lock_parent() needs to recheck if dentry got __dentry_kill'ed under it
[linux-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
7c0f6ba6 29#include <linux/uaccess.h>
1da177e4
LT
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
ceb5bdc2
NP
35#include <linux/bit_spinlock.h>
36#include <linux/rculist_bl.h>
268bb0ce 37#include <linux/prefetch.h>
dd179946 38#include <linux/ratelimit.h>
f6041567 39#include <linux/list_lru.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0 45 * dcache->d_inode->i_lock protects:
946e51f2 46 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
f1ee6162
N
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
19156840 51 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
946e51f2 61 * - d_u.d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6 65 * dentry->d_lock
19156840 66 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 67 * dcache_hash_bucket lock
f1ee6162 68 * s_roots lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
74c3cbe3 84__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 85
949854d0 86EXPORT_SYMBOL(rename_lock);
1da177e4 87
e18b890b 88static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 89
cdf01226
DH
90const struct qstr empty_name = QSTR_INIT("", 0);
91EXPORT_SYMBOL(empty_name);
92const struct qstr slash_name = QSTR_INIT("/", 1);
93EXPORT_SYMBOL(slash_name);
94
1da177e4
LT
95/*
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
99 *
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
102 */
1da177e4 103
fa3536cc 104static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 105
b07ad996 106static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 107
8387ff25 108static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 109{
854d3e63 110 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
111}
112
94bdd655
AV
113#define IN_LOOKUP_SHIFT 10
114static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
115
116static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
117 unsigned int hash)
118{
119 hash += (unsigned long) parent / L1_CACHE_BYTES;
120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
121}
122
123
1da177e4
LT
124/* Statistics gathering. */
125struct dentry_stat_t dentry_stat = {
126 .age_limit = 45,
127};
128
3942c07c 129static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 130static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
131
132#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
133
134/*
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
138 *
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
142 *
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
145 */
3942c07c 146static long get_nr_dentry(void)
3e880fb5
NP
147{
148 int i;
3942c07c 149 long sum = 0;
3e880fb5
NP
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry, i);
152 return sum < 0 ? 0 : sum;
153}
154
62d36c77
DC
155static long get_nr_dentry_unused(void)
156{
157 int i;
158 long sum = 0;
159 for_each_possible_cpu(i)
160 sum += per_cpu(nr_dentry_unused, i);
161 return sum < 0 ? 0 : sum;
162}
163
1f7e0616 164int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
165 size_t *lenp, loff_t *ppos)
166{
3e880fb5 167 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 168 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
170}
171#endif
172
5483f18e
LT
173/*
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
176 */
e419b4cc
LT
177#ifdef CONFIG_DCACHE_WORD_ACCESS
178
179#include <asm/word-at-a-time.h>
180/*
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
185 *
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
188 */
94753db5 189static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 190{
bfcfaa77 191 unsigned long a,b,mask;
bfcfaa77
LT
192
193 for (;;) {
bfe7aa6c 194 a = read_word_at_a_time(cs);
e419b4cc 195 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
196 if (tcount < sizeof(unsigned long))
197 break;
198 if (unlikely(a != b))
199 return 1;
200 cs += sizeof(unsigned long);
201 ct += sizeof(unsigned long);
202 tcount -= sizeof(unsigned long);
203 if (!tcount)
204 return 0;
205 }
a5c21dce 206 mask = bytemask_from_count(tcount);
bfcfaa77 207 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
208}
209
bfcfaa77 210#else
e419b4cc 211
94753db5 212static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 213{
5483f18e
LT
214 do {
215 if (*cs != *ct)
216 return 1;
217 cs++;
218 ct++;
219 tcount--;
220 } while (tcount);
221 return 0;
222}
223
e419b4cc
LT
224#endif
225
94753db5
LT
226static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
227{
94753db5
LT
228 /*
229 * Be careful about RCU walk racing with rename:
506458ef 230 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
231 *
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
239 *
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
243 */
506458ef 244 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 245
6326c71f 246 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
247}
248
8d85b484
AV
249struct external_name {
250 union {
251 atomic_t count;
252 struct rcu_head head;
253 } u;
254 unsigned char name[];
255};
256
257static inline struct external_name *external_name(struct dentry *dentry)
258{
259 return container_of(dentry->d_name.name, struct external_name, name[0]);
260}
261
9c82ab9c 262static void __d_free(struct rcu_head *head)
1da177e4 263{
9c82ab9c
CH
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
265
8d85b484
AV
266 kmem_cache_free(dentry_cache, dentry);
267}
268
269static void __d_free_external(struct rcu_head *head)
270{
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 272 kfree(external_name(dentry));
1da177e4
LT
273 kmem_cache_free(dentry_cache, dentry);
274}
275
810bb172
AV
276static inline int dname_external(const struct dentry *dentry)
277{
278 return dentry->d_name.name != dentry->d_iname;
279}
280
49d31c2f
AV
281void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
282{
283 spin_lock(&dentry->d_lock);
284 if (unlikely(dname_external(dentry))) {
285 struct external_name *p = external_name(dentry);
286 atomic_inc(&p->u.count);
287 spin_unlock(&dentry->d_lock);
288 name->name = p->name;
289 } else {
290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
291 spin_unlock(&dentry->d_lock);
292 name->name = name->inline_name;
293 }
294}
295EXPORT_SYMBOL(take_dentry_name_snapshot);
296
297void release_dentry_name_snapshot(struct name_snapshot *name)
298{
299 if (unlikely(name->name != name->inline_name)) {
300 struct external_name *p;
301 p = container_of(name->name, struct external_name, name[0]);
302 if (unlikely(atomic_dec_and_test(&p->u.count)))
303 kfree_rcu(p, u.head);
304 }
305}
306EXPORT_SYMBOL(release_dentry_name_snapshot);
307
4bf46a27
DH
308static inline void __d_set_inode_and_type(struct dentry *dentry,
309 struct inode *inode,
310 unsigned type_flags)
311{
312 unsigned flags;
313
314 dentry->d_inode = inode;
4bf46a27
DH
315 flags = READ_ONCE(dentry->d_flags);
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 flags |= type_flags;
318 WRITE_ONCE(dentry->d_flags, flags);
319}
320
4bf46a27
DH
321static inline void __d_clear_type_and_inode(struct dentry *dentry)
322{
323 unsigned flags = READ_ONCE(dentry->d_flags);
324
325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
326 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
327 dentry->d_inode = NULL;
328}
329
b4f0354e
AV
330static void dentry_free(struct dentry *dentry)
331{
946e51f2 332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
333 if (unlikely(dname_external(dentry))) {
334 struct external_name *p = external_name(dentry);
335 if (likely(atomic_dec_and_test(&p->u.count))) {
336 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
337 return;
338 }
339 }
b4f0354e
AV
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry->d_flags & DCACHE_RCUACCESS))
342 __d_free(&dentry->d_u.d_rcu);
343 else
344 call_rcu(&dentry->d_u.d_rcu, __d_free);
345}
346
1da177e4
LT
347/*
348 * Release the dentry's inode, using the filesystem
550dce01 349 * d_iput() operation if defined.
31e6b01f
NP
350 */
351static void dentry_unlink_inode(struct dentry * dentry)
352 __releases(dentry->d_lock)
873feea0 353 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
354{
355 struct inode *inode = dentry->d_inode;
550dce01 356 bool hashed = !d_unhashed(dentry);
a528aca7 357
550dce01
AV
358 if (hashed)
359 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 360 __d_clear_type_and_inode(dentry);
946e51f2 361 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
362 if (hashed)
363 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 364 spin_unlock(&dentry->d_lock);
873feea0 365 spin_unlock(&inode->i_lock);
31e6b01f
NP
366 if (!inode->i_nlink)
367 fsnotify_inoderemove(inode);
368 if (dentry->d_op && dentry->d_op->d_iput)
369 dentry->d_op->d_iput(dentry, inode);
370 else
371 iput(inode);
372}
373
89dc77bc
LT
374/*
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
378 *
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
381 *
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
384 *
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
387 */
388#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389static void d_lru_add(struct dentry *dentry)
390{
391 D_FLAG_VERIFY(dentry, 0);
392 dentry->d_flags |= DCACHE_LRU_LIST;
393 this_cpu_inc(nr_dentry_unused);
394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
395}
396
397static void d_lru_del(struct dentry *dentry)
398{
399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
400 dentry->d_flags &= ~DCACHE_LRU_LIST;
401 this_cpu_dec(nr_dentry_unused);
402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
403}
404
405static void d_shrink_del(struct dentry *dentry)
406{
407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
408 list_del_init(&dentry->d_lru);
409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 this_cpu_dec(nr_dentry_unused);
411}
412
413static void d_shrink_add(struct dentry *dentry, struct list_head *list)
414{
415 D_FLAG_VERIFY(dentry, 0);
416 list_add(&dentry->d_lru, list);
417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
418 this_cpu_inc(nr_dentry_unused);
419}
420
421/*
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
425 * private list.
426 */
3f97b163 427static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
428{
429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 dentry->d_flags &= ~DCACHE_LRU_LIST;
431 this_cpu_dec(nr_dentry_unused);
3f97b163 432 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
433}
434
3f97b163
VD
435static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
436 struct list_head *list)
89dc77bc
LT
437{
438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
439 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 440 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
441}
442
da3bbdd4 443/*
f6041567 444 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
445 */
446static void dentry_lru_add(struct dentry *dentry)
447{
89dc77bc
LT
448 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
449 d_lru_add(dentry);
563f4001
JB
450 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
451 dentry->d_flags |= DCACHE_REFERENCED;
da3bbdd4
KM
452}
453
789680d1
NP
454/**
455 * d_drop - drop a dentry
456 * @dentry: dentry to drop
457 *
458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459 * be found through a VFS lookup any more. Note that this is different from
460 * deleting the dentry - d_delete will try to mark the dentry negative if
461 * possible, giving a successful _negative_ lookup, while d_drop will
462 * just make the cache lookup fail.
463 *
464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465 * reason (NFS timeouts or autofs deletes).
466 *
61647823
N
467 * __d_drop requires dentry->d_lock
468 * ___d_drop doesn't mark dentry as "unhashed"
469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 470 */
61647823 471static void ___d_drop(struct dentry *dentry)
789680d1 472{
dea3667b 473 if (!d_unhashed(dentry)) {
b61625d2 474 struct hlist_bl_head *b;
7632e465
BF
475 /*
476 * Hashed dentries are normally on the dentry hashtable,
477 * with the exception of those newly allocated by
f1ee6162 478 * d_obtain_root, which are always IS_ROOT:
7632e465
BF
479 */
480 if (unlikely(IS_ROOT(dentry)))
f1ee6162 481 b = &dentry->d_sb->s_roots;
b61625d2 482 else
8387ff25 483 b = d_hash(dentry->d_name.hash);
b61625d2
AV
484
485 hlist_bl_lock(b);
486 __hlist_bl_del(&dentry->d_hash);
b61625d2 487 hlist_bl_unlock(b);
d614146d
AV
488 /* After this call, in-progress rcu-walk path lookup will fail. */
489 write_seqcount_invalidate(&dentry->d_seq);
789680d1
NP
490 }
491}
61647823
N
492
493void __d_drop(struct dentry *dentry)
494{
495 ___d_drop(dentry);
496 dentry->d_hash.pprev = NULL;
497}
789680d1
NP
498EXPORT_SYMBOL(__d_drop);
499
500void d_drop(struct dentry *dentry)
501{
789680d1
NP
502 spin_lock(&dentry->d_lock);
503 __d_drop(dentry);
504 spin_unlock(&dentry->d_lock);
789680d1
NP
505}
506EXPORT_SYMBOL(d_drop);
507
ba65dc5e
AV
508static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
509{
510 struct dentry *next;
511 /*
512 * Inform d_walk() and shrink_dentry_list() that we are no longer
513 * attached to the dentry tree
514 */
515 dentry->d_flags |= DCACHE_DENTRY_KILLED;
516 if (unlikely(list_empty(&dentry->d_child)))
517 return;
518 __list_del_entry(&dentry->d_child);
519 /*
520 * Cursors can move around the list of children. While we'd been
521 * a normal list member, it didn't matter - ->d_child.next would've
522 * been updated. However, from now on it won't be and for the
523 * things like d_walk() it might end up with a nasty surprise.
524 * Normally d_walk() doesn't care about cursors moving around -
525 * ->d_lock on parent prevents that and since a cursor has no children
526 * of its own, we get through it without ever unlocking the parent.
527 * There is one exception, though - if we ascend from a child that
528 * gets killed as soon as we unlock it, the next sibling is found
529 * using the value left in its ->d_child.next. And if _that_
530 * pointed to a cursor, and cursor got moved (e.g. by lseek())
531 * before d_walk() regains parent->d_lock, we'll end up skipping
532 * everything the cursor had been moved past.
533 *
534 * Solution: make sure that the pointer left behind in ->d_child.next
535 * points to something that won't be moving around. I.e. skip the
536 * cursors.
537 */
538 while (dentry->d_child.next != &parent->d_subdirs) {
539 next = list_entry(dentry->d_child.next, struct dentry, d_child);
540 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
541 break;
542 dentry->d_child.next = next->d_child.next;
543 }
544}
545
e55fd011 546static void __dentry_kill(struct dentry *dentry)
77812a1e 547{
41edf278
AV
548 struct dentry *parent = NULL;
549 bool can_free = true;
41edf278 550 if (!IS_ROOT(dentry))
77812a1e 551 parent = dentry->d_parent;
31e6b01f 552
0d98439e
LT
553 /*
554 * The dentry is now unrecoverably dead to the world.
555 */
556 lockref_mark_dead(&dentry->d_lockref);
557
f0023bc6 558 /*
f0023bc6
SW
559 * inform the fs via d_prune that this dentry is about to be
560 * unhashed and destroyed.
561 */
29266201 562 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
563 dentry->d_op->d_prune(dentry);
564
01b60351
AV
565 if (dentry->d_flags & DCACHE_LRU_LIST) {
566 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
567 d_lru_del(dentry);
01b60351 568 }
77812a1e
NP
569 /* if it was on the hash then remove it */
570 __d_drop(dentry);
ba65dc5e 571 dentry_unlist(dentry, parent);
03b3b889
AV
572 if (parent)
573 spin_unlock(&parent->d_lock);
550dce01
AV
574 if (dentry->d_inode)
575 dentry_unlink_inode(dentry);
576 else
577 spin_unlock(&dentry->d_lock);
03b3b889
AV
578 this_cpu_dec(nr_dentry);
579 if (dentry->d_op && dentry->d_op->d_release)
580 dentry->d_op->d_release(dentry);
581
41edf278
AV
582 spin_lock(&dentry->d_lock);
583 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
584 dentry->d_flags |= DCACHE_MAY_FREE;
585 can_free = false;
586 }
587 spin_unlock(&dentry->d_lock);
41edf278
AV
588 if (likely(can_free))
589 dentry_free(dentry);
e55fd011
AV
590}
591
592/*
593 * Finish off a dentry we've decided to kill.
594 * dentry->d_lock must be held, returns with it unlocked.
595 * If ref is non-zero, then decrement the refcount too.
596 * Returns dentry requiring refcount drop, or NULL if we're done.
597 */
8cbf74da 598static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
599 __releases(dentry->d_lock)
600{
601 struct inode *inode = dentry->d_inode;
602 struct dentry *parent = NULL;
603
604 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
605 goto failed;
606
607 if (!IS_ROOT(dentry)) {
608 parent = dentry->d_parent;
609 if (unlikely(!spin_trylock(&parent->d_lock))) {
610 if (inode)
611 spin_unlock(&inode->i_lock);
612 goto failed;
613 }
614 }
615
616 __dentry_kill(dentry);
03b3b889 617 return parent;
e55fd011
AV
618
619failed:
8cbf74da 620 spin_unlock(&dentry->d_lock);
e55fd011 621 return dentry; /* try again with same dentry */
77812a1e
NP
622}
623
046b961b
AV
624static inline struct dentry *lock_parent(struct dentry *dentry)
625{
626 struct dentry *parent = dentry->d_parent;
627 if (IS_ROOT(dentry))
628 return NULL;
360f5479 629 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 630 return NULL;
046b961b
AV
631 if (likely(spin_trylock(&parent->d_lock)))
632 return parent;
046b961b 633 rcu_read_lock();
c2338f2d 634 spin_unlock(&dentry->d_lock);
046b961b 635again:
66702eb5 636 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
637 spin_lock(&parent->d_lock);
638 /*
639 * We can't blindly lock dentry until we are sure
640 * that we won't violate the locking order.
641 * Any changes of dentry->d_parent must have
642 * been done with parent->d_lock held, so
643 * spin_lock() above is enough of a barrier
644 * for checking if it's still our child.
645 */
646 if (unlikely(parent != dentry->d_parent)) {
647 spin_unlock(&parent->d_lock);
648 goto again;
649 }
3b821409 650 if (parent != dentry) {
9f12600f 651 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3b821409
AV
652 if (unlikely(dentry->d_lockref.count < 0)) {
653 spin_unlock(&parent->d_lock);
654 parent = NULL;
655 }
656 } else {
046b961b 657 parent = NULL;
3b821409
AV
658 }
659 rcu_read_unlock();
046b961b
AV
660 return parent;
661}
662
360f5479
LT
663/*
664 * Try to do a lockless dput(), and return whether that was successful.
665 *
666 * If unsuccessful, we return false, having already taken the dentry lock.
667 *
668 * The caller needs to hold the RCU read lock, so that the dentry is
669 * guaranteed to stay around even if the refcount goes down to zero!
670 */
671static inline bool fast_dput(struct dentry *dentry)
672{
673 int ret;
674 unsigned int d_flags;
675
676 /*
677 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 678 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
679 */
680 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
681 return lockref_put_or_lock(&dentry->d_lockref);
682
683 /*
684 * .. otherwise, we can try to just decrement the
685 * lockref optimistically.
686 */
687 ret = lockref_put_return(&dentry->d_lockref);
688
689 /*
690 * If the lockref_put_return() failed due to the lock being held
691 * by somebody else, the fast path has failed. We will need to
692 * get the lock, and then check the count again.
693 */
694 if (unlikely(ret < 0)) {
695 spin_lock(&dentry->d_lock);
696 if (dentry->d_lockref.count > 1) {
697 dentry->d_lockref.count--;
698 spin_unlock(&dentry->d_lock);
699 return 1;
700 }
701 return 0;
702 }
703
704 /*
705 * If we weren't the last ref, we're done.
706 */
707 if (ret)
708 return 1;
709
710 /*
711 * Careful, careful. The reference count went down
712 * to zero, but we don't hold the dentry lock, so
713 * somebody else could get it again, and do another
714 * dput(), and we need to not race with that.
715 *
716 * However, there is a very special and common case
717 * where we don't care, because there is nothing to
718 * do: the dentry is still hashed, it does not have
719 * a 'delete' op, and it's referenced and already on
720 * the LRU list.
721 *
722 * NOTE! Since we aren't locked, these values are
723 * not "stable". However, it is sufficient that at
724 * some point after we dropped the reference the
725 * dentry was hashed and the flags had the proper
726 * value. Other dentry users may have re-gotten
727 * a reference to the dentry and change that, but
728 * our work is done - we can leave the dentry
729 * around with a zero refcount.
730 */
731 smp_rmb();
66702eb5 732 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 733 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
734
735 /* Nothing to do? Dropping the reference was all we needed? */
736 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
737 return 1;
738
739 /*
740 * Not the fast normal case? Get the lock. We've already decremented
741 * the refcount, but we'll need to re-check the situation after
742 * getting the lock.
743 */
744 spin_lock(&dentry->d_lock);
745
746 /*
747 * Did somebody else grab a reference to it in the meantime, and
748 * we're no longer the last user after all? Alternatively, somebody
749 * else could have killed it and marked it dead. Either way, we
750 * don't need to do anything else.
751 */
752 if (dentry->d_lockref.count) {
753 spin_unlock(&dentry->d_lock);
754 return 1;
755 }
756
757 /*
758 * Re-get the reference we optimistically dropped. We hold the
759 * lock, and we just tested that it was zero, so we can just
760 * set it to 1.
761 */
762 dentry->d_lockref.count = 1;
763 return 0;
764}
765
766
1da177e4
LT
767/*
768 * This is dput
769 *
770 * This is complicated by the fact that we do not want to put
771 * dentries that are no longer on any hash chain on the unused
772 * list: we'd much rather just get rid of them immediately.
773 *
774 * However, that implies that we have to traverse the dentry
775 * tree upwards to the parents which might _also_ now be
776 * scheduled for deletion (it may have been only waiting for
777 * its last child to go away).
778 *
779 * This tail recursion is done by hand as we don't want to depend
780 * on the compiler to always get this right (gcc generally doesn't).
781 * Real recursion would eat up our stack space.
782 */
783
784/*
785 * dput - release a dentry
786 * @dentry: dentry to release
787 *
788 * Release a dentry. This will drop the usage count and if appropriate
789 * call the dentry unlink method as well as removing it from the queues and
790 * releasing its resources. If the parent dentries were scheduled for release
791 * they too may now get deleted.
1da177e4 792 */
1da177e4
LT
793void dput(struct dentry *dentry)
794{
8aab6a27 795 if (unlikely(!dentry))
1da177e4
LT
796 return;
797
798repeat:
47be6184
WF
799 might_sleep();
800
360f5479
LT
801 rcu_read_lock();
802 if (likely(fast_dput(dentry))) {
803 rcu_read_unlock();
1da177e4 804 return;
360f5479
LT
805 }
806
807 /* Slow case: now with the dentry lock held */
808 rcu_read_unlock();
1da177e4 809
85c7f810
AV
810 WARN_ON(d_in_lookup(dentry));
811
8aab6a27
LT
812 /* Unreachable? Get rid of it */
813 if (unlikely(d_unhashed(dentry)))
814 goto kill_it;
815
75a6f82a
AV
816 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
817 goto kill_it;
818
8aab6a27 819 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 820 if (dentry->d_op->d_delete(dentry))
61f3dee4 821 goto kill_it;
1da177e4 822 }
265ac902 823
a4633357 824 dentry_lru_add(dentry);
265ac902 825
98474236 826 dentry->d_lockref.count--;
61f3dee4 827 spin_unlock(&dentry->d_lock);
1da177e4
LT
828 return;
829
d52b9086 830kill_it:
8cbf74da 831 dentry = dentry_kill(dentry);
47be6184
WF
832 if (dentry) {
833 cond_resched();
d52b9086 834 goto repeat;
47be6184 835 }
1da177e4 836}
ec4f8605 837EXPORT_SYMBOL(dput);
1da177e4 838
1da177e4 839
b5c84bf6 840/* This must be called with d_lock held */
dc0474be 841static inline void __dget_dlock(struct dentry *dentry)
23044507 842{
98474236 843 dentry->d_lockref.count++;
23044507
NP
844}
845
dc0474be 846static inline void __dget(struct dentry *dentry)
1da177e4 847{
98474236 848 lockref_get(&dentry->d_lockref);
1da177e4
LT
849}
850
b7ab39f6
NP
851struct dentry *dget_parent(struct dentry *dentry)
852{
df3d0bbc 853 int gotref;
b7ab39f6
NP
854 struct dentry *ret;
855
df3d0bbc
WL
856 /*
857 * Do optimistic parent lookup without any
858 * locking.
859 */
860 rcu_read_lock();
66702eb5 861 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
862 gotref = lockref_get_not_zero(&ret->d_lockref);
863 rcu_read_unlock();
864 if (likely(gotref)) {
66702eb5 865 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
866 return ret;
867 dput(ret);
868 }
869
b7ab39f6 870repeat:
a734eb45
NP
871 /*
872 * Don't need rcu_dereference because we re-check it was correct under
873 * the lock.
874 */
875 rcu_read_lock();
b7ab39f6 876 ret = dentry->d_parent;
a734eb45
NP
877 spin_lock(&ret->d_lock);
878 if (unlikely(ret != dentry->d_parent)) {
879 spin_unlock(&ret->d_lock);
880 rcu_read_unlock();
b7ab39f6
NP
881 goto repeat;
882 }
a734eb45 883 rcu_read_unlock();
98474236
WL
884 BUG_ON(!ret->d_lockref.count);
885 ret->d_lockref.count++;
b7ab39f6 886 spin_unlock(&ret->d_lock);
b7ab39f6
NP
887 return ret;
888}
889EXPORT_SYMBOL(dget_parent);
890
1da177e4
LT
891/**
892 * d_find_alias - grab a hashed alias of inode
893 * @inode: inode in question
1da177e4
LT
894 *
895 * If inode has a hashed alias, or is a directory and has any alias,
896 * acquire the reference to alias and return it. Otherwise return NULL.
897 * Notice that if inode is a directory there can be only one alias and
898 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
899 * of a filesystem, or if the directory was renamed and d_revalidate
900 * was the first vfs operation to notice.
1da177e4 901 *
21c0d8fd 902 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 903 * any other hashed alias over that one.
1da177e4 904 */
52ed46f0 905static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 906{
da502956 907 struct dentry *alias, *discon_alias;
1da177e4 908
da502956
NP
909again:
910 discon_alias = NULL;
946e51f2 911 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 912 spin_lock(&alias->d_lock);
1da177e4 913 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 914 if (IS_ROOT(alias) &&
da502956 915 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 916 discon_alias = alias;
52ed46f0 917 } else {
dc0474be 918 __dget_dlock(alias);
da502956
NP
919 spin_unlock(&alias->d_lock);
920 return alias;
921 }
922 }
923 spin_unlock(&alias->d_lock);
924 }
925 if (discon_alias) {
926 alias = discon_alias;
927 spin_lock(&alias->d_lock);
928 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
929 __dget_dlock(alias);
930 spin_unlock(&alias->d_lock);
931 return alias;
1da177e4 932 }
da502956
NP
933 spin_unlock(&alias->d_lock);
934 goto again;
1da177e4 935 }
da502956 936 return NULL;
1da177e4
LT
937}
938
da502956 939struct dentry *d_find_alias(struct inode *inode)
1da177e4 940{
214fda1f
DH
941 struct dentry *de = NULL;
942
b3d9b7a3 943 if (!hlist_empty(&inode->i_dentry)) {
873feea0 944 spin_lock(&inode->i_lock);
52ed46f0 945 de = __d_find_alias(inode);
873feea0 946 spin_unlock(&inode->i_lock);
214fda1f 947 }
1da177e4
LT
948 return de;
949}
ec4f8605 950EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
951
952/*
953 * Try to kill dentries associated with this inode.
954 * WARNING: you must own a reference to inode.
955 */
956void d_prune_aliases(struct inode *inode)
957{
0cdca3f9 958 struct dentry *dentry;
1da177e4 959restart:
873feea0 960 spin_lock(&inode->i_lock);
946e51f2 961 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 962 spin_lock(&dentry->d_lock);
98474236 963 if (!dentry->d_lockref.count) {
29355c39
AV
964 struct dentry *parent = lock_parent(dentry);
965 if (likely(!dentry->d_lockref.count)) {
966 __dentry_kill(dentry);
4a7795d3 967 dput(parent);
29355c39
AV
968 goto restart;
969 }
970 if (parent)
971 spin_unlock(&parent->d_lock);
1da177e4
LT
972 }
973 spin_unlock(&dentry->d_lock);
974 }
873feea0 975 spin_unlock(&inode->i_lock);
1da177e4 976}
ec4f8605 977EXPORT_SYMBOL(d_prune_aliases);
1da177e4 978
3049cfe2 979static void shrink_dentry_list(struct list_head *list)
1da177e4 980{
5c47e6d0 981 struct dentry *dentry, *parent;
da3bbdd4 982
60942f2f 983 while (!list_empty(list)) {
ff2fde99 984 struct inode *inode;
60942f2f 985 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 986 spin_lock(&dentry->d_lock);
046b961b
AV
987 parent = lock_parent(dentry);
988
dd1f6b2e
DC
989 /*
990 * The dispose list is isolated and dentries are not accounted
991 * to the LRU here, so we can simply remove it from the list
992 * here regardless of whether it is referenced or not.
993 */
89dc77bc 994 d_shrink_del(dentry);
dd1f6b2e 995
1da177e4
LT
996 /*
997 * We found an inuse dentry which was not removed from
dd1f6b2e 998 * the LRU because of laziness during lookup. Do not free it.
1da177e4 999 */
360f5479 1000 if (dentry->d_lockref.count > 0) {
da3bbdd4 1001 spin_unlock(&dentry->d_lock);
046b961b
AV
1002 if (parent)
1003 spin_unlock(&parent->d_lock);
1da177e4
LT
1004 continue;
1005 }
77812a1e 1006
64fd72e0
AV
1007
1008 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1009 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1010 spin_unlock(&dentry->d_lock);
046b961b
AV
1011 if (parent)
1012 spin_unlock(&parent->d_lock);
64fd72e0
AV
1013 if (can_free)
1014 dentry_free(dentry);
1015 continue;
1016 }
1017
ff2fde99
AV
1018 inode = dentry->d_inode;
1019 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 1020 d_shrink_add(dentry, list);
dd1f6b2e 1021 spin_unlock(&dentry->d_lock);
046b961b
AV
1022 if (parent)
1023 spin_unlock(&parent->d_lock);
5c47e6d0 1024 continue;
dd1f6b2e 1025 }
ff2fde99 1026
ff2fde99 1027 __dentry_kill(dentry);
046b961b 1028
5c47e6d0
AV
1029 /*
1030 * We need to prune ancestors too. This is necessary to prevent
1031 * quadratic behavior of shrink_dcache_parent(), but is also
1032 * expected to be beneficial in reducing dentry cache
1033 * fragmentation.
1034 */
1035 dentry = parent;
b2b80195
AV
1036 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1037 parent = lock_parent(dentry);
1038 if (dentry->d_lockref.count != 1) {
1039 dentry->d_lockref.count--;
1040 spin_unlock(&dentry->d_lock);
1041 if (parent)
1042 spin_unlock(&parent->d_lock);
1043 break;
1044 }
1045 inode = dentry->d_inode; /* can't be NULL */
1046 if (unlikely(!spin_trylock(&inode->i_lock))) {
1047 spin_unlock(&dentry->d_lock);
1048 if (parent)
1049 spin_unlock(&parent->d_lock);
1050 cpu_relax();
1051 continue;
1052 }
1053 __dentry_kill(dentry);
1054 dentry = parent;
1055 }
da3bbdd4 1056 }
3049cfe2
CH
1057}
1058
3f97b163
VD
1059static enum lru_status dentry_lru_isolate(struct list_head *item,
1060 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1061{
1062 struct list_head *freeable = arg;
1063 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1064
1065
1066 /*
1067 * we are inverting the lru lock/dentry->d_lock here,
1068 * so use a trylock. If we fail to get the lock, just skip
1069 * it
1070 */
1071 if (!spin_trylock(&dentry->d_lock))
1072 return LRU_SKIP;
1073
1074 /*
1075 * Referenced dentries are still in use. If they have active
1076 * counts, just remove them from the LRU. Otherwise give them
1077 * another pass through the LRU.
1078 */
1079 if (dentry->d_lockref.count) {
3f97b163 1080 d_lru_isolate(lru, dentry);
f6041567
DC
1081 spin_unlock(&dentry->d_lock);
1082 return LRU_REMOVED;
1083 }
1084
1085 if (dentry->d_flags & DCACHE_REFERENCED) {
1086 dentry->d_flags &= ~DCACHE_REFERENCED;
1087 spin_unlock(&dentry->d_lock);
1088
1089 /*
1090 * The list move itself will be made by the common LRU code. At
1091 * this point, we've dropped the dentry->d_lock but keep the
1092 * lru lock. This is safe to do, since every list movement is
1093 * protected by the lru lock even if both locks are held.
1094 *
1095 * This is guaranteed by the fact that all LRU management
1096 * functions are intermediated by the LRU API calls like
1097 * list_lru_add and list_lru_del. List movement in this file
1098 * only ever occur through this functions or through callbacks
1099 * like this one, that are called from the LRU API.
1100 *
1101 * The only exceptions to this are functions like
1102 * shrink_dentry_list, and code that first checks for the
1103 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1104 * operating only with stack provided lists after they are
1105 * properly isolated from the main list. It is thus, always a
1106 * local access.
1107 */
1108 return LRU_ROTATE;
1109 }
1110
3f97b163 1111 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1112 spin_unlock(&dentry->d_lock);
1113
1114 return LRU_REMOVED;
1115}
1116
3049cfe2 1117/**
b48f03b3
DC
1118 * prune_dcache_sb - shrink the dcache
1119 * @sb: superblock
503c358c 1120 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1121 *
503c358c
VD
1122 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1123 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1124 * function.
3049cfe2 1125 *
b48f03b3
DC
1126 * This function may fail to free any resources if all the dentries are in
1127 * use.
3049cfe2 1128 */
503c358c 1129long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1130{
f6041567
DC
1131 LIST_HEAD(dispose);
1132 long freed;
3049cfe2 1133
503c358c
VD
1134 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1135 dentry_lru_isolate, &dispose);
f6041567 1136 shrink_dentry_list(&dispose);
0a234c6d 1137 return freed;
da3bbdd4 1138}
23044507 1139
4e717f5c 1140static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1141 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1142{
4e717f5c
GC
1143 struct list_head *freeable = arg;
1144 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1145
4e717f5c
GC
1146 /*
1147 * we are inverting the lru lock/dentry->d_lock here,
1148 * so use a trylock. If we fail to get the lock, just skip
1149 * it
1150 */
1151 if (!spin_trylock(&dentry->d_lock))
1152 return LRU_SKIP;
1153
3f97b163 1154 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1155 spin_unlock(&dentry->d_lock);
ec33679d 1156
4e717f5c 1157 return LRU_REMOVED;
da3bbdd4
KM
1158}
1159
4e717f5c 1160
1da177e4
LT
1161/**
1162 * shrink_dcache_sb - shrink dcache for a superblock
1163 * @sb: superblock
1164 *
3049cfe2
CH
1165 * Shrink the dcache for the specified super block. This is used to free
1166 * the dcache before unmounting a file system.
1da177e4 1167 */
3049cfe2 1168void shrink_dcache_sb(struct super_block *sb)
1da177e4 1169{
4e717f5c
GC
1170 long freed;
1171
1172 do {
1173 LIST_HEAD(dispose);
1174
1175 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1176 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1177
4e717f5c
GC
1178 this_cpu_sub(nr_dentry_unused, freed);
1179 shrink_dentry_list(&dispose);
b17c070f
ST
1180 cond_resched();
1181 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1182}
ec4f8605 1183EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1184
db14fc3a
MS
1185/**
1186 * enum d_walk_ret - action to talke during tree walk
1187 * @D_WALK_CONTINUE: contrinue walk
1188 * @D_WALK_QUIT: quit walk
1189 * @D_WALK_NORETRY: quit when retry is needed
1190 * @D_WALK_SKIP: skip this dentry and its children
1191 */
1192enum d_walk_ret {
1193 D_WALK_CONTINUE,
1194 D_WALK_QUIT,
1195 D_WALK_NORETRY,
1196 D_WALK_SKIP,
1197};
c826cb7d 1198
1da177e4 1199/**
db14fc3a
MS
1200 * d_walk - walk the dentry tree
1201 * @parent: start of walk
1202 * @data: data passed to @enter() and @finish()
1203 * @enter: callback when first entering the dentry
1204 * @finish: callback when successfully finished the walk
1da177e4 1205 *
db14fc3a 1206 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1207 */
db14fc3a
MS
1208static void d_walk(struct dentry *parent, void *data,
1209 enum d_walk_ret (*enter)(void *, struct dentry *),
1210 void (*finish)(void *))
1da177e4 1211{
949854d0 1212 struct dentry *this_parent;
1da177e4 1213 struct list_head *next;
48f5ec21 1214 unsigned seq = 0;
db14fc3a
MS
1215 enum d_walk_ret ret;
1216 bool retry = true;
949854d0 1217
58db63d0 1218again:
48f5ec21 1219 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1220 this_parent = parent;
2fd6b7f5 1221 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1222
1223 ret = enter(data, this_parent);
1224 switch (ret) {
1225 case D_WALK_CONTINUE:
1226 break;
1227 case D_WALK_QUIT:
1228 case D_WALK_SKIP:
1229 goto out_unlock;
1230 case D_WALK_NORETRY:
1231 retry = false;
1232 break;
1233 }
1da177e4
LT
1234repeat:
1235 next = this_parent->d_subdirs.next;
1236resume:
1237 while (next != &this_parent->d_subdirs) {
1238 struct list_head *tmp = next;
946e51f2 1239 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1240 next = tmp->next;
2fd6b7f5 1241
ba65dc5e
AV
1242 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1243 continue;
1244
2fd6b7f5 1245 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1246
1247 ret = enter(data, dentry);
1248 switch (ret) {
1249 case D_WALK_CONTINUE:
1250 break;
1251 case D_WALK_QUIT:
2fd6b7f5 1252 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1253 goto out_unlock;
1254 case D_WALK_NORETRY:
1255 retry = false;
1256 break;
1257 case D_WALK_SKIP:
1258 spin_unlock(&dentry->d_lock);
1259 continue;
2fd6b7f5 1260 }
db14fc3a 1261
1da177e4 1262 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1263 spin_unlock(&this_parent->d_lock);
1264 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1265 this_parent = dentry;
2fd6b7f5 1266 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1267 goto repeat;
1268 }
2fd6b7f5 1269 spin_unlock(&dentry->d_lock);
1da177e4
LT
1270 }
1271 /*
1272 * All done at this level ... ascend and resume the search.
1273 */
ca5358ef
AV
1274 rcu_read_lock();
1275ascend:
1da177e4 1276 if (this_parent != parent) {
c826cb7d 1277 struct dentry *child = this_parent;
31dec132
AV
1278 this_parent = child->d_parent;
1279
31dec132
AV
1280 spin_unlock(&child->d_lock);
1281 spin_lock(&this_parent->d_lock);
1282
ca5358ef
AV
1283 /* might go back up the wrong parent if we have had a rename. */
1284 if (need_seqretry(&rename_lock, seq))
949854d0 1285 goto rename_retry;
2159184e
AV
1286 /* go into the first sibling still alive */
1287 do {
1288 next = child->d_child.next;
ca5358ef
AV
1289 if (next == &this_parent->d_subdirs)
1290 goto ascend;
1291 child = list_entry(next, struct dentry, d_child);
2159184e 1292 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1293 rcu_read_unlock();
1da177e4
LT
1294 goto resume;
1295 }
ca5358ef 1296 if (need_seqretry(&rename_lock, seq))
949854d0 1297 goto rename_retry;
ca5358ef 1298 rcu_read_unlock();
db14fc3a
MS
1299 if (finish)
1300 finish(data);
1301
1302out_unlock:
1303 spin_unlock(&this_parent->d_lock);
48f5ec21 1304 done_seqretry(&rename_lock, seq);
db14fc3a 1305 return;
58db63d0
NP
1306
1307rename_retry:
ca5358ef
AV
1308 spin_unlock(&this_parent->d_lock);
1309 rcu_read_unlock();
1310 BUG_ON(seq & 1);
db14fc3a
MS
1311 if (!retry)
1312 return;
48f5ec21 1313 seq = 1;
58db63d0 1314 goto again;
1da177e4 1315}
db14fc3a 1316
01619491
IK
1317struct check_mount {
1318 struct vfsmount *mnt;
1319 unsigned int mounted;
1320};
1321
1322static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1323{
1324 struct check_mount *info = data;
1325 struct path path = { .mnt = info->mnt, .dentry = dentry };
1326
1327 if (likely(!d_mountpoint(dentry)))
1328 return D_WALK_CONTINUE;
1329 if (__path_is_mountpoint(&path)) {
1330 info->mounted = 1;
1331 return D_WALK_QUIT;
1332 }
1333 return D_WALK_CONTINUE;
1334}
1335
1336/**
1337 * path_has_submounts - check for mounts over a dentry in the
1338 * current namespace.
1339 * @parent: path to check.
1340 *
1341 * Return true if the parent or its subdirectories contain
1342 * a mount point in the current namespace.
1343 */
1344int path_has_submounts(const struct path *parent)
1345{
1346 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1347
1348 read_seqlock_excl(&mount_lock);
1349 d_walk(parent->dentry, &data, path_check_mount, NULL);
1350 read_sequnlock_excl(&mount_lock);
1351
1352 return data.mounted;
1353}
1354EXPORT_SYMBOL(path_has_submounts);
1355
eed81007
MS
1356/*
1357 * Called by mount code to set a mountpoint and check if the mountpoint is
1358 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1359 * subtree can become unreachable).
1360 *
1ffe46d1 1361 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1362 * this reason take rename_lock and d_lock on dentry and ancestors.
1363 */
1364int d_set_mounted(struct dentry *dentry)
1365{
1366 struct dentry *p;
1367 int ret = -ENOENT;
1368 write_seqlock(&rename_lock);
1369 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1370 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1371 spin_lock(&p->d_lock);
1372 if (unlikely(d_unhashed(p))) {
1373 spin_unlock(&p->d_lock);
1374 goto out;
1375 }
1376 spin_unlock(&p->d_lock);
1377 }
1378 spin_lock(&dentry->d_lock);
1379 if (!d_unlinked(dentry)) {
3895dbf8
EB
1380 ret = -EBUSY;
1381 if (!d_mountpoint(dentry)) {
1382 dentry->d_flags |= DCACHE_MOUNTED;
1383 ret = 0;
1384 }
eed81007
MS
1385 }
1386 spin_unlock(&dentry->d_lock);
1387out:
1388 write_sequnlock(&rename_lock);
1389 return ret;
1390}
1391
1da177e4 1392/*
fd517909 1393 * Search the dentry child list of the specified parent,
1da177e4
LT
1394 * and move any unused dentries to the end of the unused
1395 * list for prune_dcache(). We descend to the next level
1396 * whenever the d_subdirs list is non-empty and continue
1397 * searching.
1398 *
1399 * It returns zero iff there are no unused children,
1400 * otherwise it returns the number of children moved to
1401 * the end of the unused list. This may not be the total
1402 * number of unused children, because select_parent can
1403 * drop the lock and return early due to latency
1404 * constraints.
1405 */
1da177e4 1406
db14fc3a
MS
1407struct select_data {
1408 struct dentry *start;
1409 struct list_head dispose;
1410 int found;
1411};
23044507 1412
db14fc3a
MS
1413static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1414{
1415 struct select_data *data = _data;
1416 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1417
db14fc3a
MS
1418 if (data->start == dentry)
1419 goto out;
2fd6b7f5 1420
fe91522a 1421 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1422 data->found++;
fe91522a
AV
1423 } else {
1424 if (dentry->d_flags & DCACHE_LRU_LIST)
1425 d_lru_del(dentry);
1426 if (!dentry->d_lockref.count) {
1427 d_shrink_add(dentry, &data->dispose);
1428 data->found++;
1429 }
1da177e4 1430 }
db14fc3a
MS
1431 /*
1432 * We can return to the caller if we have found some (this
1433 * ensures forward progress). We'll be coming back to find
1434 * the rest.
1435 */
fe91522a
AV
1436 if (!list_empty(&data->dispose))
1437 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1438out:
db14fc3a 1439 return ret;
1da177e4
LT
1440}
1441
1442/**
1443 * shrink_dcache_parent - prune dcache
1444 * @parent: parent of entries to prune
1445 *
1446 * Prune the dcache to remove unused children of the parent dentry.
1447 */
db14fc3a 1448void shrink_dcache_parent(struct dentry *parent)
1da177e4 1449{
db14fc3a
MS
1450 for (;;) {
1451 struct select_data data;
1da177e4 1452
db14fc3a
MS
1453 INIT_LIST_HEAD(&data.dispose);
1454 data.start = parent;
1455 data.found = 0;
1456
1457 d_walk(parent, &data, select_collect, NULL);
1458 if (!data.found)
1459 break;
1460
1461 shrink_dentry_list(&data.dispose);
421348f1
GT
1462 cond_resched();
1463 }
1da177e4 1464}
ec4f8605 1465EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1466
9c8c10e2 1467static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1468{
9c8c10e2
AV
1469 /* it has busy descendents; complain about those instead */
1470 if (!list_empty(&dentry->d_subdirs))
1471 return D_WALK_CONTINUE;
42c32608 1472
9c8c10e2
AV
1473 /* root with refcount 1 is fine */
1474 if (dentry == _data && dentry->d_lockref.count == 1)
1475 return D_WALK_CONTINUE;
1476
1477 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1478 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1479 dentry,
1480 dentry->d_inode ?
1481 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1482 dentry,
42c32608
AV
1483 dentry->d_lockref.count,
1484 dentry->d_sb->s_type->name,
1485 dentry->d_sb->s_id);
9c8c10e2
AV
1486 WARN_ON(1);
1487 return D_WALK_CONTINUE;
1488}
1489
1490static void do_one_tree(struct dentry *dentry)
1491{
1492 shrink_dcache_parent(dentry);
1493 d_walk(dentry, dentry, umount_check, NULL);
1494 d_drop(dentry);
1495 dput(dentry);
42c32608
AV
1496}
1497
1498/*
1499 * destroy the dentries attached to a superblock on unmounting
1500 */
1501void shrink_dcache_for_umount(struct super_block *sb)
1502{
1503 struct dentry *dentry;
1504
9c8c10e2 1505 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1506
1507 dentry = sb->s_root;
1508 sb->s_root = NULL;
9c8c10e2 1509 do_one_tree(dentry);
42c32608 1510
f1ee6162
N
1511 while (!hlist_bl_empty(&sb->s_roots)) {
1512 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1513 do_one_tree(dentry);
42c32608
AV
1514 }
1515}
1516
8ed936b5
EB
1517struct detach_data {
1518 struct select_data select;
1519 struct dentry *mountpoint;
1520};
1521static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1522{
8ed936b5 1523 struct detach_data *data = _data;
848ac114
MS
1524
1525 if (d_mountpoint(dentry)) {
8ed936b5
EB
1526 __dget_dlock(dentry);
1527 data->mountpoint = dentry;
848ac114
MS
1528 return D_WALK_QUIT;
1529 }
1530
8ed936b5 1531 return select_collect(&data->select, dentry);
848ac114
MS
1532}
1533
1534static void check_and_drop(void *_data)
1535{
8ed936b5 1536 struct detach_data *data = _data;
848ac114 1537
81be24d2 1538 if (!data->mountpoint && list_empty(&data->select.dispose))
8ed936b5 1539 __d_drop(data->select.start);
848ac114
MS
1540}
1541
1542/**
1ffe46d1
EB
1543 * d_invalidate - detach submounts, prune dcache, and drop
1544 * @dentry: dentry to invalidate (aka detach, prune and drop)
1545 *
1ffe46d1 1546 * no dcache lock.
848ac114 1547 *
8ed936b5
EB
1548 * The final d_drop is done as an atomic operation relative to
1549 * rename_lock ensuring there are no races with d_set_mounted. This
1550 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1551 */
5542aa2f 1552void d_invalidate(struct dentry *dentry)
848ac114 1553{
1ffe46d1
EB
1554 /*
1555 * If it's already been dropped, return OK.
1556 */
1557 spin_lock(&dentry->d_lock);
1558 if (d_unhashed(dentry)) {
1559 spin_unlock(&dentry->d_lock);
5542aa2f 1560 return;
1ffe46d1
EB
1561 }
1562 spin_unlock(&dentry->d_lock);
1563
848ac114
MS
1564 /* Negative dentries can be dropped without further checks */
1565 if (!dentry->d_inode) {
1566 d_drop(dentry);
5542aa2f 1567 return;
848ac114
MS
1568 }
1569
1570 for (;;) {
8ed936b5 1571 struct detach_data data;
848ac114 1572
8ed936b5
EB
1573 data.mountpoint = NULL;
1574 INIT_LIST_HEAD(&data.select.dispose);
1575 data.select.start = dentry;
1576 data.select.found = 0;
1577
1578 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1579
81be24d2 1580 if (!list_empty(&data.select.dispose))
8ed936b5 1581 shrink_dentry_list(&data.select.dispose);
81be24d2
AV
1582 else if (!data.mountpoint)
1583 return;
848ac114 1584
8ed936b5
EB
1585 if (data.mountpoint) {
1586 detach_mounts(data.mountpoint);
1587 dput(data.mountpoint);
1588 }
848ac114
MS
1589 cond_resched();
1590 }
848ac114 1591}
1ffe46d1 1592EXPORT_SYMBOL(d_invalidate);
848ac114 1593
1da177e4 1594/**
a4464dbc
AV
1595 * __d_alloc - allocate a dcache entry
1596 * @sb: filesystem it will belong to
1da177e4
LT
1597 * @name: qstr of the name
1598 *
1599 * Allocates a dentry. It returns %NULL if there is insufficient memory
1600 * available. On a success the dentry is returned. The name passed in is
1601 * copied and the copy passed in may be reused after this call.
1602 */
1603
a4464dbc 1604struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1605{
1606 struct dentry *dentry;
1607 char *dname;
285b102d 1608 int err;
1da177e4 1609
e12ba74d 1610 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1611 if (!dentry)
1612 return NULL;
1613
6326c71f
LT
1614 /*
1615 * We guarantee that the inline name is always NUL-terminated.
1616 * This way the memcpy() done by the name switching in rename
1617 * will still always have a NUL at the end, even if we might
1618 * be overwriting an internal NUL character
1619 */
1620 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1621 if (unlikely(!name)) {
cdf01226 1622 name = &slash_name;
798434bd
AV
1623 dname = dentry->d_iname;
1624 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1625 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1626 struct external_name *p = kmalloc(size + name->len,
1627 GFP_KERNEL_ACCOUNT);
8d85b484 1628 if (!p) {
1da177e4
LT
1629 kmem_cache_free(dentry_cache, dentry);
1630 return NULL;
1631 }
8d85b484
AV
1632 atomic_set(&p->u.count, 1);
1633 dname = p->name;
1da177e4
LT
1634 } else {
1635 dname = dentry->d_iname;
1636 }
1da177e4
LT
1637
1638 dentry->d_name.len = name->len;
1639 dentry->d_name.hash = name->hash;
1640 memcpy(dname, name->name, name->len);
1641 dname[name->len] = 0;
1642
6326c71f 1643 /* Make sure we always see the terminating NUL character */
7088efa9 1644 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1645
98474236 1646 dentry->d_lockref.count = 1;
dea3667b 1647 dentry->d_flags = 0;
1da177e4 1648 spin_lock_init(&dentry->d_lock);
31e6b01f 1649 seqcount_init(&dentry->d_seq);
1da177e4 1650 dentry->d_inode = NULL;
a4464dbc
AV
1651 dentry->d_parent = dentry;
1652 dentry->d_sb = sb;
1da177e4
LT
1653 dentry->d_op = NULL;
1654 dentry->d_fsdata = NULL;
ceb5bdc2 1655 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1656 INIT_LIST_HEAD(&dentry->d_lru);
1657 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1658 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1659 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1660 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1661
285b102d
MS
1662 if (dentry->d_op && dentry->d_op->d_init) {
1663 err = dentry->d_op->d_init(dentry);
1664 if (err) {
1665 if (dname_external(dentry))
1666 kfree(external_name(dentry));
1667 kmem_cache_free(dentry_cache, dentry);
1668 return NULL;
1669 }
1670 }
1671
3e880fb5 1672 this_cpu_inc(nr_dentry);
312d3ca8 1673
1da177e4
LT
1674 return dentry;
1675}
a4464dbc
AV
1676
1677/**
1678 * d_alloc - allocate a dcache entry
1679 * @parent: parent of entry to allocate
1680 * @name: qstr of the name
1681 *
1682 * Allocates a dentry. It returns %NULL if there is insufficient memory
1683 * available. On a success the dentry is returned. The name passed in is
1684 * copied and the copy passed in may be reused after this call.
1685 */
1686struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1687{
1688 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1689 if (!dentry)
1690 return NULL;
3d56c25e 1691 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1692 spin_lock(&parent->d_lock);
1693 /*
1694 * don't need child lock because it is not subject
1695 * to concurrency here
1696 */
1697 __dget_dlock(parent);
1698 dentry->d_parent = parent;
946e51f2 1699 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1700 spin_unlock(&parent->d_lock);
1701
1702 return dentry;
1703}
ec4f8605 1704EXPORT_SYMBOL(d_alloc);
1da177e4 1705
f9c34674
MS
1706struct dentry *d_alloc_anon(struct super_block *sb)
1707{
1708 return __d_alloc(sb, NULL);
1709}
1710EXPORT_SYMBOL(d_alloc_anon);
1711
ba65dc5e
AV
1712struct dentry *d_alloc_cursor(struct dentry * parent)
1713{
f9c34674 1714 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1715 if (dentry) {
1716 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1717 dentry->d_parent = dget(parent);
1718 }
1719 return dentry;
1720}
1721
e1a24bb0
BF
1722/**
1723 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1724 * @sb: the superblock
1725 * @name: qstr of the name
1726 *
1727 * For a filesystem that just pins its dentries in memory and never
1728 * performs lookups at all, return an unhashed IS_ROOT dentry.
1729 */
4b936885
NP
1730struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1731{
e1a24bb0 1732 return __d_alloc(sb, name);
4b936885
NP
1733}
1734EXPORT_SYMBOL(d_alloc_pseudo);
1735
1da177e4
LT
1736struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1737{
1738 struct qstr q;
1739
1740 q.name = name;
8387ff25 1741 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1742 return d_alloc(parent, &q);
1743}
ef26ca97 1744EXPORT_SYMBOL(d_alloc_name);
1da177e4 1745
fb045adb
NP
1746void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1747{
6f7f7caa
LT
1748 WARN_ON_ONCE(dentry->d_op);
1749 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1750 DCACHE_OP_COMPARE |
1751 DCACHE_OP_REVALIDATE |
ecf3d1f1 1752 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1753 DCACHE_OP_DELETE |
d101a125 1754 DCACHE_OP_REAL));
fb045adb
NP
1755 dentry->d_op = op;
1756 if (!op)
1757 return;
1758 if (op->d_hash)
1759 dentry->d_flags |= DCACHE_OP_HASH;
1760 if (op->d_compare)
1761 dentry->d_flags |= DCACHE_OP_COMPARE;
1762 if (op->d_revalidate)
1763 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1764 if (op->d_weak_revalidate)
1765 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1766 if (op->d_delete)
1767 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1768 if (op->d_prune)
1769 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1770 if (op->d_real)
1771 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1772
1773}
1774EXPORT_SYMBOL(d_set_d_op);
1775
df1a085a
DH
1776
1777/*
1778 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1779 * @dentry - The dentry to mark
1780 *
1781 * Mark a dentry as falling through to the lower layer (as set with
1782 * d_pin_lower()). This flag may be recorded on the medium.
1783 */
1784void d_set_fallthru(struct dentry *dentry)
1785{
1786 spin_lock(&dentry->d_lock);
1787 dentry->d_flags |= DCACHE_FALLTHRU;
1788 spin_unlock(&dentry->d_lock);
1789}
1790EXPORT_SYMBOL(d_set_fallthru);
1791
b18825a7
DH
1792static unsigned d_flags_for_inode(struct inode *inode)
1793{
44bdb5e5 1794 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1795
1796 if (!inode)
1797 return DCACHE_MISS_TYPE;
1798
1799 if (S_ISDIR(inode->i_mode)) {
1800 add_flags = DCACHE_DIRECTORY_TYPE;
1801 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1802 if (unlikely(!inode->i_op->lookup))
1803 add_flags = DCACHE_AUTODIR_TYPE;
1804 else
1805 inode->i_opflags |= IOP_LOOKUP;
1806 }
44bdb5e5
DH
1807 goto type_determined;
1808 }
1809
1810 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1811 if (unlikely(inode->i_op->get_link)) {
b18825a7 1812 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1813 goto type_determined;
1814 }
1815 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1816 }
1817
44bdb5e5
DH
1818 if (unlikely(!S_ISREG(inode->i_mode)))
1819 add_flags = DCACHE_SPECIAL_TYPE;
1820
1821type_determined:
b18825a7
DH
1822 if (unlikely(IS_AUTOMOUNT(inode)))
1823 add_flags |= DCACHE_NEED_AUTOMOUNT;
1824 return add_flags;
1825}
1826
360da900
OH
1827static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1828{
b18825a7 1829 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1830 WARN_ON(d_in_lookup(dentry));
b18825a7 1831
b23fb0a6 1832 spin_lock(&dentry->d_lock);
de689f5e 1833 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1834 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1835 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1836 raw_write_seqcount_end(&dentry->d_seq);
affda484 1837 fsnotify_update_flags(dentry);
b23fb0a6 1838 spin_unlock(&dentry->d_lock);
360da900
OH
1839}
1840
1da177e4
LT
1841/**
1842 * d_instantiate - fill in inode information for a dentry
1843 * @entry: dentry to complete
1844 * @inode: inode to attach to this dentry
1845 *
1846 * Fill in inode information in the entry.
1847 *
1848 * This turns negative dentries into productive full members
1849 * of society.
1850 *
1851 * NOTE! This assumes that the inode count has been incremented
1852 * (or otherwise set) by the caller to indicate that it is now
1853 * in use by the dcache.
1854 */
1855
1856void d_instantiate(struct dentry *entry, struct inode * inode)
1857{
946e51f2 1858 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1859 if (inode) {
b9680917 1860 security_d_instantiate(entry, inode);
873feea0 1861 spin_lock(&inode->i_lock);
de689f5e 1862 __d_instantiate(entry, inode);
873feea0 1863 spin_unlock(&inode->i_lock);
de689f5e 1864 }
1da177e4 1865}
ec4f8605 1866EXPORT_SYMBOL(d_instantiate);
1da177e4 1867
b70a80e7
MS
1868/**
1869 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1870 * @entry: dentry to complete
1871 * @inode: inode to attach to this dentry
1872 *
1873 * Fill in inode information in the entry. If a directory alias is found, then
1874 * return an error (and drop inode). Together with d_materialise_unique() this
1875 * guarantees that a directory inode may never have more than one alias.
1876 */
1877int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1878{
946e51f2 1879 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1880
b9680917 1881 security_d_instantiate(entry, inode);
b70a80e7
MS
1882 spin_lock(&inode->i_lock);
1883 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1884 spin_unlock(&inode->i_lock);
1885 iput(inode);
1886 return -EBUSY;
1887 }
1888 __d_instantiate(entry, inode);
1889 spin_unlock(&inode->i_lock);
b70a80e7
MS
1890
1891 return 0;
1892}
1893EXPORT_SYMBOL(d_instantiate_no_diralias);
1894
adc0e91a
AV
1895struct dentry *d_make_root(struct inode *root_inode)
1896{
1897 struct dentry *res = NULL;
1898
1899 if (root_inode) {
f9c34674 1900 res = d_alloc_anon(root_inode->i_sb);
adc0e91a
AV
1901 if (res)
1902 d_instantiate(res, root_inode);
1903 else
1904 iput(root_inode);
1905 }
1906 return res;
1907}
1908EXPORT_SYMBOL(d_make_root);
1909
d891eedb
BF
1910static struct dentry * __d_find_any_alias(struct inode *inode)
1911{
1912 struct dentry *alias;
1913
b3d9b7a3 1914 if (hlist_empty(&inode->i_dentry))
d891eedb 1915 return NULL;
946e51f2 1916 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1917 __dget(alias);
1918 return alias;
1919}
1920
46f72b34
SW
1921/**
1922 * d_find_any_alias - find any alias for a given inode
1923 * @inode: inode to find an alias for
1924 *
1925 * If any aliases exist for the given inode, take and return a
1926 * reference for one of them. If no aliases exist, return %NULL.
1927 */
1928struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1929{
1930 struct dentry *de;
1931
1932 spin_lock(&inode->i_lock);
1933 de = __d_find_any_alias(inode);
1934 spin_unlock(&inode->i_lock);
1935 return de;
1936}
46f72b34 1937EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1938
f9c34674
MS
1939static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1940 struct inode *inode,
1941 bool disconnected)
4ea3ada2 1942{
9308a612 1943 struct dentry *res;
b18825a7 1944 unsigned add_flags;
4ea3ada2 1945
f9c34674 1946 security_d_instantiate(dentry, inode);
873feea0 1947 spin_lock(&inode->i_lock);
d891eedb 1948 res = __d_find_any_alias(inode);
9308a612 1949 if (res) {
873feea0 1950 spin_unlock(&inode->i_lock);
f9c34674 1951 dput(dentry);
9308a612
CH
1952 goto out_iput;
1953 }
1954
1955 /* attach a disconnected dentry */
1a0a397e
BF
1956 add_flags = d_flags_for_inode(inode);
1957
1958 if (disconnected)
1959 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1960
f9c34674
MS
1961 spin_lock(&dentry->d_lock);
1962 __d_set_inode_and_type(dentry, inode, add_flags);
1963 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1964 if (!disconnected) {
139351f1
LT
1965 hlist_bl_lock(&dentry->d_sb->s_roots);
1966 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1967 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 1968 }
f9c34674 1969 spin_unlock(&dentry->d_lock);
873feea0 1970 spin_unlock(&inode->i_lock);
9308a612 1971
f9c34674 1972 return dentry;
9308a612
CH
1973
1974 out_iput:
1975 iput(inode);
1976 return res;
4ea3ada2 1977}
1a0a397e 1978
f9c34674
MS
1979struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1980{
1981 return __d_instantiate_anon(dentry, inode, true);
1982}
1983EXPORT_SYMBOL(d_instantiate_anon);
1984
1985static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1986{
1987 struct dentry *tmp;
1988 struct dentry *res;
1989
1990 if (!inode)
1991 return ERR_PTR(-ESTALE);
1992 if (IS_ERR(inode))
1993 return ERR_CAST(inode);
1994
1995 res = d_find_any_alias(inode);
1996 if (res)
1997 goto out_iput;
1998
1999 tmp = d_alloc_anon(inode->i_sb);
2000 if (!tmp) {
2001 res = ERR_PTR(-ENOMEM);
2002 goto out_iput;
2003 }
2004
2005 return __d_instantiate_anon(tmp, inode, disconnected);
2006
2007out_iput:
2008 iput(inode);
2009 return res;
2010}
2011
1a0a397e
BF
2012/**
2013 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2014 * @inode: inode to allocate the dentry for
2015 *
2016 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2017 * similar open by handle operations. The returned dentry may be anonymous,
2018 * or may have a full name (if the inode was already in the cache).
2019 *
2020 * When called on a directory inode, we must ensure that the inode only ever
2021 * has one dentry. If a dentry is found, that is returned instead of
2022 * allocating a new one.
2023 *
2024 * On successful return, the reference to the inode has been transferred
2025 * to the dentry. In case of an error the reference on the inode is released.
2026 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2027 * be passed in and the error will be propagated to the return value,
2028 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2029 */
2030struct dentry *d_obtain_alias(struct inode *inode)
2031{
f9c34674 2032 return __d_obtain_alias(inode, true);
1a0a397e 2033}
adc48720 2034EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2035
1a0a397e
BF
2036/**
2037 * d_obtain_root - find or allocate a dentry for a given inode
2038 * @inode: inode to allocate the dentry for
2039 *
2040 * Obtain an IS_ROOT dentry for the root of a filesystem.
2041 *
2042 * We must ensure that directory inodes only ever have one dentry. If a
2043 * dentry is found, that is returned instead of allocating a new one.
2044 *
2045 * On successful return, the reference to the inode has been transferred
2046 * to the dentry. In case of an error the reference on the inode is
2047 * released. A %NULL or IS_ERR inode may be passed in and will be the
2048 * error will be propagate to the return value, with a %NULL @inode
2049 * replaced by ERR_PTR(-ESTALE).
2050 */
2051struct dentry *d_obtain_root(struct inode *inode)
2052{
f9c34674 2053 return __d_obtain_alias(inode, false);
1a0a397e
BF
2054}
2055EXPORT_SYMBOL(d_obtain_root);
2056
9403540c
BN
2057/**
2058 * d_add_ci - lookup or allocate new dentry with case-exact name
2059 * @inode: the inode case-insensitive lookup has found
2060 * @dentry: the negative dentry that was passed to the parent's lookup func
2061 * @name: the case-exact name to be associated with the returned dentry
2062 *
2063 * This is to avoid filling the dcache with case-insensitive names to the
2064 * same inode, only the actual correct case is stored in the dcache for
2065 * case-insensitive filesystems.
2066 *
2067 * For a case-insensitive lookup match and if the the case-exact dentry
2068 * already exists in in the dcache, use it and return it.
2069 *
2070 * If no entry exists with the exact case name, allocate new dentry with
2071 * the exact case, and return the spliced entry.
2072 */
e45b590b 2073struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2074 struct qstr *name)
2075{
d9171b93 2076 struct dentry *found, *res;
9403540c 2077
b6520c81
CH
2078 /*
2079 * First check if a dentry matching the name already exists,
2080 * if not go ahead and create it now.
2081 */
9403540c 2082 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2083 if (found) {
2084 iput(inode);
2085 return found;
2086 }
2087 if (d_in_lookup(dentry)) {
2088 found = d_alloc_parallel(dentry->d_parent, name,
2089 dentry->d_wait);
2090 if (IS_ERR(found) || !d_in_lookup(found)) {
2091 iput(inode);
2092 return found;
9403540c 2093 }
d9171b93
AV
2094 } else {
2095 found = d_alloc(dentry->d_parent, name);
2096 if (!found) {
2097 iput(inode);
2098 return ERR_PTR(-ENOMEM);
2099 }
2100 }
2101 res = d_splice_alias(inode, found);
2102 if (res) {
2103 dput(found);
2104 return res;
9403540c 2105 }
4f522a24 2106 return found;
9403540c 2107}
ec4f8605 2108EXPORT_SYMBOL(d_add_ci);
1da177e4 2109
12f8ad4b 2110
d4c91a8f
AV
2111static inline bool d_same_name(const struct dentry *dentry,
2112 const struct dentry *parent,
2113 const struct qstr *name)
12f8ad4b 2114{
d4c91a8f
AV
2115 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2116 if (dentry->d_name.len != name->len)
2117 return false;
2118 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2119 }
6fa67e70 2120 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2121 dentry->d_name.len, dentry->d_name.name,
2122 name) == 0;
12f8ad4b
LT
2123}
2124
31e6b01f
NP
2125/**
2126 * __d_lookup_rcu - search for a dentry (racy, store-free)
2127 * @parent: parent dentry
2128 * @name: qstr of name we wish to find
1f1e6e52 2129 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2130 * Returns: dentry, or NULL
2131 *
2132 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2133 * resolution (store-free path walking) design described in
2134 * Documentation/filesystems/path-lookup.txt.
2135 *
2136 * This is not to be used outside core vfs.
2137 *
2138 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2139 * held, and rcu_read_lock held. The returned dentry must not be stored into
2140 * without taking d_lock and checking d_seq sequence count against @seq
2141 * returned here.
2142 *
15570086 2143 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2144 * function.
2145 *
2146 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2147 * the returned dentry, so long as its parent's seqlock is checked after the
2148 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2149 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2150 *
2151 * NOTE! The caller *has* to check the resulting dentry against the sequence
2152 * number we've returned before using any of the resulting dentry state!
31e6b01f 2153 */
8966be90
LT
2154struct dentry *__d_lookup_rcu(const struct dentry *parent,
2155 const struct qstr *name,
da53be12 2156 unsigned *seqp)
31e6b01f 2157{
26fe5750 2158 u64 hashlen = name->hash_len;
31e6b01f 2159 const unsigned char *str = name->name;
8387ff25 2160 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2161 struct hlist_bl_node *node;
31e6b01f
NP
2162 struct dentry *dentry;
2163
2164 /*
2165 * Note: There is significant duplication with __d_lookup_rcu which is
2166 * required to prevent single threaded performance regressions
2167 * especially on architectures where smp_rmb (in seqcounts) are costly.
2168 * Keep the two functions in sync.
2169 */
2170
2171 /*
2172 * The hash list is protected using RCU.
2173 *
2174 * Carefully use d_seq when comparing a candidate dentry, to avoid
2175 * races with d_move().
2176 *
2177 * It is possible that concurrent renames can mess up our list
2178 * walk here and result in missing our dentry, resulting in the
2179 * false-negative result. d_lookup() protects against concurrent
2180 * renames using rename_lock seqlock.
2181 *
b0a4bb83 2182 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2183 */
b07ad996 2184 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2185 unsigned seq;
31e6b01f 2186
31e6b01f 2187seqretry:
12f8ad4b
LT
2188 /*
2189 * The dentry sequence count protects us from concurrent
da53be12 2190 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2191 *
2192 * The caller must perform a seqcount check in order
da53be12 2193 * to do anything useful with the returned dentry.
12f8ad4b
LT
2194 *
2195 * NOTE! We do a "raw" seqcount_begin here. That means that
2196 * we don't wait for the sequence count to stabilize if it
2197 * is in the middle of a sequence change. If we do the slow
2198 * dentry compare, we will do seqretries until it is stable,
2199 * and if we end up with a successful lookup, we actually
2200 * want to exit RCU lookup anyway.
d4c91a8f
AV
2201 *
2202 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2203 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2204 */
2205 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2206 if (dentry->d_parent != parent)
2207 continue;
2e321806
LT
2208 if (d_unhashed(dentry))
2209 continue;
12f8ad4b 2210
830c0f0e 2211 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2212 int tlen;
2213 const char *tname;
26fe5750
LT
2214 if (dentry->d_name.hash != hashlen_hash(hashlen))
2215 continue;
d4c91a8f
AV
2216 tlen = dentry->d_name.len;
2217 tname = dentry->d_name.name;
2218 /* we want a consistent (name,len) pair */
2219 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2220 cpu_relax();
12f8ad4b
LT
2221 goto seqretry;
2222 }
6fa67e70 2223 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2224 tlen, tname, name) != 0)
2225 continue;
2226 } else {
2227 if (dentry->d_name.hash_len != hashlen)
2228 continue;
2229 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2230 continue;
31e6b01f 2231 }
da53be12 2232 *seqp = seq;
d4c91a8f 2233 return dentry;
31e6b01f
NP
2234 }
2235 return NULL;
2236}
2237
1da177e4
LT
2238/**
2239 * d_lookup - search for a dentry
2240 * @parent: parent dentry
2241 * @name: qstr of name we wish to find
b04f784e 2242 * Returns: dentry, or NULL
1da177e4 2243 *
b04f784e
NP
2244 * d_lookup searches the children of the parent dentry for the name in
2245 * question. If the dentry is found its reference count is incremented and the
2246 * dentry is returned. The caller must use dput to free the entry when it has
2247 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2248 */
da2d8455 2249struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2250{
31e6b01f 2251 struct dentry *dentry;
949854d0 2252 unsigned seq;
1da177e4 2253
b8314f93
DY
2254 do {
2255 seq = read_seqbegin(&rename_lock);
2256 dentry = __d_lookup(parent, name);
2257 if (dentry)
1da177e4
LT
2258 break;
2259 } while (read_seqretry(&rename_lock, seq));
2260 return dentry;
2261}
ec4f8605 2262EXPORT_SYMBOL(d_lookup);
1da177e4 2263
31e6b01f 2264/**
b04f784e
NP
2265 * __d_lookup - search for a dentry (racy)
2266 * @parent: parent dentry
2267 * @name: qstr of name we wish to find
2268 * Returns: dentry, or NULL
2269 *
2270 * __d_lookup is like d_lookup, however it may (rarely) return a
2271 * false-negative result due to unrelated rename activity.
2272 *
2273 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2274 * however it must be used carefully, eg. with a following d_lookup in
2275 * the case of failure.
2276 *
2277 * __d_lookup callers must be commented.
2278 */
a713ca2a 2279struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2280{
1da177e4 2281 unsigned int hash = name->hash;
8387ff25 2282 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2283 struct hlist_bl_node *node;
31e6b01f 2284 struct dentry *found = NULL;
665a7583 2285 struct dentry *dentry;
1da177e4 2286
31e6b01f
NP
2287 /*
2288 * Note: There is significant duplication with __d_lookup_rcu which is
2289 * required to prevent single threaded performance regressions
2290 * especially on architectures where smp_rmb (in seqcounts) are costly.
2291 * Keep the two functions in sync.
2292 */
2293
b04f784e
NP
2294 /*
2295 * The hash list is protected using RCU.
2296 *
2297 * Take d_lock when comparing a candidate dentry, to avoid races
2298 * with d_move().
2299 *
2300 * It is possible that concurrent renames can mess up our list
2301 * walk here and result in missing our dentry, resulting in the
2302 * false-negative result. d_lookup() protects against concurrent
2303 * renames using rename_lock seqlock.
2304 *
b0a4bb83 2305 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2306 */
1da177e4
LT
2307 rcu_read_lock();
2308
b07ad996 2309 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2310
1da177e4
LT
2311 if (dentry->d_name.hash != hash)
2312 continue;
1da177e4
LT
2313
2314 spin_lock(&dentry->d_lock);
1da177e4
LT
2315 if (dentry->d_parent != parent)
2316 goto next;
d0185c08
LT
2317 if (d_unhashed(dentry))
2318 goto next;
2319
d4c91a8f
AV
2320 if (!d_same_name(dentry, parent, name))
2321 goto next;
1da177e4 2322
98474236 2323 dentry->d_lockref.count++;
d0185c08 2324 found = dentry;
1da177e4
LT
2325 spin_unlock(&dentry->d_lock);
2326 break;
2327next:
2328 spin_unlock(&dentry->d_lock);
2329 }
2330 rcu_read_unlock();
2331
2332 return found;
2333}
2334
3e7e241f
EB
2335/**
2336 * d_hash_and_lookup - hash the qstr then search for a dentry
2337 * @dir: Directory to search in
2338 * @name: qstr of name we wish to find
2339 *
4f522a24 2340 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2341 */
2342struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2343{
3e7e241f
EB
2344 /*
2345 * Check for a fs-specific hash function. Note that we must
2346 * calculate the standard hash first, as the d_op->d_hash()
2347 * routine may choose to leave the hash value unchanged.
2348 */
8387ff25 2349 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2350 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2351 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2352 if (unlikely(err < 0))
2353 return ERR_PTR(err);
3e7e241f 2354 }
4f522a24 2355 return d_lookup(dir, name);
3e7e241f 2356}
4f522a24 2357EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2358
1da177e4
LT
2359/*
2360 * When a file is deleted, we have two options:
2361 * - turn this dentry into a negative dentry
2362 * - unhash this dentry and free it.
2363 *
2364 * Usually, we want to just turn this into
2365 * a negative dentry, but if anybody else is
2366 * currently using the dentry or the inode
2367 * we can't do that and we fall back on removing
2368 * it from the hash queues and waiting for
2369 * it to be deleted later when it has no users
2370 */
2371
2372/**
2373 * d_delete - delete a dentry
2374 * @dentry: The dentry to delete
2375 *
2376 * Turn the dentry into a negative dentry if possible, otherwise
2377 * remove it from the hash queues so it can be deleted later
2378 */
2379
2380void d_delete(struct dentry * dentry)
2381{
873feea0 2382 struct inode *inode;
7a91bf7f 2383 int isdir = 0;
1da177e4
LT
2384 /*
2385 * Are we the only user?
2386 */
357f8e65 2387again:
1da177e4 2388 spin_lock(&dentry->d_lock);
873feea0
NP
2389 inode = dentry->d_inode;
2390 isdir = S_ISDIR(inode->i_mode);
98474236 2391 if (dentry->d_lockref.count == 1) {
1fe0c023 2392 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2393 spin_unlock(&dentry->d_lock);
2394 cpu_relax();
2395 goto again;
2396 }
13e3c5e5 2397 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2398 dentry_unlink_inode(dentry);
7a91bf7f 2399 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2400 return;
2401 }
2402
2403 if (!d_unhashed(dentry))
2404 __d_drop(dentry);
2405
2406 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2407
2408 fsnotify_nameremove(dentry, isdir);
1da177e4 2409}
ec4f8605 2410EXPORT_SYMBOL(d_delete);
1da177e4 2411
15d3c589 2412static void __d_rehash(struct dentry *entry)
1da177e4 2413{
15d3c589 2414 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2415
1879fd6a 2416 hlist_bl_lock(b);
b07ad996 2417 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2418 hlist_bl_unlock(b);
1da177e4
LT
2419}
2420
2421/**
2422 * d_rehash - add an entry back to the hash
2423 * @entry: dentry to add to the hash
2424 *
2425 * Adds a dentry to the hash according to its name.
2426 */
2427
2428void d_rehash(struct dentry * entry)
2429{
1da177e4 2430 spin_lock(&entry->d_lock);
15d3c589 2431 __d_rehash(entry);
1da177e4 2432 spin_unlock(&entry->d_lock);
1da177e4 2433}
ec4f8605 2434EXPORT_SYMBOL(d_rehash);
1da177e4 2435
84e710da
AV
2436static inline unsigned start_dir_add(struct inode *dir)
2437{
2438
2439 for (;;) {
2440 unsigned n = dir->i_dir_seq;
2441 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2442 return n;
2443 cpu_relax();
2444 }
2445}
2446
2447static inline void end_dir_add(struct inode *dir, unsigned n)
2448{
2449 smp_store_release(&dir->i_dir_seq, n + 2);
2450}
2451
d9171b93
AV
2452static void d_wait_lookup(struct dentry *dentry)
2453{
2454 if (d_in_lookup(dentry)) {
2455 DECLARE_WAITQUEUE(wait, current);
2456 add_wait_queue(dentry->d_wait, &wait);
2457 do {
2458 set_current_state(TASK_UNINTERRUPTIBLE);
2459 spin_unlock(&dentry->d_lock);
2460 schedule();
2461 spin_lock(&dentry->d_lock);
2462 } while (d_in_lookup(dentry));
2463 }
2464}
2465
94bdd655 2466struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2467 const struct qstr *name,
2468 wait_queue_head_t *wq)
94bdd655 2469{
94bdd655 2470 unsigned int hash = name->hash;
94bdd655
AV
2471 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2472 struct hlist_bl_node *node;
2473 struct dentry *new = d_alloc(parent, name);
2474 struct dentry *dentry;
2475 unsigned seq, r_seq, d_seq;
2476
2477 if (unlikely(!new))
2478 return ERR_PTR(-ENOMEM);
2479
2480retry:
2481 rcu_read_lock();
2482 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2483 r_seq = read_seqbegin(&rename_lock);
2484 dentry = __d_lookup_rcu(parent, name, &d_seq);
2485 if (unlikely(dentry)) {
2486 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2487 rcu_read_unlock();
2488 goto retry;
2489 }
2490 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2491 rcu_read_unlock();
2492 dput(dentry);
2493 goto retry;
2494 }
2495 rcu_read_unlock();
2496 dput(new);
2497 return dentry;
2498 }
2499 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2500 rcu_read_unlock();
2501 goto retry;
2502 }
2503 hlist_bl_lock(b);
2504 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2505 hlist_bl_unlock(b);
2506 rcu_read_unlock();
2507 goto retry;
2508 }
94bdd655
AV
2509 /*
2510 * No changes for the parent since the beginning of d_lookup().
2511 * Since all removals from the chain happen with hlist_bl_lock(),
2512 * any potential in-lookup matches are going to stay here until
2513 * we unlock the chain. All fields are stable in everything
2514 * we encounter.
2515 */
2516 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2517 if (dentry->d_name.hash != hash)
2518 continue;
2519 if (dentry->d_parent != parent)
2520 continue;
d4c91a8f
AV
2521 if (!d_same_name(dentry, parent, name))
2522 continue;
94bdd655 2523 hlist_bl_unlock(b);
e7d6ef97
AV
2524 /* now we can try to grab a reference */
2525 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2526 rcu_read_unlock();
2527 goto retry;
2528 }
2529
2530 rcu_read_unlock();
2531 /*
2532 * somebody is likely to be still doing lookup for it;
2533 * wait for them to finish
2534 */
d9171b93
AV
2535 spin_lock(&dentry->d_lock);
2536 d_wait_lookup(dentry);
2537 /*
2538 * it's not in-lookup anymore; in principle we should repeat
2539 * everything from dcache lookup, but it's likely to be what
2540 * d_lookup() would've found anyway. If it is, just return it;
2541 * otherwise we really have to repeat the whole thing.
2542 */
2543 if (unlikely(dentry->d_name.hash != hash))
2544 goto mismatch;
2545 if (unlikely(dentry->d_parent != parent))
2546 goto mismatch;
2547 if (unlikely(d_unhashed(dentry)))
2548 goto mismatch;
d4c91a8f
AV
2549 if (unlikely(!d_same_name(dentry, parent, name)))
2550 goto mismatch;
d9171b93
AV
2551 /* OK, it *is* a hashed match; return it */
2552 spin_unlock(&dentry->d_lock);
94bdd655
AV
2553 dput(new);
2554 return dentry;
2555 }
e7d6ef97 2556 rcu_read_unlock();
94bdd655
AV
2557 /* we can't take ->d_lock here; it's OK, though. */
2558 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2559 new->d_wait = wq;
94bdd655
AV
2560 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2561 hlist_bl_unlock(b);
2562 return new;
d9171b93
AV
2563mismatch:
2564 spin_unlock(&dentry->d_lock);
2565 dput(dentry);
2566 goto retry;
94bdd655
AV
2567}
2568EXPORT_SYMBOL(d_alloc_parallel);
2569
85c7f810
AV
2570void __d_lookup_done(struct dentry *dentry)
2571{
94bdd655
AV
2572 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2573 dentry->d_name.hash);
2574 hlist_bl_lock(b);
85c7f810 2575 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2576 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2577 wake_up_all(dentry->d_wait);
2578 dentry->d_wait = NULL;
94bdd655
AV
2579 hlist_bl_unlock(b);
2580 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2581 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2582}
2583EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2584
2585/* inode->i_lock held if inode is non-NULL */
2586
2587static inline void __d_add(struct dentry *dentry, struct inode *inode)
2588{
84e710da
AV
2589 struct inode *dir = NULL;
2590 unsigned n;
0568d705 2591 spin_lock(&dentry->d_lock);
84e710da
AV
2592 if (unlikely(d_in_lookup(dentry))) {
2593 dir = dentry->d_parent->d_inode;
2594 n = start_dir_add(dir);
85c7f810 2595 __d_lookup_done(dentry);
84e710da 2596 }
ed782b5a 2597 if (inode) {
0568d705
AV
2598 unsigned add_flags = d_flags_for_inode(inode);
2599 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2600 raw_write_seqcount_begin(&dentry->d_seq);
2601 __d_set_inode_and_type(dentry, inode, add_flags);
2602 raw_write_seqcount_end(&dentry->d_seq);
affda484 2603 fsnotify_update_flags(dentry);
ed782b5a 2604 }
15d3c589 2605 __d_rehash(dentry);
84e710da
AV
2606 if (dir)
2607 end_dir_add(dir, n);
0568d705
AV
2608 spin_unlock(&dentry->d_lock);
2609 if (inode)
2610 spin_unlock(&inode->i_lock);
ed782b5a
AV
2611}
2612
34d0d19d
AV
2613/**
2614 * d_add - add dentry to hash queues
2615 * @entry: dentry to add
2616 * @inode: The inode to attach to this dentry
2617 *
2618 * This adds the entry to the hash queues and initializes @inode.
2619 * The entry was actually filled in earlier during d_alloc().
2620 */
2621
2622void d_add(struct dentry *entry, struct inode *inode)
2623{
b9680917
AV
2624 if (inode) {
2625 security_d_instantiate(entry, inode);
ed782b5a 2626 spin_lock(&inode->i_lock);
b9680917 2627 }
ed782b5a 2628 __d_add(entry, inode);
34d0d19d
AV
2629}
2630EXPORT_SYMBOL(d_add);
2631
668d0cd5
AV
2632/**
2633 * d_exact_alias - find and hash an exact unhashed alias
2634 * @entry: dentry to add
2635 * @inode: The inode to go with this dentry
2636 *
2637 * If an unhashed dentry with the same name/parent and desired
2638 * inode already exists, hash and return it. Otherwise, return
2639 * NULL.
2640 *
2641 * Parent directory should be locked.
2642 */
2643struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2644{
2645 struct dentry *alias;
668d0cd5
AV
2646 unsigned int hash = entry->d_name.hash;
2647
2648 spin_lock(&inode->i_lock);
2649 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2650 /*
2651 * Don't need alias->d_lock here, because aliases with
2652 * d_parent == entry->d_parent are not subject to name or
2653 * parent changes, because the parent inode i_mutex is held.
2654 */
2655 if (alias->d_name.hash != hash)
2656 continue;
2657 if (alias->d_parent != entry->d_parent)
2658 continue;
d4c91a8f 2659 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2660 continue;
2661 spin_lock(&alias->d_lock);
2662 if (!d_unhashed(alias)) {
2663 spin_unlock(&alias->d_lock);
2664 alias = NULL;
2665 } else {
2666 __dget_dlock(alias);
15d3c589 2667 __d_rehash(alias);
668d0cd5
AV
2668 spin_unlock(&alias->d_lock);
2669 }
2670 spin_unlock(&inode->i_lock);
2671 return alias;
2672 }
2673 spin_unlock(&inode->i_lock);
2674 return NULL;
2675}
2676EXPORT_SYMBOL(d_exact_alias);
2677
fb2d5b86
NP
2678/**
2679 * dentry_update_name_case - update case insensitive dentry with a new name
2680 * @dentry: dentry to be updated
2681 * @name: new name
2682 *
2683 * Update a case insensitive dentry with new case of name.
2684 *
2685 * dentry must have been returned by d_lookup with name @name. Old and new
2686 * name lengths must match (ie. no d_compare which allows mismatched name
2687 * lengths).
2688 *
2689 * Parent inode i_mutex must be held over d_lookup and into this call (to
2690 * keep renames and concurrent inserts, and readdir(2) away).
2691 */
9aba36de 2692void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2693{
5955102c 2694 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2695 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2696
fb2d5b86 2697 spin_lock(&dentry->d_lock);
31e6b01f 2698 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2699 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2700 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2701 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2702}
2703EXPORT_SYMBOL(dentry_update_name_case);
2704
8d85b484 2705static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2706{
8d85b484
AV
2707 if (unlikely(dname_external(target))) {
2708 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2709 /*
2710 * Both external: swap the pointers
2711 */
9a8d5bb4 2712 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2713 } else {
2714 /*
2715 * dentry:internal, target:external. Steal target's
2716 * storage and make target internal.
2717 */
321bcf92
BF
2718 memcpy(target->d_iname, dentry->d_name.name,
2719 dentry->d_name.len + 1);
1da177e4
LT
2720 dentry->d_name.name = target->d_name.name;
2721 target->d_name.name = target->d_iname;
2722 }
2723 } else {
8d85b484 2724 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2725 /*
2726 * dentry:external, target:internal. Give dentry's
2727 * storage to target and make dentry internal
2728 */
2729 memcpy(dentry->d_iname, target->d_name.name,
2730 target->d_name.len + 1);
2731 target->d_name.name = dentry->d_name.name;
2732 dentry->d_name.name = dentry->d_iname;
2733 } else {
2734 /*
da1ce067 2735 * Both are internal.
1da177e4 2736 */
da1ce067
MS
2737 unsigned int i;
2738 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2739 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2740 swap(((long *) &dentry->d_iname)[i],
2741 ((long *) &target->d_iname)[i]);
2742 }
1da177e4
LT
2743 }
2744 }
a28ddb87 2745 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2746}
2747
8d85b484
AV
2748static void copy_name(struct dentry *dentry, struct dentry *target)
2749{
2750 struct external_name *old_name = NULL;
2751 if (unlikely(dname_external(dentry)))
2752 old_name = external_name(dentry);
2753 if (unlikely(dname_external(target))) {
2754 atomic_inc(&external_name(target)->u.count);
2755 dentry->d_name = target->d_name;
2756 } else {
2757 memcpy(dentry->d_iname, target->d_name.name,
2758 target->d_name.len + 1);
2759 dentry->d_name.name = dentry->d_iname;
2760 dentry->d_name.hash_len = target->d_name.hash_len;
2761 }
2762 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2763 kfree_rcu(old_name, u.head);
2764}
2765
2fd6b7f5
NP
2766static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2767{
2768 /*
2769 * XXXX: do we really need to take target->d_lock?
2770 */
2771 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2772 spin_lock(&target->d_parent->d_lock);
2773 else {
2774 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2775 spin_lock(&dentry->d_parent->d_lock);
2776 spin_lock_nested(&target->d_parent->d_lock,
2777 DENTRY_D_LOCK_NESTED);
2778 } else {
2779 spin_lock(&target->d_parent->d_lock);
2780 spin_lock_nested(&dentry->d_parent->d_lock,
2781 DENTRY_D_LOCK_NESTED);
2782 }
2783 }
2784 if (target < dentry) {
2785 spin_lock_nested(&target->d_lock, 2);
2786 spin_lock_nested(&dentry->d_lock, 3);
2787 } else {
2788 spin_lock_nested(&dentry->d_lock, 2);
2789 spin_lock_nested(&target->d_lock, 3);
2790 }
2791}
2792
986c0194 2793static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2794{
2795 if (target->d_parent != dentry->d_parent)
2796 spin_unlock(&dentry->d_parent->d_lock);
2797 if (target->d_parent != target)
2798 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2799 spin_unlock(&target->d_lock);
2800 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2801}
2802
1da177e4 2803/*
2fd6b7f5
NP
2804 * When switching names, the actual string doesn't strictly have to
2805 * be preserved in the target - because we're dropping the target
2806 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2807 * the new name before we switch, unless we are going to rehash
2808 * it. Note that if we *do* unhash the target, we are not allowed
2809 * to rehash it without giving it a new name/hash key - whether
2810 * we swap or overwrite the names here, resulting name won't match
2811 * the reality in filesystem; it's only there for d_path() purposes.
2812 * Note that all of this is happening under rename_lock, so the
2813 * any hash lookup seeing it in the middle of manipulations will
2814 * be discarded anyway. So we do not care what happens to the hash
2815 * key in that case.
1da177e4 2816 */
9eaef27b 2817/*
18367501 2818 * __d_move - move a dentry
1da177e4
LT
2819 * @dentry: entry to move
2820 * @target: new dentry
da1ce067 2821 * @exchange: exchange the two dentries
1da177e4
LT
2822 *
2823 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2824 * dcache entries should not be moved in this way. Caller must hold
2825 * rename_lock, the i_mutex of the source and target directories,
2826 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2827 */
da1ce067
MS
2828static void __d_move(struct dentry *dentry, struct dentry *target,
2829 bool exchange)
1da177e4 2830{
84e710da
AV
2831 struct inode *dir = NULL;
2832 unsigned n;
1da177e4
LT
2833 if (!dentry->d_inode)
2834 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2835
2fd6b7f5
NP
2836 BUG_ON(d_ancestor(dentry, target));
2837 BUG_ON(d_ancestor(target, dentry));
2838
2fd6b7f5 2839 dentry_lock_for_move(dentry, target);
84e710da
AV
2840 if (unlikely(d_in_lookup(target))) {
2841 dir = target->d_parent->d_inode;
2842 n = start_dir_add(dir);
85c7f810 2843 __d_lookup_done(target);
84e710da 2844 }
1da177e4 2845
31e6b01f 2846 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2847 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2848
15d3c589 2849 /* unhash both */
61647823
N
2850 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2851 ___d_drop(dentry);
2852 ___d_drop(target);
1da177e4 2853
1da177e4 2854 /* Switch the names.. */
8d85b484
AV
2855 if (exchange)
2856 swap_names(dentry, target);
2857 else
2858 copy_name(dentry, target);
1da177e4 2859
15d3c589
AV
2860 /* rehash in new place(s) */
2861 __d_rehash(dentry);
2862 if (exchange)
2863 __d_rehash(target);
61647823
N
2864 else
2865 target->d_hash.pprev = NULL;
15d3c589 2866
63cf427a 2867 /* ... and switch them in the tree */
1da177e4 2868 if (IS_ROOT(dentry)) {
63cf427a 2869 /* splicing a tree */
3d56c25e 2870 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2871 dentry->d_parent = target->d_parent;
2872 target->d_parent = target;
946e51f2
AV
2873 list_del_init(&target->d_child);
2874 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2875 } else {
63cf427a 2876 /* swapping two dentries */
9a8d5bb4 2877 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2878 list_move(&target->d_child, &target->d_parent->d_subdirs);
2879 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2880 if (exchange)
affda484
AV
2881 fsnotify_update_flags(target);
2882 fsnotify_update_flags(dentry);
1da177e4
LT
2883 }
2884
31e6b01f
NP
2885 write_seqcount_end(&target->d_seq);
2886 write_seqcount_end(&dentry->d_seq);
2887
84e710da
AV
2888 if (dir)
2889 end_dir_add(dir, n);
986c0194 2890 dentry_unlock_for_move(dentry, target);
18367501
AV
2891}
2892
2893/*
2894 * d_move - move a dentry
2895 * @dentry: entry to move
2896 * @target: new dentry
2897 *
2898 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2899 * dcache entries should not be moved in this way. See the locking
2900 * requirements for __d_move.
18367501
AV
2901 */
2902void d_move(struct dentry *dentry, struct dentry *target)
2903{
2904 write_seqlock(&rename_lock);
da1ce067 2905 __d_move(dentry, target, false);
1da177e4 2906 write_sequnlock(&rename_lock);
9eaef27b 2907}
ec4f8605 2908EXPORT_SYMBOL(d_move);
1da177e4 2909
da1ce067
MS
2910/*
2911 * d_exchange - exchange two dentries
2912 * @dentry1: first dentry
2913 * @dentry2: second dentry
2914 */
2915void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2916{
2917 write_seqlock(&rename_lock);
2918
2919 WARN_ON(!dentry1->d_inode);
2920 WARN_ON(!dentry2->d_inode);
2921 WARN_ON(IS_ROOT(dentry1));
2922 WARN_ON(IS_ROOT(dentry2));
2923
2924 __d_move(dentry1, dentry2, true);
2925
2926 write_sequnlock(&rename_lock);
2927}
2928
e2761a11
OH
2929/**
2930 * d_ancestor - search for an ancestor
2931 * @p1: ancestor dentry
2932 * @p2: child dentry
2933 *
2934 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2935 * an ancestor of p2, else NULL.
9eaef27b 2936 */
e2761a11 2937struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2938{
2939 struct dentry *p;
2940
871c0067 2941 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2942 if (p->d_parent == p1)
e2761a11 2943 return p;
9eaef27b 2944 }
e2761a11 2945 return NULL;
9eaef27b
TM
2946}
2947
2948/*
2949 * This helper attempts to cope with remotely renamed directories
2950 *
2951 * It assumes that the caller is already holding
a03e283b 2952 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2953 *
2954 * Note: If ever the locking in lock_rename() changes, then please
2955 * remember to update this too...
9eaef27b 2956 */
b5ae6b15 2957static int __d_unalias(struct inode *inode,
873feea0 2958 struct dentry *dentry, struct dentry *alias)
9eaef27b 2959{
9902af79
AV
2960 struct mutex *m1 = NULL;
2961 struct rw_semaphore *m2 = NULL;
3d330dc1 2962 int ret = -ESTALE;
9eaef27b
TM
2963
2964 /* If alias and dentry share a parent, then no extra locks required */
2965 if (alias->d_parent == dentry->d_parent)
2966 goto out_unalias;
2967
9eaef27b 2968 /* See lock_rename() */
9eaef27b
TM
2969 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2970 goto out_err;
2971 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2972 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2973 goto out_err;
9902af79 2974 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2975out_unalias:
8ed936b5 2976 __d_move(alias, dentry, false);
b5ae6b15 2977 ret = 0;
9eaef27b 2978out_err:
9eaef27b 2979 if (m2)
9902af79 2980 up_read(m2);
9eaef27b
TM
2981 if (m1)
2982 mutex_unlock(m1);
2983 return ret;
2984}
2985
3f70bd51
BF
2986/**
2987 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2988 * @inode: the inode which may have a disconnected dentry
2989 * @dentry: a negative dentry which we want to point to the inode.
2990 *
da093a9b
BF
2991 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2992 * place of the given dentry and return it, else simply d_add the inode
2993 * to the dentry and return NULL.
3f70bd51 2994 *
908790fa
BF
2995 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2996 * we should error out: directories can't have multiple aliases.
2997 *
3f70bd51
BF
2998 * This is needed in the lookup routine of any filesystem that is exportable
2999 * (via knfsd) so that we can build dcache paths to directories effectively.
3000 *
3001 * If a dentry was found and moved, then it is returned. Otherwise NULL
3002 * is returned. This matches the expected return value of ->lookup.
3003 *
3004 * Cluster filesystems may call this function with a negative, hashed dentry.
3005 * In that case, we know that the inode will be a regular file, and also this
3006 * will only occur during atomic_open. So we need to check for the dentry
3007 * being already hashed only in the final case.
3008 */
3009struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3010{
3f70bd51
BF
3011 if (IS_ERR(inode))
3012 return ERR_CAST(inode);
3013
770bfad8
DH
3014 BUG_ON(!d_unhashed(dentry));
3015
de689f5e 3016 if (!inode)
b5ae6b15 3017 goto out;
de689f5e 3018
b9680917 3019 security_d_instantiate(dentry, inode);
873feea0 3020 spin_lock(&inode->i_lock);
9eaef27b 3021 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3022 struct dentry *new = __d_find_any_alias(inode);
3023 if (unlikely(new)) {
a03e283b
EB
3024 /* The reference to new ensures it remains an alias */
3025 spin_unlock(&inode->i_lock);
18367501 3026 write_seqlock(&rename_lock);
b5ae6b15
AV
3027 if (unlikely(d_ancestor(new, dentry))) {
3028 write_sequnlock(&rename_lock);
b5ae6b15
AV
3029 dput(new);
3030 new = ERR_PTR(-ELOOP);
3031 pr_warn_ratelimited(
3032 "VFS: Lookup of '%s' in %s %s"
3033 " would have caused loop\n",
3034 dentry->d_name.name,
3035 inode->i_sb->s_type->name,
3036 inode->i_sb->s_id);
3037 } else if (!IS_ROOT(new)) {
3038 int err = __d_unalias(inode, dentry, new);
18367501 3039 write_sequnlock(&rename_lock);
b5ae6b15
AV
3040 if (err) {
3041 dput(new);
3042 new = ERR_PTR(err);
3043 }
18367501 3044 } else {
b5ae6b15
AV
3045 __d_move(new, dentry, false);
3046 write_sequnlock(&rename_lock);
dd179946 3047 }
b5ae6b15
AV
3048 iput(inode);
3049 return new;
9eaef27b 3050 }
770bfad8 3051 }
b5ae6b15 3052out:
ed782b5a 3053 __d_add(dentry, inode);
b5ae6b15 3054 return NULL;
770bfad8 3055}
b5ae6b15 3056EXPORT_SYMBOL(d_splice_alias);
770bfad8 3057
cdd16d02 3058static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3059{
3060 *buflen -= namelen;
3061 if (*buflen < 0)
3062 return -ENAMETOOLONG;
3063 *buffer -= namelen;
3064 memcpy(*buffer, str, namelen);
3065 return 0;
3066}
3067
232d2d60
WL
3068/**
3069 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3070 * @buffer: buffer pointer
3071 * @buflen: allocated length of the buffer
3072 * @name: name string and length qstr structure
232d2d60 3073 *
66702eb5 3074 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
232d2d60
WL
3075 * make sure that either the old or the new name pointer and length are
3076 * fetched. However, there may be mismatch between length and pointer.
3077 * The length cannot be trusted, we need to copy it byte-by-byte until
3078 * the length is reached or a null byte is found. It also prepends "/" at
3079 * the beginning of the name. The sequence number check at the caller will
3080 * retry it again when a d_move() does happen. So any garbage in the buffer
3081 * due to mismatched pointer and length will be discarded.
6d13f694 3082 *
7088efa9 3083 * Load acquire is needed to make sure that we see that terminating NUL.
232d2d60 3084 */
9aba36de 3085static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
cdd16d02 3086{
7088efa9 3087 const char *dname = smp_load_acquire(&name->name); /* ^^^ */
66702eb5 3088 u32 dlen = READ_ONCE(name->len);
232d2d60
WL
3089 char *p;
3090
232d2d60 3091 *buflen -= dlen + 1;
e825196d
AV
3092 if (*buflen < 0)
3093 return -ENAMETOOLONG;
232d2d60
WL
3094 p = *buffer -= dlen + 1;
3095 *p++ = '/';
3096 while (dlen--) {
3097 char c = *dname++;
3098 if (!c)
3099 break;
3100 *p++ = c;
3101 }
3102 return 0;
cdd16d02
MS
3103}
3104
1da177e4 3105/**
208898c1 3106 * prepend_path - Prepend path string to a buffer
9d1bc601 3107 * @path: the dentry/vfsmount to report
02125a82 3108 * @root: root vfsmnt/dentry
f2eb6575
MS
3109 * @buffer: pointer to the end of the buffer
3110 * @buflen: pointer to buffer length
552ce544 3111 *
18129977
WL
3112 * The function will first try to write out the pathname without taking any
3113 * lock other than the RCU read lock to make sure that dentries won't go away.
3114 * It only checks the sequence number of the global rename_lock as any change
3115 * in the dentry's d_seq will be preceded by changes in the rename_lock
3116 * sequence number. If the sequence number had been changed, it will restart
3117 * the whole pathname back-tracing sequence again by taking the rename_lock.
3118 * In this case, there is no need to take the RCU read lock as the recursive
3119 * parent pointer references will keep the dentry chain alive as long as no
3120 * rename operation is performed.
1da177e4 3121 */
02125a82
AV
3122static int prepend_path(const struct path *path,
3123 const struct path *root,
f2eb6575 3124 char **buffer, int *buflen)
1da177e4 3125{
ede4cebc
AV
3126 struct dentry *dentry;
3127 struct vfsmount *vfsmnt;
3128 struct mount *mnt;
f2eb6575 3129 int error = 0;
48a066e7 3130 unsigned seq, m_seq = 0;
232d2d60
WL
3131 char *bptr;
3132 int blen;
6092d048 3133
48f5ec21 3134 rcu_read_lock();
48a066e7
AV
3135restart_mnt:
3136 read_seqbegin_or_lock(&mount_lock, &m_seq);
3137 seq = 0;
4ec6c2ae 3138 rcu_read_lock();
232d2d60
WL
3139restart:
3140 bptr = *buffer;
3141 blen = *buflen;
48a066e7 3142 error = 0;
ede4cebc
AV
3143 dentry = path->dentry;
3144 vfsmnt = path->mnt;
3145 mnt = real_mount(vfsmnt);
232d2d60 3146 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3147 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3148 struct dentry * parent;
3149
1da177e4 3150 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
66702eb5 3151 struct mount *parent = READ_ONCE(mnt->mnt_parent);
cde93be4
EB
3152 /* Escaped? */
3153 if (dentry != vfsmnt->mnt_root) {
3154 bptr = *buffer;
3155 blen = *buflen;
3156 error = 3;
3157 break;
3158 }
552ce544 3159 /* Global root? */
48a066e7 3160 if (mnt != parent) {
66702eb5 3161 dentry = READ_ONCE(mnt->mnt_mountpoint);
48a066e7 3162 mnt = parent;
232d2d60
WL
3163 vfsmnt = &mnt->mnt;
3164 continue;
3165 }
232d2d60
WL
3166 if (!error)
3167 error = is_mounted(vfsmnt) ? 1 : 2;
3168 break;
1da177e4
LT
3169 }
3170 parent = dentry->d_parent;
3171 prefetch(parent);
232d2d60 3172 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3173 if (error)
3174 break;
3175
1da177e4
LT
3176 dentry = parent;
3177 }
48f5ec21
AV
3178 if (!(seq & 1))
3179 rcu_read_unlock();
3180 if (need_seqretry(&rename_lock, seq)) {
3181 seq = 1;
232d2d60 3182 goto restart;
48f5ec21
AV
3183 }
3184 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3185
3186 if (!(m_seq & 1))
3187 rcu_read_unlock();
48a066e7
AV
3188 if (need_seqretry(&mount_lock, m_seq)) {
3189 m_seq = 1;
3190 goto restart_mnt;
3191 }
3192 done_seqretry(&mount_lock, m_seq);
1da177e4 3193
232d2d60
WL
3194 if (error >= 0 && bptr == *buffer) {
3195 if (--blen < 0)
3196 error = -ENAMETOOLONG;
3197 else
3198 *--bptr = '/';
3199 }
3200 *buffer = bptr;
3201 *buflen = blen;
7ea600b5 3202 return error;
f2eb6575 3203}
be285c71 3204
f2eb6575
MS
3205/**
3206 * __d_path - return the path of a dentry
3207 * @path: the dentry/vfsmount to report
02125a82 3208 * @root: root vfsmnt/dentry
cd956a1c 3209 * @buf: buffer to return value in
f2eb6575
MS
3210 * @buflen: buffer length
3211 *
ffd1f4ed 3212 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3213 *
3214 * Returns a pointer into the buffer or an error code if the
3215 * path was too long.
3216 *
be148247 3217 * "buflen" should be positive.
f2eb6575 3218 *
02125a82 3219 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3220 */
02125a82
AV
3221char *__d_path(const struct path *path,
3222 const struct path *root,
f2eb6575
MS
3223 char *buf, int buflen)
3224{
3225 char *res = buf + buflen;
3226 int error;
3227
3228 prepend(&res, &buflen, "\0", 1);
f2eb6575 3229 error = prepend_path(path, root, &res, &buflen);
be148247 3230
02125a82
AV
3231 if (error < 0)
3232 return ERR_PTR(error);
3233 if (error > 0)
3234 return NULL;
3235 return res;
3236}
3237
3238char *d_absolute_path(const struct path *path,
3239 char *buf, int buflen)
3240{
3241 struct path root = {};
3242 char *res = buf + buflen;
3243 int error;
3244
3245 prepend(&res, &buflen, "\0", 1);
02125a82 3246 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3247
3248 if (error > 1)
3249 error = -EINVAL;
3250 if (error < 0)
f2eb6575 3251 return ERR_PTR(error);
f2eb6575 3252 return res;
1da177e4
LT
3253}
3254
ffd1f4ed
MS
3255/*
3256 * same as __d_path but appends "(deleted)" for unlinked files.
3257 */
02125a82
AV
3258static int path_with_deleted(const struct path *path,
3259 const struct path *root,
3260 char **buf, int *buflen)
ffd1f4ed
MS
3261{
3262 prepend(buf, buflen, "\0", 1);
3263 if (d_unlinked(path->dentry)) {
3264 int error = prepend(buf, buflen, " (deleted)", 10);
3265 if (error)
3266 return error;
3267 }
3268
3269 return prepend_path(path, root, buf, buflen);
3270}
3271
8df9d1a4
MS
3272static int prepend_unreachable(char **buffer, int *buflen)
3273{
3274 return prepend(buffer, buflen, "(unreachable)", 13);
3275}
3276
68f0d9d9
LT
3277static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3278{
3279 unsigned seq;
3280
3281 do {
3282 seq = read_seqcount_begin(&fs->seq);
3283 *root = fs->root;
3284 } while (read_seqcount_retry(&fs->seq, seq));
3285}
3286
a03a8a70
JB
3287/**
3288 * d_path - return the path of a dentry
cf28b486 3289 * @path: path to report
a03a8a70
JB
3290 * @buf: buffer to return value in
3291 * @buflen: buffer length
3292 *
3293 * Convert a dentry into an ASCII path name. If the entry has been deleted
3294 * the string " (deleted)" is appended. Note that this is ambiguous.
3295 *
52afeefb
AV
3296 * Returns a pointer into the buffer or an error code if the path was
3297 * too long. Note: Callers should use the returned pointer, not the passed
3298 * in buffer, to use the name! The implementation often starts at an offset
3299 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3300 *
31f3e0b3 3301 * "buflen" should be positive.
a03a8a70 3302 */
20d4fdc1 3303char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3304{
ffd1f4ed 3305 char *res = buf + buflen;
6ac08c39 3306 struct path root;
ffd1f4ed 3307 int error;
1da177e4 3308
c23fbb6b
ED
3309 /*
3310 * We have various synthetic filesystems that never get mounted. On
3311 * these filesystems dentries are never used for lookup purposes, and
3312 * thus don't need to be hashed. They also don't need a name until a
3313 * user wants to identify the object in /proc/pid/fd/. The little hack
3314 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3315 *
3316 * Some pseudo inodes are mountable. When they are mounted
3317 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3318 * and instead have d_path return the mounted path.
c23fbb6b 3319 */
f48cfddc
EB
3320 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3321 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3322 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3323
68f0d9d9
LT
3324 rcu_read_lock();
3325 get_fs_root_rcu(current->fs, &root);
02125a82 3326 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3327 rcu_read_unlock();
3328
02125a82 3329 if (error < 0)
ffd1f4ed 3330 res = ERR_PTR(error);
1da177e4
LT
3331 return res;
3332}
ec4f8605 3333EXPORT_SYMBOL(d_path);
1da177e4 3334
c23fbb6b
ED
3335/*
3336 * Helper function for dentry_operations.d_dname() members
3337 */
3338char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3339 const char *fmt, ...)
3340{
3341 va_list args;
3342 char temp[64];
3343 int sz;
3344
3345 va_start(args, fmt);
3346 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3347 va_end(args);
3348
3349 if (sz > sizeof(temp) || sz > buflen)
3350 return ERR_PTR(-ENAMETOOLONG);
3351
3352 buffer += buflen - sz;
3353 return memcpy(buffer, temp, sz);
3354}
3355
118b2302
AV
3356char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3357{
3358 char *end = buffer + buflen;
3359 /* these dentries are never renamed, so d_lock is not needed */
3360 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3361 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3362 prepend(&end, &buflen, "/", 1))
3363 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3364 return end;
118b2302 3365}
31bbe16f 3366EXPORT_SYMBOL(simple_dname);
118b2302 3367
6092d048
RP
3368/*
3369 * Write full pathname from the root of the filesystem into the buffer.
3370 */
f6500801 3371static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3372{
f6500801 3373 struct dentry *dentry;
232d2d60
WL
3374 char *end, *retval;
3375 int len, seq = 0;
3376 int error = 0;
6092d048 3377
f6500801
AV
3378 if (buflen < 2)
3379 goto Elong;
3380
48f5ec21 3381 rcu_read_lock();
232d2d60 3382restart:
f6500801 3383 dentry = d;
232d2d60
WL
3384 end = buf + buflen;
3385 len = buflen;
3386 prepend(&end, &len, "\0", 1);
6092d048
RP
3387 /* Get '/' right */
3388 retval = end-1;
3389 *retval = '/';
232d2d60 3390 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3391 while (!IS_ROOT(dentry)) {
3392 struct dentry *parent = dentry->d_parent;
6092d048 3393
6092d048 3394 prefetch(parent);
232d2d60
WL
3395 error = prepend_name(&end, &len, &dentry->d_name);
3396 if (error)
3397 break;
6092d048
RP
3398
3399 retval = end;
3400 dentry = parent;
3401 }
48f5ec21
AV
3402 if (!(seq & 1))
3403 rcu_read_unlock();
3404 if (need_seqretry(&rename_lock, seq)) {
3405 seq = 1;
232d2d60 3406 goto restart;
48f5ec21
AV
3407 }
3408 done_seqretry(&rename_lock, seq);
232d2d60
WL
3409 if (error)
3410 goto Elong;
c103135c
AV
3411 return retval;
3412Elong:
3413 return ERR_PTR(-ENAMETOOLONG);
3414}
ec2447c2
NP
3415
3416char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3417{
232d2d60 3418 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3419}
3420EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3421
3422char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3423{
3424 char *p = NULL;
3425 char *retval;
3426
c103135c
AV
3427 if (d_unlinked(dentry)) {
3428 p = buf + buflen;
3429 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3430 goto Elong;
3431 buflen++;
3432 }
3433 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3434 if (!IS_ERR(retval) && p)
3435 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3436 return retval;
3437Elong:
6092d048
RP
3438 return ERR_PTR(-ENAMETOOLONG);
3439}
3440
8b19e341
LT
3441static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3442 struct path *pwd)
5762482f 3443{
8b19e341
LT
3444 unsigned seq;
3445
3446 do {
3447 seq = read_seqcount_begin(&fs->seq);
3448 *root = fs->root;
3449 *pwd = fs->pwd;
3450 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3451}
3452
1da177e4
LT
3453/*
3454 * NOTE! The user-level library version returns a
3455 * character pointer. The kernel system call just
3456 * returns the length of the buffer filled (which
3457 * includes the ending '\0' character), or a negative
3458 * error value. So libc would do something like
3459 *
3460 * char *getcwd(char * buf, size_t size)
3461 * {
3462 * int retval;
3463 *
3464 * retval = sys_getcwd(buf, size);
3465 * if (retval >= 0)
3466 * return buf;
3467 * errno = -retval;
3468 * return NULL;
3469 * }
3470 */
3cdad428 3471SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3472{
552ce544 3473 int error;
6ac08c39 3474 struct path pwd, root;
3272c544 3475 char *page = __getname();
1da177e4
LT
3476
3477 if (!page)
3478 return -ENOMEM;
3479
8b19e341
LT
3480 rcu_read_lock();
3481 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3482
552ce544 3483 error = -ENOENT;
f3da392e 3484 if (!d_unlinked(pwd.dentry)) {
552ce544 3485 unsigned long len;
3272c544
LT
3486 char *cwd = page + PATH_MAX;
3487 int buflen = PATH_MAX;
1da177e4 3488
8df9d1a4 3489 prepend(&cwd, &buflen, "\0", 1);
02125a82 3490 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3491 rcu_read_unlock();
552ce544 3492
02125a82 3493 if (error < 0)
552ce544
LT
3494 goto out;
3495
8df9d1a4 3496 /* Unreachable from current root */
02125a82 3497 if (error > 0) {
8df9d1a4
MS
3498 error = prepend_unreachable(&cwd, &buflen);
3499 if (error)
3500 goto out;
3501 }
3502
552ce544 3503 error = -ERANGE;
3272c544 3504 len = PATH_MAX + page - cwd;
552ce544
LT
3505 if (len <= size) {
3506 error = len;
3507 if (copy_to_user(buf, cwd, len))
3508 error = -EFAULT;
3509 }
949854d0 3510 } else {
ff812d72 3511 rcu_read_unlock();
949854d0 3512 }
1da177e4
LT
3513
3514out:
3272c544 3515 __putname(page);
1da177e4
LT
3516 return error;
3517}
3518
3519/*
3520 * Test whether new_dentry is a subdirectory of old_dentry.
3521 *
3522 * Trivially implemented using the dcache structure
3523 */
3524
3525/**
3526 * is_subdir - is new dentry a subdirectory of old_dentry
3527 * @new_dentry: new dentry
3528 * @old_dentry: old dentry
3529 *
a6e5787f
YB
3530 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3531 * Returns false otherwise.
1da177e4
LT
3532 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3533 */
3534
a6e5787f 3535bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3536{
a6e5787f 3537 bool result;
949854d0 3538 unsigned seq;
1da177e4 3539
e2761a11 3540 if (new_dentry == old_dentry)
a6e5787f 3541 return true;
e2761a11 3542
e2761a11 3543 do {
1da177e4 3544 /* for restarting inner loop in case of seq retry */
1da177e4 3545 seq = read_seqbegin(&rename_lock);
949854d0
NP
3546 /*
3547 * Need rcu_readlock to protect against the d_parent trashing
3548 * due to d_move
3549 */
3550 rcu_read_lock();
e2761a11 3551 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3552 result = true;
e2761a11 3553 else
a6e5787f 3554 result = false;
949854d0 3555 rcu_read_unlock();
1da177e4 3556 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3557
3558 return result;
3559}
e8f9e5b7 3560EXPORT_SYMBOL(is_subdir);
1da177e4 3561
db14fc3a 3562static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3563{
db14fc3a
MS
3564 struct dentry *root = data;
3565 if (dentry != root) {
3566 if (d_unhashed(dentry) || !dentry->d_inode)
3567 return D_WALK_SKIP;
1da177e4 3568
01ddc4ed
MS
3569 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3570 dentry->d_flags |= DCACHE_GENOCIDE;
3571 dentry->d_lockref.count--;
3572 }
1da177e4 3573 }
db14fc3a
MS
3574 return D_WALK_CONTINUE;
3575}
58db63d0 3576
db14fc3a
MS
3577void d_genocide(struct dentry *parent)
3578{
3579 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3580}
3581
60545d0d 3582void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3583{
60545d0d
AV
3584 inode_dec_link_count(inode);
3585 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3586 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3587 !d_unlinked(dentry));
3588 spin_lock(&dentry->d_parent->d_lock);
3589 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3590 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3591 (unsigned long long)inode->i_ino);
3592 spin_unlock(&dentry->d_lock);
3593 spin_unlock(&dentry->d_parent->d_lock);
3594 d_instantiate(dentry, inode);
1da177e4 3595}
60545d0d 3596EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3597
3598static __initdata unsigned long dhash_entries;
3599static int __init set_dhash_entries(char *str)
3600{
3601 if (!str)
3602 return 0;
3603 dhash_entries = simple_strtoul(str, &str, 0);
3604 return 1;
3605}
3606__setup("dhash_entries=", set_dhash_entries);
3607
3608static void __init dcache_init_early(void)
3609{
1da177e4
LT
3610 /* If hashes are distributed across NUMA nodes, defer
3611 * hash allocation until vmalloc space is available.
3612 */
3613 if (hashdist)
3614 return;
3615
3616 dentry_hashtable =
3617 alloc_large_system_hash("Dentry cache",
b07ad996 3618 sizeof(struct hlist_bl_head),
1da177e4
LT
3619 dhash_entries,
3620 13,
3d375d78 3621 HASH_EARLY | HASH_ZERO,
1da177e4 3622 &d_hash_shift,
b35d786b 3623 NULL,
31fe62b9 3624 0,
1da177e4 3625 0);
854d3e63 3626 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3627}
3628
74bf17cf 3629static void __init dcache_init(void)
1da177e4 3630{
3d375d78 3631 /*
1da177e4
LT
3632 * A constructor could be added for stable state like the lists,
3633 * but it is probably not worth it because of the cache nature
3d375d78 3634 * of the dcache.
1da177e4 3635 */
80344266
DW
3636 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3637 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3638 d_iname);
1da177e4
LT
3639
3640 /* Hash may have been set up in dcache_init_early */
3641 if (!hashdist)
3642 return;
3643
3644 dentry_hashtable =
3645 alloc_large_system_hash("Dentry cache",
b07ad996 3646 sizeof(struct hlist_bl_head),
1da177e4
LT
3647 dhash_entries,
3648 13,
3d375d78 3649 HASH_ZERO,
1da177e4 3650 &d_hash_shift,
b35d786b 3651 NULL,
31fe62b9 3652 0,
1da177e4 3653 0);
854d3e63 3654 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3655}
3656
3657/* SLAB cache for __getname() consumers */
e18b890b 3658struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3659EXPORT_SYMBOL(names_cachep);
1da177e4 3660
1da177e4
LT
3661EXPORT_SYMBOL(d_genocide);
3662
1da177e4
LT
3663void __init vfs_caches_init_early(void)
3664{
6916363f
SAS
3665 int i;
3666
3667 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3668 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3669
1da177e4
LT
3670 dcache_init_early();
3671 inode_init_early();
3672}
3673
4248b0da 3674void __init vfs_caches_init(void)
1da177e4 3675{
6a9b8820
DW
3676 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3677 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3678
74bf17cf
DC
3679 dcache_init();
3680 inode_init();
4248b0da
MG
3681 files_init();
3682 files_maxfiles_init();
74bf17cf 3683 mnt_init();
1da177e4
LT
3684 bdev_cache_init();
3685 chrdev_init();
3686}