dax: Don't access a freed inode
[linux-2.6-block.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
289c6aed 28#include <linux/sched.h>
f361bf4a 29#include <linux/sched/signal.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
4b4bb46d 34#include <linux/mmu_notifier.h>
a254e568
CH
35#include <linux/iomap.h>
36#include "internal.h"
d475c634 37
282a8e03
RZ
38#define CREATE_TRACE_POINTS
39#include <trace/events/fs_dax.h>
40
cfc93c6c
MW
41static inline unsigned int pe_order(enum page_entry_size pe_size)
42{
43 if (pe_size == PE_SIZE_PTE)
44 return PAGE_SHIFT - PAGE_SHIFT;
45 if (pe_size == PE_SIZE_PMD)
46 return PMD_SHIFT - PAGE_SHIFT;
47 if (pe_size == PE_SIZE_PUD)
48 return PUD_SHIFT - PAGE_SHIFT;
49 return ~0;
50}
51
ac401cc7
JK
52/* We choose 4096 entries - same as per-zone page wait tables */
53#define DAX_WAIT_TABLE_BITS 12
54#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55
917f3452
RZ
56/* The 'colour' (ie low bits) within a PMD of a page offset. */
57#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 58#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 59
cfc93c6c
MW
60/* The order of a PMD entry */
61#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
62
ce95ab0f 63static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
64
65static int __init init_dax_wait_table(void)
66{
67 int i;
68
69 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 init_waitqueue_head(wait_table + i);
71 return 0;
72}
73fs_initcall(init_dax_wait_table);
74
527b19d0 75/*
3159f943
MW
76 * DAX pagecache entries use XArray value entries so they can't be mistaken
77 * for pages. We use one bit for locking, one bit for the entry size (PMD)
78 * and two more to tell us if the entry is a zero page or an empty entry that
79 * is just used for locking. In total four special bits.
527b19d0
RZ
80 *
81 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83 * block allocation.
84 */
3159f943
MW
85#define DAX_SHIFT (4)
86#define DAX_LOCKED (1UL << 0)
87#define DAX_PMD (1UL << 1)
88#define DAX_ZERO_PAGE (1UL << 2)
89#define DAX_EMPTY (1UL << 3)
527b19d0 90
a77d19f4 91static unsigned long dax_to_pfn(void *entry)
527b19d0 92{
3159f943 93 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
94}
95
9f32d221
MW
96static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97{
98 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99}
100
cfc93c6c
MW
101static bool dax_is_locked(void *entry)
102{
103 return xa_to_value(entry) & DAX_LOCKED;
104}
105
a77d19f4 106static unsigned int dax_entry_order(void *entry)
527b19d0 107{
3159f943 108 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 109 return PMD_ORDER;
527b19d0
RZ
110 return 0;
111}
112
fda490d3 113static unsigned long dax_is_pmd_entry(void *entry)
d1a5f2b4 114{
3159f943 115 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
116}
117
fda490d3 118static bool dax_is_pte_entry(void *entry)
d475c634 119{
3159f943 120 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
121}
122
642261ac 123static int dax_is_zero_entry(void *entry)
d475c634 124{
3159f943 125 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
126}
127
642261ac 128static int dax_is_empty_entry(void *entry)
b2e0d162 129{
3159f943 130 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
131}
132
ac401cc7 133/*
a77d19f4 134 * DAX page cache entry locking
ac401cc7
JK
135 */
136struct exceptional_entry_key {
ec4907ff 137 struct xarray *xa;
63e95b5c 138 pgoff_t entry_start;
ac401cc7
JK
139};
140
141struct wait_exceptional_entry_queue {
ac6424b9 142 wait_queue_entry_t wait;
ac401cc7
JK
143 struct exceptional_entry_key key;
144};
145
b15cd800
MW
146static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
147 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
148{
149 unsigned long hash;
b15cd800 150 unsigned long index = xas->xa_index;
63e95b5c
RZ
151
152 /*
153 * If 'entry' is a PMD, align the 'index' that we use for the wait
154 * queue to the start of that PMD. This ensures that all offsets in
155 * the range covered by the PMD map to the same bit lock.
156 */
642261ac 157 if (dax_is_pmd_entry(entry))
917f3452 158 index &= ~PG_PMD_COLOUR;
b15cd800 159 key->xa = xas->xa;
63e95b5c
RZ
160 key->entry_start = index;
161
b15cd800 162 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
163 return wait_table + hash;
164}
165
ec4907ff
MW
166static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
167 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
168{
169 struct exceptional_entry_key *key = keyp;
170 struct wait_exceptional_entry_queue *ewait =
171 container_of(wait, struct wait_exceptional_entry_queue, wait);
172
ec4907ff 173 if (key->xa != ewait->key.xa ||
63e95b5c 174 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
175 return 0;
176 return autoremove_wake_function(wait, mode, sync, NULL);
177}
178
e30331ff 179/*
b93b0163
MW
180 * @entry may no longer be the entry at the index in the mapping.
181 * The important information it's conveying is whether the entry at
182 * this index used to be a PMD entry.
e30331ff 183 */
b15cd800 184static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
e30331ff
RZ
185{
186 struct exceptional_entry_key key;
187 wait_queue_head_t *wq;
188
b15cd800 189 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
190
191 /*
192 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 193 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
194 * So at this point all tasks that could have seen our entry locked
195 * must be in the waitqueue and the following check will see them.
196 */
197 if (waitqueue_active(wq))
198 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
199}
200
cfc93c6c
MW
201/*
202 * Look up entry in page cache, wait for it to become unlocked if it
203 * is a DAX entry and return it. The caller must subsequently call
204 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
205 * if it did.
206 *
207 * Must be called with the i_pages lock held.
208 */
209static void *get_unlocked_entry(struct xa_state *xas)
210{
211 void *entry;
212 struct wait_exceptional_entry_queue ewait;
213 wait_queue_head_t *wq;
214
215 init_wait(&ewait.wait);
216 ewait.wait.func = wake_exceptional_entry_func;
217
218 for (;;) {
0e40de03
MW
219 entry = xas_find_conflict(xas);
220 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
cfc93c6c
MW
221 !dax_is_locked(entry))
222 return entry;
223
b15cd800 224 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
225 prepare_to_wait_exclusive(wq, &ewait.wait,
226 TASK_UNINTERRUPTIBLE);
227 xas_unlock_irq(xas);
228 xas_reset(xas);
229 schedule();
230 finish_wait(wq, &ewait.wait);
231 xas_lock_irq(xas);
232 }
233}
234
55e56f06
MW
235/*
236 * The only thing keeping the address space around is the i_pages lock
237 * (it's cycled in clear_inode() after removing the entries from i_pages)
238 * After we call xas_unlock_irq(), we cannot touch xas->xa.
239 */
240static void wait_entry_unlocked(struct xa_state *xas, void *entry)
241{
242 struct wait_exceptional_entry_queue ewait;
243 wait_queue_head_t *wq;
244
245 init_wait(&ewait.wait);
246 ewait.wait.func = wake_exceptional_entry_func;
247
248 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
249 prepare_to_wait_exclusive(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
250 xas_unlock_irq(xas);
251 schedule();
252 finish_wait(wq, &ewait.wait);
253
254 /*
255 * Entry lock waits are exclusive. Wake up the next waiter since
256 * we aren't sure we will acquire the entry lock and thus wake
257 * the next waiter up on unlock.
258 */
259 if (waitqueue_active(wq))
260 __wake_up(wq, TASK_NORMAL, 1, &ewait.key);
261}
262
cfc93c6c
MW
263static void put_unlocked_entry(struct xa_state *xas, void *entry)
264{
265 /* If we were the only waiter woken, wake the next one */
266 if (entry)
267 dax_wake_entry(xas, entry, false);
268}
269
270/*
271 * We used the xa_state to get the entry, but then we locked the entry and
272 * dropped the xa_lock, so we know the xa_state is stale and must be reset
273 * before use.
274 */
275static void dax_unlock_entry(struct xa_state *xas, void *entry)
276{
277 void *old;
278
7ae2ea7d 279 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
280 xas_reset(xas);
281 xas_lock_irq(xas);
282 old = xas_store(xas, entry);
283 xas_unlock_irq(xas);
284 BUG_ON(!dax_is_locked(old));
285 dax_wake_entry(xas, entry, false);
286}
287
288/*
289 * Return: The entry stored at this location before it was locked.
290 */
291static void *dax_lock_entry(struct xa_state *xas, void *entry)
292{
293 unsigned long v = xa_to_value(entry);
294 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
295}
296
d2c997c0
DW
297static unsigned long dax_entry_size(void *entry)
298{
299 if (dax_is_zero_entry(entry))
300 return 0;
301 else if (dax_is_empty_entry(entry))
302 return 0;
303 else if (dax_is_pmd_entry(entry))
304 return PMD_SIZE;
305 else
306 return PAGE_SIZE;
307}
308
a77d19f4 309static unsigned long dax_end_pfn(void *entry)
d2c997c0 310{
a77d19f4 311 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
312}
313
314/*
315 * Iterate through all mapped pfns represented by an entry, i.e. skip
316 * 'empty' and 'zero' entries.
317 */
318#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
319 for (pfn = dax_to_pfn(entry); \
320 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 321
73449daf
DW
322/*
323 * TODO: for reflink+dax we need a way to associate a single page with
324 * multiple address_space instances at different linear_page_index()
325 * offsets.
326 */
327static void dax_associate_entry(void *entry, struct address_space *mapping,
328 struct vm_area_struct *vma, unsigned long address)
d2c997c0 329{
73449daf
DW
330 unsigned long size = dax_entry_size(entry), pfn, index;
331 int i = 0;
d2c997c0
DW
332
333 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
334 return;
335
73449daf 336 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
337 for_each_mapped_pfn(entry, pfn) {
338 struct page *page = pfn_to_page(pfn);
339
340 WARN_ON_ONCE(page->mapping);
341 page->mapping = mapping;
73449daf 342 page->index = index + i++;
d2c997c0
DW
343 }
344}
345
346static void dax_disassociate_entry(void *entry, struct address_space *mapping,
347 bool trunc)
348{
349 unsigned long pfn;
350
351 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
352 return;
353
354 for_each_mapped_pfn(entry, pfn) {
355 struct page *page = pfn_to_page(pfn);
356
357 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
358 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
359 page->mapping = NULL;
73449daf 360 page->index = 0;
d2c997c0
DW
361 }
362}
363
5fac7408
DW
364static struct page *dax_busy_page(void *entry)
365{
366 unsigned long pfn;
367
368 for_each_mapped_pfn(entry, pfn) {
369 struct page *page = pfn_to_page(pfn);
370
371 if (page_ref_count(page) > 1)
372 return page;
373 }
374 return NULL;
375}
376
c5bbd451
MW
377/*
378 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
379 * @page: The page whose entry we want to lock
380 *
381 * Context: Process context.
382 * Return: %true if the entry was locked or does not need to be locked.
383 */
c2a7d2a1
DW
384bool dax_lock_mapping_entry(struct page *page)
385{
9f32d221
MW
386 XA_STATE(xas, NULL, 0);
387 void *entry;
c5bbd451 388 bool locked;
c2a7d2a1 389
c5bbd451
MW
390 /* Ensure page->mapping isn't freed while we look at it */
391 rcu_read_lock();
c2a7d2a1 392 for (;;) {
9f32d221 393 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 394
c5bbd451 395 locked = false;
c93db7bb 396 if (!mapping || !dax_mapping(mapping))
c5bbd451 397 break;
c2a7d2a1
DW
398
399 /*
400 * In the device-dax case there's no need to lock, a
401 * struct dev_pagemap pin is sufficient to keep the
402 * inode alive, and we assume we have dev_pagemap pin
403 * otherwise we would not have a valid pfn_to_page()
404 * translation.
405 */
c5bbd451 406 locked = true;
9f32d221 407 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 408 break;
c2a7d2a1 409
9f32d221
MW
410 xas.xa = &mapping->i_pages;
411 xas_lock_irq(&xas);
c2a7d2a1 412 if (mapping != page->mapping) {
9f32d221 413 xas_unlock_irq(&xas);
c2a7d2a1
DW
414 continue;
415 }
9f32d221
MW
416 xas_set(&xas, page->index);
417 entry = xas_load(&xas);
418 if (dax_is_locked(entry)) {
c5bbd451 419 rcu_read_unlock();
55e56f06 420 wait_entry_unlocked(&xas, entry);
c5bbd451 421 rcu_read_lock();
6d7cd8c1 422 continue;
c2a7d2a1 423 }
9f32d221
MW
424 dax_lock_entry(&xas, entry);
425 xas_unlock_irq(&xas);
c5bbd451 426 break;
c2a7d2a1 427 }
c5bbd451
MW
428 rcu_read_unlock();
429 return locked;
c2a7d2a1
DW
430}
431
432void dax_unlock_mapping_entry(struct page *page)
433{
434 struct address_space *mapping = page->mapping;
9f32d221 435 XA_STATE(xas, &mapping->i_pages, page->index);
fda490d3 436 void *entry;
c2a7d2a1 437
9f32d221 438 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
439 return;
440
fda490d3
MW
441 rcu_read_lock();
442 entry = xas_load(&xas);
443 rcu_read_unlock();
444 entry = dax_make_entry(page_to_pfn_t(page), dax_is_pmd_entry(entry));
445 dax_unlock_entry(&xas, entry);
c2a7d2a1
DW
446}
447
ac401cc7 448/*
a77d19f4
MW
449 * Find page cache entry at given index. If it is a DAX entry, return it
450 * with the entry locked. If the page cache doesn't contain an entry at
451 * that index, add a locked empty entry.
ac401cc7 452 *
3159f943 453 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
454 * either return that locked entry or will return VM_FAULT_FALLBACK.
455 * This will happen if there are any PTE entries within the PMD range
456 * that we are requesting.
642261ac 457 *
b15cd800
MW
458 * We always favor PTE entries over PMD entries. There isn't a flow where we
459 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
460 * insertion will fail if it finds any PTE entries already in the tree, and a
461 * PTE insertion will cause an existing PMD entry to be unmapped and
462 * downgraded to PTE entries. This happens for both PMD zero pages as
463 * well as PMD empty entries.
642261ac 464 *
b15cd800
MW
465 * The exception to this downgrade path is for PMD entries that have
466 * real storage backing them. We will leave these real PMD entries in
467 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 468 *
ac401cc7
JK
469 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
470 * persistent memory the benefit is doubtful. We can add that later if we can
471 * show it helps.
b15cd800
MW
472 *
473 * On error, this function does not return an ERR_PTR. Instead it returns
474 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
475 * overlap with xarray value entries.
ac401cc7 476 */
b15cd800
MW
477static void *grab_mapping_entry(struct xa_state *xas,
478 struct address_space *mapping, unsigned long size_flag)
ac401cc7 479{
b15cd800
MW
480 unsigned long index = xas->xa_index;
481 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
482 void *entry;
642261ac 483
b15cd800
MW
484retry:
485 xas_lock_irq(xas);
486 entry = get_unlocked_entry(xas);
91d25ba8 487
642261ac 488 if (entry) {
0e40de03 489 if (!xa_is_value(entry)) {
b15cd800
MW
490 xas_set_err(xas, EIO);
491 goto out_unlock;
492 }
493
3159f943 494 if (size_flag & DAX_PMD) {
91d25ba8 495 if (dax_is_pte_entry(entry)) {
b15cd800
MW
496 put_unlocked_entry(xas, entry);
497 goto fallback;
642261ac
RZ
498 }
499 } else { /* trying to grab a PTE entry */
91d25ba8 500 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
501 (dax_is_zero_entry(entry) ||
502 dax_is_empty_entry(entry))) {
503 pmd_downgrade = true;
504 }
505 }
506 }
507
b15cd800
MW
508 if (pmd_downgrade) {
509 /*
510 * Make sure 'entry' remains valid while we drop
511 * the i_pages lock.
512 */
513 dax_lock_entry(xas, entry);
642261ac 514
642261ac
RZ
515 /*
516 * Besides huge zero pages the only other thing that gets
517 * downgraded are empty entries which don't need to be
518 * unmapped.
519 */
b15cd800
MW
520 if (dax_is_zero_entry(entry)) {
521 xas_unlock_irq(xas);
522 unmap_mapping_pages(mapping,
523 xas->xa_index & ~PG_PMD_COLOUR,
524 PG_PMD_NR, false);
525 xas_reset(xas);
526 xas_lock_irq(xas);
e11f8b7b
RZ
527 }
528
b15cd800
MW
529 dax_disassociate_entry(entry, mapping, false);
530 xas_store(xas, NULL); /* undo the PMD join */
531 dax_wake_entry(xas, entry, true);
532 mapping->nrexceptional--;
533 entry = NULL;
534 xas_set(xas, index);
535 }
642261ac 536
b15cd800
MW
537 if (entry) {
538 dax_lock_entry(xas, entry);
539 } else {
540 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
541 dax_lock_entry(xas, entry);
542 if (xas_error(xas))
543 goto out_unlock;
ac401cc7 544 mapping->nrexceptional++;
ac401cc7 545 }
b15cd800
MW
546
547out_unlock:
548 xas_unlock_irq(xas);
549 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
550 goto retry;
551 if (xas->xa_node == XA_ERROR(-ENOMEM))
552 return xa_mk_internal(VM_FAULT_OOM);
553 if (xas_error(xas))
554 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 555 return entry;
b15cd800
MW
556fallback:
557 xas_unlock_irq(xas);
558 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
559}
560
5fac7408
DW
561/**
562 * dax_layout_busy_page - find first pinned page in @mapping
563 * @mapping: address space to scan for a page with ref count > 1
564 *
565 * DAX requires ZONE_DEVICE mapped pages. These pages are never
566 * 'onlined' to the page allocator so they are considered idle when
567 * page->count == 1. A filesystem uses this interface to determine if
568 * any page in the mapping is busy, i.e. for DMA, or other
569 * get_user_pages() usages.
570 *
571 * It is expected that the filesystem is holding locks to block the
572 * establishment of new mappings in this address_space. I.e. it expects
573 * to be able to run unmap_mapping_range() and subsequently not race
574 * mapping_mapped() becoming true.
575 */
576struct page *dax_layout_busy_page(struct address_space *mapping)
577{
084a8990
MW
578 XA_STATE(xas, &mapping->i_pages, 0);
579 void *entry;
580 unsigned int scanned = 0;
5fac7408 581 struct page *page = NULL;
5fac7408
DW
582
583 /*
584 * In the 'limited' case get_user_pages() for dax is disabled.
585 */
586 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
587 return NULL;
588
589 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
590 return NULL;
591
5fac7408
DW
592 /*
593 * If we race get_user_pages_fast() here either we'll see the
084a8990 594 * elevated page count in the iteration and wait, or
5fac7408
DW
595 * get_user_pages_fast() will see that the page it took a reference
596 * against is no longer mapped in the page tables and bail to the
597 * get_user_pages() slow path. The slow path is protected by
598 * pte_lock() and pmd_lock(). New references are not taken without
599 * holding those locks, and unmap_mapping_range() will not zero the
600 * pte or pmd without holding the respective lock, so we are
601 * guaranteed to either see new references or prevent new
602 * references from being established.
603 */
604 unmap_mapping_range(mapping, 0, 0, 1);
605
084a8990
MW
606 xas_lock_irq(&xas);
607 xas_for_each(&xas, entry, ULONG_MAX) {
608 if (WARN_ON_ONCE(!xa_is_value(entry)))
609 continue;
610 if (unlikely(dax_is_locked(entry)))
611 entry = get_unlocked_entry(&xas);
612 if (entry)
613 page = dax_busy_page(entry);
614 put_unlocked_entry(&xas, entry);
5fac7408
DW
615 if (page)
616 break;
084a8990
MW
617 if (++scanned % XA_CHECK_SCHED)
618 continue;
619
620 xas_pause(&xas);
621 xas_unlock_irq(&xas);
622 cond_resched();
623 xas_lock_irq(&xas);
5fac7408 624 }
084a8990 625 xas_unlock_irq(&xas);
5fac7408
DW
626 return page;
627}
628EXPORT_SYMBOL_GPL(dax_layout_busy_page);
629
a77d19f4 630static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
631 pgoff_t index, bool trunc)
632{
07f2d89c 633 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
634 int ret = 0;
635 void *entry;
c6dcf52c 636
07f2d89c
MW
637 xas_lock_irq(&xas);
638 entry = get_unlocked_entry(&xas);
3159f943 639 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
640 goto out;
641 if (!trunc &&
07f2d89c
MW
642 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
643 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 644 goto out;
d2c997c0 645 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 646 xas_store(&xas, NULL);
c6dcf52c
JK
647 mapping->nrexceptional--;
648 ret = 1;
649out:
07f2d89c
MW
650 put_unlocked_entry(&xas, entry);
651 xas_unlock_irq(&xas);
c6dcf52c
JK
652 return ret;
653}
07f2d89c 654
ac401cc7 655/*
3159f943
MW
656 * Delete DAX entry at @index from @mapping. Wait for it
657 * to be unlocked before deleting it.
ac401cc7
JK
658 */
659int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
660{
a77d19f4 661 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 662
ac401cc7
JK
663 /*
664 * This gets called from truncate / punch_hole path. As such, the caller
665 * must hold locks protecting against concurrent modifications of the
a77d19f4 666 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 667 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
668 * at that index as well...
669 */
c6dcf52c
JK
670 WARN_ON_ONCE(!ret);
671 return ret;
672}
673
c6dcf52c 674/*
3159f943 675 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
676 */
677int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
678 pgoff_t index)
679{
a77d19f4 680 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
681}
682
cccbce67
DW
683static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
684 sector_t sector, size_t size, struct page *to,
685 unsigned long vaddr)
f7ca90b1 686{
cccbce67
DW
687 void *vto, *kaddr;
688 pgoff_t pgoff;
cccbce67
DW
689 long rc;
690 int id;
691
692 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
693 if (rc)
694 return rc;
695
696 id = dax_read_lock();
86ed913b 697 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
cccbce67
DW
698 if (rc < 0) {
699 dax_read_unlock(id);
700 return rc;
701 }
f7ca90b1 702 vto = kmap_atomic(to);
cccbce67 703 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 704 kunmap_atomic(vto);
cccbce67 705 dax_read_unlock(id);
f7ca90b1
MW
706 return 0;
707}
708
642261ac
RZ
709/*
710 * By this point grab_mapping_entry() has ensured that we have a locked entry
711 * of the appropriate size so we don't have to worry about downgrading PMDs to
712 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
713 * already in the tree, we will skip the insertion and just dirty the PMD as
714 * appropriate.
715 */
b15cd800
MW
716static void *dax_insert_entry(struct xa_state *xas,
717 struct address_space *mapping, struct vm_fault *vmf,
718 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
9973c98e 719{
b15cd800 720 void *new_entry = dax_make_entry(pfn, flags);
9973c98e 721
f5b7b748 722 if (dirty)
d2b2a28e 723 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 724
3159f943 725 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
b15cd800 726 unsigned long index = xas->xa_index;
91d25ba8
RZ
727 /* we are replacing a zero page with block mapping */
728 if (dax_is_pmd_entry(entry))
977fbdcd 729 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 730 PG_PMD_NR, false);
91d25ba8 731 else /* pte entry */
b15cd800 732 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
733 }
734
b15cd800
MW
735 xas_reset(xas);
736 xas_lock_irq(xas);
d2c997c0
DW
737 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
738 dax_disassociate_entry(entry, mapping, false);
73449daf 739 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
d2c997c0 740 }
642261ac 741
91d25ba8 742 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
642261ac 743 /*
a77d19f4 744 * Only swap our new entry into the page cache if the current
642261ac 745 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 746 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
747 * means that if we are trying to insert a PTE and the
748 * existing entry is a PMD, we will just leave the PMD in the
749 * tree and dirty it if necessary.
750 */
b15cd800
MW
751 void *old = dax_lock_entry(xas, new_entry);
752 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
753 DAX_LOCKED));
91d25ba8 754 entry = new_entry;
b15cd800
MW
755 } else {
756 xas_load(xas); /* Walk the xa_state */
9973c98e 757 }
91d25ba8 758
f5b7b748 759 if (dirty)
b15cd800 760 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 761
b15cd800 762 xas_unlock_irq(xas);
91d25ba8 763 return entry;
9973c98e
RZ
764}
765
a77d19f4
MW
766static inline
767unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
768{
769 unsigned long address;
770
771 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
772 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
773 return address;
774}
775
776/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
777static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
778 unsigned long pfn)
4b4bb46d
JK
779{
780 struct vm_area_struct *vma;
f729c8c9
RZ
781 pte_t pte, *ptep = NULL;
782 pmd_t *pmdp = NULL;
4b4bb46d 783 spinlock_t *ptl;
4b4bb46d
JK
784
785 i_mmap_lock_read(mapping);
786 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
a4d1a885 787 unsigned long address, start, end;
4b4bb46d
JK
788
789 cond_resched();
790
791 if (!(vma->vm_flags & VM_SHARED))
792 continue;
793
794 address = pgoff_address(index, vma);
a4d1a885
JG
795
796 /*
797 * Note because we provide start/end to follow_pte_pmd it will
798 * call mmu_notifier_invalidate_range_start() on our behalf
799 * before taking any lock.
800 */
801 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
4b4bb46d 802 continue;
4b4bb46d 803
0f10851e
JG
804 /*
805 * No need to call mmu_notifier_invalidate_range() as we are
806 * downgrading page table protection not changing it to point
807 * to a new page.
808 *
ad56b738 809 * See Documentation/vm/mmu_notifier.rst
0f10851e 810 */
f729c8c9
RZ
811 if (pmdp) {
812#ifdef CONFIG_FS_DAX_PMD
813 pmd_t pmd;
814
815 if (pfn != pmd_pfn(*pmdp))
816 goto unlock_pmd;
f6f37321 817 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
818 goto unlock_pmd;
819
820 flush_cache_page(vma, address, pfn);
821 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
822 pmd = pmd_wrprotect(pmd);
823 pmd = pmd_mkclean(pmd);
824 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 825unlock_pmd:
f729c8c9 826#endif
ee190ca6 827 spin_unlock(ptl);
f729c8c9
RZ
828 } else {
829 if (pfn != pte_pfn(*ptep))
830 goto unlock_pte;
831 if (!pte_dirty(*ptep) && !pte_write(*ptep))
832 goto unlock_pte;
833
834 flush_cache_page(vma, address, pfn);
835 pte = ptep_clear_flush(vma, address, ptep);
836 pte = pte_wrprotect(pte);
837 pte = pte_mkclean(pte);
838 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
839unlock_pte:
840 pte_unmap_unlock(ptep, ptl);
841 }
4b4bb46d 842
a4d1a885 843 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
4b4bb46d
JK
844 }
845 i_mmap_unlock_read(mapping);
846}
847
9fc747f6
MW
848static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
849 struct address_space *mapping, void *entry)
9973c98e 850{
3fe0791c
DW
851 unsigned long pfn;
852 long ret = 0;
cccbce67 853 size_t size;
9973c98e 854
9973c98e 855 /*
a6abc2c0
JK
856 * A page got tagged dirty in DAX mapping? Something is seriously
857 * wrong.
9973c98e 858 */
3159f943 859 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 860 return -EIO;
9973c98e 861
9fc747f6
MW
862 if (unlikely(dax_is_locked(entry))) {
863 void *old_entry = entry;
864
865 entry = get_unlocked_entry(xas);
866
867 /* Entry got punched out / reallocated? */
868 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
869 goto put_unlocked;
870 /*
871 * Entry got reallocated elsewhere? No need to writeback.
872 * We have to compare pfns as we must not bail out due to
873 * difference in lockbit or entry type.
874 */
875 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
876 goto put_unlocked;
877 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
878 dax_is_zero_entry(entry))) {
879 ret = -EIO;
880 goto put_unlocked;
881 }
882
883 /* Another fsync thread may have already done this entry */
884 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
885 goto put_unlocked;
9973c98e
RZ
886 }
887
a6abc2c0 888 /* Lock the entry to serialize with page faults */
9fc747f6
MW
889 dax_lock_entry(xas, entry);
890
a6abc2c0
JK
891 /*
892 * We can clear the tag now but we have to be careful so that concurrent
893 * dax_writeback_one() calls for the same index cannot finish before we
894 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
895 * at the entry only under the i_pages lock and once they do that
896 * they will see the entry locked and wait for it to unlock.
a6abc2c0 897 */
9fc747f6
MW
898 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
899 xas_unlock_irq(xas);
a6abc2c0 900
642261ac
RZ
901 /*
902 * Even if dax_writeback_mapping_range() was given a wbc->range_start
903 * in the middle of a PMD, the 'index' we are given will be aligned to
3fe0791c
DW
904 * the start index of the PMD, as will the pfn we pull from 'entry'.
905 * This allows us to flush for PMD_SIZE and not have to worry about
906 * partial PMD writebacks.
642261ac 907 */
a77d19f4
MW
908 pfn = dax_to_pfn(entry);
909 size = PAGE_SIZE << dax_entry_order(entry);
cccbce67 910
9fc747f6 911 dax_entry_mkclean(mapping, xas->xa_index, pfn);
3fe0791c 912 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
4b4bb46d
JK
913 /*
914 * After we have flushed the cache, we can clear the dirty tag. There
915 * cannot be new dirty data in the pfn after the flush has completed as
916 * the pfn mappings are writeprotected and fault waits for mapping
917 * entry lock.
918 */
9fc747f6
MW
919 xas_reset(xas);
920 xas_lock_irq(xas);
921 xas_store(xas, entry);
922 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
923 dax_wake_entry(xas, entry, false);
924
925 trace_dax_writeback_one(mapping->host, xas->xa_index,
926 size >> PAGE_SHIFT);
9973c98e
RZ
927 return ret;
928
a6abc2c0 929 put_unlocked:
9fc747f6 930 put_unlocked_entry(xas, entry);
9973c98e
RZ
931 return ret;
932}
933
934/*
935 * Flush the mapping to the persistent domain within the byte range of [start,
936 * end]. This is required by data integrity operations to ensure file data is
937 * on persistent storage prior to completion of the operation.
938 */
7f6d5b52
RZ
939int dax_writeback_mapping_range(struct address_space *mapping,
940 struct block_device *bdev, struct writeback_control *wbc)
9973c98e 941{
9fc747f6 942 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 943 struct inode *inode = mapping->host;
9fc747f6 944 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
cccbce67 945 struct dax_device *dax_dev;
9fc747f6
MW
946 void *entry;
947 int ret = 0;
948 unsigned int scanned = 0;
9973c98e
RZ
949
950 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
951 return -EIO;
952
7f6d5b52
RZ
953 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
954 return 0;
955
cccbce67
DW
956 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
957 if (!dax_dev)
958 return -EIO;
959
9fc747f6 960 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 961
9fc747f6 962 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 963
9fc747f6
MW
964 xas_lock_irq(&xas);
965 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
966 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
967 if (ret < 0) {
968 mapping_set_error(mapping, ret);
9973c98e 969 break;
9973c98e 970 }
9fc747f6
MW
971 if (++scanned % XA_CHECK_SCHED)
972 continue;
973
974 xas_pause(&xas);
975 xas_unlock_irq(&xas);
976 cond_resched();
977 xas_lock_irq(&xas);
9973c98e 978 }
9fc747f6 979 xas_unlock_irq(&xas);
cccbce67 980 put_dax(dax_dev);
9fc747f6
MW
981 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
982 return ret;
9973c98e
RZ
983}
984EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
985
31a6f1a6 986static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 987{
a3841f94 988 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
989}
990
5e161e40
JK
991static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
992 pfn_t *pfnp)
f7ca90b1 993{
31a6f1a6 994 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
995 pgoff_t pgoff;
996 int id, rc;
5e161e40 997 long length;
f7ca90b1 998
5e161e40 999 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
1000 if (rc)
1001 return rc;
cccbce67 1002 id = dax_read_lock();
5e161e40 1003 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1004 NULL, pfnp);
5e161e40
JK
1005 if (length < 0) {
1006 rc = length;
1007 goto out;
cccbce67 1008 }
5e161e40
JK
1009 rc = -EINVAL;
1010 if (PFN_PHYS(length) < size)
1011 goto out;
1012 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1013 goto out;
1014 /* For larger pages we need devmap */
1015 if (length > 1 && !pfn_t_devmap(*pfnp))
1016 goto out;
1017 rc = 0;
1018out:
cccbce67 1019 dax_read_unlock(id);
5e161e40 1020 return rc;
0e3b210c 1021}
0e3b210c 1022
e30331ff 1023/*
91d25ba8
RZ
1024 * The user has performed a load from a hole in the file. Allocating a new
1025 * page in the file would cause excessive storage usage for workloads with
1026 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1027 * If this page is ever written to we will re-fault and change the mapping to
1028 * point to real DAX storage instead.
e30331ff 1029 */
b15cd800
MW
1030static vm_fault_t dax_load_hole(struct xa_state *xas,
1031 struct address_space *mapping, void **entry,
1032 struct vm_fault *vmf)
e30331ff
RZ
1033{
1034 struct inode *inode = mapping->host;
91d25ba8 1035 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1036 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1037 vm_fault_t ret;
e30331ff 1038
b15cd800 1039 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943
MW
1040 DAX_ZERO_PAGE, false);
1041
ab77dab4 1042 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1043 trace_dax_load_hole(inode, vmf, ret);
1044 return ret;
1045}
1046
4b0228fa
VV
1047static bool dax_range_is_aligned(struct block_device *bdev,
1048 unsigned int offset, unsigned int length)
1049{
1050 unsigned short sector_size = bdev_logical_block_size(bdev);
1051
1052 if (!IS_ALIGNED(offset, sector_size))
1053 return false;
1054 if (!IS_ALIGNED(length, sector_size))
1055 return false;
1056
1057 return true;
1058}
1059
cccbce67
DW
1060int __dax_zero_page_range(struct block_device *bdev,
1061 struct dax_device *dax_dev, sector_t sector,
1062 unsigned int offset, unsigned int size)
679c8bd3 1063{
cccbce67
DW
1064 if (dax_range_is_aligned(bdev, offset, size)) {
1065 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1066
1067 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1068 size >> 9, GFP_NOFS, 0);
4b0228fa 1069 } else {
cccbce67
DW
1070 pgoff_t pgoff;
1071 long rc, id;
1072 void *kaddr;
cccbce67 1073
e84b83b9 1074 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1075 if (rc)
1076 return rc;
1077
1078 id = dax_read_lock();
86ed913b 1079 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
cccbce67
DW
1080 if (rc < 0) {
1081 dax_read_unlock(id);
1082 return rc;
1083 }
81f55870 1084 memset(kaddr + offset, 0, size);
c3ca015f 1085 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1086 dax_read_unlock(id);
4b0228fa 1087 }
679c8bd3
CH
1088 return 0;
1089}
1090EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1091
a254e568 1092static loff_t
11c59c92 1093dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1094 struct iomap *iomap)
1095{
cccbce67
DW
1096 struct block_device *bdev = iomap->bdev;
1097 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1098 struct iov_iter *iter = data;
1099 loff_t end = pos + length, done = 0;
1100 ssize_t ret = 0;
a77d4786 1101 size_t xfer;
cccbce67 1102 int id;
a254e568
CH
1103
1104 if (iov_iter_rw(iter) == READ) {
1105 end = min(end, i_size_read(inode));
1106 if (pos >= end)
1107 return 0;
1108
1109 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1110 return iov_iter_zero(min(length, end - pos), iter);
1111 }
1112
1113 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1114 return -EIO;
1115
e3fce68c
JK
1116 /*
1117 * Write can allocate block for an area which has a hole page mapped
1118 * into page tables. We have to tear down these mappings so that data
1119 * written by write(2) is visible in mmap.
1120 */
cd656375 1121 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1122 invalidate_inode_pages2_range(inode->i_mapping,
1123 pos >> PAGE_SHIFT,
1124 (end - 1) >> PAGE_SHIFT);
1125 }
1126
cccbce67 1127 id = dax_read_lock();
a254e568
CH
1128 while (pos < end) {
1129 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1130 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1131 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1132 ssize_t map_len;
cccbce67
DW
1133 pgoff_t pgoff;
1134 void *kaddr;
a254e568 1135
d1908f52
MH
1136 if (fatal_signal_pending(current)) {
1137 ret = -EINTR;
1138 break;
1139 }
1140
cccbce67
DW
1141 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1142 if (ret)
1143 break;
1144
1145 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1146 &kaddr, NULL);
a254e568
CH
1147 if (map_len < 0) {
1148 ret = map_len;
1149 break;
1150 }
1151
cccbce67
DW
1152 map_len = PFN_PHYS(map_len);
1153 kaddr += offset;
a254e568
CH
1154 map_len -= offset;
1155 if (map_len > end - pos)
1156 map_len = end - pos;
1157
a2e050f5
RZ
1158 /*
1159 * The userspace address for the memory copy has already been
1160 * validated via access_ok() in either vfs_read() or
1161 * vfs_write(), depending on which operation we are doing.
1162 */
a254e568 1163 if (iov_iter_rw(iter) == WRITE)
a77d4786 1164 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1165 map_len, iter);
a254e568 1166 else
a77d4786 1167 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1168 map_len, iter);
a254e568 1169
a77d4786
DW
1170 pos += xfer;
1171 length -= xfer;
1172 done += xfer;
1173
1174 if (xfer == 0)
1175 ret = -EFAULT;
1176 if (xfer < map_len)
1177 break;
a254e568 1178 }
cccbce67 1179 dax_read_unlock(id);
a254e568
CH
1180
1181 return done ? done : ret;
1182}
1183
1184/**
11c59c92 1185 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1186 * @iocb: The control block for this I/O
1187 * @iter: The addresses to do I/O from or to
1188 * @ops: iomap ops passed from the file system
1189 *
1190 * This function performs read and write operations to directly mapped
1191 * persistent memory. The callers needs to take care of read/write exclusion
1192 * and evicting any page cache pages in the region under I/O.
1193 */
1194ssize_t
11c59c92 1195dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1196 const struct iomap_ops *ops)
a254e568
CH
1197{
1198 struct address_space *mapping = iocb->ki_filp->f_mapping;
1199 struct inode *inode = mapping->host;
1200 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1201 unsigned flags = 0;
1202
168316db
CH
1203 if (iov_iter_rw(iter) == WRITE) {
1204 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1205 flags |= IOMAP_WRITE;
168316db
CH
1206 } else {
1207 lockdep_assert_held(&inode->i_rwsem);
1208 }
a254e568 1209
a254e568
CH
1210 while (iov_iter_count(iter)) {
1211 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1212 iter, dax_iomap_actor);
a254e568
CH
1213 if (ret <= 0)
1214 break;
1215 pos += ret;
1216 done += ret;
1217 }
1218
1219 iocb->ki_pos += done;
1220 return done ? done : ret;
1221}
11c59c92 1222EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1223
ab77dab4 1224static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1225{
1226 if (error == 0)
1227 return VM_FAULT_NOPAGE;
1228 if (error == -ENOMEM)
1229 return VM_FAULT_OOM;
1230 return VM_FAULT_SIGBUS;
1231}
1232
aaa422c4
DW
1233/*
1234 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1235 * flushed on write-faults (non-cow), but not read-faults.
1236 */
1237static bool dax_fault_is_synchronous(unsigned long flags,
1238 struct vm_area_struct *vma, struct iomap *iomap)
1239{
1240 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1241 && (iomap->flags & IOMAP_F_DIRTY);
1242}
1243
ab77dab4 1244static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1245 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1246{
a0987ad5
JK
1247 struct vm_area_struct *vma = vmf->vma;
1248 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1249 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
a7d73fe6 1250 struct inode *inode = mapping->host;
1a29d85e 1251 unsigned long vaddr = vmf->address;
a7d73fe6 1252 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1253 struct iomap iomap = { 0 };
9484ab1b 1254 unsigned flags = IOMAP_FAULT;
a7d73fe6 1255 int error, major = 0;
d2c43ef1 1256 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1257 bool sync;
ab77dab4 1258 vm_fault_t ret = 0;
a7d73fe6 1259 void *entry;
1b5a1cb2 1260 pfn_t pfn;
a7d73fe6 1261
ab77dab4 1262 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1263 /*
1264 * Check whether offset isn't beyond end of file now. Caller is supposed
1265 * to hold locks serializing us with truncate / punch hole so this is
1266 * a reliable test.
1267 */
a9c42b33 1268 if (pos >= i_size_read(inode)) {
ab77dab4 1269 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1270 goto out;
1271 }
a7d73fe6 1272
d2c43ef1 1273 if (write && !vmf->cow_page)
a7d73fe6
CH
1274 flags |= IOMAP_WRITE;
1275
b15cd800
MW
1276 entry = grab_mapping_entry(&xas, mapping, 0);
1277 if (xa_is_internal(entry)) {
1278 ret = xa_to_internal(entry);
13e451fd
JK
1279 goto out;
1280 }
1281
e2093926
RZ
1282 /*
1283 * It is possible, particularly with mixed reads & writes to private
1284 * mappings, that we have raced with a PMD fault that overlaps with
1285 * the PTE we need to set up. If so just return and the fault will be
1286 * retried.
1287 */
1288 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1289 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1290 goto unlock_entry;
1291 }
1292
a7d73fe6
CH
1293 /*
1294 * Note that we don't bother to use iomap_apply here: DAX required
1295 * the file system block size to be equal the page size, which means
1296 * that we never have to deal with more than a single extent here.
1297 */
1298 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1299 if (iomap_errp)
1300 *iomap_errp = error;
a9c42b33 1301 if (error) {
ab77dab4 1302 ret = dax_fault_return(error);
13e451fd 1303 goto unlock_entry;
a9c42b33 1304 }
a7d73fe6 1305 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1306 error = -EIO; /* fs corruption? */
1307 goto error_finish_iomap;
a7d73fe6
CH
1308 }
1309
a7d73fe6 1310 if (vmf->cow_page) {
31a6f1a6
JK
1311 sector_t sector = dax_iomap_sector(&iomap, pos);
1312
a7d73fe6
CH
1313 switch (iomap.type) {
1314 case IOMAP_HOLE:
1315 case IOMAP_UNWRITTEN:
1316 clear_user_highpage(vmf->cow_page, vaddr);
1317 break;
1318 case IOMAP_MAPPED:
cccbce67
DW
1319 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1320 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1321 break;
1322 default:
1323 WARN_ON_ONCE(1);
1324 error = -EIO;
1325 break;
1326 }
1327
1328 if (error)
13e451fd 1329 goto error_finish_iomap;
b1aa812b
JK
1330
1331 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1332 ret = finish_fault(vmf);
1333 if (!ret)
1334 ret = VM_FAULT_DONE_COW;
13e451fd 1335 goto finish_iomap;
a7d73fe6
CH
1336 }
1337
aaa422c4 1338 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1339
a7d73fe6
CH
1340 switch (iomap.type) {
1341 case IOMAP_MAPPED:
1342 if (iomap.flags & IOMAP_F_NEW) {
1343 count_vm_event(PGMAJFAULT);
a0987ad5 1344 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1345 major = VM_FAULT_MAJOR;
1346 }
1b5a1cb2
JK
1347 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1348 if (error < 0)
1349 goto error_finish_iomap;
1350
b15cd800 1351 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
caa51d26 1352 0, write && !sync);
1b5a1cb2 1353
caa51d26
JK
1354 /*
1355 * If we are doing synchronous page fault and inode needs fsync,
1356 * we can insert PTE into page tables only after that happens.
1357 * Skip insertion for now and return the pfn so that caller can
1358 * insert it after fsync is done.
1359 */
1360 if (sync) {
1361 if (WARN_ON_ONCE(!pfnp)) {
1362 error = -EIO;
1363 goto error_finish_iomap;
1364 }
1365 *pfnp = pfn;
ab77dab4 1366 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1367 goto finish_iomap;
1368 }
1b5a1cb2
JK
1369 trace_dax_insert_mapping(inode, vmf, entry);
1370 if (write)
ab77dab4 1371 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1372 else
ab77dab4 1373 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1374
ab77dab4 1375 goto finish_iomap;
a7d73fe6
CH
1376 case IOMAP_UNWRITTEN:
1377 case IOMAP_HOLE:
d2c43ef1 1378 if (!write) {
b15cd800 1379 ret = dax_load_hole(&xas, mapping, &entry, vmf);
13e451fd 1380 goto finish_iomap;
1550290b 1381 }
a7d73fe6
CH
1382 /*FALLTHRU*/
1383 default:
1384 WARN_ON_ONCE(1);
1385 error = -EIO;
1386 break;
1387 }
1388
13e451fd 1389 error_finish_iomap:
ab77dab4 1390 ret = dax_fault_return(error);
9f141d6e
JK
1391 finish_iomap:
1392 if (ops->iomap_end) {
1393 int copied = PAGE_SIZE;
1394
ab77dab4 1395 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1396 copied = 0;
1397 /*
1398 * The fault is done by now and there's no way back (other
1399 * thread may be already happily using PTE we have installed).
1400 * Just ignore error from ->iomap_end since we cannot do much
1401 * with it.
1402 */
1403 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1404 }
13e451fd 1405 unlock_entry:
b15cd800 1406 dax_unlock_entry(&xas, entry);
13e451fd 1407 out:
ab77dab4
SJ
1408 trace_dax_pte_fault_done(inode, vmf, ret);
1409 return ret | major;
a7d73fe6 1410}
642261ac
RZ
1411
1412#ifdef CONFIG_FS_DAX_PMD
b15cd800
MW
1413static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1414 struct iomap *iomap, void **entry)
642261ac 1415{
f4200391
DJ
1416 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1417 unsigned long pmd_addr = vmf->address & PMD_MASK;
653b2ea3 1418 struct inode *inode = mapping->host;
642261ac
RZ
1419 struct page *zero_page;
1420 spinlock_t *ptl;
1421 pmd_t pmd_entry;
3fe0791c 1422 pfn_t pfn;
642261ac 1423
f4200391 1424 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1425
1426 if (unlikely(!zero_page))
653b2ea3 1427 goto fallback;
642261ac 1428
3fe0791c 1429 pfn = page_to_pfn_t(zero_page);
b15cd800 1430 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943 1431 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1432
f4200391
DJ
1433 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1434 if (!pmd_none(*(vmf->pmd))) {
642261ac 1435 spin_unlock(ptl);
653b2ea3 1436 goto fallback;
642261ac
RZ
1437 }
1438
f4200391 1439 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1440 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1441 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1442 spin_unlock(ptl);
b15cd800 1443 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
642261ac 1444 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1445
1446fallback:
b15cd800 1447 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
653b2ea3 1448 return VM_FAULT_FALLBACK;
642261ac
RZ
1449}
1450
ab77dab4 1451static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1452 const struct iomap_ops *ops)
642261ac 1453{
f4200391 1454 struct vm_area_struct *vma = vmf->vma;
642261ac 1455 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1456 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
d8a849e1
DJ
1457 unsigned long pmd_addr = vmf->address & PMD_MASK;
1458 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1459 bool sync;
9484ab1b 1460 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1461 struct inode *inode = mapping->host;
ab77dab4 1462 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac 1463 struct iomap iomap = { 0 };
b15cd800 1464 pgoff_t max_pgoff;
642261ac
RZ
1465 void *entry;
1466 loff_t pos;
1467 int error;
302a5e31 1468 pfn_t pfn;
642261ac 1469
282a8e03
RZ
1470 /*
1471 * Check whether offset isn't beyond end of file now. Caller is
1472 * supposed to hold locks serializing us with truncate / punch hole so
1473 * this is a reliable test.
1474 */
957ac8c4 1475 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1476
f4200391 1477 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1478
fffa281b
RZ
1479 /*
1480 * Make sure that the faulting address's PMD offset (color) matches
1481 * the PMD offset from the start of the file. This is necessary so
1482 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1483 * range in the page cache.
fffa281b
RZ
1484 */
1485 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1486 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1487 goto fallback;
1488
642261ac
RZ
1489 /* Fall back to PTEs if we're going to COW */
1490 if (write && !(vma->vm_flags & VM_SHARED))
1491 goto fallback;
1492
1493 /* If the PMD would extend outside the VMA */
1494 if (pmd_addr < vma->vm_start)
1495 goto fallback;
1496 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1497 goto fallback;
1498
b15cd800 1499 if (xas.xa_index >= max_pgoff) {
282a8e03
RZ
1500 result = VM_FAULT_SIGBUS;
1501 goto out;
1502 }
642261ac
RZ
1503
1504 /* If the PMD would extend beyond the file size */
b15cd800 1505 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1506 goto fallback;
1507
876f2946 1508 /*
b15cd800
MW
1509 * grab_mapping_entry() will make sure we get an empty PMD entry,
1510 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1511 * entry is already in the array, for instance), it will return
1512 * VM_FAULT_FALLBACK.
876f2946 1513 */
b15cd800
MW
1514 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1515 if (xa_is_internal(entry)) {
1516 result = xa_to_internal(entry);
876f2946 1517 goto fallback;
b15cd800 1518 }
876f2946 1519
e2093926
RZ
1520 /*
1521 * It is possible, particularly with mixed reads & writes to private
1522 * mappings, that we have raced with a PTE fault that overlaps with
1523 * the PMD we need to set up. If so just return and the fault will be
1524 * retried.
1525 */
1526 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1527 !pmd_devmap(*vmf->pmd)) {
1528 result = 0;
1529 goto unlock_entry;
1530 }
1531
642261ac
RZ
1532 /*
1533 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1534 * setting up a mapping, so really we're using iomap_begin() as a way
1535 * to look up our filesystem block.
1536 */
b15cd800 1537 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
642261ac
RZ
1538 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1539 if (error)
876f2946 1540 goto unlock_entry;
9f141d6e 1541
642261ac
RZ
1542 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1543 goto finish_iomap;
1544
aaa422c4 1545 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1546
642261ac
RZ
1547 switch (iomap.type) {
1548 case IOMAP_MAPPED:
302a5e31
JK
1549 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1550 if (error < 0)
1551 goto finish_iomap;
1552
b15cd800 1553 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
3159f943 1554 DAX_PMD, write && !sync);
302a5e31 1555
caa51d26
JK
1556 /*
1557 * If we are doing synchronous page fault and inode needs fsync,
1558 * we can insert PMD into page tables only after that happens.
1559 * Skip insertion for now and return the pfn so that caller can
1560 * insert it after fsync is done.
1561 */
1562 if (sync) {
1563 if (WARN_ON_ONCE(!pfnp))
1564 goto finish_iomap;
1565 *pfnp = pfn;
1566 result = VM_FAULT_NEEDDSYNC;
1567 goto finish_iomap;
1568 }
1569
302a5e31
JK
1570 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1571 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1572 write);
642261ac
RZ
1573 break;
1574 case IOMAP_UNWRITTEN:
1575 case IOMAP_HOLE:
1576 if (WARN_ON_ONCE(write))
876f2946 1577 break;
b15cd800 1578 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
642261ac
RZ
1579 break;
1580 default:
1581 WARN_ON_ONCE(1);
1582 break;
1583 }
1584
1585 finish_iomap:
1586 if (ops->iomap_end) {
9f141d6e
JK
1587 int copied = PMD_SIZE;
1588
1589 if (result == VM_FAULT_FALLBACK)
1590 copied = 0;
1591 /*
1592 * The fault is done by now and there's no way back (other
1593 * thread may be already happily using PMD we have installed).
1594 * Just ignore error from ->iomap_end since we cannot do much
1595 * with it.
1596 */
1597 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1598 &iomap);
642261ac 1599 }
876f2946 1600 unlock_entry:
b15cd800 1601 dax_unlock_entry(&xas, entry);
642261ac
RZ
1602 fallback:
1603 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1604 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1605 count_vm_event(THP_FAULT_FALLBACK);
1606 }
282a8e03 1607out:
f4200391 1608 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1609 return result;
1610}
a2d58167 1611#else
ab77dab4 1612static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1613 const struct iomap_ops *ops)
a2d58167
DJ
1614{
1615 return VM_FAULT_FALLBACK;
1616}
642261ac 1617#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1618
1619/**
1620 * dax_iomap_fault - handle a page fault on a DAX file
1621 * @vmf: The description of the fault
cec04e8c 1622 * @pe_size: Size of the page to fault in
9a0dd422 1623 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1624 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1625 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1626 *
1627 * When a page fault occurs, filesystems may call this helper in
1628 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1629 * has done all the necessary locking for page fault to proceed
1630 * successfully.
1631 */
ab77dab4 1632vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1633 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1634{
c791ace1
DJ
1635 switch (pe_size) {
1636 case PE_SIZE_PTE:
c0b24625 1637 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1638 case PE_SIZE_PMD:
9a0dd422 1639 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1640 default:
1641 return VM_FAULT_FALLBACK;
1642 }
1643}
1644EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1645
a77d19f4 1646/*
71eab6df
JK
1647 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1648 * @vmf: The description of the fault
71eab6df 1649 * @pfn: PFN to insert
cfc93c6c 1650 * @order: Order of entry to insert.
71eab6df 1651 *
a77d19f4
MW
1652 * This function inserts a writeable PTE or PMD entry into the page tables
1653 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1654 */
cfc93c6c
MW
1655static vm_fault_t
1656dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1657{
1658 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1659 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1660 void *entry;
ab77dab4 1661 vm_fault_t ret;
71eab6df 1662
cfc93c6c
MW
1663 xas_lock_irq(&xas);
1664 entry = get_unlocked_entry(&xas);
71eab6df
JK
1665 /* Did we race with someone splitting entry or so? */
1666 if (!entry ||
cfc93c6c 1667 (order == 0 && !dax_is_pte_entry(entry)) ||
0e40de03 1668 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
cfc93c6c
MW
1669 put_unlocked_entry(&xas, entry);
1670 xas_unlock_irq(&xas);
71eab6df
JK
1671 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1672 VM_FAULT_NOPAGE);
1673 return VM_FAULT_NOPAGE;
1674 }
cfc93c6c
MW
1675 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1676 dax_lock_entry(&xas, entry);
1677 xas_unlock_irq(&xas);
1678 if (order == 0)
ab77dab4 1679 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1680#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1681 else if (order == PMD_ORDER)
ab77dab4 1682 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
71eab6df 1683 pfn, true);
71eab6df 1684#endif
cfc93c6c 1685 else
ab77dab4 1686 ret = VM_FAULT_FALLBACK;
cfc93c6c 1687 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1688 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1689 return ret;
71eab6df
JK
1690}
1691
1692/**
1693 * dax_finish_sync_fault - finish synchronous page fault
1694 * @vmf: The description of the fault
1695 * @pe_size: Size of entry to be inserted
1696 * @pfn: PFN to insert
1697 *
1698 * This function ensures that the file range touched by the page fault is
1699 * stored persistently on the media and handles inserting of appropriate page
1700 * table entry.
1701 */
ab77dab4
SJ
1702vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1703 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1704{
1705 int err;
1706 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1707 unsigned int order = pe_order(pe_size);
1708 size_t len = PAGE_SIZE << order;
71eab6df 1709
71eab6df
JK
1710 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1711 if (err)
1712 return VM_FAULT_SIGBUS;
cfc93c6c 1713 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1714}
1715EXPORT_SYMBOL_GPL(dax_finish_sync_fault);