vfs: new d_init method
[linux-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
df4c0e36
AR
41#include <linux/kasan.h>
42
07f3f05c 43#include "internal.h"
b2dba1af 44#include "mount.h"
1da177e4 45
789680d1
NP
46/*
47 * Usage:
873feea0 48 * dcache->d_inode->i_lock protects:
946e51f2 49 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
19156840 54 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
b7ab39f6 60 * - d_count
da502956 61 * - d_unhashed()
2fd6b7f5
NP
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
946e51f2 64 * - d_u.d_alias, d_inode
789680d1
NP
65 *
66 * Ordering:
873feea0 67 * dentry->d_inode->i_lock
b5c84bf6 68 * dentry->d_lock
19156840 69 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
70 * dcache_hash_bucket lock
71 * s_anon lock
789680d1 72 *
da502956
NP
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
789680d1
NP
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
fa3536cc 84int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
74c3cbe3 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 88
949854d0 89EXPORT_SYMBOL(rename_lock);
1da177e4 90
e18b890b 91static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 92
1da177e4
LT
93/*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
1da177e4 101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d 110 hash += (unsigned long) parent / L1_CACHE_BYTES;
99d263d4 111 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
112}
113
94bdd655
AV
114#define IN_LOOKUP_SHIFT 10
115static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
116
117static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
118 unsigned int hash)
119{
120 hash += (unsigned long) parent / L1_CACHE_BYTES;
121 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
122}
123
124
1da177e4
LT
125/* Statistics gathering. */
126struct dentry_stat_t dentry_stat = {
127 .age_limit = 45,
128};
129
3942c07c 130static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 131static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
132
133#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
134
135/*
136 * Here we resort to our own counters instead of using generic per-cpu counters
137 * for consistency with what the vfs inode code does. We are expected to harvest
138 * better code and performance by having our own specialized counters.
139 *
140 * Please note that the loop is done over all possible CPUs, not over all online
141 * CPUs. The reason for this is that we don't want to play games with CPUs going
142 * on and off. If one of them goes off, we will just keep their counters.
143 *
144 * glommer: See cffbc8a for details, and if you ever intend to change this,
145 * please update all vfs counters to match.
146 */
3942c07c 147static long get_nr_dentry(void)
3e880fb5
NP
148{
149 int i;
3942c07c 150 long sum = 0;
3e880fb5
NP
151 for_each_possible_cpu(i)
152 sum += per_cpu(nr_dentry, i);
153 return sum < 0 ? 0 : sum;
154}
155
62d36c77
DC
156static long get_nr_dentry_unused(void)
157{
158 int i;
159 long sum = 0;
160 for_each_possible_cpu(i)
161 sum += per_cpu(nr_dentry_unused, i);
162 return sum < 0 ? 0 : sum;
163}
164
1f7e0616 165int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
166 size_t *lenp, loff_t *ppos)
167{
3e880fb5 168 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 169 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 170 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
171}
172#endif
173
5483f18e
LT
174/*
175 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
176 * The strings are both count bytes long, and count is non-zero.
177 */
e419b4cc
LT
178#ifdef CONFIG_DCACHE_WORD_ACCESS
179
180#include <asm/word-at-a-time.h>
181/*
182 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
183 * aligned allocation for this particular component. We don't
184 * strictly need the load_unaligned_zeropad() safety, but it
185 * doesn't hurt either.
186 *
187 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
188 * need the careful unaligned handling.
189 */
94753db5 190static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 191{
bfcfaa77 192 unsigned long a,b,mask;
bfcfaa77
LT
193
194 for (;;) {
12f8ad4b 195 a = *(unsigned long *)cs;
e419b4cc 196 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
197 if (tcount < sizeof(unsigned long))
198 break;
199 if (unlikely(a != b))
200 return 1;
201 cs += sizeof(unsigned long);
202 ct += sizeof(unsigned long);
203 tcount -= sizeof(unsigned long);
204 if (!tcount)
205 return 0;
206 }
a5c21dce 207 mask = bytemask_from_count(tcount);
bfcfaa77 208 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
209}
210
bfcfaa77 211#else
e419b4cc 212
94753db5 213static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 214{
5483f18e
LT
215 do {
216 if (*cs != *ct)
217 return 1;
218 cs++;
219 ct++;
220 tcount--;
221 } while (tcount);
222 return 0;
223}
224
e419b4cc
LT
225#endif
226
94753db5
LT
227static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
228{
94753db5
LT
229 /*
230 * Be careful about RCU walk racing with rename:
ae0a843c 231 * use 'lockless_dereference' to fetch the name pointer.
94753db5
LT
232 *
233 * NOTE! Even if a rename will mean that the length
234 * was not loaded atomically, we don't care. The
235 * RCU walk will check the sequence count eventually,
236 * and catch it. And we won't overrun the buffer,
237 * because we're reading the name pointer atomically,
238 * and a dentry name is guaranteed to be properly
239 * terminated with a NUL byte.
240 *
241 * End result: even if 'len' is wrong, we'll exit
242 * early because the data cannot match (there can
243 * be no NUL in the ct/tcount data)
244 */
ae0a843c
HK
245 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
246
6326c71f 247 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
248}
249
8d85b484
AV
250struct external_name {
251 union {
252 atomic_t count;
253 struct rcu_head head;
254 } u;
255 unsigned char name[];
256};
257
258static inline struct external_name *external_name(struct dentry *dentry)
259{
260 return container_of(dentry->d_name.name, struct external_name, name[0]);
261}
262
9c82ab9c 263static void __d_free(struct rcu_head *head)
1da177e4 264{
9c82ab9c
CH
265 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
266
8d85b484
AV
267 kmem_cache_free(dentry_cache, dentry);
268}
269
270static void __d_free_external(struct rcu_head *head)
271{
272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 273 kfree(external_name(dentry));
1da177e4
LT
274 kmem_cache_free(dentry_cache, dentry);
275}
276
810bb172
AV
277static inline int dname_external(const struct dentry *dentry)
278{
279 return dentry->d_name.name != dentry->d_iname;
280}
281
4bf46a27
DH
282static inline void __d_set_inode_and_type(struct dentry *dentry,
283 struct inode *inode,
284 unsigned type_flags)
285{
286 unsigned flags;
287
288 dentry->d_inode = inode;
4bf46a27
DH
289 flags = READ_ONCE(dentry->d_flags);
290 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
291 flags |= type_flags;
292 WRITE_ONCE(dentry->d_flags, flags);
293}
294
4bf46a27
DH
295static inline void __d_clear_type_and_inode(struct dentry *dentry)
296{
297 unsigned flags = READ_ONCE(dentry->d_flags);
298
299 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
300 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
301 dentry->d_inode = NULL;
302}
303
b4f0354e
AV
304static void dentry_free(struct dentry *dentry)
305{
946e51f2 306 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
307 if (unlikely(dname_external(dentry))) {
308 struct external_name *p = external_name(dentry);
309 if (likely(atomic_dec_and_test(&p->u.count))) {
310 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
311 return;
312 }
313 }
b4f0354e
AV
314 /* if dentry was never visible to RCU, immediate free is OK */
315 if (!(dentry->d_flags & DCACHE_RCUACCESS))
316 __d_free(&dentry->d_u.d_rcu);
317 else
318 call_rcu(&dentry->d_u.d_rcu, __d_free);
319}
320
31e6b01f 321/**
a7c6f571 322 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
ff5fdb61 323 * @dentry: the target dentry
31e6b01f
NP
324 * After this call, in-progress rcu-walk path lookup will fail. This
325 * should be called after unhashing, and after changing d_inode (if
326 * the dentry has not already been unhashed).
327 */
a7c6f571 328static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
31e6b01f 329{
a7c6f571
PZ
330 lockdep_assert_held(&dentry->d_lock);
331 /* Go through am invalidation barrier */
332 write_seqcount_invalidate(&dentry->d_seq);
31e6b01f
NP
333}
334
1da177e4
LT
335/*
336 * Release the dentry's inode, using the filesystem
550dce01 337 * d_iput() operation if defined.
31e6b01f
NP
338 */
339static void dentry_unlink_inode(struct dentry * dentry)
340 __releases(dentry->d_lock)
873feea0 341 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
342{
343 struct inode *inode = dentry->d_inode;
550dce01 344 bool hashed = !d_unhashed(dentry);
a528aca7 345
550dce01
AV
346 if (hashed)
347 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 348 __d_clear_type_and_inode(dentry);
946e51f2 349 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
350 if (hashed)
351 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 352 spin_unlock(&dentry->d_lock);
873feea0 353 spin_unlock(&inode->i_lock);
31e6b01f
NP
354 if (!inode->i_nlink)
355 fsnotify_inoderemove(inode);
356 if (dentry->d_op && dentry->d_op->d_iput)
357 dentry->d_op->d_iput(dentry, inode);
358 else
359 iput(inode);
360}
361
89dc77bc
LT
362/*
363 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
364 * is in use - which includes both the "real" per-superblock
365 * LRU list _and_ the DCACHE_SHRINK_LIST use.
366 *
367 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
368 * on the shrink list (ie not on the superblock LRU list).
369 *
370 * The per-cpu "nr_dentry_unused" counters are updated with
371 * the DCACHE_LRU_LIST bit.
372 *
373 * These helper functions make sure we always follow the
374 * rules. d_lock must be held by the caller.
375 */
376#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
377static void d_lru_add(struct dentry *dentry)
378{
379 D_FLAG_VERIFY(dentry, 0);
380 dentry->d_flags |= DCACHE_LRU_LIST;
381 this_cpu_inc(nr_dentry_unused);
382 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
383}
384
385static void d_lru_del(struct dentry *dentry)
386{
387 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
388 dentry->d_flags &= ~DCACHE_LRU_LIST;
389 this_cpu_dec(nr_dentry_unused);
390 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
391}
392
393static void d_shrink_del(struct dentry *dentry)
394{
395 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
396 list_del_init(&dentry->d_lru);
397 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
398 this_cpu_dec(nr_dentry_unused);
399}
400
401static void d_shrink_add(struct dentry *dentry, struct list_head *list)
402{
403 D_FLAG_VERIFY(dentry, 0);
404 list_add(&dentry->d_lru, list);
405 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
406 this_cpu_inc(nr_dentry_unused);
407}
408
409/*
410 * These can only be called under the global LRU lock, ie during the
411 * callback for freeing the LRU list. "isolate" removes it from the
412 * LRU lists entirely, while shrink_move moves it to the indicated
413 * private list.
414 */
3f97b163 415static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
416{
417 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
418 dentry->d_flags &= ~DCACHE_LRU_LIST;
419 this_cpu_dec(nr_dentry_unused);
3f97b163 420 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
421}
422
3f97b163
VD
423static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
424 struct list_head *list)
89dc77bc
LT
425{
426 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
427 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 428 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
429}
430
da3bbdd4 431/*
f6041567 432 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
433 */
434static void dentry_lru_add(struct dentry *dentry)
435{
89dc77bc
LT
436 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
437 d_lru_add(dentry);
da3bbdd4
KM
438}
439
789680d1
NP
440/**
441 * d_drop - drop a dentry
442 * @dentry: dentry to drop
443 *
444 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
445 * be found through a VFS lookup any more. Note that this is different from
446 * deleting the dentry - d_delete will try to mark the dentry negative if
447 * possible, giving a successful _negative_ lookup, while d_drop will
448 * just make the cache lookup fail.
449 *
450 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
451 * reason (NFS timeouts or autofs deletes).
452 *
453 * __d_drop requires dentry->d_lock.
454 */
455void __d_drop(struct dentry *dentry)
456{
dea3667b 457 if (!d_unhashed(dentry)) {
b61625d2 458 struct hlist_bl_head *b;
7632e465
BF
459 /*
460 * Hashed dentries are normally on the dentry hashtable,
461 * with the exception of those newly allocated by
462 * d_obtain_alias, which are always IS_ROOT:
463 */
464 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
465 b = &dentry->d_sb->s_anon;
466 else
467 b = d_hash(dentry->d_parent, dentry->d_name.hash);
468
469 hlist_bl_lock(b);
470 __hlist_bl_del(&dentry->d_hash);
471 dentry->d_hash.pprev = NULL;
472 hlist_bl_unlock(b);
a7c6f571 473 dentry_rcuwalk_invalidate(dentry);
789680d1
NP
474 }
475}
476EXPORT_SYMBOL(__d_drop);
477
478void d_drop(struct dentry *dentry)
479{
789680d1
NP
480 spin_lock(&dentry->d_lock);
481 __d_drop(dentry);
482 spin_unlock(&dentry->d_lock);
789680d1
NP
483}
484EXPORT_SYMBOL(d_drop);
485
ba65dc5e
AV
486static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
487{
488 struct dentry *next;
489 /*
490 * Inform d_walk() and shrink_dentry_list() that we are no longer
491 * attached to the dentry tree
492 */
493 dentry->d_flags |= DCACHE_DENTRY_KILLED;
494 if (unlikely(list_empty(&dentry->d_child)))
495 return;
496 __list_del_entry(&dentry->d_child);
497 /*
498 * Cursors can move around the list of children. While we'd been
499 * a normal list member, it didn't matter - ->d_child.next would've
500 * been updated. However, from now on it won't be and for the
501 * things like d_walk() it might end up with a nasty surprise.
502 * Normally d_walk() doesn't care about cursors moving around -
503 * ->d_lock on parent prevents that and since a cursor has no children
504 * of its own, we get through it without ever unlocking the parent.
505 * There is one exception, though - if we ascend from a child that
506 * gets killed as soon as we unlock it, the next sibling is found
507 * using the value left in its ->d_child.next. And if _that_
508 * pointed to a cursor, and cursor got moved (e.g. by lseek())
509 * before d_walk() regains parent->d_lock, we'll end up skipping
510 * everything the cursor had been moved past.
511 *
512 * Solution: make sure that the pointer left behind in ->d_child.next
513 * points to something that won't be moving around. I.e. skip the
514 * cursors.
515 */
516 while (dentry->d_child.next != &parent->d_subdirs) {
517 next = list_entry(dentry->d_child.next, struct dentry, d_child);
518 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
519 break;
520 dentry->d_child.next = next->d_child.next;
521 }
522}
523
e55fd011 524static void __dentry_kill(struct dentry *dentry)
77812a1e 525{
41edf278
AV
526 struct dentry *parent = NULL;
527 bool can_free = true;
41edf278 528 if (!IS_ROOT(dentry))
77812a1e 529 parent = dentry->d_parent;
31e6b01f 530
0d98439e
LT
531 /*
532 * The dentry is now unrecoverably dead to the world.
533 */
534 lockref_mark_dead(&dentry->d_lockref);
535
f0023bc6 536 /*
f0023bc6
SW
537 * inform the fs via d_prune that this dentry is about to be
538 * unhashed and destroyed.
539 */
29266201 540 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
541 dentry->d_op->d_prune(dentry);
542
01b60351
AV
543 if (dentry->d_flags & DCACHE_LRU_LIST) {
544 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
545 d_lru_del(dentry);
01b60351 546 }
77812a1e
NP
547 /* if it was on the hash then remove it */
548 __d_drop(dentry);
ba65dc5e 549 dentry_unlist(dentry, parent);
03b3b889
AV
550 if (parent)
551 spin_unlock(&parent->d_lock);
550dce01
AV
552 if (dentry->d_inode)
553 dentry_unlink_inode(dentry);
554 else
555 spin_unlock(&dentry->d_lock);
03b3b889
AV
556 this_cpu_dec(nr_dentry);
557 if (dentry->d_op && dentry->d_op->d_release)
558 dentry->d_op->d_release(dentry);
559
41edf278
AV
560 spin_lock(&dentry->d_lock);
561 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
562 dentry->d_flags |= DCACHE_MAY_FREE;
563 can_free = false;
564 }
565 spin_unlock(&dentry->d_lock);
41edf278
AV
566 if (likely(can_free))
567 dentry_free(dentry);
e55fd011
AV
568}
569
570/*
571 * Finish off a dentry we've decided to kill.
572 * dentry->d_lock must be held, returns with it unlocked.
573 * If ref is non-zero, then decrement the refcount too.
574 * Returns dentry requiring refcount drop, or NULL if we're done.
575 */
8cbf74da 576static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
577 __releases(dentry->d_lock)
578{
579 struct inode *inode = dentry->d_inode;
580 struct dentry *parent = NULL;
581
582 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
583 goto failed;
584
585 if (!IS_ROOT(dentry)) {
586 parent = dentry->d_parent;
587 if (unlikely(!spin_trylock(&parent->d_lock))) {
588 if (inode)
589 spin_unlock(&inode->i_lock);
590 goto failed;
591 }
592 }
593
594 __dentry_kill(dentry);
03b3b889 595 return parent;
e55fd011
AV
596
597failed:
8cbf74da
AV
598 spin_unlock(&dentry->d_lock);
599 cpu_relax();
e55fd011 600 return dentry; /* try again with same dentry */
77812a1e
NP
601}
602
046b961b
AV
603static inline struct dentry *lock_parent(struct dentry *dentry)
604{
605 struct dentry *parent = dentry->d_parent;
606 if (IS_ROOT(dentry))
607 return NULL;
360f5479 608 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 609 return NULL;
046b961b
AV
610 if (likely(spin_trylock(&parent->d_lock)))
611 return parent;
046b961b 612 rcu_read_lock();
c2338f2d 613 spin_unlock(&dentry->d_lock);
046b961b
AV
614again:
615 parent = ACCESS_ONCE(dentry->d_parent);
616 spin_lock(&parent->d_lock);
617 /*
618 * We can't blindly lock dentry until we are sure
619 * that we won't violate the locking order.
620 * Any changes of dentry->d_parent must have
621 * been done with parent->d_lock held, so
622 * spin_lock() above is enough of a barrier
623 * for checking if it's still our child.
624 */
625 if (unlikely(parent != dentry->d_parent)) {
626 spin_unlock(&parent->d_lock);
627 goto again;
628 }
629 rcu_read_unlock();
630 if (parent != dentry)
9f12600f 631 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
632 else
633 parent = NULL;
634 return parent;
635}
636
360f5479
LT
637/*
638 * Try to do a lockless dput(), and return whether that was successful.
639 *
640 * If unsuccessful, we return false, having already taken the dentry lock.
641 *
642 * The caller needs to hold the RCU read lock, so that the dentry is
643 * guaranteed to stay around even if the refcount goes down to zero!
644 */
645static inline bool fast_dput(struct dentry *dentry)
646{
647 int ret;
648 unsigned int d_flags;
649
650 /*
651 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 652 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
653 */
654 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
655 return lockref_put_or_lock(&dentry->d_lockref);
656
657 /*
658 * .. otherwise, we can try to just decrement the
659 * lockref optimistically.
660 */
661 ret = lockref_put_return(&dentry->d_lockref);
662
663 /*
664 * If the lockref_put_return() failed due to the lock being held
665 * by somebody else, the fast path has failed. We will need to
666 * get the lock, and then check the count again.
667 */
668 if (unlikely(ret < 0)) {
669 spin_lock(&dentry->d_lock);
670 if (dentry->d_lockref.count > 1) {
671 dentry->d_lockref.count--;
672 spin_unlock(&dentry->d_lock);
673 return 1;
674 }
675 return 0;
676 }
677
678 /*
679 * If we weren't the last ref, we're done.
680 */
681 if (ret)
682 return 1;
683
684 /*
685 * Careful, careful. The reference count went down
686 * to zero, but we don't hold the dentry lock, so
687 * somebody else could get it again, and do another
688 * dput(), and we need to not race with that.
689 *
690 * However, there is a very special and common case
691 * where we don't care, because there is nothing to
692 * do: the dentry is still hashed, it does not have
693 * a 'delete' op, and it's referenced and already on
694 * the LRU list.
695 *
696 * NOTE! Since we aren't locked, these values are
697 * not "stable". However, it is sufficient that at
698 * some point after we dropped the reference the
699 * dentry was hashed and the flags had the proper
700 * value. Other dentry users may have re-gotten
701 * a reference to the dentry and change that, but
702 * our work is done - we can leave the dentry
703 * around with a zero refcount.
704 */
705 smp_rmb();
706 d_flags = ACCESS_ONCE(dentry->d_flags);
75a6f82a 707 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
708
709 /* Nothing to do? Dropping the reference was all we needed? */
710 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
711 return 1;
712
713 /*
714 * Not the fast normal case? Get the lock. We've already decremented
715 * the refcount, but we'll need to re-check the situation after
716 * getting the lock.
717 */
718 spin_lock(&dentry->d_lock);
719
720 /*
721 * Did somebody else grab a reference to it in the meantime, and
722 * we're no longer the last user after all? Alternatively, somebody
723 * else could have killed it and marked it dead. Either way, we
724 * don't need to do anything else.
725 */
726 if (dentry->d_lockref.count) {
727 spin_unlock(&dentry->d_lock);
728 return 1;
729 }
730
731 /*
732 * Re-get the reference we optimistically dropped. We hold the
733 * lock, and we just tested that it was zero, so we can just
734 * set it to 1.
735 */
736 dentry->d_lockref.count = 1;
737 return 0;
738}
739
740
1da177e4
LT
741/*
742 * This is dput
743 *
744 * This is complicated by the fact that we do not want to put
745 * dentries that are no longer on any hash chain on the unused
746 * list: we'd much rather just get rid of them immediately.
747 *
748 * However, that implies that we have to traverse the dentry
749 * tree upwards to the parents which might _also_ now be
750 * scheduled for deletion (it may have been only waiting for
751 * its last child to go away).
752 *
753 * This tail recursion is done by hand as we don't want to depend
754 * on the compiler to always get this right (gcc generally doesn't).
755 * Real recursion would eat up our stack space.
756 */
757
758/*
759 * dput - release a dentry
760 * @dentry: dentry to release
761 *
762 * Release a dentry. This will drop the usage count and if appropriate
763 * call the dentry unlink method as well as removing it from the queues and
764 * releasing its resources. If the parent dentries were scheduled for release
765 * they too may now get deleted.
1da177e4 766 */
1da177e4
LT
767void dput(struct dentry *dentry)
768{
8aab6a27 769 if (unlikely(!dentry))
1da177e4
LT
770 return;
771
772repeat:
360f5479
LT
773 rcu_read_lock();
774 if (likely(fast_dput(dentry))) {
775 rcu_read_unlock();
1da177e4 776 return;
360f5479
LT
777 }
778
779 /* Slow case: now with the dentry lock held */
780 rcu_read_unlock();
1da177e4 781
85c7f810
AV
782 WARN_ON(d_in_lookup(dentry));
783
8aab6a27
LT
784 /* Unreachable? Get rid of it */
785 if (unlikely(d_unhashed(dentry)))
786 goto kill_it;
787
75a6f82a
AV
788 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
789 goto kill_it;
790
8aab6a27 791 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 792 if (dentry->d_op->d_delete(dentry))
61f3dee4 793 goto kill_it;
1da177e4 794 }
265ac902 795
358eec18
LT
796 if (!(dentry->d_flags & DCACHE_REFERENCED))
797 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 798 dentry_lru_add(dentry);
265ac902 799
98474236 800 dentry->d_lockref.count--;
61f3dee4 801 spin_unlock(&dentry->d_lock);
1da177e4
LT
802 return;
803
d52b9086 804kill_it:
8cbf74da 805 dentry = dentry_kill(dentry);
d52b9086
MS
806 if (dentry)
807 goto repeat;
1da177e4 808}
ec4f8605 809EXPORT_SYMBOL(dput);
1da177e4 810
1da177e4 811
b5c84bf6 812/* This must be called with d_lock held */
dc0474be 813static inline void __dget_dlock(struct dentry *dentry)
23044507 814{
98474236 815 dentry->d_lockref.count++;
23044507
NP
816}
817
dc0474be 818static inline void __dget(struct dentry *dentry)
1da177e4 819{
98474236 820 lockref_get(&dentry->d_lockref);
1da177e4
LT
821}
822
b7ab39f6
NP
823struct dentry *dget_parent(struct dentry *dentry)
824{
df3d0bbc 825 int gotref;
b7ab39f6
NP
826 struct dentry *ret;
827
df3d0bbc
WL
828 /*
829 * Do optimistic parent lookup without any
830 * locking.
831 */
832 rcu_read_lock();
833 ret = ACCESS_ONCE(dentry->d_parent);
834 gotref = lockref_get_not_zero(&ret->d_lockref);
835 rcu_read_unlock();
836 if (likely(gotref)) {
837 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
838 return ret;
839 dput(ret);
840 }
841
b7ab39f6 842repeat:
a734eb45
NP
843 /*
844 * Don't need rcu_dereference because we re-check it was correct under
845 * the lock.
846 */
847 rcu_read_lock();
b7ab39f6 848 ret = dentry->d_parent;
a734eb45
NP
849 spin_lock(&ret->d_lock);
850 if (unlikely(ret != dentry->d_parent)) {
851 spin_unlock(&ret->d_lock);
852 rcu_read_unlock();
b7ab39f6
NP
853 goto repeat;
854 }
a734eb45 855 rcu_read_unlock();
98474236
WL
856 BUG_ON(!ret->d_lockref.count);
857 ret->d_lockref.count++;
b7ab39f6 858 spin_unlock(&ret->d_lock);
b7ab39f6
NP
859 return ret;
860}
861EXPORT_SYMBOL(dget_parent);
862
1da177e4
LT
863/**
864 * d_find_alias - grab a hashed alias of inode
865 * @inode: inode in question
1da177e4
LT
866 *
867 * If inode has a hashed alias, or is a directory and has any alias,
868 * acquire the reference to alias and return it. Otherwise return NULL.
869 * Notice that if inode is a directory there can be only one alias and
870 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
871 * of a filesystem, or if the directory was renamed and d_revalidate
872 * was the first vfs operation to notice.
1da177e4 873 *
21c0d8fd 874 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 875 * any other hashed alias over that one.
1da177e4 876 */
52ed46f0 877static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 878{
da502956 879 struct dentry *alias, *discon_alias;
1da177e4 880
da502956
NP
881again:
882 discon_alias = NULL;
946e51f2 883 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 884 spin_lock(&alias->d_lock);
1da177e4 885 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 886 if (IS_ROOT(alias) &&
da502956 887 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 888 discon_alias = alias;
52ed46f0 889 } else {
dc0474be 890 __dget_dlock(alias);
da502956
NP
891 spin_unlock(&alias->d_lock);
892 return alias;
893 }
894 }
895 spin_unlock(&alias->d_lock);
896 }
897 if (discon_alias) {
898 alias = discon_alias;
899 spin_lock(&alias->d_lock);
900 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
901 __dget_dlock(alias);
902 spin_unlock(&alias->d_lock);
903 return alias;
1da177e4 904 }
da502956
NP
905 spin_unlock(&alias->d_lock);
906 goto again;
1da177e4 907 }
da502956 908 return NULL;
1da177e4
LT
909}
910
da502956 911struct dentry *d_find_alias(struct inode *inode)
1da177e4 912{
214fda1f
DH
913 struct dentry *de = NULL;
914
b3d9b7a3 915 if (!hlist_empty(&inode->i_dentry)) {
873feea0 916 spin_lock(&inode->i_lock);
52ed46f0 917 de = __d_find_alias(inode);
873feea0 918 spin_unlock(&inode->i_lock);
214fda1f 919 }
1da177e4
LT
920 return de;
921}
ec4f8605 922EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
923
924/*
925 * Try to kill dentries associated with this inode.
926 * WARNING: you must own a reference to inode.
927 */
928void d_prune_aliases(struct inode *inode)
929{
0cdca3f9 930 struct dentry *dentry;
1da177e4 931restart:
873feea0 932 spin_lock(&inode->i_lock);
946e51f2 933 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 934 spin_lock(&dentry->d_lock);
98474236 935 if (!dentry->d_lockref.count) {
29355c39
AV
936 struct dentry *parent = lock_parent(dentry);
937 if (likely(!dentry->d_lockref.count)) {
938 __dentry_kill(dentry);
4a7795d3 939 dput(parent);
29355c39
AV
940 goto restart;
941 }
942 if (parent)
943 spin_unlock(&parent->d_lock);
1da177e4
LT
944 }
945 spin_unlock(&dentry->d_lock);
946 }
873feea0 947 spin_unlock(&inode->i_lock);
1da177e4 948}
ec4f8605 949EXPORT_SYMBOL(d_prune_aliases);
1da177e4 950
3049cfe2 951static void shrink_dentry_list(struct list_head *list)
1da177e4 952{
5c47e6d0 953 struct dentry *dentry, *parent;
da3bbdd4 954
60942f2f 955 while (!list_empty(list)) {
ff2fde99 956 struct inode *inode;
60942f2f 957 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 958 spin_lock(&dentry->d_lock);
046b961b
AV
959 parent = lock_parent(dentry);
960
dd1f6b2e
DC
961 /*
962 * The dispose list is isolated and dentries are not accounted
963 * to the LRU here, so we can simply remove it from the list
964 * here regardless of whether it is referenced or not.
965 */
89dc77bc 966 d_shrink_del(dentry);
dd1f6b2e 967
1da177e4
LT
968 /*
969 * We found an inuse dentry which was not removed from
dd1f6b2e 970 * the LRU because of laziness during lookup. Do not free it.
1da177e4 971 */
360f5479 972 if (dentry->d_lockref.count > 0) {
da3bbdd4 973 spin_unlock(&dentry->d_lock);
046b961b
AV
974 if (parent)
975 spin_unlock(&parent->d_lock);
1da177e4
LT
976 continue;
977 }
77812a1e 978
64fd72e0
AV
979
980 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
981 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
982 spin_unlock(&dentry->d_lock);
046b961b
AV
983 if (parent)
984 spin_unlock(&parent->d_lock);
64fd72e0
AV
985 if (can_free)
986 dentry_free(dentry);
987 continue;
988 }
989
ff2fde99
AV
990 inode = dentry->d_inode;
991 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 992 d_shrink_add(dentry, list);
dd1f6b2e 993 spin_unlock(&dentry->d_lock);
046b961b
AV
994 if (parent)
995 spin_unlock(&parent->d_lock);
5c47e6d0 996 continue;
dd1f6b2e 997 }
ff2fde99 998
ff2fde99 999 __dentry_kill(dentry);
046b961b 1000
5c47e6d0
AV
1001 /*
1002 * We need to prune ancestors too. This is necessary to prevent
1003 * quadratic behavior of shrink_dcache_parent(), but is also
1004 * expected to be beneficial in reducing dentry cache
1005 * fragmentation.
1006 */
1007 dentry = parent;
b2b80195
AV
1008 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1009 parent = lock_parent(dentry);
1010 if (dentry->d_lockref.count != 1) {
1011 dentry->d_lockref.count--;
1012 spin_unlock(&dentry->d_lock);
1013 if (parent)
1014 spin_unlock(&parent->d_lock);
1015 break;
1016 }
1017 inode = dentry->d_inode; /* can't be NULL */
1018 if (unlikely(!spin_trylock(&inode->i_lock))) {
1019 spin_unlock(&dentry->d_lock);
1020 if (parent)
1021 spin_unlock(&parent->d_lock);
1022 cpu_relax();
1023 continue;
1024 }
1025 __dentry_kill(dentry);
1026 dentry = parent;
1027 }
da3bbdd4 1028 }
3049cfe2
CH
1029}
1030
3f97b163
VD
1031static enum lru_status dentry_lru_isolate(struct list_head *item,
1032 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1033{
1034 struct list_head *freeable = arg;
1035 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1036
1037
1038 /*
1039 * we are inverting the lru lock/dentry->d_lock here,
1040 * so use a trylock. If we fail to get the lock, just skip
1041 * it
1042 */
1043 if (!spin_trylock(&dentry->d_lock))
1044 return LRU_SKIP;
1045
1046 /*
1047 * Referenced dentries are still in use. If they have active
1048 * counts, just remove them from the LRU. Otherwise give them
1049 * another pass through the LRU.
1050 */
1051 if (dentry->d_lockref.count) {
3f97b163 1052 d_lru_isolate(lru, dentry);
f6041567
DC
1053 spin_unlock(&dentry->d_lock);
1054 return LRU_REMOVED;
1055 }
1056
1057 if (dentry->d_flags & DCACHE_REFERENCED) {
1058 dentry->d_flags &= ~DCACHE_REFERENCED;
1059 spin_unlock(&dentry->d_lock);
1060
1061 /*
1062 * The list move itself will be made by the common LRU code. At
1063 * this point, we've dropped the dentry->d_lock but keep the
1064 * lru lock. This is safe to do, since every list movement is
1065 * protected by the lru lock even if both locks are held.
1066 *
1067 * This is guaranteed by the fact that all LRU management
1068 * functions are intermediated by the LRU API calls like
1069 * list_lru_add and list_lru_del. List movement in this file
1070 * only ever occur through this functions or through callbacks
1071 * like this one, that are called from the LRU API.
1072 *
1073 * The only exceptions to this are functions like
1074 * shrink_dentry_list, and code that first checks for the
1075 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1076 * operating only with stack provided lists after they are
1077 * properly isolated from the main list. It is thus, always a
1078 * local access.
1079 */
1080 return LRU_ROTATE;
1081 }
1082
3f97b163 1083 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1084 spin_unlock(&dentry->d_lock);
1085
1086 return LRU_REMOVED;
1087}
1088
3049cfe2 1089/**
b48f03b3
DC
1090 * prune_dcache_sb - shrink the dcache
1091 * @sb: superblock
503c358c 1092 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1093 *
503c358c
VD
1094 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1095 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1096 * function.
3049cfe2 1097 *
b48f03b3
DC
1098 * This function may fail to free any resources if all the dentries are in
1099 * use.
3049cfe2 1100 */
503c358c 1101long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1102{
f6041567
DC
1103 LIST_HEAD(dispose);
1104 long freed;
3049cfe2 1105
503c358c
VD
1106 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1107 dentry_lru_isolate, &dispose);
f6041567 1108 shrink_dentry_list(&dispose);
0a234c6d 1109 return freed;
da3bbdd4 1110}
23044507 1111
4e717f5c 1112static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1113 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1114{
4e717f5c
GC
1115 struct list_head *freeable = arg;
1116 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1117
4e717f5c
GC
1118 /*
1119 * we are inverting the lru lock/dentry->d_lock here,
1120 * so use a trylock. If we fail to get the lock, just skip
1121 * it
1122 */
1123 if (!spin_trylock(&dentry->d_lock))
1124 return LRU_SKIP;
1125
3f97b163 1126 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1127 spin_unlock(&dentry->d_lock);
ec33679d 1128
4e717f5c 1129 return LRU_REMOVED;
da3bbdd4
KM
1130}
1131
4e717f5c 1132
1da177e4
LT
1133/**
1134 * shrink_dcache_sb - shrink dcache for a superblock
1135 * @sb: superblock
1136 *
3049cfe2
CH
1137 * Shrink the dcache for the specified super block. This is used to free
1138 * the dcache before unmounting a file system.
1da177e4 1139 */
3049cfe2 1140void shrink_dcache_sb(struct super_block *sb)
1da177e4 1141{
4e717f5c
GC
1142 long freed;
1143
1144 do {
1145 LIST_HEAD(dispose);
1146
1147 freed = list_lru_walk(&sb->s_dentry_lru,
1148 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1149
4e717f5c
GC
1150 this_cpu_sub(nr_dentry_unused, freed);
1151 shrink_dentry_list(&dispose);
1152 } while (freed > 0);
1da177e4 1153}
ec4f8605 1154EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1155
db14fc3a
MS
1156/**
1157 * enum d_walk_ret - action to talke during tree walk
1158 * @D_WALK_CONTINUE: contrinue walk
1159 * @D_WALK_QUIT: quit walk
1160 * @D_WALK_NORETRY: quit when retry is needed
1161 * @D_WALK_SKIP: skip this dentry and its children
1162 */
1163enum d_walk_ret {
1164 D_WALK_CONTINUE,
1165 D_WALK_QUIT,
1166 D_WALK_NORETRY,
1167 D_WALK_SKIP,
1168};
c826cb7d 1169
1da177e4 1170/**
db14fc3a
MS
1171 * d_walk - walk the dentry tree
1172 * @parent: start of walk
1173 * @data: data passed to @enter() and @finish()
1174 * @enter: callback when first entering the dentry
1175 * @finish: callback when successfully finished the walk
1da177e4 1176 *
db14fc3a 1177 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1178 */
db14fc3a
MS
1179static void d_walk(struct dentry *parent, void *data,
1180 enum d_walk_ret (*enter)(void *, struct dentry *),
1181 void (*finish)(void *))
1da177e4 1182{
949854d0 1183 struct dentry *this_parent;
1da177e4 1184 struct list_head *next;
48f5ec21 1185 unsigned seq = 0;
db14fc3a
MS
1186 enum d_walk_ret ret;
1187 bool retry = true;
949854d0 1188
58db63d0 1189again:
48f5ec21 1190 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1191 this_parent = parent;
2fd6b7f5 1192 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1193
1194 ret = enter(data, this_parent);
1195 switch (ret) {
1196 case D_WALK_CONTINUE:
1197 break;
1198 case D_WALK_QUIT:
1199 case D_WALK_SKIP:
1200 goto out_unlock;
1201 case D_WALK_NORETRY:
1202 retry = false;
1203 break;
1204 }
1da177e4
LT
1205repeat:
1206 next = this_parent->d_subdirs.next;
1207resume:
1208 while (next != &this_parent->d_subdirs) {
1209 struct list_head *tmp = next;
946e51f2 1210 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1211 next = tmp->next;
2fd6b7f5 1212
ba65dc5e
AV
1213 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1214 continue;
1215
2fd6b7f5 1216 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1217
1218 ret = enter(data, dentry);
1219 switch (ret) {
1220 case D_WALK_CONTINUE:
1221 break;
1222 case D_WALK_QUIT:
2fd6b7f5 1223 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1224 goto out_unlock;
1225 case D_WALK_NORETRY:
1226 retry = false;
1227 break;
1228 case D_WALK_SKIP:
1229 spin_unlock(&dentry->d_lock);
1230 continue;
2fd6b7f5 1231 }
db14fc3a 1232
1da177e4 1233 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1234 spin_unlock(&this_parent->d_lock);
1235 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1236 this_parent = dentry;
2fd6b7f5 1237 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1238 goto repeat;
1239 }
2fd6b7f5 1240 spin_unlock(&dentry->d_lock);
1da177e4
LT
1241 }
1242 /*
1243 * All done at this level ... ascend and resume the search.
1244 */
ca5358ef
AV
1245 rcu_read_lock();
1246ascend:
1da177e4 1247 if (this_parent != parent) {
c826cb7d 1248 struct dentry *child = this_parent;
31dec132
AV
1249 this_parent = child->d_parent;
1250
31dec132
AV
1251 spin_unlock(&child->d_lock);
1252 spin_lock(&this_parent->d_lock);
1253
ca5358ef
AV
1254 /* might go back up the wrong parent if we have had a rename. */
1255 if (need_seqretry(&rename_lock, seq))
949854d0 1256 goto rename_retry;
2159184e
AV
1257 /* go into the first sibling still alive */
1258 do {
1259 next = child->d_child.next;
ca5358ef
AV
1260 if (next == &this_parent->d_subdirs)
1261 goto ascend;
1262 child = list_entry(next, struct dentry, d_child);
2159184e 1263 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1264 rcu_read_unlock();
1da177e4
LT
1265 goto resume;
1266 }
ca5358ef 1267 if (need_seqretry(&rename_lock, seq))
949854d0 1268 goto rename_retry;
ca5358ef 1269 rcu_read_unlock();
db14fc3a
MS
1270 if (finish)
1271 finish(data);
1272
1273out_unlock:
1274 spin_unlock(&this_parent->d_lock);
48f5ec21 1275 done_seqretry(&rename_lock, seq);
db14fc3a 1276 return;
58db63d0
NP
1277
1278rename_retry:
ca5358ef
AV
1279 spin_unlock(&this_parent->d_lock);
1280 rcu_read_unlock();
1281 BUG_ON(seq & 1);
db14fc3a
MS
1282 if (!retry)
1283 return;
48f5ec21 1284 seq = 1;
58db63d0 1285 goto again;
1da177e4 1286}
db14fc3a
MS
1287
1288/*
1289 * Search for at least 1 mount point in the dentry's subdirs.
1290 * We descend to the next level whenever the d_subdirs
1291 * list is non-empty and continue searching.
1292 */
1293
db14fc3a
MS
1294static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1295{
1296 int *ret = data;
1297 if (d_mountpoint(dentry)) {
1298 *ret = 1;
1299 return D_WALK_QUIT;
1300 }
1301 return D_WALK_CONTINUE;
1302}
1303
69c88dc7
RD
1304/**
1305 * have_submounts - check for mounts over a dentry
1306 * @parent: dentry to check.
1307 *
1308 * Return true if the parent or its subdirectories contain
1309 * a mount point
1310 */
db14fc3a
MS
1311int have_submounts(struct dentry *parent)
1312{
1313 int ret = 0;
1314
1315 d_walk(parent, &ret, check_mount, NULL);
1316
1317 return ret;
1318}
ec4f8605 1319EXPORT_SYMBOL(have_submounts);
1da177e4 1320
eed81007
MS
1321/*
1322 * Called by mount code to set a mountpoint and check if the mountpoint is
1323 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1324 * subtree can become unreachable).
1325 *
1ffe46d1 1326 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1327 * this reason take rename_lock and d_lock on dentry and ancestors.
1328 */
1329int d_set_mounted(struct dentry *dentry)
1330{
1331 struct dentry *p;
1332 int ret = -ENOENT;
1333 write_seqlock(&rename_lock);
1334 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1335 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1336 spin_lock(&p->d_lock);
1337 if (unlikely(d_unhashed(p))) {
1338 spin_unlock(&p->d_lock);
1339 goto out;
1340 }
1341 spin_unlock(&p->d_lock);
1342 }
1343 spin_lock(&dentry->d_lock);
1344 if (!d_unlinked(dentry)) {
1345 dentry->d_flags |= DCACHE_MOUNTED;
1346 ret = 0;
1347 }
1348 spin_unlock(&dentry->d_lock);
1349out:
1350 write_sequnlock(&rename_lock);
1351 return ret;
1352}
1353
1da177e4 1354/*
fd517909 1355 * Search the dentry child list of the specified parent,
1da177e4
LT
1356 * and move any unused dentries to the end of the unused
1357 * list for prune_dcache(). We descend to the next level
1358 * whenever the d_subdirs list is non-empty and continue
1359 * searching.
1360 *
1361 * It returns zero iff there are no unused children,
1362 * otherwise it returns the number of children moved to
1363 * the end of the unused list. This may not be the total
1364 * number of unused children, because select_parent can
1365 * drop the lock and return early due to latency
1366 * constraints.
1367 */
1da177e4 1368
db14fc3a
MS
1369struct select_data {
1370 struct dentry *start;
1371 struct list_head dispose;
1372 int found;
1373};
23044507 1374
db14fc3a
MS
1375static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1376{
1377 struct select_data *data = _data;
1378 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1379
db14fc3a
MS
1380 if (data->start == dentry)
1381 goto out;
2fd6b7f5 1382
fe91522a 1383 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1384 data->found++;
fe91522a
AV
1385 } else {
1386 if (dentry->d_flags & DCACHE_LRU_LIST)
1387 d_lru_del(dentry);
1388 if (!dentry->d_lockref.count) {
1389 d_shrink_add(dentry, &data->dispose);
1390 data->found++;
1391 }
1da177e4 1392 }
db14fc3a
MS
1393 /*
1394 * We can return to the caller if we have found some (this
1395 * ensures forward progress). We'll be coming back to find
1396 * the rest.
1397 */
fe91522a
AV
1398 if (!list_empty(&data->dispose))
1399 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1400out:
db14fc3a 1401 return ret;
1da177e4
LT
1402}
1403
1404/**
1405 * shrink_dcache_parent - prune dcache
1406 * @parent: parent of entries to prune
1407 *
1408 * Prune the dcache to remove unused children of the parent dentry.
1409 */
db14fc3a 1410void shrink_dcache_parent(struct dentry *parent)
1da177e4 1411{
db14fc3a
MS
1412 for (;;) {
1413 struct select_data data;
1da177e4 1414
db14fc3a
MS
1415 INIT_LIST_HEAD(&data.dispose);
1416 data.start = parent;
1417 data.found = 0;
1418
1419 d_walk(parent, &data, select_collect, NULL);
1420 if (!data.found)
1421 break;
1422
1423 shrink_dentry_list(&data.dispose);
421348f1
GT
1424 cond_resched();
1425 }
1da177e4 1426}
ec4f8605 1427EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1428
9c8c10e2 1429static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1430{
9c8c10e2
AV
1431 /* it has busy descendents; complain about those instead */
1432 if (!list_empty(&dentry->d_subdirs))
1433 return D_WALK_CONTINUE;
42c32608 1434
9c8c10e2
AV
1435 /* root with refcount 1 is fine */
1436 if (dentry == _data && dentry->d_lockref.count == 1)
1437 return D_WALK_CONTINUE;
1438
1439 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1440 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1441 dentry,
1442 dentry->d_inode ?
1443 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1444 dentry,
42c32608
AV
1445 dentry->d_lockref.count,
1446 dentry->d_sb->s_type->name,
1447 dentry->d_sb->s_id);
9c8c10e2
AV
1448 WARN_ON(1);
1449 return D_WALK_CONTINUE;
1450}
1451
1452static void do_one_tree(struct dentry *dentry)
1453{
1454 shrink_dcache_parent(dentry);
1455 d_walk(dentry, dentry, umount_check, NULL);
1456 d_drop(dentry);
1457 dput(dentry);
42c32608
AV
1458}
1459
1460/*
1461 * destroy the dentries attached to a superblock on unmounting
1462 */
1463void shrink_dcache_for_umount(struct super_block *sb)
1464{
1465 struct dentry *dentry;
1466
9c8c10e2 1467 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1468
1469 dentry = sb->s_root;
1470 sb->s_root = NULL;
9c8c10e2 1471 do_one_tree(dentry);
42c32608
AV
1472
1473 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1474 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1475 do_one_tree(dentry);
42c32608
AV
1476 }
1477}
1478
8ed936b5
EB
1479struct detach_data {
1480 struct select_data select;
1481 struct dentry *mountpoint;
1482};
1483static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1484{
8ed936b5 1485 struct detach_data *data = _data;
848ac114
MS
1486
1487 if (d_mountpoint(dentry)) {
8ed936b5
EB
1488 __dget_dlock(dentry);
1489 data->mountpoint = dentry;
848ac114
MS
1490 return D_WALK_QUIT;
1491 }
1492
8ed936b5 1493 return select_collect(&data->select, dentry);
848ac114
MS
1494}
1495
1496static void check_and_drop(void *_data)
1497{
8ed936b5 1498 struct detach_data *data = _data;
848ac114 1499
8ed936b5
EB
1500 if (!data->mountpoint && !data->select.found)
1501 __d_drop(data->select.start);
848ac114
MS
1502}
1503
1504/**
1ffe46d1
EB
1505 * d_invalidate - detach submounts, prune dcache, and drop
1506 * @dentry: dentry to invalidate (aka detach, prune and drop)
1507 *
1ffe46d1 1508 * no dcache lock.
848ac114 1509 *
8ed936b5
EB
1510 * The final d_drop is done as an atomic operation relative to
1511 * rename_lock ensuring there are no races with d_set_mounted. This
1512 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1513 */
5542aa2f 1514void d_invalidate(struct dentry *dentry)
848ac114 1515{
1ffe46d1
EB
1516 /*
1517 * If it's already been dropped, return OK.
1518 */
1519 spin_lock(&dentry->d_lock);
1520 if (d_unhashed(dentry)) {
1521 spin_unlock(&dentry->d_lock);
5542aa2f 1522 return;
1ffe46d1
EB
1523 }
1524 spin_unlock(&dentry->d_lock);
1525
848ac114
MS
1526 /* Negative dentries can be dropped without further checks */
1527 if (!dentry->d_inode) {
1528 d_drop(dentry);
5542aa2f 1529 return;
848ac114
MS
1530 }
1531
1532 for (;;) {
8ed936b5 1533 struct detach_data data;
848ac114 1534
8ed936b5
EB
1535 data.mountpoint = NULL;
1536 INIT_LIST_HEAD(&data.select.dispose);
1537 data.select.start = dentry;
1538 data.select.found = 0;
1539
1540 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1541
8ed936b5
EB
1542 if (data.select.found)
1543 shrink_dentry_list(&data.select.dispose);
848ac114 1544
8ed936b5
EB
1545 if (data.mountpoint) {
1546 detach_mounts(data.mountpoint);
1547 dput(data.mountpoint);
1548 }
848ac114 1549
8ed936b5 1550 if (!data.mountpoint && !data.select.found)
848ac114
MS
1551 break;
1552
1553 cond_resched();
1554 }
848ac114 1555}
1ffe46d1 1556EXPORT_SYMBOL(d_invalidate);
848ac114 1557
1da177e4 1558/**
a4464dbc
AV
1559 * __d_alloc - allocate a dcache entry
1560 * @sb: filesystem it will belong to
1da177e4
LT
1561 * @name: qstr of the name
1562 *
1563 * Allocates a dentry. It returns %NULL if there is insufficient memory
1564 * available. On a success the dentry is returned. The name passed in is
1565 * copied and the copy passed in may be reused after this call.
1566 */
1567
a4464dbc 1568struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1569{
1570 struct dentry *dentry;
1571 char *dname;
285b102d 1572 int err;
1da177e4 1573
e12ba74d 1574 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1575 if (!dentry)
1576 return NULL;
1577
6326c71f
LT
1578 /*
1579 * We guarantee that the inline name is always NUL-terminated.
1580 * This way the memcpy() done by the name switching in rename
1581 * will still always have a NUL at the end, even if we might
1582 * be overwriting an internal NUL character
1583 */
1584 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd
AV
1585 if (unlikely(!name)) {
1586 static const struct qstr anon = QSTR_INIT("/", 1);
1587 name = &anon;
1588 dname = dentry->d_iname;
1589 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1590 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1591 struct external_name *p = kmalloc(size + name->len,
1592 GFP_KERNEL_ACCOUNT);
8d85b484 1593 if (!p) {
1da177e4
LT
1594 kmem_cache_free(dentry_cache, dentry);
1595 return NULL;
1596 }
8d85b484
AV
1597 atomic_set(&p->u.count, 1);
1598 dname = p->name;
df4c0e36
AR
1599 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1600 kasan_unpoison_shadow(dname,
1601 round_up(name->len + 1, sizeof(unsigned long)));
1da177e4
LT
1602 } else {
1603 dname = dentry->d_iname;
1604 }
1da177e4
LT
1605
1606 dentry->d_name.len = name->len;
1607 dentry->d_name.hash = name->hash;
1608 memcpy(dname, name->name, name->len);
1609 dname[name->len] = 0;
1610
6326c71f
LT
1611 /* Make sure we always see the terminating NUL character */
1612 smp_wmb();
1613 dentry->d_name.name = dname;
1614
98474236 1615 dentry->d_lockref.count = 1;
dea3667b 1616 dentry->d_flags = 0;
1da177e4 1617 spin_lock_init(&dentry->d_lock);
31e6b01f 1618 seqcount_init(&dentry->d_seq);
1da177e4 1619 dentry->d_inode = NULL;
a4464dbc
AV
1620 dentry->d_parent = dentry;
1621 dentry->d_sb = sb;
1da177e4
LT
1622 dentry->d_op = NULL;
1623 dentry->d_fsdata = NULL;
ceb5bdc2 1624 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1625 INIT_LIST_HEAD(&dentry->d_lru);
1626 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1627 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1628 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1629 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1630
285b102d
MS
1631 if (dentry->d_op && dentry->d_op->d_init) {
1632 err = dentry->d_op->d_init(dentry);
1633 if (err) {
1634 if (dname_external(dentry))
1635 kfree(external_name(dentry));
1636 kmem_cache_free(dentry_cache, dentry);
1637 return NULL;
1638 }
1639 }
1640
3e880fb5 1641 this_cpu_inc(nr_dentry);
312d3ca8 1642
1da177e4
LT
1643 return dentry;
1644}
a4464dbc
AV
1645
1646/**
1647 * d_alloc - allocate a dcache entry
1648 * @parent: parent of entry to allocate
1649 * @name: qstr of the name
1650 *
1651 * Allocates a dentry. It returns %NULL if there is insufficient memory
1652 * available. On a success the dentry is returned. The name passed in is
1653 * copied and the copy passed in may be reused after this call.
1654 */
1655struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1656{
1657 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1658 if (!dentry)
1659 return NULL;
3d56c25e 1660 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1661 spin_lock(&parent->d_lock);
1662 /*
1663 * don't need child lock because it is not subject
1664 * to concurrency here
1665 */
1666 __dget_dlock(parent);
1667 dentry->d_parent = parent;
946e51f2 1668 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1669 spin_unlock(&parent->d_lock);
1670
1671 return dentry;
1672}
ec4f8605 1673EXPORT_SYMBOL(d_alloc);
1da177e4 1674
ba65dc5e
AV
1675struct dentry *d_alloc_cursor(struct dentry * parent)
1676{
1677 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1678 if (dentry) {
1679 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1680 dentry->d_parent = dget(parent);
1681 }
1682 return dentry;
1683}
1684
e1a24bb0
BF
1685/**
1686 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1687 * @sb: the superblock
1688 * @name: qstr of the name
1689 *
1690 * For a filesystem that just pins its dentries in memory and never
1691 * performs lookups at all, return an unhashed IS_ROOT dentry.
1692 */
4b936885
NP
1693struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1694{
e1a24bb0 1695 return __d_alloc(sb, name);
4b936885
NP
1696}
1697EXPORT_SYMBOL(d_alloc_pseudo);
1698
1da177e4
LT
1699struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1700{
1701 struct qstr q;
1702
1703 q.name = name;
fcfd2fbf 1704 q.hash_len = hashlen_string(name);
1da177e4
LT
1705 return d_alloc(parent, &q);
1706}
ef26ca97 1707EXPORT_SYMBOL(d_alloc_name);
1da177e4 1708
fb045adb
NP
1709void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1710{
6f7f7caa
LT
1711 WARN_ON_ONCE(dentry->d_op);
1712 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1713 DCACHE_OP_COMPARE |
1714 DCACHE_OP_REVALIDATE |
ecf3d1f1 1715 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1716 DCACHE_OP_DELETE |
d101a125 1717 DCACHE_OP_REAL));
fb045adb
NP
1718 dentry->d_op = op;
1719 if (!op)
1720 return;
1721 if (op->d_hash)
1722 dentry->d_flags |= DCACHE_OP_HASH;
1723 if (op->d_compare)
1724 dentry->d_flags |= DCACHE_OP_COMPARE;
1725 if (op->d_revalidate)
1726 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1727 if (op->d_weak_revalidate)
1728 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1729 if (op->d_delete)
1730 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1731 if (op->d_prune)
1732 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1733 if (op->d_real)
1734 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1735
1736}
1737EXPORT_SYMBOL(d_set_d_op);
1738
df1a085a
DH
1739
1740/*
1741 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1742 * @dentry - The dentry to mark
1743 *
1744 * Mark a dentry as falling through to the lower layer (as set with
1745 * d_pin_lower()). This flag may be recorded on the medium.
1746 */
1747void d_set_fallthru(struct dentry *dentry)
1748{
1749 spin_lock(&dentry->d_lock);
1750 dentry->d_flags |= DCACHE_FALLTHRU;
1751 spin_unlock(&dentry->d_lock);
1752}
1753EXPORT_SYMBOL(d_set_fallthru);
1754
b18825a7
DH
1755static unsigned d_flags_for_inode(struct inode *inode)
1756{
44bdb5e5 1757 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1758
1759 if (!inode)
1760 return DCACHE_MISS_TYPE;
1761
1762 if (S_ISDIR(inode->i_mode)) {
1763 add_flags = DCACHE_DIRECTORY_TYPE;
1764 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1765 if (unlikely(!inode->i_op->lookup))
1766 add_flags = DCACHE_AUTODIR_TYPE;
1767 else
1768 inode->i_opflags |= IOP_LOOKUP;
1769 }
44bdb5e5
DH
1770 goto type_determined;
1771 }
1772
1773 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1774 if (unlikely(inode->i_op->get_link)) {
b18825a7 1775 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1776 goto type_determined;
1777 }
1778 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1779 }
1780
44bdb5e5
DH
1781 if (unlikely(!S_ISREG(inode->i_mode)))
1782 add_flags = DCACHE_SPECIAL_TYPE;
1783
1784type_determined:
b18825a7
DH
1785 if (unlikely(IS_AUTOMOUNT(inode)))
1786 add_flags |= DCACHE_NEED_AUTOMOUNT;
1787 return add_flags;
1788}
1789
360da900
OH
1790static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1791{
b18825a7 1792 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1793 WARN_ON(d_in_lookup(dentry));
b18825a7 1794
b23fb0a6 1795 spin_lock(&dentry->d_lock);
de689f5e 1796 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1797 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1798 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1799 raw_write_seqcount_end(&dentry->d_seq);
affda484 1800 fsnotify_update_flags(dentry);
b23fb0a6 1801 spin_unlock(&dentry->d_lock);
360da900
OH
1802}
1803
1da177e4
LT
1804/**
1805 * d_instantiate - fill in inode information for a dentry
1806 * @entry: dentry to complete
1807 * @inode: inode to attach to this dentry
1808 *
1809 * Fill in inode information in the entry.
1810 *
1811 * This turns negative dentries into productive full members
1812 * of society.
1813 *
1814 * NOTE! This assumes that the inode count has been incremented
1815 * (or otherwise set) by the caller to indicate that it is now
1816 * in use by the dcache.
1817 */
1818
1819void d_instantiate(struct dentry *entry, struct inode * inode)
1820{
946e51f2 1821 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1822 if (inode) {
b9680917 1823 security_d_instantiate(entry, inode);
873feea0 1824 spin_lock(&inode->i_lock);
de689f5e 1825 __d_instantiate(entry, inode);
873feea0 1826 spin_unlock(&inode->i_lock);
de689f5e 1827 }
1da177e4 1828}
ec4f8605 1829EXPORT_SYMBOL(d_instantiate);
1da177e4 1830
b70a80e7
MS
1831/**
1832 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1833 * @entry: dentry to complete
1834 * @inode: inode to attach to this dentry
1835 *
1836 * Fill in inode information in the entry. If a directory alias is found, then
1837 * return an error (and drop inode). Together with d_materialise_unique() this
1838 * guarantees that a directory inode may never have more than one alias.
1839 */
1840int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1841{
946e51f2 1842 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1843
b9680917 1844 security_d_instantiate(entry, inode);
b70a80e7
MS
1845 spin_lock(&inode->i_lock);
1846 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1847 spin_unlock(&inode->i_lock);
1848 iput(inode);
1849 return -EBUSY;
1850 }
1851 __d_instantiate(entry, inode);
1852 spin_unlock(&inode->i_lock);
b70a80e7
MS
1853
1854 return 0;
1855}
1856EXPORT_SYMBOL(d_instantiate_no_diralias);
1857
adc0e91a
AV
1858struct dentry *d_make_root(struct inode *root_inode)
1859{
1860 struct dentry *res = NULL;
1861
1862 if (root_inode) {
798434bd 1863 res = __d_alloc(root_inode->i_sb, NULL);
adc0e91a
AV
1864 if (res)
1865 d_instantiate(res, root_inode);
1866 else
1867 iput(root_inode);
1868 }
1869 return res;
1870}
1871EXPORT_SYMBOL(d_make_root);
1872
d891eedb
BF
1873static struct dentry * __d_find_any_alias(struct inode *inode)
1874{
1875 struct dentry *alias;
1876
b3d9b7a3 1877 if (hlist_empty(&inode->i_dentry))
d891eedb 1878 return NULL;
946e51f2 1879 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1880 __dget(alias);
1881 return alias;
1882}
1883
46f72b34
SW
1884/**
1885 * d_find_any_alias - find any alias for a given inode
1886 * @inode: inode to find an alias for
1887 *
1888 * If any aliases exist for the given inode, take and return a
1889 * reference for one of them. If no aliases exist, return %NULL.
1890 */
1891struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1892{
1893 struct dentry *de;
1894
1895 spin_lock(&inode->i_lock);
1896 de = __d_find_any_alias(inode);
1897 spin_unlock(&inode->i_lock);
1898 return de;
1899}
46f72b34 1900EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1901
49c7dd28 1902static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1903{
9308a612
CH
1904 struct dentry *tmp;
1905 struct dentry *res;
b18825a7 1906 unsigned add_flags;
4ea3ada2
CH
1907
1908 if (!inode)
44003728 1909 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1910 if (IS_ERR(inode))
1911 return ERR_CAST(inode);
1912
d891eedb 1913 res = d_find_any_alias(inode);
9308a612
CH
1914 if (res)
1915 goto out_iput;
1916
798434bd 1917 tmp = __d_alloc(inode->i_sb, NULL);
9308a612
CH
1918 if (!tmp) {
1919 res = ERR_PTR(-ENOMEM);
1920 goto out_iput;
4ea3ada2 1921 }
b5c84bf6 1922
b9680917 1923 security_d_instantiate(tmp, inode);
873feea0 1924 spin_lock(&inode->i_lock);
d891eedb 1925 res = __d_find_any_alias(inode);
9308a612 1926 if (res) {
873feea0 1927 spin_unlock(&inode->i_lock);
9308a612
CH
1928 dput(tmp);
1929 goto out_iput;
1930 }
1931
1932 /* attach a disconnected dentry */
1a0a397e
BF
1933 add_flags = d_flags_for_inode(inode);
1934
1935 if (disconnected)
1936 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1937
9308a612 1938 spin_lock(&tmp->d_lock);
4bf46a27 1939 __d_set_inode_and_type(tmp, inode, add_flags);
946e51f2 1940 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1879fd6a 1941 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1942 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1943 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1944 spin_unlock(&tmp->d_lock);
873feea0 1945 spin_unlock(&inode->i_lock);
9308a612 1946
9308a612
CH
1947 return tmp;
1948
1949 out_iput:
1950 iput(inode);
1951 return res;
4ea3ada2 1952}
1a0a397e
BF
1953
1954/**
1955 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1956 * @inode: inode to allocate the dentry for
1957 *
1958 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1959 * similar open by handle operations. The returned dentry may be anonymous,
1960 * or may have a full name (if the inode was already in the cache).
1961 *
1962 * When called on a directory inode, we must ensure that the inode only ever
1963 * has one dentry. If a dentry is found, that is returned instead of
1964 * allocating a new one.
1965 *
1966 * On successful return, the reference to the inode has been transferred
1967 * to the dentry. In case of an error the reference on the inode is released.
1968 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1969 * be passed in and the error will be propagated to the return value,
1970 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1971 */
1972struct dentry *d_obtain_alias(struct inode *inode)
1973{
1974 return __d_obtain_alias(inode, 1);
1975}
adc48720 1976EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1977
1a0a397e
BF
1978/**
1979 * d_obtain_root - find or allocate a dentry for a given inode
1980 * @inode: inode to allocate the dentry for
1981 *
1982 * Obtain an IS_ROOT dentry for the root of a filesystem.
1983 *
1984 * We must ensure that directory inodes only ever have one dentry. If a
1985 * dentry is found, that is returned instead of allocating a new one.
1986 *
1987 * On successful return, the reference to the inode has been transferred
1988 * to the dentry. In case of an error the reference on the inode is
1989 * released. A %NULL or IS_ERR inode may be passed in and will be the
1990 * error will be propagate to the return value, with a %NULL @inode
1991 * replaced by ERR_PTR(-ESTALE).
1992 */
1993struct dentry *d_obtain_root(struct inode *inode)
1994{
1995 return __d_obtain_alias(inode, 0);
1996}
1997EXPORT_SYMBOL(d_obtain_root);
1998
9403540c
BN
1999/**
2000 * d_add_ci - lookup or allocate new dentry with case-exact name
2001 * @inode: the inode case-insensitive lookup has found
2002 * @dentry: the negative dentry that was passed to the parent's lookup func
2003 * @name: the case-exact name to be associated with the returned dentry
2004 *
2005 * This is to avoid filling the dcache with case-insensitive names to the
2006 * same inode, only the actual correct case is stored in the dcache for
2007 * case-insensitive filesystems.
2008 *
2009 * For a case-insensitive lookup match and if the the case-exact dentry
2010 * already exists in in the dcache, use it and return it.
2011 *
2012 * If no entry exists with the exact case name, allocate new dentry with
2013 * the exact case, and return the spliced entry.
2014 */
e45b590b 2015struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2016 struct qstr *name)
2017{
d9171b93 2018 struct dentry *found, *res;
9403540c 2019
b6520c81
CH
2020 /*
2021 * First check if a dentry matching the name already exists,
2022 * if not go ahead and create it now.
2023 */
9403540c 2024 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2025 if (found) {
2026 iput(inode);
2027 return found;
2028 }
2029 if (d_in_lookup(dentry)) {
2030 found = d_alloc_parallel(dentry->d_parent, name,
2031 dentry->d_wait);
2032 if (IS_ERR(found) || !d_in_lookup(found)) {
2033 iput(inode);
2034 return found;
9403540c 2035 }
d9171b93
AV
2036 } else {
2037 found = d_alloc(dentry->d_parent, name);
2038 if (!found) {
2039 iput(inode);
2040 return ERR_PTR(-ENOMEM);
2041 }
2042 }
2043 res = d_splice_alias(inode, found);
2044 if (res) {
2045 dput(found);
2046 return res;
9403540c 2047 }
4f522a24 2048 return found;
9403540c 2049}
ec4f8605 2050EXPORT_SYMBOL(d_add_ci);
1da177e4 2051
12f8ad4b 2052
d4c91a8f
AV
2053static inline bool d_same_name(const struct dentry *dentry,
2054 const struct dentry *parent,
2055 const struct qstr *name)
12f8ad4b 2056{
d4c91a8f
AV
2057 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2058 if (dentry->d_name.len != name->len)
2059 return false;
2060 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2061 }
d4c91a8f
AV
2062 return parent->d_op->d_compare(parent, dentry,
2063 dentry->d_name.len, dentry->d_name.name,
2064 name) == 0;
12f8ad4b
LT
2065}
2066
31e6b01f
NP
2067/**
2068 * __d_lookup_rcu - search for a dentry (racy, store-free)
2069 * @parent: parent dentry
2070 * @name: qstr of name we wish to find
1f1e6e52 2071 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2072 * Returns: dentry, or NULL
2073 *
2074 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2075 * resolution (store-free path walking) design described in
2076 * Documentation/filesystems/path-lookup.txt.
2077 *
2078 * This is not to be used outside core vfs.
2079 *
2080 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2081 * held, and rcu_read_lock held. The returned dentry must not be stored into
2082 * without taking d_lock and checking d_seq sequence count against @seq
2083 * returned here.
2084 *
15570086 2085 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2086 * function.
2087 *
2088 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2089 * the returned dentry, so long as its parent's seqlock is checked after the
2090 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2091 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2092 *
2093 * NOTE! The caller *has* to check the resulting dentry against the sequence
2094 * number we've returned before using any of the resulting dentry state!
31e6b01f 2095 */
8966be90
LT
2096struct dentry *__d_lookup_rcu(const struct dentry *parent,
2097 const struct qstr *name,
da53be12 2098 unsigned *seqp)
31e6b01f 2099{
26fe5750 2100 u64 hashlen = name->hash_len;
31e6b01f 2101 const unsigned char *str = name->name;
26fe5750 2102 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2103 struct hlist_bl_node *node;
31e6b01f
NP
2104 struct dentry *dentry;
2105
2106 /*
2107 * Note: There is significant duplication with __d_lookup_rcu which is
2108 * required to prevent single threaded performance regressions
2109 * especially on architectures where smp_rmb (in seqcounts) are costly.
2110 * Keep the two functions in sync.
2111 */
2112
2113 /*
2114 * The hash list is protected using RCU.
2115 *
2116 * Carefully use d_seq when comparing a candidate dentry, to avoid
2117 * races with d_move().
2118 *
2119 * It is possible that concurrent renames can mess up our list
2120 * walk here and result in missing our dentry, resulting in the
2121 * false-negative result. d_lookup() protects against concurrent
2122 * renames using rename_lock seqlock.
2123 *
b0a4bb83 2124 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2125 */
b07ad996 2126 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2127 unsigned seq;
31e6b01f 2128
31e6b01f 2129seqretry:
12f8ad4b
LT
2130 /*
2131 * The dentry sequence count protects us from concurrent
da53be12 2132 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2133 *
2134 * The caller must perform a seqcount check in order
da53be12 2135 * to do anything useful with the returned dentry.
12f8ad4b
LT
2136 *
2137 * NOTE! We do a "raw" seqcount_begin here. That means that
2138 * we don't wait for the sequence count to stabilize if it
2139 * is in the middle of a sequence change. If we do the slow
2140 * dentry compare, we will do seqretries until it is stable,
2141 * and if we end up with a successful lookup, we actually
2142 * want to exit RCU lookup anyway.
d4c91a8f
AV
2143 *
2144 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2145 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2146 */
2147 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2148 if (dentry->d_parent != parent)
2149 continue;
2e321806
LT
2150 if (d_unhashed(dentry))
2151 continue;
12f8ad4b 2152
830c0f0e 2153 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2154 int tlen;
2155 const char *tname;
26fe5750
LT
2156 if (dentry->d_name.hash != hashlen_hash(hashlen))
2157 continue;
d4c91a8f
AV
2158 tlen = dentry->d_name.len;
2159 tname = dentry->d_name.name;
2160 /* we want a consistent (name,len) pair */
2161 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2162 cpu_relax();
12f8ad4b
LT
2163 goto seqretry;
2164 }
d4c91a8f
AV
2165 if (parent->d_op->d_compare(parent, dentry,
2166 tlen, tname, name) != 0)
2167 continue;
2168 } else {
2169 if (dentry->d_name.hash_len != hashlen)
2170 continue;
2171 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2172 continue;
31e6b01f 2173 }
da53be12 2174 *seqp = seq;
d4c91a8f 2175 return dentry;
31e6b01f
NP
2176 }
2177 return NULL;
2178}
2179
1da177e4
LT
2180/**
2181 * d_lookup - search for a dentry
2182 * @parent: parent dentry
2183 * @name: qstr of name we wish to find
b04f784e 2184 * Returns: dentry, or NULL
1da177e4 2185 *
b04f784e
NP
2186 * d_lookup searches the children of the parent dentry for the name in
2187 * question. If the dentry is found its reference count is incremented and the
2188 * dentry is returned. The caller must use dput to free the entry when it has
2189 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2190 */
da2d8455 2191struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2192{
31e6b01f 2193 struct dentry *dentry;
949854d0 2194 unsigned seq;
1da177e4 2195
b8314f93
DY
2196 do {
2197 seq = read_seqbegin(&rename_lock);
2198 dentry = __d_lookup(parent, name);
2199 if (dentry)
1da177e4
LT
2200 break;
2201 } while (read_seqretry(&rename_lock, seq));
2202 return dentry;
2203}
ec4f8605 2204EXPORT_SYMBOL(d_lookup);
1da177e4 2205
31e6b01f 2206/**
b04f784e
NP
2207 * __d_lookup - search for a dentry (racy)
2208 * @parent: parent dentry
2209 * @name: qstr of name we wish to find
2210 * Returns: dentry, or NULL
2211 *
2212 * __d_lookup is like d_lookup, however it may (rarely) return a
2213 * false-negative result due to unrelated rename activity.
2214 *
2215 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2216 * however it must be used carefully, eg. with a following d_lookup in
2217 * the case of failure.
2218 *
2219 * __d_lookup callers must be commented.
2220 */
a713ca2a 2221struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2222{
1da177e4 2223 unsigned int hash = name->hash;
b07ad996 2224 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2225 struct hlist_bl_node *node;
31e6b01f 2226 struct dentry *found = NULL;
665a7583 2227 struct dentry *dentry;
1da177e4 2228
31e6b01f
NP
2229 /*
2230 * Note: There is significant duplication with __d_lookup_rcu which is
2231 * required to prevent single threaded performance regressions
2232 * especially on architectures where smp_rmb (in seqcounts) are costly.
2233 * Keep the two functions in sync.
2234 */
2235
b04f784e
NP
2236 /*
2237 * The hash list is protected using RCU.
2238 *
2239 * Take d_lock when comparing a candidate dentry, to avoid races
2240 * with d_move().
2241 *
2242 * It is possible that concurrent renames can mess up our list
2243 * walk here and result in missing our dentry, resulting in the
2244 * false-negative result. d_lookup() protects against concurrent
2245 * renames using rename_lock seqlock.
2246 *
b0a4bb83 2247 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2248 */
1da177e4
LT
2249 rcu_read_lock();
2250
b07ad996 2251 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2252
1da177e4
LT
2253 if (dentry->d_name.hash != hash)
2254 continue;
1da177e4
LT
2255
2256 spin_lock(&dentry->d_lock);
1da177e4
LT
2257 if (dentry->d_parent != parent)
2258 goto next;
d0185c08
LT
2259 if (d_unhashed(dentry))
2260 goto next;
2261
d4c91a8f
AV
2262 if (!d_same_name(dentry, parent, name))
2263 goto next;
1da177e4 2264
98474236 2265 dentry->d_lockref.count++;
d0185c08 2266 found = dentry;
1da177e4
LT
2267 spin_unlock(&dentry->d_lock);
2268 break;
2269next:
2270 spin_unlock(&dentry->d_lock);
2271 }
2272 rcu_read_unlock();
2273
2274 return found;
2275}
2276
3e7e241f
EB
2277/**
2278 * d_hash_and_lookup - hash the qstr then search for a dentry
2279 * @dir: Directory to search in
2280 * @name: qstr of name we wish to find
2281 *
4f522a24 2282 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2283 */
2284struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2285{
3e7e241f
EB
2286 /*
2287 * Check for a fs-specific hash function. Note that we must
2288 * calculate the standard hash first, as the d_op->d_hash()
2289 * routine may choose to leave the hash value unchanged.
2290 */
2291 name->hash = full_name_hash(name->name, name->len);
fb045adb 2292 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2293 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2294 if (unlikely(err < 0))
2295 return ERR_PTR(err);
3e7e241f 2296 }
4f522a24 2297 return d_lookup(dir, name);
3e7e241f 2298}
4f522a24 2299EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2300
1da177e4
LT
2301/*
2302 * When a file is deleted, we have two options:
2303 * - turn this dentry into a negative dentry
2304 * - unhash this dentry and free it.
2305 *
2306 * Usually, we want to just turn this into
2307 * a negative dentry, but if anybody else is
2308 * currently using the dentry or the inode
2309 * we can't do that and we fall back on removing
2310 * it from the hash queues and waiting for
2311 * it to be deleted later when it has no users
2312 */
2313
2314/**
2315 * d_delete - delete a dentry
2316 * @dentry: The dentry to delete
2317 *
2318 * Turn the dentry into a negative dentry if possible, otherwise
2319 * remove it from the hash queues so it can be deleted later
2320 */
2321
2322void d_delete(struct dentry * dentry)
2323{
873feea0 2324 struct inode *inode;
7a91bf7f 2325 int isdir = 0;
1da177e4
LT
2326 /*
2327 * Are we the only user?
2328 */
357f8e65 2329again:
1da177e4 2330 spin_lock(&dentry->d_lock);
873feea0
NP
2331 inode = dentry->d_inode;
2332 isdir = S_ISDIR(inode->i_mode);
98474236 2333 if (dentry->d_lockref.count == 1) {
1fe0c023 2334 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2335 spin_unlock(&dentry->d_lock);
2336 cpu_relax();
2337 goto again;
2338 }
13e3c5e5 2339 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2340 dentry_unlink_inode(dentry);
7a91bf7f 2341 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2342 return;
2343 }
2344
2345 if (!d_unhashed(dentry))
2346 __d_drop(dentry);
2347
2348 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2349
2350 fsnotify_nameremove(dentry, isdir);
1da177e4 2351}
ec4f8605 2352EXPORT_SYMBOL(d_delete);
1da177e4 2353
b07ad996 2354static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2355{
ceb5bdc2 2356 BUG_ON(!d_unhashed(entry));
1879fd6a 2357 hlist_bl_lock(b);
b07ad996 2358 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2359 hlist_bl_unlock(b);
1da177e4
LT
2360}
2361
770bfad8
DH
2362static void _d_rehash(struct dentry * entry)
2363{
2364 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2365}
2366
1da177e4
LT
2367/**
2368 * d_rehash - add an entry back to the hash
2369 * @entry: dentry to add to the hash
2370 *
2371 * Adds a dentry to the hash according to its name.
2372 */
2373
2374void d_rehash(struct dentry * entry)
2375{
1da177e4 2376 spin_lock(&entry->d_lock);
770bfad8 2377 _d_rehash(entry);
1da177e4 2378 spin_unlock(&entry->d_lock);
1da177e4 2379}
ec4f8605 2380EXPORT_SYMBOL(d_rehash);
1da177e4 2381
84e710da
AV
2382static inline unsigned start_dir_add(struct inode *dir)
2383{
2384
2385 for (;;) {
2386 unsigned n = dir->i_dir_seq;
2387 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2388 return n;
2389 cpu_relax();
2390 }
2391}
2392
2393static inline void end_dir_add(struct inode *dir, unsigned n)
2394{
2395 smp_store_release(&dir->i_dir_seq, n + 2);
2396}
2397
d9171b93
AV
2398static void d_wait_lookup(struct dentry *dentry)
2399{
2400 if (d_in_lookup(dentry)) {
2401 DECLARE_WAITQUEUE(wait, current);
2402 add_wait_queue(dentry->d_wait, &wait);
2403 do {
2404 set_current_state(TASK_UNINTERRUPTIBLE);
2405 spin_unlock(&dentry->d_lock);
2406 schedule();
2407 spin_lock(&dentry->d_lock);
2408 } while (d_in_lookup(dentry));
2409 }
2410}
2411
94bdd655 2412struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2413 const struct qstr *name,
2414 wait_queue_head_t *wq)
94bdd655 2415{
94bdd655 2416 unsigned int hash = name->hash;
94bdd655
AV
2417 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2418 struct hlist_bl_node *node;
2419 struct dentry *new = d_alloc(parent, name);
2420 struct dentry *dentry;
2421 unsigned seq, r_seq, d_seq;
2422
2423 if (unlikely(!new))
2424 return ERR_PTR(-ENOMEM);
2425
2426retry:
2427 rcu_read_lock();
2428 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2429 r_seq = read_seqbegin(&rename_lock);
2430 dentry = __d_lookup_rcu(parent, name, &d_seq);
2431 if (unlikely(dentry)) {
2432 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2433 rcu_read_unlock();
2434 goto retry;
2435 }
2436 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2437 rcu_read_unlock();
2438 dput(dentry);
2439 goto retry;
2440 }
2441 rcu_read_unlock();
2442 dput(new);
2443 return dentry;
2444 }
2445 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2446 rcu_read_unlock();
2447 goto retry;
2448 }
2449 hlist_bl_lock(b);
2450 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2451 hlist_bl_unlock(b);
2452 rcu_read_unlock();
2453 goto retry;
2454 }
94bdd655
AV
2455 /*
2456 * No changes for the parent since the beginning of d_lookup().
2457 * Since all removals from the chain happen with hlist_bl_lock(),
2458 * any potential in-lookup matches are going to stay here until
2459 * we unlock the chain. All fields are stable in everything
2460 * we encounter.
2461 */
2462 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2463 if (dentry->d_name.hash != hash)
2464 continue;
2465 if (dentry->d_parent != parent)
2466 continue;
d4c91a8f
AV
2467 if (!d_same_name(dentry, parent, name))
2468 continue;
94bdd655 2469 hlist_bl_unlock(b);
e7d6ef97
AV
2470 /* now we can try to grab a reference */
2471 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2472 rcu_read_unlock();
2473 goto retry;
2474 }
2475
2476 rcu_read_unlock();
2477 /*
2478 * somebody is likely to be still doing lookup for it;
2479 * wait for them to finish
2480 */
d9171b93
AV
2481 spin_lock(&dentry->d_lock);
2482 d_wait_lookup(dentry);
2483 /*
2484 * it's not in-lookup anymore; in principle we should repeat
2485 * everything from dcache lookup, but it's likely to be what
2486 * d_lookup() would've found anyway. If it is, just return it;
2487 * otherwise we really have to repeat the whole thing.
2488 */
2489 if (unlikely(dentry->d_name.hash != hash))
2490 goto mismatch;
2491 if (unlikely(dentry->d_parent != parent))
2492 goto mismatch;
2493 if (unlikely(d_unhashed(dentry)))
2494 goto mismatch;
d4c91a8f
AV
2495 if (unlikely(!d_same_name(dentry, parent, name)))
2496 goto mismatch;
d9171b93
AV
2497 /* OK, it *is* a hashed match; return it */
2498 spin_unlock(&dentry->d_lock);
94bdd655
AV
2499 dput(new);
2500 return dentry;
2501 }
e7d6ef97 2502 rcu_read_unlock();
94bdd655
AV
2503 /* we can't take ->d_lock here; it's OK, though. */
2504 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2505 new->d_wait = wq;
94bdd655
AV
2506 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2507 hlist_bl_unlock(b);
2508 return new;
d9171b93
AV
2509mismatch:
2510 spin_unlock(&dentry->d_lock);
2511 dput(dentry);
2512 goto retry;
94bdd655
AV
2513}
2514EXPORT_SYMBOL(d_alloc_parallel);
2515
85c7f810
AV
2516void __d_lookup_done(struct dentry *dentry)
2517{
94bdd655
AV
2518 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2519 dentry->d_name.hash);
2520 hlist_bl_lock(b);
85c7f810 2521 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2522 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2523 wake_up_all(dentry->d_wait);
2524 dentry->d_wait = NULL;
94bdd655
AV
2525 hlist_bl_unlock(b);
2526 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2527 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2528}
2529EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2530
2531/* inode->i_lock held if inode is non-NULL */
2532
2533static inline void __d_add(struct dentry *dentry, struct inode *inode)
2534{
84e710da
AV
2535 struct inode *dir = NULL;
2536 unsigned n;
0568d705 2537 spin_lock(&dentry->d_lock);
84e710da
AV
2538 if (unlikely(d_in_lookup(dentry))) {
2539 dir = dentry->d_parent->d_inode;
2540 n = start_dir_add(dir);
85c7f810 2541 __d_lookup_done(dentry);
84e710da 2542 }
ed782b5a 2543 if (inode) {
0568d705
AV
2544 unsigned add_flags = d_flags_for_inode(inode);
2545 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2546 raw_write_seqcount_begin(&dentry->d_seq);
2547 __d_set_inode_and_type(dentry, inode, add_flags);
2548 raw_write_seqcount_end(&dentry->d_seq);
affda484 2549 fsnotify_update_flags(dentry);
ed782b5a 2550 }
0568d705 2551 _d_rehash(dentry);
84e710da
AV
2552 if (dir)
2553 end_dir_add(dir, n);
0568d705
AV
2554 spin_unlock(&dentry->d_lock);
2555 if (inode)
2556 spin_unlock(&inode->i_lock);
ed782b5a
AV
2557}
2558
34d0d19d
AV
2559/**
2560 * d_add - add dentry to hash queues
2561 * @entry: dentry to add
2562 * @inode: The inode to attach to this dentry
2563 *
2564 * This adds the entry to the hash queues and initializes @inode.
2565 * The entry was actually filled in earlier during d_alloc().
2566 */
2567
2568void d_add(struct dentry *entry, struct inode *inode)
2569{
b9680917
AV
2570 if (inode) {
2571 security_d_instantiate(entry, inode);
ed782b5a 2572 spin_lock(&inode->i_lock);
b9680917 2573 }
ed782b5a 2574 __d_add(entry, inode);
34d0d19d
AV
2575}
2576EXPORT_SYMBOL(d_add);
2577
668d0cd5
AV
2578/**
2579 * d_exact_alias - find and hash an exact unhashed alias
2580 * @entry: dentry to add
2581 * @inode: The inode to go with this dentry
2582 *
2583 * If an unhashed dentry with the same name/parent and desired
2584 * inode already exists, hash and return it. Otherwise, return
2585 * NULL.
2586 *
2587 * Parent directory should be locked.
2588 */
2589struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2590{
2591 struct dentry *alias;
668d0cd5
AV
2592 unsigned int hash = entry->d_name.hash;
2593
2594 spin_lock(&inode->i_lock);
2595 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2596 /*
2597 * Don't need alias->d_lock here, because aliases with
2598 * d_parent == entry->d_parent are not subject to name or
2599 * parent changes, because the parent inode i_mutex is held.
2600 */
2601 if (alias->d_name.hash != hash)
2602 continue;
2603 if (alias->d_parent != entry->d_parent)
2604 continue;
d4c91a8f 2605 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2606 continue;
2607 spin_lock(&alias->d_lock);
2608 if (!d_unhashed(alias)) {
2609 spin_unlock(&alias->d_lock);
2610 alias = NULL;
2611 } else {
2612 __dget_dlock(alias);
2613 _d_rehash(alias);
2614 spin_unlock(&alias->d_lock);
2615 }
2616 spin_unlock(&inode->i_lock);
2617 return alias;
2618 }
2619 spin_unlock(&inode->i_lock);
2620 return NULL;
2621}
2622EXPORT_SYMBOL(d_exact_alias);
2623
fb2d5b86
NP
2624/**
2625 * dentry_update_name_case - update case insensitive dentry with a new name
2626 * @dentry: dentry to be updated
2627 * @name: new name
2628 *
2629 * Update a case insensitive dentry with new case of name.
2630 *
2631 * dentry must have been returned by d_lookup with name @name. Old and new
2632 * name lengths must match (ie. no d_compare which allows mismatched name
2633 * lengths).
2634 *
2635 * Parent inode i_mutex must be held over d_lookup and into this call (to
2636 * keep renames and concurrent inserts, and readdir(2) away).
2637 */
2638void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2639{
5955102c 2640 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2641 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2642
fb2d5b86 2643 spin_lock(&dentry->d_lock);
31e6b01f 2644 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2645 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2646 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2647 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2648}
2649EXPORT_SYMBOL(dentry_update_name_case);
2650
8d85b484 2651static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2652{
8d85b484
AV
2653 if (unlikely(dname_external(target))) {
2654 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2655 /*
2656 * Both external: swap the pointers
2657 */
9a8d5bb4 2658 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2659 } else {
2660 /*
2661 * dentry:internal, target:external. Steal target's
2662 * storage and make target internal.
2663 */
321bcf92
BF
2664 memcpy(target->d_iname, dentry->d_name.name,
2665 dentry->d_name.len + 1);
1da177e4
LT
2666 dentry->d_name.name = target->d_name.name;
2667 target->d_name.name = target->d_iname;
2668 }
2669 } else {
8d85b484 2670 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2671 /*
2672 * dentry:external, target:internal. Give dentry's
2673 * storage to target and make dentry internal
2674 */
2675 memcpy(dentry->d_iname, target->d_name.name,
2676 target->d_name.len + 1);
2677 target->d_name.name = dentry->d_name.name;
2678 dentry->d_name.name = dentry->d_iname;
2679 } else {
2680 /*
da1ce067 2681 * Both are internal.
1da177e4 2682 */
da1ce067
MS
2683 unsigned int i;
2684 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
08d4f772
MP
2685 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2686 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
da1ce067
MS
2687 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2688 swap(((long *) &dentry->d_iname)[i],
2689 ((long *) &target->d_iname)[i]);
2690 }
1da177e4
LT
2691 }
2692 }
a28ddb87 2693 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2694}
2695
8d85b484
AV
2696static void copy_name(struct dentry *dentry, struct dentry *target)
2697{
2698 struct external_name *old_name = NULL;
2699 if (unlikely(dname_external(dentry)))
2700 old_name = external_name(dentry);
2701 if (unlikely(dname_external(target))) {
2702 atomic_inc(&external_name(target)->u.count);
2703 dentry->d_name = target->d_name;
2704 } else {
2705 memcpy(dentry->d_iname, target->d_name.name,
2706 target->d_name.len + 1);
2707 dentry->d_name.name = dentry->d_iname;
2708 dentry->d_name.hash_len = target->d_name.hash_len;
2709 }
2710 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2711 kfree_rcu(old_name, u.head);
2712}
2713
2fd6b7f5
NP
2714static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2715{
2716 /*
2717 * XXXX: do we really need to take target->d_lock?
2718 */
2719 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2720 spin_lock(&target->d_parent->d_lock);
2721 else {
2722 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2723 spin_lock(&dentry->d_parent->d_lock);
2724 spin_lock_nested(&target->d_parent->d_lock,
2725 DENTRY_D_LOCK_NESTED);
2726 } else {
2727 spin_lock(&target->d_parent->d_lock);
2728 spin_lock_nested(&dentry->d_parent->d_lock,
2729 DENTRY_D_LOCK_NESTED);
2730 }
2731 }
2732 if (target < dentry) {
2733 spin_lock_nested(&target->d_lock, 2);
2734 spin_lock_nested(&dentry->d_lock, 3);
2735 } else {
2736 spin_lock_nested(&dentry->d_lock, 2);
2737 spin_lock_nested(&target->d_lock, 3);
2738 }
2739}
2740
986c0194 2741static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2742{
2743 if (target->d_parent != dentry->d_parent)
2744 spin_unlock(&dentry->d_parent->d_lock);
2745 if (target->d_parent != target)
2746 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2747 spin_unlock(&target->d_lock);
2748 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2749}
2750
1da177e4 2751/*
2fd6b7f5
NP
2752 * When switching names, the actual string doesn't strictly have to
2753 * be preserved in the target - because we're dropping the target
2754 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2755 * the new name before we switch, unless we are going to rehash
2756 * it. Note that if we *do* unhash the target, we are not allowed
2757 * to rehash it without giving it a new name/hash key - whether
2758 * we swap or overwrite the names here, resulting name won't match
2759 * the reality in filesystem; it's only there for d_path() purposes.
2760 * Note that all of this is happening under rename_lock, so the
2761 * any hash lookup seeing it in the middle of manipulations will
2762 * be discarded anyway. So we do not care what happens to the hash
2763 * key in that case.
1da177e4 2764 */
9eaef27b 2765/*
18367501 2766 * __d_move - move a dentry
1da177e4
LT
2767 * @dentry: entry to move
2768 * @target: new dentry
da1ce067 2769 * @exchange: exchange the two dentries
1da177e4
LT
2770 *
2771 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2772 * dcache entries should not be moved in this way. Caller must hold
2773 * rename_lock, the i_mutex of the source and target directories,
2774 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2775 */
da1ce067
MS
2776static void __d_move(struct dentry *dentry, struct dentry *target,
2777 bool exchange)
1da177e4 2778{
84e710da
AV
2779 struct inode *dir = NULL;
2780 unsigned n;
1da177e4
LT
2781 if (!dentry->d_inode)
2782 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2783
2fd6b7f5
NP
2784 BUG_ON(d_ancestor(dentry, target));
2785 BUG_ON(d_ancestor(target, dentry));
2786
2fd6b7f5 2787 dentry_lock_for_move(dentry, target);
84e710da
AV
2788 if (unlikely(d_in_lookup(target))) {
2789 dir = target->d_parent->d_inode;
2790 n = start_dir_add(dir);
85c7f810 2791 __d_lookup_done(target);
84e710da 2792 }
1da177e4 2793
31e6b01f 2794 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2795 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2796
ceb5bdc2
NP
2797 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2798
2799 /*
2800 * Move the dentry to the target hash queue. Don't bother checking
2801 * for the same hash queue because of how unlikely it is.
2802 */
2803 __d_drop(dentry);
789680d1 2804 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2805
da1ce067
MS
2806 /*
2807 * Unhash the target (d_delete() is not usable here). If exchanging
2808 * the two dentries, then rehash onto the other's hash queue.
2809 */
1da177e4 2810 __d_drop(target);
da1ce067
MS
2811 if (exchange) {
2812 __d_rehash(target,
2813 d_hash(dentry->d_parent, dentry->d_name.hash));
2814 }
1da177e4 2815
1da177e4 2816 /* Switch the names.. */
8d85b484
AV
2817 if (exchange)
2818 swap_names(dentry, target);
2819 else
2820 copy_name(dentry, target);
1da177e4 2821
63cf427a 2822 /* ... and switch them in the tree */
1da177e4 2823 if (IS_ROOT(dentry)) {
63cf427a 2824 /* splicing a tree */
3d56c25e 2825 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2826 dentry->d_parent = target->d_parent;
2827 target->d_parent = target;
946e51f2
AV
2828 list_del_init(&target->d_child);
2829 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2830 } else {
63cf427a 2831 /* swapping two dentries */
9a8d5bb4 2832 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2833 list_move(&target->d_child, &target->d_parent->d_subdirs);
2834 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2835 if (exchange)
affda484
AV
2836 fsnotify_update_flags(target);
2837 fsnotify_update_flags(dentry);
1da177e4
LT
2838 }
2839
31e6b01f
NP
2840 write_seqcount_end(&target->d_seq);
2841 write_seqcount_end(&dentry->d_seq);
2842
84e710da
AV
2843 if (dir)
2844 end_dir_add(dir, n);
986c0194 2845 dentry_unlock_for_move(dentry, target);
18367501
AV
2846}
2847
2848/*
2849 * d_move - move a dentry
2850 * @dentry: entry to move
2851 * @target: new dentry
2852 *
2853 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2854 * dcache entries should not be moved in this way. See the locking
2855 * requirements for __d_move.
18367501
AV
2856 */
2857void d_move(struct dentry *dentry, struct dentry *target)
2858{
2859 write_seqlock(&rename_lock);
da1ce067 2860 __d_move(dentry, target, false);
1da177e4 2861 write_sequnlock(&rename_lock);
9eaef27b 2862}
ec4f8605 2863EXPORT_SYMBOL(d_move);
1da177e4 2864
da1ce067
MS
2865/*
2866 * d_exchange - exchange two dentries
2867 * @dentry1: first dentry
2868 * @dentry2: second dentry
2869 */
2870void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2871{
2872 write_seqlock(&rename_lock);
2873
2874 WARN_ON(!dentry1->d_inode);
2875 WARN_ON(!dentry2->d_inode);
2876 WARN_ON(IS_ROOT(dentry1));
2877 WARN_ON(IS_ROOT(dentry2));
2878
2879 __d_move(dentry1, dentry2, true);
2880
2881 write_sequnlock(&rename_lock);
2882}
2883
e2761a11
OH
2884/**
2885 * d_ancestor - search for an ancestor
2886 * @p1: ancestor dentry
2887 * @p2: child dentry
2888 *
2889 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2890 * an ancestor of p2, else NULL.
9eaef27b 2891 */
e2761a11 2892struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2893{
2894 struct dentry *p;
2895
871c0067 2896 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2897 if (p->d_parent == p1)
e2761a11 2898 return p;
9eaef27b 2899 }
e2761a11 2900 return NULL;
9eaef27b
TM
2901}
2902
2903/*
2904 * This helper attempts to cope with remotely renamed directories
2905 *
2906 * It assumes that the caller is already holding
a03e283b 2907 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2908 *
2909 * Note: If ever the locking in lock_rename() changes, then please
2910 * remember to update this too...
9eaef27b 2911 */
b5ae6b15 2912static int __d_unalias(struct inode *inode,
873feea0 2913 struct dentry *dentry, struct dentry *alias)
9eaef27b 2914{
9902af79
AV
2915 struct mutex *m1 = NULL;
2916 struct rw_semaphore *m2 = NULL;
3d330dc1 2917 int ret = -ESTALE;
9eaef27b
TM
2918
2919 /* If alias and dentry share a parent, then no extra locks required */
2920 if (alias->d_parent == dentry->d_parent)
2921 goto out_unalias;
2922
9eaef27b 2923 /* See lock_rename() */
9eaef27b
TM
2924 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2925 goto out_err;
2926 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2927 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2928 goto out_err;
9902af79 2929 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2930out_unalias:
8ed936b5 2931 __d_move(alias, dentry, false);
b5ae6b15 2932 ret = 0;
9eaef27b 2933out_err:
9eaef27b 2934 if (m2)
9902af79 2935 up_read(m2);
9eaef27b
TM
2936 if (m1)
2937 mutex_unlock(m1);
2938 return ret;
2939}
2940
3f70bd51
BF
2941/**
2942 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2943 * @inode: the inode which may have a disconnected dentry
2944 * @dentry: a negative dentry which we want to point to the inode.
2945 *
da093a9b
BF
2946 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2947 * place of the given dentry and return it, else simply d_add the inode
2948 * to the dentry and return NULL.
3f70bd51 2949 *
908790fa
BF
2950 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2951 * we should error out: directories can't have multiple aliases.
2952 *
3f70bd51
BF
2953 * This is needed in the lookup routine of any filesystem that is exportable
2954 * (via knfsd) so that we can build dcache paths to directories effectively.
2955 *
2956 * If a dentry was found and moved, then it is returned. Otherwise NULL
2957 * is returned. This matches the expected return value of ->lookup.
2958 *
2959 * Cluster filesystems may call this function with a negative, hashed dentry.
2960 * In that case, we know that the inode will be a regular file, and also this
2961 * will only occur during atomic_open. So we need to check for the dentry
2962 * being already hashed only in the final case.
2963 */
2964struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2965{
3f70bd51
BF
2966 if (IS_ERR(inode))
2967 return ERR_CAST(inode);
2968
770bfad8
DH
2969 BUG_ON(!d_unhashed(dentry));
2970
de689f5e 2971 if (!inode)
b5ae6b15 2972 goto out;
de689f5e 2973
b9680917 2974 security_d_instantiate(dentry, inode);
873feea0 2975 spin_lock(&inode->i_lock);
9eaef27b 2976 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2977 struct dentry *new = __d_find_any_alias(inode);
2978 if (unlikely(new)) {
a03e283b
EB
2979 /* The reference to new ensures it remains an alias */
2980 spin_unlock(&inode->i_lock);
18367501 2981 write_seqlock(&rename_lock);
b5ae6b15
AV
2982 if (unlikely(d_ancestor(new, dentry))) {
2983 write_sequnlock(&rename_lock);
b5ae6b15
AV
2984 dput(new);
2985 new = ERR_PTR(-ELOOP);
2986 pr_warn_ratelimited(
2987 "VFS: Lookup of '%s' in %s %s"
2988 " would have caused loop\n",
2989 dentry->d_name.name,
2990 inode->i_sb->s_type->name,
2991 inode->i_sb->s_id);
2992 } else if (!IS_ROOT(new)) {
2993 int err = __d_unalias(inode, dentry, new);
18367501 2994 write_sequnlock(&rename_lock);
b5ae6b15
AV
2995 if (err) {
2996 dput(new);
2997 new = ERR_PTR(err);
2998 }
18367501 2999 } else {
b5ae6b15
AV
3000 __d_move(new, dentry, false);
3001 write_sequnlock(&rename_lock);
dd179946 3002 }
b5ae6b15
AV
3003 iput(inode);
3004 return new;
9eaef27b 3005 }
770bfad8 3006 }
b5ae6b15 3007out:
ed782b5a 3008 __d_add(dentry, inode);
b5ae6b15 3009 return NULL;
770bfad8 3010}
b5ae6b15 3011EXPORT_SYMBOL(d_splice_alias);
770bfad8 3012
cdd16d02 3013static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3014{
3015 *buflen -= namelen;
3016 if (*buflen < 0)
3017 return -ENAMETOOLONG;
3018 *buffer -= namelen;
3019 memcpy(*buffer, str, namelen);
3020 return 0;
3021}
3022
232d2d60
WL
3023/**
3024 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3025 * @buffer: buffer pointer
3026 * @buflen: allocated length of the buffer
3027 * @name: name string and length qstr structure
232d2d60
WL
3028 *
3029 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3030 * make sure that either the old or the new name pointer and length are
3031 * fetched. However, there may be mismatch between length and pointer.
3032 * The length cannot be trusted, we need to copy it byte-by-byte until
3033 * the length is reached or a null byte is found. It also prepends "/" at
3034 * the beginning of the name. The sequence number check at the caller will
3035 * retry it again when a d_move() does happen. So any garbage in the buffer
3036 * due to mismatched pointer and length will be discarded.
6d13f694
AV
3037 *
3038 * Data dependency barrier is needed to make sure that we see that terminating
3039 * NUL. Alpha strikes again, film at 11...
232d2d60 3040 */
cdd16d02
MS
3041static int prepend_name(char **buffer, int *buflen, struct qstr *name)
3042{
232d2d60
WL
3043 const char *dname = ACCESS_ONCE(name->name);
3044 u32 dlen = ACCESS_ONCE(name->len);
3045 char *p;
3046
6d13f694
AV
3047 smp_read_barrier_depends();
3048
232d2d60 3049 *buflen -= dlen + 1;
e825196d
AV
3050 if (*buflen < 0)
3051 return -ENAMETOOLONG;
232d2d60
WL
3052 p = *buffer -= dlen + 1;
3053 *p++ = '/';
3054 while (dlen--) {
3055 char c = *dname++;
3056 if (!c)
3057 break;
3058 *p++ = c;
3059 }
3060 return 0;
cdd16d02
MS
3061}
3062
1da177e4 3063/**
208898c1 3064 * prepend_path - Prepend path string to a buffer
9d1bc601 3065 * @path: the dentry/vfsmount to report
02125a82 3066 * @root: root vfsmnt/dentry
f2eb6575
MS
3067 * @buffer: pointer to the end of the buffer
3068 * @buflen: pointer to buffer length
552ce544 3069 *
18129977
WL
3070 * The function will first try to write out the pathname without taking any
3071 * lock other than the RCU read lock to make sure that dentries won't go away.
3072 * It only checks the sequence number of the global rename_lock as any change
3073 * in the dentry's d_seq will be preceded by changes in the rename_lock
3074 * sequence number. If the sequence number had been changed, it will restart
3075 * the whole pathname back-tracing sequence again by taking the rename_lock.
3076 * In this case, there is no need to take the RCU read lock as the recursive
3077 * parent pointer references will keep the dentry chain alive as long as no
3078 * rename operation is performed.
1da177e4 3079 */
02125a82
AV
3080static int prepend_path(const struct path *path,
3081 const struct path *root,
f2eb6575 3082 char **buffer, int *buflen)
1da177e4 3083{
ede4cebc
AV
3084 struct dentry *dentry;
3085 struct vfsmount *vfsmnt;
3086 struct mount *mnt;
f2eb6575 3087 int error = 0;
48a066e7 3088 unsigned seq, m_seq = 0;
232d2d60
WL
3089 char *bptr;
3090 int blen;
6092d048 3091
48f5ec21 3092 rcu_read_lock();
48a066e7
AV
3093restart_mnt:
3094 read_seqbegin_or_lock(&mount_lock, &m_seq);
3095 seq = 0;
4ec6c2ae 3096 rcu_read_lock();
232d2d60
WL
3097restart:
3098 bptr = *buffer;
3099 blen = *buflen;
48a066e7 3100 error = 0;
ede4cebc
AV
3101 dentry = path->dentry;
3102 vfsmnt = path->mnt;
3103 mnt = real_mount(vfsmnt);
232d2d60 3104 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3105 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3106 struct dentry * parent;
3107
1da177e4 3108 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 3109 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
cde93be4
EB
3110 /* Escaped? */
3111 if (dentry != vfsmnt->mnt_root) {
3112 bptr = *buffer;
3113 blen = *buflen;
3114 error = 3;
3115 break;
3116 }
552ce544 3117 /* Global root? */
48a066e7
AV
3118 if (mnt != parent) {
3119 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3120 mnt = parent;
232d2d60
WL
3121 vfsmnt = &mnt->mnt;
3122 continue;
3123 }
232d2d60
WL
3124 if (!error)
3125 error = is_mounted(vfsmnt) ? 1 : 2;
3126 break;
1da177e4
LT
3127 }
3128 parent = dentry->d_parent;
3129 prefetch(parent);
232d2d60 3130 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3131 if (error)
3132 break;
3133
1da177e4
LT
3134 dentry = parent;
3135 }
48f5ec21
AV
3136 if (!(seq & 1))
3137 rcu_read_unlock();
3138 if (need_seqretry(&rename_lock, seq)) {
3139 seq = 1;
232d2d60 3140 goto restart;
48f5ec21
AV
3141 }
3142 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3143
3144 if (!(m_seq & 1))
3145 rcu_read_unlock();
48a066e7
AV
3146 if (need_seqretry(&mount_lock, m_seq)) {
3147 m_seq = 1;
3148 goto restart_mnt;
3149 }
3150 done_seqretry(&mount_lock, m_seq);
1da177e4 3151
232d2d60
WL
3152 if (error >= 0 && bptr == *buffer) {
3153 if (--blen < 0)
3154 error = -ENAMETOOLONG;
3155 else
3156 *--bptr = '/';
3157 }
3158 *buffer = bptr;
3159 *buflen = blen;
7ea600b5 3160 return error;
f2eb6575 3161}
be285c71 3162
f2eb6575
MS
3163/**
3164 * __d_path - return the path of a dentry
3165 * @path: the dentry/vfsmount to report
02125a82 3166 * @root: root vfsmnt/dentry
cd956a1c 3167 * @buf: buffer to return value in
f2eb6575
MS
3168 * @buflen: buffer length
3169 *
ffd1f4ed 3170 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3171 *
3172 * Returns a pointer into the buffer or an error code if the
3173 * path was too long.
3174 *
be148247 3175 * "buflen" should be positive.
f2eb6575 3176 *
02125a82 3177 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3178 */
02125a82
AV
3179char *__d_path(const struct path *path,
3180 const struct path *root,
f2eb6575
MS
3181 char *buf, int buflen)
3182{
3183 char *res = buf + buflen;
3184 int error;
3185
3186 prepend(&res, &buflen, "\0", 1);
f2eb6575 3187 error = prepend_path(path, root, &res, &buflen);
be148247 3188
02125a82
AV
3189 if (error < 0)
3190 return ERR_PTR(error);
3191 if (error > 0)
3192 return NULL;
3193 return res;
3194}
3195
3196char *d_absolute_path(const struct path *path,
3197 char *buf, int buflen)
3198{
3199 struct path root = {};
3200 char *res = buf + buflen;
3201 int error;
3202
3203 prepend(&res, &buflen, "\0", 1);
02125a82 3204 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3205
3206 if (error > 1)
3207 error = -EINVAL;
3208 if (error < 0)
f2eb6575 3209 return ERR_PTR(error);
f2eb6575 3210 return res;
1da177e4
LT
3211}
3212
ffd1f4ed
MS
3213/*
3214 * same as __d_path but appends "(deleted)" for unlinked files.
3215 */
02125a82
AV
3216static int path_with_deleted(const struct path *path,
3217 const struct path *root,
3218 char **buf, int *buflen)
ffd1f4ed
MS
3219{
3220 prepend(buf, buflen, "\0", 1);
3221 if (d_unlinked(path->dentry)) {
3222 int error = prepend(buf, buflen, " (deleted)", 10);
3223 if (error)
3224 return error;
3225 }
3226
3227 return prepend_path(path, root, buf, buflen);
3228}
3229
8df9d1a4
MS
3230static int prepend_unreachable(char **buffer, int *buflen)
3231{
3232 return prepend(buffer, buflen, "(unreachable)", 13);
3233}
3234
68f0d9d9
LT
3235static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3236{
3237 unsigned seq;
3238
3239 do {
3240 seq = read_seqcount_begin(&fs->seq);
3241 *root = fs->root;
3242 } while (read_seqcount_retry(&fs->seq, seq));
3243}
3244
a03a8a70
JB
3245/**
3246 * d_path - return the path of a dentry
cf28b486 3247 * @path: path to report
a03a8a70
JB
3248 * @buf: buffer to return value in
3249 * @buflen: buffer length
3250 *
3251 * Convert a dentry into an ASCII path name. If the entry has been deleted
3252 * the string " (deleted)" is appended. Note that this is ambiguous.
3253 *
52afeefb
AV
3254 * Returns a pointer into the buffer or an error code if the path was
3255 * too long. Note: Callers should use the returned pointer, not the passed
3256 * in buffer, to use the name! The implementation often starts at an offset
3257 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3258 *
31f3e0b3 3259 * "buflen" should be positive.
a03a8a70 3260 */
20d4fdc1 3261char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3262{
ffd1f4ed 3263 char *res = buf + buflen;
6ac08c39 3264 struct path root;
ffd1f4ed 3265 int error;
1da177e4 3266
c23fbb6b
ED
3267 /*
3268 * We have various synthetic filesystems that never get mounted. On
3269 * these filesystems dentries are never used for lookup purposes, and
3270 * thus don't need to be hashed. They also don't need a name until a
3271 * user wants to identify the object in /proc/pid/fd/. The little hack
3272 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3273 *
3274 * Some pseudo inodes are mountable. When they are mounted
3275 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3276 * and instead have d_path return the mounted path.
c23fbb6b 3277 */
f48cfddc
EB
3278 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3279 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3280 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3281
68f0d9d9
LT
3282 rcu_read_lock();
3283 get_fs_root_rcu(current->fs, &root);
02125a82 3284 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3285 rcu_read_unlock();
3286
02125a82 3287 if (error < 0)
ffd1f4ed 3288 res = ERR_PTR(error);
1da177e4
LT
3289 return res;
3290}
ec4f8605 3291EXPORT_SYMBOL(d_path);
1da177e4 3292
c23fbb6b
ED
3293/*
3294 * Helper function for dentry_operations.d_dname() members
3295 */
3296char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3297 const char *fmt, ...)
3298{
3299 va_list args;
3300 char temp[64];
3301 int sz;
3302
3303 va_start(args, fmt);
3304 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3305 va_end(args);
3306
3307 if (sz > sizeof(temp) || sz > buflen)
3308 return ERR_PTR(-ENAMETOOLONG);
3309
3310 buffer += buflen - sz;
3311 return memcpy(buffer, temp, sz);
3312}
3313
118b2302
AV
3314char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3315{
3316 char *end = buffer + buflen;
3317 /* these dentries are never renamed, so d_lock is not needed */
3318 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3319 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3320 prepend(&end, &buflen, "/", 1))
3321 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3322 return end;
118b2302 3323}
31bbe16f 3324EXPORT_SYMBOL(simple_dname);
118b2302 3325
6092d048
RP
3326/*
3327 * Write full pathname from the root of the filesystem into the buffer.
3328 */
f6500801 3329static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3330{
f6500801 3331 struct dentry *dentry;
232d2d60
WL
3332 char *end, *retval;
3333 int len, seq = 0;
3334 int error = 0;
6092d048 3335
f6500801
AV
3336 if (buflen < 2)
3337 goto Elong;
3338
48f5ec21 3339 rcu_read_lock();
232d2d60 3340restart:
f6500801 3341 dentry = d;
232d2d60
WL
3342 end = buf + buflen;
3343 len = buflen;
3344 prepend(&end, &len, "\0", 1);
6092d048
RP
3345 /* Get '/' right */
3346 retval = end-1;
3347 *retval = '/';
232d2d60 3348 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3349 while (!IS_ROOT(dentry)) {
3350 struct dentry *parent = dentry->d_parent;
6092d048 3351
6092d048 3352 prefetch(parent);
232d2d60
WL
3353 error = prepend_name(&end, &len, &dentry->d_name);
3354 if (error)
3355 break;
6092d048
RP
3356
3357 retval = end;
3358 dentry = parent;
3359 }
48f5ec21
AV
3360 if (!(seq & 1))
3361 rcu_read_unlock();
3362 if (need_seqretry(&rename_lock, seq)) {
3363 seq = 1;
232d2d60 3364 goto restart;
48f5ec21
AV
3365 }
3366 done_seqretry(&rename_lock, seq);
232d2d60
WL
3367 if (error)
3368 goto Elong;
c103135c
AV
3369 return retval;
3370Elong:
3371 return ERR_PTR(-ENAMETOOLONG);
3372}
ec2447c2
NP
3373
3374char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3375{
232d2d60 3376 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3377}
3378EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3379
3380char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3381{
3382 char *p = NULL;
3383 char *retval;
3384
c103135c
AV
3385 if (d_unlinked(dentry)) {
3386 p = buf + buflen;
3387 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3388 goto Elong;
3389 buflen++;
3390 }
3391 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3392 if (!IS_ERR(retval) && p)
3393 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3394 return retval;
3395Elong:
6092d048
RP
3396 return ERR_PTR(-ENAMETOOLONG);
3397}
3398
8b19e341
LT
3399static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3400 struct path *pwd)
5762482f 3401{
8b19e341
LT
3402 unsigned seq;
3403
3404 do {
3405 seq = read_seqcount_begin(&fs->seq);
3406 *root = fs->root;
3407 *pwd = fs->pwd;
3408 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3409}
3410
1da177e4
LT
3411/*
3412 * NOTE! The user-level library version returns a
3413 * character pointer. The kernel system call just
3414 * returns the length of the buffer filled (which
3415 * includes the ending '\0' character), or a negative
3416 * error value. So libc would do something like
3417 *
3418 * char *getcwd(char * buf, size_t size)
3419 * {
3420 * int retval;
3421 *
3422 * retval = sys_getcwd(buf, size);
3423 * if (retval >= 0)
3424 * return buf;
3425 * errno = -retval;
3426 * return NULL;
3427 * }
3428 */
3cdad428 3429SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3430{
552ce544 3431 int error;
6ac08c39 3432 struct path pwd, root;
3272c544 3433 char *page = __getname();
1da177e4
LT
3434
3435 if (!page)
3436 return -ENOMEM;
3437
8b19e341
LT
3438 rcu_read_lock();
3439 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3440
552ce544 3441 error = -ENOENT;
f3da392e 3442 if (!d_unlinked(pwd.dentry)) {
552ce544 3443 unsigned long len;
3272c544
LT
3444 char *cwd = page + PATH_MAX;
3445 int buflen = PATH_MAX;
1da177e4 3446
8df9d1a4 3447 prepend(&cwd, &buflen, "\0", 1);
02125a82 3448 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3449 rcu_read_unlock();
552ce544 3450
02125a82 3451 if (error < 0)
552ce544
LT
3452 goto out;
3453
8df9d1a4 3454 /* Unreachable from current root */
02125a82 3455 if (error > 0) {
8df9d1a4
MS
3456 error = prepend_unreachable(&cwd, &buflen);
3457 if (error)
3458 goto out;
3459 }
3460
552ce544 3461 error = -ERANGE;
3272c544 3462 len = PATH_MAX + page - cwd;
552ce544
LT
3463 if (len <= size) {
3464 error = len;
3465 if (copy_to_user(buf, cwd, len))
3466 error = -EFAULT;
3467 }
949854d0 3468 } else {
ff812d72 3469 rcu_read_unlock();
949854d0 3470 }
1da177e4
LT
3471
3472out:
3272c544 3473 __putname(page);
1da177e4
LT
3474 return error;
3475}
3476
3477/*
3478 * Test whether new_dentry is a subdirectory of old_dentry.
3479 *
3480 * Trivially implemented using the dcache structure
3481 */
3482
3483/**
3484 * is_subdir - is new dentry a subdirectory of old_dentry
3485 * @new_dentry: new dentry
3486 * @old_dentry: old dentry
3487 *
a6e5787f
YB
3488 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3489 * Returns false otherwise.
1da177e4
LT
3490 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3491 */
3492
a6e5787f 3493bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3494{
a6e5787f 3495 bool result;
949854d0 3496 unsigned seq;
1da177e4 3497
e2761a11 3498 if (new_dentry == old_dentry)
a6e5787f 3499 return true;
e2761a11 3500
e2761a11 3501 do {
1da177e4 3502 /* for restarting inner loop in case of seq retry */
1da177e4 3503 seq = read_seqbegin(&rename_lock);
949854d0
NP
3504 /*
3505 * Need rcu_readlock to protect against the d_parent trashing
3506 * due to d_move
3507 */
3508 rcu_read_lock();
e2761a11 3509 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3510 result = true;
e2761a11 3511 else
a6e5787f 3512 result = false;
949854d0 3513 rcu_read_unlock();
1da177e4 3514 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3515
3516 return result;
3517}
3518
db14fc3a 3519static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3520{
db14fc3a
MS
3521 struct dentry *root = data;
3522 if (dentry != root) {
3523 if (d_unhashed(dentry) || !dentry->d_inode)
3524 return D_WALK_SKIP;
1da177e4 3525
01ddc4ed
MS
3526 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3527 dentry->d_flags |= DCACHE_GENOCIDE;
3528 dentry->d_lockref.count--;
3529 }
1da177e4 3530 }
db14fc3a
MS
3531 return D_WALK_CONTINUE;
3532}
58db63d0 3533
db14fc3a
MS
3534void d_genocide(struct dentry *parent)
3535{
3536 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3537}
3538
60545d0d 3539void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3540{
60545d0d
AV
3541 inode_dec_link_count(inode);
3542 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3543 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3544 !d_unlinked(dentry));
3545 spin_lock(&dentry->d_parent->d_lock);
3546 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3547 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3548 (unsigned long long)inode->i_ino);
3549 spin_unlock(&dentry->d_lock);
3550 spin_unlock(&dentry->d_parent->d_lock);
3551 d_instantiate(dentry, inode);
1da177e4 3552}
60545d0d 3553EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3554
3555static __initdata unsigned long dhash_entries;
3556static int __init set_dhash_entries(char *str)
3557{
3558 if (!str)
3559 return 0;
3560 dhash_entries = simple_strtoul(str, &str, 0);
3561 return 1;
3562}
3563__setup("dhash_entries=", set_dhash_entries);
3564
3565static void __init dcache_init_early(void)
3566{
074b8517 3567 unsigned int loop;
1da177e4
LT
3568
3569 /* If hashes are distributed across NUMA nodes, defer
3570 * hash allocation until vmalloc space is available.
3571 */
3572 if (hashdist)
3573 return;
3574
3575 dentry_hashtable =
3576 alloc_large_system_hash("Dentry cache",
b07ad996 3577 sizeof(struct hlist_bl_head),
1da177e4
LT
3578 dhash_entries,
3579 13,
3580 HASH_EARLY,
3581 &d_hash_shift,
3582 &d_hash_mask,
31fe62b9 3583 0,
1da177e4
LT
3584 0);
3585
074b8517 3586 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3587 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3588}
3589
74bf17cf 3590static void __init dcache_init(void)
1da177e4 3591{
074b8517 3592 unsigned int loop;
1da177e4
LT
3593
3594 /*
3595 * A constructor could be added for stable state like the lists,
3596 * but it is probably not worth it because of the cache nature
3597 * of the dcache.
3598 */
0a31bd5f 3599 dentry_cache = KMEM_CACHE(dentry,
5d097056 3600 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
1da177e4
LT
3601
3602 /* Hash may have been set up in dcache_init_early */
3603 if (!hashdist)
3604 return;
3605
3606 dentry_hashtable =
3607 alloc_large_system_hash("Dentry cache",
b07ad996 3608 sizeof(struct hlist_bl_head),
1da177e4
LT
3609 dhash_entries,
3610 13,
3611 0,
3612 &d_hash_shift,
3613 &d_hash_mask,
31fe62b9 3614 0,
1da177e4
LT
3615 0);
3616
074b8517 3617 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3618 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3619}
3620
3621/* SLAB cache for __getname() consumers */
e18b890b 3622struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3623EXPORT_SYMBOL(names_cachep);
1da177e4 3624
1da177e4
LT
3625EXPORT_SYMBOL(d_genocide);
3626
1da177e4
LT
3627void __init vfs_caches_init_early(void)
3628{
3629 dcache_init_early();
3630 inode_init_early();
3631}
3632
4248b0da 3633void __init vfs_caches_init(void)
1da177e4 3634{
1da177e4 3635 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3636 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3637
74bf17cf
DC
3638 dcache_init();
3639 inode_init();
4248b0da
MG
3640 files_init();
3641 files_maxfiles_init();
74bf17cf 3642 mnt_init();
1da177e4
LT
3643 bdev_cache_init();
3644 chrdev_init();
3645}