Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
7a5cf791 18#include <linux/ratelimit.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
0bf3d5c1 22#include <linux/fscrypt.h>
7a91bf7f 23#include <linux/fsnotify.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/hash.h>
27#include <linux/cache.h>
630d9c47 28#include <linux/export.h>
1da177e4
LT
29#include <linux/security.h>
30#include <linux/seqlock.h>
57c8a661 31#include <linux/memblock.h>
ceb5bdc2
NP
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
f6041567 34#include <linux/list_lru.h>
07f3f05c 35#include "internal.h"
b2dba1af 36#include "mount.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
873feea0 40 * dcache->d_inode->i_lock protects:
946e51f2 41 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
f1ee6162
N
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
19156840 46 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
b7ab39f6 52 * - d_count
da502956 53 * - d_unhashed()
da549bdd
AV
54 * - d_parent and d_chilren
55 * - childrens' d_sib and d_parent
946e51f2 56 * - d_u.d_alias, d_inode
789680d1
NP
57 *
58 * Ordering:
873feea0 59 * dentry->d_inode->i_lock
b5c84bf6 60 * dentry->d_lock
19156840 61 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 62 * dcache_hash_bucket lock
f1ee6162 63 * s_roots lock
789680d1 64 *
da502956
NP
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
076515fc 72 * arbitrary, since it's serialized on rename_lock
789680d1 73 */
fa3536cc 74int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
74c3cbe3 77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 78
949854d0 79EXPORT_SYMBOL(rename_lock);
1da177e4 80
68279f9c 81static struct kmem_cache *dentry_cache __ro_after_init;
1da177e4 82
cdf01226
DH
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
80e5d1ff
AV
87const struct qstr dotdot_name = QSTR_INIT("..", 2);
88EXPORT_SYMBOL(dotdot_name);
cdf01226 89
1da177e4
LT
90/*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
1da177e4 98
68279f9c 99static unsigned int d_hash_shift __ro_after_init;
ceb5bdc2 100
68279f9c 101static struct hlist_bl_head *dentry_hashtable __ro_after_init;
ceb5bdc2 102
8387ff25 103static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 104{
854d3e63 105 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
106}
107
94bdd655
AV
108#define IN_LOOKUP_SHIFT 10
109static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 unsigned int hash)
113{
114 hash += (unsigned long) parent / L1_CACHE_BYTES;
115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116}
117
c8c0c239
LC
118struct dentry_stat_t {
119 long nr_dentry;
120 long nr_unused;
121 long age_limit; /* age in seconds */
122 long want_pages; /* pages requested by system */
123 long nr_negative; /* # of unused negative dentries */
124 long dummy; /* Reserved for future use */
1da177e4
LT
125};
126
3942c07c 127static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 128static DEFINE_PER_CPU(long, nr_dentry_unused);
af0c9af1 129static DEFINE_PER_CPU(long, nr_dentry_negative);
312d3ca8
CH
130
131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
c8c0c239
LC
132/* Statistics gathering. */
133static struct dentry_stat_t dentry_stat = {
134 .age_limit = 45,
135};
62d36c77
DC
136
137/*
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
141 *
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
145 *
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
148 */
3942c07c 149static long get_nr_dentry(void)
3e880fb5
NP
150{
151 int i;
3942c07c 152 long sum = 0;
3e880fb5
NP
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry, i);
155 return sum < 0 ? 0 : sum;
156}
157
62d36c77
DC
158static long get_nr_dentry_unused(void)
159{
160 int i;
161 long sum = 0;
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_unused, i);
164 return sum < 0 ? 0 : sum;
165}
166
af0c9af1
WL
167static long get_nr_dentry_negative(void)
168{
169 int i;
170 long sum = 0;
171
172 for_each_possible_cpu(i)
173 sum += per_cpu(nr_dentry_negative, i);
174 return sum < 0 ? 0 : sum;
175}
176
c8c0c239
LC
177static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 size_t *lenp, loff_t *ppos)
312d3ca8 179{
3e880fb5 180 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 181 dentry_stat.nr_unused = get_nr_dentry_unused();
af0c9af1 182 dentry_stat.nr_negative = get_nr_dentry_negative();
3942c07c 183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8 184}
c8c0c239
LC
185
186static struct ctl_table fs_dcache_sysctls[] = {
187 {
188 .procname = "dentry-state",
189 .data = &dentry_stat,
190 .maxlen = 6*sizeof(long),
191 .mode = 0444,
192 .proc_handler = proc_nr_dentry,
193 },
c8c0c239
LC
194};
195
196static int __init init_fs_dcache_sysctls(void)
197{
198 register_sysctl_init("fs", fs_dcache_sysctls);
199 return 0;
200}
201fs_initcall(init_fs_dcache_sysctls);
312d3ca8
CH
202#endif
203
5483f18e
LT
204/*
205 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
206 * The strings are both count bytes long, and count is non-zero.
207 */
e419b4cc
LT
208#ifdef CONFIG_DCACHE_WORD_ACCESS
209
210#include <asm/word-at-a-time.h>
211/*
212 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
213 * aligned allocation for this particular component. We don't
214 * strictly need the load_unaligned_zeropad() safety, but it
215 * doesn't hurt either.
216 *
217 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
218 * need the careful unaligned handling.
219 */
94753db5 220static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 221{
bfcfaa77 222 unsigned long a,b,mask;
bfcfaa77
LT
223
224 for (;;) {
bfe7aa6c 225 a = read_word_at_a_time(cs);
e419b4cc 226 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
227 if (tcount < sizeof(unsigned long))
228 break;
229 if (unlikely(a != b))
230 return 1;
231 cs += sizeof(unsigned long);
232 ct += sizeof(unsigned long);
233 tcount -= sizeof(unsigned long);
234 if (!tcount)
235 return 0;
236 }
a5c21dce 237 mask = bytemask_from_count(tcount);
bfcfaa77 238 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
239}
240
bfcfaa77 241#else
e419b4cc 242
94753db5 243static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 244{
5483f18e
LT
245 do {
246 if (*cs != *ct)
247 return 1;
248 cs++;
249 ct++;
250 tcount--;
251 } while (tcount);
252 return 0;
253}
254
e419b4cc
LT
255#endif
256
94753db5
LT
257static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
258{
94753db5
LT
259 /*
260 * Be careful about RCU walk racing with rename:
506458ef 261 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
262 *
263 * NOTE! Even if a rename will mean that the length
264 * was not loaded atomically, we don't care. The
265 * RCU walk will check the sequence count eventually,
266 * and catch it. And we won't overrun the buffer,
267 * because we're reading the name pointer atomically,
268 * and a dentry name is guaranteed to be properly
269 * terminated with a NUL byte.
270 *
271 * End result: even if 'len' is wrong, we'll exit
272 * early because the data cannot match (there can
273 * be no NUL in the ct/tcount data)
274 */
506458ef 275 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 276
6326c71f 277 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
278}
279
8d85b484
AV
280struct external_name {
281 union {
282 atomic_t count;
283 struct rcu_head head;
284 } u;
285 unsigned char name[];
286};
287
288static inline struct external_name *external_name(struct dentry *dentry)
289{
290 return container_of(dentry->d_name.name, struct external_name, name[0]);
291}
292
9c82ab9c 293static void __d_free(struct rcu_head *head)
1da177e4 294{
9c82ab9c
CH
295 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
296
8d85b484
AV
297 kmem_cache_free(dentry_cache, dentry);
298}
299
300static void __d_free_external(struct rcu_head *head)
301{
302 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
2e03b4bc 303 kfree(external_name(dentry));
f1782c9b 304 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
305}
306
810bb172
AV
307static inline int dname_external(const struct dentry *dentry)
308{
309 return dentry->d_name.name != dentry->d_iname;
310}
311
49d31c2f
AV
312void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
313{
314 spin_lock(&dentry->d_lock);
230c6402 315 name->name = dentry->d_name;
49d31c2f 316 if (unlikely(dname_external(dentry))) {
230c6402 317 atomic_inc(&external_name(dentry)->u.count);
49d31c2f 318 } else {
6cd00a01
TH
319 memcpy(name->inline_name, dentry->d_iname,
320 dentry->d_name.len + 1);
230c6402 321 name->name.name = name->inline_name;
49d31c2f 322 }
230c6402 323 spin_unlock(&dentry->d_lock);
49d31c2f
AV
324}
325EXPORT_SYMBOL(take_dentry_name_snapshot);
326
327void release_dentry_name_snapshot(struct name_snapshot *name)
328{
230c6402 329 if (unlikely(name->name.name != name->inline_name)) {
49d31c2f 330 struct external_name *p;
230c6402 331 p = container_of(name->name.name, struct external_name, name[0]);
49d31c2f 332 if (unlikely(atomic_dec_and_test(&p->u.count)))
2e03b4bc 333 kfree_rcu(p, u.head);
49d31c2f
AV
334 }
335}
336EXPORT_SYMBOL(release_dentry_name_snapshot);
337
4bf46a27
DH
338static inline void __d_set_inode_and_type(struct dentry *dentry,
339 struct inode *inode,
340 unsigned type_flags)
341{
342 unsigned flags;
343
344 dentry->d_inode = inode;
4bf46a27 345 flags = READ_ONCE(dentry->d_flags);
8219cb58 346 flags &= ~DCACHE_ENTRY_TYPE;
4bf46a27 347 flags |= type_flags;
2fa6b1e0 348 smp_store_release(&dentry->d_flags, flags);
4bf46a27
DH
349}
350
4bf46a27
DH
351static inline void __d_clear_type_and_inode(struct dentry *dentry)
352{
353 unsigned flags = READ_ONCE(dentry->d_flags);
354
8219cb58 355 flags &= ~DCACHE_ENTRY_TYPE;
4bf46a27 356 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27 357 dentry->d_inode = NULL;
8bfb40be 358 if (flags & DCACHE_LRU_LIST)
af0c9af1 359 this_cpu_inc(nr_dentry_negative);
4bf46a27
DH
360}
361
b4f0354e
AV
362static void dentry_free(struct dentry *dentry)
363{
946e51f2 364 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
365 if (unlikely(dname_external(dentry))) {
366 struct external_name *p = external_name(dentry);
367 if (likely(atomic_dec_and_test(&p->u.count))) {
368 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
369 return;
370 }
371 }
b4f0354e 372 /* if dentry was never visible to RCU, immediate free is OK */
5467a68c 373 if (dentry->d_flags & DCACHE_NORCU)
b4f0354e
AV
374 __d_free(&dentry->d_u.d_rcu);
375 else
376 call_rcu(&dentry->d_u.d_rcu, __d_free);
377}
378
1da177e4
LT
379/*
380 * Release the dentry's inode, using the filesystem
550dce01 381 * d_iput() operation if defined.
31e6b01f
NP
382 */
383static void dentry_unlink_inode(struct dentry * dentry)
384 __releases(dentry->d_lock)
873feea0 385 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
386{
387 struct inode *inode = dentry->d_inode;
a528aca7 388
4c0d7cd5 389 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 390 __d_clear_type_and_inode(dentry);
946e51f2 391 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 392 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 393 spin_unlock(&dentry->d_lock);
873feea0 394 spin_unlock(&inode->i_lock);
31e6b01f
NP
395 if (!inode->i_nlink)
396 fsnotify_inoderemove(inode);
397 if (dentry->d_op && dentry->d_op->d_iput)
398 dentry->d_op->d_iput(dentry, inode);
399 else
400 iput(inode);
401}
402
89dc77bc
LT
403/*
404 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
405 * is in use - which includes both the "real" per-superblock
406 * LRU list _and_ the DCACHE_SHRINK_LIST use.
407 *
408 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
409 * on the shrink list (ie not on the superblock LRU list).
410 *
411 * The per-cpu "nr_dentry_unused" counters are updated with
412 * the DCACHE_LRU_LIST bit.
413 *
af0c9af1
WL
414 * The per-cpu "nr_dentry_negative" counters are only updated
415 * when deleted from or added to the per-superblock LRU list, not
416 * from/to the shrink list. That is to avoid an unneeded dec/inc
417 * pair when moving from LRU to shrink list in select_collect().
418 *
89dc77bc
LT
419 * These helper functions make sure we always follow the
420 * rules. d_lock must be held by the caller.
421 */
422#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
423static void d_lru_add(struct dentry *dentry)
424{
425 D_FLAG_VERIFY(dentry, 0);
426 dentry->d_flags |= DCACHE_LRU_LIST;
427 this_cpu_inc(nr_dentry_unused);
af0c9af1
WL
428 if (d_is_negative(dentry))
429 this_cpu_inc(nr_dentry_negative);
0a97c01c
NP
430 WARN_ON_ONCE(!list_lru_add_obj(
431 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
89dc77bc
LT
432}
433
434static void d_lru_del(struct dentry *dentry)
435{
436 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437 dentry->d_flags &= ~DCACHE_LRU_LIST;
438 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
439 if (d_is_negative(dentry))
440 this_cpu_dec(nr_dentry_negative);
0a97c01c
NP
441 WARN_ON_ONCE(!list_lru_del_obj(
442 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
89dc77bc
LT
443}
444
445static void d_shrink_del(struct dentry *dentry)
446{
447 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
448 list_del_init(&dentry->d_lru);
449 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
450 this_cpu_dec(nr_dentry_unused);
451}
452
453static void d_shrink_add(struct dentry *dentry, struct list_head *list)
454{
455 D_FLAG_VERIFY(dentry, 0);
456 list_add(&dentry->d_lru, list);
457 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
458 this_cpu_inc(nr_dentry_unused);
459}
460
461/*
462 * These can only be called under the global LRU lock, ie during the
463 * callback for freeing the LRU list. "isolate" removes it from the
464 * LRU lists entirely, while shrink_move moves it to the indicated
465 * private list.
466 */
3f97b163 467static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
468{
469 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
470 dentry->d_flags &= ~DCACHE_LRU_LIST;
471 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
472 if (d_is_negative(dentry))
473 this_cpu_dec(nr_dentry_negative);
3f97b163 474 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
475}
476
3f97b163
VD
477static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
478 struct list_head *list)
89dc77bc
LT
479{
480 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
481 dentry->d_flags |= DCACHE_SHRINK_LIST;
af0c9af1
WL
482 if (d_is_negative(dentry))
483 this_cpu_dec(nr_dentry_negative);
3f97b163 484 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
485}
486
61647823 487static void ___d_drop(struct dentry *dentry)
789680d1 488{
0632a9ac
AV
489 struct hlist_bl_head *b;
490 /*
491 * Hashed dentries are normally on the dentry hashtable,
492 * with the exception of those newly allocated by
493 * d_obtain_root, which are always IS_ROOT:
494 */
495 if (unlikely(IS_ROOT(dentry)))
496 b = &dentry->d_sb->s_roots;
497 else
498 b = d_hash(dentry->d_name.hash);
b61625d2 499
0632a9ac
AV
500 hlist_bl_lock(b);
501 __hlist_bl_del(&dentry->d_hash);
502 hlist_bl_unlock(b);
789680d1 503}
61647823
N
504
505void __d_drop(struct dentry *dentry)
506{
0632a9ac
AV
507 if (!d_unhashed(dentry)) {
508 ___d_drop(dentry);
509 dentry->d_hash.pprev = NULL;
510 write_seqcount_invalidate(&dentry->d_seq);
511 }
61647823 512}
789680d1
NP
513EXPORT_SYMBOL(__d_drop);
514
961f3c89
MCC
515/**
516 * d_drop - drop a dentry
517 * @dentry: dentry to drop
518 *
519 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
520 * be found through a VFS lookup any more. Note that this is different from
521 * deleting the dentry - d_delete will try to mark the dentry negative if
522 * possible, giving a successful _negative_ lookup, while d_drop will
523 * just make the cache lookup fail.
524 *
525 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
526 * reason (NFS timeouts or autofs deletes).
527 *
528 * __d_drop requires dentry->d_lock
529 *
530 * ___d_drop doesn't mark dentry as "unhashed"
531 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
532 */
789680d1
NP
533void d_drop(struct dentry *dentry)
534{
789680d1
NP
535 spin_lock(&dentry->d_lock);
536 __d_drop(dentry);
537 spin_unlock(&dentry->d_lock);
789680d1
NP
538}
539EXPORT_SYMBOL(d_drop);
540
da549bdd 541static inline void dentry_unlist(struct dentry *dentry)
ba65dc5e
AV
542{
543 struct dentry *next;
544 /*
545 * Inform d_walk() and shrink_dentry_list() that we are no longer
546 * attached to the dentry tree
547 */
548 dentry->d_flags |= DCACHE_DENTRY_KILLED;
da549bdd 549 if (unlikely(hlist_unhashed(&dentry->d_sib)))
ba65dc5e 550 return;
da549bdd 551 __hlist_del(&dentry->d_sib);
ba65dc5e
AV
552 /*
553 * Cursors can move around the list of children. While we'd been
da549bdd 554 * a normal list member, it didn't matter - ->d_sib.next would've
ba65dc5e
AV
555 * been updated. However, from now on it won't be and for the
556 * things like d_walk() it might end up with a nasty surprise.
557 * Normally d_walk() doesn't care about cursors moving around -
558 * ->d_lock on parent prevents that and since a cursor has no children
559 * of its own, we get through it without ever unlocking the parent.
560 * There is one exception, though - if we ascend from a child that
561 * gets killed as soon as we unlock it, the next sibling is found
da549bdd 562 * using the value left in its ->d_sib.next. And if _that_
ba65dc5e
AV
563 * pointed to a cursor, and cursor got moved (e.g. by lseek())
564 * before d_walk() regains parent->d_lock, we'll end up skipping
565 * everything the cursor had been moved past.
566 *
da549bdd 567 * Solution: make sure that the pointer left behind in ->d_sib.next
ba65dc5e
AV
568 * points to something that won't be moving around. I.e. skip the
569 * cursors.
570 */
da549bdd
AV
571 while (dentry->d_sib.next) {
572 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
ba65dc5e
AV
573 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
574 break;
da549bdd 575 dentry->d_sib.next = next->d_sib.next;
ba65dc5e
AV
576 }
577}
578
1c18edd1 579static struct dentry *__dentry_kill(struct dentry *dentry)
77812a1e 580{
41edf278
AV
581 struct dentry *parent = NULL;
582 bool can_free = true;
31e6b01f 583
0d98439e
LT
584 /*
585 * The dentry is now unrecoverably dead to the world.
586 */
587 lockref_mark_dead(&dentry->d_lockref);
588
f0023bc6 589 /*
f0023bc6
SW
590 * inform the fs via d_prune that this dentry is about to be
591 * unhashed and destroyed.
592 */
29266201 593 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
594 dentry->d_op->d_prune(dentry);
595
01b60351
AV
596 if (dentry->d_flags & DCACHE_LRU_LIST) {
597 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
598 d_lru_del(dentry);
01b60351 599 }
77812a1e
NP
600 /* if it was on the hash then remove it */
601 __d_drop(dentry);
550dce01
AV
602 if (dentry->d_inode)
603 dentry_unlink_inode(dentry);
604 else
605 spin_unlock(&dentry->d_lock);
03b3b889
AV
606 this_cpu_dec(nr_dentry);
607 if (dentry->d_op && dentry->d_op->d_release)
608 dentry->d_op->d_release(dentry);
609
1c18edd1
AV
610 cond_resched();
611 /* now that it's negative, ->d_parent is stable */
612 if (!IS_ROOT(dentry)) {
613 parent = dentry->d_parent;
614 spin_lock(&parent->d_lock);
41edf278 615 }
1c18edd1
AV
616 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
617 dentry_unlist(dentry);
1b327b5a 618 if (dentry->d_flags & DCACHE_SHRINK_LIST)
41edf278 619 can_free = false;
41edf278 620 spin_unlock(&dentry->d_lock);
41edf278
AV
621 if (likely(can_free))
622 dentry_free(dentry);
1c18edd1 623 if (parent && --parent->d_lockref.count) {
046b961b 624 spin_unlock(&parent->d_lock);
1c18edd1 625 return NULL;
046b961b 626 }
046b961b
AV
627 return parent;
628}
629
339e9e13
AV
630/*
631 * Lock a dentry for feeding it to __dentry_kill().
632 * Called under rcu_read_lock() and dentry->d_lock; the former
633 * guarantees that nothing we access will be freed under us.
634 * Note that dentry is *not* protected from concurrent dentry_kill(),
635 * d_delete(), etc.
636 *
637 * Return false if dentry is busy. Otherwise, return true and have
1c18edd1 638 * that dentry's inode locked.
339e9e13
AV
639 */
640
641static bool lock_for_kill(struct dentry *dentry)
8b987a46 642{
339e9e13 643 struct inode *inode = dentry->d_inode;
339e9e13
AV
644
645 if (unlikely(dentry->d_lockref.count))
646 return false;
647
1c18edd1 648 if (!inode || likely(spin_trylock(&inode->i_lock)))
339e9e13
AV
649 return true;
650
1c18edd1
AV
651 do {
652 spin_unlock(&dentry->d_lock);
653 spin_lock(&inode->i_lock);
654 spin_lock(&dentry->d_lock);
339e9e13
AV
655 if (likely(inode == dentry->d_inode))
656 break;
1c18edd1 657 spin_unlock(&inode->i_lock);
339e9e13 658 inode = dentry->d_inode;
1c18edd1 659 } while (inode);
339e9e13
AV
660 if (likely(!dentry->d_lockref.count))
661 return true;
662 if (inode)
663 spin_unlock(&inode->i_lock);
339e9e13 664 return false;
8b987a46
AV
665}
666
6367b491
AV
667/*
668 * Decide if dentry is worth retaining. Usually this is called with dentry
669 * locked; if not locked, we are more limited and might not be able to tell
670 * without a lock. False in this case means "punt to locked path and recheck".
671 *
672 * In case we aren't locked, these predicates are not "stable". However, it is
673 * sufficient that at some point after we dropped the reference the dentry was
674 * hashed and the flags had the proper value. Other dentry users may have
675 * re-gotten a reference to the dentry and change that, but our work is done -
676 * we can leave the dentry around with a zero refcount.
677 */
678static inline bool retain_dentry(struct dentry *dentry, bool locked)
a338579f 679{
6367b491 680 unsigned int d_flags;
a338579f 681
6367b491
AV
682 smp_rmb();
683 d_flags = READ_ONCE(dentry->d_flags);
a338579f 684
6367b491 685 // Unreachable? Nobody would be able to look it up, no point retaining
a338579f
AV
686 if (unlikely(d_unhashed(dentry)))
687 return false;
688
6367b491
AV
689 // Same if it's disconnected
690 if (unlikely(d_flags & DCACHE_DISCONNECTED))
a338579f
AV
691 return false;
692
6367b491
AV
693 // ->d_delete() might tell us not to bother, but that requires
694 // ->d_lock; can't decide without it
695 if (unlikely(d_flags & DCACHE_OP_DELETE)) {
696 if (!locked || dentry->d_op->d_delete(dentry))
a338579f
AV
697 return false;
698 }
2c567af4 699
6367b491
AV
700 // Explicitly told not to bother
701 if (unlikely(d_flags & DCACHE_DONTCACHE))
2c567af4
IW
702 return false;
703
6367b491
AV
704 // At this point it looks like we ought to keep it. We also might
705 // need to do something - put it on LRU if it wasn't there already
706 // and mark it referenced if it was on LRU, but not marked yet.
707 // Unfortunately, both actions require ->d_lock, so in lockless
708 // case we'd have to punt rather than doing those.
709 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
710 if (!locked)
711 return false;
62d9956c 712 d_lru_add(dentry);
6367b491
AV
713 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
714 if (!locked)
715 return false;
62d9956c 716 dentry->d_flags |= DCACHE_REFERENCED;
6367b491 717 }
a338579f
AV
718 return true;
719}
720
2c567af4
IW
721void d_mark_dontcache(struct inode *inode)
722{
723 struct dentry *de;
724
725 spin_lock(&inode->i_lock);
726 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
727 spin_lock(&de->d_lock);
728 de->d_flags |= DCACHE_DONTCACHE;
729 spin_unlock(&de->d_lock);
730 }
731 inode->i_state |= I_DONTCACHE;
732 spin_unlock(&inode->i_lock);
733}
734EXPORT_SYMBOL(d_mark_dontcache);
735
360f5479
LT
736/*
737 * Try to do a lockless dput(), and return whether that was successful.
738 *
739 * If unsuccessful, we return false, having already taken the dentry lock.
f05441c7
AV
740 * In that case refcount is guaranteed to be zero and we have already
741 * decided that it's not worth keeping around.
360f5479
LT
742 *
743 * The caller needs to hold the RCU read lock, so that the dentry is
744 * guaranteed to stay around even if the refcount goes down to zero!
745 */
746static inline bool fast_dput(struct dentry *dentry)
747{
748 int ret;
360f5479
LT
749
750 /*
15220fbf 751 * try to decrement the lockref optimistically.
360f5479
LT
752 */
753 ret = lockref_put_return(&dentry->d_lockref);
754
755 /*
756 * If the lockref_put_return() failed due to the lock being held
757 * by somebody else, the fast path has failed. We will need to
758 * get the lock, and then check the count again.
759 */
760 if (unlikely(ret < 0)) {
761 spin_lock(&dentry->d_lock);
504e08ce 762 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
360f5479 763 spin_unlock(&dentry->d_lock);
7964410f 764 return true;
360f5479 765 }
504e08ce
AV
766 dentry->d_lockref.count--;
767 goto locked;
360f5479
LT
768 }
769
770 /*
771 * If we weren't the last ref, we're done.
772 */
773 if (ret)
7964410f 774 return true;
360f5479
LT
775
776 /*
6367b491
AV
777 * Can we decide that decrement of refcount is all we needed without
778 * taking the lock? There's a very common case when it's all we need -
779 * dentry looks like it ought to be retained and there's nothing else
780 * to do.
360f5479 781 */
6367b491 782 if (retain_dentry(dentry, false))
7964410f 783 return true;
360f5479
LT
784
785 /*
6367b491
AV
786 * Either not worth retaining or we can't tell without the lock.
787 * Get the lock, then. We've already decremented the refcount to 0,
788 * but we'll need to re-check the situation after getting the lock.
360f5479
LT
789 */
790 spin_lock(&dentry->d_lock);
791
792 /*
793 * Did somebody else grab a reference to it in the meantime, and
794 * we're no longer the last user after all? Alternatively, somebody
795 * else could have killed it and marked it dead. Either way, we
796 * don't need to do anything else.
797 */
504e08ce 798locked:
6367b491 799 if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
360f5479 800 spin_unlock(&dentry->d_lock);
7964410f 801 return true;
360f5479 802 }
7964410f 803 return false;
360f5479
LT
804}
805
806
1da177e4
LT
807/*
808 * This is dput
809 *
810 * This is complicated by the fact that we do not want to put
811 * dentries that are no longer on any hash chain on the unused
812 * list: we'd much rather just get rid of them immediately.
813 *
814 * However, that implies that we have to traverse the dentry
815 * tree upwards to the parents which might _also_ now be
816 * scheduled for deletion (it may have been only waiting for
817 * its last child to go away).
818 *
819 * This tail recursion is done by hand as we don't want to depend
820 * on the compiler to always get this right (gcc generally doesn't).
821 * Real recursion would eat up our stack space.
822 */
823
824/*
825 * dput - release a dentry
826 * @dentry: dentry to release
827 *
828 * Release a dentry. This will drop the usage count and if appropriate
829 * call the dentry unlink method as well as removing it from the queues and
830 * releasing its resources. If the parent dentries were scheduled for release
831 * they too may now get deleted.
1da177e4 832 */
1da177e4
LT
833void dput(struct dentry *dentry)
834{
1c18edd1
AV
835 if (!dentry)
836 return;
837 might_sleep();
838 rcu_read_lock();
839 if (likely(fast_dput(dentry))) {
360f5479 840 rcu_read_unlock();
1c18edd1
AV
841 return;
842 }
843 while (lock_for_kill(dentry)) {
844 rcu_read_unlock();
845 dentry = __dentry_kill(dentry);
846 if (!dentry)
1088a640 847 return;
6367b491 848 if (retain_dentry(dentry, true)) {
1088a640
AV
849 spin_unlock(&dentry->d_lock);
850 return;
851 }
1c18edd1 852 rcu_read_lock();
47be6184 853 }
1c18edd1
AV
854 rcu_read_unlock();
855 spin_unlock(&dentry->d_lock);
1da177e4 856}
ec4f8605 857EXPORT_SYMBOL(dput);
1da177e4 858
6511f6be 859static void to_shrink_list(struct dentry *dentry, struct list_head *list)
9bdebc2b
AV
860__must_hold(&dentry->d_lock)
861{
6511f6be 862 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
9bdebc2b
AV
863 if (dentry->d_flags & DCACHE_LRU_LIST)
864 d_lru_del(dentry);
c2e5e29f 865 d_shrink_add(dentry, list);
9bdebc2b
AV
866 }
867}
868
869void dput_to_list(struct dentry *dentry, struct list_head *list)
870{
871 rcu_read_lock();
872 if (likely(fast_dput(dentry))) {
873 rcu_read_unlock();
874 return;
875 }
876 rcu_read_unlock();
f05441c7 877 to_shrink_list(dentry, list);
9bdebc2b
AV
878 spin_unlock(&dentry->d_lock);
879}
1da177e4 880
b7ab39f6
NP
881struct dentry *dget_parent(struct dentry *dentry)
882{
df3d0bbc 883 int gotref;
b7ab39f6 884 struct dentry *ret;
e8400933 885 unsigned seq;
b7ab39f6 886
df3d0bbc
WL
887 /*
888 * Do optimistic parent lookup without any
889 * locking.
890 */
891 rcu_read_lock();
e8400933 892 seq = raw_seqcount_begin(&dentry->d_seq);
66702eb5 893 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
894 gotref = lockref_get_not_zero(&ret->d_lockref);
895 rcu_read_unlock();
896 if (likely(gotref)) {
e8400933 897 if (!read_seqcount_retry(&dentry->d_seq, seq))
df3d0bbc
WL
898 return ret;
899 dput(ret);
900 }
901
b7ab39f6 902repeat:
a734eb45
NP
903 /*
904 * Don't need rcu_dereference because we re-check it was correct under
905 * the lock.
906 */
907 rcu_read_lock();
b7ab39f6 908 ret = dentry->d_parent;
a734eb45
NP
909 spin_lock(&ret->d_lock);
910 if (unlikely(ret != dentry->d_parent)) {
911 spin_unlock(&ret->d_lock);
912 rcu_read_unlock();
b7ab39f6
NP
913 goto repeat;
914 }
a734eb45 915 rcu_read_unlock();
98474236
WL
916 BUG_ON(!ret->d_lockref.count);
917 ret->d_lockref.count++;
b7ab39f6 918 spin_unlock(&ret->d_lock);
b7ab39f6
NP
919 return ret;
920}
921EXPORT_SYMBOL(dget_parent);
922
61fec493
AV
923static struct dentry * __d_find_any_alias(struct inode *inode)
924{
925 struct dentry *alias;
926
927 if (hlist_empty(&inode->i_dentry))
928 return NULL;
929 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
6d73c9ce 930 lockref_get(&alias->d_lockref);
61fec493
AV
931 return alias;
932}
933
934/**
935 * d_find_any_alias - find any alias for a given inode
936 * @inode: inode to find an alias for
937 *
938 * If any aliases exist for the given inode, take and return a
939 * reference for one of them. If no aliases exist, return %NULL.
940 */
941struct dentry *d_find_any_alias(struct inode *inode)
942{
943 struct dentry *de;
944
945 spin_lock(&inode->i_lock);
946 de = __d_find_any_alias(inode);
947 spin_unlock(&inode->i_lock);
948 return de;
949}
950EXPORT_SYMBOL(d_find_any_alias);
951
52ed46f0 952static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 953{
61fec493
AV
954 struct dentry *alias;
955
956 if (S_ISDIR(inode->i_mode))
957 return __d_find_any_alias(inode);
1da177e4 958
946e51f2 959 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 960 spin_lock(&alias->d_lock);
61fec493 961 if (!d_unhashed(alias)) {
1b6ae9f6 962 dget_dlock(alias);
8d80d7da
BF
963 spin_unlock(&alias->d_lock);
964 return alias;
1da177e4 965 }
da502956 966 spin_unlock(&alias->d_lock);
1da177e4 967 }
da502956 968 return NULL;
1da177e4
LT
969}
970
961f3c89
MCC
971/**
972 * d_find_alias - grab a hashed alias of inode
973 * @inode: inode in question
974 *
975 * If inode has a hashed alias, or is a directory and has any alias,
976 * acquire the reference to alias and return it. Otherwise return NULL.
977 * Notice that if inode is a directory there can be only one alias and
978 * it can be unhashed only if it has no children, or if it is the root
979 * of a filesystem, or if the directory was renamed and d_revalidate
980 * was the first vfs operation to notice.
981 *
982 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
983 * any other hashed alias over that one.
984 */
da502956 985struct dentry *d_find_alias(struct inode *inode)
1da177e4 986{
214fda1f
DH
987 struct dentry *de = NULL;
988
b3d9b7a3 989 if (!hlist_empty(&inode->i_dentry)) {
873feea0 990 spin_lock(&inode->i_lock);
52ed46f0 991 de = __d_find_alias(inode);
873feea0 992 spin_unlock(&inode->i_lock);
214fda1f 993 }
1da177e4
LT
994 return de;
995}
ec4f8605 996EXPORT_SYMBOL(d_find_alias);
1da177e4 997
bca585d2
AV
998/*
999 * Caller MUST be holding rcu_read_lock() and be guaranteed
1000 * that inode won't get freed until rcu_read_unlock().
1001 */
1002struct dentry *d_find_alias_rcu(struct inode *inode)
1003{
1004 struct hlist_head *l = &inode->i_dentry;
1005 struct dentry *de = NULL;
1006
1007 spin_lock(&inode->i_lock);
1008 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1009 // used without having I_FREEING set, which means no aliases left
1010 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1011 if (S_ISDIR(inode->i_mode)) {
1012 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1013 } else {
1014 hlist_for_each_entry(de, l, d_u.d_alias)
1015 if (!d_unhashed(de))
1016 break;
1017 }
1018 }
1019 spin_unlock(&inode->i_lock);
1020 return de;
1021}
1022
1da177e4
LT
1023/*
1024 * Try to kill dentries associated with this inode.
1025 * WARNING: you must own a reference to inode.
1026 */
1027void d_prune_aliases(struct inode *inode)
1028{
b4cc0734 1029 LIST_HEAD(dispose);
0cdca3f9 1030 struct dentry *dentry;
b4cc0734 1031
873feea0 1032 spin_lock(&inode->i_lock);
946e51f2 1033 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 1034 spin_lock(&dentry->d_lock);
b4cc0734
AV
1035 if (!dentry->d_lockref.count)
1036 to_shrink_list(dentry, &dispose);
1da177e4
LT
1037 spin_unlock(&dentry->d_lock);
1038 }
873feea0 1039 spin_unlock(&inode->i_lock);
b4cc0734 1040 shrink_dentry_list(&dispose);
1da177e4 1041}
ec4f8605 1042EXPORT_SYMBOL(d_prune_aliases);
1da177e4 1043
1c18edd1 1044static inline void shrink_kill(struct dentry *victim)
1da177e4 1045{
1c18edd1
AV
1046 do {
1047 rcu_read_unlock();
1048 victim = __dentry_kill(victim);
1049 rcu_read_lock();
1050 } while (victim && lock_for_kill(victim));
1051 rcu_read_unlock();
1052 if (victim)
1053 spin_unlock(&victim->d_lock);
3b3f09f4 1054}
77812a1e 1055
9bdebc2b 1056void shrink_dentry_list(struct list_head *list)
3b3f09f4
AV
1057{
1058 while (!list_empty(list)) {
3fcf5356 1059 struct dentry *dentry;
64fd72e0 1060
3b3f09f4
AV
1061 dentry = list_entry(list->prev, struct dentry, d_lru);
1062 spin_lock(&dentry->d_lock);
8f04da2a 1063 rcu_read_lock();
339e9e13 1064 if (!lock_for_kill(dentry)) {
cd9f84f3 1065 bool can_free;
8f04da2a 1066 rcu_read_unlock();
3b3f09f4 1067 d_shrink_del(dentry);
1b327b5a 1068 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
64fd72e0
AV
1069 spin_unlock(&dentry->d_lock);
1070 if (can_free)
1071 dentry_free(dentry);
1072 continue;
1073 }
3b3f09f4 1074 d_shrink_del(dentry);
1c18edd1 1075 shrink_kill(dentry);
da3bbdd4 1076 }
3049cfe2
CH
1077}
1078
3f97b163
VD
1079static enum lru_status dentry_lru_isolate(struct list_head *item,
1080 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1081{
1082 struct list_head *freeable = arg;
1083 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1084
1085
1086 /*
1087 * we are inverting the lru lock/dentry->d_lock here,
1088 * so use a trylock. If we fail to get the lock, just skip
1089 * it
1090 */
1091 if (!spin_trylock(&dentry->d_lock))
1092 return LRU_SKIP;
1093
1094 /*
1095 * Referenced dentries are still in use. If they have active
1096 * counts, just remove them from the LRU. Otherwise give them
1097 * another pass through the LRU.
1098 */
1099 if (dentry->d_lockref.count) {
3f97b163 1100 d_lru_isolate(lru, dentry);
f6041567
DC
1101 spin_unlock(&dentry->d_lock);
1102 return LRU_REMOVED;
1103 }
1104
1105 if (dentry->d_flags & DCACHE_REFERENCED) {
1106 dentry->d_flags &= ~DCACHE_REFERENCED;
1107 spin_unlock(&dentry->d_lock);
1108
1109 /*
1110 * The list move itself will be made by the common LRU code. At
1111 * this point, we've dropped the dentry->d_lock but keep the
1112 * lru lock. This is safe to do, since every list movement is
1113 * protected by the lru lock even if both locks are held.
1114 *
1115 * This is guaranteed by the fact that all LRU management
1116 * functions are intermediated by the LRU API calls like
0a97c01c 1117 * list_lru_add_obj and list_lru_del_obj. List movement in this file
f6041567
DC
1118 * only ever occur through this functions or through callbacks
1119 * like this one, that are called from the LRU API.
1120 *
1121 * The only exceptions to this are functions like
1122 * shrink_dentry_list, and code that first checks for the
1123 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1124 * operating only with stack provided lists after they are
1125 * properly isolated from the main list. It is thus, always a
1126 * local access.
1127 */
1128 return LRU_ROTATE;
1129 }
1130
3f97b163 1131 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1132 spin_unlock(&dentry->d_lock);
1133
1134 return LRU_REMOVED;
1135}
1136
3049cfe2 1137/**
b48f03b3
DC
1138 * prune_dcache_sb - shrink the dcache
1139 * @sb: superblock
503c358c 1140 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1141 *
503c358c
VD
1142 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1143 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1144 * function.
3049cfe2 1145 *
b48f03b3
DC
1146 * This function may fail to free any resources if all the dentries are in
1147 * use.
3049cfe2 1148 */
503c358c 1149long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1150{
f6041567
DC
1151 LIST_HEAD(dispose);
1152 long freed;
3049cfe2 1153
503c358c
VD
1154 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1155 dentry_lru_isolate, &dispose);
f6041567 1156 shrink_dentry_list(&dispose);
0a234c6d 1157 return freed;
da3bbdd4 1158}
23044507 1159
4e717f5c 1160static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1161 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1162{
4e717f5c
GC
1163 struct list_head *freeable = arg;
1164 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1165
4e717f5c
GC
1166 /*
1167 * we are inverting the lru lock/dentry->d_lock here,
1168 * so use a trylock. If we fail to get the lock, just skip
1169 * it
1170 */
1171 if (!spin_trylock(&dentry->d_lock))
1172 return LRU_SKIP;
1173
3f97b163 1174 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1175 spin_unlock(&dentry->d_lock);
ec33679d 1176
4e717f5c 1177 return LRU_REMOVED;
da3bbdd4
KM
1178}
1179
4e717f5c 1180
1da177e4
LT
1181/**
1182 * shrink_dcache_sb - shrink dcache for a superblock
1183 * @sb: superblock
1184 *
3049cfe2
CH
1185 * Shrink the dcache for the specified super block. This is used to free
1186 * the dcache before unmounting a file system.
1da177e4 1187 */
3049cfe2 1188void shrink_dcache_sb(struct super_block *sb)
1da177e4 1189{
4e717f5c
GC
1190 do {
1191 LIST_HEAD(dispose);
1192
1dbd449c 1193 list_lru_walk(&sb->s_dentry_lru,
b17c070f 1194 dentry_lru_isolate_shrink, &dispose, 1024);
4e717f5c 1195 shrink_dentry_list(&dispose);
b17c070f 1196 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1197}
ec4f8605 1198EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1199
db14fc3a
MS
1200/**
1201 * enum d_walk_ret - action to talke during tree walk
1202 * @D_WALK_CONTINUE: contrinue walk
1203 * @D_WALK_QUIT: quit walk
1204 * @D_WALK_NORETRY: quit when retry is needed
1205 * @D_WALK_SKIP: skip this dentry and its children
1206 */
1207enum d_walk_ret {
1208 D_WALK_CONTINUE,
1209 D_WALK_QUIT,
1210 D_WALK_NORETRY,
1211 D_WALK_SKIP,
1212};
c826cb7d 1213
1da177e4 1214/**
db14fc3a
MS
1215 * d_walk - walk the dentry tree
1216 * @parent: start of walk
1217 * @data: data passed to @enter() and @finish()
1218 * @enter: callback when first entering the dentry
1da177e4 1219 *
3a8e3611 1220 * The @enter() callbacks are called with d_lock held.
1da177e4 1221 */
db14fc3a 1222static void d_walk(struct dentry *parent, void *data,
3a8e3611 1223 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1224{
da549bdd 1225 struct dentry *this_parent, *dentry;
48f5ec21 1226 unsigned seq = 0;
db14fc3a
MS
1227 enum d_walk_ret ret;
1228 bool retry = true;
949854d0 1229
58db63d0 1230again:
48f5ec21 1231 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1232 this_parent = parent;
2fd6b7f5 1233 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1234
1235 ret = enter(data, this_parent);
1236 switch (ret) {
1237 case D_WALK_CONTINUE:
1238 break;
1239 case D_WALK_QUIT:
1240 case D_WALK_SKIP:
1241 goto out_unlock;
1242 case D_WALK_NORETRY:
1243 retry = false;
1244 break;
1245 }
1da177e4 1246repeat:
da549bdd 1247 dentry = d_first_child(this_parent);
1da177e4 1248resume:
da549bdd 1249 hlist_for_each_entry_from(dentry, d_sib) {
ba65dc5e
AV
1250 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1251 continue;
1252
2fd6b7f5 1253 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1254
1255 ret = enter(data, dentry);
1256 switch (ret) {
1257 case D_WALK_CONTINUE:
1258 break;
1259 case D_WALK_QUIT:
2fd6b7f5 1260 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1261 goto out_unlock;
1262 case D_WALK_NORETRY:
1263 retry = false;
1264 break;
1265 case D_WALK_SKIP:
1266 spin_unlock(&dentry->d_lock);
1267 continue;
2fd6b7f5 1268 }
db14fc3a 1269
da549bdd 1270 if (!hlist_empty(&dentry->d_children)) {
2fd6b7f5 1271 spin_unlock(&this_parent->d_lock);
5facae4f 1272 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1da177e4 1273 this_parent = dentry;
2fd6b7f5 1274 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1275 goto repeat;
1276 }
2fd6b7f5 1277 spin_unlock(&dentry->d_lock);
1da177e4
LT
1278 }
1279 /*
1280 * All done at this level ... ascend and resume the search.
1281 */
ca5358ef
AV
1282 rcu_read_lock();
1283ascend:
1da177e4 1284 if (this_parent != parent) {
da549bdd
AV
1285 dentry = this_parent;
1286 this_parent = dentry->d_parent;
31dec132 1287
da549bdd 1288 spin_unlock(&dentry->d_lock);
31dec132
AV
1289 spin_lock(&this_parent->d_lock);
1290
ca5358ef
AV
1291 /* might go back up the wrong parent if we have had a rename. */
1292 if (need_seqretry(&rename_lock, seq))
949854d0 1293 goto rename_retry;
2159184e 1294 /* go into the first sibling still alive */
da549bdd
AV
1295 hlist_for_each_entry_continue(dentry, d_sib) {
1296 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1297 rcu_read_unlock();
1298 goto resume;
1299 }
1300 }
1301 goto ascend;
1da177e4 1302 }
ca5358ef 1303 if (need_seqretry(&rename_lock, seq))
949854d0 1304 goto rename_retry;
ca5358ef 1305 rcu_read_unlock();
db14fc3a
MS
1306
1307out_unlock:
1308 spin_unlock(&this_parent->d_lock);
48f5ec21 1309 done_seqretry(&rename_lock, seq);
db14fc3a 1310 return;
58db63d0
NP
1311
1312rename_retry:
ca5358ef
AV
1313 spin_unlock(&this_parent->d_lock);
1314 rcu_read_unlock();
1315 BUG_ON(seq & 1);
db14fc3a
MS
1316 if (!retry)
1317 return;
48f5ec21 1318 seq = 1;
58db63d0 1319 goto again;
1da177e4 1320}
db14fc3a 1321
01619491
IK
1322struct check_mount {
1323 struct vfsmount *mnt;
1324 unsigned int mounted;
1325};
1326
1327static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1328{
1329 struct check_mount *info = data;
1330 struct path path = { .mnt = info->mnt, .dentry = dentry };
1331
1332 if (likely(!d_mountpoint(dentry)))
1333 return D_WALK_CONTINUE;
1334 if (__path_is_mountpoint(&path)) {
1335 info->mounted = 1;
1336 return D_WALK_QUIT;
1337 }
1338 return D_WALK_CONTINUE;
1339}
1340
1341/**
1342 * path_has_submounts - check for mounts over a dentry in the
1343 * current namespace.
1344 * @parent: path to check.
1345 *
1346 * Return true if the parent or its subdirectories contain
1347 * a mount point in the current namespace.
1348 */
1349int path_has_submounts(const struct path *parent)
1350{
1351 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1352
1353 read_seqlock_excl(&mount_lock);
3a8e3611 1354 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1355 read_sequnlock_excl(&mount_lock);
1356
1357 return data.mounted;
1358}
1359EXPORT_SYMBOL(path_has_submounts);
1360
eed81007
MS
1361/*
1362 * Called by mount code to set a mountpoint and check if the mountpoint is
1363 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1364 * subtree can become unreachable).
1365 *
1ffe46d1 1366 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1367 * this reason take rename_lock and d_lock on dentry and ancestors.
1368 */
1369int d_set_mounted(struct dentry *dentry)
1370{
1371 struct dentry *p;
1372 int ret = -ENOENT;
1373 write_seqlock(&rename_lock);
1374 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1375 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1376 spin_lock(&p->d_lock);
1377 if (unlikely(d_unhashed(p))) {
1378 spin_unlock(&p->d_lock);
1379 goto out;
1380 }
1381 spin_unlock(&p->d_lock);
1382 }
1383 spin_lock(&dentry->d_lock);
1384 if (!d_unlinked(dentry)) {
3895dbf8
EB
1385 ret = -EBUSY;
1386 if (!d_mountpoint(dentry)) {
1387 dentry->d_flags |= DCACHE_MOUNTED;
1388 ret = 0;
1389 }
eed81007
MS
1390 }
1391 spin_unlock(&dentry->d_lock);
1392out:
1393 write_sequnlock(&rename_lock);
1394 return ret;
1395}
1396
1da177e4 1397/*
fd517909 1398 * Search the dentry child list of the specified parent,
1da177e4
LT
1399 * and move any unused dentries to the end of the unused
1400 * list for prune_dcache(). We descend to the next level
da549bdd 1401 * whenever the d_children list is non-empty and continue
1da177e4
LT
1402 * searching.
1403 *
1404 * It returns zero iff there are no unused children,
1405 * otherwise it returns the number of children moved to
1406 * the end of the unused list. This may not be the total
1407 * number of unused children, because select_parent can
1408 * drop the lock and return early due to latency
1409 * constraints.
1410 */
1da177e4 1411
db14fc3a
MS
1412struct select_data {
1413 struct dentry *start;
9bdebc2b
AV
1414 union {
1415 long found;
1416 struct dentry *victim;
1417 };
db14fc3a 1418 struct list_head dispose;
db14fc3a 1419};
23044507 1420
db14fc3a
MS
1421static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1422{
1423 struct select_data *data = _data;
1424 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1425
db14fc3a
MS
1426 if (data->start == dentry)
1427 goto out;
2fd6b7f5 1428
fe91522a 1429 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1430 data->found++;
f5c8a8a4
AV
1431 } else if (!dentry->d_lockref.count) {
1432 to_shrink_list(dentry, &data->dispose);
1433 data->found++;
1c18edd1
AV
1434 } else if (dentry->d_lockref.count < 0) {
1435 data->found++;
1da177e4 1436 }
db14fc3a
MS
1437 /*
1438 * We can return to the caller if we have found some (this
1439 * ensures forward progress). We'll be coming back to find
1440 * the rest.
1441 */
fe91522a
AV
1442 if (!list_empty(&data->dispose))
1443 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1444out:
db14fc3a 1445 return ret;
1da177e4
LT
1446}
1447
9bdebc2b
AV
1448static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1449{
1450 struct select_data *data = _data;
1451 enum d_walk_ret ret = D_WALK_CONTINUE;
1452
1453 if (data->start == dentry)
1454 goto out;
1455
f5c8a8a4
AV
1456 if (!dentry->d_lockref.count) {
1457 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
9bdebc2b
AV
1458 rcu_read_lock();
1459 data->victim = dentry;
1460 return D_WALK_QUIT;
1461 }
f5c8a8a4 1462 to_shrink_list(dentry, &data->dispose);
9bdebc2b
AV
1463 }
1464 /*
1465 * We can return to the caller if we have found some (this
1466 * ensures forward progress). We'll be coming back to find
1467 * the rest.
1468 */
1469 if (!list_empty(&data->dispose))
1470 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1471out:
1472 return ret;
1473}
1474
1da177e4
LT
1475/**
1476 * shrink_dcache_parent - prune dcache
1477 * @parent: parent of entries to prune
1478 *
1479 * Prune the dcache to remove unused children of the parent dentry.
1480 */
db14fc3a 1481void shrink_dcache_parent(struct dentry *parent)
1da177e4 1482{
db14fc3a 1483 for (;;) {
9bdebc2b 1484 struct select_data data = {.start = parent};
1da177e4 1485
db14fc3a 1486 INIT_LIST_HEAD(&data.dispose);
3a8e3611 1487 d_walk(parent, &data, select_collect);
4fb48871
AV
1488
1489 if (!list_empty(&data.dispose)) {
1490 shrink_dentry_list(&data.dispose);
1491 continue;
1492 }
1493
1494 cond_resched();
db14fc3a
MS
1495 if (!data.found)
1496 break;
9bdebc2b
AV
1497 data.victim = NULL;
1498 d_walk(parent, &data, select_collect2);
1499 if (data.victim) {
9bdebc2b 1500 spin_lock(&data.victim->d_lock);
339e9e13 1501 if (!lock_for_kill(data.victim)) {
9bdebc2b
AV
1502 spin_unlock(&data.victim->d_lock);
1503 rcu_read_unlock();
1504 } else {
1c18edd1 1505 shrink_kill(data.victim);
9bdebc2b
AV
1506 }
1507 }
1508 if (!list_empty(&data.dispose))
1509 shrink_dentry_list(&data.dispose);
421348f1 1510 }
1da177e4 1511}
ec4f8605 1512EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1513
9c8c10e2 1514static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1515{
9c8c10e2 1516 /* it has busy descendents; complain about those instead */
da549bdd 1517 if (!hlist_empty(&dentry->d_children))
9c8c10e2 1518 return D_WALK_CONTINUE;
42c32608 1519
9c8c10e2
AV
1520 /* root with refcount 1 is fine */
1521 if (dentry == _data && dentry->d_lockref.count == 1)
1522 return D_WALK_CONTINUE;
1523
8c8e7dba 1524 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
9c8c10e2 1525 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1526 dentry,
1527 dentry->d_inode ?
1528 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1529 dentry,
42c32608
AV
1530 dentry->d_lockref.count,
1531 dentry->d_sb->s_type->name,
1532 dentry->d_sb->s_id);
9c8c10e2
AV
1533 return D_WALK_CONTINUE;
1534}
1535
1536static void do_one_tree(struct dentry *dentry)
1537{
1538 shrink_dcache_parent(dentry);
3a8e3611 1539 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1540 d_drop(dentry);
1541 dput(dentry);
42c32608
AV
1542}
1543
1544/*
1545 * destroy the dentries attached to a superblock on unmounting
1546 */
1547void shrink_dcache_for_umount(struct super_block *sb)
1548{
1549 struct dentry *dentry;
1550
9c8c10e2 1551 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1552
1553 dentry = sb->s_root;
1554 sb->s_root = NULL;
9c8c10e2 1555 do_one_tree(dentry);
42c32608 1556
f1ee6162
N
1557 while (!hlist_bl_empty(&sb->s_roots)) {
1558 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1559 do_one_tree(dentry);
42c32608
AV
1560 }
1561}
1562
ff17fa56 1563static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1564{
ff17fa56 1565 struct dentry **victim = _data;
848ac114 1566 if (d_mountpoint(dentry)) {
1b6ae9f6 1567 *victim = dget_dlock(dentry);
848ac114
MS
1568 return D_WALK_QUIT;
1569 }
ff17fa56 1570 return D_WALK_CONTINUE;
848ac114
MS
1571}
1572
1573/**
1ffe46d1
EB
1574 * d_invalidate - detach submounts, prune dcache, and drop
1575 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1576 */
5542aa2f 1577void d_invalidate(struct dentry *dentry)
848ac114 1578{
ff17fa56 1579 bool had_submounts = false;
1ffe46d1
EB
1580 spin_lock(&dentry->d_lock);
1581 if (d_unhashed(dentry)) {
1582 spin_unlock(&dentry->d_lock);
5542aa2f 1583 return;
1ffe46d1 1584 }
ff17fa56 1585 __d_drop(dentry);
1ffe46d1
EB
1586 spin_unlock(&dentry->d_lock);
1587
848ac114 1588 /* Negative dentries can be dropped without further checks */
ff17fa56 1589 if (!dentry->d_inode)
5542aa2f 1590 return;
848ac114 1591
ff17fa56 1592 shrink_dcache_parent(dentry);
848ac114 1593 for (;;) {
ff17fa56 1594 struct dentry *victim = NULL;
3a8e3611 1595 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1596 if (!victim) {
1597 if (had_submounts)
1598 shrink_dcache_parent(dentry);
81be24d2 1599 return;
8ed936b5 1600 }
ff17fa56
AV
1601 had_submounts = true;
1602 detach_mounts(victim);
1603 dput(victim);
848ac114 1604 }
848ac114 1605}
1ffe46d1 1606EXPORT_SYMBOL(d_invalidate);
848ac114 1607
1da177e4 1608/**
a4464dbc
AV
1609 * __d_alloc - allocate a dcache entry
1610 * @sb: filesystem it will belong to
1da177e4
LT
1611 * @name: qstr of the name
1612 *
1613 * Allocates a dentry. It returns %NULL if there is insufficient memory
1614 * available. On a success the dentry is returned. The name passed in is
1615 * copied and the copy passed in may be reused after this call.
1616 */
1617
5c8b0dfc 1618static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1619{
1620 struct dentry *dentry;
1621 char *dname;
285b102d 1622 int err;
1da177e4 1623
f53bf711
MS
1624 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1625 GFP_KERNEL);
1da177e4
LT
1626 if (!dentry)
1627 return NULL;
1628
6326c71f
LT
1629 /*
1630 * We guarantee that the inline name is always NUL-terminated.
1631 * This way the memcpy() done by the name switching in rename
1632 * will still always have a NUL at the end, even if we might
1633 * be overwriting an internal NUL character
1634 */
1635 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1636 if (unlikely(!name)) {
cdf01226 1637 name = &slash_name;
798434bd
AV
1638 dname = dentry->d_iname;
1639 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1640 size_t size = offsetof(struct external_name, name[1]);
2e03b4bc
VB
1641 struct external_name *p = kmalloc(size + name->len,
1642 GFP_KERNEL_ACCOUNT |
1643 __GFP_RECLAIMABLE);
1644 if (!p) {
1da177e4
LT
1645 kmem_cache_free(dentry_cache, dentry);
1646 return NULL;
1647 }
2e03b4bc
VB
1648 atomic_set(&p->u.count, 1);
1649 dname = p->name;
1da177e4
LT
1650 } else {
1651 dname = dentry->d_iname;
1652 }
1da177e4
LT
1653
1654 dentry->d_name.len = name->len;
1655 dentry->d_name.hash = name->hash;
1656 memcpy(dname, name->name, name->len);
1657 dname[name->len] = 0;
1658
6326c71f 1659 /* Make sure we always see the terminating NUL character */
7088efa9 1660 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1661
98474236 1662 dentry->d_lockref.count = 1;
dea3667b 1663 dentry->d_flags = 0;
1da177e4 1664 spin_lock_init(&dentry->d_lock);
26475371 1665 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1da177e4 1666 dentry->d_inode = NULL;
a4464dbc
AV
1667 dentry->d_parent = dentry;
1668 dentry->d_sb = sb;
1da177e4
LT
1669 dentry->d_op = NULL;
1670 dentry->d_fsdata = NULL;
ceb5bdc2 1671 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4 1672 INIT_LIST_HEAD(&dentry->d_lru);
da549bdd 1673 INIT_HLIST_HEAD(&dentry->d_children);
946e51f2 1674 INIT_HLIST_NODE(&dentry->d_u.d_alias);
da549bdd 1675 INIT_HLIST_NODE(&dentry->d_sib);
a4464dbc 1676 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1677
285b102d
MS
1678 if (dentry->d_op && dentry->d_op->d_init) {
1679 err = dentry->d_op->d_init(dentry);
1680 if (err) {
1681 if (dname_external(dentry))
1682 kfree(external_name(dentry));
1683 kmem_cache_free(dentry_cache, dentry);
1684 return NULL;
1685 }
1686 }
1687
3e880fb5 1688 this_cpu_inc(nr_dentry);
312d3ca8 1689
1da177e4
LT
1690 return dentry;
1691}
a4464dbc
AV
1692
1693/**
1694 * d_alloc - allocate a dcache entry
1695 * @parent: parent of entry to allocate
1696 * @name: qstr of the name
1697 *
1698 * Allocates a dentry. It returns %NULL if there is insufficient memory
1699 * available. On a success the dentry is returned. The name passed in is
1700 * copied and the copy passed in may be reused after this call.
1701 */
1702struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1703{
1704 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1705 if (!dentry)
1706 return NULL;
a4464dbc
AV
1707 spin_lock(&parent->d_lock);
1708 /*
1709 * don't need child lock because it is not subject
1710 * to concurrency here
1711 */
1b6ae9f6 1712 dentry->d_parent = dget_dlock(parent);
da549bdd 1713 hlist_add_head(&dentry->d_sib, &parent->d_children);
a4464dbc
AV
1714 spin_unlock(&parent->d_lock);
1715
1716 return dentry;
1717}
ec4f8605 1718EXPORT_SYMBOL(d_alloc);
1da177e4 1719
f9c34674
MS
1720struct dentry *d_alloc_anon(struct super_block *sb)
1721{
1722 return __d_alloc(sb, NULL);
1723}
1724EXPORT_SYMBOL(d_alloc_anon);
1725
ba65dc5e
AV
1726struct dentry *d_alloc_cursor(struct dentry * parent)
1727{
f9c34674 1728 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e 1729 if (dentry) {
5467a68c 1730 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
ba65dc5e
AV
1731 dentry->d_parent = dget(parent);
1732 }
1733 return dentry;
1734}
1735
e1a24bb0
BF
1736/**
1737 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1738 * @sb: the superblock
1739 * @name: qstr of the name
1740 *
1741 * For a filesystem that just pins its dentries in memory and never
1742 * performs lookups at all, return an unhashed IS_ROOT dentry.
5467a68c
AV
1743 * This is used for pipes, sockets et.al. - the stuff that should
1744 * never be anyone's children or parents. Unlike all other
1745 * dentries, these will not have RCU delay between dropping the
1746 * last reference and freeing them.
ab1152dd
AV
1747 *
1748 * The only user is alloc_file_pseudo() and that's what should
1749 * be considered a public interface. Don't use directly.
e1a24bb0 1750 */
4b936885
NP
1751struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1752{
9024b4c9
AV
1753 static const struct dentry_operations anon_ops = {
1754 .d_dname = simple_dname
1755 };
5467a68c 1756 struct dentry *dentry = __d_alloc(sb, name);
9024b4c9 1757 if (likely(dentry)) {
5467a68c 1758 dentry->d_flags |= DCACHE_NORCU;
9024b4c9
AV
1759 if (!sb->s_d_op)
1760 d_set_d_op(dentry, &anon_ops);
1761 }
5467a68c 1762 return dentry;
4b936885 1763}
4b936885 1764
1da177e4
LT
1765struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1766{
1767 struct qstr q;
1768
1769 q.name = name;
8387ff25 1770 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1771 return d_alloc(parent, &q);
1772}
ef26ca97 1773EXPORT_SYMBOL(d_alloc_name);
1da177e4 1774
fb045adb
NP
1775void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1776{
6f7f7caa
LT
1777 WARN_ON_ONCE(dentry->d_op);
1778 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1779 DCACHE_OP_COMPARE |
1780 DCACHE_OP_REVALIDATE |
ecf3d1f1 1781 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1782 DCACHE_OP_DELETE |
d101a125 1783 DCACHE_OP_REAL));
fb045adb
NP
1784 dentry->d_op = op;
1785 if (!op)
1786 return;
1787 if (op->d_hash)
1788 dentry->d_flags |= DCACHE_OP_HASH;
1789 if (op->d_compare)
1790 dentry->d_flags |= DCACHE_OP_COMPARE;
1791 if (op->d_revalidate)
1792 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1793 if (op->d_weak_revalidate)
1794 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1795 if (op->d_delete)
1796 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1797 if (op->d_prune)
1798 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1799 if (op->d_real)
1800 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1801
1802}
1803EXPORT_SYMBOL(d_set_d_op);
1804
b18825a7
DH
1805static unsigned d_flags_for_inode(struct inode *inode)
1806{
44bdb5e5 1807 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1808
1809 if (!inode)
1810 return DCACHE_MISS_TYPE;
1811
1812 if (S_ISDIR(inode->i_mode)) {
1813 add_flags = DCACHE_DIRECTORY_TYPE;
1814 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1815 if (unlikely(!inode->i_op->lookup))
1816 add_flags = DCACHE_AUTODIR_TYPE;
1817 else
1818 inode->i_opflags |= IOP_LOOKUP;
1819 }
44bdb5e5
DH
1820 goto type_determined;
1821 }
1822
1823 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1824 if (unlikely(inode->i_op->get_link)) {
b18825a7 1825 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1826 goto type_determined;
1827 }
1828 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1829 }
1830
44bdb5e5
DH
1831 if (unlikely(!S_ISREG(inode->i_mode)))
1832 add_flags = DCACHE_SPECIAL_TYPE;
1833
1834type_determined:
b18825a7
DH
1835 if (unlikely(IS_AUTOMOUNT(inode)))
1836 add_flags |= DCACHE_NEED_AUTOMOUNT;
1837 return add_flags;
1838}
1839
360da900
OH
1840static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1841{
b18825a7 1842 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1843 WARN_ON(d_in_lookup(dentry));
b18825a7 1844
b23fb0a6 1845 spin_lock(&dentry->d_lock);
af0c9af1
WL
1846 /*
1847 * Decrement negative dentry count if it was in the LRU list.
1848 */
1849 if (dentry->d_flags & DCACHE_LRU_LIST)
1850 this_cpu_dec(nr_dentry_negative);
de689f5e 1851 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1852 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1853 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1854 raw_write_seqcount_end(&dentry->d_seq);
affda484 1855 fsnotify_update_flags(dentry);
b23fb0a6 1856 spin_unlock(&dentry->d_lock);
360da900
OH
1857}
1858
1da177e4
LT
1859/**
1860 * d_instantiate - fill in inode information for a dentry
1861 * @entry: dentry to complete
1862 * @inode: inode to attach to this dentry
1863 *
1864 * Fill in inode information in the entry.
1865 *
1866 * This turns negative dentries into productive full members
1867 * of society.
1868 *
1869 * NOTE! This assumes that the inode count has been incremented
1870 * (or otherwise set) by the caller to indicate that it is now
1871 * in use by the dcache.
1872 */
1873
1874void d_instantiate(struct dentry *entry, struct inode * inode)
1875{
946e51f2 1876 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1877 if (inode) {
b9680917 1878 security_d_instantiate(entry, inode);
873feea0 1879 spin_lock(&inode->i_lock);
de689f5e 1880 __d_instantiate(entry, inode);
873feea0 1881 spin_unlock(&inode->i_lock);
de689f5e 1882 }
1da177e4 1883}
ec4f8605 1884EXPORT_SYMBOL(d_instantiate);
1da177e4 1885
1e2e547a
AV
1886/*
1887 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1888 * with lockdep-related part of unlock_new_inode() done before
1889 * anything else. Use that instead of open-coding d_instantiate()/
1890 * unlock_new_inode() combinations.
1891 */
1892void d_instantiate_new(struct dentry *entry, struct inode *inode)
1893{
1894 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1895 BUG_ON(!inode);
1896 lockdep_annotate_inode_mutex_key(inode);
1897 security_d_instantiate(entry, inode);
1898 spin_lock(&inode->i_lock);
1899 __d_instantiate(entry, inode);
1900 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 1901 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
1902 smp_mb();
1903 wake_up_bit(&inode->i_state, __I_NEW);
1904 spin_unlock(&inode->i_lock);
1905}
1906EXPORT_SYMBOL(d_instantiate_new);
1907
adc0e91a
AV
1908struct dentry *d_make_root(struct inode *root_inode)
1909{
1910 struct dentry *res = NULL;
1911
1912 if (root_inode) {
f9c34674 1913 res = d_alloc_anon(root_inode->i_sb);
5467a68c 1914 if (res)
adc0e91a 1915 d_instantiate(res, root_inode);
5467a68c 1916 else
adc0e91a
AV
1917 iput(root_inode);
1918 }
1919 return res;
1920}
1921EXPORT_SYMBOL(d_make_root);
1922
f9c34674
MS
1923static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1924{
f2824db1
AV
1925 struct super_block *sb;
1926 struct dentry *new, *res;
f9c34674
MS
1927
1928 if (!inode)
1929 return ERR_PTR(-ESTALE);
1930 if (IS_ERR(inode))
1931 return ERR_CAST(inode);
1932
f2824db1
AV
1933 sb = inode->i_sb;
1934
1935 res = d_find_any_alias(inode); /* existing alias? */
f9c34674 1936 if (res)
f2824db1 1937 goto out;
f9c34674 1938
f2824db1
AV
1939 new = d_alloc_anon(sb);
1940 if (!new) {
f9c34674 1941 res = ERR_PTR(-ENOMEM);
f2824db1 1942 goto out;
f9c34674
MS
1943 }
1944
f2824db1
AV
1945 security_d_instantiate(new, inode);
1946 spin_lock(&inode->i_lock);
1947 res = __d_find_any_alias(inode); /* recheck under lock */
1948 if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1949 unsigned add_flags = d_flags_for_inode(inode);
1950
1951 if (disconnected)
1952 add_flags |= DCACHE_DISCONNECTED;
f9c34674 1953
f2824db1
AV
1954 spin_lock(&new->d_lock);
1955 __d_set_inode_and_type(new, inode, add_flags);
1956 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1957 if (!disconnected) {
1958 hlist_bl_lock(&sb->s_roots);
1959 hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1960 hlist_bl_unlock(&sb->s_roots);
1961 }
1962 spin_unlock(&new->d_lock);
1963 spin_unlock(&inode->i_lock);
1964 inode = NULL; /* consumed by new->d_inode */
1965 res = new;
1966 } else {
1967 spin_unlock(&inode->i_lock);
1968 dput(new);
1969 }
f9c34674 1970
f2824db1 1971 out:
f9c34674
MS
1972 iput(inode);
1973 return res;
1974}
1975
1a0a397e
BF
1976/**
1977 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1978 * @inode: inode to allocate the dentry for
1979 *
1980 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1981 * similar open by handle operations. The returned dentry may be anonymous,
1982 * or may have a full name (if the inode was already in the cache).
1983 *
1984 * When called on a directory inode, we must ensure that the inode only ever
1985 * has one dentry. If a dentry is found, that is returned instead of
1986 * allocating a new one.
1987 *
1988 * On successful return, the reference to the inode has been transferred
1989 * to the dentry. In case of an error the reference on the inode is released.
1990 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1991 * be passed in and the error will be propagated to the return value,
1992 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1993 */
1994struct dentry *d_obtain_alias(struct inode *inode)
1995{
f9c34674 1996 return __d_obtain_alias(inode, true);
1a0a397e 1997}
adc48720 1998EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1999
1a0a397e
BF
2000/**
2001 * d_obtain_root - find or allocate a dentry for a given inode
2002 * @inode: inode to allocate the dentry for
2003 *
2004 * Obtain an IS_ROOT dentry for the root of a filesystem.
2005 *
2006 * We must ensure that directory inodes only ever have one dentry. If a
2007 * dentry is found, that is returned instead of allocating a new one.
2008 *
2009 * On successful return, the reference to the inode has been transferred
2010 * to the dentry. In case of an error the reference on the inode is
2011 * released. A %NULL or IS_ERR inode may be passed in and will be the
2012 * error will be propagate to the return value, with a %NULL @inode
2013 * replaced by ERR_PTR(-ESTALE).
2014 */
2015struct dentry *d_obtain_root(struct inode *inode)
2016{
f9c34674 2017 return __d_obtain_alias(inode, false);
1a0a397e
BF
2018}
2019EXPORT_SYMBOL(d_obtain_root);
2020
9403540c
BN
2021/**
2022 * d_add_ci - lookup or allocate new dentry with case-exact name
2023 * @inode: the inode case-insensitive lookup has found
2024 * @dentry: the negative dentry that was passed to the parent's lookup func
2025 * @name: the case-exact name to be associated with the returned dentry
2026 *
2027 * This is to avoid filling the dcache with case-insensitive names to the
2028 * same inode, only the actual correct case is stored in the dcache for
2029 * case-insensitive filesystems.
2030 *
3d742d4b
RD
2031 * For a case-insensitive lookup match and if the case-exact dentry
2032 * already exists in the dcache, use it and return it.
9403540c
BN
2033 *
2034 * If no entry exists with the exact case name, allocate new dentry with
2035 * the exact case, and return the spliced entry.
2036 */
e45b590b 2037struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2038 struct qstr *name)
2039{
d9171b93 2040 struct dentry *found, *res;
9403540c 2041
b6520c81
CH
2042 /*
2043 * First check if a dentry matching the name already exists,
2044 * if not go ahead and create it now.
2045 */
9403540c 2046 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2047 if (found) {
2048 iput(inode);
2049 return found;
2050 }
2051 if (d_in_lookup(dentry)) {
2052 found = d_alloc_parallel(dentry->d_parent, name,
2053 dentry->d_wait);
2054 if (IS_ERR(found) || !d_in_lookup(found)) {
2055 iput(inode);
2056 return found;
9403540c 2057 }
d9171b93
AV
2058 } else {
2059 found = d_alloc(dentry->d_parent, name);
2060 if (!found) {
2061 iput(inode);
2062 return ERR_PTR(-ENOMEM);
2063 }
2064 }
2065 res = d_splice_alias(inode, found);
2066 if (res) {
40a3cb0d 2067 d_lookup_done(found);
d9171b93
AV
2068 dput(found);
2069 return res;
9403540c 2070 }
4f522a24 2071 return found;
9403540c 2072}
ec4f8605 2073EXPORT_SYMBOL(d_add_ci);
1da177e4 2074
4f48d5da
XL
2075/**
2076 * d_same_name - compare dentry name with case-exact name
2077 * @parent: parent dentry
2078 * @dentry: the negative dentry that was passed to the parent's lookup func
2079 * @name: the case-exact name to be associated with the returned dentry
2080 *
2081 * Return: true if names are same, or false
2082 */
2083bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2084 const struct qstr *name)
12f8ad4b 2085{
d4c91a8f
AV
2086 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2087 if (dentry->d_name.len != name->len)
2088 return false;
2089 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2090 }
6fa67e70 2091 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2092 dentry->d_name.len, dentry->d_name.name,
2093 name) == 0;
12f8ad4b 2094}
4f48d5da 2095EXPORT_SYMBOL_GPL(d_same_name);
12f8ad4b 2096
ae2a8236
LT
2097/*
2098 * This is __d_lookup_rcu() when the parent dentry has
2099 * DCACHE_OP_COMPARE, which makes things much nastier.
2100 */
2101static noinline struct dentry *__d_lookup_rcu_op_compare(
2102 const struct dentry *parent,
2103 const struct qstr *name,
2104 unsigned *seqp)
2105{
2106 u64 hashlen = name->hash_len;
2107 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2108 struct hlist_bl_node *node;
2109 struct dentry *dentry;
2110
2111 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2112 int tlen;
2113 const char *tname;
2114 unsigned seq;
2115
2116seqretry:
2117 seq = raw_seqcount_begin(&dentry->d_seq);
2118 if (dentry->d_parent != parent)
2119 continue;
2120 if (d_unhashed(dentry))
2121 continue;
2122 if (dentry->d_name.hash != hashlen_hash(hashlen))
2123 continue;
2124 tlen = dentry->d_name.len;
2125 tname = dentry->d_name.name;
2126 /* we want a consistent (name,len) pair */
2127 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2128 cpu_relax();
2129 goto seqretry;
2130 }
2131 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2132 continue;
2133 *seqp = seq;
2134 return dentry;
2135 }
2136 return NULL;
2137}
2138
31e6b01f
NP
2139/**
2140 * __d_lookup_rcu - search for a dentry (racy, store-free)
2141 * @parent: parent dentry
2142 * @name: qstr of name we wish to find
1f1e6e52 2143 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2144 * Returns: dentry, or NULL
2145 *
2146 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2147 * resolution (store-free path walking) design described in
2148 * Documentation/filesystems/path-lookup.txt.
2149 *
2150 * This is not to be used outside core vfs.
2151 *
2152 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2153 * held, and rcu_read_lock held. The returned dentry must not be stored into
2154 * without taking d_lock and checking d_seq sequence count against @seq
2155 * returned here.
2156 *
15570086 2157 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2158 * function.
2159 *
2160 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2161 * the returned dentry, so long as its parent's seqlock is checked after the
2162 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2163 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2164 *
2165 * NOTE! The caller *has* to check the resulting dentry against the sequence
2166 * number we've returned before using any of the resulting dentry state!
31e6b01f 2167 */
8966be90
LT
2168struct dentry *__d_lookup_rcu(const struct dentry *parent,
2169 const struct qstr *name,
da53be12 2170 unsigned *seqp)
31e6b01f 2171{
26fe5750 2172 u64 hashlen = name->hash_len;
31e6b01f 2173 const unsigned char *str = name->name;
8387ff25 2174 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2175 struct hlist_bl_node *node;
31e6b01f
NP
2176 struct dentry *dentry;
2177
2178 /*
2179 * Note: There is significant duplication with __d_lookup_rcu which is
2180 * required to prevent single threaded performance regressions
2181 * especially on architectures where smp_rmb (in seqcounts) are costly.
2182 * Keep the two functions in sync.
2183 */
2184
ae2a8236
LT
2185 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2186 return __d_lookup_rcu_op_compare(parent, name, seqp);
2187
31e6b01f
NP
2188 /*
2189 * The hash list is protected using RCU.
2190 *
2191 * Carefully use d_seq when comparing a candidate dentry, to avoid
2192 * races with d_move().
2193 *
2194 * It is possible that concurrent renames can mess up our list
2195 * walk here and result in missing our dentry, resulting in the
2196 * false-negative result. d_lookup() protects against concurrent
2197 * renames using rename_lock seqlock.
2198 *
b0a4bb83 2199 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2200 */
b07ad996 2201 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2202 unsigned seq;
31e6b01f 2203
12f8ad4b
LT
2204 /*
2205 * The dentry sequence count protects us from concurrent
da53be12 2206 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2207 *
2208 * The caller must perform a seqcount check in order
da53be12 2209 * to do anything useful with the returned dentry.
12f8ad4b
LT
2210 *
2211 * NOTE! We do a "raw" seqcount_begin here. That means that
2212 * we don't wait for the sequence count to stabilize if it
2213 * is in the middle of a sequence change. If we do the slow
2214 * dentry compare, we will do seqretries until it is stable,
2215 * and if we end up with a successful lookup, we actually
2216 * want to exit RCU lookup anyway.
d4c91a8f
AV
2217 *
2218 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2219 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2220 */
2221 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2222 if (dentry->d_parent != parent)
2223 continue;
2e321806
LT
2224 if (d_unhashed(dentry))
2225 continue;
ae2a8236
LT
2226 if (dentry->d_name.hash_len != hashlen)
2227 continue;
2228 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2229 continue;
da53be12 2230 *seqp = seq;
d4c91a8f 2231 return dentry;
31e6b01f
NP
2232 }
2233 return NULL;
2234}
2235
1da177e4
LT
2236/**
2237 * d_lookup - search for a dentry
2238 * @parent: parent dentry
2239 * @name: qstr of name we wish to find
b04f784e 2240 * Returns: dentry, or NULL
1da177e4 2241 *
b04f784e
NP
2242 * d_lookup searches the children of the parent dentry for the name in
2243 * question. If the dentry is found its reference count is incremented and the
2244 * dentry is returned. The caller must use dput to free the entry when it has
2245 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2246 */
da2d8455 2247struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2248{
31e6b01f 2249 struct dentry *dentry;
949854d0 2250 unsigned seq;
1da177e4 2251
b8314f93
DY
2252 do {
2253 seq = read_seqbegin(&rename_lock);
2254 dentry = __d_lookup(parent, name);
2255 if (dentry)
1da177e4
LT
2256 break;
2257 } while (read_seqretry(&rename_lock, seq));
2258 return dentry;
2259}
ec4f8605 2260EXPORT_SYMBOL(d_lookup);
1da177e4 2261
31e6b01f 2262/**
b04f784e
NP
2263 * __d_lookup - search for a dentry (racy)
2264 * @parent: parent dentry
2265 * @name: qstr of name we wish to find
2266 * Returns: dentry, or NULL
2267 *
2268 * __d_lookup is like d_lookup, however it may (rarely) return a
2269 * false-negative result due to unrelated rename activity.
2270 *
2271 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2272 * however it must be used carefully, eg. with a following d_lookup in
2273 * the case of failure.
2274 *
2275 * __d_lookup callers must be commented.
2276 */
a713ca2a 2277struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2278{
1da177e4 2279 unsigned int hash = name->hash;
8387ff25 2280 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2281 struct hlist_bl_node *node;
31e6b01f 2282 struct dentry *found = NULL;
665a7583 2283 struct dentry *dentry;
1da177e4 2284
31e6b01f
NP
2285 /*
2286 * Note: There is significant duplication with __d_lookup_rcu which is
2287 * required to prevent single threaded performance regressions
2288 * especially on architectures where smp_rmb (in seqcounts) are costly.
2289 * Keep the two functions in sync.
2290 */
2291
b04f784e
NP
2292 /*
2293 * The hash list is protected using RCU.
2294 *
2295 * Take d_lock when comparing a candidate dentry, to avoid races
2296 * with d_move().
2297 *
2298 * It is possible that concurrent renames can mess up our list
2299 * walk here and result in missing our dentry, resulting in the
2300 * false-negative result. d_lookup() protects against concurrent
2301 * renames using rename_lock seqlock.
2302 *
b0a4bb83 2303 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2304 */
1da177e4
LT
2305 rcu_read_lock();
2306
b07ad996 2307 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2308
1da177e4
LT
2309 if (dentry->d_name.hash != hash)
2310 continue;
1da177e4
LT
2311
2312 spin_lock(&dentry->d_lock);
1da177e4
LT
2313 if (dentry->d_parent != parent)
2314 goto next;
d0185c08
LT
2315 if (d_unhashed(dentry))
2316 goto next;
2317
d4c91a8f
AV
2318 if (!d_same_name(dentry, parent, name))
2319 goto next;
1da177e4 2320
98474236 2321 dentry->d_lockref.count++;
d0185c08 2322 found = dentry;
1da177e4
LT
2323 spin_unlock(&dentry->d_lock);
2324 break;
2325next:
2326 spin_unlock(&dentry->d_lock);
2327 }
2328 rcu_read_unlock();
2329
2330 return found;
2331}
2332
3e7e241f
EB
2333/**
2334 * d_hash_and_lookup - hash the qstr then search for a dentry
2335 * @dir: Directory to search in
2336 * @name: qstr of name we wish to find
2337 *
4f522a24 2338 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2339 */
2340struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2341{
3e7e241f
EB
2342 /*
2343 * Check for a fs-specific hash function. Note that we must
2344 * calculate the standard hash first, as the d_op->d_hash()
2345 * routine may choose to leave the hash value unchanged.
2346 */
8387ff25 2347 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2348 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2349 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2350 if (unlikely(err < 0))
2351 return ERR_PTR(err);
3e7e241f 2352 }
4f522a24 2353 return d_lookup(dir, name);
3e7e241f 2354}
4f522a24 2355EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2356
1da177e4
LT
2357/*
2358 * When a file is deleted, we have two options:
2359 * - turn this dentry into a negative dentry
2360 * - unhash this dentry and free it.
2361 *
2362 * Usually, we want to just turn this into
4a4be1ad
LT
2363 * a negative dentry, but if anybody else is
2364 * currently using the dentry or the inode
2365 * we can't do that and we fall back on removing
2366 * it from the hash queues and waiting for
2367 * it to be deleted later when it has no users
1da177e4
LT
2368 */
2369
2370/**
2371 * d_delete - delete a dentry
2372 * @dentry: The dentry to delete
2373 *
4a4be1ad
LT
2374 * Turn the dentry into a negative dentry if possible, otherwise
2375 * remove it from the hash queues so it can be deleted later
1da177e4
LT
2376 */
2377
2378void d_delete(struct dentry * dentry)
2379{
c19457f0 2380 struct inode *inode = dentry->d_inode;
c19457f0
AV
2381
2382 spin_lock(&inode->i_lock);
2383 spin_lock(&dentry->d_lock);
1da177e4
LT
2384 /*
2385 * Are we the only user?
2386 */
98474236 2387 if (dentry->d_lockref.count == 1) {
13e3c5e5 2388 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2389 dentry_unlink_inode(dentry);
c19457f0 2390 } else {
4a4be1ad 2391 __d_drop(dentry);
c19457f0
AV
2392 spin_unlock(&dentry->d_lock);
2393 spin_unlock(&inode->i_lock);
2394 }
1da177e4 2395}
ec4f8605 2396EXPORT_SYMBOL(d_delete);
1da177e4 2397
15d3c589 2398static void __d_rehash(struct dentry *entry)
1da177e4 2399{
15d3c589 2400 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2401
1879fd6a 2402 hlist_bl_lock(b);
b07ad996 2403 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2404 hlist_bl_unlock(b);
1da177e4
LT
2405}
2406
2407/**
2408 * d_rehash - add an entry back to the hash
2409 * @entry: dentry to add to the hash
2410 *
2411 * Adds a dentry to the hash according to its name.
2412 */
2413
2414void d_rehash(struct dentry * entry)
2415{
1da177e4 2416 spin_lock(&entry->d_lock);
15d3c589 2417 __d_rehash(entry);
1da177e4 2418 spin_unlock(&entry->d_lock);
1da177e4 2419}
ec4f8605 2420EXPORT_SYMBOL(d_rehash);
1da177e4 2421
84e710da
AV
2422static inline unsigned start_dir_add(struct inode *dir)
2423{
93f6d4e1 2424 preempt_disable_nested();
84e710da
AV
2425 for (;;) {
2426 unsigned n = dir->i_dir_seq;
2427 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2428 return n;
2429 cpu_relax();
2430 }
2431}
2432
50417d22
SAS
2433static inline void end_dir_add(struct inode *dir, unsigned int n,
2434 wait_queue_head_t *d_wait)
84e710da
AV
2435{
2436 smp_store_release(&dir->i_dir_seq, n + 2);
93f6d4e1 2437 preempt_enable_nested();
50417d22 2438 wake_up_all(d_wait);
84e710da
AV
2439}
2440
d9171b93
AV
2441static void d_wait_lookup(struct dentry *dentry)
2442{
2443 if (d_in_lookup(dentry)) {
2444 DECLARE_WAITQUEUE(wait, current);
2445 add_wait_queue(dentry->d_wait, &wait);
2446 do {
2447 set_current_state(TASK_UNINTERRUPTIBLE);
2448 spin_unlock(&dentry->d_lock);
2449 schedule();
2450 spin_lock(&dentry->d_lock);
2451 } while (d_in_lookup(dentry));
2452 }
2453}
2454
94bdd655 2455struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2456 const struct qstr *name,
2457 wait_queue_head_t *wq)
94bdd655 2458{
94bdd655 2459 unsigned int hash = name->hash;
94bdd655
AV
2460 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2461 struct hlist_bl_node *node;
2462 struct dentry *new = d_alloc(parent, name);
2463 struct dentry *dentry;
2464 unsigned seq, r_seq, d_seq;
2465
2466 if (unlikely(!new))
2467 return ERR_PTR(-ENOMEM);
2468
2469retry:
2470 rcu_read_lock();
015555fd 2471 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2472 r_seq = read_seqbegin(&rename_lock);
2473 dentry = __d_lookup_rcu(parent, name, &d_seq);
2474 if (unlikely(dentry)) {
2475 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2476 rcu_read_unlock();
2477 goto retry;
2478 }
2479 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2480 rcu_read_unlock();
2481 dput(dentry);
2482 goto retry;
2483 }
2484 rcu_read_unlock();
2485 dput(new);
2486 return dentry;
2487 }
2488 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2489 rcu_read_unlock();
2490 goto retry;
2491 }
015555fd
WD
2492
2493 if (unlikely(seq & 1)) {
2494 rcu_read_unlock();
2495 goto retry;
2496 }
2497
94bdd655 2498 hlist_bl_lock(b);
8cc07c80 2499 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2500 hlist_bl_unlock(b);
2501 rcu_read_unlock();
2502 goto retry;
2503 }
94bdd655
AV
2504 /*
2505 * No changes for the parent since the beginning of d_lookup().
2506 * Since all removals from the chain happen with hlist_bl_lock(),
2507 * any potential in-lookup matches are going to stay here until
2508 * we unlock the chain. All fields are stable in everything
2509 * we encounter.
2510 */
2511 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2512 if (dentry->d_name.hash != hash)
2513 continue;
2514 if (dentry->d_parent != parent)
2515 continue;
d4c91a8f
AV
2516 if (!d_same_name(dentry, parent, name))
2517 continue;
94bdd655 2518 hlist_bl_unlock(b);
e7d6ef97
AV
2519 /* now we can try to grab a reference */
2520 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2521 rcu_read_unlock();
2522 goto retry;
2523 }
2524
2525 rcu_read_unlock();
2526 /*
2527 * somebody is likely to be still doing lookup for it;
2528 * wait for them to finish
2529 */
d9171b93
AV
2530 spin_lock(&dentry->d_lock);
2531 d_wait_lookup(dentry);
2532 /*
2533 * it's not in-lookup anymore; in principle we should repeat
2534 * everything from dcache lookup, but it's likely to be what
2535 * d_lookup() would've found anyway. If it is, just return it;
2536 * otherwise we really have to repeat the whole thing.
2537 */
2538 if (unlikely(dentry->d_name.hash != hash))
2539 goto mismatch;
2540 if (unlikely(dentry->d_parent != parent))
2541 goto mismatch;
2542 if (unlikely(d_unhashed(dentry)))
2543 goto mismatch;
d4c91a8f
AV
2544 if (unlikely(!d_same_name(dentry, parent, name)))
2545 goto mismatch;
d9171b93
AV
2546 /* OK, it *is* a hashed match; return it */
2547 spin_unlock(&dentry->d_lock);
94bdd655
AV
2548 dput(new);
2549 return dentry;
2550 }
e7d6ef97 2551 rcu_read_unlock();
94bdd655
AV
2552 /* we can't take ->d_lock here; it's OK, though. */
2553 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2554 new->d_wait = wq;
f9f677c5 2555 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
94bdd655
AV
2556 hlist_bl_unlock(b);
2557 return new;
d9171b93
AV
2558mismatch:
2559 spin_unlock(&dentry->d_lock);
2560 dput(dentry);
2561 goto retry;
94bdd655
AV
2562}
2563EXPORT_SYMBOL(d_alloc_parallel);
2564
45f78b0a
SAS
2565/*
2566 * - Unhash the dentry
2567 * - Retrieve and clear the waitqueue head in dentry
2568 * - Return the waitqueue head
2569 */
2570static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
85c7f810 2571{
45f78b0a
SAS
2572 wait_queue_head_t *d_wait;
2573 struct hlist_bl_head *b;
2574
2575 lockdep_assert_held(&dentry->d_lock);
2576
2577 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
94bdd655 2578 hlist_bl_lock(b);
85c7f810 2579 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2580 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
45f78b0a 2581 d_wait = dentry->d_wait;
d9171b93 2582 dentry->d_wait = NULL;
94bdd655
AV
2583 hlist_bl_unlock(b);
2584 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2585 INIT_LIST_HEAD(&dentry->d_lru);
45f78b0a
SAS
2586 return d_wait;
2587}
2588
2589void __d_lookup_unhash_wake(struct dentry *dentry)
2590{
2591 spin_lock(&dentry->d_lock);
2592 wake_up_all(__d_lookup_unhash(dentry));
2593 spin_unlock(&dentry->d_lock);
85c7f810 2594}
45f78b0a 2595EXPORT_SYMBOL(__d_lookup_unhash_wake);
ed782b5a
AV
2596
2597/* inode->i_lock held if inode is non-NULL */
2598
2599static inline void __d_add(struct dentry *dentry, struct inode *inode)
2600{
45f78b0a 2601 wait_queue_head_t *d_wait;
84e710da
AV
2602 struct inode *dir = NULL;
2603 unsigned n;
0568d705 2604 spin_lock(&dentry->d_lock);
84e710da
AV
2605 if (unlikely(d_in_lookup(dentry))) {
2606 dir = dentry->d_parent->d_inode;
2607 n = start_dir_add(dir);
45f78b0a 2608 d_wait = __d_lookup_unhash(dentry);
84e710da 2609 }
ed782b5a 2610 if (inode) {
0568d705
AV
2611 unsigned add_flags = d_flags_for_inode(inode);
2612 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2613 raw_write_seqcount_begin(&dentry->d_seq);
2614 __d_set_inode_and_type(dentry, inode, add_flags);
2615 raw_write_seqcount_end(&dentry->d_seq);
affda484 2616 fsnotify_update_flags(dentry);
ed782b5a 2617 }
15d3c589 2618 __d_rehash(dentry);
84e710da 2619 if (dir)
50417d22 2620 end_dir_add(dir, n, d_wait);
0568d705
AV
2621 spin_unlock(&dentry->d_lock);
2622 if (inode)
2623 spin_unlock(&inode->i_lock);
ed782b5a
AV
2624}
2625
34d0d19d
AV
2626/**
2627 * d_add - add dentry to hash queues
2628 * @entry: dentry to add
2629 * @inode: The inode to attach to this dentry
2630 *
2631 * This adds the entry to the hash queues and initializes @inode.
2632 * The entry was actually filled in earlier during d_alloc().
2633 */
2634
2635void d_add(struct dentry *entry, struct inode *inode)
2636{
b9680917
AV
2637 if (inode) {
2638 security_d_instantiate(entry, inode);
ed782b5a 2639 spin_lock(&inode->i_lock);
b9680917 2640 }
ed782b5a 2641 __d_add(entry, inode);
34d0d19d
AV
2642}
2643EXPORT_SYMBOL(d_add);
2644
668d0cd5
AV
2645/**
2646 * d_exact_alias - find and hash an exact unhashed alias
2647 * @entry: dentry to add
2648 * @inode: The inode to go with this dentry
2649 *
2650 * If an unhashed dentry with the same name/parent and desired
2651 * inode already exists, hash and return it. Otherwise, return
2652 * NULL.
2653 *
2654 * Parent directory should be locked.
2655 */
2656struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2657{
2658 struct dentry *alias;
668d0cd5
AV
2659 unsigned int hash = entry->d_name.hash;
2660
2661 spin_lock(&inode->i_lock);
2662 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2663 /*
2664 * Don't need alias->d_lock here, because aliases with
2665 * d_parent == entry->d_parent are not subject to name or
2666 * parent changes, because the parent inode i_mutex is held.
2667 */
2668 if (alias->d_name.hash != hash)
2669 continue;
2670 if (alias->d_parent != entry->d_parent)
2671 continue;
d4c91a8f 2672 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2673 continue;
2674 spin_lock(&alias->d_lock);
2675 if (!d_unhashed(alias)) {
2676 spin_unlock(&alias->d_lock);
2677 alias = NULL;
2678 } else {
1b6ae9f6 2679 dget_dlock(alias);
15d3c589 2680 __d_rehash(alias);
668d0cd5
AV
2681 spin_unlock(&alias->d_lock);
2682 }
2683 spin_unlock(&inode->i_lock);
2684 return alias;
2685 }
2686 spin_unlock(&inode->i_lock);
2687 return NULL;
2688}
2689EXPORT_SYMBOL(d_exact_alias);
2690
8d85b484 2691static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2692{
8d85b484
AV
2693 if (unlikely(dname_external(target))) {
2694 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2695 /*
2696 * Both external: swap the pointers
2697 */
9a8d5bb4 2698 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2699 } else {
2700 /*
2701 * dentry:internal, target:external. Steal target's
2702 * storage and make target internal.
2703 */
321bcf92
BF
2704 memcpy(target->d_iname, dentry->d_name.name,
2705 dentry->d_name.len + 1);
1da177e4
LT
2706 dentry->d_name.name = target->d_name.name;
2707 target->d_name.name = target->d_iname;
2708 }
2709 } else {
8d85b484 2710 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2711 /*
2712 * dentry:external, target:internal. Give dentry's
2713 * storage to target and make dentry internal
2714 */
2715 memcpy(dentry->d_iname, target->d_name.name,
2716 target->d_name.len + 1);
2717 target->d_name.name = dentry->d_name.name;
2718 dentry->d_name.name = dentry->d_iname;
2719 } else {
2720 /*
da1ce067 2721 * Both are internal.
1da177e4 2722 */
da1ce067
MS
2723 unsigned int i;
2724 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2725 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2726 swap(((long *) &dentry->d_iname)[i],
2727 ((long *) &target->d_iname)[i]);
2728 }
1da177e4
LT
2729 }
2730 }
a28ddb87 2731 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2732}
2733
8d85b484
AV
2734static void copy_name(struct dentry *dentry, struct dentry *target)
2735{
2736 struct external_name *old_name = NULL;
2737 if (unlikely(dname_external(dentry)))
2738 old_name = external_name(dentry);
2739 if (unlikely(dname_external(target))) {
2740 atomic_inc(&external_name(target)->u.count);
2741 dentry->d_name = target->d_name;
2742 } else {
2743 memcpy(dentry->d_iname, target->d_name.name,
2744 target->d_name.len + 1);
2745 dentry->d_name.name = dentry->d_iname;
2746 dentry->d_name.hash_len = target->d_name.hash_len;
2747 }
2748 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2e03b4bc 2749 kfree_rcu(old_name, u.head);
8d85b484
AV
2750}
2751
9eaef27b 2752/*
18367501 2753 * __d_move - move a dentry
1da177e4
LT
2754 * @dentry: entry to move
2755 * @target: new dentry
da1ce067 2756 * @exchange: exchange the two dentries
1da177e4
LT
2757 *
2758 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2759 * dcache entries should not be moved in this way. Caller must hold
2760 * rename_lock, the i_mutex of the source and target directories,
2761 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2762 */
da1ce067
MS
2763static void __d_move(struct dentry *dentry, struct dentry *target,
2764 bool exchange)
1da177e4 2765{
42177007 2766 struct dentry *old_parent, *p;
45f78b0a 2767 wait_queue_head_t *d_wait;
84e710da
AV
2768 struct inode *dir = NULL;
2769 unsigned n;
1da177e4 2770
42177007
AV
2771 WARN_ON(!dentry->d_inode);
2772 if (WARN_ON(dentry == target))
2773 return;
2774
2fd6b7f5 2775 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2776 old_parent = dentry->d_parent;
2777 p = d_ancestor(old_parent, target);
2778 if (IS_ROOT(dentry)) {
2779 BUG_ON(p);
2780 spin_lock(&target->d_parent->d_lock);
2781 } else if (!p) {
2782 /* target is not a descendent of dentry->d_parent */
2783 spin_lock(&target->d_parent->d_lock);
2784 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2785 } else {
2786 BUG_ON(p == dentry);
2787 spin_lock(&old_parent->d_lock);
2788 if (p != target)
2789 spin_lock_nested(&target->d_parent->d_lock,
2790 DENTRY_D_LOCK_NESTED);
2791 }
2792 spin_lock_nested(&dentry->d_lock, 2);
2793 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2794
84e710da
AV
2795 if (unlikely(d_in_lookup(target))) {
2796 dir = target->d_parent->d_inode;
2797 n = start_dir_add(dir);
45f78b0a 2798 d_wait = __d_lookup_unhash(target);
84e710da 2799 }
1da177e4 2800
31e6b01f 2801 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2802 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2803
15d3c589 2804 /* unhash both */
0632a9ac
AV
2805 if (!d_unhashed(dentry))
2806 ___d_drop(dentry);
2807 if (!d_unhashed(target))
2808 ___d_drop(target);
1da177e4 2809
076515fc
AV
2810 /* ... and switch them in the tree */
2811 dentry->d_parent = target->d_parent;
2812 if (!exchange) {
8d85b484 2813 copy_name(dentry, target);
61647823 2814 target->d_hash.pprev = NULL;
076515fc 2815 dentry->d_parent->d_lockref.count++;
5467a68c 2816 if (dentry != old_parent) /* wasn't IS_ROOT */
076515fc 2817 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2818 } else {
076515fc
AV
2819 target->d_parent = old_parent;
2820 swap_names(dentry, target);
da549bdd
AV
2821 if (!hlist_unhashed(&target->d_sib))
2822 __hlist_del(&target->d_sib);
2823 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
076515fc
AV
2824 __d_rehash(target);
2825 fsnotify_update_flags(target);
1da177e4 2826 }
da549bdd
AV
2827 if (!hlist_unhashed(&dentry->d_sib))
2828 __hlist_del(&dentry->d_sib);
2829 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
076515fc
AV
2830 __d_rehash(dentry);
2831 fsnotify_update_flags(dentry);
0bf3d5c1 2832 fscrypt_handle_d_move(dentry);
1da177e4 2833
31e6b01f
NP
2834 write_seqcount_end(&target->d_seq);
2835 write_seqcount_end(&dentry->d_seq);
2836
84e710da 2837 if (dir)
50417d22 2838 end_dir_add(dir, n, d_wait);
076515fc
AV
2839
2840 if (dentry->d_parent != old_parent)
2841 spin_unlock(&dentry->d_parent->d_lock);
2842 if (dentry != old_parent)
2843 spin_unlock(&old_parent->d_lock);
2844 spin_unlock(&target->d_lock);
2845 spin_unlock(&dentry->d_lock);
18367501
AV
2846}
2847
2848/*
2849 * d_move - move a dentry
2850 * @dentry: entry to move
2851 * @target: new dentry
2852 *
2853 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2854 * dcache entries should not be moved in this way. See the locking
2855 * requirements for __d_move.
18367501
AV
2856 */
2857void d_move(struct dentry *dentry, struct dentry *target)
2858{
2859 write_seqlock(&rename_lock);
da1ce067 2860 __d_move(dentry, target, false);
1da177e4 2861 write_sequnlock(&rename_lock);
9eaef27b 2862}
ec4f8605 2863EXPORT_SYMBOL(d_move);
1da177e4 2864
da1ce067
MS
2865/*
2866 * d_exchange - exchange two dentries
2867 * @dentry1: first dentry
2868 * @dentry2: second dentry
2869 */
2870void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2871{
2872 write_seqlock(&rename_lock);
2873
2874 WARN_ON(!dentry1->d_inode);
2875 WARN_ON(!dentry2->d_inode);
2876 WARN_ON(IS_ROOT(dentry1));
2877 WARN_ON(IS_ROOT(dentry2));
2878
2879 __d_move(dentry1, dentry2, true);
2880
2881 write_sequnlock(&rename_lock);
2882}
2883
e2761a11
OH
2884/**
2885 * d_ancestor - search for an ancestor
2886 * @p1: ancestor dentry
2887 * @p2: child dentry
2888 *
2889 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2890 * an ancestor of p2, else NULL.
9eaef27b 2891 */
e2761a11 2892struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2893{
2894 struct dentry *p;
2895
871c0067 2896 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2897 if (p->d_parent == p1)
e2761a11 2898 return p;
9eaef27b 2899 }
e2761a11 2900 return NULL;
9eaef27b
TM
2901}
2902
2903/*
2904 * This helper attempts to cope with remotely renamed directories
2905 *
2906 * It assumes that the caller is already holding
a03e283b 2907 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2908 *
2909 * Note: If ever the locking in lock_rename() changes, then please
2910 * remember to update this too...
9eaef27b 2911 */
ef69f050 2912static int __d_unalias(struct dentry *dentry, struct dentry *alias)
9eaef27b 2913{
9902af79
AV
2914 struct mutex *m1 = NULL;
2915 struct rw_semaphore *m2 = NULL;
3d330dc1 2916 int ret = -ESTALE;
9eaef27b
TM
2917
2918 /* If alias and dentry share a parent, then no extra locks required */
2919 if (alias->d_parent == dentry->d_parent)
2920 goto out_unalias;
2921
9eaef27b 2922 /* See lock_rename() */
9eaef27b
TM
2923 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2924 goto out_err;
2925 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2926 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2927 goto out_err;
9902af79 2928 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2929out_unalias:
8ed936b5 2930 __d_move(alias, dentry, false);
b5ae6b15 2931 ret = 0;
9eaef27b 2932out_err:
9eaef27b 2933 if (m2)
9902af79 2934 up_read(m2);
9eaef27b
TM
2935 if (m1)
2936 mutex_unlock(m1);
2937 return ret;
2938}
2939
3f70bd51
BF
2940/**
2941 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2942 * @inode: the inode which may have a disconnected dentry
2943 * @dentry: a negative dentry which we want to point to the inode.
2944 *
da093a9b
BF
2945 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2946 * place of the given dentry and return it, else simply d_add the inode
2947 * to the dentry and return NULL.
3f70bd51 2948 *
908790fa
BF
2949 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2950 * we should error out: directories can't have multiple aliases.
2951 *
3f70bd51
BF
2952 * This is needed in the lookup routine of any filesystem that is exportable
2953 * (via knfsd) so that we can build dcache paths to directories effectively.
2954 *
2955 * If a dentry was found and moved, then it is returned. Otherwise NULL
2956 * is returned. This matches the expected return value of ->lookup.
2957 *
2958 * Cluster filesystems may call this function with a negative, hashed dentry.
2959 * In that case, we know that the inode will be a regular file, and also this
2960 * will only occur during atomic_open. So we need to check for the dentry
2961 * being already hashed only in the final case.
2962 */
2963struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2964{
3f70bd51
BF
2965 if (IS_ERR(inode))
2966 return ERR_CAST(inode);
2967
770bfad8
DH
2968 BUG_ON(!d_unhashed(dentry));
2969
de689f5e 2970 if (!inode)
b5ae6b15 2971 goto out;
de689f5e 2972
b9680917 2973 security_d_instantiate(dentry, inode);
873feea0 2974 spin_lock(&inode->i_lock);
9eaef27b 2975 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2976 struct dentry *new = __d_find_any_alias(inode);
2977 if (unlikely(new)) {
a03e283b
EB
2978 /* The reference to new ensures it remains an alias */
2979 spin_unlock(&inode->i_lock);
18367501 2980 write_seqlock(&rename_lock);
b5ae6b15
AV
2981 if (unlikely(d_ancestor(new, dentry))) {
2982 write_sequnlock(&rename_lock);
b5ae6b15
AV
2983 dput(new);
2984 new = ERR_PTR(-ELOOP);
2985 pr_warn_ratelimited(
2986 "VFS: Lookup of '%s' in %s %s"
2987 " would have caused loop\n",
2988 dentry->d_name.name,
2989 inode->i_sb->s_type->name,
2990 inode->i_sb->s_id);
2991 } else if (!IS_ROOT(new)) {
076515fc 2992 struct dentry *old_parent = dget(new->d_parent);
ef69f050 2993 int err = __d_unalias(dentry, new);
18367501 2994 write_sequnlock(&rename_lock);
b5ae6b15
AV
2995 if (err) {
2996 dput(new);
2997 new = ERR_PTR(err);
2998 }
076515fc 2999 dput(old_parent);
18367501 3000 } else {
b5ae6b15
AV
3001 __d_move(new, dentry, false);
3002 write_sequnlock(&rename_lock);
dd179946 3003 }
b5ae6b15
AV
3004 iput(inode);
3005 return new;
9eaef27b 3006 }
770bfad8 3007 }
b5ae6b15 3008out:
ed782b5a 3009 __d_add(dentry, inode);
b5ae6b15 3010 return NULL;
770bfad8 3011}
b5ae6b15 3012EXPORT_SYMBOL(d_splice_alias);
770bfad8 3013
1da177e4
LT
3014/*
3015 * Test whether new_dentry is a subdirectory of old_dentry.
3016 *
3017 * Trivially implemented using the dcache structure
3018 */
3019
3020/**
3021 * is_subdir - is new dentry a subdirectory of old_dentry
3022 * @new_dentry: new dentry
3023 * @old_dentry: old dentry
3024 *
a6e5787f
YB
3025 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3026 * Returns false otherwise.
1da177e4
LT
3027 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3028 */
3029
a6e5787f 3030bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3031{
a6e5787f 3032 bool result;
949854d0 3033 unsigned seq;
1da177e4 3034
e2761a11 3035 if (new_dentry == old_dentry)
a6e5787f 3036 return true;
e2761a11 3037
e2761a11 3038 do {
1da177e4 3039 /* for restarting inner loop in case of seq retry */
1da177e4 3040 seq = read_seqbegin(&rename_lock);
949854d0
NP
3041 /*
3042 * Need rcu_readlock to protect against the d_parent trashing
3043 * due to d_move
3044 */
3045 rcu_read_lock();
e2761a11 3046 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3047 result = true;
e2761a11 3048 else
a6e5787f 3049 result = false;
949854d0 3050 rcu_read_unlock();
1da177e4 3051 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3052
3053 return result;
3054}
e8f9e5b7 3055EXPORT_SYMBOL(is_subdir);
1da177e4 3056
db14fc3a 3057static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3058{
db14fc3a
MS
3059 struct dentry *root = data;
3060 if (dentry != root) {
3061 if (d_unhashed(dentry) || !dentry->d_inode)
3062 return D_WALK_SKIP;
1da177e4 3063
7e4a205f
AV
3064 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3065 dentry->d_flags |= DCACHE_GENOCIDE;
3066 dentry->d_lockref.count--;
3067 }
1da177e4 3068 }
db14fc3a
MS
3069 return D_WALK_CONTINUE;
3070}
58db63d0 3071
db14fc3a
MS
3072void d_genocide(struct dentry *parent)
3073{
3a8e3611 3074 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3075}
3076
771eb4fe 3077void d_mark_tmpfile(struct file *file, struct inode *inode)
1da177e4 3078{
863f144f
MS
3079 struct dentry *dentry = file->f_path.dentry;
3080
60545d0d 3081 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3082 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3083 !d_unlinked(dentry));
3084 spin_lock(&dentry->d_parent->d_lock);
3085 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3086 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3087 (unsigned long long)inode->i_ino);
3088 spin_unlock(&dentry->d_lock);
3089 spin_unlock(&dentry->d_parent->d_lock);
771eb4fe
KO
3090}
3091EXPORT_SYMBOL(d_mark_tmpfile);
3092
3093void d_tmpfile(struct file *file, struct inode *inode)
3094{
3095 struct dentry *dentry = file->f_path.dentry;
3096
3097 inode_dec_link_count(inode);
3098 d_mark_tmpfile(file, inode);
60545d0d 3099 d_instantiate(dentry, inode);
1da177e4 3100}
60545d0d 3101EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3102
3103static __initdata unsigned long dhash_entries;
3104static int __init set_dhash_entries(char *str)
3105{
3106 if (!str)
3107 return 0;
3108 dhash_entries = simple_strtoul(str, &str, 0);
3109 return 1;
3110}
3111__setup("dhash_entries=", set_dhash_entries);
3112
3113static void __init dcache_init_early(void)
3114{
1da177e4
LT
3115 /* If hashes are distributed across NUMA nodes, defer
3116 * hash allocation until vmalloc space is available.
3117 */
3118 if (hashdist)
3119 return;
3120
3121 dentry_hashtable =
3122 alloc_large_system_hash("Dentry cache",
b07ad996 3123 sizeof(struct hlist_bl_head),
1da177e4
LT
3124 dhash_entries,
3125 13,
3d375d78 3126 HASH_EARLY | HASH_ZERO,
1da177e4 3127 &d_hash_shift,
b35d786b 3128 NULL,
31fe62b9 3129 0,
1da177e4 3130 0);
854d3e63 3131 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3132}
3133
74bf17cf 3134static void __init dcache_init(void)
1da177e4 3135{
3d375d78 3136 /*
1da177e4
LT
3137 * A constructor could be added for stable state like the lists,
3138 * but it is probably not worth it because of the cache nature
3d375d78 3139 * of the dcache.
1da177e4 3140 */
80344266 3141 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
c997d683 3142 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
80344266 3143 d_iname);
1da177e4
LT
3144
3145 /* Hash may have been set up in dcache_init_early */
3146 if (!hashdist)
3147 return;
3148
3149 dentry_hashtable =
3150 alloc_large_system_hash("Dentry cache",
b07ad996 3151 sizeof(struct hlist_bl_head),
1da177e4
LT
3152 dhash_entries,
3153 13,
3d375d78 3154 HASH_ZERO,
1da177e4 3155 &d_hash_shift,
b35d786b 3156 NULL,
31fe62b9 3157 0,
1da177e4 3158 0);
854d3e63 3159 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3160}
3161
3162/* SLAB cache for __getname() consumers */
68279f9c 3163struct kmem_cache *names_cachep __ro_after_init;
ec4f8605 3164EXPORT_SYMBOL(names_cachep);
1da177e4 3165
1da177e4
LT
3166void __init vfs_caches_init_early(void)
3167{
6916363f
SAS
3168 int i;
3169
3170 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3171 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3172
1da177e4
LT
3173 dcache_init_early();
3174 inode_init_early();
3175}
3176
4248b0da 3177void __init vfs_caches_init(void)
1da177e4 3178{
6a9b8820
DW
3179 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3180 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3181
74bf17cf
DC
3182 dcache_init();
3183 inode_init();
4248b0da
MG
3184 files_init();
3185 files_maxfiles_init();
74bf17cf 3186 mnt_init();
1da177e4
LT
3187 bdev_cache_init();
3188 chrdev_init();
3189}