mm, memory_failure: Collect mapping size in collect_procs()
[linux-2.6-block.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
289c6aed 28#include <linux/sched.h>
f361bf4a 29#include <linux/sched/signal.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
4b4bb46d 34#include <linux/mmu_notifier.h>
a254e568
CH
35#include <linux/iomap.h>
36#include "internal.h"
d475c634 37
282a8e03
RZ
38#define CREATE_TRACE_POINTS
39#include <trace/events/fs_dax.h>
40
ac401cc7
JK
41/* We choose 4096 entries - same as per-zone page wait tables */
42#define DAX_WAIT_TABLE_BITS 12
43#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
917f3452
RZ
45/* The 'colour' (ie low bits) within a PMD of a page offset. */
46#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 47#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 48
ce95ab0f 49static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
50
51static int __init init_dax_wait_table(void)
52{
53 int i;
54
55 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 init_waitqueue_head(wait_table + i);
57 return 0;
58}
59fs_initcall(init_dax_wait_table);
60
527b19d0
RZ
61/*
62 * We use lowest available bit in exceptional entry for locking, one bit for
63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
64 * an empty entry that is just used for locking. In total four special bits.
65 *
66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68 * block allocation.
69 */
70#define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71#define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72#define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73#define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74#define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75
3fe0791c 76static unsigned long dax_radix_pfn(void *entry)
527b19d0
RZ
77{
78 return (unsigned long)entry >> RADIX_DAX_SHIFT;
79}
80
3fe0791c 81static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
527b19d0
RZ
82{
83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
3fe0791c 84 (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
527b19d0
RZ
85}
86
87static unsigned int dax_radix_order(void *entry)
88{
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
91 return 0;
92}
93
642261ac 94static int dax_is_pmd_entry(void *entry)
d1a5f2b4 95{
642261ac 96 return (unsigned long)entry & RADIX_DAX_PMD;
d1a5f2b4
DW
97}
98
642261ac 99static int dax_is_pte_entry(void *entry)
d475c634 100{
642261ac 101 return !((unsigned long)entry & RADIX_DAX_PMD);
d475c634
MW
102}
103
642261ac 104static int dax_is_zero_entry(void *entry)
d475c634 105{
91d25ba8 106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
d475c634
MW
107}
108
642261ac 109static int dax_is_empty_entry(void *entry)
b2e0d162 110{
642261ac 111 return (unsigned long)entry & RADIX_DAX_EMPTY;
b2e0d162
DW
112}
113
ac401cc7
JK
114/*
115 * DAX radix tree locking
116 */
117struct exceptional_entry_key {
118 struct address_space *mapping;
63e95b5c 119 pgoff_t entry_start;
ac401cc7
JK
120};
121
122struct wait_exceptional_entry_queue {
ac6424b9 123 wait_queue_entry_t wait;
ac401cc7
JK
124 struct exceptional_entry_key key;
125};
126
63e95b5c
RZ
127static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129{
130 unsigned long hash;
131
132 /*
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
136 */
642261ac 137 if (dax_is_pmd_entry(entry))
917f3452 138 index &= ~PG_PMD_COLOUR;
63e95b5c
RZ
139
140 key->mapping = mapping;
141 key->entry_start = index;
142
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
145}
146
ac6424b9 147static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
ac401cc7
JK
148 int sync, void *keyp)
149{
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154 if (key->mapping != ewait->key.mapping ||
63e95b5c 155 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
156 return 0;
157 return autoremove_wake_function(wait, mode, sync, NULL);
158}
159
e30331ff 160/*
b93b0163
MW
161 * @entry may no longer be the entry at the index in the mapping.
162 * The important information it's conveying is whether the entry at
163 * this index used to be a PMD entry.
e30331ff 164 */
d01ad197 165static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
e30331ff
RZ
166 pgoff_t index, void *entry, bool wake_all)
167{
168 struct exceptional_entry_key key;
169 wait_queue_head_t *wq;
170
171 wq = dax_entry_waitqueue(mapping, index, entry, &key);
172
173 /*
174 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 175 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
176 * So at this point all tasks that could have seen our entry locked
177 * must be in the waitqueue and the following check will see them.
178 */
179 if (waitqueue_active(wq))
180 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181}
182
ac401cc7 183/*
b93b0163
MW
184 * Check whether the given slot is locked. Must be called with the i_pages
185 * lock held.
ac401cc7
JK
186 */
187static inline int slot_locked(struct address_space *mapping, void **slot)
188{
189 unsigned long entry = (unsigned long)
b93b0163 190 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
ac401cc7
JK
191 return entry & RADIX_DAX_ENTRY_LOCK;
192}
193
194/*
b93b0163 195 * Mark the given slot as locked. Must be called with the i_pages lock held.
ac401cc7
JK
196 */
197static inline void *lock_slot(struct address_space *mapping, void **slot)
198{
199 unsigned long entry = (unsigned long)
b93b0163 200 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
ac401cc7
JK
201
202 entry |= RADIX_DAX_ENTRY_LOCK;
b93b0163 203 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
ac401cc7
JK
204 return (void *)entry;
205}
206
207/*
b93b0163 208 * Mark the given slot as unlocked. Must be called with the i_pages lock held.
ac401cc7
JK
209 */
210static inline void *unlock_slot(struct address_space *mapping, void **slot)
211{
212 unsigned long entry = (unsigned long)
b93b0163 213 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
ac401cc7
JK
214
215 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
b93b0163 216 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
ac401cc7
JK
217 return (void *)entry;
218}
219
220/*
221 * Lookup entry in radix tree, wait for it to become unlocked if it is
222 * exceptional entry and return it. The caller must call
223 * put_unlocked_mapping_entry() when he decided not to lock the entry or
224 * put_locked_mapping_entry() when he locked the entry and now wants to
225 * unlock it.
226 *
b93b0163 227 * Must be called with the i_pages lock held.
ac401cc7
JK
228 */
229static void *get_unlocked_mapping_entry(struct address_space *mapping,
230 pgoff_t index, void ***slotp)
231{
e3ad61c6 232 void *entry, **slot;
ac401cc7 233 struct wait_exceptional_entry_queue ewait;
63e95b5c 234 wait_queue_head_t *wq;
ac401cc7
JK
235
236 init_wait(&ewait.wait);
237 ewait.wait.func = wake_exceptional_entry_func;
ac401cc7
JK
238
239 for (;;) {
b93b0163 240 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
ac401cc7 241 &slot);
91d25ba8
RZ
242 if (!entry ||
243 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
ac401cc7
JK
244 !slot_locked(mapping, slot)) {
245 if (slotp)
246 *slotp = slot;
e3ad61c6 247 return entry;
ac401cc7 248 }
63e95b5c
RZ
249
250 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
ac401cc7
JK
251 prepare_to_wait_exclusive(wq, &ewait.wait,
252 TASK_UNINTERRUPTIBLE);
b93b0163 253 xa_unlock_irq(&mapping->i_pages);
ac401cc7
JK
254 schedule();
255 finish_wait(wq, &ewait.wait);
b93b0163 256 xa_lock_irq(&mapping->i_pages);
ac401cc7
JK
257 }
258}
259
b1aa812b
JK
260static void dax_unlock_mapping_entry(struct address_space *mapping,
261 pgoff_t index)
262{
263 void *entry, **slot;
264
b93b0163
MW
265 xa_lock_irq(&mapping->i_pages);
266 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
b1aa812b
JK
267 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
268 !slot_locked(mapping, slot))) {
b93b0163 269 xa_unlock_irq(&mapping->i_pages);
b1aa812b
JK
270 return;
271 }
272 unlock_slot(mapping, slot);
b93b0163 273 xa_unlock_irq(&mapping->i_pages);
b1aa812b
JK
274 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
275}
276
422476c4 277static void put_locked_mapping_entry(struct address_space *mapping,
91d25ba8 278 pgoff_t index)
422476c4 279{
91d25ba8 280 dax_unlock_mapping_entry(mapping, index);
422476c4
RZ
281}
282
283/*
284 * Called when we are done with radix tree entry we looked up via
285 * get_unlocked_mapping_entry() and which we didn't lock in the end.
286 */
287static void put_unlocked_mapping_entry(struct address_space *mapping,
288 pgoff_t index, void *entry)
289{
91d25ba8 290 if (!entry)
422476c4
RZ
291 return;
292
293 /* We have to wake up next waiter for the radix tree entry lock */
294 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
295}
296
d2c997c0
DW
297static unsigned long dax_entry_size(void *entry)
298{
299 if (dax_is_zero_entry(entry))
300 return 0;
301 else if (dax_is_empty_entry(entry))
302 return 0;
303 else if (dax_is_pmd_entry(entry))
304 return PMD_SIZE;
305 else
306 return PAGE_SIZE;
307}
308
309static unsigned long dax_radix_end_pfn(void *entry)
310{
311 return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
312}
313
314/*
315 * Iterate through all mapped pfns represented by an entry, i.e. skip
316 * 'empty' and 'zero' entries.
317 */
318#define for_each_mapped_pfn(entry, pfn) \
319 for (pfn = dax_radix_pfn(entry); \
320 pfn < dax_radix_end_pfn(entry); pfn++)
321
73449daf
DW
322/*
323 * TODO: for reflink+dax we need a way to associate a single page with
324 * multiple address_space instances at different linear_page_index()
325 * offsets.
326 */
327static void dax_associate_entry(void *entry, struct address_space *mapping,
328 struct vm_area_struct *vma, unsigned long address)
d2c997c0 329{
73449daf
DW
330 unsigned long size = dax_entry_size(entry), pfn, index;
331 int i = 0;
d2c997c0
DW
332
333 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
334 return;
335
73449daf 336 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
337 for_each_mapped_pfn(entry, pfn) {
338 struct page *page = pfn_to_page(pfn);
339
340 WARN_ON_ONCE(page->mapping);
341 page->mapping = mapping;
73449daf 342 page->index = index + i++;
d2c997c0
DW
343 }
344}
345
346static void dax_disassociate_entry(void *entry, struct address_space *mapping,
347 bool trunc)
348{
349 unsigned long pfn;
350
351 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
352 return;
353
354 for_each_mapped_pfn(entry, pfn) {
355 struct page *page = pfn_to_page(pfn);
356
357 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
358 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
359 page->mapping = NULL;
73449daf 360 page->index = 0;
d2c997c0
DW
361 }
362}
363
5fac7408
DW
364static struct page *dax_busy_page(void *entry)
365{
366 unsigned long pfn;
367
368 for_each_mapped_pfn(entry, pfn) {
369 struct page *page = pfn_to_page(pfn);
370
371 if (page_ref_count(page) > 1)
372 return page;
373 }
374 return NULL;
375}
376
ac401cc7 377/*
91d25ba8
RZ
378 * Find radix tree entry at given index. If it points to an exceptional entry,
379 * return it with the radix tree entry locked. If the radix tree doesn't
380 * contain given index, create an empty exceptional entry for the index and
381 * return with it locked.
ac401cc7 382 *
642261ac
RZ
383 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
384 * either return that locked entry or will return an error. This error will
91d25ba8
RZ
385 * happen if there are any 4k entries within the 2MiB range that we are
386 * requesting.
642261ac
RZ
387 *
388 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
389 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
390 * insertion will fail if it finds any 4k entries already in the tree, and a
391 * 4k insertion will cause an existing 2MiB entry to be unmapped and
392 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
393 * well as 2MiB empty entries.
394 *
395 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
396 * real storage backing them. We will leave these real 2MiB DAX entries in
397 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
398 *
ac401cc7
JK
399 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
400 * persistent memory the benefit is doubtful. We can add that later if we can
401 * show it helps.
402 */
642261ac
RZ
403static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
404 unsigned long size_flag)
ac401cc7 405{
642261ac 406 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
e3ad61c6 407 void *entry, **slot;
ac401cc7
JK
408
409restart:
b93b0163 410 xa_lock_irq(&mapping->i_pages);
e3ad61c6 411 entry = get_unlocked_mapping_entry(mapping, index, &slot);
642261ac 412
91d25ba8
RZ
413 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
414 entry = ERR_PTR(-EIO);
415 goto out_unlock;
416 }
417
642261ac
RZ
418 if (entry) {
419 if (size_flag & RADIX_DAX_PMD) {
91d25ba8 420 if (dax_is_pte_entry(entry)) {
642261ac
RZ
421 put_unlocked_mapping_entry(mapping, index,
422 entry);
423 entry = ERR_PTR(-EEXIST);
424 goto out_unlock;
425 }
426 } else { /* trying to grab a PTE entry */
91d25ba8 427 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
428 (dax_is_zero_entry(entry) ||
429 dax_is_empty_entry(entry))) {
430 pmd_downgrade = true;
431 }
432 }
433 }
434
ac401cc7 435 /* No entry for given index? Make sure radix tree is big enough. */
642261ac 436 if (!entry || pmd_downgrade) {
ac401cc7
JK
437 int err;
438
642261ac
RZ
439 if (pmd_downgrade) {
440 /*
441 * Make sure 'entry' remains valid while we drop
b93b0163 442 * the i_pages lock.
642261ac
RZ
443 */
444 entry = lock_slot(mapping, slot);
445 }
446
b93b0163 447 xa_unlock_irq(&mapping->i_pages);
642261ac
RZ
448 /*
449 * Besides huge zero pages the only other thing that gets
450 * downgraded are empty entries which don't need to be
451 * unmapped.
452 */
453 if (pmd_downgrade && dax_is_zero_entry(entry))
977fbdcd
MW
454 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
455 PG_PMD_NR, false);
642261ac 456
ac401cc7
JK
457 err = radix_tree_preload(
458 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
0cb80b48
JK
459 if (err) {
460 if (pmd_downgrade)
91d25ba8 461 put_locked_mapping_entry(mapping, index);
ac401cc7 462 return ERR_PTR(err);
0cb80b48 463 }
b93b0163 464 xa_lock_irq(&mapping->i_pages);
642261ac 465
e11f8b7b
RZ
466 if (!entry) {
467 /*
b93b0163 468 * We needed to drop the i_pages lock while calling
e11f8b7b
RZ
469 * radix_tree_preload() and we didn't have an entry to
470 * lock. See if another thread inserted an entry at
471 * our index during this time.
472 */
b93b0163 473 entry = __radix_tree_lookup(&mapping->i_pages, index,
e11f8b7b
RZ
474 NULL, &slot);
475 if (entry) {
476 radix_tree_preload_end();
b93b0163 477 xa_unlock_irq(&mapping->i_pages);
e11f8b7b
RZ
478 goto restart;
479 }
480 }
481
642261ac 482 if (pmd_downgrade) {
d2c997c0 483 dax_disassociate_entry(entry, mapping, false);
b93b0163 484 radix_tree_delete(&mapping->i_pages, index);
642261ac
RZ
485 mapping->nrexceptional--;
486 dax_wake_mapping_entry_waiter(mapping, index, entry,
487 true);
488 }
489
490 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
491
b93b0163 492 err = __radix_tree_insert(&mapping->i_pages, index,
642261ac 493 dax_radix_order(entry), entry);
ac401cc7
JK
494 radix_tree_preload_end();
495 if (err) {
b93b0163 496 xa_unlock_irq(&mapping->i_pages);
642261ac 497 /*
e11f8b7b
RZ
498 * Our insertion of a DAX entry failed, most likely
499 * because we were inserting a PMD entry and it
500 * collided with a PTE sized entry at a different
501 * index in the PMD range. We haven't inserted
502 * anything into the radix tree and have no waiters to
503 * wake.
642261ac 504 */
ac401cc7
JK
505 return ERR_PTR(err);
506 }
507 /* Good, we have inserted empty locked entry into the tree. */
508 mapping->nrexceptional++;
b93b0163 509 xa_unlock_irq(&mapping->i_pages);
e3ad61c6 510 return entry;
ac401cc7 511 }
e3ad61c6 512 entry = lock_slot(mapping, slot);
642261ac 513 out_unlock:
b93b0163 514 xa_unlock_irq(&mapping->i_pages);
e3ad61c6 515 return entry;
ac401cc7
JK
516}
517
5fac7408
DW
518/**
519 * dax_layout_busy_page - find first pinned page in @mapping
520 * @mapping: address space to scan for a page with ref count > 1
521 *
522 * DAX requires ZONE_DEVICE mapped pages. These pages are never
523 * 'onlined' to the page allocator so they are considered idle when
524 * page->count == 1. A filesystem uses this interface to determine if
525 * any page in the mapping is busy, i.e. for DMA, or other
526 * get_user_pages() usages.
527 *
528 * It is expected that the filesystem is holding locks to block the
529 * establishment of new mappings in this address_space. I.e. it expects
530 * to be able to run unmap_mapping_range() and subsequently not race
531 * mapping_mapped() becoming true.
532 */
533struct page *dax_layout_busy_page(struct address_space *mapping)
534{
535 pgoff_t indices[PAGEVEC_SIZE];
536 struct page *page = NULL;
537 struct pagevec pvec;
538 pgoff_t index, end;
539 unsigned i;
540
541 /*
542 * In the 'limited' case get_user_pages() for dax is disabled.
543 */
544 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
545 return NULL;
546
547 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
548 return NULL;
549
550 pagevec_init(&pvec);
551 index = 0;
552 end = -1;
553
554 /*
555 * If we race get_user_pages_fast() here either we'll see the
556 * elevated page count in the pagevec_lookup and wait, or
557 * get_user_pages_fast() will see that the page it took a reference
558 * against is no longer mapped in the page tables and bail to the
559 * get_user_pages() slow path. The slow path is protected by
560 * pte_lock() and pmd_lock(). New references are not taken without
561 * holding those locks, and unmap_mapping_range() will not zero the
562 * pte or pmd without holding the respective lock, so we are
563 * guaranteed to either see new references or prevent new
564 * references from being established.
565 */
566 unmap_mapping_range(mapping, 0, 0, 1);
567
568 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
569 min(end - index, (pgoff_t)PAGEVEC_SIZE),
570 indices)) {
571 for (i = 0; i < pagevec_count(&pvec); i++) {
572 struct page *pvec_ent = pvec.pages[i];
573 void *entry;
574
575 index = indices[i];
576 if (index >= end)
577 break;
578
579 if (!radix_tree_exceptional_entry(pvec_ent))
580 continue;
581
582 xa_lock_irq(&mapping->i_pages);
583 entry = get_unlocked_mapping_entry(mapping, index, NULL);
584 if (entry)
585 page = dax_busy_page(entry);
586 put_unlocked_mapping_entry(mapping, index, entry);
587 xa_unlock_irq(&mapping->i_pages);
588 if (page)
589 break;
590 }
591 pagevec_remove_exceptionals(&pvec);
592 pagevec_release(&pvec);
593 index++;
594
595 if (page)
596 break;
597 }
598 return page;
599}
600EXPORT_SYMBOL_GPL(dax_layout_busy_page);
601
c6dcf52c
JK
602static int __dax_invalidate_mapping_entry(struct address_space *mapping,
603 pgoff_t index, bool trunc)
604{
605 int ret = 0;
606 void *entry;
b93b0163 607 struct radix_tree_root *pages = &mapping->i_pages;
c6dcf52c 608
b93b0163 609 xa_lock_irq(pages);
c6dcf52c 610 entry = get_unlocked_mapping_entry(mapping, index, NULL);
91d25ba8 611 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
c6dcf52c
JK
612 goto out;
613 if (!trunc &&
b93b0163
MW
614 (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
615 radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 616 goto out;
d2c997c0 617 dax_disassociate_entry(entry, mapping, trunc);
b93b0163 618 radix_tree_delete(pages, index);
c6dcf52c
JK
619 mapping->nrexceptional--;
620 ret = 1;
621out:
622 put_unlocked_mapping_entry(mapping, index, entry);
b93b0163 623 xa_unlock_irq(pages);
c6dcf52c
JK
624 return ret;
625}
ac401cc7
JK
626/*
627 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
628 * entry to get unlocked before deleting it.
629 */
630int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
631{
c6dcf52c 632 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
ac401cc7 633
ac401cc7
JK
634 /*
635 * This gets called from truncate / punch_hole path. As such, the caller
636 * must hold locks protecting against concurrent modifications of the
637 * radix tree (usually fs-private i_mmap_sem for writing). Since the
638 * caller has seen exceptional entry for this index, we better find it
639 * at that index as well...
640 */
c6dcf52c
JK
641 WARN_ON_ONCE(!ret);
642 return ret;
643}
644
c6dcf52c
JK
645/*
646 * Invalidate exceptional DAX entry if it is clean.
647 */
648int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
649 pgoff_t index)
650{
651 return __dax_invalidate_mapping_entry(mapping, index, false);
ac401cc7
JK
652}
653
cccbce67
DW
654static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
655 sector_t sector, size_t size, struct page *to,
656 unsigned long vaddr)
f7ca90b1 657{
cccbce67
DW
658 void *vto, *kaddr;
659 pgoff_t pgoff;
660 pfn_t pfn;
661 long rc;
662 int id;
663
664 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
665 if (rc)
666 return rc;
667
668 id = dax_read_lock();
669 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
670 if (rc < 0) {
671 dax_read_unlock(id);
672 return rc;
673 }
f7ca90b1 674 vto = kmap_atomic(to);
cccbce67 675 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 676 kunmap_atomic(vto);
cccbce67 677 dax_read_unlock(id);
f7ca90b1
MW
678 return 0;
679}
680
642261ac
RZ
681/*
682 * By this point grab_mapping_entry() has ensured that we have a locked entry
683 * of the appropriate size so we don't have to worry about downgrading PMDs to
684 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
685 * already in the tree, we will skip the insertion and just dirty the PMD as
686 * appropriate.
687 */
ac401cc7
JK
688static void *dax_insert_mapping_entry(struct address_space *mapping,
689 struct vm_fault *vmf,
3fe0791c 690 void *entry, pfn_t pfn_t,
f5b7b748 691 unsigned long flags, bool dirty)
9973c98e 692{
b93b0163 693 struct radix_tree_root *pages = &mapping->i_pages;
3fe0791c 694 unsigned long pfn = pfn_t_to_pfn(pfn_t);
ac401cc7 695 pgoff_t index = vmf->pgoff;
3fe0791c 696 void *new_entry;
9973c98e 697
f5b7b748 698 if (dirty)
d2b2a28e 699 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 700
91d25ba8
RZ
701 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
702 /* we are replacing a zero page with block mapping */
703 if (dax_is_pmd_entry(entry))
977fbdcd
MW
704 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
705 PG_PMD_NR, false);
91d25ba8 706 else /* pte entry */
977fbdcd 707 unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
9973c98e
RZ
708 }
709
b93b0163 710 xa_lock_irq(pages);
3fe0791c 711 new_entry = dax_radix_locked_entry(pfn, flags);
d2c997c0
DW
712 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
713 dax_disassociate_entry(entry, mapping, false);
73449daf 714 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
d2c997c0 715 }
642261ac 716
91d25ba8 717 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
642261ac
RZ
718 /*
719 * Only swap our new entry into the radix tree if the current
720 * entry is a zero page or an empty entry. If a normal PTE or
721 * PMD entry is already in the tree, we leave it alone. This
722 * means that if we are trying to insert a PTE and the
723 * existing entry is a PMD, we will just leave the PMD in the
724 * tree and dirty it if necessary.
725 */
f7942430 726 struct radix_tree_node *node;
ac401cc7
JK
727 void **slot;
728 void *ret;
9973c98e 729
b93b0163 730 ret = __radix_tree_lookup(pages, index, &node, &slot);
ac401cc7 731 WARN_ON_ONCE(ret != entry);
b93b0163 732 __radix_tree_replace(pages, node, slot,
c7df8ad2 733 new_entry, NULL);
91d25ba8 734 entry = new_entry;
9973c98e 735 }
91d25ba8 736
f5b7b748 737 if (dirty)
b93b0163 738 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
91d25ba8 739
b93b0163 740 xa_unlock_irq(pages);
91d25ba8 741 return entry;
9973c98e
RZ
742}
743
4b4bb46d
JK
744static inline unsigned long
745pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
746{
747 unsigned long address;
748
749 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
750 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
751 return address;
752}
753
754/* Walk all mappings of a given index of a file and writeprotect them */
755static void dax_mapping_entry_mkclean(struct address_space *mapping,
756 pgoff_t index, unsigned long pfn)
757{
758 struct vm_area_struct *vma;
f729c8c9
RZ
759 pte_t pte, *ptep = NULL;
760 pmd_t *pmdp = NULL;
4b4bb46d 761 spinlock_t *ptl;
4b4bb46d
JK
762
763 i_mmap_lock_read(mapping);
764 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
a4d1a885 765 unsigned long address, start, end;
4b4bb46d
JK
766
767 cond_resched();
768
769 if (!(vma->vm_flags & VM_SHARED))
770 continue;
771
772 address = pgoff_address(index, vma);
a4d1a885
JG
773
774 /*
775 * Note because we provide start/end to follow_pte_pmd it will
776 * call mmu_notifier_invalidate_range_start() on our behalf
777 * before taking any lock.
778 */
779 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
4b4bb46d 780 continue;
4b4bb46d 781
0f10851e
JG
782 /*
783 * No need to call mmu_notifier_invalidate_range() as we are
784 * downgrading page table protection not changing it to point
785 * to a new page.
786 *
ad56b738 787 * See Documentation/vm/mmu_notifier.rst
0f10851e 788 */
f729c8c9
RZ
789 if (pmdp) {
790#ifdef CONFIG_FS_DAX_PMD
791 pmd_t pmd;
792
793 if (pfn != pmd_pfn(*pmdp))
794 goto unlock_pmd;
f6f37321 795 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
796 goto unlock_pmd;
797
798 flush_cache_page(vma, address, pfn);
799 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
800 pmd = pmd_wrprotect(pmd);
801 pmd = pmd_mkclean(pmd);
802 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 803unlock_pmd:
f729c8c9 804#endif
ee190ca6 805 spin_unlock(ptl);
f729c8c9
RZ
806 } else {
807 if (pfn != pte_pfn(*ptep))
808 goto unlock_pte;
809 if (!pte_dirty(*ptep) && !pte_write(*ptep))
810 goto unlock_pte;
811
812 flush_cache_page(vma, address, pfn);
813 pte = ptep_clear_flush(vma, address, ptep);
814 pte = pte_wrprotect(pte);
815 pte = pte_mkclean(pte);
816 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
817unlock_pte:
818 pte_unmap_unlock(ptep, ptl);
819 }
4b4bb46d 820
a4d1a885 821 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
4b4bb46d
JK
822 }
823 i_mmap_unlock_read(mapping);
824}
825
3fe0791c
DW
826static int dax_writeback_one(struct dax_device *dax_dev,
827 struct address_space *mapping, pgoff_t index, void *entry)
9973c98e 828{
b93b0163 829 struct radix_tree_root *pages = &mapping->i_pages;
3fe0791c
DW
830 void *entry2, **slot;
831 unsigned long pfn;
832 long ret = 0;
cccbce67 833 size_t size;
9973c98e 834
9973c98e 835 /*
a6abc2c0
JK
836 * A page got tagged dirty in DAX mapping? Something is seriously
837 * wrong.
9973c98e 838 */
a6abc2c0
JK
839 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
840 return -EIO;
9973c98e 841
b93b0163 842 xa_lock_irq(pages);
a6abc2c0
JK
843 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
844 /* Entry got punched out / reallocated? */
91d25ba8 845 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
a6abc2c0
JK
846 goto put_unlocked;
847 /*
848 * Entry got reallocated elsewhere? No need to writeback. We have to
3fe0791c 849 * compare pfns as we must not bail out due to difference in lockbit
a6abc2c0
JK
850 * or entry type.
851 */
3fe0791c 852 if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
a6abc2c0 853 goto put_unlocked;
642261ac
RZ
854 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
855 dax_is_zero_entry(entry))) {
9973c98e 856 ret = -EIO;
a6abc2c0 857 goto put_unlocked;
9973c98e
RZ
858 }
859
a6abc2c0 860 /* Another fsync thread may have already written back this entry */
b93b0163 861 if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
a6abc2c0
JK
862 goto put_unlocked;
863 /* Lock the entry to serialize with page faults */
864 entry = lock_slot(mapping, slot);
865 /*
866 * We can clear the tag now but we have to be careful so that concurrent
867 * dax_writeback_one() calls for the same index cannot finish before we
868 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
869 * at the entry only under the i_pages lock and once they do that
870 * they will see the entry locked and wait for it to unlock.
a6abc2c0 871 */
b93b0163
MW
872 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
873 xa_unlock_irq(pages);
a6abc2c0 874
642261ac
RZ
875 /*
876 * Even if dax_writeback_mapping_range() was given a wbc->range_start
877 * in the middle of a PMD, the 'index' we are given will be aligned to
3fe0791c
DW
878 * the start index of the PMD, as will the pfn we pull from 'entry'.
879 * This allows us to flush for PMD_SIZE and not have to worry about
880 * partial PMD writebacks.
642261ac 881 */
3fe0791c 882 pfn = dax_radix_pfn(entry);
cccbce67
DW
883 size = PAGE_SIZE << dax_radix_order(entry);
884
3fe0791c
DW
885 dax_mapping_entry_mkclean(mapping, index, pfn);
886 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
4b4bb46d
JK
887 /*
888 * After we have flushed the cache, we can clear the dirty tag. There
889 * cannot be new dirty data in the pfn after the flush has completed as
890 * the pfn mappings are writeprotected and fault waits for mapping
891 * entry lock.
892 */
b93b0163
MW
893 xa_lock_irq(pages);
894 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
895 xa_unlock_irq(pages);
f9bc3a07 896 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
91d25ba8 897 put_locked_mapping_entry(mapping, index);
9973c98e
RZ
898 return ret;
899
a6abc2c0
JK
900 put_unlocked:
901 put_unlocked_mapping_entry(mapping, index, entry2);
b93b0163 902 xa_unlock_irq(pages);
9973c98e
RZ
903 return ret;
904}
905
906/*
907 * Flush the mapping to the persistent domain within the byte range of [start,
908 * end]. This is required by data integrity operations to ensure file data is
909 * on persistent storage prior to completion of the operation.
910 */
7f6d5b52
RZ
911int dax_writeback_mapping_range(struct address_space *mapping,
912 struct block_device *bdev, struct writeback_control *wbc)
9973c98e
RZ
913{
914 struct inode *inode = mapping->host;
642261ac 915 pgoff_t start_index, end_index;
9973c98e 916 pgoff_t indices[PAGEVEC_SIZE];
cccbce67 917 struct dax_device *dax_dev;
9973c98e
RZ
918 struct pagevec pvec;
919 bool done = false;
920 int i, ret = 0;
9973c98e
RZ
921
922 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
923 return -EIO;
924
7f6d5b52
RZ
925 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
926 return 0;
927
cccbce67
DW
928 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
929 if (!dax_dev)
930 return -EIO;
931
09cbfeaf
KS
932 start_index = wbc->range_start >> PAGE_SHIFT;
933 end_index = wbc->range_end >> PAGE_SHIFT;
9973c98e 934
d14a3f48
RZ
935 trace_dax_writeback_range(inode, start_index, end_index);
936
9973c98e
RZ
937 tag_pages_for_writeback(mapping, start_index, end_index);
938
86679820 939 pagevec_init(&pvec);
9973c98e
RZ
940 while (!done) {
941 pvec.nr = find_get_entries_tag(mapping, start_index,
942 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
943 pvec.pages, indices);
944
945 if (pvec.nr == 0)
946 break;
947
948 for (i = 0; i < pvec.nr; i++) {
949 if (indices[i] > end_index) {
950 done = true;
951 break;
952 }
953
3fe0791c
DW
954 ret = dax_writeback_one(dax_dev, mapping, indices[i],
955 pvec.pages[i]);
819ec6b9
JL
956 if (ret < 0) {
957 mapping_set_error(mapping, ret);
d14a3f48 958 goto out;
819ec6b9 959 }
9973c98e 960 }
1eb643d0 961 start_index = indices[pvec.nr - 1] + 1;
9973c98e 962 }
d14a3f48 963out:
cccbce67 964 put_dax(dax_dev);
d14a3f48
RZ
965 trace_dax_writeback_range_done(inode, start_index, end_index);
966 return (ret < 0 ? ret : 0);
9973c98e
RZ
967}
968EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
969
31a6f1a6 970static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 971{
a3841f94 972 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
973}
974
5e161e40
JK
975static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
976 pfn_t *pfnp)
f7ca90b1 977{
31a6f1a6 978 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67 979 pgoff_t pgoff;
5e161e40 980 void *kaddr;
cccbce67 981 int id, rc;
5e161e40 982 long length;
f7ca90b1 983
5e161e40 984 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
985 if (rc)
986 return rc;
cccbce67 987 id = dax_read_lock();
5e161e40
JK
988 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
989 &kaddr, pfnp);
990 if (length < 0) {
991 rc = length;
992 goto out;
cccbce67 993 }
5e161e40
JK
994 rc = -EINVAL;
995 if (PFN_PHYS(length) < size)
996 goto out;
997 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
998 goto out;
999 /* For larger pages we need devmap */
1000 if (length > 1 && !pfn_t_devmap(*pfnp))
1001 goto out;
1002 rc = 0;
1003out:
cccbce67 1004 dax_read_unlock(id);
5e161e40 1005 return rc;
0e3b210c 1006}
0e3b210c 1007
e30331ff 1008/*
91d25ba8
RZ
1009 * The user has performed a load from a hole in the file. Allocating a new
1010 * page in the file would cause excessive storage usage for workloads with
1011 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1012 * If this page is ever written to we will re-fault and change the mapping to
1013 * point to real DAX storage instead.
e30331ff 1014 */
ab77dab4 1015static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
e30331ff
RZ
1016 struct vm_fault *vmf)
1017{
1018 struct inode *inode = mapping->host;
91d25ba8 1019 unsigned long vaddr = vmf->address;
ab77dab4 1020 vm_fault_t ret = VM_FAULT_NOPAGE;
91d25ba8 1021 struct page *zero_page;
3fe0791c 1022 pfn_t pfn;
e30331ff 1023
91d25ba8
RZ
1024 zero_page = ZERO_PAGE(0);
1025 if (unlikely(!zero_page)) {
e30331ff
RZ
1026 ret = VM_FAULT_OOM;
1027 goto out;
1028 }
1029
3fe0791c 1030 pfn = page_to_pfn_t(zero_page);
cc4a90ac
MW
1031 dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1032 false);
ab77dab4 1033 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1034out:
1035 trace_dax_load_hole(inode, vmf, ret);
1036 return ret;
1037}
1038
4b0228fa
VV
1039static bool dax_range_is_aligned(struct block_device *bdev,
1040 unsigned int offset, unsigned int length)
1041{
1042 unsigned short sector_size = bdev_logical_block_size(bdev);
1043
1044 if (!IS_ALIGNED(offset, sector_size))
1045 return false;
1046 if (!IS_ALIGNED(length, sector_size))
1047 return false;
1048
1049 return true;
1050}
1051
cccbce67
DW
1052int __dax_zero_page_range(struct block_device *bdev,
1053 struct dax_device *dax_dev, sector_t sector,
1054 unsigned int offset, unsigned int size)
679c8bd3 1055{
cccbce67
DW
1056 if (dax_range_is_aligned(bdev, offset, size)) {
1057 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1058
1059 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1060 size >> 9, GFP_NOFS, 0);
4b0228fa 1061 } else {
cccbce67
DW
1062 pgoff_t pgoff;
1063 long rc, id;
1064 void *kaddr;
1065 pfn_t pfn;
1066
e84b83b9 1067 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1068 if (rc)
1069 return rc;
1070
1071 id = dax_read_lock();
e84b83b9 1072 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
cccbce67
DW
1073 &pfn);
1074 if (rc < 0) {
1075 dax_read_unlock(id);
1076 return rc;
1077 }
81f55870 1078 memset(kaddr + offset, 0, size);
c3ca015f 1079 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1080 dax_read_unlock(id);
4b0228fa 1081 }
679c8bd3
CH
1082 return 0;
1083}
1084EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1085
a254e568 1086static loff_t
11c59c92 1087dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1088 struct iomap *iomap)
1089{
cccbce67
DW
1090 struct block_device *bdev = iomap->bdev;
1091 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1092 struct iov_iter *iter = data;
1093 loff_t end = pos + length, done = 0;
1094 ssize_t ret = 0;
a77d4786 1095 size_t xfer;
cccbce67 1096 int id;
a254e568
CH
1097
1098 if (iov_iter_rw(iter) == READ) {
1099 end = min(end, i_size_read(inode));
1100 if (pos >= end)
1101 return 0;
1102
1103 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1104 return iov_iter_zero(min(length, end - pos), iter);
1105 }
1106
1107 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1108 return -EIO;
1109
e3fce68c
JK
1110 /*
1111 * Write can allocate block for an area which has a hole page mapped
1112 * into page tables. We have to tear down these mappings so that data
1113 * written by write(2) is visible in mmap.
1114 */
cd656375 1115 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1116 invalidate_inode_pages2_range(inode->i_mapping,
1117 pos >> PAGE_SHIFT,
1118 (end - 1) >> PAGE_SHIFT);
1119 }
1120
cccbce67 1121 id = dax_read_lock();
a254e568
CH
1122 while (pos < end) {
1123 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1124 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1125 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1126 ssize_t map_len;
cccbce67
DW
1127 pgoff_t pgoff;
1128 void *kaddr;
1129 pfn_t pfn;
a254e568 1130
d1908f52
MH
1131 if (fatal_signal_pending(current)) {
1132 ret = -EINTR;
1133 break;
1134 }
1135
cccbce67
DW
1136 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1137 if (ret)
1138 break;
1139
1140 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1141 &kaddr, &pfn);
a254e568
CH
1142 if (map_len < 0) {
1143 ret = map_len;
1144 break;
1145 }
1146
cccbce67
DW
1147 map_len = PFN_PHYS(map_len);
1148 kaddr += offset;
a254e568
CH
1149 map_len -= offset;
1150 if (map_len > end - pos)
1151 map_len = end - pos;
1152
a2e050f5
RZ
1153 /*
1154 * The userspace address for the memory copy has already been
1155 * validated via access_ok() in either vfs_read() or
1156 * vfs_write(), depending on which operation we are doing.
1157 */
a254e568 1158 if (iov_iter_rw(iter) == WRITE)
a77d4786 1159 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1160 map_len, iter);
a254e568 1161 else
a77d4786 1162 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1163 map_len, iter);
a254e568 1164
a77d4786
DW
1165 pos += xfer;
1166 length -= xfer;
1167 done += xfer;
1168
1169 if (xfer == 0)
1170 ret = -EFAULT;
1171 if (xfer < map_len)
1172 break;
a254e568 1173 }
cccbce67 1174 dax_read_unlock(id);
a254e568
CH
1175
1176 return done ? done : ret;
1177}
1178
1179/**
11c59c92 1180 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1181 * @iocb: The control block for this I/O
1182 * @iter: The addresses to do I/O from or to
1183 * @ops: iomap ops passed from the file system
1184 *
1185 * This function performs read and write operations to directly mapped
1186 * persistent memory. The callers needs to take care of read/write exclusion
1187 * and evicting any page cache pages in the region under I/O.
1188 */
1189ssize_t
11c59c92 1190dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1191 const struct iomap_ops *ops)
a254e568
CH
1192{
1193 struct address_space *mapping = iocb->ki_filp->f_mapping;
1194 struct inode *inode = mapping->host;
1195 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1196 unsigned flags = 0;
1197
168316db
CH
1198 if (iov_iter_rw(iter) == WRITE) {
1199 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1200 flags |= IOMAP_WRITE;
168316db
CH
1201 } else {
1202 lockdep_assert_held(&inode->i_rwsem);
1203 }
a254e568 1204
a254e568
CH
1205 while (iov_iter_count(iter)) {
1206 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1207 iter, dax_iomap_actor);
a254e568
CH
1208 if (ret <= 0)
1209 break;
1210 pos += ret;
1211 done += ret;
1212 }
1213
1214 iocb->ki_pos += done;
1215 return done ? done : ret;
1216}
11c59c92 1217EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1218
ab77dab4 1219static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1220{
1221 if (error == 0)
1222 return VM_FAULT_NOPAGE;
1223 if (error == -ENOMEM)
1224 return VM_FAULT_OOM;
1225 return VM_FAULT_SIGBUS;
1226}
1227
aaa422c4
DW
1228/*
1229 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1230 * flushed on write-faults (non-cow), but not read-faults.
1231 */
1232static bool dax_fault_is_synchronous(unsigned long flags,
1233 struct vm_area_struct *vma, struct iomap *iomap)
1234{
1235 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1236 && (iomap->flags & IOMAP_F_DIRTY);
1237}
1238
ab77dab4 1239static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1240 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1241{
a0987ad5
JK
1242 struct vm_area_struct *vma = vmf->vma;
1243 struct address_space *mapping = vma->vm_file->f_mapping;
a7d73fe6 1244 struct inode *inode = mapping->host;
1a29d85e 1245 unsigned long vaddr = vmf->address;
a7d73fe6 1246 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1247 struct iomap iomap = { 0 };
9484ab1b 1248 unsigned flags = IOMAP_FAULT;
a7d73fe6 1249 int error, major = 0;
d2c43ef1 1250 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1251 bool sync;
ab77dab4 1252 vm_fault_t ret = 0;
a7d73fe6 1253 void *entry;
1b5a1cb2 1254 pfn_t pfn;
a7d73fe6 1255
ab77dab4 1256 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1257 /*
1258 * Check whether offset isn't beyond end of file now. Caller is supposed
1259 * to hold locks serializing us with truncate / punch hole so this is
1260 * a reliable test.
1261 */
a9c42b33 1262 if (pos >= i_size_read(inode)) {
ab77dab4 1263 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1264 goto out;
1265 }
a7d73fe6 1266
d2c43ef1 1267 if (write && !vmf->cow_page)
a7d73fe6
CH
1268 flags |= IOMAP_WRITE;
1269
13e451fd
JK
1270 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1271 if (IS_ERR(entry)) {
ab77dab4 1272 ret = dax_fault_return(PTR_ERR(entry));
13e451fd
JK
1273 goto out;
1274 }
1275
e2093926
RZ
1276 /*
1277 * It is possible, particularly with mixed reads & writes to private
1278 * mappings, that we have raced with a PMD fault that overlaps with
1279 * the PTE we need to set up. If so just return and the fault will be
1280 * retried.
1281 */
1282 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1283 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1284 goto unlock_entry;
1285 }
1286
a7d73fe6
CH
1287 /*
1288 * Note that we don't bother to use iomap_apply here: DAX required
1289 * the file system block size to be equal the page size, which means
1290 * that we never have to deal with more than a single extent here.
1291 */
1292 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1293 if (iomap_errp)
1294 *iomap_errp = error;
a9c42b33 1295 if (error) {
ab77dab4 1296 ret = dax_fault_return(error);
13e451fd 1297 goto unlock_entry;
a9c42b33 1298 }
a7d73fe6 1299 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1300 error = -EIO; /* fs corruption? */
1301 goto error_finish_iomap;
a7d73fe6
CH
1302 }
1303
a7d73fe6 1304 if (vmf->cow_page) {
31a6f1a6
JK
1305 sector_t sector = dax_iomap_sector(&iomap, pos);
1306
a7d73fe6
CH
1307 switch (iomap.type) {
1308 case IOMAP_HOLE:
1309 case IOMAP_UNWRITTEN:
1310 clear_user_highpage(vmf->cow_page, vaddr);
1311 break;
1312 case IOMAP_MAPPED:
cccbce67
DW
1313 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1314 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1315 break;
1316 default:
1317 WARN_ON_ONCE(1);
1318 error = -EIO;
1319 break;
1320 }
1321
1322 if (error)
13e451fd 1323 goto error_finish_iomap;
b1aa812b
JK
1324
1325 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1326 ret = finish_fault(vmf);
1327 if (!ret)
1328 ret = VM_FAULT_DONE_COW;
13e451fd 1329 goto finish_iomap;
a7d73fe6
CH
1330 }
1331
aaa422c4 1332 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1333
a7d73fe6
CH
1334 switch (iomap.type) {
1335 case IOMAP_MAPPED:
1336 if (iomap.flags & IOMAP_F_NEW) {
1337 count_vm_event(PGMAJFAULT);
a0987ad5 1338 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1339 major = VM_FAULT_MAJOR;
1340 }
1b5a1cb2
JK
1341 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1342 if (error < 0)
1343 goto error_finish_iomap;
1344
3fe0791c 1345 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
caa51d26 1346 0, write && !sync);
1b5a1cb2 1347
caa51d26
JK
1348 /*
1349 * If we are doing synchronous page fault and inode needs fsync,
1350 * we can insert PTE into page tables only after that happens.
1351 * Skip insertion for now and return the pfn so that caller can
1352 * insert it after fsync is done.
1353 */
1354 if (sync) {
1355 if (WARN_ON_ONCE(!pfnp)) {
1356 error = -EIO;
1357 goto error_finish_iomap;
1358 }
1359 *pfnp = pfn;
ab77dab4 1360 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1361 goto finish_iomap;
1362 }
1b5a1cb2
JK
1363 trace_dax_insert_mapping(inode, vmf, entry);
1364 if (write)
ab77dab4 1365 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1366 else
ab77dab4 1367 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1368
ab77dab4 1369 goto finish_iomap;
a7d73fe6
CH
1370 case IOMAP_UNWRITTEN:
1371 case IOMAP_HOLE:
d2c43ef1 1372 if (!write) {
ab77dab4 1373 ret = dax_load_hole(mapping, entry, vmf);
13e451fd 1374 goto finish_iomap;
1550290b 1375 }
a7d73fe6
CH
1376 /*FALLTHRU*/
1377 default:
1378 WARN_ON_ONCE(1);
1379 error = -EIO;
1380 break;
1381 }
1382
13e451fd 1383 error_finish_iomap:
ab77dab4 1384 ret = dax_fault_return(error);
9f141d6e
JK
1385 finish_iomap:
1386 if (ops->iomap_end) {
1387 int copied = PAGE_SIZE;
1388
ab77dab4 1389 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1390 copied = 0;
1391 /*
1392 * The fault is done by now and there's no way back (other
1393 * thread may be already happily using PTE we have installed).
1394 * Just ignore error from ->iomap_end since we cannot do much
1395 * with it.
1396 */
1397 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1398 }
13e451fd 1399 unlock_entry:
91d25ba8 1400 put_locked_mapping_entry(mapping, vmf->pgoff);
13e451fd 1401 out:
ab77dab4
SJ
1402 trace_dax_pte_fault_done(inode, vmf, ret);
1403 return ret | major;
a7d73fe6 1404}
642261ac
RZ
1405
1406#ifdef CONFIG_FS_DAX_PMD
ab77dab4 1407static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
91d25ba8 1408 void *entry)
642261ac 1409{
f4200391
DJ
1410 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1411 unsigned long pmd_addr = vmf->address & PMD_MASK;
653b2ea3 1412 struct inode *inode = mapping->host;
642261ac 1413 struct page *zero_page;
653b2ea3 1414 void *ret = NULL;
642261ac
RZ
1415 spinlock_t *ptl;
1416 pmd_t pmd_entry;
3fe0791c 1417 pfn_t pfn;
642261ac 1418
f4200391 1419 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1420
1421 if (unlikely(!zero_page))
653b2ea3 1422 goto fallback;
642261ac 1423
3fe0791c
DW
1424 pfn = page_to_pfn_t(zero_page);
1425 ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
f5b7b748 1426 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
642261ac 1427
f4200391
DJ
1428 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1429 if (!pmd_none(*(vmf->pmd))) {
642261ac 1430 spin_unlock(ptl);
653b2ea3 1431 goto fallback;
642261ac
RZ
1432 }
1433
f4200391 1434 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1435 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1436 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1437 spin_unlock(ptl);
f4200391 1438 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
642261ac 1439 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1440
1441fallback:
f4200391 1442 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
653b2ea3 1443 return VM_FAULT_FALLBACK;
642261ac
RZ
1444}
1445
ab77dab4 1446static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1447 const struct iomap_ops *ops)
642261ac 1448{
f4200391 1449 struct vm_area_struct *vma = vmf->vma;
642261ac 1450 struct address_space *mapping = vma->vm_file->f_mapping;
d8a849e1
DJ
1451 unsigned long pmd_addr = vmf->address & PMD_MASK;
1452 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1453 bool sync;
9484ab1b 1454 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1455 struct inode *inode = mapping->host;
ab77dab4 1456 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac
RZ
1457 struct iomap iomap = { 0 };
1458 pgoff_t max_pgoff, pgoff;
642261ac
RZ
1459 void *entry;
1460 loff_t pos;
1461 int error;
302a5e31 1462 pfn_t pfn;
642261ac 1463
282a8e03
RZ
1464 /*
1465 * Check whether offset isn't beyond end of file now. Caller is
1466 * supposed to hold locks serializing us with truncate / punch hole so
1467 * this is a reliable test.
1468 */
1469 pgoff = linear_page_index(vma, pmd_addr);
957ac8c4 1470 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1471
f4200391 1472 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1473
fffa281b
RZ
1474 /*
1475 * Make sure that the faulting address's PMD offset (color) matches
1476 * the PMD offset from the start of the file. This is necessary so
1477 * that a PMD range in the page table overlaps exactly with a PMD
1478 * range in the radix tree.
1479 */
1480 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1481 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1482 goto fallback;
1483
642261ac
RZ
1484 /* Fall back to PTEs if we're going to COW */
1485 if (write && !(vma->vm_flags & VM_SHARED))
1486 goto fallback;
1487
1488 /* If the PMD would extend outside the VMA */
1489 if (pmd_addr < vma->vm_start)
1490 goto fallback;
1491 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1492 goto fallback;
1493
957ac8c4 1494 if (pgoff >= max_pgoff) {
282a8e03
RZ
1495 result = VM_FAULT_SIGBUS;
1496 goto out;
1497 }
642261ac
RZ
1498
1499 /* If the PMD would extend beyond the file size */
957ac8c4 1500 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1501 goto fallback;
1502
876f2946 1503 /*
91d25ba8
RZ
1504 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1505 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1506 * is already in the tree, for instance), it will return -EEXIST and
1507 * we just fall back to 4k entries.
876f2946
RZ
1508 */
1509 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1510 if (IS_ERR(entry))
1511 goto fallback;
1512
e2093926
RZ
1513 /*
1514 * It is possible, particularly with mixed reads & writes to private
1515 * mappings, that we have raced with a PTE fault that overlaps with
1516 * the PMD we need to set up. If so just return and the fault will be
1517 * retried.
1518 */
1519 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1520 !pmd_devmap(*vmf->pmd)) {
1521 result = 0;
1522 goto unlock_entry;
1523 }
1524
642261ac
RZ
1525 /*
1526 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1527 * setting up a mapping, so really we're using iomap_begin() as a way
1528 * to look up our filesystem block.
1529 */
1530 pos = (loff_t)pgoff << PAGE_SHIFT;
1531 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1532 if (error)
876f2946 1533 goto unlock_entry;
9f141d6e 1534
642261ac
RZ
1535 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1536 goto finish_iomap;
1537
aaa422c4 1538 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1539
642261ac
RZ
1540 switch (iomap.type) {
1541 case IOMAP_MAPPED:
302a5e31
JK
1542 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1543 if (error < 0)
1544 goto finish_iomap;
1545
3fe0791c 1546 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
caa51d26 1547 RADIX_DAX_PMD, write && !sync);
302a5e31 1548
caa51d26
JK
1549 /*
1550 * If we are doing synchronous page fault and inode needs fsync,
1551 * we can insert PMD into page tables only after that happens.
1552 * Skip insertion for now and return the pfn so that caller can
1553 * insert it after fsync is done.
1554 */
1555 if (sync) {
1556 if (WARN_ON_ONCE(!pfnp))
1557 goto finish_iomap;
1558 *pfnp = pfn;
1559 result = VM_FAULT_NEEDDSYNC;
1560 goto finish_iomap;
1561 }
1562
302a5e31
JK
1563 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1564 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1565 write);
642261ac
RZ
1566 break;
1567 case IOMAP_UNWRITTEN:
1568 case IOMAP_HOLE:
1569 if (WARN_ON_ONCE(write))
876f2946 1570 break;
91d25ba8 1571 result = dax_pmd_load_hole(vmf, &iomap, entry);
642261ac
RZ
1572 break;
1573 default:
1574 WARN_ON_ONCE(1);
1575 break;
1576 }
1577
1578 finish_iomap:
1579 if (ops->iomap_end) {
9f141d6e
JK
1580 int copied = PMD_SIZE;
1581
1582 if (result == VM_FAULT_FALLBACK)
1583 copied = 0;
1584 /*
1585 * The fault is done by now and there's no way back (other
1586 * thread may be already happily using PMD we have installed).
1587 * Just ignore error from ->iomap_end since we cannot do much
1588 * with it.
1589 */
1590 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1591 &iomap);
642261ac 1592 }
876f2946 1593 unlock_entry:
91d25ba8 1594 put_locked_mapping_entry(mapping, pgoff);
642261ac
RZ
1595 fallback:
1596 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1597 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1598 count_vm_event(THP_FAULT_FALLBACK);
1599 }
282a8e03 1600out:
f4200391 1601 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1602 return result;
1603}
a2d58167 1604#else
ab77dab4 1605static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1606 const struct iomap_ops *ops)
a2d58167
DJ
1607{
1608 return VM_FAULT_FALLBACK;
1609}
642261ac 1610#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1611
1612/**
1613 * dax_iomap_fault - handle a page fault on a DAX file
1614 * @vmf: The description of the fault
cec04e8c 1615 * @pe_size: Size of the page to fault in
9a0dd422 1616 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1617 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1618 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1619 *
1620 * When a page fault occurs, filesystems may call this helper in
1621 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1622 * has done all the necessary locking for page fault to proceed
1623 * successfully.
1624 */
ab77dab4 1625vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1626 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1627{
c791ace1
DJ
1628 switch (pe_size) {
1629 case PE_SIZE_PTE:
c0b24625 1630 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1631 case PE_SIZE_PMD:
9a0dd422 1632 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1633 default:
1634 return VM_FAULT_FALLBACK;
1635 }
1636}
1637EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df
JK
1638
1639/**
1640 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1641 * @vmf: The description of the fault
1642 * @pe_size: Size of entry to be inserted
1643 * @pfn: PFN to insert
1644 *
1645 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1646 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1647 * as well.
1648 */
ab77dab4 1649static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
71eab6df
JK
1650 enum page_entry_size pe_size,
1651 pfn_t pfn)
1652{
1653 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1654 void *entry, **slot;
1655 pgoff_t index = vmf->pgoff;
ab77dab4 1656 vm_fault_t ret;
71eab6df 1657
b93b0163 1658 xa_lock_irq(&mapping->i_pages);
71eab6df
JK
1659 entry = get_unlocked_mapping_entry(mapping, index, &slot);
1660 /* Did we race with someone splitting entry or so? */
1661 if (!entry ||
1662 (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1663 (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1664 put_unlocked_mapping_entry(mapping, index, entry);
b93b0163 1665 xa_unlock_irq(&mapping->i_pages);
71eab6df
JK
1666 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1667 VM_FAULT_NOPAGE);
1668 return VM_FAULT_NOPAGE;
1669 }
b93b0163 1670 radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
71eab6df 1671 entry = lock_slot(mapping, slot);
b93b0163 1672 xa_unlock_irq(&mapping->i_pages);
71eab6df
JK
1673 switch (pe_size) {
1674 case PE_SIZE_PTE:
ab77dab4 1675 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df
JK
1676 break;
1677#ifdef CONFIG_FS_DAX_PMD
1678 case PE_SIZE_PMD:
ab77dab4 1679 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
71eab6df
JK
1680 pfn, true);
1681 break;
1682#endif
1683 default:
ab77dab4 1684 ret = VM_FAULT_FALLBACK;
71eab6df
JK
1685 }
1686 put_locked_mapping_entry(mapping, index);
ab77dab4
SJ
1687 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1688 return ret;
71eab6df
JK
1689}
1690
1691/**
1692 * dax_finish_sync_fault - finish synchronous page fault
1693 * @vmf: The description of the fault
1694 * @pe_size: Size of entry to be inserted
1695 * @pfn: PFN to insert
1696 *
1697 * This function ensures that the file range touched by the page fault is
1698 * stored persistently on the media and handles inserting of appropriate page
1699 * table entry.
1700 */
ab77dab4
SJ
1701vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1702 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1703{
1704 int err;
1705 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1706 size_t len = 0;
1707
1708 if (pe_size == PE_SIZE_PTE)
1709 len = PAGE_SIZE;
1710 else if (pe_size == PE_SIZE_PMD)
1711 len = PMD_SIZE;
1712 else
1713 WARN_ON_ONCE(1);
1714 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1715 if (err)
1716 return VM_FAULT_SIGBUS;
1717 return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1718}
1719EXPORT_SYMBOL_GPL(dax_finish_sync_fault);