dax: add tracepoints to dax_writeback_mapping_range()
[linux-block.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
2765cfbb 28#include <linux/pmem.h>
289c6aed 29#include <linux/sched.h>
f361bf4a 30#include <linux/sched/signal.h>
d475c634 31#include <linux/uio.h>
f7ca90b1 32#include <linux/vmstat.h>
34c0fd54 33#include <linux/pfn_t.h>
0e749e54 34#include <linux/sizes.h>
4b4bb46d 35#include <linux/mmu_notifier.h>
a254e568
CH
36#include <linux/iomap.h>
37#include "internal.h"
d475c634 38
282a8e03
RZ
39#define CREATE_TRACE_POINTS
40#include <trace/events/fs_dax.h>
41
ac401cc7
JK
42/* We choose 4096 entries - same as per-zone page wait tables */
43#define DAX_WAIT_TABLE_BITS 12
44#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45
ce95ab0f 46static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
47
48static int __init init_dax_wait_table(void)
49{
50 int i;
51
52 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
53 init_waitqueue_head(wait_table + i);
54 return 0;
55}
56fs_initcall(init_dax_wait_table);
57
642261ac 58static int dax_is_pmd_entry(void *entry)
d1a5f2b4 59{
642261ac 60 return (unsigned long)entry & RADIX_DAX_PMD;
d1a5f2b4
DW
61}
62
642261ac 63static int dax_is_pte_entry(void *entry)
d475c634 64{
642261ac 65 return !((unsigned long)entry & RADIX_DAX_PMD);
d475c634
MW
66}
67
642261ac 68static int dax_is_zero_entry(void *entry)
d475c634 69{
642261ac 70 return (unsigned long)entry & RADIX_DAX_HZP;
d475c634
MW
71}
72
642261ac 73static int dax_is_empty_entry(void *entry)
b2e0d162 74{
642261ac 75 return (unsigned long)entry & RADIX_DAX_EMPTY;
b2e0d162
DW
76}
77
ac401cc7
JK
78/*
79 * DAX radix tree locking
80 */
81struct exceptional_entry_key {
82 struct address_space *mapping;
63e95b5c 83 pgoff_t entry_start;
ac401cc7
JK
84};
85
86struct wait_exceptional_entry_queue {
87 wait_queue_t wait;
88 struct exceptional_entry_key key;
89};
90
63e95b5c
RZ
91static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
92 pgoff_t index, void *entry, struct exceptional_entry_key *key)
93{
94 unsigned long hash;
95
96 /*
97 * If 'entry' is a PMD, align the 'index' that we use for the wait
98 * queue to the start of that PMD. This ensures that all offsets in
99 * the range covered by the PMD map to the same bit lock.
100 */
642261ac 101 if (dax_is_pmd_entry(entry))
63e95b5c
RZ
102 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
103
104 key->mapping = mapping;
105 key->entry_start = index;
106
107 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
108 return wait_table + hash;
109}
110
ac401cc7
JK
111static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
112 int sync, void *keyp)
113{
114 struct exceptional_entry_key *key = keyp;
115 struct wait_exceptional_entry_queue *ewait =
116 container_of(wait, struct wait_exceptional_entry_queue, wait);
117
118 if (key->mapping != ewait->key.mapping ||
63e95b5c 119 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
120 return 0;
121 return autoremove_wake_function(wait, mode, sync, NULL);
122}
123
124/*
125 * Check whether the given slot is locked. The function must be called with
126 * mapping->tree_lock held
127 */
128static inline int slot_locked(struct address_space *mapping, void **slot)
129{
130 unsigned long entry = (unsigned long)
131 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
132 return entry & RADIX_DAX_ENTRY_LOCK;
133}
134
135/*
136 * Mark the given slot is locked. The function must be called with
137 * mapping->tree_lock held
138 */
139static inline void *lock_slot(struct address_space *mapping, void **slot)
140{
141 unsigned long entry = (unsigned long)
142 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
143
144 entry |= RADIX_DAX_ENTRY_LOCK;
6d75f366 145 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
ac401cc7
JK
146 return (void *)entry;
147}
148
149/*
150 * Mark the given slot is unlocked. The function must be called with
151 * mapping->tree_lock held
152 */
153static inline void *unlock_slot(struct address_space *mapping, void **slot)
154{
155 unsigned long entry = (unsigned long)
156 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
157
158 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
6d75f366 159 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
ac401cc7
JK
160 return (void *)entry;
161}
162
163/*
164 * Lookup entry in radix tree, wait for it to become unlocked if it is
165 * exceptional entry and return it. The caller must call
166 * put_unlocked_mapping_entry() when he decided not to lock the entry or
167 * put_locked_mapping_entry() when he locked the entry and now wants to
168 * unlock it.
169 *
170 * The function must be called with mapping->tree_lock held.
171 */
172static void *get_unlocked_mapping_entry(struct address_space *mapping,
173 pgoff_t index, void ***slotp)
174{
e3ad61c6 175 void *entry, **slot;
ac401cc7 176 struct wait_exceptional_entry_queue ewait;
63e95b5c 177 wait_queue_head_t *wq;
ac401cc7
JK
178
179 init_wait(&ewait.wait);
180 ewait.wait.func = wake_exceptional_entry_func;
ac401cc7
JK
181
182 for (;;) {
e3ad61c6 183 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
ac401cc7 184 &slot);
e3ad61c6 185 if (!entry || !radix_tree_exceptional_entry(entry) ||
ac401cc7
JK
186 !slot_locked(mapping, slot)) {
187 if (slotp)
188 *slotp = slot;
e3ad61c6 189 return entry;
ac401cc7 190 }
63e95b5c
RZ
191
192 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
ac401cc7
JK
193 prepare_to_wait_exclusive(wq, &ewait.wait,
194 TASK_UNINTERRUPTIBLE);
195 spin_unlock_irq(&mapping->tree_lock);
196 schedule();
197 finish_wait(wq, &ewait.wait);
198 spin_lock_irq(&mapping->tree_lock);
199 }
200}
201
b1aa812b
JK
202static void dax_unlock_mapping_entry(struct address_space *mapping,
203 pgoff_t index)
204{
205 void *entry, **slot;
206
207 spin_lock_irq(&mapping->tree_lock);
208 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
209 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
210 !slot_locked(mapping, slot))) {
211 spin_unlock_irq(&mapping->tree_lock);
212 return;
213 }
214 unlock_slot(mapping, slot);
215 spin_unlock_irq(&mapping->tree_lock);
216 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
217}
218
422476c4
RZ
219static void put_locked_mapping_entry(struct address_space *mapping,
220 pgoff_t index, void *entry)
221{
222 if (!radix_tree_exceptional_entry(entry)) {
223 unlock_page(entry);
224 put_page(entry);
225 } else {
226 dax_unlock_mapping_entry(mapping, index);
227 }
228}
229
230/*
231 * Called when we are done with radix tree entry we looked up via
232 * get_unlocked_mapping_entry() and which we didn't lock in the end.
233 */
234static void put_unlocked_mapping_entry(struct address_space *mapping,
235 pgoff_t index, void *entry)
236{
237 if (!radix_tree_exceptional_entry(entry))
238 return;
239
240 /* We have to wake up next waiter for the radix tree entry lock */
241 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
242}
243
ac401cc7
JK
244/*
245 * Find radix tree entry at given index. If it points to a page, return with
246 * the page locked. If it points to the exceptional entry, return with the
247 * radix tree entry locked. If the radix tree doesn't contain given index,
248 * create empty exceptional entry for the index and return with it locked.
249 *
642261ac
RZ
250 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
251 * either return that locked entry or will return an error. This error will
252 * happen if there are any 4k entries (either zero pages or DAX entries)
253 * within the 2MiB range that we are requesting.
254 *
255 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
256 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
257 * insertion will fail if it finds any 4k entries already in the tree, and a
258 * 4k insertion will cause an existing 2MiB entry to be unmapped and
259 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
260 * well as 2MiB empty entries.
261 *
262 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
263 * real storage backing them. We will leave these real 2MiB DAX entries in
264 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
265 *
ac401cc7
JK
266 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
267 * persistent memory the benefit is doubtful. We can add that later if we can
268 * show it helps.
269 */
642261ac
RZ
270static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
271 unsigned long size_flag)
ac401cc7 272{
642261ac 273 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
e3ad61c6 274 void *entry, **slot;
ac401cc7
JK
275
276restart:
277 spin_lock_irq(&mapping->tree_lock);
e3ad61c6 278 entry = get_unlocked_mapping_entry(mapping, index, &slot);
642261ac
RZ
279
280 if (entry) {
281 if (size_flag & RADIX_DAX_PMD) {
282 if (!radix_tree_exceptional_entry(entry) ||
283 dax_is_pte_entry(entry)) {
284 put_unlocked_mapping_entry(mapping, index,
285 entry);
286 entry = ERR_PTR(-EEXIST);
287 goto out_unlock;
288 }
289 } else { /* trying to grab a PTE entry */
290 if (radix_tree_exceptional_entry(entry) &&
291 dax_is_pmd_entry(entry) &&
292 (dax_is_zero_entry(entry) ||
293 dax_is_empty_entry(entry))) {
294 pmd_downgrade = true;
295 }
296 }
297 }
298
ac401cc7 299 /* No entry for given index? Make sure radix tree is big enough. */
642261ac 300 if (!entry || pmd_downgrade) {
ac401cc7
JK
301 int err;
302
642261ac
RZ
303 if (pmd_downgrade) {
304 /*
305 * Make sure 'entry' remains valid while we drop
306 * mapping->tree_lock.
307 */
308 entry = lock_slot(mapping, slot);
309 }
310
ac401cc7 311 spin_unlock_irq(&mapping->tree_lock);
642261ac
RZ
312 /*
313 * Besides huge zero pages the only other thing that gets
314 * downgraded are empty entries which don't need to be
315 * unmapped.
316 */
317 if (pmd_downgrade && dax_is_zero_entry(entry))
318 unmap_mapping_range(mapping,
319 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
320
ac401cc7
JK
321 err = radix_tree_preload(
322 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
0cb80b48
JK
323 if (err) {
324 if (pmd_downgrade)
325 put_locked_mapping_entry(mapping, index, entry);
ac401cc7 326 return ERR_PTR(err);
0cb80b48 327 }
ac401cc7 328 spin_lock_irq(&mapping->tree_lock);
642261ac 329
e11f8b7b
RZ
330 if (!entry) {
331 /*
332 * We needed to drop the page_tree lock while calling
333 * radix_tree_preload() and we didn't have an entry to
334 * lock. See if another thread inserted an entry at
335 * our index during this time.
336 */
337 entry = __radix_tree_lookup(&mapping->page_tree, index,
338 NULL, &slot);
339 if (entry) {
340 radix_tree_preload_end();
341 spin_unlock_irq(&mapping->tree_lock);
342 goto restart;
343 }
344 }
345
642261ac
RZ
346 if (pmd_downgrade) {
347 radix_tree_delete(&mapping->page_tree, index);
348 mapping->nrexceptional--;
349 dax_wake_mapping_entry_waiter(mapping, index, entry,
350 true);
351 }
352
353 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
354
355 err = __radix_tree_insert(&mapping->page_tree, index,
356 dax_radix_order(entry), entry);
ac401cc7
JK
357 radix_tree_preload_end();
358 if (err) {
359 spin_unlock_irq(&mapping->tree_lock);
642261ac 360 /*
e11f8b7b
RZ
361 * Our insertion of a DAX entry failed, most likely
362 * because we were inserting a PMD entry and it
363 * collided with a PTE sized entry at a different
364 * index in the PMD range. We haven't inserted
365 * anything into the radix tree and have no waiters to
366 * wake.
642261ac 367 */
ac401cc7
JK
368 return ERR_PTR(err);
369 }
370 /* Good, we have inserted empty locked entry into the tree. */
371 mapping->nrexceptional++;
372 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 373 return entry;
ac401cc7
JK
374 }
375 /* Normal page in radix tree? */
e3ad61c6
RZ
376 if (!radix_tree_exceptional_entry(entry)) {
377 struct page *page = entry;
ac401cc7
JK
378
379 get_page(page);
380 spin_unlock_irq(&mapping->tree_lock);
381 lock_page(page);
382 /* Page got truncated? Retry... */
383 if (unlikely(page->mapping != mapping)) {
384 unlock_page(page);
385 put_page(page);
386 goto restart;
387 }
388 return page;
389 }
e3ad61c6 390 entry = lock_slot(mapping, slot);
642261ac 391 out_unlock:
ac401cc7 392 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 393 return entry;
ac401cc7
JK
394}
395
63e95b5c
RZ
396/*
397 * We do not necessarily hold the mapping->tree_lock when we call this
398 * function so it is possible that 'entry' is no longer a valid item in the
642261ac
RZ
399 * radix tree. This is okay because all we really need to do is to find the
400 * correct waitqueue where tasks might be waiting for that old 'entry' and
401 * wake them.
63e95b5c 402 */
ac401cc7 403void dax_wake_mapping_entry_waiter(struct address_space *mapping,
63e95b5c 404 pgoff_t index, void *entry, bool wake_all)
ac401cc7 405{
63e95b5c
RZ
406 struct exceptional_entry_key key;
407 wait_queue_head_t *wq;
408
409 wq = dax_entry_waitqueue(mapping, index, entry, &key);
ac401cc7
JK
410
411 /*
412 * Checking for locked entry and prepare_to_wait_exclusive() happens
413 * under mapping->tree_lock, ditto for entry handling in our callers.
414 * So at this point all tasks that could have seen our entry locked
415 * must be in the waitqueue and the following check will see them.
416 */
63e95b5c 417 if (waitqueue_active(wq))
ac401cc7 418 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
ac401cc7
JK
419}
420
c6dcf52c
JK
421static int __dax_invalidate_mapping_entry(struct address_space *mapping,
422 pgoff_t index, bool trunc)
423{
424 int ret = 0;
425 void *entry;
426 struct radix_tree_root *page_tree = &mapping->page_tree;
427
428 spin_lock_irq(&mapping->tree_lock);
429 entry = get_unlocked_mapping_entry(mapping, index, NULL);
430 if (!entry || !radix_tree_exceptional_entry(entry))
431 goto out;
432 if (!trunc &&
433 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
434 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
435 goto out;
436 radix_tree_delete(page_tree, index);
437 mapping->nrexceptional--;
438 ret = 1;
439out:
440 put_unlocked_mapping_entry(mapping, index, entry);
441 spin_unlock_irq(&mapping->tree_lock);
442 return ret;
443}
ac401cc7
JK
444/*
445 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
446 * entry to get unlocked before deleting it.
447 */
448int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
449{
c6dcf52c 450 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
ac401cc7 451
ac401cc7
JK
452 /*
453 * This gets called from truncate / punch_hole path. As such, the caller
454 * must hold locks protecting against concurrent modifications of the
455 * radix tree (usually fs-private i_mmap_sem for writing). Since the
456 * caller has seen exceptional entry for this index, we better find it
457 * at that index as well...
458 */
c6dcf52c
JK
459 WARN_ON_ONCE(!ret);
460 return ret;
461}
462
463/*
464 * Invalidate exceptional DAX entry if easily possible. This handles DAX
465 * entries for invalidate_inode_pages() so we evict the entry only if we can
466 * do so without blocking.
467 */
468int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index)
469{
470 int ret = 0;
471 void *entry, **slot;
472 struct radix_tree_root *page_tree = &mapping->page_tree;
473
474 spin_lock_irq(&mapping->tree_lock);
475 entry = __radix_tree_lookup(page_tree, index, NULL, &slot);
476 if (!entry || !radix_tree_exceptional_entry(entry) ||
477 slot_locked(mapping, slot))
478 goto out;
479 if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
480 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
481 goto out;
482 radix_tree_delete(page_tree, index);
ac401cc7 483 mapping->nrexceptional--;
c6dcf52c
JK
484 ret = 1;
485out:
ac401cc7 486 spin_unlock_irq(&mapping->tree_lock);
c6dcf52c
JK
487 if (ret)
488 dax_wake_mapping_entry_waiter(mapping, index, entry, true);
489 return ret;
490}
ac401cc7 491
c6dcf52c
JK
492/*
493 * Invalidate exceptional DAX entry if it is clean.
494 */
495int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
496 pgoff_t index)
497{
498 return __dax_invalidate_mapping_entry(mapping, index, false);
ac401cc7
JK
499}
500
f7ca90b1
MW
501/*
502 * The user has performed a load from a hole in the file. Allocating
503 * a new page in the file would cause excessive storage usage for
504 * workloads with sparse files. We allocate a page cache page instead.
505 * We'll kick it out of the page cache if it's ever written to,
506 * otherwise it will simply fall out of the page cache under memory
507 * pressure without ever having been dirtied.
508 */
f449b936 509static int dax_load_hole(struct address_space *mapping, void **entry,
ac401cc7 510 struct vm_fault *vmf)
f7ca90b1 511{
678c9fd0 512 struct inode *inode = mapping->host;
ac401cc7 513 struct page *page;
f449b936 514 int ret;
f7ca90b1 515
ac401cc7 516 /* Hole page already exists? Return it... */
f449b936
JK
517 if (!radix_tree_exceptional_entry(*entry)) {
518 page = *entry;
678c9fd0 519 goto finish_fault;
ac401cc7 520 }
f7ca90b1 521
ac401cc7
JK
522 /* This will replace locked radix tree entry with a hole page */
523 page = find_or_create_page(mapping, vmf->pgoff,
524 vmf->gfp_mask | __GFP_ZERO);
678c9fd0
RZ
525 if (!page) {
526 ret = VM_FAULT_OOM;
527 goto out;
528 }
529
530finish_fault:
f7ca90b1 531 vmf->page = page;
f449b936
JK
532 ret = finish_fault(vmf);
533 vmf->page = NULL;
534 *entry = page;
535 if (!ret) {
536 /* Grab reference for PTE that is now referencing the page */
537 get_page(page);
678c9fd0 538 ret = VM_FAULT_NOPAGE;
f449b936 539 }
678c9fd0
RZ
540out:
541 trace_dax_load_hole(inode, vmf, ret);
f449b936 542 return ret;
f7ca90b1
MW
543}
544
cccbce67
DW
545static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
546 sector_t sector, size_t size, struct page *to,
547 unsigned long vaddr)
f7ca90b1 548{
cccbce67
DW
549 void *vto, *kaddr;
550 pgoff_t pgoff;
551 pfn_t pfn;
552 long rc;
553 int id;
554
555 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
556 if (rc)
557 return rc;
558
559 id = dax_read_lock();
560 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
561 if (rc < 0) {
562 dax_read_unlock(id);
563 return rc;
564 }
f7ca90b1 565 vto = kmap_atomic(to);
cccbce67 566 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 567 kunmap_atomic(vto);
cccbce67 568 dax_read_unlock(id);
f7ca90b1
MW
569 return 0;
570}
571
642261ac
RZ
572/*
573 * By this point grab_mapping_entry() has ensured that we have a locked entry
574 * of the appropriate size so we don't have to worry about downgrading PMDs to
575 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
576 * already in the tree, we will skip the insertion and just dirty the PMD as
577 * appropriate.
578 */
ac401cc7
JK
579static void *dax_insert_mapping_entry(struct address_space *mapping,
580 struct vm_fault *vmf,
642261ac
RZ
581 void *entry, sector_t sector,
582 unsigned long flags)
9973c98e
RZ
583{
584 struct radix_tree_root *page_tree = &mapping->page_tree;
ac401cc7
JK
585 int error = 0;
586 bool hole_fill = false;
587 void *new_entry;
588 pgoff_t index = vmf->pgoff;
9973c98e 589
ac401cc7 590 if (vmf->flags & FAULT_FLAG_WRITE)
d2b2a28e 591 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 592
ac401cc7
JK
593 /* Replacing hole page with block mapping? */
594 if (!radix_tree_exceptional_entry(entry)) {
595 hole_fill = true;
596 /*
597 * Unmap the page now before we remove it from page cache below.
598 * The page is locked so it cannot be faulted in again.
599 */
600 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
601 PAGE_SIZE, 0);
602 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
603 if (error)
604 return ERR_PTR(error);
642261ac
RZ
605 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
606 /* replacing huge zero page with PMD block mapping */
607 unmap_mapping_range(mapping,
608 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
9973c98e
RZ
609 }
610
ac401cc7 611 spin_lock_irq(&mapping->tree_lock);
642261ac
RZ
612 new_entry = dax_radix_locked_entry(sector, flags);
613
ac401cc7
JK
614 if (hole_fill) {
615 __delete_from_page_cache(entry, NULL);
616 /* Drop pagecache reference */
617 put_page(entry);
642261ac
RZ
618 error = __radix_tree_insert(page_tree, index,
619 dax_radix_order(new_entry), new_entry);
ac401cc7
JK
620 if (error) {
621 new_entry = ERR_PTR(error);
9973c98e
RZ
622 goto unlock;
623 }
ac401cc7 624 mapping->nrexceptional++;
642261ac
RZ
625 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
626 /*
627 * Only swap our new entry into the radix tree if the current
628 * entry is a zero page or an empty entry. If a normal PTE or
629 * PMD entry is already in the tree, we leave it alone. This
630 * means that if we are trying to insert a PTE and the
631 * existing entry is a PMD, we will just leave the PMD in the
632 * tree and dirty it if necessary.
633 */
f7942430 634 struct radix_tree_node *node;
ac401cc7
JK
635 void **slot;
636 void *ret;
9973c98e 637
f7942430 638 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
ac401cc7 639 WARN_ON_ONCE(ret != entry);
4d693d08
JW
640 __radix_tree_replace(page_tree, node, slot,
641 new_entry, NULL, NULL);
9973c98e 642 }
ac401cc7 643 if (vmf->flags & FAULT_FLAG_WRITE)
9973c98e
RZ
644 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
645 unlock:
646 spin_unlock_irq(&mapping->tree_lock);
ac401cc7
JK
647 if (hole_fill) {
648 radix_tree_preload_end();
649 /*
650 * We don't need hole page anymore, it has been replaced with
651 * locked radix tree entry now.
652 */
653 if (mapping->a_ops->freepage)
654 mapping->a_ops->freepage(entry);
655 unlock_page(entry);
656 put_page(entry);
657 }
658 return new_entry;
9973c98e
RZ
659}
660
4b4bb46d
JK
661static inline unsigned long
662pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
663{
664 unsigned long address;
665
666 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
667 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
668 return address;
669}
670
671/* Walk all mappings of a given index of a file and writeprotect them */
672static void dax_mapping_entry_mkclean(struct address_space *mapping,
673 pgoff_t index, unsigned long pfn)
674{
675 struct vm_area_struct *vma;
f729c8c9
RZ
676 pte_t pte, *ptep = NULL;
677 pmd_t *pmdp = NULL;
4b4bb46d
JK
678 spinlock_t *ptl;
679 bool changed;
680
681 i_mmap_lock_read(mapping);
682 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
683 unsigned long address;
684
685 cond_resched();
686
687 if (!(vma->vm_flags & VM_SHARED))
688 continue;
689
690 address = pgoff_address(index, vma);
691 changed = false;
f729c8c9 692 if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
4b4bb46d 693 continue;
4b4bb46d 694
f729c8c9
RZ
695 if (pmdp) {
696#ifdef CONFIG_FS_DAX_PMD
697 pmd_t pmd;
698
699 if (pfn != pmd_pfn(*pmdp))
700 goto unlock_pmd;
701 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
702 goto unlock_pmd;
703
704 flush_cache_page(vma, address, pfn);
705 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
706 pmd = pmd_wrprotect(pmd);
707 pmd = pmd_mkclean(pmd);
708 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
709 changed = true;
710unlock_pmd:
711 spin_unlock(ptl);
712#endif
713 } else {
714 if (pfn != pte_pfn(*ptep))
715 goto unlock_pte;
716 if (!pte_dirty(*ptep) && !pte_write(*ptep))
717 goto unlock_pte;
718
719 flush_cache_page(vma, address, pfn);
720 pte = ptep_clear_flush(vma, address, ptep);
721 pte = pte_wrprotect(pte);
722 pte = pte_mkclean(pte);
723 set_pte_at(vma->vm_mm, address, ptep, pte);
724 changed = true;
725unlock_pte:
726 pte_unmap_unlock(ptep, ptl);
727 }
4b4bb46d
JK
728
729 if (changed)
730 mmu_notifier_invalidate_page(vma->vm_mm, address);
731 }
732 i_mmap_unlock_read(mapping);
733}
734
9973c98e 735static int dax_writeback_one(struct block_device *bdev,
cccbce67
DW
736 struct dax_device *dax_dev, struct address_space *mapping,
737 pgoff_t index, void *entry)
9973c98e
RZ
738{
739 struct radix_tree_root *page_tree = &mapping->page_tree;
cccbce67
DW
740 void *entry2, **slot, *kaddr;
741 long ret = 0, id;
742 sector_t sector;
743 pgoff_t pgoff;
744 size_t size;
745 pfn_t pfn;
9973c98e 746
9973c98e 747 /*
a6abc2c0
JK
748 * A page got tagged dirty in DAX mapping? Something is seriously
749 * wrong.
9973c98e 750 */
a6abc2c0
JK
751 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
752 return -EIO;
9973c98e 753
a6abc2c0
JK
754 spin_lock_irq(&mapping->tree_lock);
755 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
756 /* Entry got punched out / reallocated? */
757 if (!entry2 || !radix_tree_exceptional_entry(entry2))
758 goto put_unlocked;
759 /*
760 * Entry got reallocated elsewhere? No need to writeback. We have to
761 * compare sectors as we must not bail out due to difference in lockbit
762 * or entry type.
763 */
764 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
765 goto put_unlocked;
642261ac
RZ
766 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
767 dax_is_zero_entry(entry))) {
9973c98e 768 ret = -EIO;
a6abc2c0 769 goto put_unlocked;
9973c98e
RZ
770 }
771
a6abc2c0
JK
772 /* Another fsync thread may have already written back this entry */
773 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
774 goto put_unlocked;
775 /* Lock the entry to serialize with page faults */
776 entry = lock_slot(mapping, slot);
777 /*
778 * We can clear the tag now but we have to be careful so that concurrent
779 * dax_writeback_one() calls for the same index cannot finish before we
780 * actually flush the caches. This is achieved as the calls will look
781 * at the entry only under tree_lock and once they do that they will
782 * see the entry locked and wait for it to unlock.
783 */
784 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
785 spin_unlock_irq(&mapping->tree_lock);
786
642261ac
RZ
787 /*
788 * Even if dax_writeback_mapping_range() was given a wbc->range_start
789 * in the middle of a PMD, the 'index' we are given will be aligned to
790 * the start index of the PMD, as will the sector we pull from
791 * 'entry'. This allows us to flush for PMD_SIZE and not have to
792 * worry about partial PMD writebacks.
793 */
cccbce67
DW
794 sector = dax_radix_sector(entry);
795 size = PAGE_SIZE << dax_radix_order(entry);
796
797 id = dax_read_lock();
798 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
799 if (ret)
800 goto dax_unlock;
9973c98e
RZ
801
802 /*
cccbce67
DW
803 * dax_direct_access() may sleep, so cannot hold tree_lock over
804 * its invocation.
9973c98e 805 */
cccbce67
DW
806 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
807 if (ret < 0)
808 goto dax_unlock;
9973c98e 809
cccbce67 810 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
9973c98e 811 ret = -EIO;
cccbce67 812 goto dax_unlock;
9973c98e
RZ
813 }
814
cccbce67
DW
815 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
816 wb_cache_pmem(kaddr, size);
4b4bb46d
JK
817 /*
818 * After we have flushed the cache, we can clear the dirty tag. There
819 * cannot be new dirty data in the pfn after the flush has completed as
820 * the pfn mappings are writeprotected and fault waits for mapping
821 * entry lock.
822 */
823 spin_lock_irq(&mapping->tree_lock);
824 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
825 spin_unlock_irq(&mapping->tree_lock);
cccbce67
DW
826 dax_unlock:
827 dax_read_unlock(id);
a6abc2c0 828 put_locked_mapping_entry(mapping, index, entry);
9973c98e
RZ
829 return ret;
830
a6abc2c0
JK
831 put_unlocked:
832 put_unlocked_mapping_entry(mapping, index, entry2);
9973c98e
RZ
833 spin_unlock_irq(&mapping->tree_lock);
834 return ret;
835}
836
837/*
838 * Flush the mapping to the persistent domain within the byte range of [start,
839 * end]. This is required by data integrity operations to ensure file data is
840 * on persistent storage prior to completion of the operation.
841 */
7f6d5b52
RZ
842int dax_writeback_mapping_range(struct address_space *mapping,
843 struct block_device *bdev, struct writeback_control *wbc)
9973c98e
RZ
844{
845 struct inode *inode = mapping->host;
642261ac 846 pgoff_t start_index, end_index;
9973c98e 847 pgoff_t indices[PAGEVEC_SIZE];
cccbce67 848 struct dax_device *dax_dev;
9973c98e
RZ
849 struct pagevec pvec;
850 bool done = false;
851 int i, ret = 0;
9973c98e
RZ
852
853 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
854 return -EIO;
855
7f6d5b52
RZ
856 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
857 return 0;
858
cccbce67
DW
859 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
860 if (!dax_dev)
861 return -EIO;
862
09cbfeaf
KS
863 start_index = wbc->range_start >> PAGE_SHIFT;
864 end_index = wbc->range_end >> PAGE_SHIFT;
9973c98e 865
d14a3f48
RZ
866 trace_dax_writeback_range(inode, start_index, end_index);
867
9973c98e
RZ
868 tag_pages_for_writeback(mapping, start_index, end_index);
869
870 pagevec_init(&pvec, 0);
871 while (!done) {
872 pvec.nr = find_get_entries_tag(mapping, start_index,
873 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
874 pvec.pages, indices);
875
876 if (pvec.nr == 0)
877 break;
878
879 for (i = 0; i < pvec.nr; i++) {
880 if (indices[i] > end_index) {
881 done = true;
882 break;
883 }
884
cccbce67
DW
885 ret = dax_writeback_one(bdev, dax_dev, mapping,
886 indices[i], pvec.pages[i]);
d14a3f48
RZ
887 if (ret < 0)
888 goto out;
9973c98e
RZ
889 }
890 }
d14a3f48 891out:
cccbce67 892 put_dax(dax_dev);
d14a3f48
RZ
893 trace_dax_writeback_range_done(inode, start_index, end_index);
894 return (ret < 0 ? ret : 0);
9973c98e
RZ
895}
896EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
897
ac401cc7 898static int dax_insert_mapping(struct address_space *mapping,
cccbce67
DW
899 struct block_device *bdev, struct dax_device *dax_dev,
900 sector_t sector, size_t size, void **entryp,
901 struct vm_area_struct *vma, struct vm_fault *vmf)
f7ca90b1 902{
1a29d85e 903 unsigned long vaddr = vmf->address;
ac401cc7 904 void *entry = *entryp;
cccbce67
DW
905 void *ret, *kaddr;
906 pgoff_t pgoff;
907 int id, rc;
908 pfn_t pfn;
f7ca90b1 909
cccbce67
DW
910 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
911 if (rc)
912 return rc;
f7ca90b1 913
cccbce67
DW
914 id = dax_read_lock();
915 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
916 if (rc < 0) {
917 dax_read_unlock(id);
918 return rc;
919 }
920 dax_read_unlock(id);
921
922 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
4d9a2c87
JK
923 if (IS_ERR(ret))
924 return PTR_ERR(ret);
ac401cc7 925 *entryp = ret;
9973c98e 926
cccbce67 927 return vm_insert_mixed(vma, vaddr, pfn);
f7ca90b1
MW
928}
929
0e3b210c
BH
930/**
931 * dax_pfn_mkwrite - handle first write to DAX page
0e3b210c 932 * @vmf: The description of the fault
0e3b210c 933 */
11bac800 934int dax_pfn_mkwrite(struct vm_fault *vmf)
0e3b210c 935{
11bac800 936 struct file *file = vmf->vma->vm_file;
ac401cc7 937 struct address_space *mapping = file->f_mapping;
c3ff68d7 938 struct inode *inode = mapping->host;
2f89dc12 939 void *entry, **slot;
ac401cc7 940 pgoff_t index = vmf->pgoff;
30f471fd 941
ac401cc7 942 spin_lock_irq(&mapping->tree_lock);
2f89dc12
JK
943 entry = get_unlocked_mapping_entry(mapping, index, &slot);
944 if (!entry || !radix_tree_exceptional_entry(entry)) {
945 if (entry)
946 put_unlocked_mapping_entry(mapping, index, entry);
947 spin_unlock_irq(&mapping->tree_lock);
c3ff68d7 948 trace_dax_pfn_mkwrite_no_entry(inode, vmf, VM_FAULT_NOPAGE);
2f89dc12
JK
949 return VM_FAULT_NOPAGE;
950 }
ac401cc7 951 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
2f89dc12 952 entry = lock_slot(mapping, slot);
ac401cc7 953 spin_unlock_irq(&mapping->tree_lock);
2f89dc12
JK
954 /*
955 * If we race with somebody updating the PTE and finish_mkwrite_fault()
956 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
957 * the fault in either case.
958 */
959 finish_mkwrite_fault(vmf);
960 put_locked_mapping_entry(mapping, index, entry);
c3ff68d7 961 trace_dax_pfn_mkwrite(inode, vmf, VM_FAULT_NOPAGE);
0e3b210c
BH
962 return VM_FAULT_NOPAGE;
963}
964EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
965
4b0228fa
VV
966static bool dax_range_is_aligned(struct block_device *bdev,
967 unsigned int offset, unsigned int length)
968{
969 unsigned short sector_size = bdev_logical_block_size(bdev);
970
971 if (!IS_ALIGNED(offset, sector_size))
972 return false;
973 if (!IS_ALIGNED(length, sector_size))
974 return false;
975
976 return true;
977}
978
cccbce67
DW
979int __dax_zero_page_range(struct block_device *bdev,
980 struct dax_device *dax_dev, sector_t sector,
981 unsigned int offset, unsigned int size)
679c8bd3 982{
cccbce67
DW
983 if (dax_range_is_aligned(bdev, offset, size)) {
984 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
985
986 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 987 size >> 9, GFP_NOFS, 0);
4b0228fa 988 } else {
cccbce67
DW
989 pgoff_t pgoff;
990 long rc, id;
991 void *kaddr;
992 pfn_t pfn;
993
994 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
995 if (rc)
996 return rc;
997
998 id = dax_read_lock();
999 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr,
1000 &pfn);
1001 if (rc < 0) {
1002 dax_read_unlock(id);
1003 return rc;
1004 }
1005 clear_pmem(kaddr + offset, size);
1006 dax_read_unlock(id);
4b0228fa 1007 }
679c8bd3
CH
1008 return 0;
1009}
1010EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1011
333ccc97 1012static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
25726bc1 1013{
333ccc97 1014 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
25726bc1 1015}
a254e568 1016
a254e568 1017static loff_t
11c59c92 1018dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1019 struct iomap *iomap)
1020{
cccbce67
DW
1021 struct block_device *bdev = iomap->bdev;
1022 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1023 struct iov_iter *iter = data;
1024 loff_t end = pos + length, done = 0;
1025 ssize_t ret = 0;
cccbce67 1026 int id;
a254e568
CH
1027
1028 if (iov_iter_rw(iter) == READ) {
1029 end = min(end, i_size_read(inode));
1030 if (pos >= end)
1031 return 0;
1032
1033 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1034 return iov_iter_zero(min(length, end - pos), iter);
1035 }
1036
1037 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1038 return -EIO;
1039
e3fce68c
JK
1040 /*
1041 * Write can allocate block for an area which has a hole page mapped
1042 * into page tables. We have to tear down these mappings so that data
1043 * written by write(2) is visible in mmap.
1044 */
1045 if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1046 invalidate_inode_pages2_range(inode->i_mapping,
1047 pos >> PAGE_SHIFT,
1048 (end - 1) >> PAGE_SHIFT);
1049 }
1050
cccbce67 1051 id = dax_read_lock();
a254e568
CH
1052 while (pos < end) {
1053 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1054 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1055 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1056 ssize_t map_len;
cccbce67
DW
1057 pgoff_t pgoff;
1058 void *kaddr;
1059 pfn_t pfn;
a254e568 1060
d1908f52
MH
1061 if (fatal_signal_pending(current)) {
1062 ret = -EINTR;
1063 break;
1064 }
1065
cccbce67
DW
1066 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1067 if (ret)
1068 break;
1069
1070 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1071 &kaddr, &pfn);
a254e568
CH
1072 if (map_len < 0) {
1073 ret = map_len;
1074 break;
1075 }
1076
cccbce67
DW
1077 map_len = PFN_PHYS(map_len);
1078 kaddr += offset;
a254e568
CH
1079 map_len -= offset;
1080 if (map_len > end - pos)
1081 map_len = end - pos;
1082
1083 if (iov_iter_rw(iter) == WRITE)
cccbce67 1084 map_len = copy_from_iter_pmem(kaddr, map_len, iter);
a254e568 1085 else
cccbce67 1086 map_len = copy_to_iter(kaddr, map_len, iter);
a254e568
CH
1087 if (map_len <= 0) {
1088 ret = map_len ? map_len : -EFAULT;
1089 break;
1090 }
1091
1092 pos += map_len;
1093 length -= map_len;
1094 done += map_len;
1095 }
cccbce67 1096 dax_read_unlock(id);
a254e568
CH
1097
1098 return done ? done : ret;
1099}
1100
1101/**
11c59c92 1102 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1103 * @iocb: The control block for this I/O
1104 * @iter: The addresses to do I/O from or to
1105 * @ops: iomap ops passed from the file system
1106 *
1107 * This function performs read and write operations to directly mapped
1108 * persistent memory. The callers needs to take care of read/write exclusion
1109 * and evicting any page cache pages in the region under I/O.
1110 */
1111ssize_t
11c59c92 1112dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1113 const struct iomap_ops *ops)
a254e568
CH
1114{
1115 struct address_space *mapping = iocb->ki_filp->f_mapping;
1116 struct inode *inode = mapping->host;
1117 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1118 unsigned flags = 0;
1119
168316db
CH
1120 if (iov_iter_rw(iter) == WRITE) {
1121 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1122 flags |= IOMAP_WRITE;
168316db
CH
1123 } else {
1124 lockdep_assert_held(&inode->i_rwsem);
1125 }
a254e568 1126
a254e568
CH
1127 while (iov_iter_count(iter)) {
1128 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1129 iter, dax_iomap_actor);
a254e568
CH
1130 if (ret <= 0)
1131 break;
1132 pos += ret;
1133 done += ret;
1134 }
1135
1136 iocb->ki_pos += done;
1137 return done ? done : ret;
1138}
11c59c92 1139EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1140
9f141d6e
JK
1141static int dax_fault_return(int error)
1142{
1143 if (error == 0)
1144 return VM_FAULT_NOPAGE;
1145 if (error == -ENOMEM)
1146 return VM_FAULT_OOM;
1147 return VM_FAULT_SIGBUS;
1148}
1149
a2d58167
DJ
1150static int dax_iomap_pte_fault(struct vm_fault *vmf,
1151 const struct iomap_ops *ops)
a7d73fe6 1152{
11bac800 1153 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
a7d73fe6 1154 struct inode *inode = mapping->host;
1a29d85e 1155 unsigned long vaddr = vmf->address;
a7d73fe6
CH
1156 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1157 sector_t sector;
1158 struct iomap iomap = { 0 };
9484ab1b 1159 unsigned flags = IOMAP_FAULT;
a7d73fe6 1160 int error, major = 0;
b1aa812b 1161 int vmf_ret = 0;
a7d73fe6
CH
1162 void *entry;
1163
a9c42b33 1164 trace_dax_pte_fault(inode, vmf, vmf_ret);
a7d73fe6
CH
1165 /*
1166 * Check whether offset isn't beyond end of file now. Caller is supposed
1167 * to hold locks serializing us with truncate / punch hole so this is
1168 * a reliable test.
1169 */
a9c42b33
RZ
1170 if (pos >= i_size_read(inode)) {
1171 vmf_ret = VM_FAULT_SIGBUS;
1172 goto out;
1173 }
a7d73fe6 1174
a7d73fe6
CH
1175 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1176 flags |= IOMAP_WRITE;
1177
1178 /*
1179 * Note that we don't bother to use iomap_apply here: DAX required
1180 * the file system block size to be equal the page size, which means
1181 * that we never have to deal with more than a single extent here.
1182 */
1183 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
a9c42b33
RZ
1184 if (error) {
1185 vmf_ret = dax_fault_return(error);
1186 goto out;
1187 }
a7d73fe6 1188 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
9f141d6e
JK
1189 vmf_ret = dax_fault_return(-EIO); /* fs corruption? */
1190 goto finish_iomap;
1191 }
1192
1193 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1194 if (IS_ERR(entry)) {
1195 vmf_ret = dax_fault_return(PTR_ERR(entry));
1550290b 1196 goto finish_iomap;
a7d73fe6
CH
1197 }
1198
333ccc97 1199 sector = dax_iomap_sector(&iomap, pos);
a7d73fe6
CH
1200
1201 if (vmf->cow_page) {
1202 switch (iomap.type) {
1203 case IOMAP_HOLE:
1204 case IOMAP_UNWRITTEN:
1205 clear_user_highpage(vmf->cow_page, vaddr);
1206 break;
1207 case IOMAP_MAPPED:
cccbce67
DW
1208 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1209 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1210 break;
1211 default:
1212 WARN_ON_ONCE(1);
1213 error = -EIO;
1214 break;
1215 }
1216
1217 if (error)
9f141d6e 1218 goto error_unlock_entry;
b1aa812b
JK
1219
1220 __SetPageUptodate(vmf->cow_page);
1221 vmf_ret = finish_fault(vmf);
1222 if (!vmf_ret)
1223 vmf_ret = VM_FAULT_DONE_COW;
9f141d6e 1224 goto unlock_entry;
a7d73fe6
CH
1225 }
1226
1227 switch (iomap.type) {
1228 case IOMAP_MAPPED:
1229 if (iomap.flags & IOMAP_F_NEW) {
1230 count_vm_event(PGMAJFAULT);
11bac800 1231 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1232 major = VM_FAULT_MAJOR;
1233 }
cccbce67
DW
1234 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1235 sector, PAGE_SIZE, &entry, vmf->vma, vmf);
9f141d6e
JK
1236 /* -EBUSY is fine, somebody else faulted on the same PTE */
1237 if (error == -EBUSY)
1238 error = 0;
a7d73fe6
CH
1239 break;
1240 case IOMAP_UNWRITTEN:
1241 case IOMAP_HOLE:
1550290b 1242 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
f449b936 1243 vmf_ret = dax_load_hole(mapping, &entry, vmf);
9f141d6e 1244 goto unlock_entry;
1550290b 1245 }
a7d73fe6
CH
1246 /*FALLTHRU*/
1247 default:
1248 WARN_ON_ONCE(1);
1249 error = -EIO;
1250 break;
1251 }
1252
9f141d6e
JK
1253 error_unlock_entry:
1254 vmf_ret = dax_fault_return(error) | major;
a7d73fe6 1255 unlock_entry:
f449b936 1256 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
9f141d6e
JK
1257 finish_iomap:
1258 if (ops->iomap_end) {
1259 int copied = PAGE_SIZE;
1260
1261 if (vmf_ret & VM_FAULT_ERROR)
1262 copied = 0;
1263 /*
1264 * The fault is done by now and there's no way back (other
1265 * thread may be already happily using PTE we have installed).
1266 * Just ignore error from ->iomap_end since we cannot do much
1267 * with it.
1268 */
1269 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1270 }
a9c42b33
RZ
1271out:
1272 trace_dax_pte_fault_done(inode, vmf, vmf_ret);
9f141d6e 1273 return vmf_ret;
a7d73fe6 1274}
642261ac
RZ
1275
1276#ifdef CONFIG_FS_DAX_PMD
1277/*
1278 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1279 * more often than one might expect in the below functions.
1280 */
1281#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1282
f4200391
DJ
1283static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1284 loff_t pos, void **entryp)
642261ac 1285{
f4200391 1286 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cccbce67
DW
1287 const sector_t sector = dax_iomap_sector(iomap, pos);
1288 struct dax_device *dax_dev = iomap->dax_dev;
642261ac 1289 struct block_device *bdev = iomap->bdev;
27a7ffac 1290 struct inode *inode = mapping->host;
cccbce67
DW
1291 const size_t size = PMD_SIZE;
1292 void *ret = NULL, *kaddr;
1293 long length = 0;
1294 pgoff_t pgoff;
1295 pfn_t pfn;
1296 int id;
1297
1298 if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
27a7ffac 1299 goto fallback;
642261ac 1300
cccbce67
DW
1301 id = dax_read_lock();
1302 length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1303 if (length < 0)
1304 goto unlock_fallback;
1305 length = PFN_PHYS(length);
1306
1307 if (length < size)
1308 goto unlock_fallback;
1309 if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1310 goto unlock_fallback;
1311 if (!pfn_t_devmap(pfn))
1312 goto unlock_fallback;
1313 dax_read_unlock(id);
1314
1315 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, sector,
642261ac
RZ
1316 RADIX_DAX_PMD);
1317 if (IS_ERR(ret))
27a7ffac 1318 goto fallback;
642261ac
RZ
1319 *entryp = ret;
1320
cccbce67 1321 trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
f4200391 1322 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
cccbce67 1323 pfn, vmf->flags & FAULT_FLAG_WRITE);
642261ac 1324
cccbce67
DW
1325unlock_fallback:
1326 dax_read_unlock(id);
27a7ffac 1327fallback:
cccbce67 1328 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
642261ac
RZ
1329 return VM_FAULT_FALLBACK;
1330}
1331
f4200391
DJ
1332static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1333 void **entryp)
642261ac 1334{
f4200391
DJ
1335 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1336 unsigned long pmd_addr = vmf->address & PMD_MASK;
653b2ea3 1337 struct inode *inode = mapping->host;
642261ac 1338 struct page *zero_page;
653b2ea3 1339 void *ret = NULL;
642261ac
RZ
1340 spinlock_t *ptl;
1341 pmd_t pmd_entry;
642261ac 1342
f4200391 1343 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1344
1345 if (unlikely(!zero_page))
653b2ea3 1346 goto fallback;
642261ac
RZ
1347
1348 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1349 RADIX_DAX_PMD | RADIX_DAX_HZP);
1350 if (IS_ERR(ret))
653b2ea3 1351 goto fallback;
642261ac
RZ
1352 *entryp = ret;
1353
f4200391
DJ
1354 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1355 if (!pmd_none(*(vmf->pmd))) {
642261ac 1356 spin_unlock(ptl);
653b2ea3 1357 goto fallback;
642261ac
RZ
1358 }
1359
f4200391 1360 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1361 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1362 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1363 spin_unlock(ptl);
f4200391 1364 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
642261ac 1365 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1366
1367fallback:
f4200391 1368 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
653b2ea3 1369 return VM_FAULT_FALLBACK;
642261ac
RZ
1370}
1371
a2d58167
DJ
1372static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1373 const struct iomap_ops *ops)
642261ac 1374{
f4200391 1375 struct vm_area_struct *vma = vmf->vma;
642261ac 1376 struct address_space *mapping = vma->vm_file->f_mapping;
d8a849e1
DJ
1377 unsigned long pmd_addr = vmf->address & PMD_MASK;
1378 bool write = vmf->flags & FAULT_FLAG_WRITE;
9484ab1b 1379 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac
RZ
1380 struct inode *inode = mapping->host;
1381 int result = VM_FAULT_FALLBACK;
1382 struct iomap iomap = { 0 };
1383 pgoff_t max_pgoff, pgoff;
642261ac
RZ
1384 void *entry;
1385 loff_t pos;
1386 int error;
1387
282a8e03
RZ
1388 /*
1389 * Check whether offset isn't beyond end of file now. Caller is
1390 * supposed to hold locks serializing us with truncate / punch hole so
1391 * this is a reliable test.
1392 */
1393 pgoff = linear_page_index(vma, pmd_addr);
1394 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1395
f4200391 1396 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1397
642261ac
RZ
1398 /* Fall back to PTEs if we're going to COW */
1399 if (write && !(vma->vm_flags & VM_SHARED))
1400 goto fallback;
1401
1402 /* If the PMD would extend outside the VMA */
1403 if (pmd_addr < vma->vm_start)
1404 goto fallback;
1405 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1406 goto fallback;
1407
282a8e03
RZ
1408 if (pgoff > max_pgoff) {
1409 result = VM_FAULT_SIGBUS;
1410 goto out;
1411 }
642261ac
RZ
1412
1413 /* If the PMD would extend beyond the file size */
1414 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1415 goto fallback;
1416
642261ac
RZ
1417 /*
1418 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1419 * setting up a mapping, so really we're using iomap_begin() as a way
1420 * to look up our filesystem block.
1421 */
1422 pos = (loff_t)pgoff << PAGE_SHIFT;
1423 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1424 if (error)
9f141d6e
JK
1425 goto fallback;
1426
642261ac
RZ
1427 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1428 goto finish_iomap;
1429
9f141d6e
JK
1430 /*
1431 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1432 * PMD or a HZP entry. If it can't (because a 4k page is already in
1433 * the tree, for instance), it will return -EEXIST and we just fall
1434 * back to 4k entries.
1435 */
1436 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1437 if (IS_ERR(entry))
1438 goto finish_iomap;
1439
642261ac
RZ
1440 switch (iomap.type) {
1441 case IOMAP_MAPPED:
f4200391 1442 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
642261ac
RZ
1443 break;
1444 case IOMAP_UNWRITTEN:
1445 case IOMAP_HOLE:
1446 if (WARN_ON_ONCE(write))
9f141d6e 1447 goto unlock_entry;
f4200391 1448 result = dax_pmd_load_hole(vmf, &iomap, &entry);
642261ac
RZ
1449 break;
1450 default:
1451 WARN_ON_ONCE(1);
1452 break;
1453 }
1454
9f141d6e
JK
1455 unlock_entry:
1456 put_locked_mapping_entry(mapping, pgoff, entry);
642261ac
RZ
1457 finish_iomap:
1458 if (ops->iomap_end) {
9f141d6e
JK
1459 int copied = PMD_SIZE;
1460
1461 if (result == VM_FAULT_FALLBACK)
1462 copied = 0;
1463 /*
1464 * The fault is done by now and there's no way back (other
1465 * thread may be already happily using PMD we have installed).
1466 * Just ignore error from ->iomap_end since we cannot do much
1467 * with it.
1468 */
1469 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1470 &iomap);
642261ac 1471 }
642261ac
RZ
1472 fallback:
1473 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1474 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1475 count_vm_event(THP_FAULT_FALLBACK);
1476 }
282a8e03 1477out:
f4200391 1478 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1479 return result;
1480}
a2d58167 1481#else
01cddfe9
AB
1482static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1483 const struct iomap_ops *ops)
a2d58167
DJ
1484{
1485 return VM_FAULT_FALLBACK;
1486}
642261ac 1487#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1488
1489/**
1490 * dax_iomap_fault - handle a page fault on a DAX file
1491 * @vmf: The description of the fault
1492 * @ops: iomap ops passed from the file system
1493 *
1494 * When a page fault occurs, filesystems may call this helper in
1495 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1496 * has done all the necessary locking for page fault to proceed
1497 * successfully.
1498 */
c791ace1
DJ
1499int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1500 const struct iomap_ops *ops)
a2d58167 1501{
c791ace1
DJ
1502 switch (pe_size) {
1503 case PE_SIZE_PTE:
a2d58167 1504 return dax_iomap_pte_fault(vmf, ops);
c791ace1 1505 case PE_SIZE_PMD:
a2d58167
DJ
1506 return dax_iomap_pmd_fault(vmf, ops);
1507 default:
1508 return VM_FAULT_FALLBACK;
1509 }
1510}
1511EXPORT_SYMBOL_GPL(dax_iomap_fault);