dax: Convert dax writeback to XArray
[linux-block.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
289c6aed 28#include <linux/sched.h>
f361bf4a 29#include <linux/sched/signal.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
4b4bb46d 34#include <linux/mmu_notifier.h>
a254e568
CH
35#include <linux/iomap.h>
36#include "internal.h"
d475c634 37
282a8e03
RZ
38#define CREATE_TRACE_POINTS
39#include <trace/events/fs_dax.h>
40
cfc93c6c
MW
41static inline unsigned int pe_order(enum page_entry_size pe_size)
42{
43 if (pe_size == PE_SIZE_PTE)
44 return PAGE_SHIFT - PAGE_SHIFT;
45 if (pe_size == PE_SIZE_PMD)
46 return PMD_SHIFT - PAGE_SHIFT;
47 if (pe_size == PE_SIZE_PUD)
48 return PUD_SHIFT - PAGE_SHIFT;
49 return ~0;
50}
51
ac401cc7
JK
52/* We choose 4096 entries - same as per-zone page wait tables */
53#define DAX_WAIT_TABLE_BITS 12
54#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55
917f3452
RZ
56/* The 'colour' (ie low bits) within a PMD of a page offset. */
57#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 58#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 59
cfc93c6c
MW
60/* The order of a PMD entry */
61#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
62
ce95ab0f 63static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
64
65static int __init init_dax_wait_table(void)
66{
67 int i;
68
69 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 init_waitqueue_head(wait_table + i);
71 return 0;
72}
73fs_initcall(init_dax_wait_table);
74
527b19d0 75/*
3159f943
MW
76 * DAX pagecache entries use XArray value entries so they can't be mistaken
77 * for pages. We use one bit for locking, one bit for the entry size (PMD)
78 * and two more to tell us if the entry is a zero page or an empty entry that
79 * is just used for locking. In total four special bits.
527b19d0
RZ
80 *
81 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83 * block allocation.
84 */
3159f943
MW
85#define DAX_SHIFT (4)
86#define DAX_LOCKED (1UL << 0)
87#define DAX_PMD (1UL << 1)
88#define DAX_ZERO_PAGE (1UL << 2)
89#define DAX_EMPTY (1UL << 3)
527b19d0 90
a77d19f4 91static unsigned long dax_to_pfn(void *entry)
527b19d0 92{
3159f943 93 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
94}
95
a77d19f4 96static void *dax_make_locked(unsigned long pfn, unsigned long flags)
527b19d0 97{
3159f943
MW
98 return xa_mk_value(flags | ((unsigned long)pfn << DAX_SHIFT) |
99 DAX_LOCKED);
527b19d0
RZ
100}
101
cfc93c6c
MW
102static bool dax_is_locked(void *entry)
103{
104 return xa_to_value(entry) & DAX_LOCKED;
105}
106
a77d19f4 107static unsigned int dax_entry_order(void *entry)
527b19d0 108{
3159f943 109 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 110 return PMD_ORDER;
527b19d0
RZ
111 return 0;
112}
113
642261ac 114static int dax_is_pmd_entry(void *entry)
d1a5f2b4 115{
3159f943 116 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
117}
118
642261ac 119static int dax_is_pte_entry(void *entry)
d475c634 120{
3159f943 121 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
122}
123
642261ac 124static int dax_is_zero_entry(void *entry)
d475c634 125{
3159f943 126 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
127}
128
642261ac 129static int dax_is_empty_entry(void *entry)
b2e0d162 130{
3159f943 131 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
132}
133
ac401cc7 134/*
a77d19f4 135 * DAX page cache entry locking
ac401cc7
JK
136 */
137struct exceptional_entry_key {
ec4907ff 138 struct xarray *xa;
63e95b5c 139 pgoff_t entry_start;
ac401cc7
JK
140};
141
142struct wait_exceptional_entry_queue {
ac6424b9 143 wait_queue_entry_t wait;
ac401cc7
JK
144 struct exceptional_entry_key key;
145};
146
ec4907ff 147static wait_queue_head_t *dax_entry_waitqueue(struct xarray *xa,
63e95b5c
RZ
148 pgoff_t index, void *entry, struct exceptional_entry_key *key)
149{
150 unsigned long hash;
151
152 /*
153 * If 'entry' is a PMD, align the 'index' that we use for the wait
154 * queue to the start of that PMD. This ensures that all offsets in
155 * the range covered by the PMD map to the same bit lock.
156 */
642261ac 157 if (dax_is_pmd_entry(entry))
917f3452 158 index &= ~PG_PMD_COLOUR;
63e95b5c 159
ec4907ff 160 key->xa = xa;
63e95b5c
RZ
161 key->entry_start = index;
162
ec4907ff 163 hash = hash_long((unsigned long)xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
164 return wait_table + hash;
165}
166
ec4907ff
MW
167static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
169{
170 struct exceptional_entry_key *key = keyp;
171 struct wait_exceptional_entry_queue *ewait =
172 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
ec4907ff 174 if (key->xa != ewait->key.xa ||
63e95b5c 175 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
176 return 0;
177 return autoremove_wake_function(wait, mode, sync, NULL);
178}
179
e30331ff 180/*
b93b0163
MW
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
e30331ff 184 */
ec4907ff 185static void dax_wake_mapping_entry_waiter(struct xarray *xa,
e30331ff
RZ
186 pgoff_t index, void *entry, bool wake_all)
187{
188 struct exceptional_entry_key key;
189 wait_queue_head_t *wq;
190
ec4907ff 191 wq = dax_entry_waitqueue(xa, index, entry, &key);
e30331ff
RZ
192
193 /*
194 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 195 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
196 * So at this point all tasks that could have seen our entry locked
197 * must be in the waitqueue and the following check will see them.
198 */
199 if (waitqueue_active(wq))
200 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
201}
202
cfc93c6c
MW
203static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
204{
205 return dax_wake_mapping_entry_waiter(xas->xa, xas->xa_index, entry,
206 wake_all);
207}
208
209/*
210 * Look up entry in page cache, wait for it to become unlocked if it
211 * is a DAX entry and return it. The caller must subsequently call
212 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
213 * if it did.
214 *
215 * Must be called with the i_pages lock held.
216 */
217static void *get_unlocked_entry(struct xa_state *xas)
218{
219 void *entry;
220 struct wait_exceptional_entry_queue ewait;
221 wait_queue_head_t *wq;
222
223 init_wait(&ewait.wait);
224 ewait.wait.func = wake_exceptional_entry_func;
225
226 for (;;) {
227 entry = xas_load(xas);
228 if (!entry || xa_is_internal(entry) ||
229 WARN_ON_ONCE(!xa_is_value(entry)) ||
230 !dax_is_locked(entry))
231 return entry;
232
233 wq = dax_entry_waitqueue(xas->xa, xas->xa_index, entry,
234 &ewait.key);
235 prepare_to_wait_exclusive(wq, &ewait.wait,
236 TASK_UNINTERRUPTIBLE);
237 xas_unlock_irq(xas);
238 xas_reset(xas);
239 schedule();
240 finish_wait(wq, &ewait.wait);
241 xas_lock_irq(xas);
242 }
243}
244
245static void put_unlocked_entry(struct xa_state *xas, void *entry)
246{
247 /* If we were the only waiter woken, wake the next one */
248 if (entry)
249 dax_wake_entry(xas, entry, false);
250}
251
252/*
253 * We used the xa_state to get the entry, but then we locked the entry and
254 * dropped the xa_lock, so we know the xa_state is stale and must be reset
255 * before use.
256 */
257static void dax_unlock_entry(struct xa_state *xas, void *entry)
258{
259 void *old;
260
261 xas_reset(xas);
262 xas_lock_irq(xas);
263 old = xas_store(xas, entry);
264 xas_unlock_irq(xas);
265 BUG_ON(!dax_is_locked(old));
266 dax_wake_entry(xas, entry, false);
267}
268
269/*
270 * Return: The entry stored at this location before it was locked.
271 */
272static void *dax_lock_entry(struct xa_state *xas, void *entry)
273{
274 unsigned long v = xa_to_value(entry);
275 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
276}
277
ac401cc7 278/*
b93b0163
MW
279 * Check whether the given slot is locked. Must be called with the i_pages
280 * lock held.
ac401cc7
JK
281 */
282static inline int slot_locked(struct address_space *mapping, void **slot)
283{
3159f943
MW
284 unsigned long entry = xa_to_value(
285 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock));
286 return entry & DAX_LOCKED;
ac401cc7
JK
287}
288
289/*
b93b0163 290 * Mark the given slot as locked. Must be called with the i_pages lock held.
ac401cc7
JK
291 */
292static inline void *lock_slot(struct address_space *mapping, void **slot)
293{
3159f943
MW
294 unsigned long v = xa_to_value(
295 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock));
296 void *entry = xa_mk_value(v | DAX_LOCKED);
297 radix_tree_replace_slot(&mapping->i_pages, slot, entry);
298 return entry;
ac401cc7
JK
299}
300
301/*
b93b0163 302 * Mark the given slot as unlocked. Must be called with the i_pages lock held.
ac401cc7
JK
303 */
304static inline void *unlock_slot(struct address_space *mapping, void **slot)
305{
3159f943
MW
306 unsigned long v = xa_to_value(
307 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock));
308 void *entry = xa_mk_value(v & ~DAX_LOCKED);
309 radix_tree_replace_slot(&mapping->i_pages, slot, entry);
310 return entry;
ac401cc7
JK
311}
312
313/*
a77d19f4 314 * Lookup entry in page cache, wait for it to become unlocked if it is
3159f943 315 * a DAX entry and return it. The caller must call
ac401cc7
JK
316 * put_unlocked_mapping_entry() when he decided not to lock the entry or
317 * put_locked_mapping_entry() when he locked the entry and now wants to
318 * unlock it.
319 *
b93b0163 320 * Must be called with the i_pages lock held.
ac401cc7 321 */
c2a7d2a1
DW
322static void *__get_unlocked_mapping_entry(struct address_space *mapping,
323 pgoff_t index, void ***slotp, bool (*wait_fn)(void))
ac401cc7 324{
e3ad61c6 325 void *entry, **slot;
ac401cc7 326 struct wait_exceptional_entry_queue ewait;
63e95b5c 327 wait_queue_head_t *wq;
ac401cc7
JK
328
329 init_wait(&ewait.wait);
330 ewait.wait.func = wake_exceptional_entry_func;
ac401cc7
JK
331
332 for (;;) {
c2a7d2a1
DW
333 bool revalidate;
334
b93b0163 335 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
ac401cc7 336 &slot);
91d25ba8 337 if (!entry ||
3159f943 338 WARN_ON_ONCE(!xa_is_value(entry)) ||
ac401cc7
JK
339 !slot_locked(mapping, slot)) {
340 if (slotp)
341 *slotp = slot;
e3ad61c6 342 return entry;
ac401cc7 343 }
63e95b5c 344
ec4907ff
MW
345 wq = dax_entry_waitqueue(&mapping->i_pages, index, entry,
346 &ewait.key);
ac401cc7
JK
347 prepare_to_wait_exclusive(wq, &ewait.wait,
348 TASK_UNINTERRUPTIBLE);
b93b0163 349 xa_unlock_irq(&mapping->i_pages);
c2a7d2a1 350 revalidate = wait_fn();
ac401cc7 351 finish_wait(wq, &ewait.wait);
b93b0163 352 xa_lock_irq(&mapping->i_pages);
c2a7d2a1
DW
353 if (revalidate)
354 return ERR_PTR(-EAGAIN);
ac401cc7
JK
355 }
356}
357
c2a7d2a1
DW
358static bool entry_wait(void)
359{
360 schedule();
361 /*
362 * Never return an ERR_PTR() from
363 * __get_unlocked_mapping_entry(), just keep looping.
364 */
365 return false;
366}
367
368static void *get_unlocked_mapping_entry(struct address_space *mapping,
369 pgoff_t index, void ***slotp)
370{
371 return __get_unlocked_mapping_entry(mapping, index, slotp, entry_wait);
372}
373
374static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
b1aa812b
JK
375{
376 void *entry, **slot;
377
b93b0163
MW
378 xa_lock_irq(&mapping->i_pages);
379 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
3159f943 380 if (WARN_ON_ONCE(!entry || !xa_is_value(entry) ||
b1aa812b 381 !slot_locked(mapping, slot))) {
b93b0163 382 xa_unlock_irq(&mapping->i_pages);
b1aa812b
JK
383 return;
384 }
385 unlock_slot(mapping, slot);
b93b0163 386 xa_unlock_irq(&mapping->i_pages);
ec4907ff 387 dax_wake_mapping_entry_waiter(&mapping->i_pages, index, entry, false);
b1aa812b
JK
388}
389
422476c4 390static void put_locked_mapping_entry(struct address_space *mapping,
91d25ba8 391 pgoff_t index)
422476c4 392{
c2a7d2a1 393 unlock_mapping_entry(mapping, index);
422476c4
RZ
394}
395
396/*
a77d19f4 397 * Called when we are done with page cache entry we looked up via
422476c4
RZ
398 * get_unlocked_mapping_entry() and which we didn't lock in the end.
399 */
400static void put_unlocked_mapping_entry(struct address_space *mapping,
401 pgoff_t index, void *entry)
402{
91d25ba8 403 if (!entry)
422476c4
RZ
404 return;
405
a77d19f4 406 /* We have to wake up next waiter for the page cache entry lock */
ec4907ff 407 dax_wake_mapping_entry_waiter(&mapping->i_pages, index, entry, false);
422476c4
RZ
408}
409
d2c997c0
DW
410static unsigned long dax_entry_size(void *entry)
411{
412 if (dax_is_zero_entry(entry))
413 return 0;
414 else if (dax_is_empty_entry(entry))
415 return 0;
416 else if (dax_is_pmd_entry(entry))
417 return PMD_SIZE;
418 else
419 return PAGE_SIZE;
420}
421
a77d19f4 422static unsigned long dax_end_pfn(void *entry)
d2c997c0 423{
a77d19f4 424 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
425}
426
427/*
428 * Iterate through all mapped pfns represented by an entry, i.e. skip
429 * 'empty' and 'zero' entries.
430 */
431#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
432 for (pfn = dax_to_pfn(entry); \
433 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 434
73449daf
DW
435/*
436 * TODO: for reflink+dax we need a way to associate a single page with
437 * multiple address_space instances at different linear_page_index()
438 * offsets.
439 */
440static void dax_associate_entry(void *entry, struct address_space *mapping,
441 struct vm_area_struct *vma, unsigned long address)
d2c997c0 442{
73449daf
DW
443 unsigned long size = dax_entry_size(entry), pfn, index;
444 int i = 0;
d2c997c0
DW
445
446 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
447 return;
448
73449daf 449 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
450 for_each_mapped_pfn(entry, pfn) {
451 struct page *page = pfn_to_page(pfn);
452
453 WARN_ON_ONCE(page->mapping);
454 page->mapping = mapping;
73449daf 455 page->index = index + i++;
d2c997c0
DW
456 }
457}
458
459static void dax_disassociate_entry(void *entry, struct address_space *mapping,
460 bool trunc)
461{
462 unsigned long pfn;
463
464 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
465 return;
466
467 for_each_mapped_pfn(entry, pfn) {
468 struct page *page = pfn_to_page(pfn);
469
470 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
471 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
472 page->mapping = NULL;
73449daf 473 page->index = 0;
d2c997c0
DW
474 }
475}
476
5fac7408
DW
477static struct page *dax_busy_page(void *entry)
478{
479 unsigned long pfn;
480
481 for_each_mapped_pfn(entry, pfn) {
482 struct page *page = pfn_to_page(pfn);
483
484 if (page_ref_count(page) > 1)
485 return page;
486 }
487 return NULL;
488}
489
c2a7d2a1
DW
490static bool entry_wait_revalidate(void)
491{
492 rcu_read_unlock();
493 schedule();
494 rcu_read_lock();
495
496 /*
497 * Tell __get_unlocked_mapping_entry() to take a break, we need
498 * to revalidate page->mapping after dropping locks
499 */
500 return true;
501}
502
503bool dax_lock_mapping_entry(struct page *page)
504{
505 pgoff_t index;
506 struct inode *inode;
507 bool did_lock = false;
508 void *entry = NULL, **slot;
509 struct address_space *mapping;
510
511 rcu_read_lock();
512 for (;;) {
513 mapping = READ_ONCE(page->mapping);
514
515 if (!dax_mapping(mapping))
516 break;
517
518 /*
519 * In the device-dax case there's no need to lock, a
520 * struct dev_pagemap pin is sufficient to keep the
521 * inode alive, and we assume we have dev_pagemap pin
522 * otherwise we would not have a valid pfn_to_page()
523 * translation.
524 */
525 inode = mapping->host;
526 if (S_ISCHR(inode->i_mode)) {
527 did_lock = true;
528 break;
529 }
530
531 xa_lock_irq(&mapping->i_pages);
532 if (mapping != page->mapping) {
533 xa_unlock_irq(&mapping->i_pages);
534 continue;
535 }
536 index = page->index;
537
538 entry = __get_unlocked_mapping_entry(mapping, index, &slot,
539 entry_wait_revalidate);
540 if (!entry) {
541 xa_unlock_irq(&mapping->i_pages);
542 break;
543 } else if (IS_ERR(entry)) {
544 WARN_ON_ONCE(PTR_ERR(entry) != -EAGAIN);
545 continue;
546 }
547 lock_slot(mapping, slot);
548 did_lock = true;
549 xa_unlock_irq(&mapping->i_pages);
550 break;
551 }
552 rcu_read_unlock();
553
554 return did_lock;
555}
556
557void dax_unlock_mapping_entry(struct page *page)
558{
559 struct address_space *mapping = page->mapping;
560 struct inode *inode = mapping->host;
561
562 if (S_ISCHR(inode->i_mode))
563 return;
564
565 unlock_mapping_entry(mapping, page->index);
566}
567
ac401cc7 568/*
a77d19f4
MW
569 * Find page cache entry at given index. If it is a DAX entry, return it
570 * with the entry locked. If the page cache doesn't contain an entry at
571 * that index, add a locked empty entry.
ac401cc7 572 *
3159f943 573 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
642261ac 574 * either return that locked entry or will return an error. This error will
91d25ba8
RZ
575 * happen if there are any 4k entries within the 2MiB range that we are
576 * requesting.
642261ac
RZ
577 *
578 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
579 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
580 * insertion will fail if it finds any 4k entries already in the tree, and a
581 * 4k insertion will cause an existing 2MiB entry to be unmapped and
582 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
583 * well as 2MiB empty entries.
584 *
585 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
586 * real storage backing them. We will leave these real 2MiB DAX entries in
587 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
588 *
ac401cc7
JK
589 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
590 * persistent memory the benefit is doubtful. We can add that later if we can
591 * show it helps.
592 */
642261ac
RZ
593static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
594 unsigned long size_flag)
ac401cc7 595{
642261ac 596 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
e3ad61c6 597 void *entry, **slot;
ac401cc7
JK
598
599restart:
b93b0163 600 xa_lock_irq(&mapping->i_pages);
e3ad61c6 601 entry = get_unlocked_mapping_entry(mapping, index, &slot);
642261ac 602
3159f943 603 if (WARN_ON_ONCE(entry && !xa_is_value(entry))) {
91d25ba8
RZ
604 entry = ERR_PTR(-EIO);
605 goto out_unlock;
606 }
607
642261ac 608 if (entry) {
3159f943 609 if (size_flag & DAX_PMD) {
91d25ba8 610 if (dax_is_pte_entry(entry)) {
642261ac
RZ
611 put_unlocked_mapping_entry(mapping, index,
612 entry);
613 entry = ERR_PTR(-EEXIST);
614 goto out_unlock;
615 }
616 } else { /* trying to grab a PTE entry */
91d25ba8 617 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
618 (dax_is_zero_entry(entry) ||
619 dax_is_empty_entry(entry))) {
620 pmd_downgrade = true;
621 }
622 }
623 }
624
ac401cc7 625 /* No entry for given index? Make sure radix tree is big enough. */
642261ac 626 if (!entry || pmd_downgrade) {
ac401cc7
JK
627 int err;
628
642261ac
RZ
629 if (pmd_downgrade) {
630 /*
631 * Make sure 'entry' remains valid while we drop
b93b0163 632 * the i_pages lock.
642261ac
RZ
633 */
634 entry = lock_slot(mapping, slot);
635 }
636
b93b0163 637 xa_unlock_irq(&mapping->i_pages);
642261ac
RZ
638 /*
639 * Besides huge zero pages the only other thing that gets
640 * downgraded are empty entries which don't need to be
641 * unmapped.
642 */
643 if (pmd_downgrade && dax_is_zero_entry(entry))
977fbdcd
MW
644 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
645 PG_PMD_NR, false);
642261ac 646
ac401cc7
JK
647 err = radix_tree_preload(
648 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
0cb80b48
JK
649 if (err) {
650 if (pmd_downgrade)
91d25ba8 651 put_locked_mapping_entry(mapping, index);
ac401cc7 652 return ERR_PTR(err);
0cb80b48 653 }
b93b0163 654 xa_lock_irq(&mapping->i_pages);
642261ac 655
e11f8b7b
RZ
656 if (!entry) {
657 /*
b93b0163 658 * We needed to drop the i_pages lock while calling
e11f8b7b
RZ
659 * radix_tree_preload() and we didn't have an entry to
660 * lock. See if another thread inserted an entry at
661 * our index during this time.
662 */
b93b0163 663 entry = __radix_tree_lookup(&mapping->i_pages, index,
e11f8b7b
RZ
664 NULL, &slot);
665 if (entry) {
666 radix_tree_preload_end();
b93b0163 667 xa_unlock_irq(&mapping->i_pages);
e11f8b7b
RZ
668 goto restart;
669 }
670 }
671
642261ac 672 if (pmd_downgrade) {
d2c997c0 673 dax_disassociate_entry(entry, mapping, false);
b93b0163 674 radix_tree_delete(&mapping->i_pages, index);
642261ac 675 mapping->nrexceptional--;
ec4907ff
MW
676 dax_wake_mapping_entry_waiter(&mapping->i_pages,
677 index, entry, true);
642261ac
RZ
678 }
679
a77d19f4 680 entry = dax_make_locked(0, size_flag | DAX_EMPTY);
642261ac 681
b93b0163 682 err = __radix_tree_insert(&mapping->i_pages, index,
a77d19f4 683 dax_entry_order(entry), entry);
ac401cc7
JK
684 radix_tree_preload_end();
685 if (err) {
b93b0163 686 xa_unlock_irq(&mapping->i_pages);
642261ac 687 /*
e11f8b7b
RZ
688 * Our insertion of a DAX entry failed, most likely
689 * because we were inserting a PMD entry and it
690 * collided with a PTE sized entry at a different
691 * index in the PMD range. We haven't inserted
692 * anything into the radix tree and have no waiters to
693 * wake.
642261ac 694 */
ac401cc7
JK
695 return ERR_PTR(err);
696 }
697 /* Good, we have inserted empty locked entry into the tree. */
698 mapping->nrexceptional++;
b93b0163 699 xa_unlock_irq(&mapping->i_pages);
e3ad61c6 700 return entry;
ac401cc7 701 }
e3ad61c6 702 entry = lock_slot(mapping, slot);
642261ac 703 out_unlock:
b93b0163 704 xa_unlock_irq(&mapping->i_pages);
e3ad61c6 705 return entry;
ac401cc7
JK
706}
707
5fac7408
DW
708/**
709 * dax_layout_busy_page - find first pinned page in @mapping
710 * @mapping: address space to scan for a page with ref count > 1
711 *
712 * DAX requires ZONE_DEVICE mapped pages. These pages are never
713 * 'onlined' to the page allocator so they are considered idle when
714 * page->count == 1. A filesystem uses this interface to determine if
715 * any page in the mapping is busy, i.e. for DMA, or other
716 * get_user_pages() usages.
717 *
718 * It is expected that the filesystem is holding locks to block the
719 * establishment of new mappings in this address_space. I.e. it expects
720 * to be able to run unmap_mapping_range() and subsequently not race
721 * mapping_mapped() becoming true.
722 */
723struct page *dax_layout_busy_page(struct address_space *mapping)
724{
084a8990
MW
725 XA_STATE(xas, &mapping->i_pages, 0);
726 void *entry;
727 unsigned int scanned = 0;
5fac7408 728 struct page *page = NULL;
5fac7408
DW
729
730 /*
731 * In the 'limited' case get_user_pages() for dax is disabled.
732 */
733 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
734 return NULL;
735
736 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
737 return NULL;
738
5fac7408
DW
739 /*
740 * If we race get_user_pages_fast() here either we'll see the
084a8990 741 * elevated page count in the iteration and wait, or
5fac7408
DW
742 * get_user_pages_fast() will see that the page it took a reference
743 * against is no longer mapped in the page tables and bail to the
744 * get_user_pages() slow path. The slow path is protected by
745 * pte_lock() and pmd_lock(). New references are not taken without
746 * holding those locks, and unmap_mapping_range() will not zero the
747 * pte or pmd without holding the respective lock, so we are
748 * guaranteed to either see new references or prevent new
749 * references from being established.
750 */
751 unmap_mapping_range(mapping, 0, 0, 1);
752
084a8990
MW
753 xas_lock_irq(&xas);
754 xas_for_each(&xas, entry, ULONG_MAX) {
755 if (WARN_ON_ONCE(!xa_is_value(entry)))
756 continue;
757 if (unlikely(dax_is_locked(entry)))
758 entry = get_unlocked_entry(&xas);
759 if (entry)
760 page = dax_busy_page(entry);
761 put_unlocked_entry(&xas, entry);
5fac7408
DW
762 if (page)
763 break;
084a8990
MW
764 if (++scanned % XA_CHECK_SCHED)
765 continue;
766
767 xas_pause(&xas);
768 xas_unlock_irq(&xas);
769 cond_resched();
770 xas_lock_irq(&xas);
5fac7408 771 }
084a8990 772 xas_unlock_irq(&xas);
5fac7408
DW
773 return page;
774}
775EXPORT_SYMBOL_GPL(dax_layout_busy_page);
776
a77d19f4 777static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
778 pgoff_t index, bool trunc)
779{
07f2d89c 780 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
781 int ret = 0;
782 void *entry;
c6dcf52c 783
07f2d89c
MW
784 xas_lock_irq(&xas);
785 entry = get_unlocked_entry(&xas);
3159f943 786 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
787 goto out;
788 if (!trunc &&
07f2d89c
MW
789 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
790 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 791 goto out;
d2c997c0 792 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 793 xas_store(&xas, NULL);
c6dcf52c
JK
794 mapping->nrexceptional--;
795 ret = 1;
796out:
07f2d89c
MW
797 put_unlocked_entry(&xas, entry);
798 xas_unlock_irq(&xas);
c6dcf52c
JK
799 return ret;
800}
07f2d89c 801
ac401cc7 802/*
3159f943
MW
803 * Delete DAX entry at @index from @mapping. Wait for it
804 * to be unlocked before deleting it.
ac401cc7
JK
805 */
806int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
807{
a77d19f4 808 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 809
ac401cc7
JK
810 /*
811 * This gets called from truncate / punch_hole path. As such, the caller
812 * must hold locks protecting against concurrent modifications of the
a77d19f4 813 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 814 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
815 * at that index as well...
816 */
c6dcf52c
JK
817 WARN_ON_ONCE(!ret);
818 return ret;
819}
820
c6dcf52c 821/*
3159f943 822 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
823 */
824int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
825 pgoff_t index)
826{
a77d19f4 827 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
828}
829
cccbce67
DW
830static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
831 sector_t sector, size_t size, struct page *to,
832 unsigned long vaddr)
f7ca90b1 833{
cccbce67
DW
834 void *vto, *kaddr;
835 pgoff_t pgoff;
cccbce67
DW
836 long rc;
837 int id;
838
839 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
840 if (rc)
841 return rc;
842
843 id = dax_read_lock();
86ed913b 844 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
cccbce67
DW
845 if (rc < 0) {
846 dax_read_unlock(id);
847 return rc;
848 }
f7ca90b1 849 vto = kmap_atomic(to);
cccbce67 850 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 851 kunmap_atomic(vto);
cccbce67 852 dax_read_unlock(id);
f7ca90b1
MW
853 return 0;
854}
855
642261ac
RZ
856/*
857 * By this point grab_mapping_entry() has ensured that we have a locked entry
858 * of the appropriate size so we don't have to worry about downgrading PMDs to
859 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
860 * already in the tree, we will skip the insertion and just dirty the PMD as
861 * appropriate.
862 */
a77d19f4
MW
863static void *dax_insert_entry(struct address_space *mapping,
864 struct vm_fault *vmf,
865 void *entry, pfn_t pfn_t, unsigned long flags, bool dirty)
9973c98e 866{
b93b0163 867 struct radix_tree_root *pages = &mapping->i_pages;
3fe0791c 868 unsigned long pfn = pfn_t_to_pfn(pfn_t);
ac401cc7 869 pgoff_t index = vmf->pgoff;
3fe0791c 870 void *new_entry;
9973c98e 871
f5b7b748 872 if (dirty)
d2b2a28e 873 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 874
3159f943 875 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
91d25ba8
RZ
876 /* we are replacing a zero page with block mapping */
877 if (dax_is_pmd_entry(entry))
977fbdcd
MW
878 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
879 PG_PMD_NR, false);
91d25ba8 880 else /* pte entry */
977fbdcd 881 unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
9973c98e
RZ
882 }
883
b93b0163 884 xa_lock_irq(pages);
a77d19f4 885 new_entry = dax_make_locked(pfn, flags);
d2c997c0
DW
886 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
887 dax_disassociate_entry(entry, mapping, false);
73449daf 888 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
d2c997c0 889 }
642261ac 890
91d25ba8 891 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
642261ac 892 /*
a77d19f4 893 * Only swap our new entry into the page cache if the current
642261ac 894 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 895 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
896 * means that if we are trying to insert a PTE and the
897 * existing entry is a PMD, we will just leave the PMD in the
898 * tree and dirty it if necessary.
899 */
f7942430 900 struct radix_tree_node *node;
ac401cc7
JK
901 void **slot;
902 void *ret;
9973c98e 903
b93b0163 904 ret = __radix_tree_lookup(pages, index, &node, &slot);
ac401cc7 905 WARN_ON_ONCE(ret != entry);
b93b0163 906 __radix_tree_replace(pages, node, slot,
c7df8ad2 907 new_entry, NULL);
91d25ba8 908 entry = new_entry;
9973c98e 909 }
91d25ba8 910
f5b7b748 911 if (dirty)
b93b0163 912 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
91d25ba8 913
b93b0163 914 xa_unlock_irq(pages);
91d25ba8 915 return entry;
9973c98e
RZ
916}
917
a77d19f4
MW
918static inline
919unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
920{
921 unsigned long address;
922
923 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
924 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
925 return address;
926}
927
928/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
929static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
930 unsigned long pfn)
4b4bb46d
JK
931{
932 struct vm_area_struct *vma;
f729c8c9
RZ
933 pte_t pte, *ptep = NULL;
934 pmd_t *pmdp = NULL;
4b4bb46d 935 spinlock_t *ptl;
4b4bb46d
JK
936
937 i_mmap_lock_read(mapping);
938 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
a4d1a885 939 unsigned long address, start, end;
4b4bb46d
JK
940
941 cond_resched();
942
943 if (!(vma->vm_flags & VM_SHARED))
944 continue;
945
946 address = pgoff_address(index, vma);
a4d1a885
JG
947
948 /*
949 * Note because we provide start/end to follow_pte_pmd it will
950 * call mmu_notifier_invalidate_range_start() on our behalf
951 * before taking any lock.
952 */
953 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
4b4bb46d 954 continue;
4b4bb46d 955
0f10851e
JG
956 /*
957 * No need to call mmu_notifier_invalidate_range() as we are
958 * downgrading page table protection not changing it to point
959 * to a new page.
960 *
ad56b738 961 * See Documentation/vm/mmu_notifier.rst
0f10851e 962 */
f729c8c9
RZ
963 if (pmdp) {
964#ifdef CONFIG_FS_DAX_PMD
965 pmd_t pmd;
966
967 if (pfn != pmd_pfn(*pmdp))
968 goto unlock_pmd;
f6f37321 969 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
970 goto unlock_pmd;
971
972 flush_cache_page(vma, address, pfn);
973 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
974 pmd = pmd_wrprotect(pmd);
975 pmd = pmd_mkclean(pmd);
976 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 977unlock_pmd:
f729c8c9 978#endif
ee190ca6 979 spin_unlock(ptl);
f729c8c9
RZ
980 } else {
981 if (pfn != pte_pfn(*ptep))
982 goto unlock_pte;
983 if (!pte_dirty(*ptep) && !pte_write(*ptep))
984 goto unlock_pte;
985
986 flush_cache_page(vma, address, pfn);
987 pte = ptep_clear_flush(vma, address, ptep);
988 pte = pte_wrprotect(pte);
989 pte = pte_mkclean(pte);
990 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
991unlock_pte:
992 pte_unmap_unlock(ptep, ptl);
993 }
4b4bb46d 994
a4d1a885 995 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
4b4bb46d
JK
996 }
997 i_mmap_unlock_read(mapping);
998}
999
9fc747f6
MW
1000static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
1001 struct address_space *mapping, void *entry)
9973c98e 1002{
3fe0791c
DW
1003 unsigned long pfn;
1004 long ret = 0;
cccbce67 1005 size_t size;
9973c98e 1006
9973c98e 1007 /*
a6abc2c0
JK
1008 * A page got tagged dirty in DAX mapping? Something is seriously
1009 * wrong.
9973c98e 1010 */
3159f943 1011 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 1012 return -EIO;
9973c98e 1013
9fc747f6
MW
1014 if (unlikely(dax_is_locked(entry))) {
1015 void *old_entry = entry;
1016
1017 entry = get_unlocked_entry(xas);
1018
1019 /* Entry got punched out / reallocated? */
1020 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
1021 goto put_unlocked;
1022 /*
1023 * Entry got reallocated elsewhere? No need to writeback.
1024 * We have to compare pfns as we must not bail out due to
1025 * difference in lockbit or entry type.
1026 */
1027 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
1028 goto put_unlocked;
1029 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
1030 dax_is_zero_entry(entry))) {
1031 ret = -EIO;
1032 goto put_unlocked;
1033 }
1034
1035 /* Another fsync thread may have already done this entry */
1036 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
1037 goto put_unlocked;
9973c98e
RZ
1038 }
1039
a6abc2c0 1040 /* Lock the entry to serialize with page faults */
9fc747f6
MW
1041 dax_lock_entry(xas, entry);
1042
a6abc2c0
JK
1043 /*
1044 * We can clear the tag now but we have to be careful so that concurrent
1045 * dax_writeback_one() calls for the same index cannot finish before we
1046 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
1047 * at the entry only under the i_pages lock and once they do that
1048 * they will see the entry locked and wait for it to unlock.
a6abc2c0 1049 */
9fc747f6
MW
1050 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
1051 xas_unlock_irq(xas);
a6abc2c0 1052
642261ac
RZ
1053 /*
1054 * Even if dax_writeback_mapping_range() was given a wbc->range_start
1055 * in the middle of a PMD, the 'index' we are given will be aligned to
3fe0791c
DW
1056 * the start index of the PMD, as will the pfn we pull from 'entry'.
1057 * This allows us to flush for PMD_SIZE and not have to worry about
1058 * partial PMD writebacks.
642261ac 1059 */
a77d19f4
MW
1060 pfn = dax_to_pfn(entry);
1061 size = PAGE_SIZE << dax_entry_order(entry);
cccbce67 1062
9fc747f6 1063 dax_entry_mkclean(mapping, xas->xa_index, pfn);
3fe0791c 1064 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
4b4bb46d
JK
1065 /*
1066 * After we have flushed the cache, we can clear the dirty tag. There
1067 * cannot be new dirty data in the pfn after the flush has completed as
1068 * the pfn mappings are writeprotected and fault waits for mapping
1069 * entry lock.
1070 */
9fc747f6
MW
1071 xas_reset(xas);
1072 xas_lock_irq(xas);
1073 xas_store(xas, entry);
1074 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
1075 dax_wake_entry(xas, entry, false);
1076
1077 trace_dax_writeback_one(mapping->host, xas->xa_index,
1078 size >> PAGE_SHIFT);
9973c98e
RZ
1079 return ret;
1080
a6abc2c0 1081 put_unlocked:
9fc747f6 1082 put_unlocked_entry(xas, entry);
9973c98e
RZ
1083 return ret;
1084}
1085
1086/*
1087 * Flush the mapping to the persistent domain within the byte range of [start,
1088 * end]. This is required by data integrity operations to ensure file data is
1089 * on persistent storage prior to completion of the operation.
1090 */
7f6d5b52
RZ
1091int dax_writeback_mapping_range(struct address_space *mapping,
1092 struct block_device *bdev, struct writeback_control *wbc)
9973c98e 1093{
9fc747f6 1094 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 1095 struct inode *inode = mapping->host;
9fc747f6 1096 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
cccbce67 1097 struct dax_device *dax_dev;
9fc747f6
MW
1098 void *entry;
1099 int ret = 0;
1100 unsigned int scanned = 0;
9973c98e
RZ
1101
1102 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1103 return -EIO;
1104
7f6d5b52
RZ
1105 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
1106 return 0;
1107
cccbce67
DW
1108 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
1109 if (!dax_dev)
1110 return -EIO;
1111
9fc747f6 1112 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 1113
9fc747f6 1114 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 1115
9fc747f6
MW
1116 xas_lock_irq(&xas);
1117 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1118 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1119 if (ret < 0) {
1120 mapping_set_error(mapping, ret);
9973c98e 1121 break;
9973c98e 1122 }
9fc747f6
MW
1123 if (++scanned % XA_CHECK_SCHED)
1124 continue;
1125
1126 xas_pause(&xas);
1127 xas_unlock_irq(&xas);
1128 cond_resched();
1129 xas_lock_irq(&xas);
9973c98e 1130 }
9fc747f6 1131 xas_unlock_irq(&xas);
cccbce67 1132 put_dax(dax_dev);
9fc747f6
MW
1133 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1134 return ret;
9973c98e
RZ
1135}
1136EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1137
31a6f1a6 1138static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 1139{
a3841f94 1140 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
1141}
1142
5e161e40
JK
1143static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1144 pfn_t *pfnp)
f7ca90b1 1145{
31a6f1a6 1146 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
1147 pgoff_t pgoff;
1148 int id, rc;
5e161e40 1149 long length;
f7ca90b1 1150
5e161e40 1151 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
1152 if (rc)
1153 return rc;
cccbce67 1154 id = dax_read_lock();
5e161e40 1155 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1156 NULL, pfnp);
5e161e40
JK
1157 if (length < 0) {
1158 rc = length;
1159 goto out;
cccbce67 1160 }
5e161e40
JK
1161 rc = -EINVAL;
1162 if (PFN_PHYS(length) < size)
1163 goto out;
1164 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1165 goto out;
1166 /* For larger pages we need devmap */
1167 if (length > 1 && !pfn_t_devmap(*pfnp))
1168 goto out;
1169 rc = 0;
1170out:
cccbce67 1171 dax_read_unlock(id);
5e161e40 1172 return rc;
0e3b210c 1173}
0e3b210c 1174
e30331ff 1175/*
91d25ba8
RZ
1176 * The user has performed a load from a hole in the file. Allocating a new
1177 * page in the file would cause excessive storage usage for workloads with
1178 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1179 * If this page is ever written to we will re-fault and change the mapping to
1180 * point to real DAX storage instead.
e30331ff 1181 */
ab77dab4 1182static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
e30331ff
RZ
1183 struct vm_fault *vmf)
1184{
1185 struct inode *inode = mapping->host;
91d25ba8 1186 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1187 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1188 vm_fault_t ret;
e30331ff 1189
a77d19f4 1190 dax_insert_entry(mapping, vmf, entry, pfn,
3159f943
MW
1191 DAX_ZERO_PAGE, false);
1192
ab77dab4 1193 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1194 trace_dax_load_hole(inode, vmf, ret);
1195 return ret;
1196}
1197
4b0228fa
VV
1198static bool dax_range_is_aligned(struct block_device *bdev,
1199 unsigned int offset, unsigned int length)
1200{
1201 unsigned short sector_size = bdev_logical_block_size(bdev);
1202
1203 if (!IS_ALIGNED(offset, sector_size))
1204 return false;
1205 if (!IS_ALIGNED(length, sector_size))
1206 return false;
1207
1208 return true;
1209}
1210
cccbce67
DW
1211int __dax_zero_page_range(struct block_device *bdev,
1212 struct dax_device *dax_dev, sector_t sector,
1213 unsigned int offset, unsigned int size)
679c8bd3 1214{
cccbce67
DW
1215 if (dax_range_is_aligned(bdev, offset, size)) {
1216 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1217
1218 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1219 size >> 9, GFP_NOFS, 0);
4b0228fa 1220 } else {
cccbce67
DW
1221 pgoff_t pgoff;
1222 long rc, id;
1223 void *kaddr;
cccbce67 1224
e84b83b9 1225 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1226 if (rc)
1227 return rc;
1228
1229 id = dax_read_lock();
86ed913b 1230 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
cccbce67
DW
1231 if (rc < 0) {
1232 dax_read_unlock(id);
1233 return rc;
1234 }
81f55870 1235 memset(kaddr + offset, 0, size);
c3ca015f 1236 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1237 dax_read_unlock(id);
4b0228fa 1238 }
679c8bd3
CH
1239 return 0;
1240}
1241EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1242
a254e568 1243static loff_t
11c59c92 1244dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1245 struct iomap *iomap)
1246{
cccbce67
DW
1247 struct block_device *bdev = iomap->bdev;
1248 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1249 struct iov_iter *iter = data;
1250 loff_t end = pos + length, done = 0;
1251 ssize_t ret = 0;
a77d4786 1252 size_t xfer;
cccbce67 1253 int id;
a254e568
CH
1254
1255 if (iov_iter_rw(iter) == READ) {
1256 end = min(end, i_size_read(inode));
1257 if (pos >= end)
1258 return 0;
1259
1260 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1261 return iov_iter_zero(min(length, end - pos), iter);
1262 }
1263
1264 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1265 return -EIO;
1266
e3fce68c
JK
1267 /*
1268 * Write can allocate block for an area which has a hole page mapped
1269 * into page tables. We have to tear down these mappings so that data
1270 * written by write(2) is visible in mmap.
1271 */
cd656375 1272 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1273 invalidate_inode_pages2_range(inode->i_mapping,
1274 pos >> PAGE_SHIFT,
1275 (end - 1) >> PAGE_SHIFT);
1276 }
1277
cccbce67 1278 id = dax_read_lock();
a254e568
CH
1279 while (pos < end) {
1280 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1281 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1282 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1283 ssize_t map_len;
cccbce67
DW
1284 pgoff_t pgoff;
1285 void *kaddr;
a254e568 1286
d1908f52
MH
1287 if (fatal_signal_pending(current)) {
1288 ret = -EINTR;
1289 break;
1290 }
1291
cccbce67
DW
1292 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1293 if (ret)
1294 break;
1295
1296 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1297 &kaddr, NULL);
a254e568
CH
1298 if (map_len < 0) {
1299 ret = map_len;
1300 break;
1301 }
1302
cccbce67
DW
1303 map_len = PFN_PHYS(map_len);
1304 kaddr += offset;
a254e568
CH
1305 map_len -= offset;
1306 if (map_len > end - pos)
1307 map_len = end - pos;
1308
a2e050f5
RZ
1309 /*
1310 * The userspace address for the memory copy has already been
1311 * validated via access_ok() in either vfs_read() or
1312 * vfs_write(), depending on which operation we are doing.
1313 */
a254e568 1314 if (iov_iter_rw(iter) == WRITE)
a77d4786 1315 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1316 map_len, iter);
a254e568 1317 else
a77d4786 1318 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1319 map_len, iter);
a254e568 1320
a77d4786
DW
1321 pos += xfer;
1322 length -= xfer;
1323 done += xfer;
1324
1325 if (xfer == 0)
1326 ret = -EFAULT;
1327 if (xfer < map_len)
1328 break;
a254e568 1329 }
cccbce67 1330 dax_read_unlock(id);
a254e568
CH
1331
1332 return done ? done : ret;
1333}
1334
1335/**
11c59c92 1336 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1337 * @iocb: The control block for this I/O
1338 * @iter: The addresses to do I/O from or to
1339 * @ops: iomap ops passed from the file system
1340 *
1341 * This function performs read and write operations to directly mapped
1342 * persistent memory. The callers needs to take care of read/write exclusion
1343 * and evicting any page cache pages in the region under I/O.
1344 */
1345ssize_t
11c59c92 1346dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1347 const struct iomap_ops *ops)
a254e568
CH
1348{
1349 struct address_space *mapping = iocb->ki_filp->f_mapping;
1350 struct inode *inode = mapping->host;
1351 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1352 unsigned flags = 0;
1353
168316db
CH
1354 if (iov_iter_rw(iter) == WRITE) {
1355 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1356 flags |= IOMAP_WRITE;
168316db
CH
1357 } else {
1358 lockdep_assert_held(&inode->i_rwsem);
1359 }
a254e568 1360
a254e568
CH
1361 while (iov_iter_count(iter)) {
1362 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1363 iter, dax_iomap_actor);
a254e568
CH
1364 if (ret <= 0)
1365 break;
1366 pos += ret;
1367 done += ret;
1368 }
1369
1370 iocb->ki_pos += done;
1371 return done ? done : ret;
1372}
11c59c92 1373EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1374
ab77dab4 1375static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1376{
1377 if (error == 0)
1378 return VM_FAULT_NOPAGE;
1379 if (error == -ENOMEM)
1380 return VM_FAULT_OOM;
1381 return VM_FAULT_SIGBUS;
1382}
1383
aaa422c4
DW
1384/*
1385 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1386 * flushed on write-faults (non-cow), but not read-faults.
1387 */
1388static bool dax_fault_is_synchronous(unsigned long flags,
1389 struct vm_area_struct *vma, struct iomap *iomap)
1390{
1391 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1392 && (iomap->flags & IOMAP_F_DIRTY);
1393}
1394
ab77dab4 1395static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1396 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1397{
a0987ad5
JK
1398 struct vm_area_struct *vma = vmf->vma;
1399 struct address_space *mapping = vma->vm_file->f_mapping;
a7d73fe6 1400 struct inode *inode = mapping->host;
1a29d85e 1401 unsigned long vaddr = vmf->address;
a7d73fe6 1402 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1403 struct iomap iomap = { 0 };
9484ab1b 1404 unsigned flags = IOMAP_FAULT;
a7d73fe6 1405 int error, major = 0;
d2c43ef1 1406 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1407 bool sync;
ab77dab4 1408 vm_fault_t ret = 0;
a7d73fe6 1409 void *entry;
1b5a1cb2 1410 pfn_t pfn;
a7d73fe6 1411
ab77dab4 1412 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1413 /*
1414 * Check whether offset isn't beyond end of file now. Caller is supposed
1415 * to hold locks serializing us with truncate / punch hole so this is
1416 * a reliable test.
1417 */
a9c42b33 1418 if (pos >= i_size_read(inode)) {
ab77dab4 1419 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1420 goto out;
1421 }
a7d73fe6 1422
d2c43ef1 1423 if (write && !vmf->cow_page)
a7d73fe6
CH
1424 flags |= IOMAP_WRITE;
1425
13e451fd
JK
1426 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1427 if (IS_ERR(entry)) {
ab77dab4 1428 ret = dax_fault_return(PTR_ERR(entry));
13e451fd
JK
1429 goto out;
1430 }
1431
e2093926
RZ
1432 /*
1433 * It is possible, particularly with mixed reads & writes to private
1434 * mappings, that we have raced with a PMD fault that overlaps with
1435 * the PTE we need to set up. If so just return and the fault will be
1436 * retried.
1437 */
1438 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1439 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1440 goto unlock_entry;
1441 }
1442
a7d73fe6
CH
1443 /*
1444 * Note that we don't bother to use iomap_apply here: DAX required
1445 * the file system block size to be equal the page size, which means
1446 * that we never have to deal with more than a single extent here.
1447 */
1448 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1449 if (iomap_errp)
1450 *iomap_errp = error;
a9c42b33 1451 if (error) {
ab77dab4 1452 ret = dax_fault_return(error);
13e451fd 1453 goto unlock_entry;
a9c42b33 1454 }
a7d73fe6 1455 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1456 error = -EIO; /* fs corruption? */
1457 goto error_finish_iomap;
a7d73fe6
CH
1458 }
1459
a7d73fe6 1460 if (vmf->cow_page) {
31a6f1a6
JK
1461 sector_t sector = dax_iomap_sector(&iomap, pos);
1462
a7d73fe6
CH
1463 switch (iomap.type) {
1464 case IOMAP_HOLE:
1465 case IOMAP_UNWRITTEN:
1466 clear_user_highpage(vmf->cow_page, vaddr);
1467 break;
1468 case IOMAP_MAPPED:
cccbce67
DW
1469 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1470 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1471 break;
1472 default:
1473 WARN_ON_ONCE(1);
1474 error = -EIO;
1475 break;
1476 }
1477
1478 if (error)
13e451fd 1479 goto error_finish_iomap;
b1aa812b
JK
1480
1481 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1482 ret = finish_fault(vmf);
1483 if (!ret)
1484 ret = VM_FAULT_DONE_COW;
13e451fd 1485 goto finish_iomap;
a7d73fe6
CH
1486 }
1487
aaa422c4 1488 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1489
a7d73fe6
CH
1490 switch (iomap.type) {
1491 case IOMAP_MAPPED:
1492 if (iomap.flags & IOMAP_F_NEW) {
1493 count_vm_event(PGMAJFAULT);
a0987ad5 1494 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1495 major = VM_FAULT_MAJOR;
1496 }
1b5a1cb2
JK
1497 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1498 if (error < 0)
1499 goto error_finish_iomap;
1500
a77d19f4 1501 entry = dax_insert_entry(mapping, vmf, entry, pfn,
caa51d26 1502 0, write && !sync);
1b5a1cb2 1503
caa51d26
JK
1504 /*
1505 * If we are doing synchronous page fault and inode needs fsync,
1506 * we can insert PTE into page tables only after that happens.
1507 * Skip insertion for now and return the pfn so that caller can
1508 * insert it after fsync is done.
1509 */
1510 if (sync) {
1511 if (WARN_ON_ONCE(!pfnp)) {
1512 error = -EIO;
1513 goto error_finish_iomap;
1514 }
1515 *pfnp = pfn;
ab77dab4 1516 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1517 goto finish_iomap;
1518 }
1b5a1cb2
JK
1519 trace_dax_insert_mapping(inode, vmf, entry);
1520 if (write)
ab77dab4 1521 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1522 else
ab77dab4 1523 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1524
ab77dab4 1525 goto finish_iomap;
a7d73fe6
CH
1526 case IOMAP_UNWRITTEN:
1527 case IOMAP_HOLE:
d2c43ef1 1528 if (!write) {
ab77dab4 1529 ret = dax_load_hole(mapping, entry, vmf);
13e451fd 1530 goto finish_iomap;
1550290b 1531 }
a7d73fe6
CH
1532 /*FALLTHRU*/
1533 default:
1534 WARN_ON_ONCE(1);
1535 error = -EIO;
1536 break;
1537 }
1538
13e451fd 1539 error_finish_iomap:
ab77dab4 1540 ret = dax_fault_return(error);
9f141d6e
JK
1541 finish_iomap:
1542 if (ops->iomap_end) {
1543 int copied = PAGE_SIZE;
1544
ab77dab4 1545 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1546 copied = 0;
1547 /*
1548 * The fault is done by now and there's no way back (other
1549 * thread may be already happily using PTE we have installed).
1550 * Just ignore error from ->iomap_end since we cannot do much
1551 * with it.
1552 */
1553 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1554 }
13e451fd 1555 unlock_entry:
91d25ba8 1556 put_locked_mapping_entry(mapping, vmf->pgoff);
13e451fd 1557 out:
ab77dab4
SJ
1558 trace_dax_pte_fault_done(inode, vmf, ret);
1559 return ret | major;
a7d73fe6 1560}
642261ac
RZ
1561
1562#ifdef CONFIG_FS_DAX_PMD
ab77dab4 1563static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
91d25ba8 1564 void *entry)
642261ac 1565{
f4200391
DJ
1566 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1567 unsigned long pmd_addr = vmf->address & PMD_MASK;
653b2ea3 1568 struct inode *inode = mapping->host;
642261ac 1569 struct page *zero_page;
653b2ea3 1570 void *ret = NULL;
642261ac
RZ
1571 spinlock_t *ptl;
1572 pmd_t pmd_entry;
3fe0791c 1573 pfn_t pfn;
642261ac 1574
f4200391 1575 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1576
1577 if (unlikely(!zero_page))
653b2ea3 1578 goto fallback;
642261ac 1579
3fe0791c 1580 pfn = page_to_pfn_t(zero_page);
a77d19f4 1581 ret = dax_insert_entry(mapping, vmf, entry, pfn,
3159f943 1582 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1583
f4200391
DJ
1584 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1585 if (!pmd_none(*(vmf->pmd))) {
642261ac 1586 spin_unlock(ptl);
653b2ea3 1587 goto fallback;
642261ac
RZ
1588 }
1589
f4200391 1590 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1591 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1592 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1593 spin_unlock(ptl);
f4200391 1594 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
642261ac 1595 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1596
1597fallback:
f4200391 1598 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
653b2ea3 1599 return VM_FAULT_FALLBACK;
642261ac
RZ
1600}
1601
ab77dab4 1602static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1603 const struct iomap_ops *ops)
642261ac 1604{
f4200391 1605 struct vm_area_struct *vma = vmf->vma;
642261ac 1606 struct address_space *mapping = vma->vm_file->f_mapping;
d8a849e1
DJ
1607 unsigned long pmd_addr = vmf->address & PMD_MASK;
1608 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1609 bool sync;
9484ab1b 1610 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1611 struct inode *inode = mapping->host;
ab77dab4 1612 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac
RZ
1613 struct iomap iomap = { 0 };
1614 pgoff_t max_pgoff, pgoff;
642261ac
RZ
1615 void *entry;
1616 loff_t pos;
1617 int error;
302a5e31 1618 pfn_t pfn;
642261ac 1619
282a8e03
RZ
1620 /*
1621 * Check whether offset isn't beyond end of file now. Caller is
1622 * supposed to hold locks serializing us with truncate / punch hole so
1623 * this is a reliable test.
1624 */
1625 pgoff = linear_page_index(vma, pmd_addr);
957ac8c4 1626 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1627
f4200391 1628 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1629
fffa281b
RZ
1630 /*
1631 * Make sure that the faulting address's PMD offset (color) matches
1632 * the PMD offset from the start of the file. This is necessary so
1633 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1634 * range in the page cache.
fffa281b
RZ
1635 */
1636 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1637 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1638 goto fallback;
1639
642261ac
RZ
1640 /* Fall back to PTEs if we're going to COW */
1641 if (write && !(vma->vm_flags & VM_SHARED))
1642 goto fallback;
1643
1644 /* If the PMD would extend outside the VMA */
1645 if (pmd_addr < vma->vm_start)
1646 goto fallback;
1647 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1648 goto fallback;
1649
957ac8c4 1650 if (pgoff >= max_pgoff) {
282a8e03
RZ
1651 result = VM_FAULT_SIGBUS;
1652 goto out;
1653 }
642261ac
RZ
1654
1655 /* If the PMD would extend beyond the file size */
957ac8c4 1656 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1657 goto fallback;
1658
876f2946 1659 /*
91d25ba8
RZ
1660 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1661 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1662 * is already in the tree, for instance), it will return -EEXIST and
1663 * we just fall back to 4k entries.
876f2946 1664 */
3159f943 1665 entry = grab_mapping_entry(mapping, pgoff, DAX_PMD);
876f2946
RZ
1666 if (IS_ERR(entry))
1667 goto fallback;
1668
e2093926
RZ
1669 /*
1670 * It is possible, particularly with mixed reads & writes to private
1671 * mappings, that we have raced with a PTE fault that overlaps with
1672 * the PMD we need to set up. If so just return and the fault will be
1673 * retried.
1674 */
1675 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1676 !pmd_devmap(*vmf->pmd)) {
1677 result = 0;
1678 goto unlock_entry;
1679 }
1680
642261ac
RZ
1681 /*
1682 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1683 * setting up a mapping, so really we're using iomap_begin() as a way
1684 * to look up our filesystem block.
1685 */
1686 pos = (loff_t)pgoff << PAGE_SHIFT;
1687 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1688 if (error)
876f2946 1689 goto unlock_entry;
9f141d6e 1690
642261ac
RZ
1691 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1692 goto finish_iomap;
1693
aaa422c4 1694 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1695
642261ac
RZ
1696 switch (iomap.type) {
1697 case IOMAP_MAPPED:
302a5e31
JK
1698 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1699 if (error < 0)
1700 goto finish_iomap;
1701
a77d19f4 1702 entry = dax_insert_entry(mapping, vmf, entry, pfn,
3159f943 1703 DAX_PMD, write && !sync);
302a5e31 1704
caa51d26
JK
1705 /*
1706 * If we are doing synchronous page fault and inode needs fsync,
1707 * we can insert PMD into page tables only after that happens.
1708 * Skip insertion for now and return the pfn so that caller can
1709 * insert it after fsync is done.
1710 */
1711 if (sync) {
1712 if (WARN_ON_ONCE(!pfnp))
1713 goto finish_iomap;
1714 *pfnp = pfn;
1715 result = VM_FAULT_NEEDDSYNC;
1716 goto finish_iomap;
1717 }
1718
302a5e31
JK
1719 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1720 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1721 write);
642261ac
RZ
1722 break;
1723 case IOMAP_UNWRITTEN:
1724 case IOMAP_HOLE:
1725 if (WARN_ON_ONCE(write))
876f2946 1726 break;
91d25ba8 1727 result = dax_pmd_load_hole(vmf, &iomap, entry);
642261ac
RZ
1728 break;
1729 default:
1730 WARN_ON_ONCE(1);
1731 break;
1732 }
1733
1734 finish_iomap:
1735 if (ops->iomap_end) {
9f141d6e
JK
1736 int copied = PMD_SIZE;
1737
1738 if (result == VM_FAULT_FALLBACK)
1739 copied = 0;
1740 /*
1741 * The fault is done by now and there's no way back (other
1742 * thread may be already happily using PMD we have installed).
1743 * Just ignore error from ->iomap_end since we cannot do much
1744 * with it.
1745 */
1746 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1747 &iomap);
642261ac 1748 }
876f2946 1749 unlock_entry:
91d25ba8 1750 put_locked_mapping_entry(mapping, pgoff);
642261ac
RZ
1751 fallback:
1752 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1753 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1754 count_vm_event(THP_FAULT_FALLBACK);
1755 }
282a8e03 1756out:
f4200391 1757 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1758 return result;
1759}
a2d58167 1760#else
ab77dab4 1761static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1762 const struct iomap_ops *ops)
a2d58167
DJ
1763{
1764 return VM_FAULT_FALLBACK;
1765}
642261ac 1766#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1767
1768/**
1769 * dax_iomap_fault - handle a page fault on a DAX file
1770 * @vmf: The description of the fault
cec04e8c 1771 * @pe_size: Size of the page to fault in
9a0dd422 1772 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1773 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1774 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1775 *
1776 * When a page fault occurs, filesystems may call this helper in
1777 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1778 * has done all the necessary locking for page fault to proceed
1779 * successfully.
1780 */
ab77dab4 1781vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1782 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1783{
c791ace1
DJ
1784 switch (pe_size) {
1785 case PE_SIZE_PTE:
c0b24625 1786 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1787 case PE_SIZE_PMD:
9a0dd422 1788 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1789 default:
1790 return VM_FAULT_FALLBACK;
1791 }
1792}
1793EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1794
a77d19f4 1795/*
71eab6df
JK
1796 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1797 * @vmf: The description of the fault
71eab6df 1798 * @pfn: PFN to insert
cfc93c6c 1799 * @order: Order of entry to insert.
71eab6df 1800 *
a77d19f4
MW
1801 * This function inserts a writeable PTE or PMD entry into the page tables
1802 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1803 */
cfc93c6c
MW
1804static vm_fault_t
1805dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1806{
1807 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1808 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1809 void *entry;
ab77dab4 1810 vm_fault_t ret;
71eab6df 1811
cfc93c6c
MW
1812 xas_lock_irq(&xas);
1813 entry = get_unlocked_entry(&xas);
71eab6df
JK
1814 /* Did we race with someone splitting entry or so? */
1815 if (!entry ||
cfc93c6c
MW
1816 (order == 0 && !dax_is_pte_entry(entry)) ||
1817 (order == PMD_ORDER && (xa_is_internal(entry) ||
1818 !dax_is_pmd_entry(entry)))) {
1819 put_unlocked_entry(&xas, entry);
1820 xas_unlock_irq(&xas);
71eab6df
JK
1821 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1822 VM_FAULT_NOPAGE);
1823 return VM_FAULT_NOPAGE;
1824 }
cfc93c6c
MW
1825 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1826 dax_lock_entry(&xas, entry);
1827 xas_unlock_irq(&xas);
1828 if (order == 0)
ab77dab4 1829 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1830#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1831 else if (order == PMD_ORDER)
ab77dab4 1832 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
71eab6df 1833 pfn, true);
71eab6df 1834#endif
cfc93c6c 1835 else
ab77dab4 1836 ret = VM_FAULT_FALLBACK;
cfc93c6c 1837 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1838 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1839 return ret;
71eab6df
JK
1840}
1841
1842/**
1843 * dax_finish_sync_fault - finish synchronous page fault
1844 * @vmf: The description of the fault
1845 * @pe_size: Size of entry to be inserted
1846 * @pfn: PFN to insert
1847 *
1848 * This function ensures that the file range touched by the page fault is
1849 * stored persistently on the media and handles inserting of appropriate page
1850 * table entry.
1851 */
ab77dab4
SJ
1852vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1853 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1854{
1855 int err;
1856 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1857 unsigned int order = pe_order(pe_size);
1858 size_t len = PAGE_SIZE << order;
71eab6df 1859
71eab6df
JK
1860 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1861 if (err)
1862 return VM_FAULT_SIGBUS;
cfc93c6c 1863 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1864}
1865EXPORT_SYMBOL_GPL(dax_finish_sync_fault);