Commit | Line | Data |
---|---|---|
2025cf9e | 1 | // SPDX-License-Identifier: GPL-2.0-only |
d475c634 MW |
2 | /* |
3 | * fs/dax.c - Direct Access filesystem code | |
4 | * Copyright (c) 2013-2014 Intel Corporation | |
5 | * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> | |
6 | * Author: Ross Zwisler <ross.zwisler@linux.intel.com> | |
d475c634 MW |
7 | */ |
8 | ||
9 | #include <linux/atomic.h> | |
10 | #include <linux/blkdev.h> | |
11 | #include <linux/buffer_head.h> | |
d77e92e2 | 12 | #include <linux/dax.h> |
d475c634 | 13 | #include <linux/fs.h> |
f7ca90b1 MW |
14 | #include <linux/highmem.h> |
15 | #include <linux/memcontrol.h> | |
16 | #include <linux/mm.h> | |
d475c634 | 17 | #include <linux/mutex.h> |
9973c98e | 18 | #include <linux/pagevec.h> |
289c6aed | 19 | #include <linux/sched.h> |
f361bf4a | 20 | #include <linux/sched/signal.h> |
d475c634 | 21 | #include <linux/uio.h> |
f7ca90b1 | 22 | #include <linux/vmstat.h> |
34c0fd54 | 23 | #include <linux/pfn_t.h> |
0e749e54 | 24 | #include <linux/sizes.h> |
4b4bb46d | 25 | #include <linux/mmu_notifier.h> |
a254e568 | 26 | #include <linux/iomap.h> |
06083a09 | 27 | #include <linux/rmap.h> |
11cf9d86 | 28 | #include <asm/pgalloc.h> |
d475c634 | 29 | |
282a8e03 RZ |
30 | #define CREATE_TRACE_POINTS |
31 | #include <trace/events/fs_dax.h> | |
32 | ||
ac401cc7 JK |
33 | /* We choose 4096 entries - same as per-zone page wait tables */ |
34 | #define DAX_WAIT_TABLE_BITS 12 | |
35 | #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) | |
36 | ||
917f3452 RZ |
37 | /* The 'colour' (ie low bits) within a PMD of a page offset. */ |
38 | #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) | |
977fbdcd | 39 | #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) |
917f3452 | 40 | |
ce95ab0f | 41 | static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; |
ac401cc7 JK |
42 | |
43 | static int __init init_dax_wait_table(void) | |
44 | { | |
45 | int i; | |
46 | ||
47 | for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) | |
48 | init_waitqueue_head(wait_table + i); | |
49 | return 0; | |
50 | } | |
51 | fs_initcall(init_dax_wait_table); | |
52 | ||
527b19d0 | 53 | /* |
3159f943 MW |
54 | * DAX pagecache entries use XArray value entries so they can't be mistaken |
55 | * for pages. We use one bit for locking, one bit for the entry size (PMD) | |
56 | * and two more to tell us if the entry is a zero page or an empty entry that | |
57 | * is just used for locking. In total four special bits. | |
527b19d0 RZ |
58 | * |
59 | * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE | |
60 | * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem | |
61 | * block allocation. | |
62 | */ | |
3159f943 MW |
63 | #define DAX_SHIFT (4) |
64 | #define DAX_LOCKED (1UL << 0) | |
65 | #define DAX_PMD (1UL << 1) | |
66 | #define DAX_ZERO_PAGE (1UL << 2) | |
67 | #define DAX_EMPTY (1UL << 3) | |
527b19d0 | 68 | |
a77d19f4 | 69 | static unsigned long dax_to_pfn(void *entry) |
527b19d0 | 70 | { |
3159f943 | 71 | return xa_to_value(entry) >> DAX_SHIFT; |
527b19d0 RZ |
72 | } |
73 | ||
38607c62 AP |
74 | static struct folio *dax_to_folio(void *entry) |
75 | { | |
76 | return page_folio(pfn_to_page(dax_to_pfn(entry))); | |
77 | } | |
78 | ||
9f32d221 MW |
79 | static void *dax_make_entry(pfn_t pfn, unsigned long flags) |
80 | { | |
81 | return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); | |
82 | } | |
83 | ||
cfc93c6c MW |
84 | static bool dax_is_locked(void *entry) |
85 | { | |
86 | return xa_to_value(entry) & DAX_LOCKED; | |
87 | } | |
88 | ||
a77d19f4 | 89 | static unsigned int dax_entry_order(void *entry) |
527b19d0 | 90 | { |
3159f943 | 91 | if (xa_to_value(entry) & DAX_PMD) |
cfc93c6c | 92 | return PMD_ORDER; |
527b19d0 RZ |
93 | return 0; |
94 | } | |
95 | ||
fda490d3 | 96 | static unsigned long dax_is_pmd_entry(void *entry) |
d1a5f2b4 | 97 | { |
3159f943 | 98 | return xa_to_value(entry) & DAX_PMD; |
d1a5f2b4 DW |
99 | } |
100 | ||
fda490d3 | 101 | static bool dax_is_pte_entry(void *entry) |
d475c634 | 102 | { |
3159f943 | 103 | return !(xa_to_value(entry) & DAX_PMD); |
d475c634 MW |
104 | } |
105 | ||
642261ac | 106 | static int dax_is_zero_entry(void *entry) |
d475c634 | 107 | { |
3159f943 | 108 | return xa_to_value(entry) & DAX_ZERO_PAGE; |
d475c634 MW |
109 | } |
110 | ||
642261ac | 111 | static int dax_is_empty_entry(void *entry) |
b2e0d162 | 112 | { |
3159f943 | 113 | return xa_to_value(entry) & DAX_EMPTY; |
b2e0d162 DW |
114 | } |
115 | ||
23c84eb7 MWO |
116 | /* |
117 | * true if the entry that was found is of a smaller order than the entry | |
118 | * we were looking for | |
119 | */ | |
120 | static bool dax_is_conflict(void *entry) | |
121 | { | |
122 | return entry == XA_RETRY_ENTRY; | |
123 | } | |
124 | ||
ac401cc7 | 125 | /* |
a77d19f4 | 126 | * DAX page cache entry locking |
ac401cc7 JK |
127 | */ |
128 | struct exceptional_entry_key { | |
ec4907ff | 129 | struct xarray *xa; |
63e95b5c | 130 | pgoff_t entry_start; |
ac401cc7 JK |
131 | }; |
132 | ||
133 | struct wait_exceptional_entry_queue { | |
ac6424b9 | 134 | wait_queue_entry_t wait; |
ac401cc7 JK |
135 | struct exceptional_entry_key key; |
136 | }; | |
137 | ||
698ab77a VG |
138 | /** |
139 | * enum dax_wake_mode: waitqueue wakeup behaviour | |
140 | * @WAKE_ALL: wake all waiters in the waitqueue | |
141 | * @WAKE_NEXT: wake only the first waiter in the waitqueue | |
142 | */ | |
143 | enum dax_wake_mode { | |
144 | WAKE_ALL, | |
145 | WAKE_NEXT, | |
146 | }; | |
147 | ||
b15cd800 MW |
148 | static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, |
149 | void *entry, struct exceptional_entry_key *key) | |
63e95b5c RZ |
150 | { |
151 | unsigned long hash; | |
b15cd800 | 152 | unsigned long index = xas->xa_index; |
63e95b5c RZ |
153 | |
154 | /* | |
155 | * If 'entry' is a PMD, align the 'index' that we use for the wait | |
156 | * queue to the start of that PMD. This ensures that all offsets in | |
157 | * the range covered by the PMD map to the same bit lock. | |
158 | */ | |
642261ac | 159 | if (dax_is_pmd_entry(entry)) |
917f3452 | 160 | index &= ~PG_PMD_COLOUR; |
b15cd800 | 161 | key->xa = xas->xa; |
63e95b5c RZ |
162 | key->entry_start = index; |
163 | ||
b15cd800 | 164 | hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); |
63e95b5c RZ |
165 | return wait_table + hash; |
166 | } | |
167 | ||
ec4907ff MW |
168 | static int wake_exceptional_entry_func(wait_queue_entry_t *wait, |
169 | unsigned int mode, int sync, void *keyp) | |
ac401cc7 JK |
170 | { |
171 | struct exceptional_entry_key *key = keyp; | |
172 | struct wait_exceptional_entry_queue *ewait = | |
173 | container_of(wait, struct wait_exceptional_entry_queue, wait); | |
174 | ||
ec4907ff | 175 | if (key->xa != ewait->key.xa || |
63e95b5c | 176 | key->entry_start != ewait->key.entry_start) |
ac401cc7 JK |
177 | return 0; |
178 | return autoremove_wake_function(wait, mode, sync, NULL); | |
179 | } | |
180 | ||
e30331ff | 181 | /* |
b93b0163 MW |
182 | * @entry may no longer be the entry at the index in the mapping. |
183 | * The important information it's conveying is whether the entry at | |
184 | * this index used to be a PMD entry. | |
e30331ff | 185 | */ |
698ab77a VG |
186 | static void dax_wake_entry(struct xa_state *xas, void *entry, |
187 | enum dax_wake_mode mode) | |
e30331ff RZ |
188 | { |
189 | struct exceptional_entry_key key; | |
190 | wait_queue_head_t *wq; | |
191 | ||
b15cd800 | 192 | wq = dax_entry_waitqueue(xas, entry, &key); |
e30331ff RZ |
193 | |
194 | /* | |
195 | * Checking for locked entry and prepare_to_wait_exclusive() happens | |
b93b0163 | 196 | * under the i_pages lock, ditto for entry handling in our callers. |
e30331ff RZ |
197 | * So at this point all tasks that could have seen our entry locked |
198 | * must be in the waitqueue and the following check will see them. | |
199 | */ | |
200 | if (waitqueue_active(wq)) | |
698ab77a | 201 | __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); |
e30331ff RZ |
202 | } |
203 | ||
cfc93c6c MW |
204 | /* |
205 | * Look up entry in page cache, wait for it to become unlocked if it | |
206 | * is a DAX entry and return it. The caller must subsequently call | |
207 | * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() | |
23c84eb7 MWO |
208 | * if it did. The entry returned may have a larger order than @order. |
209 | * If @order is larger than the order of the entry found in i_pages, this | |
210 | * function returns a dax_is_conflict entry. | |
cfc93c6c MW |
211 | * |
212 | * Must be called with the i_pages lock held. | |
213 | */ | |
6be3e21d | 214 | static void *get_next_unlocked_entry(struct xa_state *xas, unsigned int order) |
cfc93c6c MW |
215 | { |
216 | void *entry; | |
217 | struct wait_exceptional_entry_queue ewait; | |
218 | wait_queue_head_t *wq; | |
219 | ||
220 | init_wait(&ewait.wait); | |
221 | ewait.wait.func = wake_exceptional_entry_func; | |
222 | ||
223 | for (;;) { | |
0e40de03 | 224 | entry = xas_find_conflict(xas); |
6370740e DW |
225 | if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) |
226 | return entry; | |
23c84eb7 MWO |
227 | if (dax_entry_order(entry) < order) |
228 | return XA_RETRY_ENTRY; | |
6370740e | 229 | if (!dax_is_locked(entry)) |
cfc93c6c MW |
230 | return entry; |
231 | ||
b15cd800 | 232 | wq = dax_entry_waitqueue(xas, entry, &ewait.key); |
cfc93c6c MW |
233 | prepare_to_wait_exclusive(wq, &ewait.wait, |
234 | TASK_UNINTERRUPTIBLE); | |
235 | xas_unlock_irq(xas); | |
236 | xas_reset(xas); | |
237 | schedule(); | |
238 | finish_wait(wq, &ewait.wait); | |
239 | xas_lock_irq(xas); | |
240 | } | |
241 | } | |
242 | ||
6be3e21d AP |
243 | /* |
244 | * Wait for the given entry to become unlocked. Caller must hold the i_pages | |
245 | * lock and call either put_unlocked_entry() if it did not lock the entry or | |
246 | * dax_unlock_entry() if it did. Returns an unlocked entry if still present. | |
247 | */ | |
248 | static void *wait_entry_unlocked_exclusive(struct xa_state *xas, void *entry) | |
249 | { | |
250 | struct wait_exceptional_entry_queue ewait; | |
251 | wait_queue_head_t *wq; | |
252 | ||
253 | init_wait(&ewait.wait); | |
254 | ewait.wait.func = wake_exceptional_entry_func; | |
255 | ||
256 | while (unlikely(dax_is_locked(entry))) { | |
257 | wq = dax_entry_waitqueue(xas, entry, &ewait.key); | |
258 | prepare_to_wait_exclusive(wq, &ewait.wait, | |
259 | TASK_UNINTERRUPTIBLE); | |
dd59137b | 260 | xas_reset(xas); |
6be3e21d AP |
261 | xas_unlock_irq(xas); |
262 | schedule(); | |
263 | finish_wait(wq, &ewait.wait); | |
264 | xas_lock_irq(xas); | |
265 | entry = xas_load(xas); | |
266 | } | |
267 | ||
268 | if (xa_is_internal(entry)) | |
269 | return NULL; | |
270 | ||
271 | return entry; | |
272 | } | |
273 | ||
55e56f06 MW |
274 | /* |
275 | * The only thing keeping the address space around is the i_pages lock | |
276 | * (it's cycled in clear_inode() after removing the entries from i_pages) | |
277 | * After we call xas_unlock_irq(), we cannot touch xas->xa. | |
278 | */ | |
279 | static void wait_entry_unlocked(struct xa_state *xas, void *entry) | |
280 | { | |
281 | struct wait_exceptional_entry_queue ewait; | |
282 | wait_queue_head_t *wq; | |
283 | ||
284 | init_wait(&ewait.wait); | |
285 | ewait.wait.func = wake_exceptional_entry_func; | |
286 | ||
287 | wq = dax_entry_waitqueue(xas, entry, &ewait.key); | |
d8a70641 | 288 | /* |
6be3e21d | 289 | * Unlike get_next_unlocked_entry() there is no guarantee that this |
d8a70641 DW |
290 | * path ever successfully retrieves an unlocked entry before an |
291 | * inode dies. Perform a non-exclusive wait in case this path | |
292 | * never successfully performs its own wake up. | |
293 | */ | |
294 | prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); | |
55e56f06 MW |
295 | xas_unlock_irq(xas); |
296 | schedule(); | |
297 | finish_wait(wq, &ewait.wait); | |
55e56f06 MW |
298 | } |
299 | ||
4c3d043d VG |
300 | static void put_unlocked_entry(struct xa_state *xas, void *entry, |
301 | enum dax_wake_mode mode) | |
cfc93c6c | 302 | { |
61c30c98 | 303 | if (entry && !dax_is_conflict(entry)) |
4c3d043d | 304 | dax_wake_entry(xas, entry, mode); |
cfc93c6c MW |
305 | } |
306 | ||
307 | /* | |
308 | * We used the xa_state to get the entry, but then we locked the entry and | |
309 | * dropped the xa_lock, so we know the xa_state is stale and must be reset | |
310 | * before use. | |
311 | */ | |
312 | static void dax_unlock_entry(struct xa_state *xas, void *entry) | |
313 | { | |
314 | void *old; | |
315 | ||
7ae2ea7d | 316 | BUG_ON(dax_is_locked(entry)); |
cfc93c6c MW |
317 | xas_reset(xas); |
318 | xas_lock_irq(xas); | |
319 | old = xas_store(xas, entry); | |
320 | xas_unlock_irq(xas); | |
321 | BUG_ON(!dax_is_locked(old)); | |
698ab77a | 322 | dax_wake_entry(xas, entry, WAKE_NEXT); |
cfc93c6c MW |
323 | } |
324 | ||
325 | /* | |
326 | * Return: The entry stored at this location before it was locked. | |
327 | */ | |
328 | static void *dax_lock_entry(struct xa_state *xas, void *entry) | |
329 | { | |
330 | unsigned long v = xa_to_value(entry); | |
331 | return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); | |
332 | } | |
333 | ||
d2c997c0 DW |
334 | static unsigned long dax_entry_size(void *entry) |
335 | { | |
336 | if (dax_is_zero_entry(entry)) | |
337 | return 0; | |
338 | else if (dax_is_empty_entry(entry)) | |
339 | return 0; | |
340 | else if (dax_is_pmd_entry(entry)) | |
341 | return PMD_SIZE; | |
342 | else | |
343 | return PAGE_SIZE; | |
344 | } | |
345 | ||
cbe298d8 AP |
346 | /* |
347 | * A DAX folio is considered shared if it has no mapping set and ->share (which | |
348 | * shares the ->index field) is non-zero. Note this may return false even if the | |
349 | * page is shared between multiple files but has not yet actually been mapped | |
350 | * into multiple address spaces. | |
351 | */ | |
37cd93fc | 352 | static inline bool dax_folio_is_shared(struct folio *folio) |
d2c997c0 | 353 | { |
38607c62 | 354 | return !folio->mapping && folio->share; |
d2c997c0 DW |
355 | } |
356 | ||
357 | /* | |
cbe298d8 AP |
358 | * When it is called by dax_insert_entry(), the shared flag will indicate |
359 | * whether this entry is shared by multiple files. If the page has not | |
360 | * previously been associated with any mappings the ->mapping and ->index | |
361 | * fields will be set. If it has already been associated with a mapping | |
362 | * the mapping will be cleared and the share count set. It's then up to | |
363 | * reverse map users like memory_failure() to call back into the filesystem to | |
364 | * recover ->mapping and ->index information. For example by implementing | |
365 | * dax_holder_operations. | |
d2c997c0 | 366 | */ |
cbe298d8 | 367 | static void dax_folio_make_shared(struct folio *folio) |
6061b69b | 368 | { |
cbe298d8 AP |
369 | /* |
370 | * folio is not currently shared so mark it as shared by clearing | |
371 | * folio->mapping. | |
372 | */ | |
373 | folio->mapping = NULL; | |
374 | ||
375 | /* | |
376 | * folio has previously been mapped into one address space so set the | |
377 | * share count. | |
378 | */ | |
38607c62 | 379 | folio->share = 1; |
6061b69b SR |
380 | } |
381 | ||
38607c62 | 382 | static inline unsigned long dax_folio_put(struct folio *folio) |
6061b69b | 383 | { |
38607c62 AP |
384 | unsigned long ref; |
385 | int order, i; | |
386 | ||
387 | if (!dax_folio_is_shared(folio)) | |
388 | ref = 0; | |
389 | else | |
390 | ref = --folio->share; | |
391 | ||
392 | if (ref) | |
393 | return ref; | |
394 | ||
395 | folio->mapping = NULL; | |
396 | order = folio_order(folio); | |
397 | if (!order) | |
398 | return 0; | |
98b1917c | 399 | folio_reset_order(folio); |
38607c62 AP |
400 | |
401 | for (i = 0; i < (1UL << order); i++) { | |
402 | struct dev_pagemap *pgmap = page_pgmap(&folio->page); | |
403 | struct page *page = folio_page(folio, i); | |
404 | struct folio *new_folio = (struct folio *)page; | |
405 | ||
406 | ClearPageHead(page); | |
407 | clear_compound_head(page); | |
408 | ||
409 | new_folio->mapping = NULL; | |
6061b69b | 410 | /* |
38607c62 AP |
411 | * Reset pgmap which was over-written by |
412 | * prep_compound_page(). | |
6061b69b | 413 | */ |
38607c62 AP |
414 | new_folio->pgmap = pgmap; |
415 | new_folio->share = 0; | |
416 | WARN_ON_ONCE(folio_ref_count(new_folio)); | |
6061b69b | 417 | } |
38607c62 AP |
418 | |
419 | return ref; | |
16900426 SR |
420 | } |
421 | ||
38607c62 | 422 | static void dax_folio_init(void *entry) |
16900426 | 423 | { |
38607c62 AP |
424 | struct folio *folio = dax_to_folio(entry); |
425 | int order = dax_entry_order(entry); | |
426 | ||
427 | /* | |
428 | * Folio should have been split back to order-0 pages in | |
429 | * dax_folio_put() when they were removed from their | |
430 | * final mapping. | |
431 | */ | |
432 | WARN_ON_ONCE(folio_order(folio)); | |
433 | ||
434 | if (order > 0) { | |
435 | prep_compound_page(&folio->page, order); | |
436 | if (order > 1) | |
437 | INIT_LIST_HEAD(&folio->_deferred_list); | |
438 | WARN_ON_ONCE(folio_ref_count(folio)); | |
439 | } | |
6061b69b SR |
440 | } |
441 | ||
73449daf | 442 | static void dax_associate_entry(void *entry, struct address_space *mapping, |
38607c62 AP |
443 | struct vm_area_struct *vma, |
444 | unsigned long address, bool shared) | |
d2c997c0 | 445 | { |
38607c62 AP |
446 | unsigned long size = dax_entry_size(entry), index; |
447 | struct folio *folio = dax_to_folio(entry); | |
d2c997c0 | 448 | |
98c183a4 AP |
449 | if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) |
450 | return; | |
d2c997c0 DW |
451 | |
452 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | |
453 | return; | |
454 | ||
73449daf | 455 | index = linear_page_index(vma, address & ~(size - 1)); |
38607c62 AP |
456 | if (shared && (folio->mapping || dax_folio_is_shared(folio))) { |
457 | if (folio->mapping) | |
458 | dax_folio_make_shared(folio); | |
d2c997c0 | 459 | |
38607c62 AP |
460 | WARN_ON_ONCE(!folio->share); |
461 | WARN_ON_ONCE(dax_entry_order(entry) != folio_order(folio)); | |
462 | folio->share++; | |
463 | } else { | |
464 | WARN_ON_ONCE(folio->mapping); | |
465 | dax_folio_init(entry); | |
466 | folio = dax_to_folio(entry); | |
467 | folio->mapping = mapping; | |
468 | folio->index = index; | |
d2c997c0 DW |
469 | } |
470 | } | |
471 | ||
472 | static void dax_disassociate_entry(void *entry, struct address_space *mapping, | |
38607c62 | 473 | bool trunc) |
d2c997c0 | 474 | { |
38607c62 | 475 | struct folio *folio = dax_to_folio(entry); |
d2c997c0 DW |
476 | |
477 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | |
478 | return; | |
479 | ||
98c183a4 AP |
480 | if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) |
481 | return; | |
482 | ||
38607c62 | 483 | dax_folio_put(folio); |
d2c997c0 DW |
484 | } |
485 | ||
5fac7408 DW |
486 | static struct page *dax_busy_page(void *entry) |
487 | { | |
38607c62 | 488 | struct folio *folio = dax_to_folio(entry); |
5fac7408 | 489 | |
38607c62 AP |
490 | if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) |
491 | return NULL; | |
5fac7408 | 492 | |
38607c62 AP |
493 | if (folio_ref_count(folio) - folio_mapcount(folio)) |
494 | return &folio->page; | |
495 | else | |
496 | return NULL; | |
5fac7408 DW |
497 | } |
498 | ||
91e79d22 MWO |
499 | /** |
500 | * dax_lock_folio - Lock the DAX entry corresponding to a folio | |
501 | * @folio: The folio whose entry we want to lock | |
c5bbd451 MW |
502 | * |
503 | * Context: Process context. | |
91e79d22 | 504 | * Return: A cookie to pass to dax_unlock_folio() or 0 if the entry could |
27359fd6 | 505 | * not be locked. |
c5bbd451 | 506 | */ |
91e79d22 | 507 | dax_entry_t dax_lock_folio(struct folio *folio) |
c2a7d2a1 | 508 | { |
9f32d221 MW |
509 | XA_STATE(xas, NULL, 0); |
510 | void *entry; | |
c2a7d2a1 | 511 | |
91e79d22 | 512 | /* Ensure folio->mapping isn't freed while we look at it */ |
c5bbd451 | 513 | rcu_read_lock(); |
c2a7d2a1 | 514 | for (;;) { |
91e79d22 | 515 | struct address_space *mapping = READ_ONCE(folio->mapping); |
c2a7d2a1 | 516 | |
27359fd6 | 517 | entry = NULL; |
c93db7bb | 518 | if (!mapping || !dax_mapping(mapping)) |
c5bbd451 | 519 | break; |
c2a7d2a1 DW |
520 | |
521 | /* | |
522 | * In the device-dax case there's no need to lock, a | |
523 | * struct dev_pagemap pin is sufficient to keep the | |
524 | * inode alive, and we assume we have dev_pagemap pin | |
525 | * otherwise we would not have a valid pfn_to_page() | |
526 | * translation. | |
527 | */ | |
27359fd6 | 528 | entry = (void *)~0UL; |
9f32d221 | 529 | if (S_ISCHR(mapping->host->i_mode)) |
c5bbd451 | 530 | break; |
c2a7d2a1 | 531 | |
9f32d221 MW |
532 | xas.xa = &mapping->i_pages; |
533 | xas_lock_irq(&xas); | |
91e79d22 | 534 | if (mapping != folio->mapping) { |
9f32d221 | 535 | xas_unlock_irq(&xas); |
c2a7d2a1 DW |
536 | continue; |
537 | } | |
91e79d22 | 538 | xas_set(&xas, folio->index); |
9f32d221 MW |
539 | entry = xas_load(&xas); |
540 | if (dax_is_locked(entry)) { | |
c5bbd451 | 541 | rcu_read_unlock(); |
55e56f06 | 542 | wait_entry_unlocked(&xas, entry); |
c5bbd451 | 543 | rcu_read_lock(); |
6d7cd8c1 | 544 | continue; |
c2a7d2a1 | 545 | } |
9f32d221 MW |
546 | dax_lock_entry(&xas, entry); |
547 | xas_unlock_irq(&xas); | |
c5bbd451 | 548 | break; |
c2a7d2a1 | 549 | } |
c5bbd451 | 550 | rcu_read_unlock(); |
27359fd6 | 551 | return (dax_entry_t)entry; |
c2a7d2a1 DW |
552 | } |
553 | ||
91e79d22 | 554 | void dax_unlock_folio(struct folio *folio, dax_entry_t cookie) |
c2a7d2a1 | 555 | { |
91e79d22 MWO |
556 | struct address_space *mapping = folio->mapping; |
557 | XA_STATE(xas, &mapping->i_pages, folio->index); | |
c2a7d2a1 | 558 | |
9f32d221 | 559 | if (S_ISCHR(mapping->host->i_mode)) |
c2a7d2a1 DW |
560 | return; |
561 | ||
27359fd6 | 562 | dax_unlock_entry(&xas, (void *)cookie); |
c2a7d2a1 DW |
563 | } |
564 | ||
2f437eff SR |
565 | /* |
566 | * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping | |
567 | * @mapping: the file's mapping whose entry we want to lock | |
568 | * @index: the offset within this file | |
569 | * @page: output the dax page corresponding to this dax entry | |
570 | * | |
571 | * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry | |
572 | * could not be locked. | |
573 | */ | |
574 | dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index, | |
575 | struct page **page) | |
576 | { | |
577 | XA_STATE(xas, NULL, 0); | |
578 | void *entry; | |
579 | ||
580 | rcu_read_lock(); | |
581 | for (;;) { | |
582 | entry = NULL; | |
583 | if (!dax_mapping(mapping)) | |
584 | break; | |
585 | ||
586 | xas.xa = &mapping->i_pages; | |
587 | xas_lock_irq(&xas); | |
588 | xas_set(&xas, index); | |
589 | entry = xas_load(&xas); | |
590 | if (dax_is_locked(entry)) { | |
591 | rcu_read_unlock(); | |
592 | wait_entry_unlocked(&xas, entry); | |
593 | rcu_read_lock(); | |
594 | continue; | |
595 | } | |
596 | if (!entry || | |
597 | dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { | |
598 | /* | |
599 | * Because we are looking for entry from file's mapping | |
600 | * and index, so the entry may not be inserted for now, | |
601 | * or even a zero/empty entry. We don't think this is | |
602 | * an error case. So, return a special value and do | |
603 | * not output @page. | |
604 | */ | |
605 | entry = (void *)~0UL; | |
606 | } else { | |
607 | *page = pfn_to_page(dax_to_pfn(entry)); | |
608 | dax_lock_entry(&xas, entry); | |
609 | } | |
610 | xas_unlock_irq(&xas); | |
611 | break; | |
612 | } | |
613 | rcu_read_unlock(); | |
614 | return (dax_entry_t)entry; | |
615 | } | |
616 | ||
617 | void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index, | |
618 | dax_entry_t cookie) | |
619 | { | |
620 | XA_STATE(xas, &mapping->i_pages, index); | |
621 | ||
622 | if (cookie == ~0UL) | |
623 | return; | |
624 | ||
625 | dax_unlock_entry(&xas, (void *)cookie); | |
626 | } | |
627 | ||
ac401cc7 | 628 | /* |
a77d19f4 MW |
629 | * Find page cache entry at given index. If it is a DAX entry, return it |
630 | * with the entry locked. If the page cache doesn't contain an entry at | |
631 | * that index, add a locked empty entry. | |
ac401cc7 | 632 | * |
3159f943 | 633 | * When requesting an entry with size DAX_PMD, grab_mapping_entry() will |
b15cd800 MW |
634 | * either return that locked entry or will return VM_FAULT_FALLBACK. |
635 | * This will happen if there are any PTE entries within the PMD range | |
636 | * that we are requesting. | |
642261ac | 637 | * |
b15cd800 MW |
638 | * We always favor PTE entries over PMD entries. There isn't a flow where we |
639 | * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD | |
640 | * insertion will fail if it finds any PTE entries already in the tree, and a | |
641 | * PTE insertion will cause an existing PMD entry to be unmapped and | |
642 | * downgraded to PTE entries. This happens for both PMD zero pages as | |
643 | * well as PMD empty entries. | |
642261ac | 644 | * |
b15cd800 MW |
645 | * The exception to this downgrade path is for PMD entries that have |
646 | * real storage backing them. We will leave these real PMD entries in | |
647 | * the tree, and PTE writes will simply dirty the entire PMD entry. | |
642261ac | 648 | * |
ac401cc7 JK |
649 | * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For |
650 | * persistent memory the benefit is doubtful. We can add that later if we can | |
651 | * show it helps. | |
b15cd800 MW |
652 | * |
653 | * On error, this function does not return an ERR_PTR. Instead it returns | |
654 | * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values | |
655 | * overlap with xarray value entries. | |
ac401cc7 | 656 | */ |
b15cd800 | 657 | static void *grab_mapping_entry(struct xa_state *xas, |
23c84eb7 | 658 | struct address_space *mapping, unsigned int order) |
ac401cc7 | 659 | { |
b15cd800 | 660 | unsigned long index = xas->xa_index; |
1a14e377 | 661 | bool pmd_downgrade; /* splitting PMD entry into PTE entries? */ |
b15cd800 | 662 | void *entry; |
642261ac | 663 | |
b15cd800 | 664 | retry: |
1a14e377 | 665 | pmd_downgrade = false; |
b15cd800 | 666 | xas_lock_irq(xas); |
6be3e21d | 667 | entry = get_next_unlocked_entry(xas, order); |
91d25ba8 | 668 | |
642261ac | 669 | if (entry) { |
23c84eb7 MWO |
670 | if (dax_is_conflict(entry)) |
671 | goto fallback; | |
0e40de03 | 672 | if (!xa_is_value(entry)) { |
49688e65 | 673 | xas_set_err(xas, -EIO); |
b15cd800 MW |
674 | goto out_unlock; |
675 | } | |
676 | ||
23c84eb7 | 677 | if (order == 0) { |
91d25ba8 | 678 | if (dax_is_pmd_entry(entry) && |
642261ac RZ |
679 | (dax_is_zero_entry(entry) || |
680 | dax_is_empty_entry(entry))) { | |
681 | pmd_downgrade = true; | |
682 | } | |
683 | } | |
684 | } | |
685 | ||
b15cd800 MW |
686 | if (pmd_downgrade) { |
687 | /* | |
688 | * Make sure 'entry' remains valid while we drop | |
689 | * the i_pages lock. | |
690 | */ | |
691 | dax_lock_entry(xas, entry); | |
642261ac | 692 | |
642261ac RZ |
693 | /* |
694 | * Besides huge zero pages the only other thing that gets | |
695 | * downgraded are empty entries which don't need to be | |
696 | * unmapped. | |
697 | */ | |
b15cd800 MW |
698 | if (dax_is_zero_entry(entry)) { |
699 | xas_unlock_irq(xas); | |
700 | unmap_mapping_pages(mapping, | |
701 | xas->xa_index & ~PG_PMD_COLOUR, | |
702 | PG_PMD_NR, false); | |
703 | xas_reset(xas); | |
704 | xas_lock_irq(xas); | |
e11f8b7b RZ |
705 | } |
706 | ||
b15cd800 MW |
707 | dax_disassociate_entry(entry, mapping, false); |
708 | xas_store(xas, NULL); /* undo the PMD join */ | |
698ab77a | 709 | dax_wake_entry(xas, entry, WAKE_ALL); |
7f0e07fb | 710 | mapping->nrpages -= PG_PMD_NR; |
b15cd800 MW |
711 | entry = NULL; |
712 | xas_set(xas, index); | |
713 | } | |
642261ac | 714 | |
b15cd800 MW |
715 | if (entry) { |
716 | dax_lock_entry(xas, entry); | |
717 | } else { | |
23c84eb7 MWO |
718 | unsigned long flags = DAX_EMPTY; |
719 | ||
720 | if (order > 0) | |
721 | flags |= DAX_PMD; | |
722 | entry = dax_make_entry(pfn_to_pfn_t(0), flags); | |
b15cd800 MW |
723 | dax_lock_entry(xas, entry); |
724 | if (xas_error(xas)) | |
725 | goto out_unlock; | |
7f0e07fb | 726 | mapping->nrpages += 1UL << order; |
ac401cc7 | 727 | } |
b15cd800 MW |
728 | |
729 | out_unlock: | |
730 | xas_unlock_irq(xas); | |
731 | if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) | |
732 | goto retry; | |
733 | if (xas->xa_node == XA_ERROR(-ENOMEM)) | |
734 | return xa_mk_internal(VM_FAULT_OOM); | |
735 | if (xas_error(xas)) | |
736 | return xa_mk_internal(VM_FAULT_SIGBUS); | |
e3ad61c6 | 737 | return entry; |
b15cd800 MW |
738 | fallback: |
739 | xas_unlock_irq(xas); | |
740 | return xa_mk_internal(VM_FAULT_FALLBACK); | |
ac401cc7 JK |
741 | } |
742 | ||
5fac7408 | 743 | /** |
6bbdd563 | 744 | * dax_layout_busy_page_range - find first pinned page in @mapping |
5fac7408 | 745 | * @mapping: address space to scan for a page with ref count > 1 |
6bbdd563 VG |
746 | * @start: Starting offset. Page containing 'start' is included. |
747 | * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, | |
748 | * pages from 'start' till the end of file are included. | |
5fac7408 DW |
749 | * |
750 | * DAX requires ZONE_DEVICE mapped pages. These pages are never | |
751 | * 'onlined' to the page allocator so they are considered idle when | |
752 | * page->count == 1. A filesystem uses this interface to determine if | |
753 | * any page in the mapping is busy, i.e. for DMA, or other | |
754 | * get_user_pages() usages. | |
755 | * | |
756 | * It is expected that the filesystem is holding locks to block the | |
757 | * establishment of new mappings in this address_space. I.e. it expects | |
758 | * to be able to run unmap_mapping_range() and subsequently not race | |
759 | * mapping_mapped() becoming true. | |
760 | */ | |
6bbdd563 VG |
761 | struct page *dax_layout_busy_page_range(struct address_space *mapping, |
762 | loff_t start, loff_t end) | |
5fac7408 | 763 | { |
084a8990 MW |
764 | void *entry; |
765 | unsigned int scanned = 0; | |
5fac7408 | 766 | struct page *page = NULL; |
6bbdd563 VG |
767 | pgoff_t start_idx = start >> PAGE_SHIFT; |
768 | pgoff_t end_idx; | |
769 | XA_STATE(xas, &mapping->i_pages, start_idx); | |
5fac7408 DW |
770 | |
771 | /* | |
772 | * In the 'limited' case get_user_pages() for dax is disabled. | |
773 | */ | |
774 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | |
775 | return NULL; | |
776 | ||
cee91fa1 | 777 | if (!dax_mapping(mapping)) |
5fac7408 DW |
778 | return NULL; |
779 | ||
6bbdd563 VG |
780 | /* If end == LLONG_MAX, all pages from start to till end of file */ |
781 | if (end == LLONG_MAX) | |
782 | end_idx = ULONG_MAX; | |
783 | else | |
784 | end_idx = end >> PAGE_SHIFT; | |
5fac7408 DW |
785 | /* |
786 | * If we race get_user_pages_fast() here either we'll see the | |
084a8990 | 787 | * elevated page count in the iteration and wait, or |
5fac7408 DW |
788 | * get_user_pages_fast() will see that the page it took a reference |
789 | * against is no longer mapped in the page tables and bail to the | |
790 | * get_user_pages() slow path. The slow path is protected by | |
791 | * pte_lock() and pmd_lock(). New references are not taken without | |
6bbdd563 | 792 | * holding those locks, and unmap_mapping_pages() will not zero the |
5fac7408 DW |
793 | * pte or pmd without holding the respective lock, so we are |
794 | * guaranteed to either see new references or prevent new | |
795 | * references from being established. | |
796 | */ | |
6bbdd563 | 797 | unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); |
5fac7408 | 798 | |
084a8990 | 799 | xas_lock_irq(&xas); |
6bbdd563 | 800 | xas_for_each(&xas, entry, end_idx) { |
084a8990 MW |
801 | if (WARN_ON_ONCE(!xa_is_value(entry))) |
802 | continue; | |
6be3e21d | 803 | entry = wait_entry_unlocked_exclusive(&xas, entry); |
084a8990 MW |
804 | if (entry) |
805 | page = dax_busy_page(entry); | |
4c3d043d | 806 | put_unlocked_entry(&xas, entry, WAKE_NEXT); |
5fac7408 DW |
807 | if (page) |
808 | break; | |
084a8990 MW |
809 | if (++scanned % XA_CHECK_SCHED) |
810 | continue; | |
811 | ||
812 | xas_pause(&xas); | |
813 | xas_unlock_irq(&xas); | |
814 | cond_resched(); | |
815 | xas_lock_irq(&xas); | |
5fac7408 | 816 | } |
084a8990 | 817 | xas_unlock_irq(&xas); |
5fac7408 DW |
818 | return page; |
819 | } | |
6bbdd563 VG |
820 | EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); |
821 | ||
822 | struct page *dax_layout_busy_page(struct address_space *mapping) | |
823 | { | |
824 | return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); | |
825 | } | |
5fac7408 DW |
826 | EXPORT_SYMBOL_GPL(dax_layout_busy_page); |
827 | ||
a77d19f4 | 828 | static int __dax_invalidate_entry(struct address_space *mapping, |
38607c62 | 829 | pgoff_t index, bool trunc) |
c6dcf52c | 830 | { |
07f2d89c | 831 | XA_STATE(xas, &mapping->i_pages, index); |
c6dcf52c JK |
832 | int ret = 0; |
833 | void *entry; | |
c6dcf52c | 834 | |
07f2d89c | 835 | xas_lock_irq(&xas); |
6be3e21d | 836 | entry = get_next_unlocked_entry(&xas, 0); |
3159f943 | 837 | if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) |
c6dcf52c JK |
838 | goto out; |
839 | if (!trunc && | |
07f2d89c MW |
840 | (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || |
841 | xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) | |
c6dcf52c | 842 | goto out; |
d2c997c0 | 843 | dax_disassociate_entry(entry, mapping, trunc); |
07f2d89c | 844 | xas_store(&xas, NULL); |
7f0e07fb | 845 | mapping->nrpages -= 1UL << dax_entry_order(entry); |
c6dcf52c JK |
846 | ret = 1; |
847 | out: | |
23738832 | 848 | put_unlocked_entry(&xas, entry, WAKE_ALL); |
07f2d89c | 849 | xas_unlock_irq(&xas); |
c6dcf52c JK |
850 | return ret; |
851 | } | |
07f2d89c | 852 | |
f76b3a32 SR |
853 | static int __dax_clear_dirty_range(struct address_space *mapping, |
854 | pgoff_t start, pgoff_t end) | |
855 | { | |
856 | XA_STATE(xas, &mapping->i_pages, start); | |
857 | unsigned int scanned = 0; | |
858 | void *entry; | |
859 | ||
860 | xas_lock_irq(&xas); | |
861 | xas_for_each(&xas, entry, end) { | |
6be3e21d AP |
862 | entry = wait_entry_unlocked_exclusive(&xas, entry); |
863 | if (!entry) | |
864 | continue; | |
f76b3a32 SR |
865 | xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); |
866 | xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); | |
867 | put_unlocked_entry(&xas, entry, WAKE_NEXT); | |
868 | ||
869 | if (++scanned % XA_CHECK_SCHED) | |
870 | continue; | |
871 | ||
872 | xas_pause(&xas); | |
873 | xas_unlock_irq(&xas); | |
874 | cond_resched(); | |
875 | xas_lock_irq(&xas); | |
876 | } | |
877 | xas_unlock_irq(&xas); | |
878 | ||
879 | return 0; | |
880 | } | |
881 | ||
ac401cc7 | 882 | /* |
3159f943 MW |
883 | * Delete DAX entry at @index from @mapping. Wait for it |
884 | * to be unlocked before deleting it. | |
ac401cc7 JK |
885 | */ |
886 | int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) | |
887 | { | |
a77d19f4 | 888 | int ret = __dax_invalidate_entry(mapping, index, true); |
ac401cc7 | 889 | |
ac401cc7 JK |
890 | /* |
891 | * This gets called from truncate / punch_hole path. As such, the caller | |
892 | * must hold locks protecting against concurrent modifications of the | |
a77d19f4 | 893 | * page cache (usually fs-private i_mmap_sem for writing). Since the |
3159f943 | 894 | * caller has seen a DAX entry for this index, we better find it |
ac401cc7 JK |
895 | * at that index as well... |
896 | */ | |
c6dcf52c JK |
897 | WARN_ON_ONCE(!ret); |
898 | return ret; | |
899 | } | |
900 | ||
bde708f1 AP |
901 | void dax_delete_mapping_range(struct address_space *mapping, |
902 | loff_t start, loff_t end) | |
903 | { | |
904 | void *entry; | |
905 | pgoff_t start_idx = start >> PAGE_SHIFT; | |
906 | pgoff_t end_idx; | |
907 | XA_STATE(xas, &mapping->i_pages, start_idx); | |
908 | ||
909 | /* If end == LLONG_MAX, all pages from start to till end of file */ | |
910 | if (end == LLONG_MAX) | |
911 | end_idx = ULONG_MAX; | |
912 | else | |
913 | end_idx = end >> PAGE_SHIFT; | |
914 | ||
915 | xas_lock_irq(&xas); | |
916 | xas_for_each(&xas, entry, end_idx) { | |
917 | if (!xa_is_value(entry)) | |
918 | continue; | |
919 | entry = wait_entry_unlocked_exclusive(&xas, entry); | |
920 | if (!entry) | |
921 | continue; | |
922 | dax_disassociate_entry(entry, mapping, true); | |
923 | xas_store(&xas, NULL); | |
924 | mapping->nrpages -= 1UL << dax_entry_order(entry); | |
925 | put_unlocked_entry(&xas, entry, WAKE_ALL); | |
926 | } | |
927 | xas_unlock_irq(&xas); | |
928 | } | |
929 | EXPORT_SYMBOL_GPL(dax_delete_mapping_range); | |
930 | ||
d5b3afea AP |
931 | static int wait_page_idle(struct page *page, |
932 | void (cb)(struct inode *), | |
933 | struct inode *inode) | |
934 | { | |
935 | return ___wait_var_event(page, dax_page_is_idle(page), | |
936 | TASK_INTERRUPTIBLE, 0, 0, cb(inode)); | |
937 | } | |
938 | ||
0e2f80af AP |
939 | static void wait_page_idle_uninterruptible(struct page *page, |
940 | struct inode *inode) | |
941 | { | |
942 | ___wait_var_event(page, dax_page_is_idle(page), | |
943 | TASK_UNINTERRUPTIBLE, 0, 0, schedule()); | |
944 | } | |
945 | ||
d5b3afea AP |
946 | /* |
947 | * Unmaps the inode and waits for any DMA to complete prior to deleting the | |
948 | * DAX mapping entries for the range. | |
bde708f1 AP |
949 | * |
950 | * For NOWAIT behavior, pass @cb as NULL to early-exit on first found | |
951 | * busy page | |
d5b3afea AP |
952 | */ |
953 | int dax_break_layout(struct inode *inode, loff_t start, loff_t end, | |
954 | void (cb)(struct inode *)) | |
955 | { | |
956 | struct page *page; | |
957 | int error = 0; | |
958 | ||
959 | if (!dax_mapping(inode->i_mapping)) | |
960 | return 0; | |
961 | ||
962 | do { | |
963 | page = dax_layout_busy_page_range(inode->i_mapping, start, end); | |
964 | if (!page) | |
965 | break; | |
bde708f1 AP |
966 | if (!cb) { |
967 | error = -ERESTARTSYS; | |
968 | break; | |
969 | } | |
d5b3afea AP |
970 | |
971 | error = wait_page_idle(page, cb, inode); | |
972 | } while (error == 0); | |
973 | ||
bde708f1 AP |
974 | if (!page) |
975 | dax_delete_mapping_range(inode->i_mapping, start, end); | |
976 | ||
d5b3afea AP |
977 | return error; |
978 | } | |
979 | EXPORT_SYMBOL_GPL(dax_break_layout); | |
980 | ||
0e2f80af AP |
981 | void dax_break_layout_final(struct inode *inode) |
982 | { | |
983 | struct page *page; | |
984 | ||
985 | if (!dax_mapping(inode->i_mapping)) | |
986 | return; | |
987 | ||
988 | do { | |
989 | page = dax_layout_busy_page_range(inode->i_mapping, 0, | |
990 | LLONG_MAX); | |
991 | if (!page) | |
992 | break; | |
993 | ||
994 | wait_page_idle_uninterruptible(page, inode); | |
995 | } while (true); | |
996 | ||
38607c62 AP |
997 | if (!page) |
998 | dax_delete_mapping_range(inode->i_mapping, 0, LLONG_MAX); | |
0e2f80af AP |
999 | } |
1000 | EXPORT_SYMBOL_GPL(dax_break_layout_final); | |
1001 | ||
c6dcf52c | 1002 | /* |
3159f943 | 1003 | * Invalidate DAX entry if it is clean. |
c6dcf52c JK |
1004 | */ |
1005 | int dax_invalidate_mapping_entry_sync(struct address_space *mapping, | |
1006 | pgoff_t index) | |
1007 | { | |
a77d19f4 | 1008 | return __dax_invalidate_entry(mapping, index, false); |
ac401cc7 JK |
1009 | } |
1010 | ||
60696eb2 | 1011 | static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos) |
f7ca90b1 | 1012 | { |
de205114 | 1013 | return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset); |
429f8de7 CH |
1014 | } |
1015 | ||
1016 | static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter) | |
1017 | { | |
60696eb2 | 1018 | pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos); |
cccbce67 | 1019 | void *vto, *kaddr; |
cccbce67 DW |
1020 | long rc; |
1021 | int id; | |
1022 | ||
cccbce67 | 1023 | id = dax_read_lock(); |
e511c4a3 JC |
1024 | rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS, |
1025 | &kaddr, NULL); | |
cccbce67 DW |
1026 | if (rc < 0) { |
1027 | dax_read_unlock(id); | |
1028 | return rc; | |
1029 | } | |
429f8de7 CH |
1030 | vto = kmap_atomic(vmf->cow_page); |
1031 | copy_user_page(vto, kaddr, vmf->address, vmf->cow_page); | |
f7ca90b1 | 1032 | kunmap_atomic(vto); |
cccbce67 | 1033 | dax_read_unlock(id); |
f7ca90b1 MW |
1034 | return 0; |
1035 | } | |
1036 | ||
e5d6df73 SR |
1037 | /* |
1038 | * MAP_SYNC on a dax mapping guarantees dirty metadata is | |
1039 | * flushed on write-faults (non-cow), but not read-faults. | |
1040 | */ | |
1041 | static bool dax_fault_is_synchronous(const struct iomap_iter *iter, | |
1042 | struct vm_area_struct *vma) | |
1043 | { | |
1044 | return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) && | |
1045 | (iter->iomap.flags & IOMAP_F_DIRTY); | |
1046 | } | |
1047 | ||
642261ac RZ |
1048 | /* |
1049 | * By this point grab_mapping_entry() has ensured that we have a locked entry | |
1050 | * of the appropriate size so we don't have to worry about downgrading PMDs to | |
1051 | * PTEs. If we happen to be trying to insert a PTE and there is a PMD | |
1052 | * already in the tree, we will skip the insertion and just dirty the PMD as | |
1053 | * appropriate. | |
1054 | */ | |
e5d6df73 SR |
1055 | static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf, |
1056 | const struct iomap_iter *iter, void *entry, pfn_t pfn, | |
1057 | unsigned long flags) | |
9973c98e | 1058 | { |
e5d6df73 | 1059 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; |
b15cd800 | 1060 | void *new_entry = dax_make_entry(pfn, flags); |
c6f0b395 SR |
1061 | bool write = iter->flags & IOMAP_WRITE; |
1062 | bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma); | |
1063 | bool shared = iter->iomap.flags & IOMAP_F_SHARED; | |
9973c98e | 1064 | |
f5b7b748 | 1065 | if (dirty) |
d2b2a28e | 1066 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
9973c98e | 1067 | |
c6f0b395 | 1068 | if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) { |
b15cd800 | 1069 | unsigned long index = xas->xa_index; |
91d25ba8 RZ |
1070 | /* we are replacing a zero page with block mapping */ |
1071 | if (dax_is_pmd_entry(entry)) | |
977fbdcd | 1072 | unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, |
b15cd800 | 1073 | PG_PMD_NR, false); |
91d25ba8 | 1074 | else /* pte entry */ |
b15cd800 | 1075 | unmap_mapping_pages(mapping, index, 1, false); |
9973c98e RZ |
1076 | } |
1077 | ||
b15cd800 MW |
1078 | xas_reset(xas); |
1079 | xas_lock_irq(xas); | |
c6f0b395 | 1080 | if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { |
1571c029 JK |
1081 | void *old; |
1082 | ||
d2c997c0 | 1083 | dax_disassociate_entry(entry, mapping, false); |
98c183a4 | 1084 | dax_associate_entry(new_entry, mapping, vmf->vma, |
38607c62 AP |
1085 | vmf->address, shared); |
1086 | ||
642261ac | 1087 | /* |
a77d19f4 | 1088 | * Only swap our new entry into the page cache if the current |
642261ac | 1089 | * entry is a zero page or an empty entry. If a normal PTE or |
a77d19f4 | 1090 | * PMD entry is already in the cache, we leave it alone. This |
642261ac RZ |
1091 | * means that if we are trying to insert a PTE and the |
1092 | * existing entry is a PMD, we will just leave the PMD in the | |
1093 | * tree and dirty it if necessary. | |
1094 | */ | |
1571c029 | 1095 | old = dax_lock_entry(xas, new_entry); |
b15cd800 MW |
1096 | WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | |
1097 | DAX_LOCKED)); | |
91d25ba8 | 1098 | entry = new_entry; |
b15cd800 MW |
1099 | } else { |
1100 | xas_load(xas); /* Walk the xa_state */ | |
9973c98e | 1101 | } |
91d25ba8 | 1102 | |
f5b7b748 | 1103 | if (dirty) |
b15cd800 | 1104 | xas_set_mark(xas, PAGECACHE_TAG_DIRTY); |
91d25ba8 | 1105 | |
c6f0b395 | 1106 | if (write && shared) |
e5d6df73 SR |
1107 | xas_set_mark(xas, PAGECACHE_TAG_TOWRITE); |
1108 | ||
b15cd800 | 1109 | xas_unlock_irq(xas); |
91d25ba8 | 1110 | return entry; |
9973c98e RZ |
1111 | } |
1112 | ||
9fc747f6 MW |
1113 | static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, |
1114 | struct address_space *mapping, void *entry) | |
9973c98e | 1115 | { |
06083a09 | 1116 | unsigned long pfn, index, count, end; |
3fe0791c | 1117 | long ret = 0; |
06083a09 | 1118 | struct vm_area_struct *vma; |
9973c98e | 1119 | |
9973c98e | 1120 | /* |
a6abc2c0 JK |
1121 | * A page got tagged dirty in DAX mapping? Something is seriously |
1122 | * wrong. | |
9973c98e | 1123 | */ |
3159f943 | 1124 | if (WARN_ON(!xa_is_value(entry))) |
a6abc2c0 | 1125 | return -EIO; |
9973c98e | 1126 | |
9fc747f6 MW |
1127 | if (unlikely(dax_is_locked(entry))) { |
1128 | void *old_entry = entry; | |
1129 | ||
6be3e21d | 1130 | entry = get_next_unlocked_entry(xas, 0); |
9fc747f6 MW |
1131 | |
1132 | /* Entry got punched out / reallocated? */ | |
1133 | if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) | |
1134 | goto put_unlocked; | |
1135 | /* | |
1136 | * Entry got reallocated elsewhere? No need to writeback. | |
1137 | * We have to compare pfns as we must not bail out due to | |
1138 | * difference in lockbit or entry type. | |
1139 | */ | |
1140 | if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) | |
1141 | goto put_unlocked; | |
1142 | if (WARN_ON_ONCE(dax_is_empty_entry(entry) || | |
1143 | dax_is_zero_entry(entry))) { | |
1144 | ret = -EIO; | |
1145 | goto put_unlocked; | |
1146 | } | |
1147 | ||
1148 | /* Another fsync thread may have already done this entry */ | |
1149 | if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) | |
1150 | goto put_unlocked; | |
9973c98e RZ |
1151 | } |
1152 | ||
a6abc2c0 | 1153 | /* Lock the entry to serialize with page faults */ |
9fc747f6 MW |
1154 | dax_lock_entry(xas, entry); |
1155 | ||
a6abc2c0 JK |
1156 | /* |
1157 | * We can clear the tag now but we have to be careful so that concurrent | |
1158 | * dax_writeback_one() calls for the same index cannot finish before we | |
1159 | * actually flush the caches. This is achieved as the calls will look | |
b93b0163 MW |
1160 | * at the entry only under the i_pages lock and once they do that |
1161 | * they will see the entry locked and wait for it to unlock. | |
a6abc2c0 | 1162 | */ |
9fc747f6 MW |
1163 | xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); |
1164 | xas_unlock_irq(xas); | |
a6abc2c0 | 1165 | |
642261ac | 1166 | /* |
e4b3448b MW |
1167 | * If dax_writeback_mapping_range() was given a wbc->range_start |
1168 | * in the middle of a PMD, the 'index' we use needs to be | |
1169 | * aligned to the start of the PMD. | |
3fe0791c DW |
1170 | * This allows us to flush for PMD_SIZE and not have to worry about |
1171 | * partial PMD writebacks. | |
642261ac | 1172 | */ |
a77d19f4 | 1173 | pfn = dax_to_pfn(entry); |
e4b3448b MW |
1174 | count = 1UL << dax_entry_order(entry); |
1175 | index = xas->xa_index & ~(count - 1); | |
06083a09 MS |
1176 | end = index + count - 1; |
1177 | ||
1178 | /* Walk all mappings of a given index of a file and writeprotect them */ | |
1179 | i_mmap_lock_read(mapping); | |
1180 | vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) { | |
1181 | pfn_mkclean_range(pfn, count, index, vma); | |
1182 | cond_resched(); | |
1183 | } | |
1184 | i_mmap_unlock_read(mapping); | |
cccbce67 | 1185 | |
e4b3448b | 1186 | dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); |
4b4bb46d JK |
1187 | /* |
1188 | * After we have flushed the cache, we can clear the dirty tag. There | |
1189 | * cannot be new dirty data in the pfn after the flush has completed as | |
1190 | * the pfn mappings are writeprotected and fault waits for mapping | |
1191 | * entry lock. | |
1192 | */ | |
9fc747f6 MW |
1193 | xas_reset(xas); |
1194 | xas_lock_irq(xas); | |
1195 | xas_store(xas, entry); | |
1196 | xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); | |
698ab77a | 1197 | dax_wake_entry(xas, entry, WAKE_NEXT); |
9fc747f6 | 1198 | |
e4b3448b | 1199 | trace_dax_writeback_one(mapping->host, index, count); |
9973c98e RZ |
1200 | return ret; |
1201 | ||
a6abc2c0 | 1202 | put_unlocked: |
4c3d043d | 1203 | put_unlocked_entry(xas, entry, WAKE_NEXT); |
9973c98e RZ |
1204 | return ret; |
1205 | } | |
1206 | ||
1207 | /* | |
1208 | * Flush the mapping to the persistent domain within the byte range of [start, | |
1209 | * end]. This is required by data integrity operations to ensure file data is | |
1210 | * on persistent storage prior to completion of the operation. | |
1211 | */ | |
7f6d5b52 | 1212 | int dax_writeback_mapping_range(struct address_space *mapping, |
3f666c56 | 1213 | struct dax_device *dax_dev, struct writeback_control *wbc) |
9973c98e | 1214 | { |
9fc747f6 | 1215 | XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); |
9973c98e | 1216 | struct inode *inode = mapping->host; |
9fc747f6 | 1217 | pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; |
9fc747f6 MW |
1218 | void *entry; |
1219 | int ret = 0; | |
1220 | unsigned int scanned = 0; | |
9973c98e RZ |
1221 | |
1222 | if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) | |
1223 | return -EIO; | |
1224 | ||
7716506a | 1225 | if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) |
7f6d5b52 RZ |
1226 | return 0; |
1227 | ||
9fc747f6 | 1228 | trace_dax_writeback_range(inode, xas.xa_index, end_index); |
9973c98e | 1229 | |
9fc747f6 | 1230 | tag_pages_for_writeback(mapping, xas.xa_index, end_index); |
9973c98e | 1231 | |
9fc747f6 MW |
1232 | xas_lock_irq(&xas); |
1233 | xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { | |
1234 | ret = dax_writeback_one(&xas, dax_dev, mapping, entry); | |
1235 | if (ret < 0) { | |
1236 | mapping_set_error(mapping, ret); | |
9973c98e | 1237 | break; |
9973c98e | 1238 | } |
9fc747f6 MW |
1239 | if (++scanned % XA_CHECK_SCHED) |
1240 | continue; | |
1241 | ||
1242 | xas_pause(&xas); | |
1243 | xas_unlock_irq(&xas); | |
1244 | cond_resched(); | |
1245 | xas_lock_irq(&xas); | |
9973c98e | 1246 | } |
9fc747f6 | 1247 | xas_unlock_irq(&xas); |
9fc747f6 MW |
1248 | trace_dax_writeback_range_done(inode, xas.xa_index, end_index); |
1249 | return ret; | |
9973c98e RZ |
1250 | } |
1251 | EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); | |
1252 | ||
e28cd3e5 SR |
1253 | static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos, |
1254 | size_t size, void **kaddr, pfn_t *pfnp) | |
f7ca90b1 | 1255 | { |
60696eb2 | 1256 | pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); |
e28cd3e5 | 1257 | int id, rc = 0; |
5e161e40 | 1258 | long length; |
f7ca90b1 | 1259 | |
cccbce67 | 1260 | id = dax_read_lock(); |
5e161e40 | 1261 | length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), |
e28cd3e5 | 1262 | DAX_ACCESS, kaddr, pfnp); |
5e161e40 JK |
1263 | if (length < 0) { |
1264 | rc = length; | |
1265 | goto out; | |
cccbce67 | 1266 | } |
e28cd3e5 SR |
1267 | if (!pfnp) |
1268 | goto out_check_addr; | |
5e161e40 JK |
1269 | rc = -EINVAL; |
1270 | if (PFN_PHYS(length) < size) | |
1271 | goto out; | |
1272 | if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) | |
1273 | goto out; | |
38607c62 | 1274 | |
5e161e40 | 1275 | rc = 0; |
e28cd3e5 SR |
1276 | |
1277 | out_check_addr: | |
1278 | if (!kaddr) | |
1279 | goto out; | |
1280 | if (!*kaddr) | |
1281 | rc = -EFAULT; | |
5e161e40 | 1282 | out: |
cccbce67 | 1283 | dax_read_unlock(id); |
5e161e40 | 1284 | return rc; |
0e3b210c | 1285 | } |
0e3b210c | 1286 | |
ff17b8df | 1287 | /** |
708dfad2 SR |
1288 | * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page |
1289 | * by copying the data before and after the range to be written. | |
ff17b8df SR |
1290 | * @pos: address to do copy from. |
1291 | * @length: size of copy operation. | |
1292 | * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE) | |
1293 | * @srcmap: iomap srcmap | |
1294 | * @daddr: destination address to copy to. | |
1295 | * | |
1296 | * This can be called from two places. Either during DAX write fault (page | |
1297 | * aligned), to copy the length size data to daddr. Or, while doing normal DAX | |
708dfad2 | 1298 | * write operation, dax_iomap_iter() might call this to do the copy of either |
ff17b8df | 1299 | * start or end unaligned address. In the latter case the rest of the copy of |
708dfad2 SR |
1300 | * aligned ranges is taken care by dax_iomap_iter() itself. |
1301 | * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the | |
1302 | * area to make sure no old data remains. | |
ff17b8df | 1303 | */ |
708dfad2 | 1304 | static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size, |
ff17b8df SR |
1305 | const struct iomap *srcmap, void *daddr) |
1306 | { | |
1307 | loff_t head_off = pos & (align_size - 1); | |
1308 | size_t size = ALIGN(head_off + length, align_size); | |
1309 | loff_t end = pos + length; | |
1310 | loff_t pg_end = round_up(end, align_size); | |
708dfad2 | 1311 | /* copy_all is usually in page fault case */ |
ff17b8df | 1312 | bool copy_all = head_off == 0 && end == pg_end; |
708dfad2 SR |
1313 | /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */ |
1314 | bool zero_edge = srcmap->flags & IOMAP_F_SHARED || | |
1315 | srcmap->type == IOMAP_UNWRITTEN; | |
297945d9 | 1316 | void *saddr = NULL; |
ff17b8df SR |
1317 | int ret = 0; |
1318 | ||
708dfad2 SR |
1319 | if (!zero_edge) { |
1320 | ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL); | |
1321 | if (ret) | |
1ea7ca1b | 1322 | return dax_mem2blk_err(ret); |
708dfad2 | 1323 | } |
ff17b8df SR |
1324 | |
1325 | if (copy_all) { | |
708dfad2 SR |
1326 | if (zero_edge) |
1327 | memset(daddr, 0, size); | |
1328 | else | |
1329 | ret = copy_mc_to_kernel(daddr, saddr, length); | |
1330 | goto out; | |
ff17b8df SR |
1331 | } |
1332 | ||
1333 | /* Copy the head part of the range */ | |
1334 | if (head_off) { | |
708dfad2 SR |
1335 | if (zero_edge) |
1336 | memset(daddr, 0, head_off); | |
1337 | else { | |
1338 | ret = copy_mc_to_kernel(daddr, saddr, head_off); | |
1339 | if (ret) | |
1340 | return -EIO; | |
1341 | } | |
ff17b8df SR |
1342 | } |
1343 | ||
1344 | /* Copy the tail part of the range */ | |
1345 | if (end < pg_end) { | |
1346 | loff_t tail_off = head_off + length; | |
1347 | loff_t tail_len = pg_end - end; | |
1348 | ||
708dfad2 SR |
1349 | if (zero_edge) |
1350 | memset(daddr + tail_off, 0, tail_len); | |
1351 | else { | |
1352 | ret = copy_mc_to_kernel(daddr + tail_off, | |
1353 | saddr + tail_off, tail_len); | |
1354 | if (ret) | |
1355 | return -EIO; | |
1356 | } | |
ff17b8df | 1357 | } |
708dfad2 SR |
1358 | out: |
1359 | if (zero_edge) | |
1360 | dax_flush(srcmap->dax_dev, daddr, size); | |
1361 | return ret ? -EIO : 0; | |
ff17b8df SR |
1362 | } |
1363 | ||
e30331ff | 1364 | /* |
91d25ba8 RZ |
1365 | * The user has performed a load from a hole in the file. Allocating a new |
1366 | * page in the file would cause excessive storage usage for workloads with | |
1367 | * sparse files. Instead we insert a read-only mapping of the 4k zero page. | |
1368 | * If this page is ever written to we will re-fault and change the mapping to | |
1369 | * point to real DAX storage instead. | |
e30331ff | 1370 | */ |
e5d6df73 SR |
1371 | static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf, |
1372 | const struct iomap_iter *iter, void **entry) | |
e30331ff | 1373 | { |
e5d6df73 | 1374 | struct inode *inode = iter->inode; |
91d25ba8 | 1375 | unsigned long vaddr = vmf->address; |
b90ca5cc MW |
1376 | pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); |
1377 | vm_fault_t ret; | |
e30331ff | 1378 | |
e5d6df73 | 1379 | *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE); |
3159f943 | 1380 | |
38607c62 | 1381 | ret = vmf_insert_page_mkwrite(vmf, pfn_t_to_page(pfn), false); |
e30331ff RZ |
1382 | trace_dax_load_hole(inode, vmf, ret); |
1383 | return ret; | |
1384 | } | |
1385 | ||
c2436190 SR |
1386 | #ifdef CONFIG_FS_DAX_PMD |
1387 | static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, | |
e5d6df73 | 1388 | const struct iomap_iter *iter, void **entry) |
c2436190 SR |
1389 | { |
1390 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | |
1391 | unsigned long pmd_addr = vmf->address & PMD_MASK; | |
1392 | struct vm_area_struct *vma = vmf->vma; | |
1393 | struct inode *inode = mapping->host; | |
1394 | pgtable_t pgtable = NULL; | |
c93012d8 | 1395 | struct folio *zero_folio; |
c2436190 SR |
1396 | spinlock_t *ptl; |
1397 | pmd_t pmd_entry; | |
1398 | pfn_t pfn; | |
1399 | ||
c93012d8 | 1400 | zero_folio = mm_get_huge_zero_folio(vmf->vma->vm_mm); |
c2436190 | 1401 | |
c93012d8 | 1402 | if (unlikely(!zero_folio)) |
c2436190 SR |
1403 | goto fallback; |
1404 | ||
c93012d8 | 1405 | pfn = page_to_pfn_t(&zero_folio->page); |
e5d6df73 SR |
1406 | *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, |
1407 | DAX_PMD | DAX_ZERO_PAGE); | |
c2436190 SR |
1408 | |
1409 | if (arch_needs_pgtable_deposit()) { | |
1410 | pgtable = pte_alloc_one(vma->vm_mm); | |
1411 | if (!pgtable) | |
1412 | return VM_FAULT_OOM; | |
1413 | } | |
1414 | ||
1415 | ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); | |
1416 | if (!pmd_none(*(vmf->pmd))) { | |
1417 | spin_unlock(ptl); | |
1418 | goto fallback; | |
1419 | } | |
1420 | ||
1421 | if (pgtable) { | |
1422 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); | |
1423 | mm_inc_nr_ptes(vma->vm_mm); | |
1424 | } | |
e3981db4 | 1425 | pmd_entry = folio_mk_pmd(zero_folio, vmf->vma->vm_page_prot); |
c2436190 SR |
1426 | set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); |
1427 | spin_unlock(ptl); | |
c93012d8 | 1428 | trace_dax_pmd_load_hole(inode, vmf, zero_folio, *entry); |
c2436190 SR |
1429 | return VM_FAULT_NOPAGE; |
1430 | ||
1431 | fallback: | |
1432 | if (pgtable) | |
1433 | pte_free(vma->vm_mm, pgtable); | |
c93012d8 | 1434 | trace_dax_pmd_load_hole_fallback(inode, vmf, zero_folio, *entry); |
c2436190 SR |
1435 | return VM_FAULT_FALLBACK; |
1436 | } | |
1437 | #else | |
1438 | static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, | |
e5d6df73 | 1439 | const struct iomap_iter *iter, void **entry) |
c2436190 SR |
1440 | { |
1441 | return VM_FAULT_FALLBACK; | |
1442 | } | |
1443 | #endif /* CONFIG_FS_DAX_PMD */ | |
1444 | ||
edd3e3b7 | 1445 | static int dax_unshare_iter(struct iomap_iter *iter) |
d984648e SR |
1446 | { |
1447 | struct iomap *iomap = &iter->iomap; | |
1448 | const struct iomap *srcmap = iomap_iter_srcmap(iter); | |
50793801 DW |
1449 | loff_t copy_pos = iter->pos; |
1450 | u64 copy_len = iomap_length(iter); | |
1451 | u32 mod; | |
d984648e | 1452 | int id = 0; |
d79c9cc5 | 1453 | s64 ret; |
d984648e SR |
1454 | void *daddr = NULL, *saddr = NULL; |
1455 | ||
6ef6a0e8 | 1456 | if (!iomap_want_unshare_iter(iter)) |
d79c9cc5 | 1457 | return iomap_iter_advance_full(iter); |
50793801 DW |
1458 | |
1459 | /* | |
1460 | * Extend the file range to be aligned to fsblock/pagesize, because | |
1461 | * we need to copy entire blocks, not just the byte range specified. | |
1462 | * Invalidate the mapping because we're about to CoW. | |
1463 | */ | |
1464 | mod = offset_in_page(copy_pos); | |
1465 | if (mod) { | |
1466 | copy_len += mod; | |
1467 | copy_pos -= mod; | |
1468 | } | |
1469 | ||
1470 | mod = offset_in_page(copy_pos + copy_len); | |
1471 | if (mod) | |
1472 | copy_len += PAGE_SIZE - mod; | |
1473 | ||
1474 | invalidate_inode_pages2_range(iter->inode->i_mapping, | |
1475 | copy_pos >> PAGE_SHIFT, | |
1476 | (copy_pos + copy_len - 1) >> PAGE_SHIFT); | |
d984648e SR |
1477 | |
1478 | id = dax_read_lock(); | |
50793801 | 1479 | ret = dax_iomap_direct_access(iomap, copy_pos, copy_len, &daddr, NULL); |
d984648e SR |
1480 | if (ret < 0) |
1481 | goto out_unlock; | |
1482 | ||
50793801 | 1483 | ret = dax_iomap_direct_access(srcmap, copy_pos, copy_len, &saddr, NULL); |
d984648e SR |
1484 | if (ret < 0) |
1485 | goto out_unlock; | |
1486 | ||
d79c9cc5 | 1487 | if (copy_mc_to_kernel(daddr, saddr, copy_len) != 0) |
d984648e SR |
1488 | ret = -EIO; |
1489 | ||
1490 | out_unlock: | |
1491 | dax_read_unlock(id); | |
9ba439cb BF |
1492 | if (ret < 0) |
1493 | return dax_mem2blk_err(ret); | |
d79c9cc5 | 1494 | return iomap_iter_advance_full(iter); |
d984648e SR |
1495 | } |
1496 | ||
1497 | int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len, | |
1498 | const struct iomap_ops *ops) | |
1499 | { | |
1500 | struct iomap_iter iter = { | |
1501 | .inode = inode, | |
1502 | .pos = pos, | |
d984648e SR |
1503 | .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX, |
1504 | }; | |
a311a08a | 1505 | loff_t size = i_size_read(inode); |
d984648e SR |
1506 | int ret; |
1507 | ||
a311a08a DW |
1508 | if (pos < 0 || pos >= size) |
1509 | return 0; | |
1510 | ||
1511 | iter.len = min(len, size - pos); | |
d984648e | 1512 | while ((ret = iomap_iter(&iter, ops)) > 0) |
edd3e3b7 | 1513 | iter.status = dax_unshare_iter(&iter); |
d984648e SR |
1514 | return ret; |
1515 | } | |
1516 | EXPORT_SYMBOL_GPL(dax_file_unshare); | |
1517 | ||
8dbfc76d | 1518 | static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size) |
e5c71954 | 1519 | { |
8dbfc76d SR |
1520 | const struct iomap *iomap = &iter->iomap; |
1521 | const struct iomap *srcmap = iomap_iter_srcmap(iter); | |
1522 | unsigned offset = offset_in_page(pos); | |
1523 | pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); | |
e5c71954 CH |
1524 | void *kaddr; |
1525 | long ret; | |
1526 | ||
8dbfc76d SR |
1527 | ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, |
1528 | NULL); | |
1529 | if (ret < 0) | |
1ea7ca1b JC |
1530 | return dax_mem2blk_err(ret); |
1531 | ||
8dbfc76d | 1532 | memset(kaddr + offset, 0, size); |
708dfad2 SR |
1533 | if (iomap->flags & IOMAP_F_SHARED) |
1534 | ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap, | |
1535 | kaddr); | |
1536 | else | |
8dbfc76d | 1537 | dax_flush(iomap->dax_dev, kaddr + offset, size); |
e5c71954 CH |
1538 | return ret; |
1539 | } | |
1540 | ||
edd3e3b7 | 1541 | static int dax_zero_iter(struct iomap_iter *iter, bool *did_zero) |
679c8bd3 | 1542 | { |
c6f40468 CH |
1543 | const struct iomap *iomap = &iter->iomap; |
1544 | const struct iomap *srcmap = iomap_iter_srcmap(iter); | |
c6f40468 | 1545 | u64 length = iomap_length(iter); |
edd3e3b7 | 1546 | int ret; |
c6f40468 CH |
1547 | |
1548 | /* already zeroed? we're done. */ | |
1549 | if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) | |
80fce305 | 1550 | return iomap_iter_advance(iter, &length); |
c6f40468 | 1551 | |
f80e1668 SR |
1552 | /* |
1553 | * invalidate the pages whose sharing state is to be changed | |
1554 | * because of CoW. | |
1555 | */ | |
1556 | if (iomap->flags & IOMAP_F_SHARED) | |
1557 | invalidate_inode_pages2_range(iter->inode->i_mapping, | |
80fce305 BF |
1558 | iter->pos >> PAGE_SHIFT, |
1559 | (iter->pos + length - 1) >> PAGE_SHIFT); | |
f80e1668 | 1560 | |
c6f40468 | 1561 | do { |
80fce305 | 1562 | loff_t pos = iter->pos; |
c6f40468 | 1563 | unsigned offset = offset_in_page(pos); |
c6f40468 | 1564 | pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); |
c6f40468 CH |
1565 | int id; |
1566 | ||
80fce305 BF |
1567 | length = min_t(u64, PAGE_SIZE - offset, length); |
1568 | ||
c6f40468 | 1569 | id = dax_read_lock(); |
80fce305 BF |
1570 | if (IS_ALIGNED(pos, PAGE_SIZE) && length == PAGE_SIZE) |
1571 | ret = dax_zero_page_range(iomap->dax_dev, pgoff, 1); | |
c6f40468 | 1572 | else |
80fce305 | 1573 | ret = dax_memzero(iter, pos, length); |
c6f40468 | 1574 | dax_read_unlock(id); |
cccbce67 | 1575 | |
80fce305 BF |
1576 | if (ret < 0) |
1577 | return ret; | |
1578 | ||
1579 | ret = iomap_iter_advance(iter, &length); | |
1580 | if (ret) | |
1581 | return ret; | |
c6f40468 | 1582 | } while (length > 0); |
e5c71954 | 1583 | |
f8189d5d KX |
1584 | if (did_zero) |
1585 | *did_zero = true; | |
80fce305 | 1586 | return ret; |
c6f40468 CH |
1587 | } |
1588 | ||
1589 | int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, | |
1590 | const struct iomap_ops *ops) | |
1591 | { | |
1592 | struct iomap_iter iter = { | |
1593 | .inode = inode, | |
1594 | .pos = pos, | |
1595 | .len = len, | |
952da063 | 1596 | .flags = IOMAP_DAX | IOMAP_ZERO, |
c6f40468 CH |
1597 | }; |
1598 | int ret; | |
1599 | ||
1600 | while ((ret = iomap_iter(&iter, ops)) > 0) | |
edd3e3b7 | 1601 | iter.status = dax_zero_iter(&iter, did_zero); |
c6f40468 CH |
1602 | return ret; |
1603 | } | |
1604 | EXPORT_SYMBOL_GPL(dax_zero_range); | |
1605 | ||
1606 | int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, | |
1607 | const struct iomap_ops *ops) | |
1608 | { | |
1609 | unsigned int blocksize = i_blocksize(inode); | |
1610 | unsigned int off = pos & (blocksize - 1); | |
1611 | ||
1612 | /* Block boundary? Nothing to do */ | |
1613 | if (!off) | |
1614 | return 0; | |
1615 | return dax_zero_range(inode, pos, blocksize - off, did_zero, ops); | |
679c8bd3 | 1616 | } |
c6f40468 | 1617 | EXPORT_SYMBOL_GPL(dax_truncate_page); |
679c8bd3 | 1618 | |
e1dae77b | 1619 | static int dax_iomap_iter(struct iomap_iter *iomi, struct iov_iter *iter) |
a254e568 | 1620 | { |
ca289e0b | 1621 | const struct iomap *iomap = &iomi->iomap; |
f80e1668 | 1622 | const struct iomap *srcmap = iomap_iter_srcmap(iomi); |
ca289e0b CH |
1623 | loff_t length = iomap_length(iomi); |
1624 | loff_t pos = iomi->pos; | |
cccbce67 | 1625 | struct dax_device *dax_dev = iomap->dax_dev; |
a254e568 | 1626 | loff_t end = pos + length, done = 0; |
ff17b8df | 1627 | bool write = iov_iter_rw(iter) == WRITE; |
f80e1668 | 1628 | bool cow = write && iomap->flags & IOMAP_F_SHARED; |
a254e568 | 1629 | ssize_t ret = 0; |
a77d4786 | 1630 | size_t xfer; |
cccbce67 | 1631 | int id; |
a254e568 | 1632 | |
ff17b8df | 1633 | if (!write) { |
ca289e0b | 1634 | end = min(end, i_size_read(iomi->inode)); |
a254e568 CH |
1635 | if (pos >= end) |
1636 | return 0; | |
1637 | ||
e1dae77b BF |
1638 | if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) { |
1639 | done = iov_iter_zero(min(length, end - pos), iter); | |
1640 | return iomap_iter_advance(iomi, &done); | |
1641 | } | |
a254e568 CH |
1642 | } |
1643 | ||
ff17b8df SR |
1644 | /* |
1645 | * In DAX mode, enforce either pure overwrites of written extents, or | |
1646 | * writes to unwritten extents as part of a copy-on-write operation. | |
1647 | */ | |
1648 | if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED && | |
1649 | !(iomap->flags & IOMAP_F_SHARED))) | |
a254e568 CH |
1650 | return -EIO; |
1651 | ||
e3fce68c JK |
1652 | /* |
1653 | * Write can allocate block for an area which has a hole page mapped | |
1654 | * into page tables. We have to tear down these mappings so that data | |
1655 | * written by write(2) is visible in mmap. | |
1656 | */ | |
f80e1668 | 1657 | if (iomap->flags & IOMAP_F_NEW || cow) { |
f76b3a32 SR |
1658 | /* |
1659 | * Filesystem allows CoW on non-shared extents. The src extents | |
1660 | * may have been mmapped with dirty mark before. To be able to | |
1661 | * invalidate its dax entries, we need to clear the dirty mark | |
1662 | * in advance. | |
1663 | */ | |
1664 | if (cow) | |
1665 | __dax_clear_dirty_range(iomi->inode->i_mapping, | |
1666 | pos >> PAGE_SHIFT, | |
1667 | (end - 1) >> PAGE_SHIFT); | |
ca289e0b | 1668 | invalidate_inode_pages2_range(iomi->inode->i_mapping, |
e3fce68c JK |
1669 | pos >> PAGE_SHIFT, |
1670 | (end - 1) >> PAGE_SHIFT); | |
1671 | } | |
1672 | ||
cccbce67 | 1673 | id = dax_read_lock(); |
e1dae77b | 1674 | while ((pos = iomi->pos) < end) { |
a254e568 | 1675 | unsigned offset = pos & (PAGE_SIZE - 1); |
cccbce67 | 1676 | const size_t size = ALIGN(length + offset, PAGE_SIZE); |
60696eb2 | 1677 | pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); |
a254e568 | 1678 | ssize_t map_len; |
047218ec | 1679 | bool recovery = false; |
cccbce67 | 1680 | void *kaddr; |
a254e568 | 1681 | |
d1908f52 MH |
1682 | if (fatal_signal_pending(current)) { |
1683 | ret = -EINTR; | |
1684 | break; | |
1685 | } | |
1686 | ||
cccbce67 | 1687 | map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), |
e511c4a3 | 1688 | DAX_ACCESS, &kaddr, NULL); |
1ea7ca1b | 1689 | if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) { |
047218ec JC |
1690 | map_len = dax_direct_access(dax_dev, pgoff, |
1691 | PHYS_PFN(size), DAX_RECOVERY_WRITE, | |
1692 | &kaddr, NULL); | |
1693 | if (map_len > 0) | |
1694 | recovery = true; | |
1695 | } | |
a254e568 | 1696 | if (map_len < 0) { |
1ea7ca1b | 1697 | ret = dax_mem2blk_err(map_len); |
a254e568 CH |
1698 | break; |
1699 | } | |
1700 | ||
f80e1668 | 1701 | if (cow) { |
708dfad2 SR |
1702 | ret = dax_iomap_copy_around(pos, length, PAGE_SIZE, |
1703 | srcmap, kaddr); | |
ff17b8df SR |
1704 | if (ret) |
1705 | break; | |
1706 | } | |
1707 | ||
cccbce67 DW |
1708 | map_len = PFN_PHYS(map_len); |
1709 | kaddr += offset; | |
a254e568 CH |
1710 | map_len -= offset; |
1711 | if (map_len > end - pos) | |
1712 | map_len = end - pos; | |
1713 | ||
047218ec JC |
1714 | if (recovery) |
1715 | xfer = dax_recovery_write(dax_dev, pgoff, kaddr, | |
1716 | map_len, iter); | |
ff17b8df | 1717 | else if (write) |
a77d4786 | 1718 | xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, |
fec53774 | 1719 | map_len, iter); |
a254e568 | 1720 | else |
a77d4786 | 1721 | xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, |
b3a9a0c3 | 1722 | map_len, iter); |
a254e568 | 1723 | |
e1dae77b BF |
1724 | length = xfer; |
1725 | ret = iomap_iter_advance(iomi, &length); | |
1726 | if (!ret && xfer == 0) | |
a77d4786 DW |
1727 | ret = -EFAULT; |
1728 | if (xfer < map_len) | |
1729 | break; | |
a254e568 | 1730 | } |
cccbce67 | 1731 | dax_read_unlock(id); |
a254e568 | 1732 | |
e1dae77b | 1733 | return ret; |
a254e568 CH |
1734 | } |
1735 | ||
1736 | /** | |
11c59c92 | 1737 | * dax_iomap_rw - Perform I/O to a DAX file |
a254e568 CH |
1738 | * @iocb: The control block for this I/O |
1739 | * @iter: The addresses to do I/O from or to | |
1740 | * @ops: iomap ops passed from the file system | |
1741 | * | |
1742 | * This function performs read and write operations to directly mapped | |
1743 | * persistent memory. The callers needs to take care of read/write exclusion | |
1744 | * and evicting any page cache pages in the region under I/O. | |
1745 | */ | |
1746 | ssize_t | |
11c59c92 | 1747 | dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, |
8ff6daa1 | 1748 | const struct iomap_ops *ops) |
a254e568 | 1749 | { |
ca289e0b CH |
1750 | struct iomap_iter iomi = { |
1751 | .inode = iocb->ki_filp->f_mapping->host, | |
1752 | .pos = iocb->ki_pos, | |
1753 | .len = iov_iter_count(iter), | |
952da063 | 1754 | .flags = IOMAP_DAX, |
ca289e0b CH |
1755 | }; |
1756 | loff_t done = 0; | |
1757 | int ret; | |
a254e568 | 1758 | |
17d9c15c LJ |
1759 | if (!iomi.len) |
1760 | return 0; | |
1761 | ||
168316db | 1762 | if (iov_iter_rw(iter) == WRITE) { |
ca289e0b CH |
1763 | lockdep_assert_held_write(&iomi.inode->i_rwsem); |
1764 | iomi.flags |= IOMAP_WRITE; | |
168316db | 1765 | } else { |
ca289e0b | 1766 | lockdep_assert_held(&iomi.inode->i_rwsem); |
168316db | 1767 | } |
a254e568 | 1768 | |
96222d53 | 1769 | if (iocb->ki_flags & IOCB_NOWAIT) |
ca289e0b | 1770 | iomi.flags |= IOMAP_NOWAIT; |
96222d53 | 1771 | |
e1dae77b | 1772 | while ((ret = iomap_iter(&iomi, ops)) > 0) |
edd3e3b7 | 1773 | iomi.status = dax_iomap_iter(&iomi, iter); |
a254e568 | 1774 | |
ca289e0b CH |
1775 | done = iomi.pos - iocb->ki_pos; |
1776 | iocb->ki_pos = iomi.pos; | |
a254e568 CH |
1777 | return done ? done : ret; |
1778 | } | |
11c59c92 | 1779 | EXPORT_SYMBOL_GPL(dax_iomap_rw); |
a7d73fe6 | 1780 | |
ab77dab4 | 1781 | static vm_fault_t dax_fault_return(int error) |
9f141d6e JK |
1782 | { |
1783 | if (error == 0) | |
1784 | return VM_FAULT_NOPAGE; | |
c9aed74e | 1785 | return vmf_error(error); |
9f141d6e JK |
1786 | } |
1787 | ||
55f81639 SR |
1788 | /* |
1789 | * When handling a synchronous page fault and the inode need a fsync, we can | |
1790 | * insert the PTE/PMD into page tables only after that fsync happened. Skip | |
1791 | * insertion for now and return the pfn so that caller can insert it after the | |
1792 | * fsync is done. | |
1793 | */ | |
1794 | static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn) | |
1795 | { | |
1796 | if (WARN_ON_ONCE(!pfnp)) | |
1797 | return VM_FAULT_SIGBUS; | |
1798 | *pfnp = pfn; | |
1799 | return VM_FAULT_NEEDDSYNC; | |
1800 | } | |
1801 | ||
65dd814a CH |
1802 | static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf, |
1803 | const struct iomap_iter *iter) | |
55f81639 | 1804 | { |
55f81639 SR |
1805 | vm_fault_t ret; |
1806 | int error = 0; | |
1807 | ||
65dd814a | 1808 | switch (iter->iomap.type) { |
55f81639 SR |
1809 | case IOMAP_HOLE: |
1810 | case IOMAP_UNWRITTEN: | |
429f8de7 | 1811 | clear_user_highpage(vmf->cow_page, vmf->address); |
55f81639 SR |
1812 | break; |
1813 | case IOMAP_MAPPED: | |
429f8de7 | 1814 | error = copy_cow_page_dax(vmf, iter); |
55f81639 SR |
1815 | break; |
1816 | default: | |
1817 | WARN_ON_ONCE(1); | |
1818 | error = -EIO; | |
1819 | break; | |
1820 | } | |
1821 | ||
1822 | if (error) | |
1823 | return dax_fault_return(error); | |
1824 | ||
1825 | __SetPageUptodate(vmf->cow_page); | |
1826 | ret = finish_fault(vmf); | |
1827 | if (!ret) | |
1828 | return VM_FAULT_DONE_COW; | |
1829 | return ret; | |
1830 | } | |
1831 | ||
c2436190 | 1832 | /** |
65dd814a | 1833 | * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault. |
c2436190 | 1834 | * @vmf: vm fault instance |
65dd814a | 1835 | * @iter: iomap iter |
c2436190 SR |
1836 | * @pfnp: pfn to be returned |
1837 | * @xas: the dax mapping tree of a file | |
1838 | * @entry: an unlocked dax entry to be inserted | |
1839 | * @pmd: distinguish whether it is a pmd fault | |
c2436190 | 1840 | */ |
65dd814a CH |
1841 | static vm_fault_t dax_fault_iter(struct vm_fault *vmf, |
1842 | const struct iomap_iter *iter, pfn_t *pfnp, | |
1843 | struct xa_state *xas, void **entry, bool pmd) | |
c2436190 | 1844 | { |
65dd814a | 1845 | const struct iomap *iomap = &iter->iomap; |
708dfad2 | 1846 | const struct iomap *srcmap = iomap_iter_srcmap(iter); |
c2436190 SR |
1847 | size_t size = pmd ? PMD_SIZE : PAGE_SIZE; |
1848 | loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT; | |
e5d6df73 | 1849 | bool write = iter->flags & IOMAP_WRITE; |
c2436190 | 1850 | unsigned long entry_flags = pmd ? DAX_PMD : 0; |
38607c62 AP |
1851 | struct folio *folio; |
1852 | int ret, err = 0; | |
c2436190 | 1853 | pfn_t pfn; |
ff17b8df | 1854 | void *kaddr; |
c2436190 | 1855 | |
65dd814a CH |
1856 | if (!pmd && vmf->cow_page) |
1857 | return dax_fault_cow_page(vmf, iter); | |
1858 | ||
c2436190 SR |
1859 | /* if we are reading UNWRITTEN and HOLE, return a hole. */ |
1860 | if (!write && | |
1861 | (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) { | |
1862 | if (!pmd) | |
e5d6df73 SR |
1863 | return dax_load_hole(xas, vmf, iter, entry); |
1864 | return dax_pmd_load_hole(xas, vmf, iter, entry); | |
c2436190 SR |
1865 | } |
1866 | ||
ff17b8df | 1867 | if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) { |
c2436190 SR |
1868 | WARN_ON_ONCE(1); |
1869 | return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS; | |
1870 | } | |
1871 | ||
ff17b8df | 1872 | err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn); |
c2436190 SR |
1873 | if (err) |
1874 | return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err); | |
1875 | ||
e5d6df73 | 1876 | *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags); |
c2436190 | 1877 | |
708dfad2 SR |
1878 | if (write && iomap->flags & IOMAP_F_SHARED) { |
1879 | err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr); | |
ff17b8df SR |
1880 | if (err) |
1881 | return dax_fault_return(err); | |
1882 | } | |
c2436190 | 1883 | |
38607c62 | 1884 | folio = dax_to_folio(*entry); |
e5d6df73 | 1885 | if (dax_fault_is_synchronous(iter, vmf->vma)) |
c2436190 SR |
1886 | return dax_fault_synchronous_pfnp(pfnp, pfn); |
1887 | ||
38607c62 | 1888 | folio_ref_inc(folio); |
c2436190 | 1889 | if (pmd) |
38607c62 AP |
1890 | ret = vmf_insert_folio_pmd(vmf, pfn_folio(pfn_t_to_pfn(pfn)), |
1891 | write); | |
1892 | else | |
1893 | ret = vmf_insert_page_mkwrite(vmf, pfn_t_to_page(pfn), write); | |
1894 | folio_put(folio); | |
c2436190 | 1895 | |
38607c62 | 1896 | return ret; |
c2436190 SR |
1897 | } |
1898 | ||
ab77dab4 | 1899 | static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, |
c0b24625 | 1900 | int *iomap_errp, const struct iomap_ops *ops) |
a7d73fe6 | 1901 | { |
65dd814a | 1902 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; |
b15cd800 | 1903 | XA_STATE(xas, &mapping->i_pages, vmf->pgoff); |
65dd814a CH |
1904 | struct iomap_iter iter = { |
1905 | .inode = mapping->host, | |
1906 | .pos = (loff_t)vmf->pgoff << PAGE_SHIFT, | |
1907 | .len = PAGE_SIZE, | |
952da063 | 1908 | .flags = IOMAP_DAX | IOMAP_FAULT, |
65dd814a | 1909 | }; |
ab77dab4 | 1910 | vm_fault_t ret = 0; |
a7d73fe6 | 1911 | void *entry; |
65dd814a | 1912 | int error; |
a7d73fe6 | 1913 | |
65dd814a | 1914 | trace_dax_pte_fault(iter.inode, vmf, ret); |
a7d73fe6 CH |
1915 | /* |
1916 | * Check whether offset isn't beyond end of file now. Caller is supposed | |
1917 | * to hold locks serializing us with truncate / punch hole so this is | |
1918 | * a reliable test. | |
1919 | */ | |
65dd814a | 1920 | if (iter.pos >= i_size_read(iter.inode)) { |
ab77dab4 | 1921 | ret = VM_FAULT_SIGBUS; |
a9c42b33 RZ |
1922 | goto out; |
1923 | } | |
a7d73fe6 | 1924 | |
65dd814a CH |
1925 | if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) |
1926 | iter.flags |= IOMAP_WRITE; | |
a7d73fe6 | 1927 | |
b15cd800 MW |
1928 | entry = grab_mapping_entry(&xas, mapping, 0); |
1929 | if (xa_is_internal(entry)) { | |
1930 | ret = xa_to_internal(entry); | |
13e451fd JK |
1931 | goto out; |
1932 | } | |
1933 | ||
e2093926 RZ |
1934 | /* |
1935 | * It is possible, particularly with mixed reads & writes to private | |
1936 | * mappings, that we have raced with a PMD fault that overlaps with | |
1937 | * the PTE we need to set up. If so just return and the fault will be | |
1938 | * retried. | |
1939 | */ | |
1940 | if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { | |
ab77dab4 | 1941 | ret = VM_FAULT_NOPAGE; |
e2093926 RZ |
1942 | goto unlock_entry; |
1943 | } | |
1944 | ||
65dd814a CH |
1945 | while ((error = iomap_iter(&iter, ops)) > 0) { |
1946 | if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) { | |
edd3e3b7 | 1947 | iter.status = -EIO; /* fs corruption? */ |
65dd814a | 1948 | continue; |
a7d73fe6 CH |
1949 | } |
1950 | ||
65dd814a CH |
1951 | ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false); |
1952 | if (ret != VM_FAULT_SIGBUS && | |
1953 | (iter.iomap.flags & IOMAP_F_NEW)) { | |
a7d73fe6 | 1954 | count_vm_event(PGMAJFAULT); |
65dd814a CH |
1955 | count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); |
1956 | ret |= VM_FAULT_MAJOR; | |
a7d73fe6 | 1957 | } |
1b5a1cb2 | 1958 | |
6fe32fe1 BF |
1959 | if (!(ret & VM_FAULT_ERROR)) { |
1960 | u64 length = PAGE_SIZE; | |
edd3e3b7 | 1961 | iter.status = iomap_iter_advance(&iter, &length); |
6fe32fe1 | 1962 | } |
a7d73fe6 CH |
1963 | } |
1964 | ||
65dd814a CH |
1965 | if (iomap_errp) |
1966 | *iomap_errp = error; | |
1967 | if (!ret && error) | |
1968 | ret = dax_fault_return(error); | |
9f141d6e | 1969 | |
c2436190 | 1970 | unlock_entry: |
b15cd800 | 1971 | dax_unlock_entry(&xas, entry); |
c2436190 | 1972 | out: |
65dd814a CH |
1973 | trace_dax_pte_fault_done(iter.inode, vmf, ret); |
1974 | return ret; | |
a7d73fe6 | 1975 | } |
642261ac RZ |
1976 | |
1977 | #ifdef CONFIG_FS_DAX_PMD | |
55f81639 SR |
1978 | static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas, |
1979 | pgoff_t max_pgoff) | |
642261ac | 1980 | { |
f4200391 | 1981 | unsigned long pmd_addr = vmf->address & PMD_MASK; |
55f81639 | 1982 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
642261ac | 1983 | |
55f81639 SR |
1984 | /* |
1985 | * Make sure that the faulting address's PMD offset (color) matches | |
1986 | * the PMD offset from the start of the file. This is necessary so | |
1987 | * that a PMD range in the page table overlaps exactly with a PMD | |
1988 | * range in the page cache. | |
1989 | */ | |
1990 | if ((vmf->pgoff & PG_PMD_COLOUR) != | |
1991 | ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) | |
1992 | return true; | |
642261ac | 1993 | |
55f81639 SR |
1994 | /* Fall back to PTEs if we're going to COW */ |
1995 | if (write && !(vmf->vma->vm_flags & VM_SHARED)) | |
1996 | return true; | |
11cf9d86 | 1997 | |
55f81639 SR |
1998 | /* If the PMD would extend outside the VMA */ |
1999 | if (pmd_addr < vmf->vma->vm_start) | |
2000 | return true; | |
2001 | if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end) | |
2002 | return true; | |
642261ac | 2003 | |
55f81639 SR |
2004 | /* If the PMD would extend beyond the file size */ |
2005 | if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff) | |
2006 | return true; | |
653b2ea3 | 2007 | |
55f81639 | 2008 | return false; |
642261ac RZ |
2009 | } |
2010 | ||
ab77dab4 | 2011 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, |
a2d58167 | 2012 | const struct iomap_ops *ops) |
642261ac | 2013 | { |
65dd814a | 2014 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; |
b15cd800 | 2015 | XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); |
65dd814a CH |
2016 | struct iomap_iter iter = { |
2017 | .inode = mapping->host, | |
2018 | .len = PMD_SIZE, | |
952da063 | 2019 | .flags = IOMAP_DAX | IOMAP_FAULT, |
65dd814a | 2020 | }; |
c2436190 | 2021 | vm_fault_t ret = VM_FAULT_FALLBACK; |
b15cd800 | 2022 | pgoff_t max_pgoff; |
642261ac | 2023 | void *entry; |
642261ac | 2024 | |
65dd814a CH |
2025 | if (vmf->flags & FAULT_FLAG_WRITE) |
2026 | iter.flags |= IOMAP_WRITE; | |
642261ac | 2027 | |
282a8e03 RZ |
2028 | /* |
2029 | * Check whether offset isn't beyond end of file now. Caller is | |
2030 | * supposed to hold locks serializing us with truncate / punch hole so | |
2031 | * this is a reliable test. | |
2032 | */ | |
65dd814a | 2033 | max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE); |
fffa281b | 2034 | |
65dd814a | 2035 | trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0); |
642261ac | 2036 | |
b15cd800 | 2037 | if (xas.xa_index >= max_pgoff) { |
c2436190 | 2038 | ret = VM_FAULT_SIGBUS; |
282a8e03 RZ |
2039 | goto out; |
2040 | } | |
642261ac | 2041 | |
55f81639 | 2042 | if (dax_fault_check_fallback(vmf, &xas, max_pgoff)) |
642261ac RZ |
2043 | goto fallback; |
2044 | ||
876f2946 | 2045 | /* |
b15cd800 MW |
2046 | * grab_mapping_entry() will make sure we get an empty PMD entry, |
2047 | * a zero PMD entry or a DAX PMD. If it can't (because a PTE | |
2048 | * entry is already in the array, for instance), it will return | |
2049 | * VM_FAULT_FALLBACK. | |
876f2946 | 2050 | */ |
23c84eb7 | 2051 | entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); |
b15cd800 | 2052 | if (xa_is_internal(entry)) { |
c2436190 | 2053 | ret = xa_to_internal(entry); |
876f2946 | 2054 | goto fallback; |
b15cd800 | 2055 | } |
876f2946 | 2056 | |
e2093926 RZ |
2057 | /* |
2058 | * It is possible, particularly with mixed reads & writes to private | |
2059 | * mappings, that we have raced with a PTE fault that overlaps with | |
2060 | * the PMD we need to set up. If so just return and the fault will be | |
2061 | * retried. | |
2062 | */ | |
2063 | if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && | |
2064 | !pmd_devmap(*vmf->pmd)) { | |
c2436190 | 2065 | ret = 0; |
e2093926 RZ |
2066 | goto unlock_entry; |
2067 | } | |
2068 | ||
65dd814a | 2069 | iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT; |
dd0c6425 | 2070 | while (iomap_iter(&iter, ops) > 0) { |
65dd814a CH |
2071 | if (iomap_length(&iter) < PMD_SIZE) |
2072 | continue; /* actually breaks out of the loop */ | |
caa51d26 | 2073 | |
65dd814a | 2074 | ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true); |
6fe32fe1 BF |
2075 | if (ret != VM_FAULT_FALLBACK) { |
2076 | u64 length = PMD_SIZE; | |
edd3e3b7 | 2077 | iter.status = iomap_iter_advance(&iter, &length); |
6fe32fe1 | 2078 | } |
642261ac RZ |
2079 | } |
2080 | ||
c2436190 | 2081 | unlock_entry: |
b15cd800 | 2082 | dax_unlock_entry(&xas, entry); |
c2436190 SR |
2083 | fallback: |
2084 | if (ret == VM_FAULT_FALLBACK) { | |
65dd814a | 2085 | split_huge_pmd(vmf->vma, vmf->pmd, vmf->address); |
642261ac RZ |
2086 | count_vm_event(THP_FAULT_FALLBACK); |
2087 | } | |
282a8e03 | 2088 | out: |
65dd814a | 2089 | trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret); |
c2436190 | 2090 | return ret; |
642261ac | 2091 | } |
a2d58167 | 2092 | #else |
ab77dab4 | 2093 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, |
01cddfe9 | 2094 | const struct iomap_ops *ops) |
a2d58167 DJ |
2095 | { |
2096 | return VM_FAULT_FALLBACK; | |
2097 | } | |
642261ac | 2098 | #endif /* CONFIG_FS_DAX_PMD */ |
a2d58167 DJ |
2099 | |
2100 | /** | |
2101 | * dax_iomap_fault - handle a page fault on a DAX file | |
2102 | * @vmf: The description of the fault | |
1d024e7a | 2103 | * @order: Order of the page to fault in |
9a0dd422 | 2104 | * @pfnp: PFN to insert for synchronous faults if fsync is required |
c0b24625 | 2105 | * @iomap_errp: Storage for detailed error code in case of error |
cec04e8c | 2106 | * @ops: Iomap ops passed from the file system |
a2d58167 DJ |
2107 | * |
2108 | * When a page fault occurs, filesystems may call this helper in | |
2109 | * their fault handler for DAX files. dax_iomap_fault() assumes the caller | |
2110 | * has done all the necessary locking for page fault to proceed | |
2111 | * successfully. | |
2112 | */ | |
1d024e7a | 2113 | vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order, |
c0b24625 | 2114 | pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) |
a2d58167 | 2115 | { |
1d024e7a | 2116 | if (order == 0) |
c0b24625 | 2117 | return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); |
1d024e7a | 2118 | else if (order == PMD_ORDER) |
9a0dd422 | 2119 | return dax_iomap_pmd_fault(vmf, pfnp, ops); |
1d024e7a | 2120 | else |
a2d58167 | 2121 | return VM_FAULT_FALLBACK; |
a2d58167 DJ |
2122 | } |
2123 | EXPORT_SYMBOL_GPL(dax_iomap_fault); | |
71eab6df | 2124 | |
a77d19f4 | 2125 | /* |
71eab6df JK |
2126 | * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables |
2127 | * @vmf: The description of the fault | |
71eab6df | 2128 | * @pfn: PFN to insert |
cfc93c6c | 2129 | * @order: Order of entry to insert. |
71eab6df | 2130 | * |
a77d19f4 MW |
2131 | * This function inserts a writeable PTE or PMD entry into the page tables |
2132 | * for an mmaped DAX file. It also marks the page cache entry as dirty. | |
71eab6df | 2133 | */ |
cfc93c6c MW |
2134 | static vm_fault_t |
2135 | dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) | |
71eab6df JK |
2136 | { |
2137 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | |
cfc93c6c | 2138 | XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); |
38607c62 | 2139 | struct folio *folio; |
cfc93c6c | 2140 | void *entry; |
ab77dab4 | 2141 | vm_fault_t ret; |
71eab6df | 2142 | |
cfc93c6c | 2143 | xas_lock_irq(&xas); |
6be3e21d | 2144 | entry = get_next_unlocked_entry(&xas, order); |
71eab6df | 2145 | /* Did we race with someone splitting entry or so? */ |
23c84eb7 MWO |
2146 | if (!entry || dax_is_conflict(entry) || |
2147 | (order == 0 && !dax_is_pte_entry(entry))) { | |
4c3d043d | 2148 | put_unlocked_entry(&xas, entry, WAKE_NEXT); |
cfc93c6c | 2149 | xas_unlock_irq(&xas); |
71eab6df JK |
2150 | trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, |
2151 | VM_FAULT_NOPAGE); | |
2152 | return VM_FAULT_NOPAGE; | |
2153 | } | |
cfc93c6c MW |
2154 | xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); |
2155 | dax_lock_entry(&xas, entry); | |
2156 | xas_unlock_irq(&xas); | |
38607c62 AP |
2157 | folio = pfn_folio(pfn_t_to_pfn(pfn)); |
2158 | folio_ref_inc(folio); | |
cfc93c6c | 2159 | if (order == 0) |
38607c62 | 2160 | ret = vmf_insert_page_mkwrite(vmf, &folio->page, true); |
71eab6df | 2161 | #ifdef CONFIG_FS_DAX_PMD |
cfc93c6c | 2162 | else if (order == PMD_ORDER) |
38607c62 | 2163 | ret = vmf_insert_folio_pmd(vmf, folio, FAULT_FLAG_WRITE); |
71eab6df | 2164 | #endif |
cfc93c6c | 2165 | else |
ab77dab4 | 2166 | ret = VM_FAULT_FALLBACK; |
38607c62 | 2167 | folio_put(folio); |
cfc93c6c | 2168 | dax_unlock_entry(&xas, entry); |
ab77dab4 SJ |
2169 | trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); |
2170 | return ret; | |
71eab6df JK |
2171 | } |
2172 | ||
2173 | /** | |
2174 | * dax_finish_sync_fault - finish synchronous page fault | |
2175 | * @vmf: The description of the fault | |
1d024e7a | 2176 | * @order: Order of entry to be inserted |
71eab6df JK |
2177 | * @pfn: PFN to insert |
2178 | * | |
2179 | * This function ensures that the file range touched by the page fault is | |
2180 | * stored persistently on the media and handles inserting of appropriate page | |
2181 | * table entry. | |
2182 | */ | |
1d024e7a MWO |
2183 | vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order, |
2184 | pfn_t pfn) | |
71eab6df JK |
2185 | { |
2186 | int err; | |
2187 | loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; | |
cfc93c6c | 2188 | size_t len = PAGE_SIZE << order; |
71eab6df | 2189 | |
71eab6df JK |
2190 | err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); |
2191 | if (err) | |
2192 | return VM_FAULT_SIGBUS; | |
cfc93c6c | 2193 | return dax_insert_pfn_mkwrite(vmf, pfn, order); |
71eab6df JK |
2194 | } |
2195 | EXPORT_SYMBOL_GPL(dax_finish_sync_fault); | |
6f7db389 | 2196 | |
39eb0511 | 2197 | static int dax_range_compare_iter(struct iomap_iter *it_src, |
6f7db389 SR |
2198 | struct iomap_iter *it_dest, u64 len, bool *same) |
2199 | { | |
2200 | const struct iomap *smap = &it_src->iomap; | |
2201 | const struct iomap *dmap = &it_dest->iomap; | |
2202 | loff_t pos1 = it_src->pos, pos2 = it_dest->pos; | |
39eb0511 | 2203 | u64 dest_len; |
6f7db389 SR |
2204 | void *saddr, *daddr; |
2205 | int id, ret; | |
2206 | ||
2207 | len = min(len, min(smap->length, dmap->length)); | |
2208 | ||
2209 | if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) { | |
2210 | *same = true; | |
39eb0511 | 2211 | goto advance; |
6f7db389 SR |
2212 | } |
2213 | ||
2214 | if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) { | |
2215 | *same = false; | |
2216 | return 0; | |
2217 | } | |
2218 | ||
2219 | id = dax_read_lock(); | |
2220 | ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE), | |
2221 | &saddr, NULL); | |
2222 | if (ret < 0) | |
2223 | goto out_unlock; | |
2224 | ||
2225 | ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE), | |
2226 | &daddr, NULL); | |
2227 | if (ret < 0) | |
2228 | goto out_unlock; | |
2229 | ||
2230 | *same = !memcmp(saddr, daddr, len); | |
2231 | if (!*same) | |
2232 | len = 0; | |
2233 | dax_read_unlock(id); | |
39eb0511 BF |
2234 | |
2235 | advance: | |
2236 | dest_len = len; | |
2237 | ret = iomap_iter_advance(it_src, &len); | |
2238 | if (!ret) | |
2239 | ret = iomap_iter_advance(it_dest, &dest_len); | |
2240 | return ret; | |
6f7db389 SR |
2241 | |
2242 | out_unlock: | |
2243 | dax_read_unlock(id); | |
2244 | return -EIO; | |
2245 | } | |
2246 | ||
2247 | int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff, | |
2248 | struct inode *dst, loff_t dstoff, loff_t len, bool *same, | |
2249 | const struct iomap_ops *ops) | |
2250 | { | |
2251 | struct iomap_iter src_iter = { | |
2252 | .inode = src, | |
2253 | .pos = srcoff, | |
2254 | .len = len, | |
2255 | .flags = IOMAP_DAX, | |
2256 | }; | |
2257 | struct iomap_iter dst_iter = { | |
2258 | .inode = dst, | |
2259 | .pos = dstoff, | |
2260 | .len = len, | |
2261 | .flags = IOMAP_DAX, | |
2262 | }; | |
39eb0511 | 2263 | int ret, status; |
6f7db389 | 2264 | |
0e79e373 SR |
2265 | while ((ret = iomap_iter(&src_iter, ops)) > 0 && |
2266 | (ret = iomap_iter(&dst_iter, ops)) > 0) { | |
39eb0511 | 2267 | status = dax_range_compare_iter(&src_iter, &dst_iter, |
e900ba10 | 2268 | min(src_iter.len, dst_iter.len), same); |
39eb0511 | 2269 | if (status < 0) |
0e79e373 | 2270 | return ret; |
edd3e3b7 | 2271 | src_iter.status = dst_iter.status = status; |
6f7db389 SR |
2272 | } |
2273 | return ret; | |
2274 | } | |
2275 | ||
2276 | int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in, | |
2277 | struct file *file_out, loff_t pos_out, | |
2278 | loff_t *len, unsigned int remap_flags, | |
2279 | const struct iomap_ops *ops) | |
2280 | { | |
2281 | return __generic_remap_file_range_prep(file_in, pos_in, file_out, | |
2282 | pos_out, len, remap_flags, ops); | |
2283 | } | |
2284 | EXPORT_SYMBOL_GPL(dax_remap_file_range_prep); |