Merge tag 'pull-minix' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
7a5cf791 18#include <linux/ratelimit.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
0bf3d5c1 22#include <linux/fscrypt.h>
7a91bf7f 23#include <linux/fsnotify.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/hash.h>
27#include <linux/cache.h>
630d9c47 28#include <linux/export.h>
1da177e4
LT
29#include <linux/security.h>
30#include <linux/seqlock.h>
57c8a661 31#include <linux/memblock.h>
ceb5bdc2
NP
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
f6041567 34#include <linux/list_lru.h>
07f3f05c 35#include "internal.h"
b2dba1af 36#include "mount.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
873feea0 40 * dcache->d_inode->i_lock protects:
946e51f2 41 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
f1ee6162
N
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
19156840 46 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
b7ab39f6 52 * - d_count
da502956 53 * - d_unhashed()
2fd6b7f5
NP
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
946e51f2 56 * - d_u.d_alias, d_inode
789680d1
NP
57 *
58 * Ordering:
873feea0 59 * dentry->d_inode->i_lock
b5c84bf6 60 * dentry->d_lock
19156840 61 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 62 * dcache_hash_bucket lock
f1ee6162 63 * s_roots lock
789680d1 64 *
da502956
NP
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
076515fc 72 * arbitrary, since it's serialized on rename_lock
789680d1 73 */
fa3536cc 74int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
74c3cbe3 77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 78
949854d0 79EXPORT_SYMBOL(rename_lock);
1da177e4 80
68279f9c 81static struct kmem_cache *dentry_cache __ro_after_init;
1da177e4 82
cdf01226
DH
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
80e5d1ff
AV
87const struct qstr dotdot_name = QSTR_INIT("..", 2);
88EXPORT_SYMBOL(dotdot_name);
cdf01226 89
1da177e4
LT
90/*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
1da177e4 98
68279f9c 99static unsigned int d_hash_shift __ro_after_init;
ceb5bdc2 100
68279f9c 101static struct hlist_bl_head *dentry_hashtable __ro_after_init;
ceb5bdc2 102
8387ff25 103static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 104{
854d3e63 105 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
106}
107
94bdd655
AV
108#define IN_LOOKUP_SHIFT 10
109static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 unsigned int hash)
113{
114 hash += (unsigned long) parent / L1_CACHE_BYTES;
115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116}
117
c8c0c239
LC
118struct dentry_stat_t {
119 long nr_dentry;
120 long nr_unused;
121 long age_limit; /* age in seconds */
122 long want_pages; /* pages requested by system */
123 long nr_negative; /* # of unused negative dentries */
124 long dummy; /* Reserved for future use */
1da177e4
LT
125};
126
3942c07c 127static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 128static DEFINE_PER_CPU(long, nr_dentry_unused);
af0c9af1 129static DEFINE_PER_CPU(long, nr_dentry_negative);
312d3ca8
CH
130
131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
c8c0c239
LC
132/* Statistics gathering. */
133static struct dentry_stat_t dentry_stat = {
134 .age_limit = 45,
135};
62d36c77
DC
136
137/*
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
141 *
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
145 *
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
148 */
3942c07c 149static long get_nr_dentry(void)
3e880fb5
NP
150{
151 int i;
3942c07c 152 long sum = 0;
3e880fb5
NP
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry, i);
155 return sum < 0 ? 0 : sum;
156}
157
62d36c77
DC
158static long get_nr_dentry_unused(void)
159{
160 int i;
161 long sum = 0;
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_unused, i);
164 return sum < 0 ? 0 : sum;
165}
166
af0c9af1
WL
167static long get_nr_dentry_negative(void)
168{
169 int i;
170 long sum = 0;
171
172 for_each_possible_cpu(i)
173 sum += per_cpu(nr_dentry_negative, i);
174 return sum < 0 ? 0 : sum;
175}
176
c8c0c239
LC
177static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 size_t *lenp, loff_t *ppos)
312d3ca8 179{
3e880fb5 180 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 181 dentry_stat.nr_unused = get_nr_dentry_unused();
af0c9af1 182 dentry_stat.nr_negative = get_nr_dentry_negative();
3942c07c 183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8 184}
c8c0c239
LC
185
186static struct ctl_table fs_dcache_sysctls[] = {
187 {
188 .procname = "dentry-state",
189 .data = &dentry_stat,
190 .maxlen = 6*sizeof(long),
191 .mode = 0444,
192 .proc_handler = proc_nr_dentry,
193 },
c8c0c239
LC
194};
195
196static int __init init_fs_dcache_sysctls(void)
197{
198 register_sysctl_init("fs", fs_dcache_sysctls);
199 return 0;
200}
201fs_initcall(init_fs_dcache_sysctls);
312d3ca8
CH
202#endif
203
5483f18e
LT
204/*
205 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
206 * The strings are both count bytes long, and count is non-zero.
207 */
e419b4cc
LT
208#ifdef CONFIG_DCACHE_WORD_ACCESS
209
210#include <asm/word-at-a-time.h>
211/*
212 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
213 * aligned allocation for this particular component. We don't
214 * strictly need the load_unaligned_zeropad() safety, but it
215 * doesn't hurt either.
216 *
217 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
218 * need the careful unaligned handling.
219 */
94753db5 220static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 221{
bfcfaa77 222 unsigned long a,b,mask;
bfcfaa77
LT
223
224 for (;;) {
bfe7aa6c 225 a = read_word_at_a_time(cs);
e419b4cc 226 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
227 if (tcount < sizeof(unsigned long))
228 break;
229 if (unlikely(a != b))
230 return 1;
231 cs += sizeof(unsigned long);
232 ct += sizeof(unsigned long);
233 tcount -= sizeof(unsigned long);
234 if (!tcount)
235 return 0;
236 }
a5c21dce 237 mask = bytemask_from_count(tcount);
bfcfaa77 238 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
239}
240
bfcfaa77 241#else
e419b4cc 242
94753db5 243static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 244{
5483f18e
LT
245 do {
246 if (*cs != *ct)
247 return 1;
248 cs++;
249 ct++;
250 tcount--;
251 } while (tcount);
252 return 0;
253}
254
e419b4cc
LT
255#endif
256
94753db5
LT
257static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
258{
94753db5
LT
259 /*
260 * Be careful about RCU walk racing with rename:
506458ef 261 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
262 *
263 * NOTE! Even if a rename will mean that the length
264 * was not loaded atomically, we don't care. The
265 * RCU walk will check the sequence count eventually,
266 * and catch it. And we won't overrun the buffer,
267 * because we're reading the name pointer atomically,
268 * and a dentry name is guaranteed to be properly
269 * terminated with a NUL byte.
270 *
271 * End result: even if 'len' is wrong, we'll exit
272 * early because the data cannot match (there can
273 * be no NUL in the ct/tcount data)
274 */
506458ef 275 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 276
6326c71f 277 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
278}
279
8d85b484
AV
280struct external_name {
281 union {
282 atomic_t count;
283 struct rcu_head head;
284 } u;
285 unsigned char name[];
286};
287
288static inline struct external_name *external_name(struct dentry *dentry)
289{
290 return container_of(dentry->d_name.name, struct external_name, name[0]);
291}
292
9c82ab9c 293static void __d_free(struct rcu_head *head)
1da177e4 294{
9c82ab9c
CH
295 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
296
8d85b484
AV
297 kmem_cache_free(dentry_cache, dentry);
298}
299
300static void __d_free_external(struct rcu_head *head)
301{
302 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
2e03b4bc 303 kfree(external_name(dentry));
f1782c9b 304 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
305}
306
810bb172
AV
307static inline int dname_external(const struct dentry *dentry)
308{
309 return dentry->d_name.name != dentry->d_iname;
310}
311
49d31c2f
AV
312void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
313{
314 spin_lock(&dentry->d_lock);
230c6402 315 name->name = dentry->d_name;
49d31c2f 316 if (unlikely(dname_external(dentry))) {
230c6402 317 atomic_inc(&external_name(dentry)->u.count);
49d31c2f 318 } else {
6cd00a01
TH
319 memcpy(name->inline_name, dentry->d_iname,
320 dentry->d_name.len + 1);
230c6402 321 name->name.name = name->inline_name;
49d31c2f 322 }
230c6402 323 spin_unlock(&dentry->d_lock);
49d31c2f
AV
324}
325EXPORT_SYMBOL(take_dentry_name_snapshot);
326
327void release_dentry_name_snapshot(struct name_snapshot *name)
328{
230c6402 329 if (unlikely(name->name.name != name->inline_name)) {
49d31c2f 330 struct external_name *p;
230c6402 331 p = container_of(name->name.name, struct external_name, name[0]);
49d31c2f 332 if (unlikely(atomic_dec_and_test(&p->u.count)))
2e03b4bc 333 kfree_rcu(p, u.head);
49d31c2f
AV
334 }
335}
336EXPORT_SYMBOL(release_dentry_name_snapshot);
337
4bf46a27
DH
338static inline void __d_set_inode_and_type(struct dentry *dentry,
339 struct inode *inode,
340 unsigned type_flags)
341{
342 unsigned flags;
343
344 dentry->d_inode = inode;
4bf46a27
DH
345 flags = READ_ONCE(dentry->d_flags);
346 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
347 flags |= type_flags;
2fa6b1e0 348 smp_store_release(&dentry->d_flags, flags);
4bf46a27
DH
349}
350
4bf46a27
DH
351static inline void __d_clear_type_and_inode(struct dentry *dentry)
352{
353 unsigned flags = READ_ONCE(dentry->d_flags);
354
355 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
356 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27 357 dentry->d_inode = NULL;
af0c9af1
WL
358 if (dentry->d_flags & DCACHE_LRU_LIST)
359 this_cpu_inc(nr_dentry_negative);
4bf46a27
DH
360}
361
b4f0354e
AV
362static void dentry_free(struct dentry *dentry)
363{
946e51f2 364 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
365 if (unlikely(dname_external(dentry))) {
366 struct external_name *p = external_name(dentry);
367 if (likely(atomic_dec_and_test(&p->u.count))) {
368 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
369 return;
370 }
371 }
b4f0354e 372 /* if dentry was never visible to RCU, immediate free is OK */
5467a68c 373 if (dentry->d_flags & DCACHE_NORCU)
b4f0354e
AV
374 __d_free(&dentry->d_u.d_rcu);
375 else
376 call_rcu(&dentry->d_u.d_rcu, __d_free);
377}
378
1da177e4
LT
379/*
380 * Release the dentry's inode, using the filesystem
550dce01 381 * d_iput() operation if defined.
31e6b01f
NP
382 */
383static void dentry_unlink_inode(struct dentry * dentry)
384 __releases(dentry->d_lock)
873feea0 385 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
386{
387 struct inode *inode = dentry->d_inode;
a528aca7 388
4c0d7cd5 389 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 390 __d_clear_type_and_inode(dentry);
946e51f2 391 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 392 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 393 spin_unlock(&dentry->d_lock);
873feea0 394 spin_unlock(&inode->i_lock);
31e6b01f
NP
395 if (!inode->i_nlink)
396 fsnotify_inoderemove(inode);
397 if (dentry->d_op && dentry->d_op->d_iput)
398 dentry->d_op->d_iput(dentry, inode);
399 else
400 iput(inode);
401}
402
89dc77bc
LT
403/*
404 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
405 * is in use - which includes both the "real" per-superblock
406 * LRU list _and_ the DCACHE_SHRINK_LIST use.
407 *
408 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
409 * on the shrink list (ie not on the superblock LRU list).
410 *
411 * The per-cpu "nr_dentry_unused" counters are updated with
412 * the DCACHE_LRU_LIST bit.
413 *
af0c9af1
WL
414 * The per-cpu "nr_dentry_negative" counters are only updated
415 * when deleted from or added to the per-superblock LRU list, not
416 * from/to the shrink list. That is to avoid an unneeded dec/inc
417 * pair when moving from LRU to shrink list in select_collect().
418 *
89dc77bc
LT
419 * These helper functions make sure we always follow the
420 * rules. d_lock must be held by the caller.
421 */
422#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
423static void d_lru_add(struct dentry *dentry)
424{
425 D_FLAG_VERIFY(dentry, 0);
426 dentry->d_flags |= DCACHE_LRU_LIST;
427 this_cpu_inc(nr_dentry_unused);
af0c9af1
WL
428 if (d_is_negative(dentry))
429 this_cpu_inc(nr_dentry_negative);
0a97c01c
NP
430 WARN_ON_ONCE(!list_lru_add_obj(
431 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
89dc77bc
LT
432}
433
434static void d_lru_del(struct dentry *dentry)
435{
436 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437 dentry->d_flags &= ~DCACHE_LRU_LIST;
438 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
439 if (d_is_negative(dentry))
440 this_cpu_dec(nr_dentry_negative);
0a97c01c
NP
441 WARN_ON_ONCE(!list_lru_del_obj(
442 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
89dc77bc
LT
443}
444
445static void d_shrink_del(struct dentry *dentry)
446{
447 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
448 list_del_init(&dentry->d_lru);
449 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
450 this_cpu_dec(nr_dentry_unused);
451}
452
453static void d_shrink_add(struct dentry *dentry, struct list_head *list)
454{
455 D_FLAG_VERIFY(dentry, 0);
456 list_add(&dentry->d_lru, list);
457 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
458 this_cpu_inc(nr_dentry_unused);
459}
460
461/*
462 * These can only be called under the global LRU lock, ie during the
463 * callback for freeing the LRU list. "isolate" removes it from the
464 * LRU lists entirely, while shrink_move moves it to the indicated
465 * private list.
466 */
3f97b163 467static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
468{
469 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
470 dentry->d_flags &= ~DCACHE_LRU_LIST;
471 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
472 if (d_is_negative(dentry))
473 this_cpu_dec(nr_dentry_negative);
3f97b163 474 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
475}
476
3f97b163
VD
477static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
478 struct list_head *list)
89dc77bc
LT
479{
480 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
481 dentry->d_flags |= DCACHE_SHRINK_LIST;
af0c9af1
WL
482 if (d_is_negative(dentry))
483 this_cpu_dec(nr_dentry_negative);
3f97b163 484 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
485}
486
61647823 487static void ___d_drop(struct dentry *dentry)
789680d1 488{
0632a9ac
AV
489 struct hlist_bl_head *b;
490 /*
491 * Hashed dentries are normally on the dentry hashtable,
492 * with the exception of those newly allocated by
493 * d_obtain_root, which are always IS_ROOT:
494 */
495 if (unlikely(IS_ROOT(dentry)))
496 b = &dentry->d_sb->s_roots;
497 else
498 b = d_hash(dentry->d_name.hash);
b61625d2 499
0632a9ac
AV
500 hlist_bl_lock(b);
501 __hlist_bl_del(&dentry->d_hash);
502 hlist_bl_unlock(b);
789680d1 503}
61647823
N
504
505void __d_drop(struct dentry *dentry)
506{
0632a9ac
AV
507 if (!d_unhashed(dentry)) {
508 ___d_drop(dentry);
509 dentry->d_hash.pprev = NULL;
510 write_seqcount_invalidate(&dentry->d_seq);
511 }
61647823 512}
789680d1
NP
513EXPORT_SYMBOL(__d_drop);
514
961f3c89
MCC
515/**
516 * d_drop - drop a dentry
517 * @dentry: dentry to drop
518 *
519 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
520 * be found through a VFS lookup any more. Note that this is different from
521 * deleting the dentry - d_delete will try to mark the dentry negative if
522 * possible, giving a successful _negative_ lookup, while d_drop will
523 * just make the cache lookup fail.
524 *
525 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
526 * reason (NFS timeouts or autofs deletes).
527 *
528 * __d_drop requires dentry->d_lock
529 *
530 * ___d_drop doesn't mark dentry as "unhashed"
531 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
532 */
789680d1
NP
533void d_drop(struct dentry *dentry)
534{
789680d1
NP
535 spin_lock(&dentry->d_lock);
536 __d_drop(dentry);
537 spin_unlock(&dentry->d_lock);
789680d1
NP
538}
539EXPORT_SYMBOL(d_drop);
540
ba65dc5e
AV
541static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
542{
543 struct dentry *next;
544 /*
545 * Inform d_walk() and shrink_dentry_list() that we are no longer
546 * attached to the dentry tree
547 */
548 dentry->d_flags |= DCACHE_DENTRY_KILLED;
549 if (unlikely(list_empty(&dentry->d_child)))
550 return;
551 __list_del_entry(&dentry->d_child);
552 /*
553 * Cursors can move around the list of children. While we'd been
554 * a normal list member, it didn't matter - ->d_child.next would've
555 * been updated. However, from now on it won't be and for the
556 * things like d_walk() it might end up with a nasty surprise.
557 * Normally d_walk() doesn't care about cursors moving around -
558 * ->d_lock on parent prevents that and since a cursor has no children
559 * of its own, we get through it without ever unlocking the parent.
560 * There is one exception, though - if we ascend from a child that
561 * gets killed as soon as we unlock it, the next sibling is found
562 * using the value left in its ->d_child.next. And if _that_
563 * pointed to a cursor, and cursor got moved (e.g. by lseek())
564 * before d_walk() regains parent->d_lock, we'll end up skipping
565 * everything the cursor had been moved past.
566 *
567 * Solution: make sure that the pointer left behind in ->d_child.next
568 * points to something that won't be moving around. I.e. skip the
569 * cursors.
570 */
571 while (dentry->d_child.next != &parent->d_subdirs) {
572 next = list_entry(dentry->d_child.next, struct dentry, d_child);
573 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
574 break;
575 dentry->d_child.next = next->d_child.next;
576 }
577}
578
e55fd011 579static void __dentry_kill(struct dentry *dentry)
77812a1e 580{
41edf278
AV
581 struct dentry *parent = NULL;
582 bool can_free = true;
41edf278 583 if (!IS_ROOT(dentry))
77812a1e 584 parent = dentry->d_parent;
31e6b01f 585
0d98439e
LT
586 /*
587 * The dentry is now unrecoverably dead to the world.
588 */
589 lockref_mark_dead(&dentry->d_lockref);
590
f0023bc6 591 /*
f0023bc6
SW
592 * inform the fs via d_prune that this dentry is about to be
593 * unhashed and destroyed.
594 */
29266201 595 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
596 dentry->d_op->d_prune(dentry);
597
01b60351
AV
598 if (dentry->d_flags & DCACHE_LRU_LIST) {
599 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
600 d_lru_del(dentry);
01b60351 601 }
77812a1e
NP
602 /* if it was on the hash then remove it */
603 __d_drop(dentry);
ba65dc5e 604 dentry_unlist(dentry, parent);
03b3b889
AV
605 if (parent)
606 spin_unlock(&parent->d_lock);
550dce01
AV
607 if (dentry->d_inode)
608 dentry_unlink_inode(dentry);
609 else
610 spin_unlock(&dentry->d_lock);
03b3b889
AV
611 this_cpu_dec(nr_dentry);
612 if (dentry->d_op && dentry->d_op->d_release)
613 dentry->d_op->d_release(dentry);
614
41edf278
AV
615 spin_lock(&dentry->d_lock);
616 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
617 dentry->d_flags |= DCACHE_MAY_FREE;
618 can_free = false;
619 }
620 spin_unlock(&dentry->d_lock);
41edf278
AV
621 if (likely(can_free))
622 dentry_free(dentry);
9c5f1d30 623 cond_resched();
e55fd011
AV
624}
625
8b987a46 626static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 627{
8b987a46 628 struct dentry *parent;
046b961b 629 rcu_read_lock();
c2338f2d 630 spin_unlock(&dentry->d_lock);
046b961b 631again:
66702eb5 632 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
633 spin_lock(&parent->d_lock);
634 /*
635 * We can't blindly lock dentry until we are sure
636 * that we won't violate the locking order.
637 * Any changes of dentry->d_parent must have
638 * been done with parent->d_lock held, so
639 * spin_lock() above is enough of a barrier
640 * for checking if it's still our child.
641 */
642 if (unlikely(parent != dentry->d_parent)) {
643 spin_unlock(&parent->d_lock);
644 goto again;
645 }
65d8eb5a
AV
646 rcu_read_unlock();
647 if (parent != dentry)
9f12600f 648 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 649 else
046b961b
AV
650 parent = NULL;
651 return parent;
652}
653
8b987a46
AV
654static inline struct dentry *lock_parent(struct dentry *dentry)
655{
656 struct dentry *parent = dentry->d_parent;
657 if (IS_ROOT(dentry))
658 return NULL;
659 if (likely(spin_trylock(&parent->d_lock)))
660 return parent;
661 return __lock_parent(dentry);
662}
663
a338579f
AV
664static inline bool retain_dentry(struct dentry *dentry)
665{
666 WARN_ON(d_in_lookup(dentry));
667
668 /* Unreachable? Get rid of it */
669 if (unlikely(d_unhashed(dentry)))
670 return false;
671
672 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
673 return false;
674
675 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
676 if (dentry->d_op->d_delete(dentry))
677 return false;
678 }
2c567af4
IW
679
680 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
681 return false;
682
62d9956c
AV
683 /* retain; LRU fodder */
684 dentry->d_lockref.count--;
685 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
686 d_lru_add(dentry);
687 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
688 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
689 return true;
690}
691
2c567af4
IW
692void d_mark_dontcache(struct inode *inode)
693{
694 struct dentry *de;
695
696 spin_lock(&inode->i_lock);
697 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
698 spin_lock(&de->d_lock);
699 de->d_flags |= DCACHE_DONTCACHE;
700 spin_unlock(&de->d_lock);
701 }
702 inode->i_state |= I_DONTCACHE;
703 spin_unlock(&inode->i_lock);
704}
705EXPORT_SYMBOL(d_mark_dontcache);
706
c1d0c1a2
JO
707/*
708 * Finish off a dentry we've decided to kill.
709 * dentry->d_lock must be held, returns with it unlocked.
710 * Returns dentry requiring refcount drop, or NULL if we're done.
711 */
712static struct dentry *dentry_kill(struct dentry *dentry)
713 __releases(dentry->d_lock)
714{
715 struct inode *inode = dentry->d_inode;
716 struct dentry *parent = NULL;
717
718 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 719 goto slow_positive;
c1d0c1a2
JO
720
721 if (!IS_ROOT(dentry)) {
722 parent = dentry->d_parent;
723 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
724 parent = __lock_parent(dentry);
725 if (likely(inode || !dentry->d_inode))
726 goto got_locks;
727 /* negative that became positive */
728 if (parent)
729 spin_unlock(&parent->d_lock);
730 inode = dentry->d_inode;
731 goto slow_positive;
c1d0c1a2
JO
732 }
733 }
c1d0c1a2
JO
734 __dentry_kill(dentry);
735 return parent;
736
f657a666
AV
737slow_positive:
738 spin_unlock(&dentry->d_lock);
739 spin_lock(&inode->i_lock);
740 spin_lock(&dentry->d_lock);
741 parent = lock_parent(dentry);
742got_locks:
743 if (unlikely(dentry->d_lockref.count != 1)) {
744 dentry->d_lockref.count--;
745 } else if (likely(!retain_dentry(dentry))) {
746 __dentry_kill(dentry);
747 return parent;
748 }
749 /* we are keeping it, after all */
750 if (inode)
751 spin_unlock(&inode->i_lock);
752 if (parent)
753 spin_unlock(&parent->d_lock);
c1d0c1a2 754 spin_unlock(&dentry->d_lock);
f657a666 755 return NULL;
c1d0c1a2
JO
756}
757
360f5479
LT
758/*
759 * Try to do a lockless dput(), and return whether that was successful.
760 *
761 * If unsuccessful, we return false, having already taken the dentry lock.
762 *
763 * The caller needs to hold the RCU read lock, so that the dentry is
764 * guaranteed to stay around even if the refcount goes down to zero!
765 */
766static inline bool fast_dput(struct dentry *dentry)
767{
768 int ret;
769 unsigned int d_flags;
770
771 /*
772 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 773 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
774 */
775 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
776 return lockref_put_or_lock(&dentry->d_lockref);
777
778 /*
779 * .. otherwise, we can try to just decrement the
780 * lockref optimistically.
781 */
782 ret = lockref_put_return(&dentry->d_lockref);
783
784 /*
785 * If the lockref_put_return() failed due to the lock being held
786 * by somebody else, the fast path has failed. We will need to
787 * get the lock, and then check the count again.
788 */
789 if (unlikely(ret < 0)) {
790 spin_lock(&dentry->d_lock);
791 if (dentry->d_lockref.count > 1) {
792 dentry->d_lockref.count--;
793 spin_unlock(&dentry->d_lock);
7964410f 794 return true;
360f5479 795 }
7964410f 796 return false;
360f5479
LT
797 }
798
799 /*
800 * If we weren't the last ref, we're done.
801 */
802 if (ret)
7964410f 803 return true;
360f5479
LT
804
805 /*
806 * Careful, careful. The reference count went down
807 * to zero, but we don't hold the dentry lock, so
808 * somebody else could get it again, and do another
809 * dput(), and we need to not race with that.
810 *
811 * However, there is a very special and common case
812 * where we don't care, because there is nothing to
813 * do: the dentry is still hashed, it does not have
814 * a 'delete' op, and it's referenced and already on
815 * the LRU list.
816 *
817 * NOTE! Since we aren't locked, these values are
818 * not "stable". However, it is sufficient that at
819 * some point after we dropped the reference the
820 * dentry was hashed and the flags had the proper
821 * value. Other dentry users may have re-gotten
822 * a reference to the dentry and change that, but
823 * our work is done - we can leave the dentry
824 * around with a zero refcount.
77573fa3
HL
825 *
826 * Nevertheless, there are two cases that we should kill
827 * the dentry anyway.
828 * 1. free disconnected dentries as soon as their refcount
829 * reached zero.
830 * 2. free dentries if they should not be cached.
360f5479
LT
831 */
832 smp_rmb();
66702eb5 833 d_flags = READ_ONCE(dentry->d_flags);
77573fa3
HL
834 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
835 DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
360f5479
LT
836
837 /* Nothing to do? Dropping the reference was all we needed? */
838 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
7964410f 839 return true;
360f5479
LT
840
841 /*
842 * Not the fast normal case? Get the lock. We've already decremented
843 * the refcount, but we'll need to re-check the situation after
844 * getting the lock.
845 */
846 spin_lock(&dentry->d_lock);
847
848 /*
849 * Did somebody else grab a reference to it in the meantime, and
850 * we're no longer the last user after all? Alternatively, somebody
851 * else could have killed it and marked it dead. Either way, we
852 * don't need to do anything else.
853 */
854 if (dentry->d_lockref.count) {
855 spin_unlock(&dentry->d_lock);
7964410f 856 return true;
360f5479
LT
857 }
858
859 /*
860 * Re-get the reference we optimistically dropped. We hold the
861 * lock, and we just tested that it was zero, so we can just
862 * set it to 1.
863 */
864 dentry->d_lockref.count = 1;
7964410f 865 return false;
360f5479
LT
866}
867
868
1da177e4
LT
869/*
870 * This is dput
871 *
872 * This is complicated by the fact that we do not want to put
873 * dentries that are no longer on any hash chain on the unused
874 * list: we'd much rather just get rid of them immediately.
875 *
876 * However, that implies that we have to traverse the dentry
877 * tree upwards to the parents which might _also_ now be
878 * scheduled for deletion (it may have been only waiting for
879 * its last child to go away).
880 *
881 * This tail recursion is done by hand as we don't want to depend
882 * on the compiler to always get this right (gcc generally doesn't).
883 * Real recursion would eat up our stack space.
884 */
885
886/*
887 * dput - release a dentry
888 * @dentry: dentry to release
889 *
890 * Release a dentry. This will drop the usage count and if appropriate
891 * call the dentry unlink method as well as removing it from the queues and
892 * releasing its resources. If the parent dentries were scheduled for release
893 * they too may now get deleted.
1da177e4 894 */
1da177e4
LT
895void dput(struct dentry *dentry)
896{
1088a640
AV
897 while (dentry) {
898 might_sleep();
1da177e4 899
1088a640
AV
900 rcu_read_lock();
901 if (likely(fast_dput(dentry))) {
902 rcu_read_unlock();
903 return;
904 }
47be6184 905
1088a640 906 /* Slow case: now with the dentry lock held */
360f5479 907 rcu_read_unlock();
360f5479 908
1088a640
AV
909 if (likely(retain_dentry(dentry))) {
910 spin_unlock(&dentry->d_lock);
911 return;
912 }
265ac902 913
1088a640 914 dentry = dentry_kill(dentry);
47be6184 915 }
1da177e4 916}
ec4f8605 917EXPORT_SYMBOL(dput);
1da177e4 918
9bdebc2b
AV
919static void __dput_to_list(struct dentry *dentry, struct list_head *list)
920__must_hold(&dentry->d_lock)
921{
922 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
923 /* let the owner of the list it's on deal with it */
924 --dentry->d_lockref.count;
925 } else {
926 if (dentry->d_flags & DCACHE_LRU_LIST)
927 d_lru_del(dentry);
928 if (!--dentry->d_lockref.count)
929 d_shrink_add(dentry, list);
930 }
931}
932
933void dput_to_list(struct dentry *dentry, struct list_head *list)
934{
935 rcu_read_lock();
936 if (likely(fast_dput(dentry))) {
937 rcu_read_unlock();
938 return;
939 }
940 rcu_read_unlock();
941 if (!retain_dentry(dentry))
942 __dput_to_list(dentry, list);
943 spin_unlock(&dentry->d_lock);
944}
1da177e4 945
b5c84bf6 946/* This must be called with d_lock held */
dc0474be 947static inline void __dget_dlock(struct dentry *dentry)
23044507 948{
98474236 949 dentry->d_lockref.count++;
23044507
NP
950}
951
dc0474be 952static inline void __dget(struct dentry *dentry)
1da177e4 953{
98474236 954 lockref_get(&dentry->d_lockref);
1da177e4
LT
955}
956
b7ab39f6
NP
957struct dentry *dget_parent(struct dentry *dentry)
958{
df3d0bbc 959 int gotref;
b7ab39f6 960 struct dentry *ret;
e8400933 961 unsigned seq;
b7ab39f6 962
df3d0bbc
WL
963 /*
964 * Do optimistic parent lookup without any
965 * locking.
966 */
967 rcu_read_lock();
e8400933 968 seq = raw_seqcount_begin(&dentry->d_seq);
66702eb5 969 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
970 gotref = lockref_get_not_zero(&ret->d_lockref);
971 rcu_read_unlock();
972 if (likely(gotref)) {
e8400933 973 if (!read_seqcount_retry(&dentry->d_seq, seq))
df3d0bbc
WL
974 return ret;
975 dput(ret);
976 }
977
b7ab39f6 978repeat:
a734eb45
NP
979 /*
980 * Don't need rcu_dereference because we re-check it was correct under
981 * the lock.
982 */
983 rcu_read_lock();
b7ab39f6 984 ret = dentry->d_parent;
a734eb45
NP
985 spin_lock(&ret->d_lock);
986 if (unlikely(ret != dentry->d_parent)) {
987 spin_unlock(&ret->d_lock);
988 rcu_read_unlock();
b7ab39f6
NP
989 goto repeat;
990 }
a734eb45 991 rcu_read_unlock();
98474236
WL
992 BUG_ON(!ret->d_lockref.count);
993 ret->d_lockref.count++;
b7ab39f6 994 spin_unlock(&ret->d_lock);
b7ab39f6
NP
995 return ret;
996}
997EXPORT_SYMBOL(dget_parent);
998
61fec493
AV
999static struct dentry * __d_find_any_alias(struct inode *inode)
1000{
1001 struct dentry *alias;
1002
1003 if (hlist_empty(&inode->i_dentry))
1004 return NULL;
1005 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1006 __dget(alias);
1007 return alias;
1008}
1009
1010/**
1011 * d_find_any_alias - find any alias for a given inode
1012 * @inode: inode to find an alias for
1013 *
1014 * If any aliases exist for the given inode, take and return a
1015 * reference for one of them. If no aliases exist, return %NULL.
1016 */
1017struct dentry *d_find_any_alias(struct inode *inode)
1018{
1019 struct dentry *de;
1020
1021 spin_lock(&inode->i_lock);
1022 de = __d_find_any_alias(inode);
1023 spin_unlock(&inode->i_lock);
1024 return de;
1025}
1026EXPORT_SYMBOL(d_find_any_alias);
1027
52ed46f0 1028static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 1029{
61fec493
AV
1030 struct dentry *alias;
1031
1032 if (S_ISDIR(inode->i_mode))
1033 return __d_find_any_alias(inode);
1da177e4 1034
946e51f2 1035 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 1036 spin_lock(&alias->d_lock);
61fec493 1037 if (!d_unhashed(alias)) {
8d80d7da
BF
1038 __dget_dlock(alias);
1039 spin_unlock(&alias->d_lock);
1040 return alias;
1da177e4 1041 }
da502956 1042 spin_unlock(&alias->d_lock);
1da177e4 1043 }
da502956 1044 return NULL;
1da177e4
LT
1045}
1046
961f3c89
MCC
1047/**
1048 * d_find_alias - grab a hashed alias of inode
1049 * @inode: inode in question
1050 *
1051 * If inode has a hashed alias, or is a directory and has any alias,
1052 * acquire the reference to alias and return it. Otherwise return NULL.
1053 * Notice that if inode is a directory there can be only one alias and
1054 * it can be unhashed only if it has no children, or if it is the root
1055 * of a filesystem, or if the directory was renamed and d_revalidate
1056 * was the first vfs operation to notice.
1057 *
1058 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1059 * any other hashed alias over that one.
1060 */
da502956 1061struct dentry *d_find_alias(struct inode *inode)
1da177e4 1062{
214fda1f
DH
1063 struct dentry *de = NULL;
1064
b3d9b7a3 1065 if (!hlist_empty(&inode->i_dentry)) {
873feea0 1066 spin_lock(&inode->i_lock);
52ed46f0 1067 de = __d_find_alias(inode);
873feea0 1068 spin_unlock(&inode->i_lock);
214fda1f 1069 }
1da177e4
LT
1070 return de;
1071}
ec4f8605 1072EXPORT_SYMBOL(d_find_alias);
1da177e4 1073
bca585d2
AV
1074/*
1075 * Caller MUST be holding rcu_read_lock() and be guaranteed
1076 * that inode won't get freed until rcu_read_unlock().
1077 */
1078struct dentry *d_find_alias_rcu(struct inode *inode)
1079{
1080 struct hlist_head *l = &inode->i_dentry;
1081 struct dentry *de = NULL;
1082
1083 spin_lock(&inode->i_lock);
1084 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1085 // used without having I_FREEING set, which means no aliases left
1086 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1087 if (S_ISDIR(inode->i_mode)) {
1088 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1089 } else {
1090 hlist_for_each_entry(de, l, d_u.d_alias)
1091 if (!d_unhashed(de))
1092 break;
1093 }
1094 }
1095 spin_unlock(&inode->i_lock);
1096 return de;
1097}
1098
1da177e4
LT
1099/*
1100 * Try to kill dentries associated with this inode.
1101 * WARNING: you must own a reference to inode.
1102 */
1103void d_prune_aliases(struct inode *inode)
1104{
0cdca3f9 1105 struct dentry *dentry;
1da177e4 1106restart:
873feea0 1107 spin_lock(&inode->i_lock);
946e51f2 1108 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 1109 spin_lock(&dentry->d_lock);
98474236 1110 if (!dentry->d_lockref.count) {
29355c39
AV
1111 struct dentry *parent = lock_parent(dentry);
1112 if (likely(!dentry->d_lockref.count)) {
1113 __dentry_kill(dentry);
4a7795d3 1114 dput(parent);
29355c39
AV
1115 goto restart;
1116 }
1117 if (parent)
1118 spin_unlock(&parent->d_lock);
1da177e4
LT
1119 }
1120 spin_unlock(&dentry->d_lock);
1121 }
873feea0 1122 spin_unlock(&inode->i_lock);
1da177e4 1123}
ec4f8605 1124EXPORT_SYMBOL(d_prune_aliases);
1da177e4 1125
3b3f09f4
AV
1126/*
1127 * Lock a dentry from shrink list.
8f04da2a
JO
1128 * Called under rcu_read_lock() and dentry->d_lock; the former
1129 * guarantees that nothing we access will be freed under us.
3b3f09f4 1130 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
1131 * d_delete(), etc.
1132 *
3b3f09f4
AV
1133 * Return false if dentry has been disrupted or grabbed, leaving
1134 * the caller to kick it off-list. Otherwise, return true and have
1135 * that dentry's inode and parent both locked.
1136 */
1137static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1138{
3b3f09f4
AV
1139 struct inode *inode;
1140 struct dentry *parent;
da3bbdd4 1141
3b3f09f4
AV
1142 if (dentry->d_lockref.count)
1143 return false;
1144
1145 inode = dentry->d_inode;
1146 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1147 spin_unlock(&dentry->d_lock);
1148 spin_lock(&inode->i_lock);
ec33679d 1149 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1150 if (unlikely(dentry->d_lockref.count))
1151 goto out;
1152 /* changed inode means that somebody had grabbed it */
1153 if (unlikely(inode != dentry->d_inode))
1154 goto out;
3b3f09f4 1155 }
046b961b 1156
3b3f09f4
AV
1157 parent = dentry->d_parent;
1158 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1159 return true;
dd1f6b2e 1160
3b3f09f4 1161 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1162 spin_lock(&parent->d_lock);
1163 if (unlikely(parent != dentry->d_parent)) {
1164 spin_unlock(&parent->d_lock);
1165 spin_lock(&dentry->d_lock);
1166 goto out;
1167 }
1168 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1169 if (likely(!dentry->d_lockref.count))
3b3f09f4 1170 return true;
3b3f09f4
AV
1171 spin_unlock(&parent->d_lock);
1172out:
1173 if (inode)
1174 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1175 return false;
1176}
77812a1e 1177
9bdebc2b 1178void shrink_dentry_list(struct list_head *list)
3b3f09f4
AV
1179{
1180 while (!list_empty(list)) {
1181 struct dentry *dentry, *parent;
64fd72e0 1182
3b3f09f4
AV
1183 dentry = list_entry(list->prev, struct dentry, d_lru);
1184 spin_lock(&dentry->d_lock);
8f04da2a 1185 rcu_read_lock();
3b3f09f4
AV
1186 if (!shrink_lock_dentry(dentry)) {
1187 bool can_free = false;
8f04da2a 1188 rcu_read_unlock();
3b3f09f4
AV
1189 d_shrink_del(dentry);
1190 if (dentry->d_lockref.count < 0)
1191 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1192 spin_unlock(&dentry->d_lock);
1193 if (can_free)
1194 dentry_free(dentry);
1195 continue;
1196 }
8f04da2a 1197 rcu_read_unlock();
3b3f09f4
AV
1198 d_shrink_del(dentry);
1199 parent = dentry->d_parent;
9bdebc2b
AV
1200 if (parent != dentry)
1201 __dput_to_list(parent, list);
ff2fde99 1202 __dentry_kill(dentry);
da3bbdd4 1203 }
3049cfe2
CH
1204}
1205
3f97b163
VD
1206static enum lru_status dentry_lru_isolate(struct list_head *item,
1207 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1208{
1209 struct list_head *freeable = arg;
1210 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1211
1212
1213 /*
1214 * we are inverting the lru lock/dentry->d_lock here,
1215 * so use a trylock. If we fail to get the lock, just skip
1216 * it
1217 */
1218 if (!spin_trylock(&dentry->d_lock))
1219 return LRU_SKIP;
1220
1221 /*
1222 * Referenced dentries are still in use. If they have active
1223 * counts, just remove them from the LRU. Otherwise give them
1224 * another pass through the LRU.
1225 */
1226 if (dentry->d_lockref.count) {
3f97b163 1227 d_lru_isolate(lru, dentry);
f6041567
DC
1228 spin_unlock(&dentry->d_lock);
1229 return LRU_REMOVED;
1230 }
1231
1232 if (dentry->d_flags & DCACHE_REFERENCED) {
1233 dentry->d_flags &= ~DCACHE_REFERENCED;
1234 spin_unlock(&dentry->d_lock);
1235
1236 /*
1237 * The list move itself will be made by the common LRU code. At
1238 * this point, we've dropped the dentry->d_lock but keep the
1239 * lru lock. This is safe to do, since every list movement is
1240 * protected by the lru lock even if both locks are held.
1241 *
1242 * This is guaranteed by the fact that all LRU management
1243 * functions are intermediated by the LRU API calls like
0a97c01c 1244 * list_lru_add_obj and list_lru_del_obj. List movement in this file
f6041567
DC
1245 * only ever occur through this functions or through callbacks
1246 * like this one, that are called from the LRU API.
1247 *
1248 * The only exceptions to this are functions like
1249 * shrink_dentry_list, and code that first checks for the
1250 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1251 * operating only with stack provided lists after they are
1252 * properly isolated from the main list. It is thus, always a
1253 * local access.
1254 */
1255 return LRU_ROTATE;
1256 }
1257
3f97b163 1258 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1259 spin_unlock(&dentry->d_lock);
1260
1261 return LRU_REMOVED;
1262}
1263
3049cfe2 1264/**
b48f03b3
DC
1265 * prune_dcache_sb - shrink the dcache
1266 * @sb: superblock
503c358c 1267 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1268 *
503c358c
VD
1269 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1270 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1271 * function.
3049cfe2 1272 *
b48f03b3
DC
1273 * This function may fail to free any resources if all the dentries are in
1274 * use.
3049cfe2 1275 */
503c358c 1276long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1277{
f6041567
DC
1278 LIST_HEAD(dispose);
1279 long freed;
3049cfe2 1280
503c358c
VD
1281 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1282 dentry_lru_isolate, &dispose);
f6041567 1283 shrink_dentry_list(&dispose);
0a234c6d 1284 return freed;
da3bbdd4 1285}
23044507 1286
4e717f5c 1287static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1288 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1289{
4e717f5c
GC
1290 struct list_head *freeable = arg;
1291 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1292
4e717f5c
GC
1293 /*
1294 * we are inverting the lru lock/dentry->d_lock here,
1295 * so use a trylock. If we fail to get the lock, just skip
1296 * it
1297 */
1298 if (!spin_trylock(&dentry->d_lock))
1299 return LRU_SKIP;
1300
3f97b163 1301 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1302 spin_unlock(&dentry->d_lock);
ec33679d 1303
4e717f5c 1304 return LRU_REMOVED;
da3bbdd4
KM
1305}
1306
4e717f5c 1307
1da177e4
LT
1308/**
1309 * shrink_dcache_sb - shrink dcache for a superblock
1310 * @sb: superblock
1311 *
3049cfe2
CH
1312 * Shrink the dcache for the specified super block. This is used to free
1313 * the dcache before unmounting a file system.
1da177e4 1314 */
3049cfe2 1315void shrink_dcache_sb(struct super_block *sb)
1da177e4 1316{
4e717f5c
GC
1317 do {
1318 LIST_HEAD(dispose);
1319
1dbd449c 1320 list_lru_walk(&sb->s_dentry_lru,
b17c070f 1321 dentry_lru_isolate_shrink, &dispose, 1024);
4e717f5c 1322 shrink_dentry_list(&dispose);
b17c070f 1323 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1324}
ec4f8605 1325EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1326
db14fc3a
MS
1327/**
1328 * enum d_walk_ret - action to talke during tree walk
1329 * @D_WALK_CONTINUE: contrinue walk
1330 * @D_WALK_QUIT: quit walk
1331 * @D_WALK_NORETRY: quit when retry is needed
1332 * @D_WALK_SKIP: skip this dentry and its children
1333 */
1334enum d_walk_ret {
1335 D_WALK_CONTINUE,
1336 D_WALK_QUIT,
1337 D_WALK_NORETRY,
1338 D_WALK_SKIP,
1339};
c826cb7d 1340
1da177e4 1341/**
db14fc3a
MS
1342 * d_walk - walk the dentry tree
1343 * @parent: start of walk
1344 * @data: data passed to @enter() and @finish()
1345 * @enter: callback when first entering the dentry
1da177e4 1346 *
3a8e3611 1347 * The @enter() callbacks are called with d_lock held.
1da177e4 1348 */
db14fc3a 1349static void d_walk(struct dentry *parent, void *data,
3a8e3611 1350 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1351{
949854d0 1352 struct dentry *this_parent;
1da177e4 1353 struct list_head *next;
48f5ec21 1354 unsigned seq = 0;
db14fc3a
MS
1355 enum d_walk_ret ret;
1356 bool retry = true;
949854d0 1357
58db63d0 1358again:
48f5ec21 1359 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1360 this_parent = parent;
2fd6b7f5 1361 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1362
1363 ret = enter(data, this_parent);
1364 switch (ret) {
1365 case D_WALK_CONTINUE:
1366 break;
1367 case D_WALK_QUIT:
1368 case D_WALK_SKIP:
1369 goto out_unlock;
1370 case D_WALK_NORETRY:
1371 retry = false;
1372 break;
1373 }
1da177e4
LT
1374repeat:
1375 next = this_parent->d_subdirs.next;
1376resume:
1377 while (next != &this_parent->d_subdirs) {
1378 struct list_head *tmp = next;
946e51f2 1379 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1380 next = tmp->next;
2fd6b7f5 1381
ba65dc5e
AV
1382 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1383 continue;
1384
2fd6b7f5 1385 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1386
1387 ret = enter(data, dentry);
1388 switch (ret) {
1389 case D_WALK_CONTINUE:
1390 break;
1391 case D_WALK_QUIT:
2fd6b7f5 1392 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1393 goto out_unlock;
1394 case D_WALK_NORETRY:
1395 retry = false;
1396 break;
1397 case D_WALK_SKIP:
1398 spin_unlock(&dentry->d_lock);
1399 continue;
2fd6b7f5 1400 }
db14fc3a 1401
1da177e4 1402 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5 1403 spin_unlock(&this_parent->d_lock);
5facae4f 1404 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1da177e4 1405 this_parent = dentry;
2fd6b7f5 1406 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1407 goto repeat;
1408 }
2fd6b7f5 1409 spin_unlock(&dentry->d_lock);
1da177e4
LT
1410 }
1411 /*
1412 * All done at this level ... ascend and resume the search.
1413 */
ca5358ef
AV
1414 rcu_read_lock();
1415ascend:
1da177e4 1416 if (this_parent != parent) {
c826cb7d 1417 struct dentry *child = this_parent;
31dec132
AV
1418 this_parent = child->d_parent;
1419
31dec132
AV
1420 spin_unlock(&child->d_lock);
1421 spin_lock(&this_parent->d_lock);
1422
ca5358ef
AV
1423 /* might go back up the wrong parent if we have had a rename. */
1424 if (need_seqretry(&rename_lock, seq))
949854d0 1425 goto rename_retry;
2159184e
AV
1426 /* go into the first sibling still alive */
1427 do {
1428 next = child->d_child.next;
ca5358ef
AV
1429 if (next == &this_parent->d_subdirs)
1430 goto ascend;
1431 child = list_entry(next, struct dentry, d_child);
2159184e 1432 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1433 rcu_read_unlock();
1da177e4
LT
1434 goto resume;
1435 }
ca5358ef 1436 if (need_seqretry(&rename_lock, seq))
949854d0 1437 goto rename_retry;
ca5358ef 1438 rcu_read_unlock();
db14fc3a
MS
1439
1440out_unlock:
1441 spin_unlock(&this_parent->d_lock);
48f5ec21 1442 done_seqretry(&rename_lock, seq);
db14fc3a 1443 return;
58db63d0
NP
1444
1445rename_retry:
ca5358ef
AV
1446 spin_unlock(&this_parent->d_lock);
1447 rcu_read_unlock();
1448 BUG_ON(seq & 1);
db14fc3a
MS
1449 if (!retry)
1450 return;
48f5ec21 1451 seq = 1;
58db63d0 1452 goto again;
1da177e4 1453}
db14fc3a 1454
01619491
IK
1455struct check_mount {
1456 struct vfsmount *mnt;
1457 unsigned int mounted;
1458};
1459
1460static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1461{
1462 struct check_mount *info = data;
1463 struct path path = { .mnt = info->mnt, .dentry = dentry };
1464
1465 if (likely(!d_mountpoint(dentry)))
1466 return D_WALK_CONTINUE;
1467 if (__path_is_mountpoint(&path)) {
1468 info->mounted = 1;
1469 return D_WALK_QUIT;
1470 }
1471 return D_WALK_CONTINUE;
1472}
1473
1474/**
1475 * path_has_submounts - check for mounts over a dentry in the
1476 * current namespace.
1477 * @parent: path to check.
1478 *
1479 * Return true if the parent or its subdirectories contain
1480 * a mount point in the current namespace.
1481 */
1482int path_has_submounts(const struct path *parent)
1483{
1484 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1485
1486 read_seqlock_excl(&mount_lock);
3a8e3611 1487 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1488 read_sequnlock_excl(&mount_lock);
1489
1490 return data.mounted;
1491}
1492EXPORT_SYMBOL(path_has_submounts);
1493
eed81007
MS
1494/*
1495 * Called by mount code to set a mountpoint and check if the mountpoint is
1496 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1497 * subtree can become unreachable).
1498 *
1ffe46d1 1499 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1500 * this reason take rename_lock and d_lock on dentry and ancestors.
1501 */
1502int d_set_mounted(struct dentry *dentry)
1503{
1504 struct dentry *p;
1505 int ret = -ENOENT;
1506 write_seqlock(&rename_lock);
1507 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1508 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1509 spin_lock(&p->d_lock);
1510 if (unlikely(d_unhashed(p))) {
1511 spin_unlock(&p->d_lock);
1512 goto out;
1513 }
1514 spin_unlock(&p->d_lock);
1515 }
1516 spin_lock(&dentry->d_lock);
1517 if (!d_unlinked(dentry)) {
3895dbf8
EB
1518 ret = -EBUSY;
1519 if (!d_mountpoint(dentry)) {
1520 dentry->d_flags |= DCACHE_MOUNTED;
1521 ret = 0;
1522 }
eed81007
MS
1523 }
1524 spin_unlock(&dentry->d_lock);
1525out:
1526 write_sequnlock(&rename_lock);
1527 return ret;
1528}
1529
1da177e4 1530/*
fd517909 1531 * Search the dentry child list of the specified parent,
1da177e4
LT
1532 * and move any unused dentries to the end of the unused
1533 * list for prune_dcache(). We descend to the next level
1534 * whenever the d_subdirs list is non-empty and continue
1535 * searching.
1536 *
1537 * It returns zero iff there are no unused children,
1538 * otherwise it returns the number of children moved to
1539 * the end of the unused list. This may not be the total
1540 * number of unused children, because select_parent can
1541 * drop the lock and return early due to latency
1542 * constraints.
1543 */
1da177e4 1544
db14fc3a
MS
1545struct select_data {
1546 struct dentry *start;
9bdebc2b
AV
1547 union {
1548 long found;
1549 struct dentry *victim;
1550 };
db14fc3a 1551 struct list_head dispose;
db14fc3a 1552};
23044507 1553
db14fc3a
MS
1554static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1555{
1556 struct select_data *data = _data;
1557 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1558
db14fc3a
MS
1559 if (data->start == dentry)
1560 goto out;
2fd6b7f5 1561
fe91522a 1562 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1563 data->found++;
fe91522a
AV
1564 } else {
1565 if (dentry->d_flags & DCACHE_LRU_LIST)
1566 d_lru_del(dentry);
1567 if (!dentry->d_lockref.count) {
1568 d_shrink_add(dentry, &data->dispose);
1569 data->found++;
1570 }
1da177e4 1571 }
db14fc3a
MS
1572 /*
1573 * We can return to the caller if we have found some (this
1574 * ensures forward progress). We'll be coming back to find
1575 * the rest.
1576 */
fe91522a
AV
1577 if (!list_empty(&data->dispose))
1578 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1579out:
db14fc3a 1580 return ret;
1da177e4
LT
1581}
1582
9bdebc2b
AV
1583static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1584{
1585 struct select_data *data = _data;
1586 enum d_walk_ret ret = D_WALK_CONTINUE;
1587
1588 if (data->start == dentry)
1589 goto out;
1590
1591 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1592 if (!dentry->d_lockref.count) {
1593 rcu_read_lock();
1594 data->victim = dentry;
1595 return D_WALK_QUIT;
1596 }
1597 } else {
1598 if (dentry->d_flags & DCACHE_LRU_LIST)
1599 d_lru_del(dentry);
1600 if (!dentry->d_lockref.count)
1601 d_shrink_add(dentry, &data->dispose);
1602 }
1603 /*
1604 * We can return to the caller if we have found some (this
1605 * ensures forward progress). We'll be coming back to find
1606 * the rest.
1607 */
1608 if (!list_empty(&data->dispose))
1609 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1610out:
1611 return ret;
1612}
1613
1da177e4
LT
1614/**
1615 * shrink_dcache_parent - prune dcache
1616 * @parent: parent of entries to prune
1617 *
1618 * Prune the dcache to remove unused children of the parent dentry.
1619 */
db14fc3a 1620void shrink_dcache_parent(struct dentry *parent)
1da177e4 1621{
db14fc3a 1622 for (;;) {
9bdebc2b 1623 struct select_data data = {.start = parent};
1da177e4 1624
db14fc3a 1625 INIT_LIST_HEAD(&data.dispose);
3a8e3611 1626 d_walk(parent, &data, select_collect);
4fb48871
AV
1627
1628 if (!list_empty(&data.dispose)) {
1629 shrink_dentry_list(&data.dispose);
1630 continue;
1631 }
1632
1633 cond_resched();
db14fc3a
MS
1634 if (!data.found)
1635 break;
9bdebc2b
AV
1636 data.victim = NULL;
1637 d_walk(parent, &data, select_collect2);
1638 if (data.victim) {
1639 struct dentry *parent;
1640 spin_lock(&data.victim->d_lock);
1641 if (!shrink_lock_dentry(data.victim)) {
1642 spin_unlock(&data.victim->d_lock);
1643 rcu_read_unlock();
1644 } else {
1645 rcu_read_unlock();
1646 parent = data.victim->d_parent;
1647 if (parent != data.victim)
1648 __dput_to_list(parent, &data.dispose);
1649 __dentry_kill(data.victim);
1650 }
1651 }
1652 if (!list_empty(&data.dispose))
1653 shrink_dentry_list(&data.dispose);
421348f1 1654 }
1da177e4 1655}
ec4f8605 1656EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1657
9c8c10e2 1658static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1659{
9c8c10e2
AV
1660 /* it has busy descendents; complain about those instead */
1661 if (!list_empty(&dentry->d_subdirs))
1662 return D_WALK_CONTINUE;
42c32608 1663
9c8c10e2
AV
1664 /* root with refcount 1 is fine */
1665 if (dentry == _data && dentry->d_lockref.count == 1)
1666 return D_WALK_CONTINUE;
1667
8c8e7dba 1668 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
9c8c10e2 1669 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1670 dentry,
1671 dentry->d_inode ?
1672 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1673 dentry,
42c32608
AV
1674 dentry->d_lockref.count,
1675 dentry->d_sb->s_type->name,
1676 dentry->d_sb->s_id);
9c8c10e2
AV
1677 return D_WALK_CONTINUE;
1678}
1679
1680static void do_one_tree(struct dentry *dentry)
1681{
1682 shrink_dcache_parent(dentry);
3a8e3611 1683 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1684 d_drop(dentry);
1685 dput(dentry);
42c32608
AV
1686}
1687
1688/*
1689 * destroy the dentries attached to a superblock on unmounting
1690 */
1691void shrink_dcache_for_umount(struct super_block *sb)
1692{
1693 struct dentry *dentry;
1694
9c8c10e2 1695 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1696
1697 dentry = sb->s_root;
1698 sb->s_root = NULL;
9c8c10e2 1699 do_one_tree(dentry);
42c32608 1700
f1ee6162
N
1701 while (!hlist_bl_empty(&sb->s_roots)) {
1702 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1703 do_one_tree(dentry);
42c32608
AV
1704 }
1705}
1706
ff17fa56 1707static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1708{
ff17fa56 1709 struct dentry **victim = _data;
848ac114 1710 if (d_mountpoint(dentry)) {
8ed936b5 1711 __dget_dlock(dentry);
ff17fa56 1712 *victim = dentry;
848ac114
MS
1713 return D_WALK_QUIT;
1714 }
ff17fa56 1715 return D_WALK_CONTINUE;
848ac114
MS
1716}
1717
1718/**
1ffe46d1
EB
1719 * d_invalidate - detach submounts, prune dcache, and drop
1720 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1721 */
5542aa2f 1722void d_invalidate(struct dentry *dentry)
848ac114 1723{
ff17fa56 1724 bool had_submounts = false;
1ffe46d1
EB
1725 spin_lock(&dentry->d_lock);
1726 if (d_unhashed(dentry)) {
1727 spin_unlock(&dentry->d_lock);
5542aa2f 1728 return;
1ffe46d1 1729 }
ff17fa56 1730 __d_drop(dentry);
1ffe46d1
EB
1731 spin_unlock(&dentry->d_lock);
1732
848ac114 1733 /* Negative dentries can be dropped without further checks */
ff17fa56 1734 if (!dentry->d_inode)
5542aa2f 1735 return;
848ac114 1736
ff17fa56 1737 shrink_dcache_parent(dentry);
848ac114 1738 for (;;) {
ff17fa56 1739 struct dentry *victim = NULL;
3a8e3611 1740 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1741 if (!victim) {
1742 if (had_submounts)
1743 shrink_dcache_parent(dentry);
81be24d2 1744 return;
8ed936b5 1745 }
ff17fa56
AV
1746 had_submounts = true;
1747 detach_mounts(victim);
1748 dput(victim);
848ac114 1749 }
848ac114 1750}
1ffe46d1 1751EXPORT_SYMBOL(d_invalidate);
848ac114 1752
1da177e4 1753/**
a4464dbc
AV
1754 * __d_alloc - allocate a dcache entry
1755 * @sb: filesystem it will belong to
1da177e4
LT
1756 * @name: qstr of the name
1757 *
1758 * Allocates a dentry. It returns %NULL if there is insufficient memory
1759 * available. On a success the dentry is returned. The name passed in is
1760 * copied and the copy passed in may be reused after this call.
1761 */
1762
5c8b0dfc 1763static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1764{
1765 struct dentry *dentry;
1766 char *dname;
285b102d 1767 int err;
1da177e4 1768
f53bf711
MS
1769 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1770 GFP_KERNEL);
1da177e4
LT
1771 if (!dentry)
1772 return NULL;
1773
6326c71f
LT
1774 /*
1775 * We guarantee that the inline name is always NUL-terminated.
1776 * This way the memcpy() done by the name switching in rename
1777 * will still always have a NUL at the end, even if we might
1778 * be overwriting an internal NUL character
1779 */
1780 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1781 if (unlikely(!name)) {
cdf01226 1782 name = &slash_name;
798434bd
AV
1783 dname = dentry->d_iname;
1784 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1785 size_t size = offsetof(struct external_name, name[1]);
2e03b4bc
VB
1786 struct external_name *p = kmalloc(size + name->len,
1787 GFP_KERNEL_ACCOUNT |
1788 __GFP_RECLAIMABLE);
1789 if (!p) {
1da177e4
LT
1790 kmem_cache_free(dentry_cache, dentry);
1791 return NULL;
1792 }
2e03b4bc
VB
1793 atomic_set(&p->u.count, 1);
1794 dname = p->name;
1da177e4
LT
1795 } else {
1796 dname = dentry->d_iname;
1797 }
1da177e4
LT
1798
1799 dentry->d_name.len = name->len;
1800 dentry->d_name.hash = name->hash;
1801 memcpy(dname, name->name, name->len);
1802 dname[name->len] = 0;
1803
6326c71f 1804 /* Make sure we always see the terminating NUL character */
7088efa9 1805 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1806
98474236 1807 dentry->d_lockref.count = 1;
dea3667b 1808 dentry->d_flags = 0;
1da177e4 1809 spin_lock_init(&dentry->d_lock);
26475371 1810 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1da177e4 1811 dentry->d_inode = NULL;
a4464dbc
AV
1812 dentry->d_parent = dentry;
1813 dentry->d_sb = sb;
1da177e4
LT
1814 dentry->d_op = NULL;
1815 dentry->d_fsdata = NULL;
ceb5bdc2 1816 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1817 INIT_LIST_HEAD(&dentry->d_lru);
1818 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1819 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1820 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1821 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1822
285b102d
MS
1823 if (dentry->d_op && dentry->d_op->d_init) {
1824 err = dentry->d_op->d_init(dentry);
1825 if (err) {
1826 if (dname_external(dentry))
1827 kfree(external_name(dentry));
1828 kmem_cache_free(dentry_cache, dentry);
1829 return NULL;
1830 }
1831 }
1832
3e880fb5 1833 this_cpu_inc(nr_dentry);
312d3ca8 1834
1da177e4
LT
1835 return dentry;
1836}
a4464dbc
AV
1837
1838/**
1839 * d_alloc - allocate a dcache entry
1840 * @parent: parent of entry to allocate
1841 * @name: qstr of the name
1842 *
1843 * Allocates a dentry. It returns %NULL if there is insufficient memory
1844 * available. On a success the dentry is returned. The name passed in is
1845 * copied and the copy passed in may be reused after this call.
1846 */
1847struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1848{
1849 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1850 if (!dentry)
1851 return NULL;
a4464dbc
AV
1852 spin_lock(&parent->d_lock);
1853 /*
1854 * don't need child lock because it is not subject
1855 * to concurrency here
1856 */
1857 __dget_dlock(parent);
1858 dentry->d_parent = parent;
946e51f2 1859 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1860 spin_unlock(&parent->d_lock);
1861
1862 return dentry;
1863}
ec4f8605 1864EXPORT_SYMBOL(d_alloc);
1da177e4 1865
f9c34674
MS
1866struct dentry *d_alloc_anon(struct super_block *sb)
1867{
1868 return __d_alloc(sb, NULL);
1869}
1870EXPORT_SYMBOL(d_alloc_anon);
1871
ba65dc5e
AV
1872struct dentry *d_alloc_cursor(struct dentry * parent)
1873{
f9c34674 1874 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e 1875 if (dentry) {
5467a68c 1876 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
ba65dc5e
AV
1877 dentry->d_parent = dget(parent);
1878 }
1879 return dentry;
1880}
1881
e1a24bb0
BF
1882/**
1883 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1884 * @sb: the superblock
1885 * @name: qstr of the name
1886 *
1887 * For a filesystem that just pins its dentries in memory and never
1888 * performs lookups at all, return an unhashed IS_ROOT dentry.
5467a68c
AV
1889 * This is used for pipes, sockets et.al. - the stuff that should
1890 * never be anyone's children or parents. Unlike all other
1891 * dentries, these will not have RCU delay between dropping the
1892 * last reference and freeing them.
ab1152dd
AV
1893 *
1894 * The only user is alloc_file_pseudo() and that's what should
1895 * be considered a public interface. Don't use directly.
e1a24bb0 1896 */
4b936885
NP
1897struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1898{
5467a68c
AV
1899 struct dentry *dentry = __d_alloc(sb, name);
1900 if (likely(dentry))
1901 dentry->d_flags |= DCACHE_NORCU;
1902 return dentry;
4b936885 1903}
4b936885 1904
1da177e4
LT
1905struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1906{
1907 struct qstr q;
1908
1909 q.name = name;
8387ff25 1910 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1911 return d_alloc(parent, &q);
1912}
ef26ca97 1913EXPORT_SYMBOL(d_alloc_name);
1da177e4 1914
fb045adb
NP
1915void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1916{
6f7f7caa
LT
1917 WARN_ON_ONCE(dentry->d_op);
1918 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1919 DCACHE_OP_COMPARE |
1920 DCACHE_OP_REVALIDATE |
ecf3d1f1 1921 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1922 DCACHE_OP_DELETE |
d101a125 1923 DCACHE_OP_REAL));
fb045adb
NP
1924 dentry->d_op = op;
1925 if (!op)
1926 return;
1927 if (op->d_hash)
1928 dentry->d_flags |= DCACHE_OP_HASH;
1929 if (op->d_compare)
1930 dentry->d_flags |= DCACHE_OP_COMPARE;
1931 if (op->d_revalidate)
1932 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1933 if (op->d_weak_revalidate)
1934 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1935 if (op->d_delete)
1936 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1937 if (op->d_prune)
1938 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1939 if (op->d_real)
1940 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1941
1942}
1943EXPORT_SYMBOL(d_set_d_op);
1944
df1a085a
DH
1945
1946/*
1947 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1948 * @dentry - The dentry to mark
1949 *
1950 * Mark a dentry as falling through to the lower layer (as set with
1951 * d_pin_lower()). This flag may be recorded on the medium.
1952 */
1953void d_set_fallthru(struct dentry *dentry)
1954{
1955 spin_lock(&dentry->d_lock);
1956 dentry->d_flags |= DCACHE_FALLTHRU;
1957 spin_unlock(&dentry->d_lock);
1958}
1959EXPORT_SYMBOL(d_set_fallthru);
1960
b18825a7
DH
1961static unsigned d_flags_for_inode(struct inode *inode)
1962{
44bdb5e5 1963 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1964
1965 if (!inode)
1966 return DCACHE_MISS_TYPE;
1967
1968 if (S_ISDIR(inode->i_mode)) {
1969 add_flags = DCACHE_DIRECTORY_TYPE;
1970 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1971 if (unlikely(!inode->i_op->lookup))
1972 add_flags = DCACHE_AUTODIR_TYPE;
1973 else
1974 inode->i_opflags |= IOP_LOOKUP;
1975 }
44bdb5e5
DH
1976 goto type_determined;
1977 }
1978
1979 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1980 if (unlikely(inode->i_op->get_link)) {
b18825a7 1981 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1982 goto type_determined;
1983 }
1984 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1985 }
1986
44bdb5e5
DH
1987 if (unlikely(!S_ISREG(inode->i_mode)))
1988 add_flags = DCACHE_SPECIAL_TYPE;
1989
1990type_determined:
b18825a7
DH
1991 if (unlikely(IS_AUTOMOUNT(inode)))
1992 add_flags |= DCACHE_NEED_AUTOMOUNT;
1993 return add_flags;
1994}
1995
360da900
OH
1996static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1997{
b18825a7 1998 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1999 WARN_ON(d_in_lookup(dentry));
b18825a7 2000
b23fb0a6 2001 spin_lock(&dentry->d_lock);
af0c9af1
WL
2002 /*
2003 * Decrement negative dentry count if it was in the LRU list.
2004 */
2005 if (dentry->d_flags & DCACHE_LRU_LIST)
2006 this_cpu_dec(nr_dentry_negative);
de689f5e 2007 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 2008 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 2009 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 2010 raw_write_seqcount_end(&dentry->d_seq);
affda484 2011 fsnotify_update_flags(dentry);
b23fb0a6 2012 spin_unlock(&dentry->d_lock);
360da900
OH
2013}
2014
1da177e4
LT
2015/**
2016 * d_instantiate - fill in inode information for a dentry
2017 * @entry: dentry to complete
2018 * @inode: inode to attach to this dentry
2019 *
2020 * Fill in inode information in the entry.
2021 *
2022 * This turns negative dentries into productive full members
2023 * of society.
2024 *
2025 * NOTE! This assumes that the inode count has been incremented
2026 * (or otherwise set) by the caller to indicate that it is now
2027 * in use by the dcache.
2028 */
2029
2030void d_instantiate(struct dentry *entry, struct inode * inode)
2031{
946e51f2 2032 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 2033 if (inode) {
b9680917 2034 security_d_instantiate(entry, inode);
873feea0 2035 spin_lock(&inode->i_lock);
de689f5e 2036 __d_instantiate(entry, inode);
873feea0 2037 spin_unlock(&inode->i_lock);
de689f5e 2038 }
1da177e4 2039}
ec4f8605 2040EXPORT_SYMBOL(d_instantiate);
1da177e4 2041
1e2e547a
AV
2042/*
2043 * This should be equivalent to d_instantiate() + unlock_new_inode(),
2044 * with lockdep-related part of unlock_new_inode() done before
2045 * anything else. Use that instead of open-coding d_instantiate()/
2046 * unlock_new_inode() combinations.
2047 */
2048void d_instantiate_new(struct dentry *entry, struct inode *inode)
2049{
2050 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2051 BUG_ON(!inode);
2052 lockdep_annotate_inode_mutex_key(inode);
2053 security_d_instantiate(entry, inode);
2054 spin_lock(&inode->i_lock);
2055 __d_instantiate(entry, inode);
2056 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 2057 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
2058 smp_mb();
2059 wake_up_bit(&inode->i_state, __I_NEW);
2060 spin_unlock(&inode->i_lock);
2061}
2062EXPORT_SYMBOL(d_instantiate_new);
2063
adc0e91a
AV
2064struct dentry *d_make_root(struct inode *root_inode)
2065{
2066 struct dentry *res = NULL;
2067
2068 if (root_inode) {
f9c34674 2069 res = d_alloc_anon(root_inode->i_sb);
5467a68c 2070 if (res)
adc0e91a 2071 d_instantiate(res, root_inode);
5467a68c 2072 else
adc0e91a
AV
2073 iput(root_inode);
2074 }
2075 return res;
2076}
2077EXPORT_SYMBOL(d_make_root);
2078
f9c34674
MS
2079static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2080 struct inode *inode,
2081 bool disconnected)
4ea3ada2 2082{
9308a612 2083 struct dentry *res;
b18825a7 2084 unsigned add_flags;
4ea3ada2 2085
f9c34674 2086 security_d_instantiate(dentry, inode);
873feea0 2087 spin_lock(&inode->i_lock);
d891eedb 2088 res = __d_find_any_alias(inode);
9308a612 2089 if (res) {
873feea0 2090 spin_unlock(&inode->i_lock);
f9c34674 2091 dput(dentry);
9308a612
CH
2092 goto out_iput;
2093 }
2094
2095 /* attach a disconnected dentry */
1a0a397e
BF
2096 add_flags = d_flags_for_inode(inode);
2097
2098 if (disconnected)
2099 add_flags |= DCACHE_DISCONNECTED;
b18825a7 2100
f9c34674
MS
2101 spin_lock(&dentry->d_lock);
2102 __d_set_inode_and_type(dentry, inode, add_flags);
2103 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 2104 if (!disconnected) {
139351f1
LT
2105 hlist_bl_lock(&dentry->d_sb->s_roots);
2106 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2107 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 2108 }
f9c34674 2109 spin_unlock(&dentry->d_lock);
873feea0 2110 spin_unlock(&inode->i_lock);
9308a612 2111
f9c34674 2112 return dentry;
9308a612
CH
2113
2114 out_iput:
2115 iput(inode);
2116 return res;
4ea3ada2 2117}
1a0a397e 2118
f9c34674
MS
2119struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2120{
2121 return __d_instantiate_anon(dentry, inode, true);
2122}
2123EXPORT_SYMBOL(d_instantiate_anon);
2124
2125static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2126{
2127 struct dentry *tmp;
2128 struct dentry *res;
2129
2130 if (!inode)
2131 return ERR_PTR(-ESTALE);
2132 if (IS_ERR(inode))
2133 return ERR_CAST(inode);
2134
2135 res = d_find_any_alias(inode);
2136 if (res)
2137 goto out_iput;
2138
2139 tmp = d_alloc_anon(inode->i_sb);
2140 if (!tmp) {
2141 res = ERR_PTR(-ENOMEM);
2142 goto out_iput;
2143 }
2144
2145 return __d_instantiate_anon(tmp, inode, disconnected);
2146
2147out_iput:
2148 iput(inode);
2149 return res;
2150}
2151
1a0a397e
BF
2152/**
2153 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2154 * @inode: inode to allocate the dentry for
2155 *
2156 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2157 * similar open by handle operations. The returned dentry may be anonymous,
2158 * or may have a full name (if the inode was already in the cache).
2159 *
2160 * When called on a directory inode, we must ensure that the inode only ever
2161 * has one dentry. If a dentry is found, that is returned instead of
2162 * allocating a new one.
2163 *
2164 * On successful return, the reference to the inode has been transferred
2165 * to the dentry. In case of an error the reference on the inode is released.
2166 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2167 * be passed in and the error will be propagated to the return value,
2168 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2169 */
2170struct dentry *d_obtain_alias(struct inode *inode)
2171{
f9c34674 2172 return __d_obtain_alias(inode, true);
1a0a397e 2173}
adc48720 2174EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2175
1a0a397e
BF
2176/**
2177 * d_obtain_root - find or allocate a dentry for a given inode
2178 * @inode: inode to allocate the dentry for
2179 *
2180 * Obtain an IS_ROOT dentry for the root of a filesystem.
2181 *
2182 * We must ensure that directory inodes only ever have one dentry. If a
2183 * dentry is found, that is returned instead of allocating a new one.
2184 *
2185 * On successful return, the reference to the inode has been transferred
2186 * to the dentry. In case of an error the reference on the inode is
2187 * released. A %NULL or IS_ERR inode may be passed in and will be the
2188 * error will be propagate to the return value, with a %NULL @inode
2189 * replaced by ERR_PTR(-ESTALE).
2190 */
2191struct dentry *d_obtain_root(struct inode *inode)
2192{
f9c34674 2193 return __d_obtain_alias(inode, false);
1a0a397e
BF
2194}
2195EXPORT_SYMBOL(d_obtain_root);
2196
9403540c
BN
2197/**
2198 * d_add_ci - lookup or allocate new dentry with case-exact name
2199 * @inode: the inode case-insensitive lookup has found
2200 * @dentry: the negative dentry that was passed to the parent's lookup func
2201 * @name: the case-exact name to be associated with the returned dentry
2202 *
2203 * This is to avoid filling the dcache with case-insensitive names to the
2204 * same inode, only the actual correct case is stored in the dcache for
2205 * case-insensitive filesystems.
2206 *
3d742d4b
RD
2207 * For a case-insensitive lookup match and if the case-exact dentry
2208 * already exists in the dcache, use it and return it.
9403540c
BN
2209 *
2210 * If no entry exists with the exact case name, allocate new dentry with
2211 * the exact case, and return the spliced entry.
2212 */
e45b590b 2213struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2214 struct qstr *name)
2215{
d9171b93 2216 struct dentry *found, *res;
9403540c 2217
b6520c81
CH
2218 /*
2219 * First check if a dentry matching the name already exists,
2220 * if not go ahead and create it now.
2221 */
9403540c 2222 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2223 if (found) {
2224 iput(inode);
2225 return found;
2226 }
2227 if (d_in_lookup(dentry)) {
2228 found = d_alloc_parallel(dentry->d_parent, name,
2229 dentry->d_wait);
2230 if (IS_ERR(found) || !d_in_lookup(found)) {
2231 iput(inode);
2232 return found;
9403540c 2233 }
d9171b93
AV
2234 } else {
2235 found = d_alloc(dentry->d_parent, name);
2236 if (!found) {
2237 iput(inode);
2238 return ERR_PTR(-ENOMEM);
2239 }
2240 }
2241 res = d_splice_alias(inode, found);
2242 if (res) {
40a3cb0d 2243 d_lookup_done(found);
d9171b93
AV
2244 dput(found);
2245 return res;
9403540c 2246 }
4f522a24 2247 return found;
9403540c 2248}
ec4f8605 2249EXPORT_SYMBOL(d_add_ci);
1da177e4 2250
4f48d5da
XL
2251/**
2252 * d_same_name - compare dentry name with case-exact name
2253 * @parent: parent dentry
2254 * @dentry: the negative dentry that was passed to the parent's lookup func
2255 * @name: the case-exact name to be associated with the returned dentry
2256 *
2257 * Return: true if names are same, or false
2258 */
2259bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2260 const struct qstr *name)
12f8ad4b 2261{
d4c91a8f
AV
2262 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2263 if (dentry->d_name.len != name->len)
2264 return false;
2265 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2266 }
6fa67e70 2267 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2268 dentry->d_name.len, dentry->d_name.name,
2269 name) == 0;
12f8ad4b 2270}
4f48d5da 2271EXPORT_SYMBOL_GPL(d_same_name);
12f8ad4b 2272
ae2a8236
LT
2273/*
2274 * This is __d_lookup_rcu() when the parent dentry has
2275 * DCACHE_OP_COMPARE, which makes things much nastier.
2276 */
2277static noinline struct dentry *__d_lookup_rcu_op_compare(
2278 const struct dentry *parent,
2279 const struct qstr *name,
2280 unsigned *seqp)
2281{
2282 u64 hashlen = name->hash_len;
2283 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2284 struct hlist_bl_node *node;
2285 struct dentry *dentry;
2286
2287 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2288 int tlen;
2289 const char *tname;
2290 unsigned seq;
2291
2292seqretry:
2293 seq = raw_seqcount_begin(&dentry->d_seq);
2294 if (dentry->d_parent != parent)
2295 continue;
2296 if (d_unhashed(dentry))
2297 continue;
2298 if (dentry->d_name.hash != hashlen_hash(hashlen))
2299 continue;
2300 tlen = dentry->d_name.len;
2301 tname = dentry->d_name.name;
2302 /* we want a consistent (name,len) pair */
2303 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2304 cpu_relax();
2305 goto seqretry;
2306 }
2307 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2308 continue;
2309 *seqp = seq;
2310 return dentry;
2311 }
2312 return NULL;
2313}
2314
31e6b01f
NP
2315/**
2316 * __d_lookup_rcu - search for a dentry (racy, store-free)
2317 * @parent: parent dentry
2318 * @name: qstr of name we wish to find
1f1e6e52 2319 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2320 * Returns: dentry, or NULL
2321 *
2322 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2323 * resolution (store-free path walking) design described in
2324 * Documentation/filesystems/path-lookup.txt.
2325 *
2326 * This is not to be used outside core vfs.
2327 *
2328 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2329 * held, and rcu_read_lock held. The returned dentry must not be stored into
2330 * without taking d_lock and checking d_seq sequence count against @seq
2331 * returned here.
2332 *
15570086 2333 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2334 * function.
2335 *
2336 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2337 * the returned dentry, so long as its parent's seqlock is checked after the
2338 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2339 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2340 *
2341 * NOTE! The caller *has* to check the resulting dentry against the sequence
2342 * number we've returned before using any of the resulting dentry state!
31e6b01f 2343 */
8966be90
LT
2344struct dentry *__d_lookup_rcu(const struct dentry *parent,
2345 const struct qstr *name,
da53be12 2346 unsigned *seqp)
31e6b01f 2347{
26fe5750 2348 u64 hashlen = name->hash_len;
31e6b01f 2349 const unsigned char *str = name->name;
8387ff25 2350 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2351 struct hlist_bl_node *node;
31e6b01f
NP
2352 struct dentry *dentry;
2353
2354 /*
2355 * Note: There is significant duplication with __d_lookup_rcu which is
2356 * required to prevent single threaded performance regressions
2357 * especially on architectures where smp_rmb (in seqcounts) are costly.
2358 * Keep the two functions in sync.
2359 */
2360
ae2a8236
LT
2361 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2362 return __d_lookup_rcu_op_compare(parent, name, seqp);
2363
31e6b01f
NP
2364 /*
2365 * The hash list is protected using RCU.
2366 *
2367 * Carefully use d_seq when comparing a candidate dentry, to avoid
2368 * races with d_move().
2369 *
2370 * It is possible that concurrent renames can mess up our list
2371 * walk here and result in missing our dentry, resulting in the
2372 * false-negative result. d_lookup() protects against concurrent
2373 * renames using rename_lock seqlock.
2374 *
b0a4bb83 2375 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2376 */
b07ad996 2377 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2378 unsigned seq;
31e6b01f 2379
12f8ad4b
LT
2380 /*
2381 * The dentry sequence count protects us from concurrent
da53be12 2382 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2383 *
2384 * The caller must perform a seqcount check in order
da53be12 2385 * to do anything useful with the returned dentry.
12f8ad4b
LT
2386 *
2387 * NOTE! We do a "raw" seqcount_begin here. That means that
2388 * we don't wait for the sequence count to stabilize if it
2389 * is in the middle of a sequence change. If we do the slow
2390 * dentry compare, we will do seqretries until it is stable,
2391 * and if we end up with a successful lookup, we actually
2392 * want to exit RCU lookup anyway.
d4c91a8f
AV
2393 *
2394 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2395 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2396 */
2397 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2398 if (dentry->d_parent != parent)
2399 continue;
2e321806
LT
2400 if (d_unhashed(dentry))
2401 continue;
ae2a8236
LT
2402 if (dentry->d_name.hash_len != hashlen)
2403 continue;
2404 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2405 continue;
da53be12 2406 *seqp = seq;
d4c91a8f 2407 return dentry;
31e6b01f
NP
2408 }
2409 return NULL;
2410}
2411
1da177e4
LT
2412/**
2413 * d_lookup - search for a dentry
2414 * @parent: parent dentry
2415 * @name: qstr of name we wish to find
b04f784e 2416 * Returns: dentry, or NULL
1da177e4 2417 *
b04f784e
NP
2418 * d_lookup searches the children of the parent dentry for the name in
2419 * question. If the dentry is found its reference count is incremented and the
2420 * dentry is returned. The caller must use dput to free the entry when it has
2421 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2422 */
da2d8455 2423struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2424{
31e6b01f 2425 struct dentry *dentry;
949854d0 2426 unsigned seq;
1da177e4 2427
b8314f93
DY
2428 do {
2429 seq = read_seqbegin(&rename_lock);
2430 dentry = __d_lookup(parent, name);
2431 if (dentry)
1da177e4
LT
2432 break;
2433 } while (read_seqretry(&rename_lock, seq));
2434 return dentry;
2435}
ec4f8605 2436EXPORT_SYMBOL(d_lookup);
1da177e4 2437
31e6b01f 2438/**
b04f784e
NP
2439 * __d_lookup - search for a dentry (racy)
2440 * @parent: parent dentry
2441 * @name: qstr of name we wish to find
2442 * Returns: dentry, or NULL
2443 *
2444 * __d_lookup is like d_lookup, however it may (rarely) return a
2445 * false-negative result due to unrelated rename activity.
2446 *
2447 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2448 * however it must be used carefully, eg. with a following d_lookup in
2449 * the case of failure.
2450 *
2451 * __d_lookup callers must be commented.
2452 */
a713ca2a 2453struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2454{
1da177e4 2455 unsigned int hash = name->hash;
8387ff25 2456 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2457 struct hlist_bl_node *node;
31e6b01f 2458 struct dentry *found = NULL;
665a7583 2459 struct dentry *dentry;
1da177e4 2460
31e6b01f
NP
2461 /*
2462 * Note: There is significant duplication with __d_lookup_rcu which is
2463 * required to prevent single threaded performance regressions
2464 * especially on architectures where smp_rmb (in seqcounts) are costly.
2465 * Keep the two functions in sync.
2466 */
2467
b04f784e
NP
2468 /*
2469 * The hash list is protected using RCU.
2470 *
2471 * Take d_lock when comparing a candidate dentry, to avoid races
2472 * with d_move().
2473 *
2474 * It is possible that concurrent renames can mess up our list
2475 * walk here and result in missing our dentry, resulting in the
2476 * false-negative result. d_lookup() protects against concurrent
2477 * renames using rename_lock seqlock.
2478 *
b0a4bb83 2479 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2480 */
1da177e4
LT
2481 rcu_read_lock();
2482
b07ad996 2483 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2484
1da177e4
LT
2485 if (dentry->d_name.hash != hash)
2486 continue;
1da177e4
LT
2487
2488 spin_lock(&dentry->d_lock);
1da177e4
LT
2489 if (dentry->d_parent != parent)
2490 goto next;
d0185c08
LT
2491 if (d_unhashed(dentry))
2492 goto next;
2493
d4c91a8f
AV
2494 if (!d_same_name(dentry, parent, name))
2495 goto next;
1da177e4 2496
98474236 2497 dentry->d_lockref.count++;
d0185c08 2498 found = dentry;
1da177e4
LT
2499 spin_unlock(&dentry->d_lock);
2500 break;
2501next:
2502 spin_unlock(&dentry->d_lock);
2503 }
2504 rcu_read_unlock();
2505
2506 return found;
2507}
2508
3e7e241f
EB
2509/**
2510 * d_hash_and_lookup - hash the qstr then search for a dentry
2511 * @dir: Directory to search in
2512 * @name: qstr of name we wish to find
2513 *
4f522a24 2514 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2515 */
2516struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2517{
3e7e241f
EB
2518 /*
2519 * Check for a fs-specific hash function. Note that we must
2520 * calculate the standard hash first, as the d_op->d_hash()
2521 * routine may choose to leave the hash value unchanged.
2522 */
8387ff25 2523 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2524 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2525 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2526 if (unlikely(err < 0))
2527 return ERR_PTR(err);
3e7e241f 2528 }
4f522a24 2529 return d_lookup(dir, name);
3e7e241f 2530}
4f522a24 2531EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2532
1da177e4
LT
2533/*
2534 * When a file is deleted, we have two options:
2535 * - turn this dentry into a negative dentry
2536 * - unhash this dentry and free it.
2537 *
2538 * Usually, we want to just turn this into
2539 * a negative dentry, but if anybody else is
2540 * currently using the dentry or the inode
2541 * we can't do that and we fall back on removing
2542 * it from the hash queues and waiting for
2543 * it to be deleted later when it has no users
2544 */
2545
2546/**
2547 * d_delete - delete a dentry
2548 * @dentry: The dentry to delete
2549 *
2550 * Turn the dentry into a negative dentry if possible, otherwise
2551 * remove it from the hash queues so it can be deleted later
2552 */
2553
2554void d_delete(struct dentry * dentry)
2555{
c19457f0 2556 struct inode *inode = dentry->d_inode;
c19457f0
AV
2557
2558 spin_lock(&inode->i_lock);
2559 spin_lock(&dentry->d_lock);
1da177e4
LT
2560 /*
2561 * Are we the only user?
2562 */
98474236 2563 if (dentry->d_lockref.count == 1) {
13e3c5e5 2564 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2565 dentry_unlink_inode(dentry);
c19457f0 2566 } else {
1da177e4 2567 __d_drop(dentry);
c19457f0
AV
2568 spin_unlock(&dentry->d_lock);
2569 spin_unlock(&inode->i_lock);
2570 }
1da177e4 2571}
ec4f8605 2572EXPORT_SYMBOL(d_delete);
1da177e4 2573
15d3c589 2574static void __d_rehash(struct dentry *entry)
1da177e4 2575{
15d3c589 2576 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2577
1879fd6a 2578 hlist_bl_lock(b);
b07ad996 2579 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2580 hlist_bl_unlock(b);
1da177e4
LT
2581}
2582
2583/**
2584 * d_rehash - add an entry back to the hash
2585 * @entry: dentry to add to the hash
2586 *
2587 * Adds a dentry to the hash according to its name.
2588 */
2589
2590void d_rehash(struct dentry * entry)
2591{
1da177e4 2592 spin_lock(&entry->d_lock);
15d3c589 2593 __d_rehash(entry);
1da177e4 2594 spin_unlock(&entry->d_lock);
1da177e4 2595}
ec4f8605 2596EXPORT_SYMBOL(d_rehash);
1da177e4 2597
84e710da
AV
2598static inline unsigned start_dir_add(struct inode *dir)
2599{
93f6d4e1 2600 preempt_disable_nested();
84e710da
AV
2601 for (;;) {
2602 unsigned n = dir->i_dir_seq;
2603 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2604 return n;
2605 cpu_relax();
2606 }
2607}
2608
50417d22
SAS
2609static inline void end_dir_add(struct inode *dir, unsigned int n,
2610 wait_queue_head_t *d_wait)
84e710da
AV
2611{
2612 smp_store_release(&dir->i_dir_seq, n + 2);
93f6d4e1 2613 preempt_enable_nested();
50417d22 2614 wake_up_all(d_wait);
84e710da
AV
2615}
2616
d9171b93
AV
2617static void d_wait_lookup(struct dentry *dentry)
2618{
2619 if (d_in_lookup(dentry)) {
2620 DECLARE_WAITQUEUE(wait, current);
2621 add_wait_queue(dentry->d_wait, &wait);
2622 do {
2623 set_current_state(TASK_UNINTERRUPTIBLE);
2624 spin_unlock(&dentry->d_lock);
2625 schedule();
2626 spin_lock(&dentry->d_lock);
2627 } while (d_in_lookup(dentry));
2628 }
2629}
2630
94bdd655 2631struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2632 const struct qstr *name,
2633 wait_queue_head_t *wq)
94bdd655 2634{
94bdd655 2635 unsigned int hash = name->hash;
94bdd655
AV
2636 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2637 struct hlist_bl_node *node;
2638 struct dentry *new = d_alloc(parent, name);
2639 struct dentry *dentry;
2640 unsigned seq, r_seq, d_seq;
2641
2642 if (unlikely(!new))
2643 return ERR_PTR(-ENOMEM);
2644
2645retry:
2646 rcu_read_lock();
015555fd 2647 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2648 r_seq = read_seqbegin(&rename_lock);
2649 dentry = __d_lookup_rcu(parent, name, &d_seq);
2650 if (unlikely(dentry)) {
2651 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2652 rcu_read_unlock();
2653 goto retry;
2654 }
2655 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2656 rcu_read_unlock();
2657 dput(dentry);
2658 goto retry;
2659 }
2660 rcu_read_unlock();
2661 dput(new);
2662 return dentry;
2663 }
2664 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2665 rcu_read_unlock();
2666 goto retry;
2667 }
015555fd
WD
2668
2669 if (unlikely(seq & 1)) {
2670 rcu_read_unlock();
2671 goto retry;
2672 }
2673
94bdd655 2674 hlist_bl_lock(b);
8cc07c80 2675 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2676 hlist_bl_unlock(b);
2677 rcu_read_unlock();
2678 goto retry;
2679 }
94bdd655
AV
2680 /*
2681 * No changes for the parent since the beginning of d_lookup().
2682 * Since all removals from the chain happen with hlist_bl_lock(),
2683 * any potential in-lookup matches are going to stay here until
2684 * we unlock the chain. All fields are stable in everything
2685 * we encounter.
2686 */
2687 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2688 if (dentry->d_name.hash != hash)
2689 continue;
2690 if (dentry->d_parent != parent)
2691 continue;
d4c91a8f
AV
2692 if (!d_same_name(dentry, parent, name))
2693 continue;
94bdd655 2694 hlist_bl_unlock(b);
e7d6ef97
AV
2695 /* now we can try to grab a reference */
2696 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2697 rcu_read_unlock();
2698 goto retry;
2699 }
2700
2701 rcu_read_unlock();
2702 /*
2703 * somebody is likely to be still doing lookup for it;
2704 * wait for them to finish
2705 */
d9171b93
AV
2706 spin_lock(&dentry->d_lock);
2707 d_wait_lookup(dentry);
2708 /*
2709 * it's not in-lookup anymore; in principle we should repeat
2710 * everything from dcache lookup, but it's likely to be what
2711 * d_lookup() would've found anyway. If it is, just return it;
2712 * otherwise we really have to repeat the whole thing.
2713 */
2714 if (unlikely(dentry->d_name.hash != hash))
2715 goto mismatch;
2716 if (unlikely(dentry->d_parent != parent))
2717 goto mismatch;
2718 if (unlikely(d_unhashed(dentry)))
2719 goto mismatch;
d4c91a8f
AV
2720 if (unlikely(!d_same_name(dentry, parent, name)))
2721 goto mismatch;
d9171b93
AV
2722 /* OK, it *is* a hashed match; return it */
2723 spin_unlock(&dentry->d_lock);
94bdd655
AV
2724 dput(new);
2725 return dentry;
2726 }
e7d6ef97 2727 rcu_read_unlock();
94bdd655
AV
2728 /* we can't take ->d_lock here; it's OK, though. */
2729 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2730 new->d_wait = wq;
94bdd655
AV
2731 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2732 hlist_bl_unlock(b);
2733 return new;
d9171b93
AV
2734mismatch:
2735 spin_unlock(&dentry->d_lock);
2736 dput(dentry);
2737 goto retry;
94bdd655
AV
2738}
2739EXPORT_SYMBOL(d_alloc_parallel);
2740
45f78b0a
SAS
2741/*
2742 * - Unhash the dentry
2743 * - Retrieve and clear the waitqueue head in dentry
2744 * - Return the waitqueue head
2745 */
2746static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
85c7f810 2747{
45f78b0a
SAS
2748 wait_queue_head_t *d_wait;
2749 struct hlist_bl_head *b;
2750
2751 lockdep_assert_held(&dentry->d_lock);
2752
2753 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
94bdd655 2754 hlist_bl_lock(b);
85c7f810 2755 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2756 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
45f78b0a 2757 d_wait = dentry->d_wait;
d9171b93 2758 dentry->d_wait = NULL;
94bdd655
AV
2759 hlist_bl_unlock(b);
2760 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2761 INIT_LIST_HEAD(&dentry->d_lru);
45f78b0a
SAS
2762 return d_wait;
2763}
2764
2765void __d_lookup_unhash_wake(struct dentry *dentry)
2766{
2767 spin_lock(&dentry->d_lock);
2768 wake_up_all(__d_lookup_unhash(dentry));
2769 spin_unlock(&dentry->d_lock);
85c7f810 2770}
45f78b0a 2771EXPORT_SYMBOL(__d_lookup_unhash_wake);
ed782b5a
AV
2772
2773/* inode->i_lock held if inode is non-NULL */
2774
2775static inline void __d_add(struct dentry *dentry, struct inode *inode)
2776{
45f78b0a 2777 wait_queue_head_t *d_wait;
84e710da
AV
2778 struct inode *dir = NULL;
2779 unsigned n;
0568d705 2780 spin_lock(&dentry->d_lock);
84e710da
AV
2781 if (unlikely(d_in_lookup(dentry))) {
2782 dir = dentry->d_parent->d_inode;
2783 n = start_dir_add(dir);
45f78b0a 2784 d_wait = __d_lookup_unhash(dentry);
84e710da 2785 }
ed782b5a 2786 if (inode) {
0568d705
AV
2787 unsigned add_flags = d_flags_for_inode(inode);
2788 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2789 raw_write_seqcount_begin(&dentry->d_seq);
2790 __d_set_inode_and_type(dentry, inode, add_flags);
2791 raw_write_seqcount_end(&dentry->d_seq);
affda484 2792 fsnotify_update_flags(dentry);
ed782b5a 2793 }
15d3c589 2794 __d_rehash(dentry);
84e710da 2795 if (dir)
50417d22 2796 end_dir_add(dir, n, d_wait);
0568d705
AV
2797 spin_unlock(&dentry->d_lock);
2798 if (inode)
2799 spin_unlock(&inode->i_lock);
ed782b5a
AV
2800}
2801
34d0d19d
AV
2802/**
2803 * d_add - add dentry to hash queues
2804 * @entry: dentry to add
2805 * @inode: The inode to attach to this dentry
2806 *
2807 * This adds the entry to the hash queues and initializes @inode.
2808 * The entry was actually filled in earlier during d_alloc().
2809 */
2810
2811void d_add(struct dentry *entry, struct inode *inode)
2812{
b9680917
AV
2813 if (inode) {
2814 security_d_instantiate(entry, inode);
ed782b5a 2815 spin_lock(&inode->i_lock);
b9680917 2816 }
ed782b5a 2817 __d_add(entry, inode);
34d0d19d
AV
2818}
2819EXPORT_SYMBOL(d_add);
2820
668d0cd5
AV
2821/**
2822 * d_exact_alias - find and hash an exact unhashed alias
2823 * @entry: dentry to add
2824 * @inode: The inode to go with this dentry
2825 *
2826 * If an unhashed dentry with the same name/parent and desired
2827 * inode already exists, hash and return it. Otherwise, return
2828 * NULL.
2829 *
2830 * Parent directory should be locked.
2831 */
2832struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2833{
2834 struct dentry *alias;
668d0cd5
AV
2835 unsigned int hash = entry->d_name.hash;
2836
2837 spin_lock(&inode->i_lock);
2838 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2839 /*
2840 * Don't need alias->d_lock here, because aliases with
2841 * d_parent == entry->d_parent are not subject to name or
2842 * parent changes, because the parent inode i_mutex is held.
2843 */
2844 if (alias->d_name.hash != hash)
2845 continue;
2846 if (alias->d_parent != entry->d_parent)
2847 continue;
d4c91a8f 2848 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2849 continue;
2850 spin_lock(&alias->d_lock);
2851 if (!d_unhashed(alias)) {
2852 spin_unlock(&alias->d_lock);
2853 alias = NULL;
2854 } else {
2855 __dget_dlock(alias);
15d3c589 2856 __d_rehash(alias);
668d0cd5
AV
2857 spin_unlock(&alias->d_lock);
2858 }
2859 spin_unlock(&inode->i_lock);
2860 return alias;
2861 }
2862 spin_unlock(&inode->i_lock);
2863 return NULL;
2864}
2865EXPORT_SYMBOL(d_exact_alias);
2866
8d85b484 2867static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2868{
8d85b484
AV
2869 if (unlikely(dname_external(target))) {
2870 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2871 /*
2872 * Both external: swap the pointers
2873 */
9a8d5bb4 2874 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2875 } else {
2876 /*
2877 * dentry:internal, target:external. Steal target's
2878 * storage and make target internal.
2879 */
321bcf92
BF
2880 memcpy(target->d_iname, dentry->d_name.name,
2881 dentry->d_name.len + 1);
1da177e4
LT
2882 dentry->d_name.name = target->d_name.name;
2883 target->d_name.name = target->d_iname;
2884 }
2885 } else {
8d85b484 2886 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2887 /*
2888 * dentry:external, target:internal. Give dentry's
2889 * storage to target and make dentry internal
2890 */
2891 memcpy(dentry->d_iname, target->d_name.name,
2892 target->d_name.len + 1);
2893 target->d_name.name = dentry->d_name.name;
2894 dentry->d_name.name = dentry->d_iname;
2895 } else {
2896 /*
da1ce067 2897 * Both are internal.
1da177e4 2898 */
da1ce067
MS
2899 unsigned int i;
2900 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2901 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2902 swap(((long *) &dentry->d_iname)[i],
2903 ((long *) &target->d_iname)[i]);
2904 }
1da177e4
LT
2905 }
2906 }
a28ddb87 2907 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2908}
2909
8d85b484
AV
2910static void copy_name(struct dentry *dentry, struct dentry *target)
2911{
2912 struct external_name *old_name = NULL;
2913 if (unlikely(dname_external(dentry)))
2914 old_name = external_name(dentry);
2915 if (unlikely(dname_external(target))) {
2916 atomic_inc(&external_name(target)->u.count);
2917 dentry->d_name = target->d_name;
2918 } else {
2919 memcpy(dentry->d_iname, target->d_name.name,
2920 target->d_name.len + 1);
2921 dentry->d_name.name = dentry->d_iname;
2922 dentry->d_name.hash_len = target->d_name.hash_len;
2923 }
2924 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2e03b4bc 2925 kfree_rcu(old_name, u.head);
8d85b484
AV
2926}
2927
9eaef27b 2928/*
18367501 2929 * __d_move - move a dentry
1da177e4
LT
2930 * @dentry: entry to move
2931 * @target: new dentry
da1ce067 2932 * @exchange: exchange the two dentries
1da177e4
LT
2933 *
2934 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2935 * dcache entries should not be moved in this way. Caller must hold
2936 * rename_lock, the i_mutex of the source and target directories,
2937 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2938 */
da1ce067
MS
2939static void __d_move(struct dentry *dentry, struct dentry *target,
2940 bool exchange)
1da177e4 2941{
42177007 2942 struct dentry *old_parent, *p;
45f78b0a 2943 wait_queue_head_t *d_wait;
84e710da
AV
2944 struct inode *dir = NULL;
2945 unsigned n;
1da177e4 2946
42177007
AV
2947 WARN_ON(!dentry->d_inode);
2948 if (WARN_ON(dentry == target))
2949 return;
2950
2fd6b7f5 2951 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2952 old_parent = dentry->d_parent;
2953 p = d_ancestor(old_parent, target);
2954 if (IS_ROOT(dentry)) {
2955 BUG_ON(p);
2956 spin_lock(&target->d_parent->d_lock);
2957 } else if (!p) {
2958 /* target is not a descendent of dentry->d_parent */
2959 spin_lock(&target->d_parent->d_lock);
2960 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2961 } else {
2962 BUG_ON(p == dentry);
2963 spin_lock(&old_parent->d_lock);
2964 if (p != target)
2965 spin_lock_nested(&target->d_parent->d_lock,
2966 DENTRY_D_LOCK_NESTED);
2967 }
2968 spin_lock_nested(&dentry->d_lock, 2);
2969 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2970
84e710da
AV
2971 if (unlikely(d_in_lookup(target))) {
2972 dir = target->d_parent->d_inode;
2973 n = start_dir_add(dir);
45f78b0a 2974 d_wait = __d_lookup_unhash(target);
84e710da 2975 }
1da177e4 2976
31e6b01f 2977 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2978 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2979
15d3c589 2980 /* unhash both */
0632a9ac
AV
2981 if (!d_unhashed(dentry))
2982 ___d_drop(dentry);
2983 if (!d_unhashed(target))
2984 ___d_drop(target);
1da177e4 2985
076515fc
AV
2986 /* ... and switch them in the tree */
2987 dentry->d_parent = target->d_parent;
2988 if (!exchange) {
8d85b484 2989 copy_name(dentry, target);
61647823 2990 target->d_hash.pprev = NULL;
076515fc 2991 dentry->d_parent->d_lockref.count++;
5467a68c 2992 if (dentry != old_parent) /* wasn't IS_ROOT */
076515fc 2993 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2994 } else {
076515fc
AV
2995 target->d_parent = old_parent;
2996 swap_names(dentry, target);
946e51f2 2997 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2998 __d_rehash(target);
2999 fsnotify_update_flags(target);
1da177e4 3000 }
076515fc
AV
3001 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
3002 __d_rehash(dentry);
3003 fsnotify_update_flags(dentry);
0bf3d5c1 3004 fscrypt_handle_d_move(dentry);
1da177e4 3005
31e6b01f
NP
3006 write_seqcount_end(&target->d_seq);
3007 write_seqcount_end(&dentry->d_seq);
3008
84e710da 3009 if (dir)
50417d22 3010 end_dir_add(dir, n, d_wait);
076515fc
AV
3011
3012 if (dentry->d_parent != old_parent)
3013 spin_unlock(&dentry->d_parent->d_lock);
3014 if (dentry != old_parent)
3015 spin_unlock(&old_parent->d_lock);
3016 spin_unlock(&target->d_lock);
3017 spin_unlock(&dentry->d_lock);
18367501
AV
3018}
3019
3020/*
3021 * d_move - move a dentry
3022 * @dentry: entry to move
3023 * @target: new dentry
3024 *
3025 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
3026 * dcache entries should not be moved in this way. See the locking
3027 * requirements for __d_move.
18367501
AV
3028 */
3029void d_move(struct dentry *dentry, struct dentry *target)
3030{
3031 write_seqlock(&rename_lock);
da1ce067 3032 __d_move(dentry, target, false);
1da177e4 3033 write_sequnlock(&rename_lock);
9eaef27b 3034}
ec4f8605 3035EXPORT_SYMBOL(d_move);
1da177e4 3036
da1ce067
MS
3037/*
3038 * d_exchange - exchange two dentries
3039 * @dentry1: first dentry
3040 * @dentry2: second dentry
3041 */
3042void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3043{
3044 write_seqlock(&rename_lock);
3045
3046 WARN_ON(!dentry1->d_inode);
3047 WARN_ON(!dentry2->d_inode);
3048 WARN_ON(IS_ROOT(dentry1));
3049 WARN_ON(IS_ROOT(dentry2));
3050
3051 __d_move(dentry1, dentry2, true);
3052
3053 write_sequnlock(&rename_lock);
3054}
3055
e2761a11
OH
3056/**
3057 * d_ancestor - search for an ancestor
3058 * @p1: ancestor dentry
3059 * @p2: child dentry
3060 *
3061 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3062 * an ancestor of p2, else NULL.
9eaef27b 3063 */
e2761a11 3064struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
3065{
3066 struct dentry *p;
3067
871c0067 3068 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 3069 if (p->d_parent == p1)
e2761a11 3070 return p;
9eaef27b 3071 }
e2761a11 3072 return NULL;
9eaef27b
TM
3073}
3074
3075/*
3076 * This helper attempts to cope with remotely renamed directories
3077 *
3078 * It assumes that the caller is already holding
a03e283b 3079 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
3080 *
3081 * Note: If ever the locking in lock_rename() changes, then please
3082 * remember to update this too...
9eaef27b 3083 */
b5ae6b15 3084static int __d_unalias(struct inode *inode,
873feea0 3085 struct dentry *dentry, struct dentry *alias)
9eaef27b 3086{
9902af79
AV
3087 struct mutex *m1 = NULL;
3088 struct rw_semaphore *m2 = NULL;
3d330dc1 3089 int ret = -ESTALE;
9eaef27b
TM
3090
3091 /* If alias and dentry share a parent, then no extra locks required */
3092 if (alias->d_parent == dentry->d_parent)
3093 goto out_unalias;
3094
9eaef27b 3095 /* See lock_rename() */
9eaef27b
TM
3096 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3097 goto out_err;
3098 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 3099 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 3100 goto out_err;
9902af79 3101 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 3102out_unalias:
8ed936b5 3103 __d_move(alias, dentry, false);
b5ae6b15 3104 ret = 0;
9eaef27b 3105out_err:
9eaef27b 3106 if (m2)
9902af79 3107 up_read(m2);
9eaef27b
TM
3108 if (m1)
3109 mutex_unlock(m1);
3110 return ret;
3111}
3112
3f70bd51
BF
3113/**
3114 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3115 * @inode: the inode which may have a disconnected dentry
3116 * @dentry: a negative dentry which we want to point to the inode.
3117 *
da093a9b
BF
3118 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3119 * place of the given dentry and return it, else simply d_add the inode
3120 * to the dentry and return NULL.
3f70bd51 3121 *
908790fa
BF
3122 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3123 * we should error out: directories can't have multiple aliases.
3124 *
3f70bd51
BF
3125 * This is needed in the lookup routine of any filesystem that is exportable
3126 * (via knfsd) so that we can build dcache paths to directories effectively.
3127 *
3128 * If a dentry was found and moved, then it is returned. Otherwise NULL
3129 * is returned. This matches the expected return value of ->lookup.
3130 *
3131 * Cluster filesystems may call this function with a negative, hashed dentry.
3132 * In that case, we know that the inode will be a regular file, and also this
3133 * will only occur during atomic_open. So we need to check for the dentry
3134 * being already hashed only in the final case.
3135 */
3136struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3137{
3f70bd51
BF
3138 if (IS_ERR(inode))
3139 return ERR_CAST(inode);
3140
770bfad8
DH
3141 BUG_ON(!d_unhashed(dentry));
3142
de689f5e 3143 if (!inode)
b5ae6b15 3144 goto out;
de689f5e 3145
b9680917 3146 security_d_instantiate(dentry, inode);
873feea0 3147 spin_lock(&inode->i_lock);
9eaef27b 3148 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3149 struct dentry *new = __d_find_any_alias(inode);
3150 if (unlikely(new)) {
a03e283b
EB
3151 /* The reference to new ensures it remains an alias */
3152 spin_unlock(&inode->i_lock);
18367501 3153 write_seqlock(&rename_lock);
b5ae6b15
AV
3154 if (unlikely(d_ancestor(new, dentry))) {
3155 write_sequnlock(&rename_lock);
b5ae6b15
AV
3156 dput(new);
3157 new = ERR_PTR(-ELOOP);
3158 pr_warn_ratelimited(
3159 "VFS: Lookup of '%s' in %s %s"
3160 " would have caused loop\n",
3161 dentry->d_name.name,
3162 inode->i_sb->s_type->name,
3163 inode->i_sb->s_id);
3164 } else if (!IS_ROOT(new)) {
076515fc 3165 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 3166 int err = __d_unalias(inode, dentry, new);
18367501 3167 write_sequnlock(&rename_lock);
b5ae6b15
AV
3168 if (err) {
3169 dput(new);
3170 new = ERR_PTR(err);
3171 }
076515fc 3172 dput(old_parent);
18367501 3173 } else {
b5ae6b15
AV
3174 __d_move(new, dentry, false);
3175 write_sequnlock(&rename_lock);
dd179946 3176 }
b5ae6b15
AV
3177 iput(inode);
3178 return new;
9eaef27b 3179 }
770bfad8 3180 }
b5ae6b15 3181out:
ed782b5a 3182 __d_add(dentry, inode);
b5ae6b15 3183 return NULL;
770bfad8 3184}
b5ae6b15 3185EXPORT_SYMBOL(d_splice_alias);
770bfad8 3186
1da177e4
LT
3187/*
3188 * Test whether new_dentry is a subdirectory of old_dentry.
3189 *
3190 * Trivially implemented using the dcache structure
3191 */
3192
3193/**
3194 * is_subdir - is new dentry a subdirectory of old_dentry
3195 * @new_dentry: new dentry
3196 * @old_dentry: old dentry
3197 *
a6e5787f
YB
3198 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3199 * Returns false otherwise.
1da177e4
LT
3200 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3201 */
3202
a6e5787f 3203bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3204{
a6e5787f 3205 bool result;
949854d0 3206 unsigned seq;
1da177e4 3207
e2761a11 3208 if (new_dentry == old_dentry)
a6e5787f 3209 return true;
e2761a11 3210
e2761a11 3211 do {
1da177e4 3212 /* for restarting inner loop in case of seq retry */
1da177e4 3213 seq = read_seqbegin(&rename_lock);
949854d0
NP
3214 /*
3215 * Need rcu_readlock to protect against the d_parent trashing
3216 * due to d_move
3217 */
3218 rcu_read_lock();
e2761a11 3219 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3220 result = true;
e2761a11 3221 else
a6e5787f 3222 result = false;
949854d0 3223 rcu_read_unlock();
1da177e4 3224 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3225
3226 return result;
3227}
e8f9e5b7 3228EXPORT_SYMBOL(is_subdir);
1da177e4 3229
db14fc3a 3230static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3231{
db14fc3a
MS
3232 struct dentry *root = data;
3233 if (dentry != root) {
3234 if (d_unhashed(dentry) || !dentry->d_inode)
3235 return D_WALK_SKIP;
1da177e4 3236
01ddc4ed
MS
3237 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3238 dentry->d_flags |= DCACHE_GENOCIDE;
3239 dentry->d_lockref.count--;
3240 }
1da177e4 3241 }
db14fc3a
MS
3242 return D_WALK_CONTINUE;
3243}
58db63d0 3244
db14fc3a
MS
3245void d_genocide(struct dentry *parent)
3246{
3a8e3611 3247 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3248}
3249
771eb4fe 3250void d_mark_tmpfile(struct file *file, struct inode *inode)
1da177e4 3251{
863f144f
MS
3252 struct dentry *dentry = file->f_path.dentry;
3253
60545d0d 3254 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3255 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3256 !d_unlinked(dentry));
3257 spin_lock(&dentry->d_parent->d_lock);
3258 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3259 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3260 (unsigned long long)inode->i_ino);
3261 spin_unlock(&dentry->d_lock);
3262 spin_unlock(&dentry->d_parent->d_lock);
771eb4fe
KO
3263}
3264EXPORT_SYMBOL(d_mark_tmpfile);
3265
3266void d_tmpfile(struct file *file, struct inode *inode)
3267{
3268 struct dentry *dentry = file->f_path.dentry;
3269
3270 inode_dec_link_count(inode);
3271 d_mark_tmpfile(file, inode);
60545d0d 3272 d_instantiate(dentry, inode);
1da177e4 3273}
60545d0d 3274EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3275
3276static __initdata unsigned long dhash_entries;
3277static int __init set_dhash_entries(char *str)
3278{
3279 if (!str)
3280 return 0;
3281 dhash_entries = simple_strtoul(str, &str, 0);
3282 return 1;
3283}
3284__setup("dhash_entries=", set_dhash_entries);
3285
3286static void __init dcache_init_early(void)
3287{
1da177e4
LT
3288 /* If hashes are distributed across NUMA nodes, defer
3289 * hash allocation until vmalloc space is available.
3290 */
3291 if (hashdist)
3292 return;
3293
3294 dentry_hashtable =
3295 alloc_large_system_hash("Dentry cache",
b07ad996 3296 sizeof(struct hlist_bl_head),
1da177e4
LT
3297 dhash_entries,
3298 13,
3d375d78 3299 HASH_EARLY | HASH_ZERO,
1da177e4 3300 &d_hash_shift,
b35d786b 3301 NULL,
31fe62b9 3302 0,
1da177e4 3303 0);
854d3e63 3304 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3305}
3306
74bf17cf 3307static void __init dcache_init(void)
1da177e4 3308{
3d375d78 3309 /*
1da177e4
LT
3310 * A constructor could be added for stable state like the lists,
3311 * but it is probably not worth it because of the cache nature
3d375d78 3312 * of the dcache.
1da177e4 3313 */
80344266
DW
3314 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3315 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3316 d_iname);
1da177e4
LT
3317
3318 /* Hash may have been set up in dcache_init_early */
3319 if (!hashdist)
3320 return;
3321
3322 dentry_hashtable =
3323 alloc_large_system_hash("Dentry cache",
b07ad996 3324 sizeof(struct hlist_bl_head),
1da177e4
LT
3325 dhash_entries,
3326 13,
3d375d78 3327 HASH_ZERO,
1da177e4 3328 &d_hash_shift,
b35d786b 3329 NULL,
31fe62b9 3330 0,
1da177e4 3331 0);
854d3e63 3332 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3333}
3334
3335/* SLAB cache for __getname() consumers */
68279f9c 3336struct kmem_cache *names_cachep __ro_after_init;
ec4f8605 3337EXPORT_SYMBOL(names_cachep);
1da177e4 3338
1da177e4
LT
3339void __init vfs_caches_init_early(void)
3340{
6916363f
SAS
3341 int i;
3342
3343 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3344 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3345
1da177e4
LT
3346 dcache_init_early();
3347 inode_init_early();
3348}
3349
4248b0da 3350void __init vfs_caches_init(void)
1da177e4 3351{
6a9b8820
DW
3352 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3353 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3354
74bf17cf
DC
3355 dcache_init();
3356 inode_init();
4248b0da
MG
3357 files_init();
3358 files_maxfiles_init();
74bf17cf 3359 mnt_init();
1da177e4
LT
3360 bdev_cache_init();
3361 chrdev_init();
3362}