentry = list_entry(dentry->d_subdirs.next,
861 struct dentry, d_u.d_child);
862 }
863
864 /* consume the dentries from this leaf up through its parents
865 * until we find one with children or run out altogether */
866 do {
867 struct inode *inode;
868
b7ab39f6 869 if (dentry->d_count != 0) {
c636ebdb
DH
870 printk(KERN_ERR
871 "BUG: Dentry %p{i=%lx,n=%s}"
872 " still in use (%d)"
873 " [unmount of %s %s]\n",
874 dentry,
875 dentry->d_inode ?
876 dentry->d_inode->i_ino : 0UL,
877 dentry->d_name.name,
b7ab39f6 878 dentry->d_count,
c636ebdb
DH
879 dentry->d_sb->s_type->name,
880 dentry->d_sb->s_id);
881 BUG();
882 }
883
2fd6b7f5 884 if (IS_ROOT(dentry)) {
c636ebdb 885 parent = NULL;
2fd6b7f5
NP
886 list_del(&dentry->d_u.d_child);
887 } else {
871c0067 888 parent = dentry->d_parent;
b7ab39f6
NP
889 spin_lock(&parent->d_lock);
890 parent->d_count--;
2fd6b7f5 891 list_del(&dentry->d_u.d_child);
b7ab39f6 892 spin_unlock(&parent->d_lock);
871c0067 893 }
c636ebdb 894
f8713576 895 detached++;
c636ebdb
DH
896
897 inode = dentry->d_inode;
898 if (inode) {
899 dentry->d_inode = NULL;
900 list_del_init(&dentry->d_alias);
901 if (dentry->d_op && dentry->d_op->d_iput)
902 dentry->d_op->d_iput(dentry, inode);
903 else
904 iput(inode);
905 }
906
907 d_free(dentry);
908
909 /* finished when we fall off the top of the tree,
910 * otherwise we ascend to the parent and move to the
911 * next sibling if there is one */
912 if (!parent)
312d3ca8 913 return;
c636ebdb 914 dentry = parent;
c636ebdb
DH
915 } while (list_empty(&dentry->d_subdirs));
916
917 dentry = list_entry(dentry->d_subdirs.next,
918 struct dentry, d_u.d_child);
919 }
920}
921
922/*
923 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 924 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
925 * - the superblock is detached from all mountings and open files, so the
926 * dentry trees will not be rearranged by the VFS
927 * - s_umount is write-locked, so the memory pressure shrinker will ignore
928 * any dentries belonging to this superblock that it comes across
929 * - the filesystem itself is no longer permitted to rearrange the dentries
930 * in this superblock
931 */
932void shrink_dcache_for_umount(struct super_block *sb)
933{
934 struct dentry *dentry;
935
936 if (down_read_trylock(&sb->s_umount))
937 BUG();
938
939 dentry = sb->s_root;
940 sb->s_root = NULL;
b7ab39f6
NP
941 spin_lock(&dentry->d_lock);
942 dentry->d_count--;
943 spin_unlock(&dentry->d_lock);
c636ebdb
DH
944 shrink_dcache_for_umount_subtree(dentry);
945
ceb5bdc2
NP
946 while (!hlist_bl_empty(&sb->s_anon)) {
947 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
948 shrink_dcache_for_umount_subtree(dentry);
949 }
950}
951
c826cb7d
LT
952/*
953 * This tries to ascend one level of parenthood, but
954 * we can race with renaming, so we need to re-check
955 * the parenthood after dropping the lock and check
956 * that the sequence number still matches.
957 */
958static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
959{
960 struct dentry *new = old->d_parent;
961
962 rcu_read_lock();
963 spin_unlock(&old->d_lock);
964 spin_lock(&new->d_lock);
965
966 /*
967 * might go back up the wrong parent if we have had a rename
968 * or deletion
969 */
970 if (new != old->d_parent ||
c83ce989 971 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
972 (!locked && read_seqretry(&rename_lock, seq))) {
973 spin_unlock(&new->d_lock);
974 new = NULL;
975 }
976 rcu_read_unlock();
977 return new;
978}
979
980
1da177e4
LT
981/*
982 * Search for at least 1 mount point in the dentry's subdirs.
983 * We descend to the next level whenever the d_subdirs
984 * list is non-empty and continue searching.
985 */
986
987/**
988 * have_submounts - check for mounts over a dentry
989 * @parent: dentry to check.
990 *
991 * Return true if the parent or its subdirectories contain
992 * a mount point
993 */
1da177e4
LT
994int have_submounts(struct dentry *parent)
995{
949854d0 996 struct dentry *this_parent;
1da177e4 997 struct list_head *next;
949854d0 998 unsigned seq;
58db63d0 999 int locked = 0;
949854d0 1000
949854d0 1001 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1002again:
1003 this_parent = parent;
1da177e4 1004
1da177e4
LT
1005 if (d_mountpoint(parent))
1006 goto positive;
2fd6b7f5 1007 spin_lock(&this_parent->d_lock);
1da177e4
LT
1008repeat:
1009 next = this_parent->d_subdirs.next;
1010resume:
1011 while (next != &this_parent->d_subdirs) {
1012 struct list_head *tmp = next;
5160ee6f 1013 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1014 next = tmp->next;
2fd6b7f5
NP
1015
1016 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1017 /* Have we found a mount point ? */
2fd6b7f5
NP
1018 if (d_mountpoint(dentry)) {
1019 spin_unlock(&dentry->d_lock);
1020 spin_unlock(&this_parent->d_lock);
1da177e4 1021 goto positive;
2fd6b7f5 1022 }
1da177e4 1023 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1024 spin_unlock(&this_parent->d_lock);
1025 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1026 this_parent = dentry;
2fd6b7f5 1027 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1028 goto repeat;
1029 }
2fd6b7f5 1030 spin_unlock(&dentry->d_lock);
1da177e4
LT
1031 }
1032 /*
1033 * All done at this level ... ascend and resume the search.
1034 */
1035 if (this_parent != parent) {
c826cb7d
LT
1036 struct dentry *child = this_parent;
1037 this_parent = try_to_ascend(this_parent, locked, seq);
1038 if (!this_parent)
949854d0 1039 goto rename_retry;
949854d0 1040 next = child->d_u.d_child.next;
1da177e4
LT
1041 goto resume;
1042 }
2fd6b7f5 1043 spin_unlock(&this_parent->d_lock);
58db63d0 1044 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1045 goto rename_retry;
58db63d0
NP
1046 if (locked)
1047 write_sequnlock(&rename_lock);
1da177e4
LT
1048 return 0; /* No mount points found in tree */
1049positive:
58db63d0 1050 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1051 goto rename_retry;
58db63d0
NP
1052 if (locked)
1053 write_sequnlock(&rename_lock);
1da177e4 1054 return 1;
58db63d0
NP
1055
1056rename_retry:
1057 locked = 1;
1058 write_seqlock(&rename_lock);
1059 goto again;
1da177e4 1060}
ec4f8605 1061EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1062
1063/*
1064 * Search the dentry child list for the specified parent,
1065 * and move any unused dentries to the end of the unused
1066 * list for prune_dcache(). We descend to the next level
1067 * whenever the d_subdirs list is non-empty and continue
1068 * searching.
1069 *
1070 * It returns zero iff there are no unused children,
1071 * otherwise it returns the number of children moved to
1072 * the end of the unused list. This may not be the total
1073 * number of unused children, because select_parent can
1074 * drop the lock and return early due to latency
1075 * constraints.
1076 */
1077static int select_parent(struct dentry * parent)
1078{
949854d0 1079 struct dentry *this_parent;
1da177e4 1080 struct list_head *next;
949854d0 1081 unsigned seq;
1da177e4 1082 int found = 0;
58db63d0 1083 int locked = 0;
1da177e4 1084
949854d0 1085 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1086again:
1087 this_parent = parent;
2fd6b7f5 1088 spin_lock(&this_parent->d_lock);
1da177e4
LT
1089repeat:
1090 next = this_parent->d_subdirs.next;
1091resume:
1092 while (next != &this_parent->d_subdirs) {
1093 struct list_head *tmp = next;
5160ee6f 1094 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1095 next = tmp->next;
1096
2fd6b7f5 1097 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1098
1da177e4
LT
1099 /*
1100 * move only zero ref count dentries to the end
1101 * of the unused list for prune_dcache
1102 */
b7ab39f6 1103 if (!dentry->d_count) {
a4633357 1104 dentry_lru_move_tail(dentry);
1da177e4 1105 found++;
a4633357
CH
1106 } else {
1107 dentry_lru_del(dentry);
1da177e4
LT
1108 }
1109
1110 /*
1111 * We can return to the caller if we have found some (this
1112 * ensures forward progress). We'll be coming back to find
1113 * the rest.
1114 */
2fd6b7f5
NP
1115 if (found && need_resched()) {
1116 spin_unlock(&dentry->d_lock);
1da177e4 1117 goto out;
2fd6b7f5 1118 }
1da177e4
LT
1119
1120 /*
1121 * Descend a level if the d_subdirs list is non-empty.
1122 */
1123 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1124 spin_unlock(&this_parent->d_lock);
1125 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1126 this_parent = dentry;
2fd6b7f5 1127 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1128 goto repeat;
1129 }
2fd6b7f5
NP
1130
1131 spin_unlock(&dentry->d_lock);
1da177e4
LT
1132 }
1133 /*
1134 * All done at this level ... ascend and resume the search.
1135 */
1136 if (this_parent != parent) {
c826cb7d
LT
1137 struct dentry *child = this_parent;
1138 this_parent = try_to_ascend(this_parent, locked, seq);
1139 if (!this_parent)
949854d0 1140 goto rename_retry;
949854d0 1141 next = child->d_u.d_child.next;
1da177e4
LT
1142 goto resume;
1143 }
1144out:
2fd6b7f5 1145 spin_unlock(&this_parent->d_lock);
58db63d0 1146 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1147 goto rename_retry;
58db63d0
NP
1148 if (locked)
1149 write_sequnlock(&rename_lock);
1da177e4 1150 return found;
58db63d0
NP
1151
1152rename_retry:
1153 if (found)
1154 return found;
1155 locked = 1;
1156 write_seqlock(&rename_lock);
1157 goto again;
1da177e4
LT
1158}
1159
1160/**
1161 * shrink_dcache_parent - prune dcache
1162 * @parent: parent of entries to prune
1163 *
1164 * Prune the dcache to remove unused children of the parent dentry.
1165 */
1166
1167void shrink_dcache_parent(struct dentry * parent)
1168{
da3bbdd4 1169 struct super_block *sb = parent->d_sb;
1da177e4
LT
1170 int found;
1171
1172 while ((found = select_parent(parent)) != 0)
b0d40c92 1173 __shrink_dcache_sb(sb, found, 0);
1da177e4 1174}
ec4f8605 1175EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1176
1da177e4 1177/**
a4464dbc
AV
1178 * __d_alloc - allocate a dcache entry
1179 * @sb: filesystem it will belong to
1da177e4
LT
1180 * @name: qstr of the name
1181 *
1182 * Allocates a dentry. It returns %NULL if there is insufficient memory
1183 * available. On a success the dentry is returned. The name passed in is
1184 * copied and the copy passed in may be reused after this call.
1185 */
1186
a4464dbc 1187struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1188{
1189 struct dentry *dentry;
1190 char *dname;
1191
e12ba74d 1192 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1193 if (!dentry)
1194 return NULL;
1195
1196 if (name->len > DNAME_INLINE_LEN-1) {
1197 dname = kmalloc(name->len + 1, GFP_KERNEL);
1198 if (!dname) {
1199 kmem_cache_free(dentry_cache, dentry);
1200 return NULL;
1201 }
1202 } else {
1203 dname = dentry->d_iname;
1204 }
1205 dentry->d_name.name = dname;
1206
1207 dentry->d_name.len = name->len;
1208 dentry->d_name.hash = name->hash;
1209 memcpy(dname, name->name, name->len);
1210 dname[name->len] = 0;
1211
b7ab39f6 1212 dentry->d_count = 1;
dea3667b 1213 dentry->d_flags = 0;
1da177e4 1214 spin_lock_init(&dentry->d_lock);
31e6b01f 1215 seqcount_init(&dentry->d_seq);
1da177e4 1216 dentry->d_inode = NULL;
a4464dbc
AV
1217 dentry->d_parent = dentry;
1218 dentry->d_sb = sb;
1da177e4
LT
1219 dentry->d_op = NULL;
1220 dentry->d_fsdata = NULL;
ceb5bdc2 1221 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1222 INIT_LIST_HEAD(&dentry->d_lru);
1223 INIT_LIST_HEAD(&dentry->d_subdirs);
1224 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1225 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1226 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1227
3e880fb5 1228 this_cpu_inc(nr_dentry);
312d3ca8 1229
1da177e4
LT
1230 return dentry;
1231}
a4464dbc
AV
1232
1233/**
1234 * d_alloc - allocate a dcache entry
1235 * @parent: parent of entry to allocate
1236 * @name: qstr of the name
1237 *
1238 * Allocates a dentry. It returns %NULL if there is insufficient memory
1239 * available. On a success the dentry is returned. The name passed in is
1240 * copied and the copy passed in may be reused after this call.
1241 */
1242struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1243{
1244 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1245 if (!dentry)
1246 return NULL;
1247
1248 spin_lock(&parent->d_lock);
1249 /*
1250 * don't need child lock because it is not subject
1251 * to concurrency here
1252 */
1253 __dget_dlock(parent);
1254 dentry->d_parent = parent;
1255 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1256 spin_unlock(&parent->d_lock);
1257
1258 return dentry;
1259}
ec4f8605 1260EXPORT_SYMBOL(d_alloc);
1da177e4 1261
4b936885
NP
1262struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1263{
a4464dbc
AV
1264 struct dentry *dentry = __d_alloc(sb, name);
1265 if (dentry)
4b936885 1266 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1267 return dentry;
1268}
1269EXPORT_SYMBOL(d_alloc_pseudo);
1270
1da177e4
LT
1271struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1272{
1273 struct qstr q;
1274
1275 q.name = name;
1276 q.len = strlen(name);
1277 q.hash = full_name_hash(q.name, q.len);
1278 return d_alloc(parent, &q);
1279}
ef26ca97 1280EXPORT_SYMBOL(d_alloc_name);
1da177e4 1281
fb045adb
NP
1282void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1283{
6f7f7caa
LT
1284 WARN_ON_ONCE(dentry->d_op);
1285 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1286 DCACHE_OP_COMPARE |
1287 DCACHE_OP_REVALIDATE |
1288 DCACHE_OP_DELETE ));
1289 dentry->d_op = op;
1290 if (!op)
1291 return;
1292 if (op->d_hash)
1293 dentry->d_flags |= DCACHE_OP_HASH;
1294 if (op->d_compare)
1295 dentry->d_flags |= DCACHE_OP_COMPARE;
1296 if (op->d_revalidate)
1297 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1298 if (op->d_delete)
1299 dentry->d_flags |= DCACHE_OP_DELETE;
1300
1301}
1302EXPORT_SYMBOL(d_set_d_op);
1303
360da900
OH
1304static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1305{
b23fb0a6 1306 spin_lock(&dentry->d_lock);
9875cf80
DH
1307 if (inode) {
1308 if (unlikely(IS_AUTOMOUNT(inode)))
1309 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1310 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1311 }
360da900 1312 dentry->d_inode = inode;
31e6b01f 1313 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1314 spin_unlock(&dentry->d_lock);
360da900
OH
1315 fsnotify_d_instantiate(dentry, inode);
1316}
1317
1da177e4
LT
1318/**
1319 * d_instantiate - fill in inode information for a dentry
1320 * @entry: dentry to complete
1321 * @inode: inode to attach to this dentry
1322 *
1323 * Fill in inode information in the entry.
1324 *
1325 * This turns negative dentries into productive full members
1326 * of society.
1327 *
1328 * NOTE! This assumes that the inode count has been incremented
1329 * (or otherwise set) by the caller to indicate that it is now
1330 * in use by the dcache.
1331 */
1332
1333void d_instantiate(struct dentry *entry, struct inode * inode)
1334{
28133c7b 1335 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1336 if (inode)
1337 spin_lock(&inode->i_lock);
360da900 1338 __d_instantiate(entry, inode);
873feea0
NP
1339 if (inode)
1340 spin_unlock(&inode->i_lock);
1da177e4
LT
1341 security_d_instantiate(entry, inode);
1342}
ec4f8605 1343EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1344
1345/**
1346 * d_instantiate_unique - instantiate a non-aliased dentry
1347 * @entry: dentry to instantiate
1348 * @inode: inode to attach to this dentry
1349 *
1350 * Fill in inode information in the entry. On success, it returns NULL.
1351 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1352 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1353 *
1354 * Note that in order to avoid conflicts with rename() etc, the caller
1355 * had better be holding the parent directory semaphore.
e866cfa9
OD
1356 *
1357 * This also assumes that the inode count has been incremented
1358 * (or otherwise set) by the caller to indicate that it is now
1359 * in use by the dcache.
1da177e4 1360 */
770bfad8
DH
1361static struct dentry *__d_instantiate_unique(struct dentry *entry,
1362 struct inode *inode)
1da177e4
LT
1363{
1364 struct dentry *alias;
1365 int len = entry->d_name.len;
1366 const char *name = entry->d_name.name;
1367 unsigned int hash = entry->d_name.hash;
1368
770bfad8 1369 if (!inode) {
360da900 1370 __d_instantiate(entry, NULL);
770bfad8
DH
1371 return NULL;
1372 }
1373
1da177e4
LT
1374 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1375 struct qstr *qstr = &alias->d_name;
1376
9abca360
NP
1377 /*
1378 * Don't need alias->d_lock here, because aliases with
1379 * d_parent == entry->d_parent are not subject to name or
1380 * parent changes, because the parent inode i_mutex is held.
1381 */
1da177e4
LT
1382 if (qstr->hash != hash)
1383 continue;
1384 if (alias->d_parent != entry->d_parent)
1385 continue;
9d55c369 1386 if (dentry_cmp(qstr->name, qstr->len, name, len))
1da177e4 1387 continue;
dc0474be 1388 __dget(alias);
1da177e4
LT
1389 return alias;
1390 }
770bfad8 1391
360da900 1392 __d_instantiate(entry, inode);
1da177e4
LT
1393 return NULL;
1394}
770bfad8
DH
1395
1396struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1397{
1398 struct dentry *result;
1399
1400 BUG_ON(!list_empty(&entry->d_alias));
1401
873feea0
NP
1402 if (inode)
1403 spin_lock(&inode->i_lock);
770bfad8 1404 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1405 if (inode)
1406 spin_unlock(&inode->i_lock);
770bfad8
DH
1407
1408 if (!result) {
1409 security_d_instantiate(entry, inode);
1410 return NULL;
1411 }
1412
1413 BUG_ON(!d_unhashed(result));
1414 iput(inode);
1415 return result;
1416}
1417
1da177e4
LT
1418EXPORT_SYMBOL(d_instantiate_unique);
1419
1420/**
1421 * d_alloc_root - allocate root dentry
1422 * @root_inode: inode to allocate the root for
1423 *
1424 * Allocate a root ("/") dentry for the inode given. The inode is
1425 * instantiated and returned. %NULL is returned if there is insufficient
1426 * memory or the inode passed is %NULL.
1427 */
1428
1429struct dentry * d_alloc_root(struct inode * root_inode)
1430{
1431 struct dentry *res = NULL;
1432
1433 if (root_inode) {
1434 static const struct qstr name = { .name = "/", .len = 1 };
1435
a4464dbc
AV
1436 res = __d_alloc(root_inode->i_sb, &name);
1437 if (res)
1da177e4 1438 d_instantiate(res, root_inode);
1da177e4
LT
1439 }
1440 return res;
1441}
ec4f8605 1442EXPORT_SYMBOL(d_alloc_root);
1da177e4 1443
d891eedb
BF
1444static struct dentry * __d_find_any_alias(struct inode *inode)
1445{
1446 struct dentry *alias;
1447
1448 if (list_empty(&inode->i_dentry))
1449 return NULL;
1450 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1451 __dget(alias);
1452 return alias;
1453}
1454
1455static struct dentry * d_find_any_alias(struct inode *inode)
1456{
1457 struct dentry *de;
1458
1459 spin_lock(&inode->i_lock);
1460 de = __d_find_any_alias(inode);
1461 spin_unlock(&inode->i_lock);
1462 return de;
1463}
1464
1465
4ea3ada2
CH
1466/**
1467 * d_obtain_alias - find or allocate a dentry for a given inode
1468 * @inode: inode to allocate the dentry for
1469 *
1470 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1471 * similar open by handle operations. The returned dentry may be anonymous,
1472 * or may have a full name (if the inode was already in the cache).
1473 *
1474 * When called on a directory inode, we must ensure that the inode only ever
1475 * has one dentry. If a dentry is found, that is returned instead of
1476 * allocating a new one.
1477 *
1478 * On successful return, the reference to the inode has been transferred
44003728
CH
1479 * to the dentry. In case of an error the reference on the inode is released.
1480 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1481 * be passed in and will be the error will be propagate to the return value,
1482 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1483 */
1484struct dentry *d_obtain_alias(struct inode *inode)
1485{
9308a612
CH
1486 static const struct qstr anonstring = { .name = "" };
1487 struct dentry *tmp;
1488 struct dentry *res;
4ea3ada2
CH
1489
1490 if (!inode)
44003728 1491 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1492 if (IS_ERR(inode))
1493 return ERR_CAST(inode);
1494
d891eedb 1495 res = d_find_any_alias(inode);
9308a612
CH
1496 if (res)
1497 goto out_iput;
1498
a4464dbc 1499 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1500 if (!tmp) {
1501 res = ERR_PTR(-ENOMEM);
1502 goto out_iput;
4ea3ada2 1503 }
b5c84bf6 1504
873feea0 1505 spin_lock(&inode->i_lock);
d891eedb 1506 res = __d_find_any_alias(inode);
9308a612 1507 if (res) {
873feea0 1508 spin_unlock(&inode->i_lock);
9308a612
CH
1509 dput(tmp);
1510 goto out_iput;
1511 }
1512
1513 /* attach a disconnected dentry */
1514 spin_lock(&tmp->d_lock);
9308a612
CH
1515 tmp->d_inode = inode;
1516 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1517 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1518 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1519 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1520 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1521 spin_unlock(&tmp->d_lock);
873feea0 1522 spin_unlock(&inode->i_lock);
24ff6663 1523 security_d_instantiate(tmp, inode);
9308a612 1524
9308a612
CH
1525 return tmp;
1526
1527 out_iput:
24ff6663
JB
1528 if (res && !IS_ERR(res))
1529 security_d_instantiate(res, inode);
9308a612
CH
1530 iput(inode);
1531 return res;
4ea3ada2 1532}
adc48720 1533EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1534
1535/**
1536 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1537 * @inode: the inode which may have a disconnected dentry
1538 * @dentry: a negative dentry which we want to point to the inode.
1539 *
1540 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1541 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1542 * and return it, else simply d_add the inode to the dentry and return NULL.
1543 *
1544 * This is needed in the lookup routine of any filesystem that is exportable
1545 * (via knfsd) so that we can build dcache paths to directories effectively.
1546 *
1547 * If a dentry was found and moved, then it is returned. Otherwise NULL
1548 * is returned. This matches the expected return value of ->lookup.
1549 *
1550 */
1551struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1552{
1553 struct dentry *new = NULL;
1554
a9049376
AV
1555 if (IS_ERR(inode))
1556 return ERR_CAST(inode);
1557
21c0d8fd 1558 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1559 spin_lock(&inode->i_lock);
1da177e4
LT
1560 new = __d_find_alias(inode, 1);
1561 if (new) {
1562 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1563 spin_unlock(&inode->i_lock);
1da177e4 1564 security_d_instantiate(new, inode);
1da177e4
LT
1565 d_move(new, dentry);
1566 iput(inode);
1567 } else {
873feea0 1568 /* already taking inode->i_lock, so d_add() by hand */
360da900 1569 __d_instantiate(dentry, inode);
873feea0 1570 spin_unlock(&inode->i_lock);
1da177e4
LT
1571 security_d_instantiate(dentry, inode);
1572 d_rehash(dentry);
1573 }
1574 } else
1575 d_add(dentry, inode);
1576 return new;
1577}
ec4f8605 1578EXPORT_SYMBOL(d_splice_alias);
1da177e4 1579
9403540c
BN
1580/**
1581 * d_add_ci - lookup or allocate new dentry with case-exact name
1582 * @inode: the inode case-insensitive lookup has found
1583 * @dentry: the negative dentry that was passed to the parent's lookup func
1584 * @name: the case-exact name to be associated with the returned dentry
1585 *
1586 * This is to avoid filling the dcache with case-insensitive names to the
1587 * same inode, only the actual correct case is stored in the dcache for
1588 * case-insensitive filesystems.
1589 *
1590 * For a case-insensitive lookup match and if the the case-exact dentry
1591 * already exists in in the dcache, use it and return it.
1592 *
1593 * If no entry exists with the exact case name, allocate new dentry with
1594 * the exact case, and return the spliced entry.
1595 */
e45b590b 1596struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1597 struct qstr *name)
1598{
1599 int error;
1600 struct dentry *found;
1601 struct dentry *new;
1602
b6520c81
CH
1603 /*
1604 * First check if a dentry matching the name already exists,
1605 * if not go ahead and create it now.
1606 */
9403540c 1607 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1608 if (!found) {
1609 new = d_alloc(dentry->d_parent, name);
1610 if (!new) {
1611 error = -ENOMEM;
1612 goto err_out;
1613 }
b6520c81 1614
9403540c
BN
1615 found = d_splice_alias(inode, new);
1616 if (found) {
1617 dput(new);
1618 return found;
1619 }
1620 return new;
1621 }
b6520c81
CH
1622
1623 /*
1624 * If a matching dentry exists, and it's not negative use it.
1625 *
1626 * Decrement the reference count to balance the iget() done
1627 * earlier on.
1628 */
9403540c
BN
1629 if (found->d_inode) {
1630 if (unlikely(found->d_inode != inode)) {
1631 /* This can't happen because bad inodes are unhashed. */
1632 BUG_ON(!is_bad_inode(inode));
1633 BUG_ON(!is_bad_inode(found->d_inode));
1634 }
9403540c
BN
1635 iput(inode);
1636 return found;
1637 }
b6520c81 1638
9403540c 1639 /*
44396f4b
JB
1640 * We are going to instantiate this dentry, unhash it and clear the
1641 * lookup flag so we can do that.
9403540c 1642 */
44396f4b
JB
1643 if (unlikely(d_need_lookup(found)))
1644 d_clear_need_lookup(found);
b6520c81 1645
9403540c 1646 /*
9403540c 1647 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1648 * already has a dentry.
9403540c 1649 */
4513d899
AV
1650 new = d_splice_alias(inode, found);
1651 if (new) {
1652 dput(found);
1653 found = new;
9403540c 1654 }
4513d899 1655 return found;
9403540c
BN
1656
1657err_out:
1658 iput(inode);
1659 return ERR_PTR(error);
1660}
ec4f8605 1661EXPORT_SYMBOL(d_add_ci);
1da177e4 1662
31e6b01f
NP
1663/**
1664 * __d_lookup_rcu - search for a dentry (racy, store-free)
1665 * @parent: parent dentry
1666 * @name: qstr of name we wish to find
1667 * @seq: returns d_seq value at the point where the dentry was found
1668 * @inode: returns dentry->d_inode when the inode was found valid.
1669 * Returns: dentry, or NULL
1670 *
1671 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1672 * resolution (store-free path walking) design described in
1673 * Documentation/filesystems/path-lookup.txt.
1674 *
1675 * This is not to be used outside core vfs.
1676 *
1677 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1678 * held, and rcu_read_lock held. The returned dentry must not be stored into
1679 * without taking d_lock and checking d_seq sequence count against @seq
1680 * returned here.
1681 *
1682 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1683 * function.
1684 *
1685 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1686 * the returned dentry, so long as its parent's seqlock is checked after the
1687 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1688 * is formed, giving integrity down the path walk.
1689 */
1690struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1691 unsigned *seq, struct inode **inode)
1692{
1693 unsigned int len = name->len;
1694 unsigned int hash = name->hash;
1695 const unsigned char *str = name->name;
b07ad996 1696 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1697 struct hlist_bl_node *node;
31e6b01f
NP
1698 struct dentry *dentry;
1699
1700 /*
1701 * Note: There is significant duplication with __d_lookup_rcu which is
1702 * required to prevent single threaded performance regressions
1703 * especially on architectures where smp_rmb (in seqcounts) are costly.
1704 * Keep the two functions in sync.
1705 */
1706
1707 /*
1708 * The hash list is protected using RCU.
1709 *
1710 * Carefully use d_seq when comparing a candidate dentry, to avoid
1711 * races with d_move().
1712 *
1713 * It is possible that concurrent renames can mess up our list
1714 * walk here and result in missing our dentry, resulting in the
1715 * false-negative result. d_lookup() protects against concurrent
1716 * renames using rename_lock seqlock.
1717 *
b0a4bb83 1718 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1719 */
b07ad996 1720 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1721 struct inode *i;
1722 const char *tname;
1723 int tlen;
1724
1725 if (dentry->d_name.hash != hash)
1726 continue;
1727
1728seqretry:
1729 *seq = read_seqcount_begin(&dentry->d_seq);
1730 if (dentry->d_parent != parent)
1731 continue;
1732 if (d_unhashed(dentry))
1733 continue;
1734 tlen = dentry->d_name.len;
1735 tname = dentry->d_name.name;
1736 i = dentry->d_inode;
e1bb5782 1737 prefetch(tname);
31e6b01f
NP
1738 /*
1739 * This seqcount check is required to ensure name and
1740 * len are loaded atomically, so as not to walk off the
1741 * edge of memory when walking. If we could load this
1742 * atomically some other way, we could drop this check.
1743 */
1744 if (read_seqcount_retry(&dentry->d_seq, *seq))
1745 goto seqretry;
fb045adb 1746 if (parent->d_flags & DCACHE_OP_COMPARE) {
31e6b01f
NP
1747 if (parent->d_op->d_compare(parent, *inode,
1748 dentry, i,
1749 tlen, tname, name))
1750 continue;
1751 } else {
9d55c369 1752 if (dentry_cmp(tname, tlen, str, len))
31e6b01f
NP
1753 continue;
1754 }
1755 /*
1756 * No extra seqcount check is required after the name
1757 * compare. The caller must perform a seqcount check in
1758 * order to do anything useful with the returned dentry
1759 * anyway.
1760 */
1761 *inode = i;
1762 return dentry;
1763 }
1764 return NULL;
1765}
1766
1da177e4
LT
1767/**
1768 * d_lookup - search for a dentry
1769 * @parent: parent dentry
1770 * @name: qstr of name we wish to find
b04f784e 1771 * Returns: dentry, or NULL
1da177e4 1772 *
b04f784e
NP
1773 * d_lookup searches the children of the parent dentry for the name in
1774 * question. If the dentry is found its reference count is incremented and the
1775 * dentry is returned. The caller must use dput to free the entry when it has
1776 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1777 */
31e6b01f 1778struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1779{
31e6b01f 1780 struct dentry *dentry;
949854d0 1781 unsigned seq;
1da177e4
LT
1782
1783 do {
1784 seq = read_seqbegin(&rename_lock);
1785 dentry = __d_lookup(parent, name);
1786 if (dentry)
1787 break;
1788 } while (read_seqretry(&rename_lock, seq));
1789 return dentry;
1790}
ec4f8605 1791EXPORT_SYMBOL(d_lookup);
1da177e4 1792
31e6b01f 1793/**
b04f784e
NP
1794 * __d_lookup - search for a dentry (racy)
1795 * @parent: parent dentry
1796 * @name: qstr of name we wish to find
1797 * Returns: dentry, or NULL
1798 *
1799 * __d_lookup is like d_lookup, however it may (rarely) return a
1800 * false-negative result due to unrelated rename activity.
1801 *
1802 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1803 * however it must be used carefully, eg. with a following d_lookup in
1804 * the case of failure.
1805 *
1806 * __d_lookup callers must be commented.
1807 */
31e6b01f 1808struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1809{
1810 unsigned int len = name->len;
1811 unsigned int hash = name->hash;
1812 const unsigned char *str = name->name;
b07ad996 1813 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1814 struct hlist_bl_node *node;
31e6b01f 1815 struct dentry *found = NULL;
665a7583 1816 struct dentry *dentry;
1da177e4 1817
31e6b01f
NP
1818 /*
1819 * Note: There is significant duplication with __d_lookup_rcu which is
1820 * required to prevent single threaded performance regressions
1821 * especially on architectures where smp_rmb (in seqcounts) are costly.
1822 * Keep the two functions in sync.
1823 */
1824
b04f784e
NP
1825 /*
1826 * The hash list is protected using RCU.
1827 *
1828 * Take d_lock when comparing a candidate dentry, to avoid races
1829 * with d_move().
1830 *
1831 * It is possible that concurrent renames can mess up our list
1832 * walk here and result in missing our dentry, resulting in the
1833 * false-negative result. d_lookup() protects against concurrent
1834 * renames using rename_lock seqlock.
1835 *
b0a4bb83 1836 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1837 */
1da177e4
LT
1838 rcu_read_lock();
1839
b07ad996 1840 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1841 const char *tname;
1842 int tlen;
1da177e4 1843
1da177e4
LT
1844 if (dentry->d_name.hash != hash)
1845 continue;
1da177e4
LT
1846
1847 spin_lock(&dentry->d_lock);
1da177e4
LT
1848 if (dentry->d_parent != parent)
1849 goto next;
d0185c08
LT
1850 if (d_unhashed(dentry))
1851 goto next;
1852
1da177e4
LT
1853 /*
1854 * It is safe to compare names since d_move() cannot
1855 * change the qstr (protected by d_lock).
1856 */
31e6b01f
NP
1857 tlen = dentry->d_name.len;
1858 tname = dentry->d_name.name;
fb045adb 1859 if (parent->d_flags & DCACHE_OP_COMPARE) {
621e155a
NP
1860 if (parent->d_op->d_compare(parent, parent->d_inode,
1861 dentry, dentry->d_inode,
31e6b01f 1862 tlen, tname, name))
1da177e4
LT
1863 goto next;
1864 } else {
9d55c369 1865 if (dentry_cmp(tname, tlen, str, len))
1da177e4
LT
1866 goto next;
1867 }
1868
b7ab39f6 1869 dentry->d_count++;
d0185c08 1870 found = dentry;
1da177e4
LT
1871 spin_unlock(&dentry->d_lock);
1872 break;
1873next:
1874 spin_unlock(&dentry->d_lock);
1875 }
1876 rcu_read_unlock();
1877
1878 return found;
1879}
1880
3e7e241f
EB
1881/**
1882 * d_hash_and_lookup - hash the qstr then search for a dentry
1883 * @dir: Directory to search in
1884 * @name: qstr of name we wish to find
1885 *
1886 * On hash failure or on lookup failure NULL is returned.
1887 */
1888struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1889{
1890 struct dentry *dentry = NULL;
1891
1892 /*
1893 * Check for a fs-specific hash function. Note that we must
1894 * calculate the standard hash first, as the d_op->d_hash()
1895 * routine may choose to leave the hash value unchanged.
1896 */
1897 name->hash = full_name_hash(name->name, name->len);
fb045adb 1898 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 1899 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1900 goto out;
1901 }
1902 dentry = d_lookup(dir, name);
1903out:
1904 return dentry;
1905}
1906
1da177e4 1907/**
786a5e15 1908 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 1909 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 1910 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1911 *
1912 * An insecure source has sent us a dentry, here we verify it and dget() it.
1913 * This is used by ncpfs in its readdir implementation.
1914 * Zero is returned in the dentry is invalid.
786a5e15
NP
1915 *
1916 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1917 */
d3a23e16 1918int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1919{
786a5e15 1920 struct dentry *child;
d3a23e16 1921
2fd6b7f5 1922 spin_lock(&dparent->d_lock);
786a5e15
NP
1923 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1924 if (dentry == child) {
2fd6b7f5 1925 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 1926 __dget_dlock(dentry);
2fd6b7f5
NP
1927 spin_unlock(&dentry->d_lock);
1928 spin_unlock(&dparent->d_lock);
1da177e4
LT
1929 return 1;
1930 }
1931 }
2fd6b7f5 1932 spin_unlock(&dparent->d_lock);
786a5e15 1933
1da177e4
LT
1934 return 0;
1935}
ec4f8605 1936EXPORT_SYMBOL(d_validate);
1da177e4
LT
1937
1938/*
1939 * When a file is deleted, we have two options:
1940 * - turn this dentry into a negative dentry
1941 * - unhash this dentry and free it.
1942 *
1943 * Usually, we want to just turn this into
1944 * a negative dentry, but if anybody else is
1945 * currently using the dentry or the inode
1946 * we can't do that and we fall back on removing
1947 * it from the hash queues and waiting for
1948 * it to be deleted later when it has no users
1949 */
1950
1951/**
1952 * d_delete - delete a dentry
1953 * @dentry: The dentry to delete
1954 *
1955 * Turn the dentry into a negative dentry if possible, otherwise
1956 * remove it from the hash queues so it can be deleted later
1957 */
1958
1959void d_delete(struct dentry * dentry)
1960{
873feea0 1961 struct inode *inode;
7a91bf7f 1962 int isdir = 0;
1da177e4
LT
1963 /*
1964 * Are we the only user?
1965 */
357f8e65 1966again:
1da177e4 1967 spin_lock(&dentry->d_lock);
873feea0
NP
1968 inode = dentry->d_inode;
1969 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 1970 if (dentry->d_count == 1) {
873feea0 1971 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
1972 spin_unlock(&dentry->d_lock);
1973 cpu_relax();
1974 goto again;
1975 }
13e3c5e5 1976 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 1977 dentry_unlink_inode(dentry);
7a91bf7f 1978 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1979 return;
1980 }
1981
1982 if (!d_unhashed(dentry))
1983 __d_drop(dentry);
1984
1985 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
1986
1987 fsnotify_nameremove(dentry, isdir);
1da177e4 1988}
ec4f8605 1989EXPORT_SYMBOL(d_delete);
1da177e4 1990
b07ad996 1991static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 1992{
ceb5bdc2 1993 BUG_ON(!d_unhashed(entry));
1879fd6a 1994 hlist_bl_lock(b);
dea3667b 1995 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 1996 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 1997 hlist_bl_unlock(b);
1da177e4
LT
1998}
1999
770bfad8
DH
2000static void _d_rehash(struct dentry * entry)
2001{
2002 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2003}
2004
1da177e4
LT
2005/**
2006 * d_rehash - add an entry back to the hash
2007 * @entry: dentry to add to the hash
2008 *
2009 * Adds a dentry to the hash according to its name.
2010 */
2011
2012void d_rehash(struct dentry * entry)
2013{
1da177e4 2014 spin_lock(&entry->d_lock);
770bfad8 2015 _d_rehash(entry);
1da177e4 2016 spin_unlock(&entry->d_lock);
1da177e4 2017}
ec4f8605 2018EXPORT_SYMBOL(d_rehash);
1da177e4 2019
fb2d5b86
NP
2020/**
2021 * dentry_update_name_case - update case insensitive dentry with a new name
2022 * @dentry: dentry to be updated
2023 * @name: new name
2024 *
2025 * Update a case insensitive dentry with new case of name.
2026 *
2027 * dentry must have been returned by d_lookup with name @name. Old and new
2028 * name lengths must match (ie. no d_compare which allows mismatched name
2029 * lengths).
2030 *
2031 * Parent inode i_mutex must be held over d_lookup and into this call (to
2032 * keep renames and concurrent inserts, and readdir(2) away).
2033 */
2034void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2035{
7ebfa57f 2036 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2037 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2038
fb2d5b86 2039 spin_lock(&dentry->d_lock);
31e6b01f 2040 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2041 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2042 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2043 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2044}
2045EXPORT_SYMBOL(dentry_update_name_case);
2046
1da177e4
LT
2047static void switch_names(struct dentry *dentry, struct dentry *target)
2048{
2049 if (dname_external(target)) {
2050 if (dname_external(dentry)) {
2051 /*
2052 * Both external: swap the pointers
2053 */
9a8d5bb4 2054 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2055 } else {
2056 /*
2057 * dentry:internal, target:external. Steal target's
2058 * storage and make target internal.
2059 */
321bcf92
BF
2060 memcpy(target->d_iname, dentry->d_name.name,
2061 dentry->d_name.len + 1);
1da177e4
LT
2062 dentry->d_name.name = target->d_name.name;
2063 target->d_name.name = target->d_iname;
2064 }
2065 } else {
2066 if (dname_external(dentry)) {
2067 /*
2068 * dentry:external, target:internal. Give dentry's
2069 * storage to target and make dentry internal
2070 */
2071 memcpy(dentry->d_iname, target->d_name.name,
2072 target->d_name.len + 1);
2073 target->d_name.name = dentry->d_name.name;
2074 dentry->d_name.name = dentry->d_iname;
2075 } else {
2076 /*
2077 * Both are internal. Just copy target to dentry
2078 */
2079 memcpy(dentry->d_iname, target->d_name.name,
2080 target->d_name.len + 1);
dc711ca3
AV
2081 dentry->d_name.len = target->d_name.len;
2082 return;
1da177e4
LT
2083 }
2084 }
9a8d5bb4 2085 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2086}
2087
2fd6b7f5
NP
2088static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2089{
2090 /*
2091 * XXXX: do we really need to take target->d_lock?
2092 */
2093 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2094 spin_lock(&target->d_parent->d_lock);
2095 else {
2096 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2097 spin_lock(&dentry->d_parent->d_lock);
2098 spin_lock_nested(&target->d_parent->d_lock,
2099 DENTRY_D_LOCK_NESTED);
2100 } else {
2101 spin_lock(&target->d_parent->d_lock);
2102 spin_lock_nested(&dentry->d_parent->d_lock,
2103 DENTRY_D_LOCK_NESTED);
2104 }
2105 }
2106 if (target < dentry) {
2107 spin_lock_nested(&target->d_lock, 2);
2108 spin_lock_nested(&dentry->d_lock, 3);
2109 } else {
2110 spin_lock_nested(&dentry->d_lock, 2);
2111 spin_lock_nested(&target->d_lock, 3);
2112 }
2113}
2114
2115static void dentry_unlock_parents_for_move(struct dentry *dentry,
2116 struct dentry *target)
2117{
2118 if (target->d_parent != dentry->d_parent)
2119 spin_unlock(&dentry->d_parent->d_lock);
2120 if (target->d_parent != target)
2121 spin_unlock(&target->d_parent->d_lock);
2122}
2123
1da177e4 2124/*
2fd6b7f5
NP
2125 * When switching names, the actual string doesn't strictly have to
2126 * be preserved in the target - because we're dropping the target
2127 * anyway. As such, we can just do a simple memcpy() to copy over
2128 * the new name before we switch.
2129 *
2130 * Note that we have to be a lot more careful about getting the hash
2131 * switched - we have to switch the hash value properly even if it
2132 * then no longer matches the actual (corrupted) string of the target.
2133 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2134 */
9eaef27b 2135/*
18367501 2136 * __d_move - move a dentry
1da177e4
LT
2137 * @dentry: entry to move
2138 * @target: new dentry
2139 *
2140 * Update the dcache to reflect the move of a file name. Negative
18367501
AV
2141 * dcache entries should not be moved in this way. Caller hold
2142 * rename_lock.
1da177e4 2143 */
18367501 2144static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2145{
1da177e4
LT
2146 if (!dentry->d_inode)
2147 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2148
2fd6b7f5
NP
2149 BUG_ON(d_ancestor(dentry, target));
2150 BUG_ON(d_ancestor(target, dentry));
2151
2fd6b7f5 2152 dentry_lock_for_move(dentry, target);
1da177e4 2153
31e6b01f
NP
2154 write_seqcount_begin(&dentry->d_seq);
2155 write_seqcount_begin(&target->d_seq);
2156
ceb5bdc2
NP
2157 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2158
2159 /*
2160 * Move the dentry to the target hash queue. Don't bother checking
2161 * for the same hash queue because of how unlikely it is.
2162 */
2163 __d_drop(dentry);
789680d1 2164 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2165
2166 /* Unhash the target: dput() will then get rid of it */
2167 __d_drop(target);
2168
5160ee6f
ED
2169 list_del(&dentry->d_u.d_child);
2170 list_del(&target->d_u.d_child);
1da177e4
LT
2171
2172 /* Switch the names.. */
2173 switch_names(dentry, target);
9a8d5bb4 2174 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2175
2176 /* ... and switch the parents */
2177 if (IS_ROOT(dentry)) {
2178 dentry->d_parent = target->d_parent;
2179 target->d_parent = target;
5160ee6f 2180 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2181 } else {
9a8d5bb4 2182 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2183
2184 /* And add them back to the (new) parent lists */
5160ee6f 2185 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2186 }
2187
5160ee6f 2188 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2189
31e6b01f
NP
2190 write_seqcount_end(&target->d_seq);
2191 write_seqcount_end(&dentry->d_seq);
2192
2fd6b7f5 2193 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2194 spin_unlock(&target->d_lock);
c32ccd87 2195 fsnotify_d_move(dentry);
1da177e4 2196 spin_unlock(&dentry->d_lock);
18367501
AV
2197}
2198
2199/*
2200 * d_move - move a dentry
2201 * @dentry: entry to move
2202 * @target: new dentry
2203 *
2204 * Update the dcache to reflect the move of a file name. Negative
2205 * dcache entries should not be moved in this way.
2206 */
2207void d_move(struct dentry *dentry, struct dentry *target)
2208{
2209 write_seqlock(&rename_lock);
2210 __d_move(dentry, target);
1da177e4 2211 write_sequnlock(&rename_lock);
9eaef27b 2212}
ec4f8605 2213EXPORT_SYMBOL(d_move);
1da177e4 2214
e2761a11
OH
2215/**
2216 * d_ancestor - search for an ancestor
2217 * @p1: ancestor dentry
2218 * @p2: child dentry
2219 *
2220 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2221 * an ancestor of p2, else NULL.
9eaef27b 2222 */
e2761a11 2223struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2224{
2225 struct dentry *p;
2226
871c0067 2227 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2228 if (p->d_parent == p1)
e2761a11 2229 return p;
9eaef27b 2230 }
e2761a11 2231 return NULL;
9eaef27b
TM
2232}
2233
2234/*
2235 * This helper attempts to cope with remotely renamed directories
2236 *
2237 * It assumes that the caller is already holding
18367501 2238 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2239 *
2240 * Note: If ever the locking in lock_rename() changes, then please
2241 * remember to update this too...
9eaef27b 2242 */
873feea0
NP
2243static struct dentry *__d_unalias(struct inode *inode,
2244 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2245{
2246 struct mutex *m1 = NULL, *m2 = NULL;
2247 struct dentry *ret;
2248
2249 /* If alias and dentry share a parent, then no extra locks required */
2250 if (alias->d_parent == dentry->d_parent)
2251 goto out_unalias;
2252
9eaef27b
TM
2253 /* See lock_rename() */
2254 ret = ERR_PTR(-EBUSY);
2255 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2256 goto out_err;
2257 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2258 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2259 goto out_err;
2260 m2 = &alias->d_parent->d_inode->i_mutex;
2261out_unalias:
18367501 2262 __d_move(alias, dentry);
9eaef27b
TM
2263 ret = alias;
2264out_err:
873feea0 2265 spin_unlock(&inode->i_lock);
9eaef27b
TM
2266 if (m2)
2267 mutex_unlock(m2);
2268 if (m1)
2269 mutex_unlock(m1);
2270 return ret;
2271}
2272
770bfad8
DH
2273/*
2274 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2275 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2276 * returns with anon->d_lock held!
770bfad8
DH
2277 */
2278static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2279{
2280 struct dentry *dparent, *aparent;
2281
2fd6b7f5 2282 dentry_lock_for_move(anon, dentry);
770bfad8 2283
31e6b01f
NP
2284 write_seqcount_begin(&dentry->d_seq);
2285 write_seqcount_begin(&anon->d_seq);
2286
770bfad8
DH
2287 dparent = dentry->d_parent;
2288 aparent = anon->d_parent;
2289
2fd6b7f5
NP
2290 switch_names(dentry, anon);
2291 swap(dentry->d_name.hash, anon->d_name.hash);
2292
770bfad8
DH
2293 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2294 list_del(&dentry->d_u.d_child);
2295 if (!IS_ROOT(dentry))
2296 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2297 else
2298 INIT_LIST_HEAD(&dentry->d_u.d_child);
2299
2300 anon->d_parent = (dparent == dentry) ? anon : dparent;
2301 list_del(&anon->d_u.d_child);
2302 if (!IS_ROOT(anon))
2303 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2304 else
2305 INIT_LIST_HEAD(&anon->d_u.d_child);
2306
31e6b01f
NP
2307 write_seqcount_end(&dentry->d_seq);
2308 write_seqcount_end(&anon->d_seq);
2309
2fd6b7f5
NP
2310 dentry_unlock_parents_for_move(anon, dentry);
2311 spin_unlock(&dentry->d_lock);
2312
2313 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2314 anon->d_flags &= ~DCACHE_DISCONNECTED;
2315}
2316
2317/**
2318 * d_materialise_unique - introduce an inode into the tree
2319 * @dentry: candidate dentry
2320 * @inode: inode to bind to the dentry, to which aliases may be attached
2321 *
2322 * Introduces an dentry into the tree, substituting an extant disconnected
2323 * root directory alias in its place if there is one
2324 */
2325struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2326{
9eaef27b 2327 struct dentry *actual;
770bfad8
DH
2328
2329 BUG_ON(!d_unhashed(dentry));
2330
770bfad8
DH
2331 if (!inode) {
2332 actual = dentry;
360da900 2333 __d_instantiate(dentry, NULL);
357f8e65
NP
2334 d_rehash(actual);
2335 goto out_nolock;
770bfad8
DH
2336 }
2337
873feea0 2338 spin_lock(&inode->i_lock);
357f8e65 2339
9eaef27b
TM
2340 if (S_ISDIR(inode->i_mode)) {
2341 struct dentry *alias;
2342
2343 /* Does an aliased dentry already exist? */
2344 alias = __d_find_alias(inode, 0);
2345 if (alias) {
2346 actual = alias;
18367501
AV
2347 write_seqlock(&rename_lock);
2348
2349 if (d_ancestor(alias, dentry)) {
2350 /* Check for loops */
2351 actual = ERR_PTR(-ELOOP);
2352 } else if (IS_ROOT(alias)) {
2353 /* Is this an anonymous mountpoint that we
2354 * could splice into our tree? */
9eaef27b 2355 __d_materialise_dentry(dentry, alias);
18367501 2356 write_sequnlock(&rename_lock);
9eaef27b
TM
2357 __d_drop(alias);
2358 goto found;
18367501
AV
2359 } else {
2360 /* Nope, but we must(!) avoid directory
2361 * aliasing */
2362 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2363 }
18367501 2364 write_sequnlock(&rename_lock);
9eaef27b
TM
2365 if (IS_ERR(actual))
2366 dput(alias);
2367 goto out_nolock;
2368 }
770bfad8
DH
2369 }
2370
2371 /* Add a unique reference */
2372 actual = __d_instantiate_unique(dentry, inode);
2373 if (!actual)
2374 actual = dentry;
357f8e65
NP
2375 else
2376 BUG_ON(!d_unhashed(actual));
770bfad8 2377
770bfad8
DH
2378 spin_lock(&actual->d_lock);
2379found:
2380 _d_rehash(actual);
2381 spin_unlock(&actual->d_lock);
873feea0 2382 spin_unlock(&inode->i_lock);
9eaef27b 2383out_nolock:
770bfad8
DH
2384 if (actual == dentry) {
2385 security_d_instantiate(dentry, inode);
2386 return NULL;
2387 }
2388
2389 iput(inode);
2390 return actual;
770bfad8 2391}
ec4f8605 2392EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2393
cdd16d02 2394static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2395{
2396 *buflen -= namelen;
2397 if (*buflen < 0)
2398 return -ENAMETOOLONG;
2399 *buffer -= namelen;
2400 memcpy(*buffer, str, namelen);
2401 return 0;
2402}
2403
cdd16d02
MS
2404static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2405{
2406 return prepend(buffer, buflen, name->name, name->len);
2407}
2408
1da177e4 2409/**
208898c1 2410 * prepend_path - Prepend path string to a buffer
9d1bc601
MS
2411 * @path: the dentry/vfsmount to report
2412 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2413 * @buffer: pointer to the end of the buffer
2414 * @buflen: pointer to buffer length
552ce544 2415 *
949854d0 2416 * Caller holds the rename_lock.
9d1bc601
MS
2417 *
2418 * If path is not reachable from the supplied root, then the value of
2419 * root is changed (without modifying refcounts).
1da177e4 2420 */
f2eb6575
MS
2421static int prepend_path(const struct path *path, struct path *root,
2422 char **buffer, int *buflen)
1da177e4 2423{
9d1bc601
MS
2424 struct dentry *dentry = path->dentry;
2425 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2426 bool slash = false;
2427 int error = 0;
6092d048 2428
99b7db7b 2429 br_read_lock(vfsmount_lock);
f2eb6575 2430 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2431 struct dentry * parent;
2432
1da177e4 2433 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2434 /* Global root? */
1da177e4 2435 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2436 goto global_root;
2437 }
2438 dentry = vfsmnt->mnt_mountpoint;
2439 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2440 continue;
2441 }
2442 parent = dentry->d_parent;
2443 prefetch(parent);
9abca360 2444 spin_lock(&dentry->d_lock);
f2eb6575 2445 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2446 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2447 if (!error)
2448 error = prepend(buffer, buflen, "/", 1);
2449 if (error)
2450 break;
2451
2452 slash = true;
1da177e4
LT
2453 dentry = parent;
2454 }
2455
be285c71 2456out:
f2eb6575
MS
2457 if (!error && !slash)
2458 error = prepend(buffer, buflen, "/", 1);
2459
99b7db7b 2460 br_read_unlock(vfsmount_lock);
f2eb6575 2461 return error;
1da177e4
LT
2462
2463global_root:
98dc568b
MS
2464 /*
2465 * Filesystems needing to implement special "root names"
2466 * should do so with ->d_dname()
2467 */
2468 if (IS_ROOT(dentry) &&
2469 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2470 WARN(1, "Root dentry has weird name <%.*s>\n",
2471 (int) dentry->d_name.len, dentry->d_name.name);
2472 }
9d1bc601
MS
2473 root->mnt = vfsmnt;
2474 root->dentry = dentry;
be285c71 2475 goto out;
f2eb6575 2476}
be285c71 2477
f2eb6575
MS
2478/**
2479 * __d_path - return the path of a dentry
2480 * @path: the dentry/vfsmount to report
2481 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2482 * @buf: buffer to return value in
f2eb6575
MS
2483 * @buflen: buffer length
2484 *
ffd1f4ed 2485 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2486 *
2487 * Returns a pointer into the buffer or an error code if the
2488 * path was too long.
2489 *
be148247 2490 * "buflen" should be positive.
f2eb6575
MS
2491 *
2492 * If path is not reachable from the supplied root, then the value of
2493 * root is changed (without modifying refcounts).
2494 */
2495char *__d_path(const struct path *path, struct path *root,
2496 char *buf, int buflen)
2497{
2498 char *res = buf + buflen;
2499 int error;
2500
2501 prepend(&res, &buflen, "\0", 1);
949854d0 2502 write_seqlock(&rename_lock);
f2eb6575 2503 error = prepend_path(path, root, &res, &buflen);
949854d0 2504 write_sequnlock(&rename_lock);
be148247 2505
f2eb6575
MS
2506 if (error)
2507 return ERR_PTR(error);
f2eb6575 2508 return res;
1da177e4
LT
2509}
2510
ffd1f4ed
MS
2511/*
2512 * same as __d_path but appends "(deleted)" for unlinked files.
2513 */
2514static int path_with_deleted(const struct path *path, struct path *root,
2515 char **buf, int *buflen)
2516{
2517 prepend(buf, buflen, "\0", 1);
2518 if (d_unlinked(path->dentry)) {
2519 int error = prepend(buf, buflen, " (deleted)", 10);
2520 if (error)
2521 return error;
2522 }
2523
2524 return prepend_path(path, root, buf, buflen);
2525}
2526
8df9d1a4
MS
2527static int prepend_unreachable(char **buffer, int *buflen)
2528{
2529 return prepend(buffer, buflen, "(unreachable)", 13);
2530}
2531
a03a8a70
JB
2532/**
2533 * d_path - return the path of a dentry
cf28b486 2534 * @path: path to report
a03a8a70
JB
2535 * @buf: buffer to return value in
2536 * @buflen: buffer length
2537 *
2538 * Convert a dentry into an ASCII path name. If the entry has been deleted
2539 * the string " (deleted)" is appended. Note that this is ambiguous.
2540 *
52afeefb
AV
2541 * Returns a pointer into the buffer or an error code if the path was
2542 * too long. Note: Callers should use the returned pointer, not the passed
2543 * in buffer, to use the name! The implementation often starts at an offset
2544 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2545 *
31f3e0b3 2546 * "buflen" should be positive.
a03a8a70 2547 */
20d4fdc1 2548char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2549{
ffd1f4ed 2550 char *res = buf + buflen;
6ac08c39 2551 struct path root;
9d1bc601 2552 struct path tmp;
ffd1f4ed 2553 int error;
1da177e4 2554
c23fbb6b
ED
2555 /*
2556 * We have various synthetic filesystems that never get mounted. On
2557 * these filesystems dentries are never used for lookup purposes, and
2558 * thus don't need to be hashed. They also don't need a name until a
2559 * user wants to identify the object in /proc/pid/fd/. The little hack
2560 * below allows us to generate a name for these objects on demand:
2561 */
cf28b486
JB
2562 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2563 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2564
f7ad3c6b 2565 get_fs_root(current->fs, &root);
949854d0 2566 write_seqlock(&rename_lock);
9d1bc601 2567 tmp = root;
ffd1f4ed
MS
2568 error = path_with_deleted(path, &tmp, &res, &buflen);
2569 if (error)
2570 res = ERR_PTR(error);
949854d0 2571 write_sequnlock(&rename_lock);
6ac08c39 2572 path_put(&root);
1da177e4
LT
2573 return res;
2574}
ec4f8605 2575EXPORT_SYMBOL(d_path);
1da177e4 2576
8df9d1a4
MS
2577/**
2578 * d_path_with_unreachable - return the path of a dentry
2579 * @path: path to report
2580 * @buf: buffer to return value in
2581 * @buflen: buffer length
2582 *
2583 * The difference from d_path() is that this prepends "(unreachable)"
2584 * to paths which are unreachable from the current process' root.
2585 */
2586char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2587{
2588 char *res = buf + buflen;
2589 struct path root;
2590 struct path tmp;
2591 int error;
2592
2593 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2594 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2595
2596 get_fs_root(current->fs, &root);
949854d0 2597 write_seqlock(&rename_lock);
8df9d1a4
MS
2598 tmp = root;
2599 error = path_with_deleted(path, &tmp, &res, &buflen);
2600 if (!error && !path_equal(&tmp, &root))
2601 error = prepend_unreachable(&res, &buflen);
949854d0 2602 write_sequnlock(&rename_lock);
8df9d1a4
MS
2603 path_put(&root);
2604 if (error)
2605 res = ERR_PTR(error);
2606
2607 return res;
2608}
2609
c23fbb6b
ED
2610/*
2611 * Helper function for dentry_operations.d_dname() members
2612 */
2613char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2614 const char *fmt, ...)
2615{
2616 va_list args;
2617 char temp[64];
2618 int sz;
2619
2620 va_start(args, fmt);
2621 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2622 va_end(args);
2623
2624 if (sz > sizeof(temp) || sz > buflen)
2625 return ERR_PTR(-ENAMETOOLONG);
2626
2627 buffer += buflen - sz;
2628 return memcpy(buffer, temp, sz);
2629}
2630
6092d048
RP
2631/*
2632 * Write full pathname from the root of the filesystem into the buffer.
2633 */
ec2447c2 2634static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2635{
2636 char *end = buf + buflen;
2637 char *retval;
2638
6092d048 2639 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2640 if (buflen < 1)
2641 goto Elong;
2642 /* Get '/' right */
2643 retval = end-1;
2644 *retval = '/';
2645
cdd16d02
MS
2646 while (!IS_ROOT(dentry)) {
2647 struct dentry *parent = dentry->d_parent;
9abca360 2648 int error;
6092d048 2649
6092d048 2650 prefetch(parent);
9abca360
NP
2651 spin_lock(&dentry->d_lock);
2652 error = prepend_name(&end, &buflen, &dentry->d_name);
2653 spin_unlock(&dentry->d_lock);
2654 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2655 goto Elong;
2656
2657 retval = end;
2658 dentry = parent;
2659 }
c103135c
AV
2660 return retval;
2661Elong:
2662 return ERR_PTR(-ENAMETOOLONG);
2663}
ec2447c2
NP
2664
2665char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2666{
2667 char *retval;
2668
949854d0 2669 write_seqlock(&rename_lock);
ec2447c2 2670 retval = __dentry_path(dentry, buf, buflen);
949854d0 2671 write_sequnlock(&rename_lock);
ec2447c2
NP
2672
2673 return retval;
2674}
2675EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2676
2677char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2678{
2679 char *p = NULL;
2680 char *retval;
2681
949854d0 2682 write_seqlock(&rename_lock);
c103135c
AV
2683 if (d_unlinked(dentry)) {
2684 p = buf + buflen;
2685 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2686 goto Elong;
2687 buflen++;
2688 }
2689 retval = __dentry_path(dentry, buf, buflen);
949854d0 2690 write_sequnlock(&rename_lock);
c103135c
AV
2691 if (!IS_ERR(retval) && p)
2692 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2693 return retval;
2694Elong:
6092d048
RP
2695 return ERR_PTR(-ENAMETOOLONG);
2696}
2697
1da177e4
LT
2698/*
2699 * NOTE! The user-level library version returns a
2700 * character pointer. The kernel system call just
2701 * returns the length of the buffer filled (which
2702 * includes the ending '\0' character), or a negative
2703 * error value. So libc would do something like
2704 *
2705 * char *getcwd(char * buf, size_t size)
2706 * {
2707 * int retval;
2708 *
2709 * retval = sys_getcwd(buf, size);
2710 * if (retval >= 0)
2711 * return buf;
2712 * errno = -retval;
2713 * return NULL;
2714 * }
2715 */
3cdad428 2716SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2717{
552ce544 2718 int error;
6ac08c39 2719 struct path pwd, root;
552ce544 2720 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2721
2722 if (!page)
2723 return -ENOMEM;
2724
f7ad3c6b 2725 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2726
552ce544 2727 error = -ENOENT;
949854d0 2728 write_seqlock(&rename_lock);
f3da392e 2729 if (!d_unlinked(pwd.dentry)) {
552ce544 2730 unsigned long len;
9d1bc601 2731 struct path tmp = root;
8df9d1a4
MS
2732 char *cwd = page + PAGE_SIZE;
2733 int buflen = PAGE_SIZE;
1da177e4 2734
8df9d1a4
MS
2735 prepend(&cwd, &buflen, "\0", 1);
2736 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2737 write_sequnlock(&rename_lock);
552ce544 2738
8df9d1a4 2739 if (error)
552ce544
LT
2740 goto out;
2741
8df9d1a4
MS
2742 /* Unreachable from current root */
2743 if (!path_equal(&tmp, &root)) {
2744 error = prepend_unreachable(&cwd, &buflen);
2745 if (error)
2746 goto out;
2747 }
2748
552ce544
LT
2749 error = -ERANGE;
2750 len = PAGE_SIZE + page - cwd;
2751 if (len <= size) {
2752 error = len;
2753 if (copy_to_user(buf, cwd, len))
2754 error = -EFAULT;
2755 }
949854d0
NP
2756 } else {
2757 write_sequnlock(&rename_lock);
949854d0 2758 }
1da177e4
LT
2759
2760out:
6ac08c39
JB
2761 path_put(&pwd);
2762 path_put(&root);
1da177e4
LT
2763 free_page((unsigned long) page);
2764 return error;
2765}
2766
2767/*
2768 * Test whether new_dentry is a subdirectory of old_dentry.
2769 *
2770 * Trivially implemented using the dcache structure
2771 */
2772
2773/**
2774 * is_subdir - is new dentry a subdirectory of old_dentry
2775 * @new_dentry: new dentry
2776 * @old_dentry: old dentry
2777 *
2778 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2779 * Returns 0 otherwise.
2780 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2781 */
2782
e2761a11 2783int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2784{
2785 int result;
949854d0 2786 unsigned seq;
1da177e4 2787
e2761a11
OH
2788 if (new_dentry == old_dentry)
2789 return 1;
2790
e2761a11 2791 do {
1da177e4 2792 /* for restarting inner loop in case of seq retry */
1da177e4 2793 seq = read_seqbegin(&rename_lock);
949854d0
NP
2794 /*
2795 * Need rcu_readlock to protect against the d_parent trashing
2796 * due to d_move
2797 */
2798 rcu_read_lock();
e2761a11 2799 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2800 result = 1;
e2761a11
OH
2801 else
2802 result = 0;
949854d0 2803 rcu_read_unlock();
1da177e4 2804 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2805
2806 return result;
2807}
2808
2096f759
AV
2809int path_is_under(struct path *path1, struct path *path2)
2810{
2811 struct vfsmount *mnt = path1->mnt;
2812 struct dentry *dentry = path1->dentry;
2813 int res;
99b7db7b
NP
2814
2815 br_read_lock(vfsmount_lock);
2096f759
AV
2816 if (mnt != path2->mnt) {
2817 for (;;) {
2818 if (mnt->mnt_parent == mnt) {
99b7db7b 2819 br_read_unlock(vfsmount_lock);
2096f759
AV
2820 return 0;
2821 }
2822 if (mnt->mnt_parent == path2->mnt)
2823 break;
2824 mnt = mnt->mnt_parent;
2825 }
2826 dentry = mnt->mnt_mountpoint;
2827 }
2828 res = is_subdir(dentry, path2->dentry);
99b7db7b 2829 br_read_unlock(vfsmount_lock);
2096f759
AV
2830 return res;
2831}
2832EXPORT_SYMBOL(path_is_under);
2833
1da177e4
LT
2834void d_genocide(struct dentry *root)
2835{
949854d0 2836 struct dentry *this_parent;
1da177e4 2837 struct list_head *next;
949854d0 2838 unsigned seq;
58db63d0 2839 int locked = 0;
1da177e4 2840
949854d0 2841 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2842again:
2843 this_parent = root;
2fd6b7f5 2844 spin_lock(&this_parent->d_lock);
1da177e4
LT
2845repeat:
2846 next = this_parent->d_subdirs.next;
2847resume:
2848 while (next != &this_parent->d_subdirs) {
2849 struct list_head *tmp = next;
5160ee6f 2850 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2851 next = tmp->next;
949854d0 2852
da502956
NP
2853 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2854 if (d_unhashed(dentry) || !dentry->d_inode) {
2855 spin_unlock(&dentry->d_lock);
1da177e4 2856 continue;
da502956 2857 }
1da177e4 2858 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2859 spin_unlock(&this_parent->d_lock);
2860 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2861 this_parent = dentry;
2fd6b7f5 2862 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2863 goto repeat;
2864 }
949854d0
NP
2865 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2866 dentry->d_flags |= DCACHE_GENOCIDE;
2867 dentry->d_count--;
2868 }
b7ab39f6 2869 spin_unlock(&dentry->d_lock);
1da177e4
LT
2870 }
2871 if (this_parent != root) {
c826cb7d 2872 struct dentry *child = this_parent;
949854d0
NP
2873 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2874 this_parent->d_flags |= DCACHE_GENOCIDE;
2875 this_parent->d_count--;
2876 }
c826cb7d
LT
2877 this_parent = try_to_ascend(this_parent, locked, seq);
2878 if (!this_parent)
949854d0 2879 goto rename_retry;
949854d0 2880 next = child->d_u.d_child.next;
1da177e4
LT
2881 goto resume;
2882 }
2fd6b7f5 2883 spin_unlock(&this_parent->d_lock);
58db63d0 2884 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2885 goto rename_retry;
58db63d0
NP
2886 if (locked)
2887 write_sequnlock(&rename_lock);
2888 return;
2889
2890rename_retry:
2891 locked = 1;
2892 write_seqlock(&rename_lock);
2893 goto again;
1da177e4
LT
2894}
2895
2896/**
2897 * find_inode_number - check for dentry with name
2898 * @dir: directory to check
2899 * @name: Name to find.
2900 *
2901 * Check whether a dentry already exists for the given name,
2902 * and return the inode number if it has an inode. Otherwise
2903 * 0 is returned.
2904 *
2905 * This routine is used to post-process directory listings for
2906 * filesystems using synthetic inode numbers, and is necessary
2907 * to keep getcwd() working.
2908 */
2909
2910ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2911{
2912 struct dentry * dentry;
2913 ino_t ino = 0;
2914
3e7e241f
EB
2915 dentry = d_hash_and_lookup(dir, name);
2916 if (dentry) {
1da177e4
LT
2917 if (dentry->d_inode)
2918 ino = dentry->d_inode->i_ino;
2919 dput(dentry);
2920 }
1da177e4
LT
2921 return ino;
2922}
ec4f8605 2923EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2924
2925static __initdata unsigned long dhash_entries;
2926static int __init set_dhash_entries(char *str)
2927{
2928 if (!str)
2929 return 0;
2930 dhash_entries = simple_strtoul(str, &str, 0);
2931 return 1;
2932}
2933__setup("dhash_entries=", set_dhash_entries);
2934
2935static void __init dcache_init_early(void)
2936{
2937 int loop;
2938
2939 /* If hashes are distributed across NUMA nodes, defer
2940 * hash allocation until vmalloc space is available.
2941 */
2942 if (hashdist)
2943 return;
2944
2945 dentry_hashtable =
2946 alloc_large_system_hash("Dentry cache",
b07ad996 2947 sizeof(struct hlist_bl_head),
1da177e4
LT
2948 dhash_entries,
2949 13,
2950 HASH_EARLY,
2951 &d_hash_shift,
2952 &d_hash_mask,
2953 0);
2954
2955 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 2956 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
2957}
2958
74bf17cf 2959static void __init dcache_init(void)
1da177e4
LT
2960{
2961 int loop;
2962
2963 /*
2964 * A constructor could be added for stable state like the lists,
2965 * but it is probably not worth it because of the cache nature
2966 * of the dcache.
2967 */
0a31bd5f
CL
2968 dentry_cache = KMEM_CACHE(dentry,
2969 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
2970
2971 /* Hash may have been set up in dcache_init_early */
2972 if (!hashdist)
2973 return;
2974
2975 dentry_hashtable =
2976 alloc_large_system_hash("Dentry cache",
b07ad996 2977 sizeof(struct hlist_bl_head),
1da177e4
LT
2978 dhash_entries,
2979 13,
2980 0,
2981 &d_hash_shift,
2982 &d_hash_mask,
2983 0);
2984
2985 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 2986 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
2987}
2988
2989/* SLAB cache for __getname() consumers */
e18b890b 2990struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2991EXPORT_SYMBOL(names_cachep);
1da177e4 2992
1da177e4
LT
2993EXPORT_SYMBOL(d_genocide);
2994
1da177e4
LT
2995void __init vfs_caches_init_early(void)
2996{
2997 dcache_init_early();
2998 inode_init_early();
2999}
3000
3001void __init vfs_caches_init(unsigned long mempages)
3002{
3003 unsigned long reserve;
3004
3005 /* Base hash sizes on available memory, with a reserve equal to
3006 150% of current kernel size */
3007
3008 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3009 mempages -= reserve;
3010
3011 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3012 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3013
74bf17cf
DC
3014 dcache_init();
3015 inode_init();
1da177e4 3016 files_init(mempages);
74bf17cf 3017 mnt_init();
1da177e4
LT
3018 bdev_cache_init();
3019 chrdev_init();
3020}