don't try to cut corners in shrink_lock_dentry()
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
7a5cf791 18#include <linux/ratelimit.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
0bf3d5c1 22#include <linux/fscrypt.h>
7a91bf7f 23#include <linux/fsnotify.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/hash.h>
27#include <linux/cache.h>
630d9c47 28#include <linux/export.h>
1da177e4
LT
29#include <linux/security.h>
30#include <linux/seqlock.h>
57c8a661 31#include <linux/memblock.h>
ceb5bdc2
NP
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
f6041567 34#include <linux/list_lru.h>
07f3f05c 35#include "internal.h"
b2dba1af 36#include "mount.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
873feea0 40 * dcache->d_inode->i_lock protects:
946e51f2 41 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
f1ee6162
N
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
19156840 46 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
b7ab39f6 52 * - d_count
da502956 53 * - d_unhashed()
da549bdd
AV
54 * - d_parent and d_chilren
55 * - childrens' d_sib and d_parent
946e51f2 56 * - d_u.d_alias, d_inode
789680d1
NP
57 *
58 * Ordering:
873feea0 59 * dentry->d_inode->i_lock
b5c84bf6 60 * dentry->d_lock
19156840 61 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 62 * dcache_hash_bucket lock
f1ee6162 63 * s_roots lock
789680d1 64 *
da502956
NP
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
076515fc 72 * arbitrary, since it's serialized on rename_lock
789680d1 73 */
fa3536cc 74int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
74c3cbe3 77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 78
949854d0 79EXPORT_SYMBOL(rename_lock);
1da177e4 80
68279f9c 81static struct kmem_cache *dentry_cache __ro_after_init;
1da177e4 82
cdf01226
DH
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
80e5d1ff
AV
87const struct qstr dotdot_name = QSTR_INIT("..", 2);
88EXPORT_SYMBOL(dotdot_name);
cdf01226 89
1da177e4
LT
90/*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
1da177e4 98
68279f9c 99static unsigned int d_hash_shift __ro_after_init;
ceb5bdc2 100
68279f9c 101static struct hlist_bl_head *dentry_hashtable __ro_after_init;
ceb5bdc2 102
8387ff25 103static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 104{
854d3e63 105 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
106}
107
94bdd655
AV
108#define IN_LOOKUP_SHIFT 10
109static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 unsigned int hash)
113{
114 hash += (unsigned long) parent / L1_CACHE_BYTES;
115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116}
117
c8c0c239
LC
118struct dentry_stat_t {
119 long nr_dentry;
120 long nr_unused;
121 long age_limit; /* age in seconds */
122 long want_pages; /* pages requested by system */
123 long nr_negative; /* # of unused negative dentries */
124 long dummy; /* Reserved for future use */
1da177e4
LT
125};
126
3942c07c 127static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 128static DEFINE_PER_CPU(long, nr_dentry_unused);
af0c9af1 129static DEFINE_PER_CPU(long, nr_dentry_negative);
312d3ca8
CH
130
131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
c8c0c239
LC
132/* Statistics gathering. */
133static struct dentry_stat_t dentry_stat = {
134 .age_limit = 45,
135};
62d36c77
DC
136
137/*
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
141 *
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
145 *
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
148 */
3942c07c 149static long get_nr_dentry(void)
3e880fb5
NP
150{
151 int i;
3942c07c 152 long sum = 0;
3e880fb5
NP
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry, i);
155 return sum < 0 ? 0 : sum;
156}
157
62d36c77
DC
158static long get_nr_dentry_unused(void)
159{
160 int i;
161 long sum = 0;
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_unused, i);
164 return sum < 0 ? 0 : sum;
165}
166
af0c9af1
WL
167static long get_nr_dentry_negative(void)
168{
169 int i;
170 long sum = 0;
171
172 for_each_possible_cpu(i)
173 sum += per_cpu(nr_dentry_negative, i);
174 return sum < 0 ? 0 : sum;
175}
176
c8c0c239
LC
177static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 size_t *lenp, loff_t *ppos)
312d3ca8 179{
3e880fb5 180 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 181 dentry_stat.nr_unused = get_nr_dentry_unused();
af0c9af1 182 dentry_stat.nr_negative = get_nr_dentry_negative();
3942c07c 183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8 184}
c8c0c239
LC
185
186static struct ctl_table fs_dcache_sysctls[] = {
187 {
188 .procname = "dentry-state",
189 .data = &dentry_stat,
190 .maxlen = 6*sizeof(long),
191 .mode = 0444,
192 .proc_handler = proc_nr_dentry,
193 },
194 { }
195};
196
197static int __init init_fs_dcache_sysctls(void)
198{
199 register_sysctl_init("fs", fs_dcache_sysctls);
200 return 0;
201}
202fs_initcall(init_fs_dcache_sysctls);
312d3ca8
CH
203#endif
204
5483f18e
LT
205/*
206 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207 * The strings are both count bytes long, and count is non-zero.
208 */
e419b4cc
LT
209#ifdef CONFIG_DCACHE_WORD_ACCESS
210
211#include <asm/word-at-a-time.h>
212/*
213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214 * aligned allocation for this particular component. We don't
215 * strictly need the load_unaligned_zeropad() safety, but it
216 * doesn't hurt either.
217 *
218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219 * need the careful unaligned handling.
220 */
94753db5 221static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 222{
bfcfaa77 223 unsigned long a,b,mask;
bfcfaa77
LT
224
225 for (;;) {
bfe7aa6c 226 a = read_word_at_a_time(cs);
e419b4cc 227 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
228 if (tcount < sizeof(unsigned long))
229 break;
230 if (unlikely(a != b))
231 return 1;
232 cs += sizeof(unsigned long);
233 ct += sizeof(unsigned long);
234 tcount -= sizeof(unsigned long);
235 if (!tcount)
236 return 0;
237 }
a5c21dce 238 mask = bytemask_from_count(tcount);
bfcfaa77 239 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
240}
241
bfcfaa77 242#else
e419b4cc 243
94753db5 244static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 245{
5483f18e
LT
246 do {
247 if (*cs != *ct)
248 return 1;
249 cs++;
250 ct++;
251 tcount--;
252 } while (tcount);
253 return 0;
254}
255
e419b4cc
LT
256#endif
257
94753db5
LT
258static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259{
94753db5
LT
260 /*
261 * Be careful about RCU walk racing with rename:
506458ef 262 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
263 *
264 * NOTE! Even if a rename will mean that the length
265 * was not loaded atomically, we don't care. The
266 * RCU walk will check the sequence count eventually,
267 * and catch it. And we won't overrun the buffer,
268 * because we're reading the name pointer atomically,
269 * and a dentry name is guaranteed to be properly
270 * terminated with a NUL byte.
271 *
272 * End result: even if 'len' is wrong, we'll exit
273 * early because the data cannot match (there can
274 * be no NUL in the ct/tcount data)
275 */
506458ef 276 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 277
6326c71f 278 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
279}
280
8d85b484
AV
281struct external_name {
282 union {
283 atomic_t count;
284 struct rcu_head head;
285 } u;
286 unsigned char name[];
287};
288
289static inline struct external_name *external_name(struct dentry *dentry)
290{
291 return container_of(dentry->d_name.name, struct external_name, name[0]);
292}
293
9c82ab9c 294static void __d_free(struct rcu_head *head)
1da177e4 295{
9c82ab9c
CH
296 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297
8d85b484
AV
298 kmem_cache_free(dentry_cache, dentry);
299}
300
301static void __d_free_external(struct rcu_head *head)
302{
303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
2e03b4bc 304 kfree(external_name(dentry));
f1782c9b 305 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
306}
307
810bb172
AV
308static inline int dname_external(const struct dentry *dentry)
309{
310 return dentry->d_name.name != dentry->d_iname;
311}
312
49d31c2f
AV
313void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314{
315 spin_lock(&dentry->d_lock);
230c6402 316 name->name = dentry->d_name;
49d31c2f 317 if (unlikely(dname_external(dentry))) {
230c6402 318 atomic_inc(&external_name(dentry)->u.count);
49d31c2f 319 } else {
6cd00a01
TH
320 memcpy(name->inline_name, dentry->d_iname,
321 dentry->d_name.len + 1);
230c6402 322 name->name.name = name->inline_name;
49d31c2f 323 }
230c6402 324 spin_unlock(&dentry->d_lock);
49d31c2f
AV
325}
326EXPORT_SYMBOL(take_dentry_name_snapshot);
327
328void release_dentry_name_snapshot(struct name_snapshot *name)
329{
230c6402 330 if (unlikely(name->name.name != name->inline_name)) {
49d31c2f 331 struct external_name *p;
230c6402 332 p = container_of(name->name.name, struct external_name, name[0]);
49d31c2f 333 if (unlikely(atomic_dec_and_test(&p->u.count)))
2e03b4bc 334 kfree_rcu(p, u.head);
49d31c2f
AV
335 }
336}
337EXPORT_SYMBOL(release_dentry_name_snapshot);
338
4bf46a27
DH
339static inline void __d_set_inode_and_type(struct dentry *dentry,
340 struct inode *inode,
341 unsigned type_flags)
342{
343 unsigned flags;
344
345 dentry->d_inode = inode;
4bf46a27
DH
346 flags = READ_ONCE(dentry->d_flags);
347 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
348 flags |= type_flags;
2fa6b1e0 349 smp_store_release(&dentry->d_flags, flags);
4bf46a27
DH
350}
351
4bf46a27
DH
352static inline void __d_clear_type_and_inode(struct dentry *dentry)
353{
354 unsigned flags = READ_ONCE(dentry->d_flags);
355
356 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
357 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27 358 dentry->d_inode = NULL;
af0c9af1
WL
359 if (dentry->d_flags & DCACHE_LRU_LIST)
360 this_cpu_inc(nr_dentry_negative);
4bf46a27
DH
361}
362
b4f0354e
AV
363static void dentry_free(struct dentry *dentry)
364{
946e51f2 365 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
366 if (unlikely(dname_external(dentry))) {
367 struct external_name *p = external_name(dentry);
368 if (likely(atomic_dec_and_test(&p->u.count))) {
369 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
370 return;
371 }
372 }
b4f0354e 373 /* if dentry was never visible to RCU, immediate free is OK */
5467a68c 374 if (dentry->d_flags & DCACHE_NORCU)
b4f0354e
AV
375 __d_free(&dentry->d_u.d_rcu);
376 else
377 call_rcu(&dentry->d_u.d_rcu, __d_free);
378}
379
1da177e4
LT
380/*
381 * Release the dentry's inode, using the filesystem
550dce01 382 * d_iput() operation if defined.
31e6b01f
NP
383 */
384static void dentry_unlink_inode(struct dentry * dentry)
385 __releases(dentry->d_lock)
873feea0 386 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
387{
388 struct inode *inode = dentry->d_inode;
a528aca7 389
4c0d7cd5 390 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 391 __d_clear_type_and_inode(dentry);
946e51f2 392 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 393 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 394 spin_unlock(&dentry->d_lock);
873feea0 395 spin_unlock(&inode->i_lock);
31e6b01f
NP
396 if (!inode->i_nlink)
397 fsnotify_inoderemove(inode);
398 if (dentry->d_op && dentry->d_op->d_iput)
399 dentry->d_op->d_iput(dentry, inode);
400 else
401 iput(inode);
402}
403
89dc77bc
LT
404/*
405 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406 * is in use - which includes both the "real" per-superblock
407 * LRU list _and_ the DCACHE_SHRINK_LIST use.
408 *
409 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410 * on the shrink list (ie not on the superblock LRU list).
411 *
412 * The per-cpu "nr_dentry_unused" counters are updated with
413 * the DCACHE_LRU_LIST bit.
414 *
af0c9af1
WL
415 * The per-cpu "nr_dentry_negative" counters are only updated
416 * when deleted from or added to the per-superblock LRU list, not
417 * from/to the shrink list. That is to avoid an unneeded dec/inc
418 * pair when moving from LRU to shrink list in select_collect().
419 *
89dc77bc
LT
420 * These helper functions make sure we always follow the
421 * rules. d_lock must be held by the caller.
422 */
423#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424static void d_lru_add(struct dentry *dentry)
425{
426 D_FLAG_VERIFY(dentry, 0);
427 dentry->d_flags |= DCACHE_LRU_LIST;
428 this_cpu_inc(nr_dentry_unused);
af0c9af1
WL
429 if (d_is_negative(dentry))
430 this_cpu_inc(nr_dentry_negative);
89dc77bc
LT
431 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432}
433
434static void d_lru_del(struct dentry *dentry)
435{
436 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437 dentry->d_flags &= ~DCACHE_LRU_LIST;
438 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
439 if (d_is_negative(dentry))
440 this_cpu_dec(nr_dentry_negative);
89dc77bc
LT
441 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
442}
443
444static void d_shrink_del(struct dentry *dentry)
445{
446 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
447 list_del_init(&dentry->d_lru);
448 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449 this_cpu_dec(nr_dentry_unused);
450}
451
452static void d_shrink_add(struct dentry *dentry, struct list_head *list)
453{
454 D_FLAG_VERIFY(dentry, 0);
455 list_add(&dentry->d_lru, list);
456 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
457 this_cpu_inc(nr_dentry_unused);
458}
459
460/*
461 * These can only be called under the global LRU lock, ie during the
462 * callback for freeing the LRU list. "isolate" removes it from the
463 * LRU lists entirely, while shrink_move moves it to the indicated
464 * private list.
465 */
3f97b163 466static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
467{
468 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
469 dentry->d_flags &= ~DCACHE_LRU_LIST;
470 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
471 if (d_is_negative(dentry))
472 this_cpu_dec(nr_dentry_negative);
3f97b163 473 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
474}
475
3f97b163
VD
476static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
477 struct list_head *list)
89dc77bc
LT
478{
479 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
480 dentry->d_flags |= DCACHE_SHRINK_LIST;
af0c9af1
WL
481 if (d_is_negative(dentry))
482 this_cpu_dec(nr_dentry_negative);
3f97b163 483 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
484}
485
61647823 486static void ___d_drop(struct dentry *dentry)
789680d1 487{
0632a9ac
AV
488 struct hlist_bl_head *b;
489 /*
490 * Hashed dentries are normally on the dentry hashtable,
491 * with the exception of those newly allocated by
492 * d_obtain_root, which are always IS_ROOT:
493 */
494 if (unlikely(IS_ROOT(dentry)))
495 b = &dentry->d_sb->s_roots;
496 else
497 b = d_hash(dentry->d_name.hash);
b61625d2 498
0632a9ac
AV
499 hlist_bl_lock(b);
500 __hlist_bl_del(&dentry->d_hash);
501 hlist_bl_unlock(b);
789680d1 502}
61647823
N
503
504void __d_drop(struct dentry *dentry)
505{
0632a9ac
AV
506 if (!d_unhashed(dentry)) {
507 ___d_drop(dentry);
508 dentry->d_hash.pprev = NULL;
509 write_seqcount_invalidate(&dentry->d_seq);
510 }
61647823 511}
789680d1
NP
512EXPORT_SYMBOL(__d_drop);
513
961f3c89
MCC
514/**
515 * d_drop - drop a dentry
516 * @dentry: dentry to drop
517 *
518 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
519 * be found through a VFS lookup any more. Note that this is different from
520 * deleting the dentry - d_delete will try to mark the dentry negative if
521 * possible, giving a successful _negative_ lookup, while d_drop will
522 * just make the cache lookup fail.
523 *
524 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
525 * reason (NFS timeouts or autofs deletes).
526 *
527 * __d_drop requires dentry->d_lock
528 *
529 * ___d_drop doesn't mark dentry as "unhashed"
530 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
531 */
789680d1
NP
532void d_drop(struct dentry *dentry)
533{
789680d1
NP
534 spin_lock(&dentry->d_lock);
535 __d_drop(dentry);
536 spin_unlock(&dentry->d_lock);
789680d1
NP
537}
538EXPORT_SYMBOL(d_drop);
539
da549bdd 540static inline void dentry_unlist(struct dentry *dentry)
ba65dc5e
AV
541{
542 struct dentry *next;
543 /*
544 * Inform d_walk() and shrink_dentry_list() that we are no longer
545 * attached to the dentry tree
546 */
547 dentry->d_flags |= DCACHE_DENTRY_KILLED;
da549bdd 548 if (unlikely(hlist_unhashed(&dentry->d_sib)))
ba65dc5e 549 return;
da549bdd 550 __hlist_del(&dentry->d_sib);
ba65dc5e
AV
551 /*
552 * Cursors can move around the list of children. While we'd been
da549bdd 553 * a normal list member, it didn't matter - ->d_sib.next would've
ba65dc5e
AV
554 * been updated. However, from now on it won't be and for the
555 * things like d_walk() it might end up with a nasty surprise.
556 * Normally d_walk() doesn't care about cursors moving around -
557 * ->d_lock on parent prevents that and since a cursor has no children
558 * of its own, we get through it without ever unlocking the parent.
559 * There is one exception, though - if we ascend from a child that
560 * gets killed as soon as we unlock it, the next sibling is found
da549bdd 561 * using the value left in its ->d_sib.next. And if _that_
ba65dc5e
AV
562 * pointed to a cursor, and cursor got moved (e.g. by lseek())
563 * before d_walk() regains parent->d_lock, we'll end up skipping
564 * everything the cursor had been moved past.
565 *
da549bdd 566 * Solution: make sure that the pointer left behind in ->d_sib.next
ba65dc5e
AV
567 * points to something that won't be moving around. I.e. skip the
568 * cursors.
569 */
da549bdd
AV
570 while (dentry->d_sib.next) {
571 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
ba65dc5e
AV
572 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
573 break;
da549bdd 574 dentry->d_sib.next = next->d_sib.next;
ba65dc5e
AV
575 }
576}
577
e55fd011 578static void __dentry_kill(struct dentry *dentry)
77812a1e 579{
41edf278
AV
580 struct dentry *parent = NULL;
581 bool can_free = true;
41edf278 582 if (!IS_ROOT(dentry))
77812a1e 583 parent = dentry->d_parent;
31e6b01f 584
0d98439e
LT
585 /*
586 * The dentry is now unrecoverably dead to the world.
587 */
588 lockref_mark_dead(&dentry->d_lockref);
589
f0023bc6 590 /*
f0023bc6
SW
591 * inform the fs via d_prune that this dentry is about to be
592 * unhashed and destroyed.
593 */
29266201 594 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
595 dentry->d_op->d_prune(dentry);
596
01b60351
AV
597 if (dentry->d_flags & DCACHE_LRU_LIST) {
598 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
599 d_lru_del(dentry);
01b60351 600 }
77812a1e
NP
601 /* if it was on the hash then remove it */
602 __d_drop(dentry);
da549bdd 603 dentry_unlist(dentry);
03b3b889
AV
604 if (parent)
605 spin_unlock(&parent->d_lock);
550dce01
AV
606 if (dentry->d_inode)
607 dentry_unlink_inode(dentry);
608 else
609 spin_unlock(&dentry->d_lock);
03b3b889
AV
610 this_cpu_dec(nr_dentry);
611 if (dentry->d_op && dentry->d_op->d_release)
612 dentry->d_op->d_release(dentry);
613
41edf278
AV
614 spin_lock(&dentry->d_lock);
615 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
616 dentry->d_flags |= DCACHE_MAY_FREE;
617 can_free = false;
618 }
619 spin_unlock(&dentry->d_lock);
41edf278
AV
620 if (likely(can_free))
621 dentry_free(dentry);
9c5f1d30 622 cond_resched();
e55fd011
AV
623}
624
8b987a46 625static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 626{
8b987a46 627 struct dentry *parent;
046b961b 628again:
66702eb5 629 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
630 spin_lock(&parent->d_lock);
631 /*
632 * We can't blindly lock dentry until we are sure
633 * that we won't violate the locking order.
634 * Any changes of dentry->d_parent must have
635 * been done with parent->d_lock held, so
636 * spin_lock() above is enough of a barrier
637 * for checking if it's still our child.
638 */
639 if (unlikely(parent != dentry->d_parent)) {
640 spin_unlock(&parent->d_lock);
641 goto again;
642 }
65d8eb5a 643 if (parent != dentry)
9f12600f 644 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 645 else
046b961b
AV
646 parent = NULL;
647 return parent;
648}
649
8b987a46
AV
650static inline struct dentry *lock_parent(struct dentry *dentry)
651{
652 struct dentry *parent = dentry->d_parent;
653 if (IS_ROOT(dentry))
654 return NULL;
655 if (likely(spin_trylock(&parent->d_lock)))
656 return parent;
339e9e13
AV
657 rcu_read_lock();
658 spin_unlock(&dentry->d_lock);
659 parent = __lock_parent(dentry);
660 rcu_read_unlock();
661 return parent;
662}
663
664/*
665 * Lock a dentry for feeding it to __dentry_kill().
666 * Called under rcu_read_lock() and dentry->d_lock; the former
667 * guarantees that nothing we access will be freed under us.
668 * Note that dentry is *not* protected from concurrent dentry_kill(),
669 * d_delete(), etc.
670 *
671 * Return false if dentry is busy. Otherwise, return true and have
672 * that dentry's inode and parent both locked.
673 */
674
675static bool lock_for_kill(struct dentry *dentry)
676{
677 struct inode *inode = dentry->d_inode;
678 struct dentry *parent = dentry->d_parent;
679
680 if (unlikely(dentry->d_lockref.count))
681 return false;
682
683 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
684 goto slow;
685 if (dentry == parent)
686 return true;
687 if (likely(spin_trylock(&parent->d_lock)))
688 return true;
689
690 if (inode)
691 spin_unlock(&inode->i_lock);
692slow:
693 spin_unlock(&dentry->d_lock);
694
695 for (;;) {
696 if (inode)
697 spin_lock(&inode->i_lock);
698 parent = __lock_parent(dentry);
699 if (likely(inode == dentry->d_inode))
700 break;
701 if (inode)
702 spin_unlock(&inode->i_lock);
703 inode = dentry->d_inode;
704 spin_unlock(&dentry->d_lock);
705 if (parent)
706 spin_unlock(&parent->d_lock);
707 }
708 if (likely(!dentry->d_lockref.count))
709 return true;
710 if (inode)
711 spin_unlock(&inode->i_lock);
712 if (parent)
713 spin_unlock(&parent->d_lock);
714 return false;
8b987a46
AV
715}
716
a338579f
AV
717static inline bool retain_dentry(struct dentry *dentry)
718{
719 WARN_ON(d_in_lookup(dentry));
720
721 /* Unreachable? Get rid of it */
722 if (unlikely(d_unhashed(dentry)))
723 return false;
724
725 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
726 return false;
727
728 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
729 if (dentry->d_op->d_delete(dentry))
730 return false;
731 }
2c567af4
IW
732
733 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
734 return false;
735
62d9956c 736 /* retain; LRU fodder */
62d9956c
AV
737 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
738 d_lru_add(dentry);
739 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
740 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
741 return true;
742}
743
2c567af4
IW
744void d_mark_dontcache(struct inode *inode)
745{
746 struct dentry *de;
747
748 spin_lock(&inode->i_lock);
749 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
750 spin_lock(&de->d_lock);
751 de->d_flags |= DCACHE_DONTCACHE;
752 spin_unlock(&de->d_lock);
753 }
754 inode->i_state |= I_DONTCACHE;
755 spin_unlock(&inode->i_lock);
756}
757EXPORT_SYMBOL(d_mark_dontcache);
758
c1d0c1a2
JO
759/*
760 * Finish off a dentry we've decided to kill.
761 * dentry->d_lock must be held, returns with it unlocked.
762 * Returns dentry requiring refcount drop, or NULL if we're done.
763 */
764static struct dentry *dentry_kill(struct dentry *dentry)
765 __releases(dentry->d_lock)
766{
c1d0c1a2 767
b06c684d 768 dentry->d_lockref.count--;
339e9e13
AV
769 rcu_read_lock();
770 if (likely(lock_for_kill(dentry))) {
771 struct dentry *parent = dentry->d_parent;
772 rcu_read_unlock();
f657a666 773 __dentry_kill(dentry);
339e9e13 774 return parent != dentry ? parent : NULL;
f657a666 775 }
339e9e13 776 rcu_read_unlock();
c1d0c1a2 777 spin_unlock(&dentry->d_lock);
f657a666 778 return NULL;
c1d0c1a2
JO
779}
780
360f5479
LT
781/*
782 * Try to do a lockless dput(), and return whether that was successful.
783 *
784 * If unsuccessful, we return false, having already taken the dentry lock.
f05441c7
AV
785 * In that case refcount is guaranteed to be zero and we have already
786 * decided that it's not worth keeping around.
360f5479
LT
787 *
788 * The caller needs to hold the RCU read lock, so that the dentry is
789 * guaranteed to stay around even if the refcount goes down to zero!
790 */
791static inline bool fast_dput(struct dentry *dentry)
792{
793 int ret;
794 unsigned int d_flags;
795
796 /*
15220fbf 797 * try to decrement the lockref optimistically.
360f5479
LT
798 */
799 ret = lockref_put_return(&dentry->d_lockref);
800
801 /*
802 * If the lockref_put_return() failed due to the lock being held
803 * by somebody else, the fast path has failed. We will need to
804 * get the lock, and then check the count again.
805 */
806 if (unlikely(ret < 0)) {
807 spin_lock(&dentry->d_lock);
504e08ce 808 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
360f5479 809 spin_unlock(&dentry->d_lock);
7964410f 810 return true;
360f5479 811 }
504e08ce
AV
812 dentry->d_lockref.count--;
813 goto locked;
360f5479
LT
814 }
815
816 /*
817 * If we weren't the last ref, we're done.
818 */
819 if (ret)
7964410f 820 return true;
360f5479
LT
821
822 /*
823 * Careful, careful. The reference count went down
824 * to zero, but we don't hold the dentry lock, so
825 * somebody else could get it again, and do another
826 * dput(), and we need to not race with that.
827 *
828 * However, there is a very special and common case
829 * where we don't care, because there is nothing to
830 * do: the dentry is still hashed, it does not have
831 * a 'delete' op, and it's referenced and already on
832 * the LRU list.
833 *
834 * NOTE! Since we aren't locked, these values are
835 * not "stable". However, it is sufficient that at
836 * some point after we dropped the reference the
837 * dentry was hashed and the flags had the proper
838 * value. Other dentry users may have re-gotten
839 * a reference to the dentry and change that, but
840 * our work is done - we can leave the dentry
841 * around with a zero refcount.
77573fa3
HL
842 *
843 * Nevertheless, there are two cases that we should kill
844 * the dentry anyway.
845 * 1. free disconnected dentries as soon as their refcount
846 * reached zero.
847 * 2. free dentries if they should not be cached.
360f5479
LT
848 */
849 smp_rmb();
66702eb5 850 d_flags = READ_ONCE(dentry->d_flags);
15220fbf 851 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_OP_DELETE |
77573fa3 852 DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
360f5479
LT
853
854 /* Nothing to do? Dropping the reference was all we needed? */
855 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
7964410f 856 return true;
360f5479
LT
857
858 /*
859 * Not the fast normal case? Get the lock. We've already decremented
860 * the refcount, but we'll need to re-check the situation after
861 * getting the lock.
862 */
863 spin_lock(&dentry->d_lock);
864
865 /*
866 * Did somebody else grab a reference to it in the meantime, and
867 * we're no longer the last user after all? Alternatively, somebody
868 * else could have killed it and marked it dead. Either way, we
869 * don't need to do anything else.
870 */
504e08ce 871locked:
f05441c7 872 if (dentry->d_lockref.count || retain_dentry(dentry)) {
360f5479 873 spin_unlock(&dentry->d_lock);
7964410f 874 return true;
360f5479 875 }
7964410f 876 return false;
360f5479
LT
877}
878
879
1da177e4
LT
880/*
881 * This is dput
882 *
883 * This is complicated by the fact that we do not want to put
884 * dentries that are no longer on any hash chain on the unused
885 * list: we'd much rather just get rid of them immediately.
886 *
887 * However, that implies that we have to traverse the dentry
888 * tree upwards to the parents which might _also_ now be
889 * scheduled for deletion (it may have been only waiting for
890 * its last child to go away).
891 *
892 * This tail recursion is done by hand as we don't want to depend
893 * on the compiler to always get this right (gcc generally doesn't).
894 * Real recursion would eat up our stack space.
895 */
896
897/*
898 * dput - release a dentry
899 * @dentry: dentry to release
900 *
901 * Release a dentry. This will drop the usage count and if appropriate
902 * call the dentry unlink method as well as removing it from the queues and
903 * releasing its resources. If the parent dentries were scheduled for release
904 * they too may now get deleted.
1da177e4 905 */
1da177e4
LT
906void dput(struct dentry *dentry)
907{
1088a640
AV
908 while (dentry) {
909 might_sleep();
1da177e4 910
1088a640
AV
911 rcu_read_lock();
912 if (likely(fast_dput(dentry))) {
913 rcu_read_unlock();
914 return;
915 }
47be6184 916
1088a640 917 /* Slow case: now with the dentry lock held */
360f5479 918 rcu_read_unlock();
2f42f1eb 919 dentry->d_lockref.count = 1;
1088a640 920 dentry = dentry_kill(dentry);
47be6184 921 }
1da177e4 922}
ec4f8605 923EXPORT_SYMBOL(dput);
1da177e4 924
6511f6be 925static void to_shrink_list(struct dentry *dentry, struct list_head *list)
9bdebc2b
AV
926__must_hold(&dentry->d_lock)
927{
6511f6be 928 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
9bdebc2b
AV
929 if (dentry->d_flags & DCACHE_LRU_LIST)
930 d_lru_del(dentry);
6511f6be 931 if (!dentry->d_lockref.count)
9bdebc2b
AV
932 d_shrink_add(dentry, list);
933 }
934}
935
936void dput_to_list(struct dentry *dentry, struct list_head *list)
937{
938 rcu_read_lock();
939 if (likely(fast_dput(dentry))) {
940 rcu_read_unlock();
941 return;
942 }
943 rcu_read_unlock();
f05441c7 944 to_shrink_list(dentry, list);
9bdebc2b
AV
945 spin_unlock(&dentry->d_lock);
946}
1da177e4 947
b5c84bf6 948/* This must be called with d_lock held */
dc0474be 949static inline void __dget_dlock(struct dentry *dentry)
23044507 950{
98474236 951 dentry->d_lockref.count++;
23044507
NP
952}
953
dc0474be 954static inline void __dget(struct dentry *dentry)
1da177e4 955{
98474236 956 lockref_get(&dentry->d_lockref);
1da177e4
LT
957}
958
b7ab39f6
NP
959struct dentry *dget_parent(struct dentry *dentry)
960{
df3d0bbc 961 int gotref;
b7ab39f6 962 struct dentry *ret;
e8400933 963 unsigned seq;
b7ab39f6 964
df3d0bbc
WL
965 /*
966 * Do optimistic parent lookup without any
967 * locking.
968 */
969 rcu_read_lock();
e8400933 970 seq = raw_seqcount_begin(&dentry->d_seq);
66702eb5 971 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
972 gotref = lockref_get_not_zero(&ret->d_lockref);
973 rcu_read_unlock();
974 if (likely(gotref)) {
e8400933 975 if (!read_seqcount_retry(&dentry->d_seq, seq))
df3d0bbc
WL
976 return ret;
977 dput(ret);
978 }
979
b7ab39f6 980repeat:
a734eb45
NP
981 /*
982 * Don't need rcu_dereference because we re-check it was correct under
983 * the lock.
984 */
985 rcu_read_lock();
b7ab39f6 986 ret = dentry->d_parent;
a734eb45
NP
987 spin_lock(&ret->d_lock);
988 if (unlikely(ret != dentry->d_parent)) {
989 spin_unlock(&ret->d_lock);
990 rcu_read_unlock();
b7ab39f6
NP
991 goto repeat;
992 }
a734eb45 993 rcu_read_unlock();
98474236
WL
994 BUG_ON(!ret->d_lockref.count);
995 ret->d_lockref.count++;
b7ab39f6 996 spin_unlock(&ret->d_lock);
b7ab39f6
NP
997 return ret;
998}
999EXPORT_SYMBOL(dget_parent);
1000
61fec493
AV
1001static struct dentry * __d_find_any_alias(struct inode *inode)
1002{
1003 struct dentry *alias;
1004
1005 if (hlist_empty(&inode->i_dentry))
1006 return NULL;
1007 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1008 __dget(alias);
1009 return alias;
1010}
1011
1012/**
1013 * d_find_any_alias - find any alias for a given inode
1014 * @inode: inode to find an alias for
1015 *
1016 * If any aliases exist for the given inode, take and return a
1017 * reference for one of them. If no aliases exist, return %NULL.
1018 */
1019struct dentry *d_find_any_alias(struct inode *inode)
1020{
1021 struct dentry *de;
1022
1023 spin_lock(&inode->i_lock);
1024 de = __d_find_any_alias(inode);
1025 spin_unlock(&inode->i_lock);
1026 return de;
1027}
1028EXPORT_SYMBOL(d_find_any_alias);
1029
52ed46f0 1030static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 1031{
61fec493
AV
1032 struct dentry *alias;
1033
1034 if (S_ISDIR(inode->i_mode))
1035 return __d_find_any_alias(inode);
1da177e4 1036
946e51f2 1037 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 1038 spin_lock(&alias->d_lock);
61fec493 1039 if (!d_unhashed(alias)) {
8d80d7da
BF
1040 __dget_dlock(alias);
1041 spin_unlock(&alias->d_lock);
1042 return alias;
1da177e4 1043 }
da502956 1044 spin_unlock(&alias->d_lock);
1da177e4 1045 }
da502956 1046 return NULL;
1da177e4
LT
1047}
1048
961f3c89
MCC
1049/**
1050 * d_find_alias - grab a hashed alias of inode
1051 * @inode: inode in question
1052 *
1053 * If inode has a hashed alias, or is a directory and has any alias,
1054 * acquire the reference to alias and return it. Otherwise return NULL.
1055 * Notice that if inode is a directory there can be only one alias and
1056 * it can be unhashed only if it has no children, or if it is the root
1057 * of a filesystem, or if the directory was renamed and d_revalidate
1058 * was the first vfs operation to notice.
1059 *
1060 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1061 * any other hashed alias over that one.
1062 */
da502956 1063struct dentry *d_find_alias(struct inode *inode)
1da177e4 1064{
214fda1f
DH
1065 struct dentry *de = NULL;
1066
b3d9b7a3 1067 if (!hlist_empty(&inode->i_dentry)) {
873feea0 1068 spin_lock(&inode->i_lock);
52ed46f0 1069 de = __d_find_alias(inode);
873feea0 1070 spin_unlock(&inode->i_lock);
214fda1f 1071 }
1da177e4
LT
1072 return de;
1073}
ec4f8605 1074EXPORT_SYMBOL(d_find_alias);
1da177e4 1075
bca585d2
AV
1076/*
1077 * Caller MUST be holding rcu_read_lock() and be guaranteed
1078 * that inode won't get freed until rcu_read_unlock().
1079 */
1080struct dentry *d_find_alias_rcu(struct inode *inode)
1081{
1082 struct hlist_head *l = &inode->i_dentry;
1083 struct dentry *de = NULL;
1084
1085 spin_lock(&inode->i_lock);
1086 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1087 // used without having I_FREEING set, which means no aliases left
1088 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1089 if (S_ISDIR(inode->i_mode)) {
1090 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1091 } else {
1092 hlist_for_each_entry(de, l, d_u.d_alias)
1093 if (!d_unhashed(de))
1094 break;
1095 }
1096 }
1097 spin_unlock(&inode->i_lock);
1098 return de;
1099}
1100
1da177e4
LT
1101/*
1102 * Try to kill dentries associated with this inode.
1103 * WARNING: you must own a reference to inode.
1104 */
1105void d_prune_aliases(struct inode *inode)
1106{
0cdca3f9 1107 struct dentry *dentry;
1da177e4 1108restart:
873feea0 1109 spin_lock(&inode->i_lock);
946e51f2 1110 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 1111 spin_lock(&dentry->d_lock);
98474236 1112 if (!dentry->d_lockref.count) {
29355c39
AV
1113 struct dentry *parent = lock_parent(dentry);
1114 if (likely(!dentry->d_lockref.count)) {
1115 __dentry_kill(dentry);
4a7795d3 1116 dput(parent);
29355c39
AV
1117 goto restart;
1118 }
1119 if (parent)
1120 spin_unlock(&parent->d_lock);
1da177e4
LT
1121 }
1122 spin_unlock(&dentry->d_lock);
1123 }
873feea0 1124 spin_unlock(&inode->i_lock);
1da177e4 1125}
ec4f8605 1126EXPORT_SYMBOL(d_prune_aliases);
1da177e4 1127
3fcf5356
AV
1128static inline void shrink_kill(struct dentry *victim, struct list_head *list)
1129{
1130 struct dentry *parent = victim->d_parent;
6511f6be
AV
1131 if (parent != victim) {
1132 --parent->d_lockref.count;
1133 to_shrink_list(parent, list);
1134 }
3fcf5356
AV
1135 __dentry_kill(victim);
1136}
1137
9bdebc2b 1138void shrink_dentry_list(struct list_head *list)
3b3f09f4
AV
1139{
1140 while (!list_empty(list)) {
3fcf5356 1141 struct dentry *dentry;
64fd72e0 1142
3b3f09f4
AV
1143 dentry = list_entry(list->prev, struct dentry, d_lru);
1144 spin_lock(&dentry->d_lock);
8f04da2a 1145 rcu_read_lock();
339e9e13 1146 if (!lock_for_kill(dentry)) {
cd9f84f3 1147 bool can_free;
8f04da2a 1148 rcu_read_unlock();
3b3f09f4 1149 d_shrink_del(dentry);
cd9f84f3 1150 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1151 spin_unlock(&dentry->d_lock);
1152 if (can_free)
1153 dentry_free(dentry);
1154 continue;
1155 }
8f04da2a 1156 rcu_read_unlock();
3b3f09f4 1157 d_shrink_del(dentry);
3fcf5356 1158 shrink_kill(dentry, list);
da3bbdd4 1159 }
3049cfe2
CH
1160}
1161
3f97b163
VD
1162static enum lru_status dentry_lru_isolate(struct list_head *item,
1163 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1164{
1165 struct list_head *freeable = arg;
1166 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1167
1168
1169 /*
1170 * we are inverting the lru lock/dentry->d_lock here,
1171 * so use a trylock. If we fail to get the lock, just skip
1172 * it
1173 */
1174 if (!spin_trylock(&dentry->d_lock))
1175 return LRU_SKIP;
1176
1177 /*
1178 * Referenced dentries are still in use. If they have active
1179 * counts, just remove them from the LRU. Otherwise give them
1180 * another pass through the LRU.
1181 */
1182 if (dentry->d_lockref.count) {
3f97b163 1183 d_lru_isolate(lru, dentry);
f6041567
DC
1184 spin_unlock(&dentry->d_lock);
1185 return LRU_REMOVED;
1186 }
1187
1188 if (dentry->d_flags & DCACHE_REFERENCED) {
1189 dentry->d_flags &= ~DCACHE_REFERENCED;
1190 spin_unlock(&dentry->d_lock);
1191
1192 /*
1193 * The list move itself will be made by the common LRU code. At
1194 * this point, we've dropped the dentry->d_lock but keep the
1195 * lru lock. This is safe to do, since every list movement is
1196 * protected by the lru lock even if both locks are held.
1197 *
1198 * This is guaranteed by the fact that all LRU management
1199 * functions are intermediated by the LRU API calls like
1200 * list_lru_add and list_lru_del. List movement in this file
1201 * only ever occur through this functions or through callbacks
1202 * like this one, that are called from the LRU API.
1203 *
1204 * The only exceptions to this are functions like
1205 * shrink_dentry_list, and code that first checks for the
1206 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1207 * operating only with stack provided lists after they are
1208 * properly isolated from the main list. It is thus, always a
1209 * local access.
1210 */
1211 return LRU_ROTATE;
1212 }
1213
3f97b163 1214 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1215 spin_unlock(&dentry->d_lock);
1216
1217 return LRU_REMOVED;
1218}
1219
3049cfe2 1220/**
b48f03b3
DC
1221 * prune_dcache_sb - shrink the dcache
1222 * @sb: superblock
503c358c 1223 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1224 *
503c358c
VD
1225 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1226 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1227 * function.
3049cfe2 1228 *
b48f03b3
DC
1229 * This function may fail to free any resources if all the dentries are in
1230 * use.
3049cfe2 1231 */
503c358c 1232long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1233{
f6041567
DC
1234 LIST_HEAD(dispose);
1235 long freed;
3049cfe2 1236
503c358c
VD
1237 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1238 dentry_lru_isolate, &dispose);
f6041567 1239 shrink_dentry_list(&dispose);
0a234c6d 1240 return freed;
da3bbdd4 1241}
23044507 1242
4e717f5c 1243static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1244 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1245{
4e717f5c
GC
1246 struct list_head *freeable = arg;
1247 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1248
4e717f5c
GC
1249 /*
1250 * we are inverting the lru lock/dentry->d_lock here,
1251 * so use a trylock. If we fail to get the lock, just skip
1252 * it
1253 */
1254 if (!spin_trylock(&dentry->d_lock))
1255 return LRU_SKIP;
1256
3f97b163 1257 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1258 spin_unlock(&dentry->d_lock);
ec33679d 1259
4e717f5c 1260 return LRU_REMOVED;
da3bbdd4
KM
1261}
1262
4e717f5c 1263
1da177e4
LT
1264/**
1265 * shrink_dcache_sb - shrink dcache for a superblock
1266 * @sb: superblock
1267 *
3049cfe2
CH
1268 * Shrink the dcache for the specified super block. This is used to free
1269 * the dcache before unmounting a file system.
1da177e4 1270 */
3049cfe2 1271void shrink_dcache_sb(struct super_block *sb)
1da177e4 1272{
4e717f5c
GC
1273 do {
1274 LIST_HEAD(dispose);
1275
1dbd449c 1276 list_lru_walk(&sb->s_dentry_lru,
b17c070f 1277 dentry_lru_isolate_shrink, &dispose, 1024);
4e717f5c 1278 shrink_dentry_list(&dispose);
b17c070f 1279 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1280}
ec4f8605 1281EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1282
db14fc3a
MS
1283/**
1284 * enum d_walk_ret - action to talke during tree walk
1285 * @D_WALK_CONTINUE: contrinue walk
1286 * @D_WALK_QUIT: quit walk
1287 * @D_WALK_NORETRY: quit when retry is needed
1288 * @D_WALK_SKIP: skip this dentry and its children
1289 */
1290enum d_walk_ret {
1291 D_WALK_CONTINUE,
1292 D_WALK_QUIT,
1293 D_WALK_NORETRY,
1294 D_WALK_SKIP,
1295};
c826cb7d 1296
1da177e4 1297/**
db14fc3a
MS
1298 * d_walk - walk the dentry tree
1299 * @parent: start of walk
1300 * @data: data passed to @enter() and @finish()
1301 * @enter: callback when first entering the dentry
1da177e4 1302 *
3a8e3611 1303 * The @enter() callbacks are called with d_lock held.
1da177e4 1304 */
db14fc3a 1305static void d_walk(struct dentry *parent, void *data,
3a8e3611 1306 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1307{
da549bdd 1308 struct dentry *this_parent, *dentry;
48f5ec21 1309 unsigned seq = 0;
db14fc3a
MS
1310 enum d_walk_ret ret;
1311 bool retry = true;
949854d0 1312
58db63d0 1313again:
48f5ec21 1314 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1315 this_parent = parent;
2fd6b7f5 1316 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1317
1318 ret = enter(data, this_parent);
1319 switch (ret) {
1320 case D_WALK_CONTINUE:
1321 break;
1322 case D_WALK_QUIT:
1323 case D_WALK_SKIP:
1324 goto out_unlock;
1325 case D_WALK_NORETRY:
1326 retry = false;
1327 break;
1328 }
1da177e4 1329repeat:
da549bdd 1330 dentry = d_first_child(this_parent);
1da177e4 1331resume:
da549bdd 1332 hlist_for_each_entry_from(dentry, d_sib) {
ba65dc5e
AV
1333 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1334 continue;
1335
2fd6b7f5 1336 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1337
1338 ret = enter(data, dentry);
1339 switch (ret) {
1340 case D_WALK_CONTINUE:
1341 break;
1342 case D_WALK_QUIT:
2fd6b7f5 1343 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1344 goto out_unlock;
1345 case D_WALK_NORETRY:
1346 retry = false;
1347 break;
1348 case D_WALK_SKIP:
1349 spin_unlock(&dentry->d_lock);
1350 continue;
2fd6b7f5 1351 }
db14fc3a 1352
da549bdd 1353 if (!hlist_empty(&dentry->d_children)) {
2fd6b7f5 1354 spin_unlock(&this_parent->d_lock);
5facae4f 1355 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1da177e4 1356 this_parent = dentry;
2fd6b7f5 1357 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1358 goto repeat;
1359 }
2fd6b7f5 1360 spin_unlock(&dentry->d_lock);
1da177e4
LT
1361 }
1362 /*
1363 * All done at this level ... ascend and resume the search.
1364 */
ca5358ef
AV
1365 rcu_read_lock();
1366ascend:
1da177e4 1367 if (this_parent != parent) {
da549bdd
AV
1368 dentry = this_parent;
1369 this_parent = dentry->d_parent;
31dec132 1370
da549bdd 1371 spin_unlock(&dentry->d_lock);
31dec132
AV
1372 spin_lock(&this_parent->d_lock);
1373
ca5358ef
AV
1374 /* might go back up the wrong parent if we have had a rename. */
1375 if (need_seqretry(&rename_lock, seq))
949854d0 1376 goto rename_retry;
2159184e 1377 /* go into the first sibling still alive */
da549bdd
AV
1378 hlist_for_each_entry_continue(dentry, d_sib) {
1379 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1380 rcu_read_unlock();
1381 goto resume;
1382 }
1383 }
1384 goto ascend;
1da177e4 1385 }
ca5358ef 1386 if (need_seqretry(&rename_lock, seq))
949854d0 1387 goto rename_retry;
ca5358ef 1388 rcu_read_unlock();
db14fc3a
MS
1389
1390out_unlock:
1391 spin_unlock(&this_parent->d_lock);
48f5ec21 1392 done_seqretry(&rename_lock, seq);
db14fc3a 1393 return;
58db63d0
NP
1394
1395rename_retry:
ca5358ef
AV
1396 spin_unlock(&this_parent->d_lock);
1397 rcu_read_unlock();
1398 BUG_ON(seq & 1);
db14fc3a
MS
1399 if (!retry)
1400 return;
48f5ec21 1401 seq = 1;
58db63d0 1402 goto again;
1da177e4 1403}
db14fc3a 1404
01619491
IK
1405struct check_mount {
1406 struct vfsmount *mnt;
1407 unsigned int mounted;
1408};
1409
1410static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1411{
1412 struct check_mount *info = data;
1413 struct path path = { .mnt = info->mnt, .dentry = dentry };
1414
1415 if (likely(!d_mountpoint(dentry)))
1416 return D_WALK_CONTINUE;
1417 if (__path_is_mountpoint(&path)) {
1418 info->mounted = 1;
1419 return D_WALK_QUIT;
1420 }
1421 return D_WALK_CONTINUE;
1422}
1423
1424/**
1425 * path_has_submounts - check for mounts over a dentry in the
1426 * current namespace.
1427 * @parent: path to check.
1428 *
1429 * Return true if the parent or its subdirectories contain
1430 * a mount point in the current namespace.
1431 */
1432int path_has_submounts(const struct path *parent)
1433{
1434 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1435
1436 read_seqlock_excl(&mount_lock);
3a8e3611 1437 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1438 read_sequnlock_excl(&mount_lock);
1439
1440 return data.mounted;
1441}
1442EXPORT_SYMBOL(path_has_submounts);
1443
eed81007
MS
1444/*
1445 * Called by mount code to set a mountpoint and check if the mountpoint is
1446 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1447 * subtree can become unreachable).
1448 *
1ffe46d1 1449 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1450 * this reason take rename_lock and d_lock on dentry and ancestors.
1451 */
1452int d_set_mounted(struct dentry *dentry)
1453{
1454 struct dentry *p;
1455 int ret = -ENOENT;
1456 write_seqlock(&rename_lock);
1457 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1458 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1459 spin_lock(&p->d_lock);
1460 if (unlikely(d_unhashed(p))) {
1461 spin_unlock(&p->d_lock);
1462 goto out;
1463 }
1464 spin_unlock(&p->d_lock);
1465 }
1466 spin_lock(&dentry->d_lock);
1467 if (!d_unlinked(dentry)) {
3895dbf8
EB
1468 ret = -EBUSY;
1469 if (!d_mountpoint(dentry)) {
1470 dentry->d_flags |= DCACHE_MOUNTED;
1471 ret = 0;
1472 }
eed81007
MS
1473 }
1474 spin_unlock(&dentry->d_lock);
1475out:
1476 write_sequnlock(&rename_lock);
1477 return ret;
1478}
1479
1da177e4 1480/*
fd517909 1481 * Search the dentry child list of the specified parent,
1da177e4
LT
1482 * and move any unused dentries to the end of the unused
1483 * list for prune_dcache(). We descend to the next level
da549bdd 1484 * whenever the d_children list is non-empty and continue
1da177e4
LT
1485 * searching.
1486 *
1487 * It returns zero iff there are no unused children,
1488 * otherwise it returns the number of children moved to
1489 * the end of the unused list. This may not be the total
1490 * number of unused children, because select_parent can
1491 * drop the lock and return early due to latency
1492 * constraints.
1493 */
1da177e4 1494
db14fc3a
MS
1495struct select_data {
1496 struct dentry *start;
9bdebc2b
AV
1497 union {
1498 long found;
1499 struct dentry *victim;
1500 };
db14fc3a 1501 struct list_head dispose;
db14fc3a 1502};
23044507 1503
db14fc3a
MS
1504static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1505{
1506 struct select_data *data = _data;
1507 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1508
db14fc3a
MS
1509 if (data->start == dentry)
1510 goto out;
2fd6b7f5 1511
fe91522a 1512 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1513 data->found++;
fe91522a
AV
1514 } else {
1515 if (dentry->d_flags & DCACHE_LRU_LIST)
1516 d_lru_del(dentry);
1517 if (!dentry->d_lockref.count) {
1518 d_shrink_add(dentry, &data->dispose);
1519 data->found++;
1520 }
1da177e4 1521 }
db14fc3a
MS
1522 /*
1523 * We can return to the caller if we have found some (this
1524 * ensures forward progress). We'll be coming back to find
1525 * the rest.
1526 */
fe91522a
AV
1527 if (!list_empty(&data->dispose))
1528 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1529out:
db14fc3a 1530 return ret;
1da177e4
LT
1531}
1532
9bdebc2b
AV
1533static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1534{
1535 struct select_data *data = _data;
1536 enum d_walk_ret ret = D_WALK_CONTINUE;
1537
1538 if (data->start == dentry)
1539 goto out;
1540
1541 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1542 if (!dentry->d_lockref.count) {
1543 rcu_read_lock();
1544 data->victim = dentry;
1545 return D_WALK_QUIT;
1546 }
1547 } else {
1548 if (dentry->d_flags & DCACHE_LRU_LIST)
1549 d_lru_del(dentry);
1550 if (!dentry->d_lockref.count)
1551 d_shrink_add(dentry, &data->dispose);
1552 }
1553 /*
1554 * We can return to the caller if we have found some (this
1555 * ensures forward progress). We'll be coming back to find
1556 * the rest.
1557 */
1558 if (!list_empty(&data->dispose))
1559 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1560out:
1561 return ret;
1562}
1563
1da177e4
LT
1564/**
1565 * shrink_dcache_parent - prune dcache
1566 * @parent: parent of entries to prune
1567 *
1568 * Prune the dcache to remove unused children of the parent dentry.
1569 */
db14fc3a 1570void shrink_dcache_parent(struct dentry *parent)
1da177e4 1571{
db14fc3a 1572 for (;;) {
9bdebc2b 1573 struct select_data data = {.start = parent};
1da177e4 1574
db14fc3a 1575 INIT_LIST_HEAD(&data.dispose);
3a8e3611 1576 d_walk(parent, &data, select_collect);
4fb48871
AV
1577
1578 if (!list_empty(&data.dispose)) {
1579 shrink_dentry_list(&data.dispose);
1580 continue;
1581 }
1582
1583 cond_resched();
db14fc3a
MS
1584 if (!data.found)
1585 break;
9bdebc2b
AV
1586 data.victim = NULL;
1587 d_walk(parent, &data, select_collect2);
1588 if (data.victim) {
9bdebc2b 1589 spin_lock(&data.victim->d_lock);
339e9e13 1590 if (!lock_for_kill(data.victim)) {
9bdebc2b
AV
1591 spin_unlock(&data.victim->d_lock);
1592 rcu_read_unlock();
1593 } else {
1594 rcu_read_unlock();
3fcf5356 1595 shrink_kill(data.victim, &data.dispose);
9bdebc2b
AV
1596 }
1597 }
1598 if (!list_empty(&data.dispose))
1599 shrink_dentry_list(&data.dispose);
421348f1 1600 }
1da177e4 1601}
ec4f8605 1602EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1603
9c8c10e2 1604static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1605{
9c8c10e2 1606 /* it has busy descendents; complain about those instead */
da549bdd 1607 if (!hlist_empty(&dentry->d_children))
9c8c10e2 1608 return D_WALK_CONTINUE;
42c32608 1609
9c8c10e2
AV
1610 /* root with refcount 1 is fine */
1611 if (dentry == _data && dentry->d_lockref.count == 1)
1612 return D_WALK_CONTINUE;
1613
8c8e7dba 1614 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
9c8c10e2 1615 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1616 dentry,
1617 dentry->d_inode ?
1618 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1619 dentry,
42c32608
AV
1620 dentry->d_lockref.count,
1621 dentry->d_sb->s_type->name,
1622 dentry->d_sb->s_id);
9c8c10e2
AV
1623 return D_WALK_CONTINUE;
1624}
1625
1626static void do_one_tree(struct dentry *dentry)
1627{
1628 shrink_dcache_parent(dentry);
3a8e3611 1629 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1630 d_drop(dentry);
1631 dput(dentry);
42c32608
AV
1632}
1633
1634/*
1635 * destroy the dentries attached to a superblock on unmounting
1636 */
1637void shrink_dcache_for_umount(struct super_block *sb)
1638{
1639 struct dentry *dentry;
1640
9c8c10e2 1641 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1642
1643 dentry = sb->s_root;
1644 sb->s_root = NULL;
9c8c10e2 1645 do_one_tree(dentry);
42c32608 1646
f1ee6162
N
1647 while (!hlist_bl_empty(&sb->s_roots)) {
1648 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1649 do_one_tree(dentry);
42c32608
AV
1650 }
1651}
1652
ff17fa56 1653static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1654{
ff17fa56 1655 struct dentry **victim = _data;
848ac114 1656 if (d_mountpoint(dentry)) {
8ed936b5 1657 __dget_dlock(dentry);
ff17fa56 1658 *victim = dentry;
848ac114
MS
1659 return D_WALK_QUIT;
1660 }
ff17fa56 1661 return D_WALK_CONTINUE;
848ac114
MS
1662}
1663
1664/**
1ffe46d1
EB
1665 * d_invalidate - detach submounts, prune dcache, and drop
1666 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1667 */
5542aa2f 1668void d_invalidate(struct dentry *dentry)
848ac114 1669{
ff17fa56 1670 bool had_submounts = false;
1ffe46d1
EB
1671 spin_lock(&dentry->d_lock);
1672 if (d_unhashed(dentry)) {
1673 spin_unlock(&dentry->d_lock);
5542aa2f 1674 return;
1ffe46d1 1675 }
ff17fa56 1676 __d_drop(dentry);
1ffe46d1
EB
1677 spin_unlock(&dentry->d_lock);
1678
848ac114 1679 /* Negative dentries can be dropped without further checks */
ff17fa56 1680 if (!dentry->d_inode)
5542aa2f 1681 return;
848ac114 1682
ff17fa56 1683 shrink_dcache_parent(dentry);
848ac114 1684 for (;;) {
ff17fa56 1685 struct dentry *victim = NULL;
3a8e3611 1686 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1687 if (!victim) {
1688 if (had_submounts)
1689 shrink_dcache_parent(dentry);
81be24d2 1690 return;
8ed936b5 1691 }
ff17fa56
AV
1692 had_submounts = true;
1693 detach_mounts(victim);
1694 dput(victim);
848ac114 1695 }
848ac114 1696}
1ffe46d1 1697EXPORT_SYMBOL(d_invalidate);
848ac114 1698
1da177e4 1699/**
a4464dbc
AV
1700 * __d_alloc - allocate a dcache entry
1701 * @sb: filesystem it will belong to
1da177e4
LT
1702 * @name: qstr of the name
1703 *
1704 * Allocates a dentry. It returns %NULL if there is insufficient memory
1705 * available. On a success the dentry is returned. The name passed in is
1706 * copied and the copy passed in may be reused after this call.
1707 */
1708
5c8b0dfc 1709static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1710{
1711 struct dentry *dentry;
1712 char *dname;
285b102d 1713 int err;
1da177e4 1714
f53bf711
MS
1715 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1716 GFP_KERNEL);
1da177e4
LT
1717 if (!dentry)
1718 return NULL;
1719
6326c71f
LT
1720 /*
1721 * We guarantee that the inline name is always NUL-terminated.
1722 * This way the memcpy() done by the name switching in rename
1723 * will still always have a NUL at the end, even if we might
1724 * be overwriting an internal NUL character
1725 */
1726 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1727 if (unlikely(!name)) {
cdf01226 1728 name = &slash_name;
798434bd
AV
1729 dname = dentry->d_iname;
1730 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1731 size_t size = offsetof(struct external_name, name[1]);
2e03b4bc
VB
1732 struct external_name *p = kmalloc(size + name->len,
1733 GFP_KERNEL_ACCOUNT |
1734 __GFP_RECLAIMABLE);
1735 if (!p) {
1da177e4
LT
1736 kmem_cache_free(dentry_cache, dentry);
1737 return NULL;
1738 }
2e03b4bc
VB
1739 atomic_set(&p->u.count, 1);
1740 dname = p->name;
1da177e4
LT
1741 } else {
1742 dname = dentry->d_iname;
1743 }
1da177e4
LT
1744
1745 dentry->d_name.len = name->len;
1746 dentry->d_name.hash = name->hash;
1747 memcpy(dname, name->name, name->len);
1748 dname[name->len] = 0;
1749
6326c71f 1750 /* Make sure we always see the terminating NUL character */
7088efa9 1751 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1752
98474236 1753 dentry->d_lockref.count = 1;
dea3667b 1754 dentry->d_flags = 0;
1da177e4 1755 spin_lock_init(&dentry->d_lock);
26475371 1756 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1da177e4 1757 dentry->d_inode = NULL;
a4464dbc
AV
1758 dentry->d_parent = dentry;
1759 dentry->d_sb = sb;
1da177e4
LT
1760 dentry->d_op = NULL;
1761 dentry->d_fsdata = NULL;
ceb5bdc2 1762 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4 1763 INIT_LIST_HEAD(&dentry->d_lru);
da549bdd 1764 INIT_HLIST_HEAD(&dentry->d_children);
946e51f2 1765 INIT_HLIST_NODE(&dentry->d_u.d_alias);
da549bdd 1766 INIT_HLIST_NODE(&dentry->d_sib);
a4464dbc 1767 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1768
285b102d
MS
1769 if (dentry->d_op && dentry->d_op->d_init) {
1770 err = dentry->d_op->d_init(dentry);
1771 if (err) {
1772 if (dname_external(dentry))
1773 kfree(external_name(dentry));
1774 kmem_cache_free(dentry_cache, dentry);
1775 return NULL;
1776 }
1777 }
1778
3e880fb5 1779 this_cpu_inc(nr_dentry);
312d3ca8 1780
1da177e4
LT
1781 return dentry;
1782}
a4464dbc
AV
1783
1784/**
1785 * d_alloc - allocate a dcache entry
1786 * @parent: parent of entry to allocate
1787 * @name: qstr of the name
1788 *
1789 * Allocates a dentry. It returns %NULL if there is insufficient memory
1790 * available. On a success the dentry is returned. The name passed in is
1791 * copied and the copy passed in may be reused after this call.
1792 */
1793struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1794{
1795 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1796 if (!dentry)
1797 return NULL;
a4464dbc
AV
1798 spin_lock(&parent->d_lock);
1799 /*
1800 * don't need child lock because it is not subject
1801 * to concurrency here
1802 */
1803 __dget_dlock(parent);
1804 dentry->d_parent = parent;
da549bdd 1805 hlist_add_head(&dentry->d_sib, &parent->d_children);
a4464dbc
AV
1806 spin_unlock(&parent->d_lock);
1807
1808 return dentry;
1809}
ec4f8605 1810EXPORT_SYMBOL(d_alloc);
1da177e4 1811
f9c34674
MS
1812struct dentry *d_alloc_anon(struct super_block *sb)
1813{
1814 return __d_alloc(sb, NULL);
1815}
1816EXPORT_SYMBOL(d_alloc_anon);
1817
ba65dc5e
AV
1818struct dentry *d_alloc_cursor(struct dentry * parent)
1819{
f9c34674 1820 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e 1821 if (dentry) {
5467a68c 1822 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
ba65dc5e
AV
1823 dentry->d_parent = dget(parent);
1824 }
1825 return dentry;
1826}
1827
e1a24bb0
BF
1828/**
1829 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1830 * @sb: the superblock
1831 * @name: qstr of the name
1832 *
1833 * For a filesystem that just pins its dentries in memory and never
1834 * performs lookups at all, return an unhashed IS_ROOT dentry.
5467a68c
AV
1835 * This is used for pipes, sockets et.al. - the stuff that should
1836 * never be anyone's children or parents. Unlike all other
1837 * dentries, these will not have RCU delay between dropping the
1838 * last reference and freeing them.
ab1152dd
AV
1839 *
1840 * The only user is alloc_file_pseudo() and that's what should
1841 * be considered a public interface. Don't use directly.
e1a24bb0 1842 */
4b936885
NP
1843struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1844{
5467a68c
AV
1845 struct dentry *dentry = __d_alloc(sb, name);
1846 if (likely(dentry))
1847 dentry->d_flags |= DCACHE_NORCU;
1848 return dentry;
4b936885 1849}
4b936885 1850
1da177e4
LT
1851struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1852{
1853 struct qstr q;
1854
1855 q.name = name;
8387ff25 1856 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1857 return d_alloc(parent, &q);
1858}
ef26ca97 1859EXPORT_SYMBOL(d_alloc_name);
1da177e4 1860
fb045adb
NP
1861void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1862{
6f7f7caa
LT
1863 WARN_ON_ONCE(dentry->d_op);
1864 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1865 DCACHE_OP_COMPARE |
1866 DCACHE_OP_REVALIDATE |
ecf3d1f1 1867 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1868 DCACHE_OP_DELETE |
d101a125 1869 DCACHE_OP_REAL));
fb045adb
NP
1870 dentry->d_op = op;
1871 if (!op)
1872 return;
1873 if (op->d_hash)
1874 dentry->d_flags |= DCACHE_OP_HASH;
1875 if (op->d_compare)
1876 dentry->d_flags |= DCACHE_OP_COMPARE;
1877 if (op->d_revalidate)
1878 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1879 if (op->d_weak_revalidate)
1880 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1881 if (op->d_delete)
1882 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1883 if (op->d_prune)
1884 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1885 if (op->d_real)
1886 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1887
1888}
1889EXPORT_SYMBOL(d_set_d_op);
1890
df1a085a
DH
1891
1892/*
1893 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1894 * @dentry - The dentry to mark
1895 *
1896 * Mark a dentry as falling through to the lower layer (as set with
1897 * d_pin_lower()). This flag may be recorded on the medium.
1898 */
1899void d_set_fallthru(struct dentry *dentry)
1900{
1901 spin_lock(&dentry->d_lock);
1902 dentry->d_flags |= DCACHE_FALLTHRU;
1903 spin_unlock(&dentry->d_lock);
1904}
1905EXPORT_SYMBOL(d_set_fallthru);
1906
b18825a7
DH
1907static unsigned d_flags_for_inode(struct inode *inode)
1908{
44bdb5e5 1909 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1910
1911 if (!inode)
1912 return DCACHE_MISS_TYPE;
1913
1914 if (S_ISDIR(inode->i_mode)) {
1915 add_flags = DCACHE_DIRECTORY_TYPE;
1916 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1917 if (unlikely(!inode->i_op->lookup))
1918 add_flags = DCACHE_AUTODIR_TYPE;
1919 else
1920 inode->i_opflags |= IOP_LOOKUP;
1921 }
44bdb5e5
DH
1922 goto type_determined;
1923 }
1924
1925 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1926 if (unlikely(inode->i_op->get_link)) {
b18825a7 1927 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1928 goto type_determined;
1929 }
1930 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1931 }
1932
44bdb5e5
DH
1933 if (unlikely(!S_ISREG(inode->i_mode)))
1934 add_flags = DCACHE_SPECIAL_TYPE;
1935
1936type_determined:
b18825a7
DH
1937 if (unlikely(IS_AUTOMOUNT(inode)))
1938 add_flags |= DCACHE_NEED_AUTOMOUNT;
1939 return add_flags;
1940}
1941
360da900
OH
1942static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1943{
b18825a7 1944 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1945 WARN_ON(d_in_lookup(dentry));
b18825a7 1946
b23fb0a6 1947 spin_lock(&dentry->d_lock);
af0c9af1
WL
1948 /*
1949 * Decrement negative dentry count if it was in the LRU list.
1950 */
1951 if (dentry->d_flags & DCACHE_LRU_LIST)
1952 this_cpu_dec(nr_dentry_negative);
de689f5e 1953 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1954 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1955 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1956 raw_write_seqcount_end(&dentry->d_seq);
affda484 1957 fsnotify_update_flags(dentry);
b23fb0a6 1958 spin_unlock(&dentry->d_lock);
360da900
OH
1959}
1960
1da177e4
LT
1961/**
1962 * d_instantiate - fill in inode information for a dentry
1963 * @entry: dentry to complete
1964 * @inode: inode to attach to this dentry
1965 *
1966 * Fill in inode information in the entry.
1967 *
1968 * This turns negative dentries into productive full members
1969 * of society.
1970 *
1971 * NOTE! This assumes that the inode count has been incremented
1972 * (or otherwise set) by the caller to indicate that it is now
1973 * in use by the dcache.
1974 */
1975
1976void d_instantiate(struct dentry *entry, struct inode * inode)
1977{
946e51f2 1978 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1979 if (inode) {
b9680917 1980 security_d_instantiate(entry, inode);
873feea0 1981 spin_lock(&inode->i_lock);
de689f5e 1982 __d_instantiate(entry, inode);
873feea0 1983 spin_unlock(&inode->i_lock);
de689f5e 1984 }
1da177e4 1985}
ec4f8605 1986EXPORT_SYMBOL(d_instantiate);
1da177e4 1987
1e2e547a
AV
1988/*
1989 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1990 * with lockdep-related part of unlock_new_inode() done before
1991 * anything else. Use that instead of open-coding d_instantiate()/
1992 * unlock_new_inode() combinations.
1993 */
1994void d_instantiate_new(struct dentry *entry, struct inode *inode)
1995{
1996 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1997 BUG_ON(!inode);
1998 lockdep_annotate_inode_mutex_key(inode);
1999 security_d_instantiate(entry, inode);
2000 spin_lock(&inode->i_lock);
2001 __d_instantiate(entry, inode);
2002 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 2003 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
2004 smp_mb();
2005 wake_up_bit(&inode->i_state, __I_NEW);
2006 spin_unlock(&inode->i_lock);
2007}
2008EXPORT_SYMBOL(d_instantiate_new);
2009
adc0e91a
AV
2010struct dentry *d_make_root(struct inode *root_inode)
2011{
2012 struct dentry *res = NULL;
2013
2014 if (root_inode) {
f9c34674 2015 res = d_alloc_anon(root_inode->i_sb);
5467a68c 2016 if (res)
adc0e91a 2017 d_instantiate(res, root_inode);
5467a68c 2018 else
adc0e91a
AV
2019 iput(root_inode);
2020 }
2021 return res;
2022}
2023EXPORT_SYMBOL(d_make_root);
2024
f9c34674
MS
2025static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2026 struct inode *inode,
2027 bool disconnected)
4ea3ada2 2028{
9308a612 2029 struct dentry *res;
b18825a7 2030 unsigned add_flags;
4ea3ada2 2031
f9c34674 2032 security_d_instantiate(dentry, inode);
873feea0 2033 spin_lock(&inode->i_lock);
d891eedb 2034 res = __d_find_any_alias(inode);
9308a612 2035 if (res) {
873feea0 2036 spin_unlock(&inode->i_lock);
f9c34674 2037 dput(dentry);
9308a612
CH
2038 goto out_iput;
2039 }
2040
2041 /* attach a disconnected dentry */
1a0a397e
BF
2042 add_flags = d_flags_for_inode(inode);
2043
2044 if (disconnected)
2045 add_flags |= DCACHE_DISCONNECTED;
b18825a7 2046
f9c34674
MS
2047 spin_lock(&dentry->d_lock);
2048 __d_set_inode_and_type(dentry, inode, add_flags);
2049 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 2050 if (!disconnected) {
139351f1
LT
2051 hlist_bl_lock(&dentry->d_sb->s_roots);
2052 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2053 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 2054 }
f9c34674 2055 spin_unlock(&dentry->d_lock);
873feea0 2056 spin_unlock(&inode->i_lock);
9308a612 2057
f9c34674 2058 return dentry;
9308a612
CH
2059
2060 out_iput:
2061 iput(inode);
2062 return res;
4ea3ada2 2063}
1a0a397e 2064
f9c34674
MS
2065struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2066{
2067 return __d_instantiate_anon(dentry, inode, true);
2068}
2069EXPORT_SYMBOL(d_instantiate_anon);
2070
2071static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2072{
2073 struct dentry *tmp;
2074 struct dentry *res;
2075
2076 if (!inode)
2077 return ERR_PTR(-ESTALE);
2078 if (IS_ERR(inode))
2079 return ERR_CAST(inode);
2080
2081 res = d_find_any_alias(inode);
2082 if (res)
2083 goto out_iput;
2084
2085 tmp = d_alloc_anon(inode->i_sb);
2086 if (!tmp) {
2087 res = ERR_PTR(-ENOMEM);
2088 goto out_iput;
2089 }
2090
2091 return __d_instantiate_anon(tmp, inode, disconnected);
2092
2093out_iput:
2094 iput(inode);
2095 return res;
2096}
2097
1a0a397e
BF
2098/**
2099 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2100 * @inode: inode to allocate the dentry for
2101 *
2102 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2103 * similar open by handle operations. The returned dentry may be anonymous,
2104 * or may have a full name (if the inode was already in the cache).
2105 *
2106 * When called on a directory inode, we must ensure that the inode only ever
2107 * has one dentry. If a dentry is found, that is returned instead of
2108 * allocating a new one.
2109 *
2110 * On successful return, the reference to the inode has been transferred
2111 * to the dentry. In case of an error the reference on the inode is released.
2112 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2113 * be passed in and the error will be propagated to the return value,
2114 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2115 */
2116struct dentry *d_obtain_alias(struct inode *inode)
2117{
f9c34674 2118 return __d_obtain_alias(inode, true);
1a0a397e 2119}
adc48720 2120EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2121
1a0a397e
BF
2122/**
2123 * d_obtain_root - find or allocate a dentry for a given inode
2124 * @inode: inode to allocate the dentry for
2125 *
2126 * Obtain an IS_ROOT dentry for the root of a filesystem.
2127 *
2128 * We must ensure that directory inodes only ever have one dentry. If a
2129 * dentry is found, that is returned instead of allocating a new one.
2130 *
2131 * On successful return, the reference to the inode has been transferred
2132 * to the dentry. In case of an error the reference on the inode is
2133 * released. A %NULL or IS_ERR inode may be passed in and will be the
2134 * error will be propagate to the return value, with a %NULL @inode
2135 * replaced by ERR_PTR(-ESTALE).
2136 */
2137struct dentry *d_obtain_root(struct inode *inode)
2138{
f9c34674 2139 return __d_obtain_alias(inode, false);
1a0a397e
BF
2140}
2141EXPORT_SYMBOL(d_obtain_root);
2142
9403540c
BN
2143/**
2144 * d_add_ci - lookup or allocate new dentry with case-exact name
2145 * @inode: the inode case-insensitive lookup has found
2146 * @dentry: the negative dentry that was passed to the parent's lookup func
2147 * @name: the case-exact name to be associated with the returned dentry
2148 *
2149 * This is to avoid filling the dcache with case-insensitive names to the
2150 * same inode, only the actual correct case is stored in the dcache for
2151 * case-insensitive filesystems.
2152 *
3d742d4b
RD
2153 * For a case-insensitive lookup match and if the case-exact dentry
2154 * already exists in the dcache, use it and return it.
9403540c
BN
2155 *
2156 * If no entry exists with the exact case name, allocate new dentry with
2157 * the exact case, and return the spliced entry.
2158 */
e45b590b 2159struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2160 struct qstr *name)
2161{
d9171b93 2162 struct dentry *found, *res;
9403540c 2163
b6520c81
CH
2164 /*
2165 * First check if a dentry matching the name already exists,
2166 * if not go ahead and create it now.
2167 */
9403540c 2168 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2169 if (found) {
2170 iput(inode);
2171 return found;
2172 }
2173 if (d_in_lookup(dentry)) {
2174 found = d_alloc_parallel(dentry->d_parent, name,
2175 dentry->d_wait);
2176 if (IS_ERR(found) || !d_in_lookup(found)) {
2177 iput(inode);
2178 return found;
9403540c 2179 }
d9171b93
AV
2180 } else {
2181 found = d_alloc(dentry->d_parent, name);
2182 if (!found) {
2183 iput(inode);
2184 return ERR_PTR(-ENOMEM);
2185 }
2186 }
2187 res = d_splice_alias(inode, found);
2188 if (res) {
40a3cb0d 2189 d_lookup_done(found);
d9171b93
AV
2190 dput(found);
2191 return res;
9403540c 2192 }
4f522a24 2193 return found;
9403540c 2194}
ec4f8605 2195EXPORT_SYMBOL(d_add_ci);
1da177e4 2196
4f48d5da
XL
2197/**
2198 * d_same_name - compare dentry name with case-exact name
2199 * @parent: parent dentry
2200 * @dentry: the negative dentry that was passed to the parent's lookup func
2201 * @name: the case-exact name to be associated with the returned dentry
2202 *
2203 * Return: true if names are same, or false
2204 */
2205bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2206 const struct qstr *name)
12f8ad4b 2207{
d4c91a8f
AV
2208 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2209 if (dentry->d_name.len != name->len)
2210 return false;
2211 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2212 }
6fa67e70 2213 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2214 dentry->d_name.len, dentry->d_name.name,
2215 name) == 0;
12f8ad4b 2216}
4f48d5da 2217EXPORT_SYMBOL_GPL(d_same_name);
12f8ad4b 2218
ae2a8236
LT
2219/*
2220 * This is __d_lookup_rcu() when the parent dentry has
2221 * DCACHE_OP_COMPARE, which makes things much nastier.
2222 */
2223static noinline struct dentry *__d_lookup_rcu_op_compare(
2224 const struct dentry *parent,
2225 const struct qstr *name,
2226 unsigned *seqp)
2227{
2228 u64 hashlen = name->hash_len;
2229 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2230 struct hlist_bl_node *node;
2231 struct dentry *dentry;
2232
2233 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2234 int tlen;
2235 const char *tname;
2236 unsigned seq;
2237
2238seqretry:
2239 seq = raw_seqcount_begin(&dentry->d_seq);
2240 if (dentry->d_parent != parent)
2241 continue;
2242 if (d_unhashed(dentry))
2243 continue;
2244 if (dentry->d_name.hash != hashlen_hash(hashlen))
2245 continue;
2246 tlen = dentry->d_name.len;
2247 tname = dentry->d_name.name;
2248 /* we want a consistent (name,len) pair */
2249 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2250 cpu_relax();
2251 goto seqretry;
2252 }
2253 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2254 continue;
2255 *seqp = seq;
2256 return dentry;
2257 }
2258 return NULL;
2259}
2260
31e6b01f
NP
2261/**
2262 * __d_lookup_rcu - search for a dentry (racy, store-free)
2263 * @parent: parent dentry
2264 * @name: qstr of name we wish to find
1f1e6e52 2265 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2266 * Returns: dentry, or NULL
2267 *
2268 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2269 * resolution (store-free path walking) design described in
2270 * Documentation/filesystems/path-lookup.txt.
2271 *
2272 * This is not to be used outside core vfs.
2273 *
2274 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2275 * held, and rcu_read_lock held. The returned dentry must not be stored into
2276 * without taking d_lock and checking d_seq sequence count against @seq
2277 * returned here.
2278 *
15570086 2279 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2280 * function.
2281 *
2282 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2283 * the returned dentry, so long as its parent's seqlock is checked after the
2284 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2285 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2286 *
2287 * NOTE! The caller *has* to check the resulting dentry against the sequence
2288 * number we've returned before using any of the resulting dentry state!
31e6b01f 2289 */
8966be90
LT
2290struct dentry *__d_lookup_rcu(const struct dentry *parent,
2291 const struct qstr *name,
da53be12 2292 unsigned *seqp)
31e6b01f 2293{
26fe5750 2294 u64 hashlen = name->hash_len;
31e6b01f 2295 const unsigned char *str = name->name;
8387ff25 2296 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2297 struct hlist_bl_node *node;
31e6b01f
NP
2298 struct dentry *dentry;
2299
2300 /*
2301 * Note: There is significant duplication with __d_lookup_rcu which is
2302 * required to prevent single threaded performance regressions
2303 * especially on architectures where smp_rmb (in seqcounts) are costly.
2304 * Keep the two functions in sync.
2305 */
2306
ae2a8236
LT
2307 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2308 return __d_lookup_rcu_op_compare(parent, name, seqp);
2309
31e6b01f
NP
2310 /*
2311 * The hash list is protected using RCU.
2312 *
2313 * Carefully use d_seq when comparing a candidate dentry, to avoid
2314 * races with d_move().
2315 *
2316 * It is possible that concurrent renames can mess up our list
2317 * walk here and result in missing our dentry, resulting in the
2318 * false-negative result. d_lookup() protects against concurrent
2319 * renames using rename_lock seqlock.
2320 *
b0a4bb83 2321 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2322 */
b07ad996 2323 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2324 unsigned seq;
31e6b01f 2325
12f8ad4b
LT
2326 /*
2327 * The dentry sequence count protects us from concurrent
da53be12 2328 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2329 *
2330 * The caller must perform a seqcount check in order
da53be12 2331 * to do anything useful with the returned dentry.
12f8ad4b
LT
2332 *
2333 * NOTE! We do a "raw" seqcount_begin here. That means that
2334 * we don't wait for the sequence count to stabilize if it
2335 * is in the middle of a sequence change. If we do the slow
2336 * dentry compare, we will do seqretries until it is stable,
2337 * and if we end up with a successful lookup, we actually
2338 * want to exit RCU lookup anyway.
d4c91a8f
AV
2339 *
2340 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2341 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2342 */
2343 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2344 if (dentry->d_parent != parent)
2345 continue;
2e321806
LT
2346 if (d_unhashed(dentry))
2347 continue;
ae2a8236
LT
2348 if (dentry->d_name.hash_len != hashlen)
2349 continue;
2350 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2351 continue;
da53be12 2352 *seqp = seq;
d4c91a8f 2353 return dentry;
31e6b01f
NP
2354 }
2355 return NULL;
2356}
2357
1da177e4
LT
2358/**
2359 * d_lookup - search for a dentry
2360 * @parent: parent dentry
2361 * @name: qstr of name we wish to find
b04f784e 2362 * Returns: dentry, or NULL
1da177e4 2363 *
b04f784e
NP
2364 * d_lookup searches the children of the parent dentry for the name in
2365 * question. If the dentry is found its reference count is incremented and the
2366 * dentry is returned. The caller must use dput to free the entry when it has
2367 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2368 */
da2d8455 2369struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2370{
31e6b01f 2371 struct dentry *dentry;
949854d0 2372 unsigned seq;
1da177e4 2373
b8314f93
DY
2374 do {
2375 seq = read_seqbegin(&rename_lock);
2376 dentry = __d_lookup(parent, name);
2377 if (dentry)
1da177e4
LT
2378 break;
2379 } while (read_seqretry(&rename_lock, seq));
2380 return dentry;
2381}
ec4f8605 2382EXPORT_SYMBOL(d_lookup);
1da177e4 2383
31e6b01f 2384/**
b04f784e
NP
2385 * __d_lookup - search for a dentry (racy)
2386 * @parent: parent dentry
2387 * @name: qstr of name we wish to find
2388 * Returns: dentry, or NULL
2389 *
2390 * __d_lookup is like d_lookup, however it may (rarely) return a
2391 * false-negative result due to unrelated rename activity.
2392 *
2393 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2394 * however it must be used carefully, eg. with a following d_lookup in
2395 * the case of failure.
2396 *
2397 * __d_lookup callers must be commented.
2398 */
a713ca2a 2399struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2400{
1da177e4 2401 unsigned int hash = name->hash;
8387ff25 2402 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2403 struct hlist_bl_node *node;
31e6b01f 2404 struct dentry *found = NULL;
665a7583 2405 struct dentry *dentry;
1da177e4 2406
31e6b01f
NP
2407 /*
2408 * Note: There is significant duplication with __d_lookup_rcu which is
2409 * required to prevent single threaded performance regressions
2410 * especially on architectures where smp_rmb (in seqcounts) are costly.
2411 * Keep the two functions in sync.
2412 */
2413
b04f784e
NP
2414 /*
2415 * The hash list is protected using RCU.
2416 *
2417 * Take d_lock when comparing a candidate dentry, to avoid races
2418 * with d_move().
2419 *
2420 * It is possible that concurrent renames can mess up our list
2421 * walk here and result in missing our dentry, resulting in the
2422 * false-negative result. d_lookup() protects against concurrent
2423 * renames using rename_lock seqlock.
2424 *
b0a4bb83 2425 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2426 */
1da177e4
LT
2427 rcu_read_lock();
2428
b07ad996 2429 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2430
1da177e4
LT
2431 if (dentry->d_name.hash != hash)
2432 continue;
1da177e4
LT
2433
2434 spin_lock(&dentry->d_lock);
1da177e4
LT
2435 if (dentry->d_parent != parent)
2436 goto next;
d0185c08
LT
2437 if (d_unhashed(dentry))
2438 goto next;
2439
d4c91a8f
AV
2440 if (!d_same_name(dentry, parent, name))
2441 goto next;
1da177e4 2442
98474236 2443 dentry->d_lockref.count++;
d0185c08 2444 found = dentry;
1da177e4
LT
2445 spin_unlock(&dentry->d_lock);
2446 break;
2447next:
2448 spin_unlock(&dentry->d_lock);
2449 }
2450 rcu_read_unlock();
2451
2452 return found;
2453}
2454
3e7e241f
EB
2455/**
2456 * d_hash_and_lookup - hash the qstr then search for a dentry
2457 * @dir: Directory to search in
2458 * @name: qstr of name we wish to find
2459 *
4f522a24 2460 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2461 */
2462struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2463{
3e7e241f
EB
2464 /*
2465 * Check for a fs-specific hash function. Note that we must
2466 * calculate the standard hash first, as the d_op->d_hash()
2467 * routine may choose to leave the hash value unchanged.
2468 */
8387ff25 2469 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2470 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2471 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2472 if (unlikely(err < 0))
2473 return ERR_PTR(err);
3e7e241f 2474 }
4f522a24 2475 return d_lookup(dir, name);
3e7e241f 2476}
4f522a24 2477EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2478
1da177e4
LT
2479/*
2480 * When a file is deleted, we have two options:
2481 * - turn this dentry into a negative dentry
2482 * - unhash this dentry and free it.
2483 *
2484 * Usually, we want to just turn this into
2485 * a negative dentry, but if anybody else is
2486 * currently using the dentry or the inode
2487 * we can't do that and we fall back on removing
2488 * it from the hash queues and waiting for
2489 * it to be deleted later when it has no users
2490 */
2491
2492/**
2493 * d_delete - delete a dentry
2494 * @dentry: The dentry to delete
2495 *
2496 * Turn the dentry into a negative dentry if possible, otherwise
2497 * remove it from the hash queues so it can be deleted later
2498 */
2499
2500void d_delete(struct dentry * dentry)
2501{
c19457f0 2502 struct inode *inode = dentry->d_inode;
c19457f0
AV
2503
2504 spin_lock(&inode->i_lock);
2505 spin_lock(&dentry->d_lock);
1da177e4
LT
2506 /*
2507 * Are we the only user?
2508 */
98474236 2509 if (dentry->d_lockref.count == 1) {
13e3c5e5 2510 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2511 dentry_unlink_inode(dentry);
c19457f0 2512 } else {
1da177e4 2513 __d_drop(dentry);
c19457f0
AV
2514 spin_unlock(&dentry->d_lock);
2515 spin_unlock(&inode->i_lock);
2516 }
1da177e4 2517}
ec4f8605 2518EXPORT_SYMBOL(d_delete);
1da177e4 2519
15d3c589 2520static void __d_rehash(struct dentry *entry)
1da177e4 2521{
15d3c589 2522 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2523
1879fd6a 2524 hlist_bl_lock(b);
b07ad996 2525 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2526 hlist_bl_unlock(b);
1da177e4
LT
2527}
2528
2529/**
2530 * d_rehash - add an entry back to the hash
2531 * @entry: dentry to add to the hash
2532 *
2533 * Adds a dentry to the hash according to its name.
2534 */
2535
2536void d_rehash(struct dentry * entry)
2537{
1da177e4 2538 spin_lock(&entry->d_lock);
15d3c589 2539 __d_rehash(entry);
1da177e4 2540 spin_unlock(&entry->d_lock);
1da177e4 2541}
ec4f8605 2542EXPORT_SYMBOL(d_rehash);
1da177e4 2543
84e710da
AV
2544static inline unsigned start_dir_add(struct inode *dir)
2545{
93f6d4e1 2546 preempt_disable_nested();
84e710da
AV
2547 for (;;) {
2548 unsigned n = dir->i_dir_seq;
2549 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2550 return n;
2551 cpu_relax();
2552 }
2553}
2554
50417d22
SAS
2555static inline void end_dir_add(struct inode *dir, unsigned int n,
2556 wait_queue_head_t *d_wait)
84e710da
AV
2557{
2558 smp_store_release(&dir->i_dir_seq, n + 2);
93f6d4e1 2559 preempt_enable_nested();
50417d22 2560 wake_up_all(d_wait);
84e710da
AV
2561}
2562
d9171b93
AV
2563static void d_wait_lookup(struct dentry *dentry)
2564{
2565 if (d_in_lookup(dentry)) {
2566 DECLARE_WAITQUEUE(wait, current);
2567 add_wait_queue(dentry->d_wait, &wait);
2568 do {
2569 set_current_state(TASK_UNINTERRUPTIBLE);
2570 spin_unlock(&dentry->d_lock);
2571 schedule();
2572 spin_lock(&dentry->d_lock);
2573 } while (d_in_lookup(dentry));
2574 }
2575}
2576
94bdd655 2577struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2578 const struct qstr *name,
2579 wait_queue_head_t *wq)
94bdd655 2580{
94bdd655 2581 unsigned int hash = name->hash;
94bdd655
AV
2582 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2583 struct hlist_bl_node *node;
2584 struct dentry *new = d_alloc(parent, name);
2585 struct dentry *dentry;
2586 unsigned seq, r_seq, d_seq;
2587
2588 if (unlikely(!new))
2589 return ERR_PTR(-ENOMEM);
2590
2591retry:
2592 rcu_read_lock();
015555fd 2593 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2594 r_seq = read_seqbegin(&rename_lock);
2595 dentry = __d_lookup_rcu(parent, name, &d_seq);
2596 if (unlikely(dentry)) {
2597 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2598 rcu_read_unlock();
2599 goto retry;
2600 }
2601 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2602 rcu_read_unlock();
2603 dput(dentry);
2604 goto retry;
2605 }
2606 rcu_read_unlock();
2607 dput(new);
2608 return dentry;
2609 }
2610 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2611 rcu_read_unlock();
2612 goto retry;
2613 }
015555fd
WD
2614
2615 if (unlikely(seq & 1)) {
2616 rcu_read_unlock();
2617 goto retry;
2618 }
2619
94bdd655 2620 hlist_bl_lock(b);
8cc07c80 2621 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2622 hlist_bl_unlock(b);
2623 rcu_read_unlock();
2624 goto retry;
2625 }
94bdd655
AV
2626 /*
2627 * No changes for the parent since the beginning of d_lookup().
2628 * Since all removals from the chain happen with hlist_bl_lock(),
2629 * any potential in-lookup matches are going to stay here until
2630 * we unlock the chain. All fields are stable in everything
2631 * we encounter.
2632 */
2633 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2634 if (dentry->d_name.hash != hash)
2635 continue;
2636 if (dentry->d_parent != parent)
2637 continue;
d4c91a8f
AV
2638 if (!d_same_name(dentry, parent, name))
2639 continue;
94bdd655 2640 hlist_bl_unlock(b);
e7d6ef97
AV
2641 /* now we can try to grab a reference */
2642 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2643 rcu_read_unlock();
2644 goto retry;
2645 }
2646
2647 rcu_read_unlock();
2648 /*
2649 * somebody is likely to be still doing lookup for it;
2650 * wait for them to finish
2651 */
d9171b93
AV
2652 spin_lock(&dentry->d_lock);
2653 d_wait_lookup(dentry);
2654 /*
2655 * it's not in-lookup anymore; in principle we should repeat
2656 * everything from dcache lookup, but it's likely to be what
2657 * d_lookup() would've found anyway. If it is, just return it;
2658 * otherwise we really have to repeat the whole thing.
2659 */
2660 if (unlikely(dentry->d_name.hash != hash))
2661 goto mismatch;
2662 if (unlikely(dentry->d_parent != parent))
2663 goto mismatch;
2664 if (unlikely(d_unhashed(dentry)))
2665 goto mismatch;
d4c91a8f
AV
2666 if (unlikely(!d_same_name(dentry, parent, name)))
2667 goto mismatch;
d9171b93
AV
2668 /* OK, it *is* a hashed match; return it */
2669 spin_unlock(&dentry->d_lock);
94bdd655
AV
2670 dput(new);
2671 return dentry;
2672 }
e7d6ef97 2673 rcu_read_unlock();
94bdd655
AV
2674 /* we can't take ->d_lock here; it's OK, though. */
2675 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2676 new->d_wait = wq;
94bdd655
AV
2677 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2678 hlist_bl_unlock(b);
2679 return new;
d9171b93
AV
2680mismatch:
2681 spin_unlock(&dentry->d_lock);
2682 dput(dentry);
2683 goto retry;
94bdd655
AV
2684}
2685EXPORT_SYMBOL(d_alloc_parallel);
2686
45f78b0a
SAS
2687/*
2688 * - Unhash the dentry
2689 * - Retrieve and clear the waitqueue head in dentry
2690 * - Return the waitqueue head
2691 */
2692static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
85c7f810 2693{
45f78b0a
SAS
2694 wait_queue_head_t *d_wait;
2695 struct hlist_bl_head *b;
2696
2697 lockdep_assert_held(&dentry->d_lock);
2698
2699 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
94bdd655 2700 hlist_bl_lock(b);
85c7f810 2701 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2702 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
45f78b0a 2703 d_wait = dentry->d_wait;
d9171b93 2704 dentry->d_wait = NULL;
94bdd655
AV
2705 hlist_bl_unlock(b);
2706 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2707 INIT_LIST_HEAD(&dentry->d_lru);
45f78b0a
SAS
2708 return d_wait;
2709}
2710
2711void __d_lookup_unhash_wake(struct dentry *dentry)
2712{
2713 spin_lock(&dentry->d_lock);
2714 wake_up_all(__d_lookup_unhash(dentry));
2715 spin_unlock(&dentry->d_lock);
85c7f810 2716}
45f78b0a 2717EXPORT_SYMBOL(__d_lookup_unhash_wake);
ed782b5a
AV
2718
2719/* inode->i_lock held if inode is non-NULL */
2720
2721static inline void __d_add(struct dentry *dentry, struct inode *inode)
2722{
45f78b0a 2723 wait_queue_head_t *d_wait;
84e710da
AV
2724 struct inode *dir = NULL;
2725 unsigned n;
0568d705 2726 spin_lock(&dentry->d_lock);
84e710da
AV
2727 if (unlikely(d_in_lookup(dentry))) {
2728 dir = dentry->d_parent->d_inode;
2729 n = start_dir_add(dir);
45f78b0a 2730 d_wait = __d_lookup_unhash(dentry);
84e710da 2731 }
ed782b5a 2732 if (inode) {
0568d705
AV
2733 unsigned add_flags = d_flags_for_inode(inode);
2734 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2735 raw_write_seqcount_begin(&dentry->d_seq);
2736 __d_set_inode_and_type(dentry, inode, add_flags);
2737 raw_write_seqcount_end(&dentry->d_seq);
affda484 2738 fsnotify_update_flags(dentry);
ed782b5a 2739 }
15d3c589 2740 __d_rehash(dentry);
84e710da 2741 if (dir)
50417d22 2742 end_dir_add(dir, n, d_wait);
0568d705
AV
2743 spin_unlock(&dentry->d_lock);
2744 if (inode)
2745 spin_unlock(&inode->i_lock);
ed782b5a
AV
2746}
2747
34d0d19d
AV
2748/**
2749 * d_add - add dentry to hash queues
2750 * @entry: dentry to add
2751 * @inode: The inode to attach to this dentry
2752 *
2753 * This adds the entry to the hash queues and initializes @inode.
2754 * The entry was actually filled in earlier during d_alloc().
2755 */
2756
2757void d_add(struct dentry *entry, struct inode *inode)
2758{
b9680917
AV
2759 if (inode) {
2760 security_d_instantiate(entry, inode);
ed782b5a 2761 spin_lock(&inode->i_lock);
b9680917 2762 }
ed782b5a 2763 __d_add(entry, inode);
34d0d19d
AV
2764}
2765EXPORT_SYMBOL(d_add);
2766
668d0cd5
AV
2767/**
2768 * d_exact_alias - find and hash an exact unhashed alias
2769 * @entry: dentry to add
2770 * @inode: The inode to go with this dentry
2771 *
2772 * If an unhashed dentry with the same name/parent and desired
2773 * inode already exists, hash and return it. Otherwise, return
2774 * NULL.
2775 *
2776 * Parent directory should be locked.
2777 */
2778struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2779{
2780 struct dentry *alias;
668d0cd5
AV
2781 unsigned int hash = entry->d_name.hash;
2782
2783 spin_lock(&inode->i_lock);
2784 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2785 /*
2786 * Don't need alias->d_lock here, because aliases with
2787 * d_parent == entry->d_parent are not subject to name or
2788 * parent changes, because the parent inode i_mutex is held.
2789 */
2790 if (alias->d_name.hash != hash)
2791 continue;
2792 if (alias->d_parent != entry->d_parent)
2793 continue;
d4c91a8f 2794 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2795 continue;
2796 spin_lock(&alias->d_lock);
2797 if (!d_unhashed(alias)) {
2798 spin_unlock(&alias->d_lock);
2799 alias = NULL;
2800 } else {
2801 __dget_dlock(alias);
15d3c589 2802 __d_rehash(alias);
668d0cd5
AV
2803 spin_unlock(&alias->d_lock);
2804 }
2805 spin_unlock(&inode->i_lock);
2806 return alias;
2807 }
2808 spin_unlock(&inode->i_lock);
2809 return NULL;
2810}
2811EXPORT_SYMBOL(d_exact_alias);
2812
8d85b484 2813static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2814{
8d85b484
AV
2815 if (unlikely(dname_external(target))) {
2816 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2817 /*
2818 * Both external: swap the pointers
2819 */
9a8d5bb4 2820 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2821 } else {
2822 /*
2823 * dentry:internal, target:external. Steal target's
2824 * storage and make target internal.
2825 */
321bcf92
BF
2826 memcpy(target->d_iname, dentry->d_name.name,
2827 dentry->d_name.len + 1);
1da177e4
LT
2828 dentry->d_name.name = target->d_name.name;
2829 target->d_name.name = target->d_iname;
2830 }
2831 } else {
8d85b484 2832 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2833 /*
2834 * dentry:external, target:internal. Give dentry's
2835 * storage to target and make dentry internal
2836 */
2837 memcpy(dentry->d_iname, target->d_name.name,
2838 target->d_name.len + 1);
2839 target->d_name.name = dentry->d_name.name;
2840 dentry->d_name.name = dentry->d_iname;
2841 } else {
2842 /*
da1ce067 2843 * Both are internal.
1da177e4 2844 */
da1ce067
MS
2845 unsigned int i;
2846 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2847 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2848 swap(((long *) &dentry->d_iname)[i],
2849 ((long *) &target->d_iname)[i]);
2850 }
1da177e4
LT
2851 }
2852 }
a28ddb87 2853 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2854}
2855
8d85b484
AV
2856static void copy_name(struct dentry *dentry, struct dentry *target)
2857{
2858 struct external_name *old_name = NULL;
2859 if (unlikely(dname_external(dentry)))
2860 old_name = external_name(dentry);
2861 if (unlikely(dname_external(target))) {
2862 atomic_inc(&external_name(target)->u.count);
2863 dentry->d_name = target->d_name;
2864 } else {
2865 memcpy(dentry->d_iname, target->d_name.name,
2866 target->d_name.len + 1);
2867 dentry->d_name.name = dentry->d_iname;
2868 dentry->d_name.hash_len = target->d_name.hash_len;
2869 }
2870 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2e03b4bc 2871 kfree_rcu(old_name, u.head);
8d85b484
AV
2872}
2873
9eaef27b 2874/*
18367501 2875 * __d_move - move a dentry
1da177e4
LT
2876 * @dentry: entry to move
2877 * @target: new dentry
da1ce067 2878 * @exchange: exchange the two dentries
1da177e4
LT
2879 *
2880 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2881 * dcache entries should not be moved in this way. Caller must hold
2882 * rename_lock, the i_mutex of the source and target directories,
2883 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2884 */
da1ce067
MS
2885static void __d_move(struct dentry *dentry, struct dentry *target,
2886 bool exchange)
1da177e4 2887{
42177007 2888 struct dentry *old_parent, *p;
45f78b0a 2889 wait_queue_head_t *d_wait;
84e710da
AV
2890 struct inode *dir = NULL;
2891 unsigned n;
1da177e4 2892
42177007
AV
2893 WARN_ON(!dentry->d_inode);
2894 if (WARN_ON(dentry == target))
2895 return;
2896
2fd6b7f5 2897 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2898 old_parent = dentry->d_parent;
2899 p = d_ancestor(old_parent, target);
2900 if (IS_ROOT(dentry)) {
2901 BUG_ON(p);
2902 spin_lock(&target->d_parent->d_lock);
2903 } else if (!p) {
2904 /* target is not a descendent of dentry->d_parent */
2905 spin_lock(&target->d_parent->d_lock);
2906 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2907 } else {
2908 BUG_ON(p == dentry);
2909 spin_lock(&old_parent->d_lock);
2910 if (p != target)
2911 spin_lock_nested(&target->d_parent->d_lock,
2912 DENTRY_D_LOCK_NESTED);
2913 }
2914 spin_lock_nested(&dentry->d_lock, 2);
2915 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2916
84e710da
AV
2917 if (unlikely(d_in_lookup(target))) {
2918 dir = target->d_parent->d_inode;
2919 n = start_dir_add(dir);
45f78b0a 2920 d_wait = __d_lookup_unhash(target);
84e710da 2921 }
1da177e4 2922
31e6b01f 2923 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2924 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2925
15d3c589 2926 /* unhash both */
0632a9ac
AV
2927 if (!d_unhashed(dentry))
2928 ___d_drop(dentry);
2929 if (!d_unhashed(target))
2930 ___d_drop(target);
1da177e4 2931
076515fc
AV
2932 /* ... and switch them in the tree */
2933 dentry->d_parent = target->d_parent;
2934 if (!exchange) {
8d85b484 2935 copy_name(dentry, target);
61647823 2936 target->d_hash.pprev = NULL;
076515fc 2937 dentry->d_parent->d_lockref.count++;
5467a68c 2938 if (dentry != old_parent) /* wasn't IS_ROOT */
076515fc 2939 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2940 } else {
076515fc
AV
2941 target->d_parent = old_parent;
2942 swap_names(dentry, target);
da549bdd
AV
2943 if (!hlist_unhashed(&target->d_sib))
2944 __hlist_del(&target->d_sib);
2945 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
076515fc
AV
2946 __d_rehash(target);
2947 fsnotify_update_flags(target);
1da177e4 2948 }
da549bdd
AV
2949 if (!hlist_unhashed(&dentry->d_sib))
2950 __hlist_del(&dentry->d_sib);
2951 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
076515fc
AV
2952 __d_rehash(dentry);
2953 fsnotify_update_flags(dentry);
0bf3d5c1 2954 fscrypt_handle_d_move(dentry);
1da177e4 2955
31e6b01f
NP
2956 write_seqcount_end(&target->d_seq);
2957 write_seqcount_end(&dentry->d_seq);
2958
84e710da 2959 if (dir)
50417d22 2960 end_dir_add(dir, n, d_wait);
076515fc
AV
2961
2962 if (dentry->d_parent != old_parent)
2963 spin_unlock(&dentry->d_parent->d_lock);
2964 if (dentry != old_parent)
2965 spin_unlock(&old_parent->d_lock);
2966 spin_unlock(&target->d_lock);
2967 spin_unlock(&dentry->d_lock);
18367501
AV
2968}
2969
2970/*
2971 * d_move - move a dentry
2972 * @dentry: entry to move
2973 * @target: new dentry
2974 *
2975 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2976 * dcache entries should not be moved in this way. See the locking
2977 * requirements for __d_move.
18367501
AV
2978 */
2979void d_move(struct dentry *dentry, struct dentry *target)
2980{
2981 write_seqlock(&rename_lock);
da1ce067 2982 __d_move(dentry, target, false);
1da177e4 2983 write_sequnlock(&rename_lock);
9eaef27b 2984}
ec4f8605 2985EXPORT_SYMBOL(d_move);
1da177e4 2986
da1ce067
MS
2987/*
2988 * d_exchange - exchange two dentries
2989 * @dentry1: first dentry
2990 * @dentry2: second dentry
2991 */
2992void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2993{
2994 write_seqlock(&rename_lock);
2995
2996 WARN_ON(!dentry1->d_inode);
2997 WARN_ON(!dentry2->d_inode);
2998 WARN_ON(IS_ROOT(dentry1));
2999 WARN_ON(IS_ROOT(dentry2));
3000
3001 __d_move(dentry1, dentry2, true);
3002
3003 write_sequnlock(&rename_lock);
3004}
3005
e2761a11
OH
3006/**
3007 * d_ancestor - search for an ancestor
3008 * @p1: ancestor dentry
3009 * @p2: child dentry
3010 *
3011 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3012 * an ancestor of p2, else NULL.
9eaef27b 3013 */
e2761a11 3014struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
3015{
3016 struct dentry *p;
3017
871c0067 3018 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 3019 if (p->d_parent == p1)
e2761a11 3020 return p;
9eaef27b 3021 }
e2761a11 3022 return NULL;
9eaef27b
TM
3023}
3024
3025/*
3026 * This helper attempts to cope with remotely renamed directories
3027 *
3028 * It assumes that the caller is already holding
a03e283b 3029 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
3030 *
3031 * Note: If ever the locking in lock_rename() changes, then please
3032 * remember to update this too...
9eaef27b 3033 */
b5ae6b15 3034static int __d_unalias(struct inode *inode,
873feea0 3035 struct dentry *dentry, struct dentry *alias)
9eaef27b 3036{
9902af79
AV
3037 struct mutex *m1 = NULL;
3038 struct rw_semaphore *m2 = NULL;
3d330dc1 3039 int ret = -ESTALE;
9eaef27b
TM
3040
3041 /* If alias and dentry share a parent, then no extra locks required */
3042 if (alias->d_parent == dentry->d_parent)
3043 goto out_unalias;
3044
9eaef27b 3045 /* See lock_rename() */
9eaef27b
TM
3046 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3047 goto out_err;
3048 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 3049 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 3050 goto out_err;
9902af79 3051 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 3052out_unalias:
8ed936b5 3053 __d_move(alias, dentry, false);
b5ae6b15 3054 ret = 0;
9eaef27b 3055out_err:
9eaef27b 3056 if (m2)
9902af79 3057 up_read(m2);
9eaef27b
TM
3058 if (m1)
3059 mutex_unlock(m1);
3060 return ret;
3061}
3062
3f70bd51
BF
3063/**
3064 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3065 * @inode: the inode which may have a disconnected dentry
3066 * @dentry: a negative dentry which we want to point to the inode.
3067 *
da093a9b
BF
3068 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3069 * place of the given dentry and return it, else simply d_add the inode
3070 * to the dentry and return NULL.
3f70bd51 3071 *
908790fa
BF
3072 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3073 * we should error out: directories can't have multiple aliases.
3074 *
3f70bd51
BF
3075 * This is needed in the lookup routine of any filesystem that is exportable
3076 * (via knfsd) so that we can build dcache paths to directories effectively.
3077 *
3078 * If a dentry was found and moved, then it is returned. Otherwise NULL
3079 * is returned. This matches the expected return value of ->lookup.
3080 *
3081 * Cluster filesystems may call this function with a negative, hashed dentry.
3082 * In that case, we know that the inode will be a regular file, and also this
3083 * will only occur during atomic_open. So we need to check for the dentry
3084 * being already hashed only in the final case.
3085 */
3086struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3087{
3f70bd51
BF
3088 if (IS_ERR(inode))
3089 return ERR_CAST(inode);
3090
770bfad8
DH
3091 BUG_ON(!d_unhashed(dentry));
3092
de689f5e 3093 if (!inode)
b5ae6b15 3094 goto out;
de689f5e 3095
b9680917 3096 security_d_instantiate(dentry, inode);
873feea0 3097 spin_lock(&inode->i_lock);
9eaef27b 3098 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3099 struct dentry *new = __d_find_any_alias(inode);
3100 if (unlikely(new)) {
a03e283b
EB
3101 /* The reference to new ensures it remains an alias */
3102 spin_unlock(&inode->i_lock);
18367501 3103 write_seqlock(&rename_lock);
b5ae6b15
AV
3104 if (unlikely(d_ancestor(new, dentry))) {
3105 write_sequnlock(&rename_lock);
b5ae6b15
AV
3106 dput(new);
3107 new = ERR_PTR(-ELOOP);
3108 pr_warn_ratelimited(
3109 "VFS: Lookup of '%s' in %s %s"
3110 " would have caused loop\n",
3111 dentry->d_name.name,
3112 inode->i_sb->s_type->name,
3113 inode->i_sb->s_id);
3114 } else if (!IS_ROOT(new)) {
076515fc 3115 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 3116 int err = __d_unalias(inode, dentry, new);
18367501 3117 write_sequnlock(&rename_lock);
b5ae6b15
AV
3118 if (err) {
3119 dput(new);
3120 new = ERR_PTR(err);
3121 }
076515fc 3122 dput(old_parent);
18367501 3123 } else {
b5ae6b15
AV
3124 __d_move(new, dentry, false);
3125 write_sequnlock(&rename_lock);
dd179946 3126 }
b5ae6b15
AV
3127 iput(inode);
3128 return new;
9eaef27b 3129 }
770bfad8 3130 }
b5ae6b15 3131out:
ed782b5a 3132 __d_add(dentry, inode);
b5ae6b15 3133 return NULL;
770bfad8 3134}
b5ae6b15 3135EXPORT_SYMBOL(d_splice_alias);
770bfad8 3136
1da177e4
LT
3137/*
3138 * Test whether new_dentry is a subdirectory of old_dentry.
3139 *
3140 * Trivially implemented using the dcache structure
3141 */
3142
3143/**
3144 * is_subdir - is new dentry a subdirectory of old_dentry
3145 * @new_dentry: new dentry
3146 * @old_dentry: old dentry
3147 *
a6e5787f
YB
3148 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3149 * Returns false otherwise.
1da177e4
LT
3150 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3151 */
3152
a6e5787f 3153bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3154{
a6e5787f 3155 bool result;
949854d0 3156 unsigned seq;
1da177e4 3157
e2761a11 3158 if (new_dentry == old_dentry)
a6e5787f 3159 return true;
e2761a11 3160
e2761a11 3161 do {
1da177e4 3162 /* for restarting inner loop in case of seq retry */
1da177e4 3163 seq = read_seqbegin(&rename_lock);
949854d0
NP
3164 /*
3165 * Need rcu_readlock to protect against the d_parent trashing
3166 * due to d_move
3167 */
3168 rcu_read_lock();
e2761a11 3169 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3170 result = true;
e2761a11 3171 else
a6e5787f 3172 result = false;
949854d0 3173 rcu_read_unlock();
1da177e4 3174 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3175
3176 return result;
3177}
e8f9e5b7 3178EXPORT_SYMBOL(is_subdir);
1da177e4 3179
db14fc3a 3180static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3181{
db14fc3a
MS
3182 struct dentry *root = data;
3183 if (dentry != root) {
3184 if (d_unhashed(dentry) || !dentry->d_inode)
3185 return D_WALK_SKIP;
1da177e4 3186
01ddc4ed
MS
3187 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3188 dentry->d_flags |= DCACHE_GENOCIDE;
3189 dentry->d_lockref.count--;
3190 }
1da177e4 3191 }
db14fc3a
MS
3192 return D_WALK_CONTINUE;
3193}
58db63d0 3194
db14fc3a
MS
3195void d_genocide(struct dentry *parent)
3196{
3a8e3611 3197 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3198}
3199
771eb4fe 3200void d_mark_tmpfile(struct file *file, struct inode *inode)
1da177e4 3201{
863f144f
MS
3202 struct dentry *dentry = file->f_path.dentry;
3203
60545d0d 3204 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3205 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3206 !d_unlinked(dentry));
3207 spin_lock(&dentry->d_parent->d_lock);
3208 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3209 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3210 (unsigned long long)inode->i_ino);
3211 spin_unlock(&dentry->d_lock);
3212 spin_unlock(&dentry->d_parent->d_lock);
771eb4fe
KO
3213}
3214EXPORT_SYMBOL(d_mark_tmpfile);
3215
3216void d_tmpfile(struct file *file, struct inode *inode)
3217{
3218 struct dentry *dentry = file->f_path.dentry;
3219
3220 inode_dec_link_count(inode);
3221 d_mark_tmpfile(file, inode);
60545d0d 3222 d_instantiate(dentry, inode);
1da177e4 3223}
60545d0d 3224EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3225
3226static __initdata unsigned long dhash_entries;
3227static int __init set_dhash_entries(char *str)
3228{
3229 if (!str)
3230 return 0;
3231 dhash_entries = simple_strtoul(str, &str, 0);
3232 return 1;
3233}
3234__setup("dhash_entries=", set_dhash_entries);
3235
3236static void __init dcache_init_early(void)
3237{
1da177e4
LT
3238 /* If hashes are distributed across NUMA nodes, defer
3239 * hash allocation until vmalloc space is available.
3240 */
3241 if (hashdist)
3242 return;
3243
3244 dentry_hashtable =
3245 alloc_large_system_hash("Dentry cache",
b07ad996 3246 sizeof(struct hlist_bl_head),
1da177e4
LT
3247 dhash_entries,
3248 13,
3d375d78 3249 HASH_EARLY | HASH_ZERO,
1da177e4 3250 &d_hash_shift,
b35d786b 3251 NULL,
31fe62b9 3252 0,
1da177e4 3253 0);
854d3e63 3254 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3255}
3256
74bf17cf 3257static void __init dcache_init(void)
1da177e4 3258{
3d375d78 3259 /*
1da177e4
LT
3260 * A constructor could be added for stable state like the lists,
3261 * but it is probably not worth it because of the cache nature
3d375d78 3262 * of the dcache.
1da177e4 3263 */
80344266
DW
3264 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3265 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3266 d_iname);
1da177e4
LT
3267
3268 /* Hash may have been set up in dcache_init_early */
3269 if (!hashdist)
3270 return;
3271
3272 dentry_hashtable =
3273 alloc_large_system_hash("Dentry cache",
b07ad996 3274 sizeof(struct hlist_bl_head),
1da177e4
LT
3275 dhash_entries,
3276 13,
3d375d78 3277 HASH_ZERO,
1da177e4 3278 &d_hash_shift,
b35d786b 3279 NULL,
31fe62b9 3280 0,
1da177e4 3281 0);
854d3e63 3282 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3283}
3284
3285/* SLAB cache for __getname() consumers */
68279f9c 3286struct kmem_cache *names_cachep __ro_after_init;
ec4f8605 3287EXPORT_SYMBOL(names_cachep);
1da177e4 3288
1da177e4
LT
3289void __init vfs_caches_init_early(void)
3290{
6916363f
SAS
3291 int i;
3292
3293 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3294 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3295
1da177e4
LT
3296 dcache_init_early();
3297 inode_init_early();
3298}
3299
4248b0da 3300void __init vfs_caches_init(void)
1da177e4 3301{
6a9b8820
DW
3302 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3303 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3304
74bf17cf
DC
3305 dcache_init();
3306 inode_init();
4248b0da
MG
3307 files_init();
3308 files_maxfiles_init();
74bf17cf 3309 mnt_init();
1da177e4
LT
3310 bdev_cache_init();
3311 chrdev_init();
3312}