libnvdimm, btt: ensure that initializing metadata clears poison
[linux-block.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
2765cfbb 28#include <linux/pmem.h>
289c6aed 29#include <linux/sched.h>
f361bf4a 30#include <linux/sched/signal.h>
d475c634 31#include <linux/uio.h>
f7ca90b1 32#include <linux/vmstat.h>
34c0fd54 33#include <linux/pfn_t.h>
0e749e54 34#include <linux/sizes.h>
4b4bb46d 35#include <linux/mmu_notifier.h>
a254e568
CH
36#include <linux/iomap.h>
37#include "internal.h"
d475c634 38
282a8e03
RZ
39#define CREATE_TRACE_POINTS
40#include <trace/events/fs_dax.h>
41
ac401cc7
JK
42/* We choose 4096 entries - same as per-zone page wait tables */
43#define DAX_WAIT_TABLE_BITS 12
44#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45
ce95ab0f 46static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
47
48static int __init init_dax_wait_table(void)
49{
50 int i;
51
52 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
53 init_waitqueue_head(wait_table + i);
54 return 0;
55}
56fs_initcall(init_dax_wait_table);
57
642261ac 58static int dax_is_pmd_entry(void *entry)
d1a5f2b4 59{
642261ac 60 return (unsigned long)entry & RADIX_DAX_PMD;
d1a5f2b4
DW
61}
62
642261ac 63static int dax_is_pte_entry(void *entry)
d475c634 64{
642261ac 65 return !((unsigned long)entry & RADIX_DAX_PMD);
d475c634
MW
66}
67
642261ac 68static int dax_is_zero_entry(void *entry)
d475c634 69{
642261ac 70 return (unsigned long)entry & RADIX_DAX_HZP;
d475c634
MW
71}
72
642261ac 73static int dax_is_empty_entry(void *entry)
b2e0d162 74{
642261ac 75 return (unsigned long)entry & RADIX_DAX_EMPTY;
b2e0d162
DW
76}
77
ac401cc7
JK
78/*
79 * DAX radix tree locking
80 */
81struct exceptional_entry_key {
82 struct address_space *mapping;
63e95b5c 83 pgoff_t entry_start;
ac401cc7
JK
84};
85
86struct wait_exceptional_entry_queue {
87 wait_queue_t wait;
88 struct exceptional_entry_key key;
89};
90
63e95b5c
RZ
91static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
92 pgoff_t index, void *entry, struct exceptional_entry_key *key)
93{
94 unsigned long hash;
95
96 /*
97 * If 'entry' is a PMD, align the 'index' that we use for the wait
98 * queue to the start of that PMD. This ensures that all offsets in
99 * the range covered by the PMD map to the same bit lock.
100 */
642261ac 101 if (dax_is_pmd_entry(entry))
63e95b5c
RZ
102 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
103
104 key->mapping = mapping;
105 key->entry_start = index;
106
107 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
108 return wait_table + hash;
109}
110
ac401cc7
JK
111static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
112 int sync, void *keyp)
113{
114 struct exceptional_entry_key *key = keyp;
115 struct wait_exceptional_entry_queue *ewait =
116 container_of(wait, struct wait_exceptional_entry_queue, wait);
117
118 if (key->mapping != ewait->key.mapping ||
63e95b5c 119 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
120 return 0;
121 return autoremove_wake_function(wait, mode, sync, NULL);
122}
123
124/*
125 * Check whether the given slot is locked. The function must be called with
126 * mapping->tree_lock held
127 */
128static inline int slot_locked(struct address_space *mapping, void **slot)
129{
130 unsigned long entry = (unsigned long)
131 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
132 return entry & RADIX_DAX_ENTRY_LOCK;
133}
134
135/*
136 * Mark the given slot is locked. The function must be called with
137 * mapping->tree_lock held
138 */
139static inline void *lock_slot(struct address_space *mapping, void **slot)
140{
141 unsigned long entry = (unsigned long)
142 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
143
144 entry |= RADIX_DAX_ENTRY_LOCK;
6d75f366 145 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
ac401cc7
JK
146 return (void *)entry;
147}
148
149/*
150 * Mark the given slot is unlocked. The function must be called with
151 * mapping->tree_lock held
152 */
153static inline void *unlock_slot(struct address_space *mapping, void **slot)
154{
155 unsigned long entry = (unsigned long)
156 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
157
158 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
6d75f366 159 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
ac401cc7
JK
160 return (void *)entry;
161}
162
163/*
164 * Lookup entry in radix tree, wait for it to become unlocked if it is
165 * exceptional entry and return it. The caller must call
166 * put_unlocked_mapping_entry() when he decided not to lock the entry or
167 * put_locked_mapping_entry() when he locked the entry and now wants to
168 * unlock it.
169 *
170 * The function must be called with mapping->tree_lock held.
171 */
172static void *get_unlocked_mapping_entry(struct address_space *mapping,
173 pgoff_t index, void ***slotp)
174{
e3ad61c6 175 void *entry, **slot;
ac401cc7 176 struct wait_exceptional_entry_queue ewait;
63e95b5c 177 wait_queue_head_t *wq;
ac401cc7
JK
178
179 init_wait(&ewait.wait);
180 ewait.wait.func = wake_exceptional_entry_func;
ac401cc7
JK
181
182 for (;;) {
e3ad61c6 183 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
ac401cc7 184 &slot);
e3ad61c6 185 if (!entry || !radix_tree_exceptional_entry(entry) ||
ac401cc7
JK
186 !slot_locked(mapping, slot)) {
187 if (slotp)
188 *slotp = slot;
e3ad61c6 189 return entry;
ac401cc7 190 }
63e95b5c
RZ
191
192 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
ac401cc7
JK
193 prepare_to_wait_exclusive(wq, &ewait.wait,
194 TASK_UNINTERRUPTIBLE);
195 spin_unlock_irq(&mapping->tree_lock);
196 schedule();
197 finish_wait(wq, &ewait.wait);
198 spin_lock_irq(&mapping->tree_lock);
199 }
200}
201
b1aa812b
JK
202static void dax_unlock_mapping_entry(struct address_space *mapping,
203 pgoff_t index)
204{
205 void *entry, **slot;
206
207 spin_lock_irq(&mapping->tree_lock);
208 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
209 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
210 !slot_locked(mapping, slot))) {
211 spin_unlock_irq(&mapping->tree_lock);
212 return;
213 }
214 unlock_slot(mapping, slot);
215 spin_unlock_irq(&mapping->tree_lock);
216 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
217}
218
422476c4
RZ
219static void put_locked_mapping_entry(struct address_space *mapping,
220 pgoff_t index, void *entry)
221{
222 if (!radix_tree_exceptional_entry(entry)) {
223 unlock_page(entry);
224 put_page(entry);
225 } else {
226 dax_unlock_mapping_entry(mapping, index);
227 }
228}
229
230/*
231 * Called when we are done with radix tree entry we looked up via
232 * get_unlocked_mapping_entry() and which we didn't lock in the end.
233 */
234static void put_unlocked_mapping_entry(struct address_space *mapping,
235 pgoff_t index, void *entry)
236{
237 if (!radix_tree_exceptional_entry(entry))
238 return;
239
240 /* We have to wake up next waiter for the radix tree entry lock */
241 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
242}
243
ac401cc7
JK
244/*
245 * Find radix tree entry at given index. If it points to a page, return with
246 * the page locked. If it points to the exceptional entry, return with the
247 * radix tree entry locked. If the radix tree doesn't contain given index,
248 * create empty exceptional entry for the index and return with it locked.
249 *
642261ac
RZ
250 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
251 * either return that locked entry or will return an error. This error will
252 * happen if there are any 4k entries (either zero pages or DAX entries)
253 * within the 2MiB range that we are requesting.
254 *
255 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
256 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
257 * insertion will fail if it finds any 4k entries already in the tree, and a
258 * 4k insertion will cause an existing 2MiB entry to be unmapped and
259 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
260 * well as 2MiB empty entries.
261 *
262 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
263 * real storage backing them. We will leave these real 2MiB DAX entries in
264 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
265 *
ac401cc7
JK
266 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
267 * persistent memory the benefit is doubtful. We can add that later if we can
268 * show it helps.
269 */
642261ac
RZ
270static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
271 unsigned long size_flag)
ac401cc7 272{
642261ac 273 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
e3ad61c6 274 void *entry, **slot;
ac401cc7
JK
275
276restart:
277 spin_lock_irq(&mapping->tree_lock);
e3ad61c6 278 entry = get_unlocked_mapping_entry(mapping, index, &slot);
642261ac
RZ
279
280 if (entry) {
281 if (size_flag & RADIX_DAX_PMD) {
282 if (!radix_tree_exceptional_entry(entry) ||
283 dax_is_pte_entry(entry)) {
284 put_unlocked_mapping_entry(mapping, index,
285 entry);
286 entry = ERR_PTR(-EEXIST);
287 goto out_unlock;
288 }
289 } else { /* trying to grab a PTE entry */
290 if (radix_tree_exceptional_entry(entry) &&
291 dax_is_pmd_entry(entry) &&
292 (dax_is_zero_entry(entry) ||
293 dax_is_empty_entry(entry))) {
294 pmd_downgrade = true;
295 }
296 }
297 }
298
ac401cc7 299 /* No entry for given index? Make sure radix tree is big enough. */
642261ac 300 if (!entry || pmd_downgrade) {
ac401cc7
JK
301 int err;
302
642261ac
RZ
303 if (pmd_downgrade) {
304 /*
305 * Make sure 'entry' remains valid while we drop
306 * mapping->tree_lock.
307 */
308 entry = lock_slot(mapping, slot);
309 }
310
ac401cc7 311 spin_unlock_irq(&mapping->tree_lock);
642261ac
RZ
312 /*
313 * Besides huge zero pages the only other thing that gets
314 * downgraded are empty entries which don't need to be
315 * unmapped.
316 */
317 if (pmd_downgrade && dax_is_zero_entry(entry))
318 unmap_mapping_range(mapping,
319 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
320
ac401cc7
JK
321 err = radix_tree_preload(
322 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
0cb80b48
JK
323 if (err) {
324 if (pmd_downgrade)
325 put_locked_mapping_entry(mapping, index, entry);
ac401cc7 326 return ERR_PTR(err);
0cb80b48 327 }
ac401cc7 328 spin_lock_irq(&mapping->tree_lock);
642261ac
RZ
329
330 if (pmd_downgrade) {
331 radix_tree_delete(&mapping->page_tree, index);
332 mapping->nrexceptional--;
333 dax_wake_mapping_entry_waiter(mapping, index, entry,
334 true);
335 }
336
337 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
338
339 err = __radix_tree_insert(&mapping->page_tree, index,
340 dax_radix_order(entry), entry);
ac401cc7
JK
341 radix_tree_preload_end();
342 if (err) {
343 spin_unlock_irq(&mapping->tree_lock);
642261ac
RZ
344 /*
345 * Someone already created the entry? This is a
346 * normal failure when inserting PMDs in a range
347 * that already contains PTEs. In that case we want
348 * to return -EEXIST immediately.
349 */
350 if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
ac401cc7 351 goto restart;
642261ac
RZ
352 /*
353 * Our insertion of a DAX PMD entry failed, most
354 * likely because it collided with a PTE sized entry
355 * at a different index in the PMD range. We haven't
356 * inserted anything into the radix tree and have no
357 * waiters to wake.
358 */
ac401cc7
JK
359 return ERR_PTR(err);
360 }
361 /* Good, we have inserted empty locked entry into the tree. */
362 mapping->nrexceptional++;
363 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 364 return entry;
ac401cc7
JK
365 }
366 /* Normal page in radix tree? */
e3ad61c6
RZ
367 if (!radix_tree_exceptional_entry(entry)) {
368 struct page *page = entry;
ac401cc7
JK
369
370 get_page(page);
371 spin_unlock_irq(&mapping->tree_lock);
372 lock_page(page);
373 /* Page got truncated? Retry... */
374 if (unlikely(page->mapping != mapping)) {
375 unlock_page(page);
376 put_page(page);
377 goto restart;
378 }
379 return page;
380 }
e3ad61c6 381 entry = lock_slot(mapping, slot);
642261ac 382 out_unlock:
ac401cc7 383 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 384 return entry;
ac401cc7
JK
385}
386
63e95b5c
RZ
387/*
388 * We do not necessarily hold the mapping->tree_lock when we call this
389 * function so it is possible that 'entry' is no longer a valid item in the
642261ac
RZ
390 * radix tree. This is okay because all we really need to do is to find the
391 * correct waitqueue where tasks might be waiting for that old 'entry' and
392 * wake them.
63e95b5c 393 */
ac401cc7 394void dax_wake_mapping_entry_waiter(struct address_space *mapping,
63e95b5c 395 pgoff_t index, void *entry, bool wake_all)
ac401cc7 396{
63e95b5c
RZ
397 struct exceptional_entry_key key;
398 wait_queue_head_t *wq;
399
400 wq = dax_entry_waitqueue(mapping, index, entry, &key);
ac401cc7
JK
401
402 /*
403 * Checking for locked entry and prepare_to_wait_exclusive() happens
404 * under mapping->tree_lock, ditto for entry handling in our callers.
405 * So at this point all tasks that could have seen our entry locked
406 * must be in the waitqueue and the following check will see them.
407 */
63e95b5c 408 if (waitqueue_active(wq))
ac401cc7 409 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
ac401cc7
JK
410}
411
c6dcf52c
JK
412static int __dax_invalidate_mapping_entry(struct address_space *mapping,
413 pgoff_t index, bool trunc)
414{
415 int ret = 0;
416 void *entry;
417 struct radix_tree_root *page_tree = &mapping->page_tree;
418
419 spin_lock_irq(&mapping->tree_lock);
420 entry = get_unlocked_mapping_entry(mapping, index, NULL);
421 if (!entry || !radix_tree_exceptional_entry(entry))
422 goto out;
423 if (!trunc &&
424 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
425 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
426 goto out;
427 radix_tree_delete(page_tree, index);
428 mapping->nrexceptional--;
429 ret = 1;
430out:
431 put_unlocked_mapping_entry(mapping, index, entry);
432 spin_unlock_irq(&mapping->tree_lock);
433 return ret;
434}
ac401cc7
JK
435/*
436 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
437 * entry to get unlocked before deleting it.
438 */
439int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
440{
c6dcf52c 441 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
ac401cc7 442
ac401cc7
JK
443 /*
444 * This gets called from truncate / punch_hole path. As such, the caller
445 * must hold locks protecting against concurrent modifications of the
446 * radix tree (usually fs-private i_mmap_sem for writing). Since the
447 * caller has seen exceptional entry for this index, we better find it
448 * at that index as well...
449 */
c6dcf52c
JK
450 WARN_ON_ONCE(!ret);
451 return ret;
452}
453
454/*
455 * Invalidate exceptional DAX entry if easily possible. This handles DAX
456 * entries for invalidate_inode_pages() so we evict the entry only if we can
457 * do so without blocking.
458 */
459int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index)
460{
461 int ret = 0;
462 void *entry, **slot;
463 struct radix_tree_root *page_tree = &mapping->page_tree;
464
465 spin_lock_irq(&mapping->tree_lock);
466 entry = __radix_tree_lookup(page_tree, index, NULL, &slot);
467 if (!entry || !radix_tree_exceptional_entry(entry) ||
468 slot_locked(mapping, slot))
469 goto out;
470 if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
471 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
472 goto out;
473 radix_tree_delete(page_tree, index);
ac401cc7 474 mapping->nrexceptional--;
c6dcf52c
JK
475 ret = 1;
476out:
ac401cc7 477 spin_unlock_irq(&mapping->tree_lock);
c6dcf52c
JK
478 if (ret)
479 dax_wake_mapping_entry_waiter(mapping, index, entry, true);
480 return ret;
481}
ac401cc7 482
c6dcf52c
JK
483/*
484 * Invalidate exceptional DAX entry if it is clean.
485 */
486int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
487 pgoff_t index)
488{
489 return __dax_invalidate_mapping_entry(mapping, index, false);
ac401cc7
JK
490}
491
f7ca90b1
MW
492/*
493 * The user has performed a load from a hole in the file. Allocating
494 * a new page in the file would cause excessive storage usage for
495 * workloads with sparse files. We allocate a page cache page instead.
496 * We'll kick it out of the page cache if it's ever written to,
497 * otherwise it will simply fall out of the page cache under memory
498 * pressure without ever having been dirtied.
499 */
f449b936 500static int dax_load_hole(struct address_space *mapping, void **entry,
ac401cc7 501 struct vm_fault *vmf)
f7ca90b1 502{
ac401cc7 503 struct page *page;
f449b936 504 int ret;
f7ca90b1 505
ac401cc7 506 /* Hole page already exists? Return it... */
f449b936
JK
507 if (!radix_tree_exceptional_entry(*entry)) {
508 page = *entry;
509 goto out;
ac401cc7 510 }
f7ca90b1 511
ac401cc7
JK
512 /* This will replace locked radix tree entry with a hole page */
513 page = find_or_create_page(mapping, vmf->pgoff,
514 vmf->gfp_mask | __GFP_ZERO);
b1aa812b 515 if (!page)
ac401cc7 516 return VM_FAULT_OOM;
f449b936 517 out:
f7ca90b1 518 vmf->page = page;
f449b936
JK
519 ret = finish_fault(vmf);
520 vmf->page = NULL;
521 *entry = page;
522 if (!ret) {
523 /* Grab reference for PTE that is now referencing the page */
524 get_page(page);
525 return VM_FAULT_NOPAGE;
526 }
527 return ret;
f7ca90b1
MW
528}
529
cccbce67
DW
530static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
531 sector_t sector, size_t size, struct page *to,
532 unsigned long vaddr)
f7ca90b1 533{
cccbce67
DW
534 void *vto, *kaddr;
535 pgoff_t pgoff;
536 pfn_t pfn;
537 long rc;
538 int id;
539
540 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
541 if (rc)
542 return rc;
543
544 id = dax_read_lock();
545 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
546 if (rc < 0) {
547 dax_read_unlock(id);
548 return rc;
549 }
f7ca90b1 550 vto = kmap_atomic(to);
cccbce67 551 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 552 kunmap_atomic(vto);
cccbce67 553 dax_read_unlock(id);
f7ca90b1
MW
554 return 0;
555}
556
642261ac
RZ
557/*
558 * By this point grab_mapping_entry() has ensured that we have a locked entry
559 * of the appropriate size so we don't have to worry about downgrading PMDs to
560 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
561 * already in the tree, we will skip the insertion and just dirty the PMD as
562 * appropriate.
563 */
ac401cc7
JK
564static void *dax_insert_mapping_entry(struct address_space *mapping,
565 struct vm_fault *vmf,
642261ac
RZ
566 void *entry, sector_t sector,
567 unsigned long flags)
9973c98e
RZ
568{
569 struct radix_tree_root *page_tree = &mapping->page_tree;
ac401cc7
JK
570 int error = 0;
571 bool hole_fill = false;
572 void *new_entry;
573 pgoff_t index = vmf->pgoff;
9973c98e 574
ac401cc7 575 if (vmf->flags & FAULT_FLAG_WRITE)
d2b2a28e 576 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 577
ac401cc7
JK
578 /* Replacing hole page with block mapping? */
579 if (!radix_tree_exceptional_entry(entry)) {
580 hole_fill = true;
581 /*
582 * Unmap the page now before we remove it from page cache below.
583 * The page is locked so it cannot be faulted in again.
584 */
585 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
586 PAGE_SIZE, 0);
587 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
588 if (error)
589 return ERR_PTR(error);
642261ac
RZ
590 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
591 /* replacing huge zero page with PMD block mapping */
592 unmap_mapping_range(mapping,
593 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
9973c98e
RZ
594 }
595
ac401cc7 596 spin_lock_irq(&mapping->tree_lock);
642261ac
RZ
597 new_entry = dax_radix_locked_entry(sector, flags);
598
ac401cc7
JK
599 if (hole_fill) {
600 __delete_from_page_cache(entry, NULL);
601 /* Drop pagecache reference */
602 put_page(entry);
642261ac
RZ
603 error = __radix_tree_insert(page_tree, index,
604 dax_radix_order(new_entry), new_entry);
ac401cc7
JK
605 if (error) {
606 new_entry = ERR_PTR(error);
9973c98e
RZ
607 goto unlock;
608 }
ac401cc7 609 mapping->nrexceptional++;
642261ac
RZ
610 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
611 /*
612 * Only swap our new entry into the radix tree if the current
613 * entry is a zero page or an empty entry. If a normal PTE or
614 * PMD entry is already in the tree, we leave it alone. This
615 * means that if we are trying to insert a PTE and the
616 * existing entry is a PMD, we will just leave the PMD in the
617 * tree and dirty it if necessary.
618 */
f7942430 619 struct radix_tree_node *node;
ac401cc7
JK
620 void **slot;
621 void *ret;
9973c98e 622
f7942430 623 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
ac401cc7 624 WARN_ON_ONCE(ret != entry);
4d693d08
JW
625 __radix_tree_replace(page_tree, node, slot,
626 new_entry, NULL, NULL);
9973c98e 627 }
ac401cc7 628 if (vmf->flags & FAULT_FLAG_WRITE)
9973c98e
RZ
629 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
630 unlock:
631 spin_unlock_irq(&mapping->tree_lock);
ac401cc7
JK
632 if (hole_fill) {
633 radix_tree_preload_end();
634 /*
635 * We don't need hole page anymore, it has been replaced with
636 * locked radix tree entry now.
637 */
638 if (mapping->a_ops->freepage)
639 mapping->a_ops->freepage(entry);
640 unlock_page(entry);
641 put_page(entry);
642 }
643 return new_entry;
9973c98e
RZ
644}
645
4b4bb46d
JK
646static inline unsigned long
647pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
648{
649 unsigned long address;
650
651 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
652 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
653 return address;
654}
655
656/* Walk all mappings of a given index of a file and writeprotect them */
657static void dax_mapping_entry_mkclean(struct address_space *mapping,
658 pgoff_t index, unsigned long pfn)
659{
660 struct vm_area_struct *vma;
f729c8c9
RZ
661 pte_t pte, *ptep = NULL;
662 pmd_t *pmdp = NULL;
4b4bb46d
JK
663 spinlock_t *ptl;
664 bool changed;
665
666 i_mmap_lock_read(mapping);
667 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
668 unsigned long address;
669
670 cond_resched();
671
672 if (!(vma->vm_flags & VM_SHARED))
673 continue;
674
675 address = pgoff_address(index, vma);
676 changed = false;
f729c8c9 677 if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
4b4bb46d 678 continue;
4b4bb46d 679
f729c8c9
RZ
680 if (pmdp) {
681#ifdef CONFIG_FS_DAX_PMD
682 pmd_t pmd;
683
684 if (pfn != pmd_pfn(*pmdp))
685 goto unlock_pmd;
686 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
687 goto unlock_pmd;
688
689 flush_cache_page(vma, address, pfn);
690 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
691 pmd = pmd_wrprotect(pmd);
692 pmd = pmd_mkclean(pmd);
693 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
694 changed = true;
695unlock_pmd:
696 spin_unlock(ptl);
697#endif
698 } else {
699 if (pfn != pte_pfn(*ptep))
700 goto unlock_pte;
701 if (!pte_dirty(*ptep) && !pte_write(*ptep))
702 goto unlock_pte;
703
704 flush_cache_page(vma, address, pfn);
705 pte = ptep_clear_flush(vma, address, ptep);
706 pte = pte_wrprotect(pte);
707 pte = pte_mkclean(pte);
708 set_pte_at(vma->vm_mm, address, ptep, pte);
709 changed = true;
710unlock_pte:
711 pte_unmap_unlock(ptep, ptl);
712 }
4b4bb46d
JK
713
714 if (changed)
715 mmu_notifier_invalidate_page(vma->vm_mm, address);
716 }
717 i_mmap_unlock_read(mapping);
718}
719
9973c98e 720static int dax_writeback_one(struct block_device *bdev,
cccbce67
DW
721 struct dax_device *dax_dev, struct address_space *mapping,
722 pgoff_t index, void *entry)
9973c98e
RZ
723{
724 struct radix_tree_root *page_tree = &mapping->page_tree;
cccbce67
DW
725 void *entry2, **slot, *kaddr;
726 long ret = 0, id;
727 sector_t sector;
728 pgoff_t pgoff;
729 size_t size;
730 pfn_t pfn;
9973c98e 731
9973c98e 732 /*
a6abc2c0
JK
733 * A page got tagged dirty in DAX mapping? Something is seriously
734 * wrong.
9973c98e 735 */
a6abc2c0
JK
736 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
737 return -EIO;
9973c98e 738
a6abc2c0
JK
739 spin_lock_irq(&mapping->tree_lock);
740 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
741 /* Entry got punched out / reallocated? */
742 if (!entry2 || !radix_tree_exceptional_entry(entry2))
743 goto put_unlocked;
744 /*
745 * Entry got reallocated elsewhere? No need to writeback. We have to
746 * compare sectors as we must not bail out due to difference in lockbit
747 * or entry type.
748 */
749 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
750 goto put_unlocked;
642261ac
RZ
751 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
752 dax_is_zero_entry(entry))) {
9973c98e 753 ret = -EIO;
a6abc2c0 754 goto put_unlocked;
9973c98e
RZ
755 }
756
a6abc2c0
JK
757 /* Another fsync thread may have already written back this entry */
758 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
759 goto put_unlocked;
760 /* Lock the entry to serialize with page faults */
761 entry = lock_slot(mapping, slot);
762 /*
763 * We can clear the tag now but we have to be careful so that concurrent
764 * dax_writeback_one() calls for the same index cannot finish before we
765 * actually flush the caches. This is achieved as the calls will look
766 * at the entry only under tree_lock and once they do that they will
767 * see the entry locked and wait for it to unlock.
768 */
769 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
770 spin_unlock_irq(&mapping->tree_lock);
771
642261ac
RZ
772 /*
773 * Even if dax_writeback_mapping_range() was given a wbc->range_start
774 * in the middle of a PMD, the 'index' we are given will be aligned to
775 * the start index of the PMD, as will the sector we pull from
776 * 'entry'. This allows us to flush for PMD_SIZE and not have to
777 * worry about partial PMD writebacks.
778 */
cccbce67
DW
779 sector = dax_radix_sector(entry);
780 size = PAGE_SIZE << dax_radix_order(entry);
781
782 id = dax_read_lock();
783 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
784 if (ret)
785 goto dax_unlock;
9973c98e
RZ
786
787 /*
cccbce67
DW
788 * dax_direct_access() may sleep, so cannot hold tree_lock over
789 * its invocation.
9973c98e 790 */
cccbce67
DW
791 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
792 if (ret < 0)
793 goto dax_unlock;
9973c98e 794
cccbce67 795 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
9973c98e 796 ret = -EIO;
cccbce67 797 goto dax_unlock;
9973c98e
RZ
798 }
799
cccbce67
DW
800 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
801 wb_cache_pmem(kaddr, size);
4b4bb46d
JK
802 /*
803 * After we have flushed the cache, we can clear the dirty tag. There
804 * cannot be new dirty data in the pfn after the flush has completed as
805 * the pfn mappings are writeprotected and fault waits for mapping
806 * entry lock.
807 */
808 spin_lock_irq(&mapping->tree_lock);
809 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
810 spin_unlock_irq(&mapping->tree_lock);
cccbce67
DW
811 dax_unlock:
812 dax_read_unlock(id);
a6abc2c0 813 put_locked_mapping_entry(mapping, index, entry);
9973c98e
RZ
814 return ret;
815
a6abc2c0
JK
816 put_unlocked:
817 put_unlocked_mapping_entry(mapping, index, entry2);
9973c98e
RZ
818 spin_unlock_irq(&mapping->tree_lock);
819 return ret;
820}
821
822/*
823 * Flush the mapping to the persistent domain within the byte range of [start,
824 * end]. This is required by data integrity operations to ensure file data is
825 * on persistent storage prior to completion of the operation.
826 */
7f6d5b52
RZ
827int dax_writeback_mapping_range(struct address_space *mapping,
828 struct block_device *bdev, struct writeback_control *wbc)
9973c98e
RZ
829{
830 struct inode *inode = mapping->host;
642261ac 831 pgoff_t start_index, end_index;
9973c98e 832 pgoff_t indices[PAGEVEC_SIZE];
cccbce67 833 struct dax_device *dax_dev;
9973c98e
RZ
834 struct pagevec pvec;
835 bool done = false;
836 int i, ret = 0;
9973c98e
RZ
837
838 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
839 return -EIO;
840
7f6d5b52
RZ
841 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
842 return 0;
843
cccbce67
DW
844 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
845 if (!dax_dev)
846 return -EIO;
847
09cbfeaf
KS
848 start_index = wbc->range_start >> PAGE_SHIFT;
849 end_index = wbc->range_end >> PAGE_SHIFT;
9973c98e
RZ
850
851 tag_pages_for_writeback(mapping, start_index, end_index);
852
853 pagevec_init(&pvec, 0);
854 while (!done) {
855 pvec.nr = find_get_entries_tag(mapping, start_index,
856 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
857 pvec.pages, indices);
858
859 if (pvec.nr == 0)
860 break;
861
862 for (i = 0; i < pvec.nr; i++) {
863 if (indices[i] > end_index) {
864 done = true;
865 break;
866 }
867
cccbce67
DW
868 ret = dax_writeback_one(bdev, dax_dev, mapping,
869 indices[i], pvec.pages[i]);
870 if (ret < 0) {
871 put_dax(dax_dev);
9973c98e 872 return ret;
cccbce67 873 }
9973c98e
RZ
874 }
875 }
cccbce67 876 put_dax(dax_dev);
9973c98e
RZ
877 return 0;
878}
879EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
880
ac401cc7 881static int dax_insert_mapping(struct address_space *mapping,
cccbce67
DW
882 struct block_device *bdev, struct dax_device *dax_dev,
883 sector_t sector, size_t size, void **entryp,
884 struct vm_area_struct *vma, struct vm_fault *vmf)
f7ca90b1 885{
1a29d85e 886 unsigned long vaddr = vmf->address;
ac401cc7 887 void *entry = *entryp;
cccbce67
DW
888 void *ret, *kaddr;
889 pgoff_t pgoff;
890 int id, rc;
891 pfn_t pfn;
f7ca90b1 892
cccbce67
DW
893 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
894 if (rc)
895 return rc;
f7ca90b1 896
cccbce67
DW
897 id = dax_read_lock();
898 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
899 if (rc < 0) {
900 dax_read_unlock(id);
901 return rc;
902 }
903 dax_read_unlock(id);
904
905 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
4d9a2c87
JK
906 if (IS_ERR(ret))
907 return PTR_ERR(ret);
ac401cc7 908 *entryp = ret;
9973c98e 909
cccbce67 910 return vm_insert_mixed(vma, vaddr, pfn);
f7ca90b1
MW
911}
912
0e3b210c
BH
913/**
914 * dax_pfn_mkwrite - handle first write to DAX page
0e3b210c 915 * @vmf: The description of the fault
0e3b210c 916 */
11bac800 917int dax_pfn_mkwrite(struct vm_fault *vmf)
0e3b210c 918{
11bac800 919 struct file *file = vmf->vma->vm_file;
ac401cc7 920 struct address_space *mapping = file->f_mapping;
2f89dc12 921 void *entry, **slot;
ac401cc7 922 pgoff_t index = vmf->pgoff;
30f471fd 923
ac401cc7 924 spin_lock_irq(&mapping->tree_lock);
2f89dc12
JK
925 entry = get_unlocked_mapping_entry(mapping, index, &slot);
926 if (!entry || !radix_tree_exceptional_entry(entry)) {
927 if (entry)
928 put_unlocked_mapping_entry(mapping, index, entry);
929 spin_unlock_irq(&mapping->tree_lock);
930 return VM_FAULT_NOPAGE;
931 }
ac401cc7 932 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
2f89dc12 933 entry = lock_slot(mapping, slot);
ac401cc7 934 spin_unlock_irq(&mapping->tree_lock);
2f89dc12
JK
935 /*
936 * If we race with somebody updating the PTE and finish_mkwrite_fault()
937 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
938 * the fault in either case.
939 */
940 finish_mkwrite_fault(vmf);
941 put_locked_mapping_entry(mapping, index, entry);
0e3b210c
BH
942 return VM_FAULT_NOPAGE;
943}
944EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
945
4b0228fa
VV
946static bool dax_range_is_aligned(struct block_device *bdev,
947 unsigned int offset, unsigned int length)
948{
949 unsigned short sector_size = bdev_logical_block_size(bdev);
950
951 if (!IS_ALIGNED(offset, sector_size))
952 return false;
953 if (!IS_ALIGNED(length, sector_size))
954 return false;
955
956 return true;
957}
958
cccbce67
DW
959int __dax_zero_page_range(struct block_device *bdev,
960 struct dax_device *dax_dev, sector_t sector,
961 unsigned int offset, unsigned int size)
679c8bd3 962{
cccbce67
DW
963 if (dax_range_is_aligned(bdev, offset, size)) {
964 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
965
966 return blkdev_issue_zeroout(bdev, start_sector,
cccbce67 967 size >> 9, GFP_NOFS, true);
4b0228fa 968 } else {
cccbce67
DW
969 pgoff_t pgoff;
970 long rc, id;
971 void *kaddr;
972 pfn_t pfn;
973
974 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
975 if (rc)
976 return rc;
977
978 id = dax_read_lock();
979 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr,
980 &pfn);
981 if (rc < 0) {
982 dax_read_unlock(id);
983 return rc;
984 }
985 clear_pmem(kaddr + offset, size);
986 dax_read_unlock(id);
4b0228fa 987 }
679c8bd3
CH
988 return 0;
989}
990EXPORT_SYMBOL_GPL(__dax_zero_page_range);
991
333ccc97 992static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
25726bc1 993{
333ccc97 994 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
25726bc1 995}
a254e568 996
a254e568 997static loff_t
11c59c92 998dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
999 struct iomap *iomap)
1000{
cccbce67
DW
1001 struct block_device *bdev = iomap->bdev;
1002 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1003 struct iov_iter *iter = data;
1004 loff_t end = pos + length, done = 0;
1005 ssize_t ret = 0;
cccbce67 1006 int id;
a254e568
CH
1007
1008 if (iov_iter_rw(iter) == READ) {
1009 end = min(end, i_size_read(inode));
1010 if (pos >= end)
1011 return 0;
1012
1013 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1014 return iov_iter_zero(min(length, end - pos), iter);
1015 }
1016
1017 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1018 return -EIO;
1019
e3fce68c
JK
1020 /*
1021 * Write can allocate block for an area which has a hole page mapped
1022 * into page tables. We have to tear down these mappings so that data
1023 * written by write(2) is visible in mmap.
1024 */
1025 if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1026 invalidate_inode_pages2_range(inode->i_mapping,
1027 pos >> PAGE_SHIFT,
1028 (end - 1) >> PAGE_SHIFT);
1029 }
1030
cccbce67 1031 id = dax_read_lock();
a254e568
CH
1032 while (pos < end) {
1033 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1034 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1035 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1036 ssize_t map_len;
cccbce67
DW
1037 pgoff_t pgoff;
1038 void *kaddr;
1039 pfn_t pfn;
a254e568 1040
d1908f52
MH
1041 if (fatal_signal_pending(current)) {
1042 ret = -EINTR;
1043 break;
1044 }
1045
cccbce67
DW
1046 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1047 if (ret)
1048 break;
1049
1050 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1051 &kaddr, &pfn);
a254e568
CH
1052 if (map_len < 0) {
1053 ret = map_len;
1054 break;
1055 }
1056
cccbce67
DW
1057 map_len = PFN_PHYS(map_len);
1058 kaddr += offset;
a254e568
CH
1059 map_len -= offset;
1060 if (map_len > end - pos)
1061 map_len = end - pos;
1062
1063 if (iov_iter_rw(iter) == WRITE)
cccbce67 1064 map_len = copy_from_iter_pmem(kaddr, map_len, iter);
a254e568 1065 else
cccbce67 1066 map_len = copy_to_iter(kaddr, map_len, iter);
a254e568
CH
1067 if (map_len <= 0) {
1068 ret = map_len ? map_len : -EFAULT;
1069 break;
1070 }
1071
1072 pos += map_len;
1073 length -= map_len;
1074 done += map_len;
1075 }
cccbce67 1076 dax_read_unlock(id);
a254e568
CH
1077
1078 return done ? done : ret;
1079}
1080
1081/**
11c59c92 1082 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1083 * @iocb: The control block for this I/O
1084 * @iter: The addresses to do I/O from or to
1085 * @ops: iomap ops passed from the file system
1086 *
1087 * This function performs read and write operations to directly mapped
1088 * persistent memory. The callers needs to take care of read/write exclusion
1089 * and evicting any page cache pages in the region under I/O.
1090 */
1091ssize_t
11c59c92 1092dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1093 const struct iomap_ops *ops)
a254e568
CH
1094{
1095 struct address_space *mapping = iocb->ki_filp->f_mapping;
1096 struct inode *inode = mapping->host;
1097 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1098 unsigned flags = 0;
1099
168316db
CH
1100 if (iov_iter_rw(iter) == WRITE) {
1101 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1102 flags |= IOMAP_WRITE;
168316db
CH
1103 } else {
1104 lockdep_assert_held(&inode->i_rwsem);
1105 }
a254e568 1106
a254e568
CH
1107 while (iov_iter_count(iter)) {
1108 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1109 iter, dax_iomap_actor);
a254e568
CH
1110 if (ret <= 0)
1111 break;
1112 pos += ret;
1113 done += ret;
1114 }
1115
1116 iocb->ki_pos += done;
1117 return done ? done : ret;
1118}
11c59c92 1119EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1120
9f141d6e
JK
1121static int dax_fault_return(int error)
1122{
1123 if (error == 0)
1124 return VM_FAULT_NOPAGE;
1125 if (error == -ENOMEM)
1126 return VM_FAULT_OOM;
1127 return VM_FAULT_SIGBUS;
1128}
1129
a2d58167
DJ
1130static int dax_iomap_pte_fault(struct vm_fault *vmf,
1131 const struct iomap_ops *ops)
a7d73fe6 1132{
11bac800 1133 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
a7d73fe6 1134 struct inode *inode = mapping->host;
1a29d85e 1135 unsigned long vaddr = vmf->address;
a7d73fe6
CH
1136 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1137 sector_t sector;
1138 struct iomap iomap = { 0 };
9484ab1b 1139 unsigned flags = IOMAP_FAULT;
a7d73fe6 1140 int error, major = 0;
b1aa812b 1141 int vmf_ret = 0;
a7d73fe6
CH
1142 void *entry;
1143
1144 /*
1145 * Check whether offset isn't beyond end of file now. Caller is supposed
1146 * to hold locks serializing us with truncate / punch hole so this is
1147 * a reliable test.
1148 */
1149 if (pos >= i_size_read(inode))
1150 return VM_FAULT_SIGBUS;
1151
a7d73fe6
CH
1152 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1153 flags |= IOMAP_WRITE;
1154
1155 /*
1156 * Note that we don't bother to use iomap_apply here: DAX required
1157 * the file system block size to be equal the page size, which means
1158 * that we never have to deal with more than a single extent here.
1159 */
1160 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1161 if (error)
9f141d6e 1162 return dax_fault_return(error);
a7d73fe6 1163 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
9f141d6e
JK
1164 vmf_ret = dax_fault_return(-EIO); /* fs corruption? */
1165 goto finish_iomap;
1166 }
1167
1168 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1169 if (IS_ERR(entry)) {
1170 vmf_ret = dax_fault_return(PTR_ERR(entry));
1550290b 1171 goto finish_iomap;
a7d73fe6
CH
1172 }
1173
333ccc97 1174 sector = dax_iomap_sector(&iomap, pos);
a7d73fe6
CH
1175
1176 if (vmf->cow_page) {
1177 switch (iomap.type) {
1178 case IOMAP_HOLE:
1179 case IOMAP_UNWRITTEN:
1180 clear_user_highpage(vmf->cow_page, vaddr);
1181 break;
1182 case IOMAP_MAPPED:
cccbce67
DW
1183 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1184 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1185 break;
1186 default:
1187 WARN_ON_ONCE(1);
1188 error = -EIO;
1189 break;
1190 }
1191
1192 if (error)
9f141d6e 1193 goto error_unlock_entry;
b1aa812b
JK
1194
1195 __SetPageUptodate(vmf->cow_page);
1196 vmf_ret = finish_fault(vmf);
1197 if (!vmf_ret)
1198 vmf_ret = VM_FAULT_DONE_COW;
9f141d6e 1199 goto unlock_entry;
a7d73fe6
CH
1200 }
1201
1202 switch (iomap.type) {
1203 case IOMAP_MAPPED:
1204 if (iomap.flags & IOMAP_F_NEW) {
1205 count_vm_event(PGMAJFAULT);
11bac800 1206 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1207 major = VM_FAULT_MAJOR;
1208 }
cccbce67
DW
1209 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1210 sector, PAGE_SIZE, &entry, vmf->vma, vmf);
9f141d6e
JK
1211 /* -EBUSY is fine, somebody else faulted on the same PTE */
1212 if (error == -EBUSY)
1213 error = 0;
a7d73fe6
CH
1214 break;
1215 case IOMAP_UNWRITTEN:
1216 case IOMAP_HOLE:
1550290b 1217 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
f449b936 1218 vmf_ret = dax_load_hole(mapping, &entry, vmf);
9f141d6e 1219 goto unlock_entry;
1550290b 1220 }
a7d73fe6
CH
1221 /*FALLTHRU*/
1222 default:
1223 WARN_ON_ONCE(1);
1224 error = -EIO;
1225 break;
1226 }
1227
9f141d6e
JK
1228 error_unlock_entry:
1229 vmf_ret = dax_fault_return(error) | major;
a7d73fe6 1230 unlock_entry:
f449b936 1231 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
9f141d6e
JK
1232 finish_iomap:
1233 if (ops->iomap_end) {
1234 int copied = PAGE_SIZE;
1235
1236 if (vmf_ret & VM_FAULT_ERROR)
1237 copied = 0;
1238 /*
1239 * The fault is done by now and there's no way back (other
1240 * thread may be already happily using PTE we have installed).
1241 * Just ignore error from ->iomap_end since we cannot do much
1242 * with it.
1243 */
1244 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1245 }
9f141d6e 1246 return vmf_ret;
a7d73fe6 1247}
642261ac
RZ
1248
1249#ifdef CONFIG_FS_DAX_PMD
1250/*
1251 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1252 * more often than one might expect in the below functions.
1253 */
1254#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1255
f4200391
DJ
1256static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1257 loff_t pos, void **entryp)
642261ac 1258{
f4200391 1259 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cccbce67
DW
1260 const sector_t sector = dax_iomap_sector(iomap, pos);
1261 struct dax_device *dax_dev = iomap->dax_dev;
642261ac 1262 struct block_device *bdev = iomap->bdev;
27a7ffac 1263 struct inode *inode = mapping->host;
cccbce67
DW
1264 const size_t size = PMD_SIZE;
1265 void *ret = NULL, *kaddr;
1266 long length = 0;
1267 pgoff_t pgoff;
1268 pfn_t pfn;
1269 int id;
1270
1271 if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
27a7ffac 1272 goto fallback;
642261ac 1273
cccbce67
DW
1274 id = dax_read_lock();
1275 length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1276 if (length < 0)
1277 goto unlock_fallback;
1278 length = PFN_PHYS(length);
1279
1280 if (length < size)
1281 goto unlock_fallback;
1282 if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1283 goto unlock_fallback;
1284 if (!pfn_t_devmap(pfn))
1285 goto unlock_fallback;
1286 dax_read_unlock(id);
1287
1288 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, sector,
642261ac
RZ
1289 RADIX_DAX_PMD);
1290 if (IS_ERR(ret))
27a7ffac 1291 goto fallback;
642261ac
RZ
1292 *entryp = ret;
1293
cccbce67 1294 trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
f4200391 1295 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
cccbce67 1296 pfn, vmf->flags & FAULT_FLAG_WRITE);
642261ac 1297
cccbce67
DW
1298unlock_fallback:
1299 dax_read_unlock(id);
27a7ffac 1300fallback:
cccbce67 1301 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
642261ac
RZ
1302 return VM_FAULT_FALLBACK;
1303}
1304
f4200391
DJ
1305static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1306 void **entryp)
642261ac 1307{
f4200391
DJ
1308 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1309 unsigned long pmd_addr = vmf->address & PMD_MASK;
653b2ea3 1310 struct inode *inode = mapping->host;
642261ac 1311 struct page *zero_page;
653b2ea3 1312 void *ret = NULL;
642261ac
RZ
1313 spinlock_t *ptl;
1314 pmd_t pmd_entry;
642261ac 1315
f4200391 1316 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1317
1318 if (unlikely(!zero_page))
653b2ea3 1319 goto fallback;
642261ac
RZ
1320
1321 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1322 RADIX_DAX_PMD | RADIX_DAX_HZP);
1323 if (IS_ERR(ret))
653b2ea3 1324 goto fallback;
642261ac
RZ
1325 *entryp = ret;
1326
f4200391
DJ
1327 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1328 if (!pmd_none(*(vmf->pmd))) {
642261ac 1329 spin_unlock(ptl);
653b2ea3 1330 goto fallback;
642261ac
RZ
1331 }
1332
f4200391 1333 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1334 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1335 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1336 spin_unlock(ptl);
f4200391 1337 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
642261ac 1338 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1339
1340fallback:
f4200391 1341 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
653b2ea3 1342 return VM_FAULT_FALLBACK;
642261ac
RZ
1343}
1344
a2d58167
DJ
1345static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1346 const struct iomap_ops *ops)
642261ac 1347{
f4200391 1348 struct vm_area_struct *vma = vmf->vma;
642261ac 1349 struct address_space *mapping = vma->vm_file->f_mapping;
d8a849e1
DJ
1350 unsigned long pmd_addr = vmf->address & PMD_MASK;
1351 bool write = vmf->flags & FAULT_FLAG_WRITE;
9484ab1b 1352 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac
RZ
1353 struct inode *inode = mapping->host;
1354 int result = VM_FAULT_FALLBACK;
1355 struct iomap iomap = { 0 };
1356 pgoff_t max_pgoff, pgoff;
642261ac
RZ
1357 void *entry;
1358 loff_t pos;
1359 int error;
1360
282a8e03
RZ
1361 /*
1362 * Check whether offset isn't beyond end of file now. Caller is
1363 * supposed to hold locks serializing us with truncate / punch hole so
1364 * this is a reliable test.
1365 */
1366 pgoff = linear_page_index(vma, pmd_addr);
1367 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1368
f4200391 1369 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1370
642261ac
RZ
1371 /* Fall back to PTEs if we're going to COW */
1372 if (write && !(vma->vm_flags & VM_SHARED))
1373 goto fallback;
1374
1375 /* If the PMD would extend outside the VMA */
1376 if (pmd_addr < vma->vm_start)
1377 goto fallback;
1378 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1379 goto fallback;
1380
282a8e03
RZ
1381 if (pgoff > max_pgoff) {
1382 result = VM_FAULT_SIGBUS;
1383 goto out;
1384 }
642261ac
RZ
1385
1386 /* If the PMD would extend beyond the file size */
1387 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1388 goto fallback;
1389
642261ac
RZ
1390 /*
1391 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1392 * setting up a mapping, so really we're using iomap_begin() as a way
1393 * to look up our filesystem block.
1394 */
1395 pos = (loff_t)pgoff << PAGE_SHIFT;
1396 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1397 if (error)
9f141d6e
JK
1398 goto fallback;
1399
642261ac
RZ
1400 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1401 goto finish_iomap;
1402
9f141d6e
JK
1403 /*
1404 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1405 * PMD or a HZP entry. If it can't (because a 4k page is already in
1406 * the tree, for instance), it will return -EEXIST and we just fall
1407 * back to 4k entries.
1408 */
1409 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1410 if (IS_ERR(entry))
1411 goto finish_iomap;
1412
642261ac
RZ
1413 switch (iomap.type) {
1414 case IOMAP_MAPPED:
f4200391 1415 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
642261ac
RZ
1416 break;
1417 case IOMAP_UNWRITTEN:
1418 case IOMAP_HOLE:
1419 if (WARN_ON_ONCE(write))
9f141d6e 1420 goto unlock_entry;
f4200391 1421 result = dax_pmd_load_hole(vmf, &iomap, &entry);
642261ac
RZ
1422 break;
1423 default:
1424 WARN_ON_ONCE(1);
1425 break;
1426 }
1427
9f141d6e
JK
1428 unlock_entry:
1429 put_locked_mapping_entry(mapping, pgoff, entry);
642261ac
RZ
1430 finish_iomap:
1431 if (ops->iomap_end) {
9f141d6e
JK
1432 int copied = PMD_SIZE;
1433
1434 if (result == VM_FAULT_FALLBACK)
1435 copied = 0;
1436 /*
1437 * The fault is done by now and there's no way back (other
1438 * thread may be already happily using PMD we have installed).
1439 * Just ignore error from ->iomap_end since we cannot do much
1440 * with it.
1441 */
1442 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1443 &iomap);
642261ac 1444 }
642261ac
RZ
1445 fallback:
1446 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1447 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1448 count_vm_event(THP_FAULT_FALLBACK);
1449 }
282a8e03 1450out:
f4200391 1451 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1452 return result;
1453}
a2d58167 1454#else
01cddfe9
AB
1455static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1456 const struct iomap_ops *ops)
a2d58167
DJ
1457{
1458 return VM_FAULT_FALLBACK;
1459}
642261ac 1460#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1461
1462/**
1463 * dax_iomap_fault - handle a page fault on a DAX file
1464 * @vmf: The description of the fault
1465 * @ops: iomap ops passed from the file system
1466 *
1467 * When a page fault occurs, filesystems may call this helper in
1468 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1469 * has done all the necessary locking for page fault to proceed
1470 * successfully.
1471 */
c791ace1
DJ
1472int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1473 const struct iomap_ops *ops)
a2d58167 1474{
c791ace1
DJ
1475 switch (pe_size) {
1476 case PE_SIZE_PTE:
a2d58167 1477 return dax_iomap_pte_fault(vmf, ops);
c791ace1 1478 case PE_SIZE_PMD:
a2d58167
DJ
1479 return dax_iomap_pmd_fault(vmf, ops);
1480 default:
1481 return VM_FAULT_FALLBACK;
1482 }
1483}
1484EXPORT_SYMBOL_GPL(dax_iomap_fault);